0000 V2.10.0~preO~refs-pull-3188-
merge~f406dc4c51, 09 Oct 2023

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 ii

Contents

1 00 1
2 HAL General Reference 2
2.1 HAL Entity Names o e e e e e e e e 2
2.2 HAL General Naming Conventions 2
2.3 Hardware Driver Naming Conventions 3
2.3.1 Pins/Parameters Names o v i v i it e e e e e e e e e e e e e e 3

2.3.2 Function Names e e 4

3 Code Notes 5
3.1 Intended audience L e 5
3.2 Organization e e e e e e e e e 5
3.3 Terms and definitions e e 5
3.4 Architecture overview L e e 6
3.4.1 LinuxCNC software architecture Lo oL 8

3.5 Motion Controller Introduction o o 8
3.5.1 Motion Controller Modules e 8

3.6 Block diagrams and Data Flow e 10
3.7 Homing e e e e e e e e e e e 13
3.7.1 Homing state diagram 13

3.7.2 Another homing diagram e 14

3.8 Commands e e e e e 14
3.8.1 ABORT 14

3.8.1.1 Requirements e e e e 15

3.8.1.2 Results e 15

3.8.2 FREE 15
3.8.2.1 Requirements e e 15

3.8.2.2 Results e 15

3.8.3 TELEOP e 15

3.8.3.1 Requirements e e e e e e 16

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 iii

3.8.3.2 Results e e 16
3.8.4 COORD e e 16
3.8.4.1 Requirements e e e e 16
3.8.4.2 Results e 16
3.8.5 ENABLE e e e 16
3.8.5.1 Requirements e e e e e 16
3.8.5.2 Results e e 16
3.8.6 DISABLE e e 17
3.8.6.1 Requirements e e e e e 17
3.8.6.2 Results e 17
3.8.7 ENABLE AMPLIFIER e e e e e e e e e 17
3.8.7.1 Requirements e e e e 17
3.8.7.2 Results e 17
3.8.8 DISABLE AMPLIFIER e 17
3.8.8.1 Requirements e e e e e e e e 17
3.8.8.2 Results e 17
3.8.9 ACTIVATE JOINT o e e e e e e e e e e e e s e e e e 17
3.8.9.1 Requirements e e e e 18
3.8.9.2 Results e 18
3.8.10DEACTIVATE JOINT o e e e e e e e e e e e e 18
3.8.10.1Requirements e e e e e 18
3.8.10.2Results L e 18
3.8.11ENABLE WATCHDOG e e e e e e e e e e e e e e 18
3.8.11.1Requirements e e e e e e e 18
3.8.11.2Results e e 18
3.8.12DISABLE WATCHDOG e e e e e e s 18
3.8.12.1Requirements e e e e e 18
3.8.12.2Results e 18
3.8.13PAUSE e 19
3.8.13.1Requirements e e e e e e 19
3.8.13.2Results e e e e e e e e e e 19
3.8.14RESUME e e 19
3.8.14.1Requirements e e e e e e e e e e e 19
3.8.14.2Results L e 19
3.8.15STEP o e e e 19
3.8.15.1Requirements e e e e e 19
3.8.15.2Results e e e e e e e e 19
3.8.16SCALE e e 19

3.8.16.1Requirements e e e e e e e e e e 20

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 iv

3.8.16.2Results e e 20
3.8.170VERRIDE LIMITS e e e e e e e e e e e 20
3.8.17.1Requirements e e e e e e 20
3.8.17.2Results e 20
3.8.18HOME e e e e e e 20
3.8.18.1Requirements e e e e e e e e 20
3.8.18.2Results e e 20
3.8.19JOG CONT . . . e e e e e 20
3.8.19.1Requirements e e e e e e e e e e 21
3.8.19.2Results e e e e e e e e 21
3.8.20JOG INCR . . . e e e e 21
3.8.20.1Requirements e e e e e e e 21
3.8.20.2Results e e 21
3.8.21JOG ABS e 21
3.8.21.1Requirements e e e e e e e e e e e 21
3.8.21.2Results e 22
3.8.22S8ET LINE e e e e 22
3.8.23SET CIRCLE 22
3.8.24SET TELEOP VECTOR e e e e e e e e 22
3.8.25PROBE e 22
3.8.26CLEAR PROBE FLAG e e e e e e e e e e e 22
3.8.27SET XiX o e 22

3.9 Backlash and Screw Error Compensation, 23
3.10Task controller (EMCTASK) e e e e 23
3.10.1State e e e e e e 23
3.111I0 controller (EMCIO) e e e 23
SA20000 - - - v o o e e e e e e e e e e e e e e e e e e e 23
3.13libnml Introduction L 24
3.14LinkedList 24
3.15LinkedListNode e e 24
3.16SharedMemory i i e e e e e e e e e e e e e 24
3.17ShmBuffer e 24
3. A8TIMET e e e e e e 24
3.19Semaphore L e e e e e 25
3.20CMS . . 25
3.21Configuration file format 26
3.21.1Bufferline 26
3.21.2Type specific configs e e 27

3.21.3Process line e e 28

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 Y

3.21.4Configuration Comments e e e 28
3.22NML base Class i e e e e e e e e e 29
3.22. INML internals e e 29
3.22.1.1INML constructor e e 29
3.22.1.2NML read/Write o o o e e e e e e e e e e e 30
3.22.1.3NMLmsg and NML relationships 30
3.23Adding custom NML commands it i ittt e e e e e 30
3.24The Tool Table and Toolchanger i ittt 30
3.24.1Toolchanger abstraction in LinuxCNC 30
3.24.1.1Nonrandom Toolchangers i ... 31
3.24.1.2Random Toolchangers 31

3.24.2The Tool Table e e e e e e 31
3.24.3G-codes affecting tools L 32
B24. 3. ITXXX v v v o e e e e e e e e e e e e e e e e e e e 32
3.24.3.2M06 . . o e 32
3.24.3.3G43/G43.1/GA9 e e 33
3.24.3.4G10 LI/L10/LIT . . . o o e e e e e e e e e 33
3.24.3.5M61 . .. e e e e e e 34
3.24.3.6G41/GA1.1/GA2/GA2.1 e e e e 34
3.24.3.7GA0 . . L e 34
3.24.4Internal state variables 35
3.24.4.110 . . . e e e e e e 35
3.24.4.2interp e e e e e e e e e e e 35
3.25Reckoning of joints and axes e e e 36
3.25.1Inthe status buffer 36
3.25.2In MOtIon e e e e e e e e e e e e e e 37

4 NML Messages 38
4.1 OPERATOR o e e 38
4.2 JOINT . . . e e e e e e 38
4.3 AXIS . . e e e e 38
4.4 JOG o o e e e e e 39
4.5 TRAJ . . o 39
4.6 MOTION e e e e e e e e e 39
4.7 TASK . e e e e 40
4.8 TOOL . . . o e e e e e e e e 40
4.9 AUX . o e e e 40
4. 10SPINDLE e e e e e e 41
4. 11COOLANT . . 41
4. 12LUBE . . . e e e 41
4.1310 (Input/Output) o e e e e 41

4.140thers e e e 41

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 Vi
5 Coding Style 42
5.1 Donoharm e e 42
5.2 Tab Stops o e e e e e e e 42
5.3 Indentation L 42
5.4 Placing Braces e e e 42
5.0 Naming o e e e e e e 43
5.6 Functions e e e 43
5.7 Commenting L e e e e e e e 44
5.8 Shell Scripts & Makefiles e 44
5.9 C++ Conventions e e e e 44
5.9.1 Specific method naming conventions 45
5.10Python coding standards e 45
5.11Comp coding standards e e e 45

6 Building LinuxCNC 46
6.1 [- o o o o e e e e e e e e e e e e e e e e 46
6.2 Downloading source tree e e e e e e e 46
6.2.1 Quick Start e e e e e 47

6.3 Supported Platforms e e e e e 47
6.3.1 Realtime e 48

6.4 Build modes e e e e e e e e e e e e e e 48
6.4.1 Buildingfor RunInPlace e 48

6.4.1.1 src/configurearguments 48

6.4.1.2 make arguments e e e e e e e e e 49

6.4.2 Building Debian Packages 49

6.4.2.1 LinuxCNC’s debian/configure arguments 50

6.4.2.2 Satisfying Build Dependencies 51

6.4.2.3 Options for dpkg-buildpackage 52

6.4.2.4 Installing self-built Debian packages 53

6.5 Setting up the environment e 53
6.5.1 Increase the locked memory limit, 53

6.6 Buildingon Gentoo e e e e e e e 54
6.7 Options for checking outthegitrepo, 54
6.7.1 Forkuson GitHub 55

7 Adding Configuration Selection Items 56

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023

vii

8 Contributing to LinuxCNC
8.1 OO - v v v e e e e

8.2 Communication among LinuxCNC developers.

8.3 The LinuxCNC Source Forge project
8.4 The Git Revision Control System . .
8.4.1 LinuxCNC official Git repo .
8.4.2 Use of Git in the LinuxCNC pr
8.4.3 gittutorials
8.5 Overview of the process
8.6 git configuration
8.7 Effectiveuseofgit
8.7.1 Commit contents
8.7.2 Write good commit messages

8.7.3 Commit to the proper branch

oject . .. e

8.7.4 Use multiple commits to organize changes.

8.7.5 Follow the style of the surroundingcode
8.7.6 Getrid of RTAPI SUCCESS, useOinstead
8.7.7 Simplify complicated history before sharing with fellow developers

8.7.8 Make sure every commit builds

8.7.9 Renaming files
8.7.10Prefer "rebase”
8.8 Translations

8.9 Other ways to contribute
9 Glossary

10Legal Section
10.1Copyright Terms

10.2GNU Free Documentation License

57
57
57
57
57
57
58
58
58
59
59
59
59
59
60
60
60
60
60
61
61
61
61

62

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 1/72

Chapter 1

il

—

This handbook is a work in progress. If you are able to help with writing, editing, or graphic prepara-
tion please contact any member of the writing team or join and send an email to emc-users@lists.sourceforge

Copyright © 2000-2020 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “"GNU Free Documentation License”.

If you do not find the license you may order a copy from:

Free Software Foundation, Inc.
51 Franklin Street

Fifth Floor

Boston, MA 02110-1301 USA.

(The English language version is authoritative)

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered
trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a world-wide basis.

The LinuxCNC project is not affiliated with Debian®. Debian is a registered trademark owned by
Software in the Public Interest, Inc.

The LinuxCNC project is not affiliated with UBUNTU®. UBUNTU is a registered trademark owned
by Canonical Limited.

mailto:emc-users@lists.sourceforge.net

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 2/72

Chapter 2

HAL General Reference

2.1 HAL Entity Names

All HAL entities are accessible and manipulable by their names, so documenting the names of pins,
signals, parameters, etc., is very important. Names in HAL have a maximum length of 41 characters
(as defined by HALL. NAME LEN in hal.h). Many names will be presented in the general form, with
formatted text <like-this> representing fields of various values.

When pins, signals, or parameters are described for the first time, their name will be preceded by
their type in parentheses (float) and followed by a brief description. Typical pins definitions look like
these examples:

(bit) parport.<portnum>.pin-<pinnum>-in
The HAL pin associated with the physical input pin <pinnum> of the db25 connector.

(float) pid.<loopnum>.output
The PID loop output

Occasionally, an abbreviated version of the name may be used, for example the second pin above could
be simply called with .output when it can be done without causing confusion.

2.2 HAL General Naming Conventions

Consistent naming conventions would make HAL much easier to use. For example, if every encoder
driver provided the same set of pins and named them the same way, then it would be easy to change
from one type of encoder driver to another. Unfortunately, like many open-source projects, HAL is a
combination of things that were designed, and things that simply evolved. As a result, there are many
inconsistencies. This section attempts to address that problem by defining some conventions, but it
will probably be a while before all the modules are converted to follow them.

Halcmd and other low-level HAL utilities treat HAL names as single entities, with no internal struc-
ture. However, most modules do have some implicit structure. For example, a board provides several
functional blocks, each block might have several channels, and each channel has one or more pins.
This results in a structure that resembles a directory tree. Even though halcmd doesn’t recognize the
tree structure, proper choice of naming conventions will let it group related items together (since it
sorts the names). In addition, higher level tools can be designed to recognize such structure, if the
names provide the necessary information. To do that, all HAL components should follow these rules:

* Dots (“.”) separate levels of the hierarchy. This is analogous to the slash (“/”) in a filename.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 3/72

“ n

* Hyphens (“-”) separate words or fields in the same level of the hierarchy.

« HAL components should not use underscores or “MixedCase”. !

* Use only lowercase letters and numbers in names.

2.3 Hardware Driver Naming Conventions

ao

Most drivers do not follow these conventions in version 2.0. This chapter is really a guide for future
developments.

2.3.1 Pins/Parameters names

Hardware drivers should use five fields (on three levels) to make up a pin or parameter name, as
follows:

<device-name>.<device-num>.<io-type>.<chan-num>.<specific-name>
The individual fields are:

<device-name>
The device that the driver is intended to work with. This is most often an interface board of some
type, but there are other possibilities.

<device-num>
It is possible to install more than one servo board, parallel port, or other hardware device in
a computer. The device number identifies a specific device. Device numbers start at 0 and
increment.

<io-type>

Most devices provide more than one type of I/O. Even the simple parallel port has both digital
inputs and digital outputs. More complex boards can have digital inputs and outputs, encoder
counters, pwm or step pulse generators, analog-to-digital converters, digital-to-analog convert-
ers, or other unique capabilities. The I/O type is used to identify the kind of I/O that a pin or
parameter is associated with. Ideally, drivers that implement the same I/O type, even if for very
different devices, should provide a consistent set of pins and parameters and identical behavior.
For example, all digital inputs should behave the same when seen from inside the HAL, regardless
of the device.

<chan-num>

Virtually every I/O device has multiple channels, and the channel number identifies one of them.
Like device numbers, channel numbers start at zero and increment.? If more than one device is
installed, the channel numbers on additional devices start over at zero. If it is possible to have a
channel number greater than 9, then channel numbers should be two digits, with a leading zero
on numbers less than 10 to preserve sort ordering. Some modules have pins and/or parameters
that affect more than one channel. For example a PWM generator might have four channels
with four independent “duty-cycle” inputs, but one “frequency” parameter that controls all four
channels (due to hardware limitations). The frequency parameter should use ”"0-3” as the channel
number.

1Underlined characters have been removed, but there are still a few cases of broken mixture, for example pid.0.Pgain in
place of pid.0.p-gain.

20ne exception to the ”“channel numbers start at zero” rule is the parallel port. Its HAL pins are numbered with the
corresponding pin number on the DB-25 connector. This is convenient for wiring, but inconsistent with other drivers. There is
some debate over whether this is a bug or a feature.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 4/72

<specific-name>
An individual I/O channel might have just a single HAL pin associated with it, but most have more
than one. For example, a digital input has two pins, one is the state of the physical pin, the other
is the same thing inverted. That allows the configurator to choose between active high and active
low inputs. For most io-types, there is a standard set of pins and parameters, (referred to as the
”canonical interface”) that the driver should implement. The canonical interfaces are described
in the Canonical Device Interfaces chapter.

Examples

motenc.0.encoder.2.position
The position output of the third encoder channel on the first Motenc board.

stg.0.din.03.in
The state of the fourth digital input on the first Servo-to-Go board.

ppmc.0.pwm.00-03.frequency
The carrier frequency used for PWM channels 0 through 3 on the first Pico Systems ppmc board.

2.3.2 Function Names

Hardware drivers usually only have two kinds of HAL functions, ones that read the hardware and
update HAL pins, and ones that write to the hardware using data from HAL pins. They should be
named as follows:

<device-name>-<device-num>.<io-type>-<chan-num-range>.read|write

<device-name>
The same as used for pins and parameters.

<device-num>
The specific device that the function will access.

<io-type>
Optional. A function may access all of the I/O on a board, or it may access only a certain type. For
example, there may be independent functions for reading encoder counters and reading digital
I/0. If such independent functions exist, the <io-type> field identifies the type of I/O they access.
If a single function reads all I/O provided by the board, <io-type> is not used. 3

<chan-num-range>
Optional. Used only if the <io-type> I/O is broken into groups and accessed by different functions.

read|write
Indicates whether the function reads the hardware or writes to it.

Examples

motenc.0.encoder.read
Reads all encoders on the first motenc board.

generic8255.0.din.09-15.read
Reads the second 8 bit port on the first generic 8255 based digital I/O board.

ppmc.0.write
Writes all outputs (step generators, pwm, DACs, and digital) on the first Pico Systems ppmc
board.

3Note to driver programmers: Do NOT implement separate functions for different I/O types unless they are interruptible
and can work in independent threads. If interrupting an encoder read, reading digital inputs, and then resuming the encoder
read will cause problems, then implement a single function that does everything.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 5/72

Chapter 3

Code Notes

3.1 Intended audience

This document is a collection of notes about the internals of LinuxCNC. It is primarily of interest to
developers, however much of the information here may also be of interest to system integrators and
others who are simply curious about how LinuxCNC works. Much of this information is now outdated
and has never been reviewed for accuracy.

3.2 Organization

There will be a chapter for each of the major components of LinuxCNC, as well as chapter(s) covering
how they work together. This document is very much a work in progress, and its layout may change
in the future.

3.3 Terms and definitions

e AXIS - An axis is one of the nine degrees of freedom that define a tool position in three-dimensional
Cartesian space. Those nine axes are referredtoasX, Y, Z, A, B, C, U, V, and W. The linear orthogonal
coordinates X, Y, and Z determine where the tip of the tool is positioned. The angular coordinates
A, B, and C determine the tool orientation. A second set of linear orthogonal coordinates U, YV,
and W allows tool motion (typically for cutting actions) relative to the previously offset and rotated
axes. Unfortunately ”axis” is also sometimes used to mean a degree of freedom of the machine
itself, such as the saddle, table, or quill of a Bridgeport type milling machine. On a Bridgeport this
causes no confusion, since movement of the table directly corresponds to movement along the X
axis. However, the shoulder and elbow joints of a robot arm and the linear actuators of a hexapod
do not correspond to movement along any Cartesian axis, and in general it is important to make
the distinction between the Cartesian axes and the machine degrees of freedom. In this document,
the latter will be called joints, not axes. The GUIs and some other parts of the code may not always
follow this distinction, but the internals of the motion controller do.

e JOINT - A joint is one of the movable parts of the machine. Joints are distinct from axes, although
the two terms are sometimes (mis)used to mean the same thing. In LinuxCNC, a joint is a physical
thing that can be moved, not a coordinate in space. For example, the quill, knee, saddle, and table
of a Bridgeport mill are all joints. The shoulder, elbow, and wrist of a robot arm are joints, as are
the linear actuators of a hexapod. Every joint has a motor or actuator of some type associated with
it. Joints do not necessarily correspond to the X, Y, and Z axes, although for machines with trivial

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 6/72

kinematics that may be the case. Even on those machines, joint position and axis position are fun-
damentally different things. In this document, the terms joint and axis are used carefully to respect
their distinct meanings. Unfortunately that isn’t necessarily true everywhere else. In particular,
GUIs for machines with trivial kinematics may gloss over or completely hide the distinction between
joints and axes. In addition, the INI file uses the term axis for data that would more accurately be
described as joint data, such as input and output scaling, etc.

1

This distinction was made in version 2.8 of LinuxCNC. The INI file got a new section [JOINT_<num>].
Many of the parameters that were previously proper to the [AXIS_<letter>] section are now in the
new section. Other sections, such as [KINS], also take on new parameters to match this. An update
script has been provided to transform old INI files to the new axes/joints configuration.

* POSE - A pose is a fully specified position in 3D Cartesian space. In the LinuxCNC motion controller,
when we refer to a pose we mean an EmcPose structure, containing six linear coordinates (X, Y, Z,
U, V, and W) and three angular ones (A, B, and C).

* coord, or coordinated mode, means that all articulations are synchronized and they move together
as directed by the higher-level code. It is the normal mode when machining. In coordinated mode,
commands are assumed to be given in the Cartesian reference frame, and if the machine is not
Cartesian, the commands are translated by the kinematics to drive each joint into the joint space
as needed.

* free means that commands are interpreted in joint space. It is used to manually move (jog) individual
joints, although it does not prevent them from moving multiple joints at once (I think). Homing is
also done in free mode; in fact, machines with non-trivial kinematics must be homed before they
can go into coord or teleop mode.

 teleop is the mode you probably need if you are jogging with a hexapod. The jog commands imple-
mented by the motion controller are joint jogs, which work in free mode. But if you want to move
a hexapod or similar machine along a cartesian axis in particular, you must operate more than one
joint. That’s what teleop is for.

3.4 Architecture overview

There are four components contained in the LinuxCNC Architecture: a motion controller (EMCMOT),
a discrete 10 controller (EMCIO), a task executor which coordinates them (EMCTASK) and several
text-mode and graphical User Interfaces. Each of them will be described in the current document,
both from the design point of view and from the developers point of view (where to find needed data,
how to easily extend/modify things, etc.).

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023

7/72

: GUI
NML | oo [s7aT | €8 |
EMCTASK |
| RS-274 SEQUENCING !
| (GCODE) ENC ;
| INTERPRETER !

e
! CARTESIAN MOTION
: FPOSITION COMMANDS STATUSE
i
b !
Vo i
Vo i
o |
Vo |
1 [FoRwaRp INVERSE LIMIT & HOME | |
D] kEMATICS KINEMATICS STATUS i
i

P H
S e) S |
|
1
| -
1 [
|
| -
i
RIS F USRS USRI U
1 1 I
Vo AXIS 1 5 h i
o HTERPOLATOR|— | !
P i i
1 ! . 1 !

I e |
L i 7 L
! - | |
1 ! 1 I
a —
Vo SERVO \ i
1 ! 1 !
1 1 I
[UHIT UHIT i 1
1| convert CONVERT ! i
I ! | I
1 e e e I "'{""'!;""j’"
|
___ 1
[[
| ENCODER DA LIMIT
! COUNTER CONVERTER SWITCHES
1
i
1
| POWER
! AMP
|
i
. - -
! T

\

| (([—H ‘ O
| LN AR —
. e \, ;
| ~
i
i
|
1
|
|
!
|

ENCODER MOTOR

REALTIME HARDWARE DEVICES

/
P
P
/ /
/
i

COORDINATING
CONTROLLER

SPINDLE
CONTROLLER

| AUXILIARY
CONTROLLER

COOLANT
CONTROLLER

NON-REALTIME HARDWARE DEVICES

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 8/72

3.4.1 LinuxCNC software architecture

At the coarsest level, LinuxCNC is a hierarchy of three controllers: the task level command handler
and program interpreter, the motion controller, and the discrete I/O controller. The discrete I/O con-
troller is implemented as a hierarchy of controllers, in this case for spindle, coolant, and auxiliary
(e.g., estop) subsystems. The task controller coordinates the actions of the motion and discrete 1/O
controllers. Their actions are programmed in conventional numerical control "G and M code” pro-
grams, which are interpreted by the task controller into NML messages and sent to the motion.

3.5 Motion Controller Introduction

The motion controller is a realtime component. It receives motion control commands from the non-
realtime parts of LinuxCNC (i.e. the G-code interpreter/Task, GUIs, etc) and executes those commands
within its realtime context. The communication from non-realtime context to realtime context happens
via a message-passing IPC mechanism using shared memory, and via the Hardware Abstraction Layer
(HAL).

The status of the motion controller is made available to the rest of LinuxCNC through the same
message-passing shared memory IPC, and through HAL.

The motion controller interacts with the motor controllers and other realtime and non-realtime hard-
ware using HAL.

This document assumes that the reader has a basic understanding of the HAL, and uses terms like
HAL pins, HAL signals, etc, without explaining them. For more information about the HAL, see the
HAL Manual. Another chapter of this document will eventually go into the internals of the HAL itself,
but in this chapter, we only use the HAL API as defined in src/hal/hal.h.

3.5.1 Motion Controller Modules

The realtime functions of the motion controller are implemented with realtime modules — userspace
shared objects for Preempt-RT systems or kernel modules for some kernel-mode realtime implemen-
tations such as RTAI:

e tpmod - trajectory planning

* homemod - homing functions

* motmod - processes NML commands and controls hardware via HAL

* kinematics module - performs forward (joints-->coordinates) and inverse (coordinates->joints) kine-

matics calculations

LinuxCNC is started by a linuxcnc script which reads a configuration INI file and starts all needed
processes. For realtime motion control, the script first loads the default tpmod and homemod modules
and then loads the kinematics and motion modules according to settings in halfiles specified by the
INI file.

Custom (user-built) homing or trajectory-planning modules can be used in place of the default modules
via INI file settings or command line options. Custom modules must implement all functions used by
the default modules. The halcompile utility can be used to create a custom module.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023

9/72

T '

SHARED MEMORY BUFFER

: CARTESIAN MOTION EMCMOT

' POSITION COMMANDS STATUS

I L I W

- TRAJECTORY ? |

v PLANNER !

Lo FORWARD INVERSE LIMIT & HOME !

ro KINEMATICS KINEMATICS STATUS !

Co | S B S

1

| .

| ™ i

1

! -

1 —_—

i A

1

1

: 5 [| r ________________________ ; -~~~ TTT T T T Tt T |
1 1 1

Lo AXIS 1 9 Do AXIS N |
P INTERPOLATOR =a— \ Lo !
N G |
o [} o :
| 1 H

| S roa !
P i AN, v !
o v Lo .
| I * ! I !
Lo PID 2! Do !
1 1 SERVO L ! | !
N * b !
Do UNIT UNIT b
Lo CONVERT CONVERT Lo |
O O IS R R]

DEFINED IN "EXTINTF.H" AND IMPLEMENTED IN "EXT???7.C"

HARDWARE ABSTRACTION LAYER

5 ENCODER DA DIGITAL
! COUNTER CONVERTER 110
i 1

! POWER LMIT
| AMP SWITCHES
| i

i ,-—1—,-—-\ :

1 JI E— __,/' e ™ |

! 0 A —(({ -1

| . . | I

! = N N

! ENCODER MOTO

DIGITAL l/O
ANALOG 1/0

SPINDLE DRIVE

TOOL
CHANGER

i

COOLANT

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 10/72

3.6 Block diagrams and Data Flow

The following figure is a block diagram of a joint controller. There is one joint controller per joint.
The joint controllers work at a lower level than the kinematics, a level where all joints are completely
independent. All the data for a joint is in a single joint structure. Some members of that structure are
visible in the block diagram, such as coarse pos, pos cmd, and motor pos_fb.

MINT COMTROLLER

_‘—l
Fepdback ta /

Klnemstics 1 mofor-pos=fb | FebiEd

]

motor-of fsat

free-pon-cmd [—+ fres mode backlash &

rrajechery SMex =rror
lm'_, plannar camp
free made
d

|——_ teleop & [pos-cnd |
[-:11r1manl:|5 cubk coard E‘mﬂe E --;

Outpuk
ta L

\/

—
it nkzrpalator Motor-pos—mi

Kinamatics

home—sw'-In

Figure 3.1: Joint Controller Block Diagram

The above figure shows five of the seven sets of position information that form the main data flow
through the motion controller. The seven forms of position data are as follows:

* emcmotStatus->carte_pos _cmd - This is the desired position, in Cartesian coordinates. It is updated
at the traj rate, not the servo rate. In coord mode, it is determined by the traj planner. In teleop
mode, it is determined by the traj planner? In free mode, it is either copied from actualPos, or
generated by applying forward kins to (2) or (3).

* emcmotStatus->joints[n].coarse pos - This is the desired position, in joint coordinates, but before
interpolation. It is updated at the traj rate, not the servo rate. In coord mode, it is generated by
applying inverse kins to (1) In teleop mode, it is generated by applying inverse kins to (1) In free
mode, it is copied from (3), I think.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 11/72

* ’emcmotStatus->joints[n].pos cmd - This is the desired position, in joint coords, after interpolation.
A new set of these coords is generated every servo period. In coord mode, it is generated from (2)
by the interpolator. In teleop mode, it is generated from (2) by the interpolator. In free mode, it is
generated by the free mode traj planner.

* emcmotStatus->joints[n].motor pos cmd - This is the desired position, in motor coords. Motor co-
ords are generated by adding backlash compensation, lead screw error compensation, and offset
(for homing) to (3). It is generated the same way regardless of the mode, and is the output to the
PID loop or other position loop.

* emcmotStatus->joints[n].motor pos fb - This is the actual position, in motor coords. It is the input
from encoders or other feedback device (or from virtual encoders on open loop machines). It is
“generated” by reading the feedback device.

* emcmotStatus->joints[n].pos fb - This is the actual position, in joint coordinates. It is generated
by subtracting offset, lead screw error compensation, and backlash compensation from (5). It is
generated the same way regardless of the operating mode.

e emcmotStatus->carte_pos fb - This is the actual position, in Cartesian coordinates. It is updated at
the traj rate, not the servo rate. Ideally, actualPos would always be calculated by applying forward
kinematics to (6). However, forward kinematics may not be available, or they may be unusable
because one or more axes aren’t homed. In that case, the options are: A) fake it by copying (1), or
B) admit that we don’t really know the Cartesian coordinates, and simply don’t update actualPos.
Whatever approach is used, I can see no reason not to do it the same way regardless of the operating
mode. I would propose the following: If there are forward kins, use them, unless they don’t work
because of unhomed axes or other problems, in which case do (B). If no forward kins, do (A), since
otherwise actualPos would never get updated.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 12/72

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023

13/72

3.7 Homing

3.7.1 Homing state diagram

shared home
switch closed

otherwise
immediate

HOME_INITIAL_SEARCH_START

after HOME_DELAY after HOME_DELAY
if home switch closed if home switch open
immediate immediate

home_sw_rise
immediate

HOME_SET_COARSE_POSITION

after HOME_DELAY

Y

home_sw_fall
immediate

3
HOME_RISE_SEARCH_START

after HOME_DELAY

after HOME_DELAY

HOME_RISE_SEARCH_WAIT

HOME_FALL_SEARCH_WAIT

home_sw_rise

HOME_USE_INDEX

home_sw_rise
'HOME_USE_INDEX

home_sw_fall
HOME_USE_INDEX

home_sw_fall
'HOME_USE_INDEX

immediate immediate immediate immediate
HOME_SET_SWITCH_POSITION HOME_INDEX_SEARCH_START
immediate

HOME_INDEX_SEARCH_WAIT

index seen
immediate

HOME_SET_INDEX_POSITION

immediate

HOME_FINAL_MOVE_START

after HOME_DELAY

/
HOME_FINAL_MOVE_WAIT

hit limit

reached home position on limit
end of move

HOME_INITIAL_BACKOFF_START HOME_INITIAL_SEARCH_WAIT

search and latch are opposite direction search and latch are same direction
immediate immediate
no switch for this axis
h . HOME_FINAL_BACKOFF_START
immediate
HOME_FALL_SEARCH_START after HOME_DELAY

HOME_ABORT

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 14772

3.7.2 Another homing diagram

1f no joints left

a joint had an error
on its way home

all joints in this
sequence reached home

3.8 Commands

The commands are implemented by a large switch statement in the function emcmotCommandHan-
dler(), which is called at the servo rate. More on that function later.

There are approximately 44 commands - this list is still under construction.

a0
The cmd_code t enumeration, in motion.h, contains 73 commands, but the switch state-
ment in command.c contemplates only 70 commands (as of 6/5/2020). ENABLE_WATCHDOG
/ DISABLE_WATCHDOG commands are in motion-logger.c. = Maybe they are obsolete. The
SET_TELEOP_VECTOR command only appears in motion-logger.c, with no effect other than its own
log.

3.8.1 ABORT

The ABORT command simply stops all motion. It can be issued at any time, and will always be ac-
cepted. It does not disable the motion controller or change any state information, it simply cancels
any motion that is currently in progress.!

11t seems that the higher level code (TASK and above) also use ABORT to clear faults. Whenever there is a persistent fault
(such as being outside the hardware limit switches), the higher level code sends a constant stream of ABORTs to the motion
controller trying to make the fault go away. Thousands of them.... That means that the motion controller should avoid persistent
faults. This needs to be looked into.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 15/72

3.8.1.1 Requirements

None. The command is always accepted and acted on immediately.

3.8.1.2 Results

In free mode, the free mode trajectory planners are disabled. That results in each joint stopping as fast
asits accel (decel) limit allows. The stop is not coordinated. In teleop mode, the commanded Cartesian
velocity is set to zero. I don’t know exactly what kind of stop results (coordinated, uncoordinated, etc),
but will figure it out eventually. In coord mode, the coord mode trajectory planner is told to abort the
current move. Again, I don’t know the exact result of this, but will document it when I figure it out.

3.8.2 FREE

The FREE command puts the motion controller in free mode. Free mode means that each joint is
independent of all the other joints. Cartesian coordinates, poses, and kinematics are ignored when
in free mode. In essence, each joint has its own simple trajectory planner, and each joint completely
ignores the other joints. Some commands (like Joint JOG and HOME) only work in free mode. Other
commands, including anything that deals with Cartesian coordinates, do not work at all in free mode.

3.8.2.1 Requirements

The command handler applies no requirements to the FREE command, it will always be accepted.
However, if any joint is in motion (GET MOTION INPOS FLAG() == FALSE), then the command will
be ignored. This behavior is controlled by code that is now located in the function set operating mode()
in control.c, that code needs to be cleaned up. I believe the command should not be silently ignored,
instead the command handler should determine whether it can be executed and return an error if it
cannot.

3.8.2.2 Results

If the machine is already in free mode, nothing. Otherwise, the machine is placed in free mode. Each
joint’s free mode trajectory planner is initialized to the current location of the joint, but the planners
are not enabled and the joints are stationary.

3.8.3 TELEOP

The TELEOP command places the machine in teleoperating mode. In teleop mode, movement of the
machine is based on Cartesian coordinates using kinematics, rather than on individual joints as in free
mode. However the trajectory planner per se is not used, instead movement is controlled by a velocity
vector. Movement in teleop mode is much like jogging, except that it is done in Cartesian space instead
of joint space. On a machine with trivial kinematics, there is little difference between teleop mode
and free mode, and GUIs for those machines might never even issue this command. However for non-
trivial machines like robots and hexapods, teleop mode is used for most user commanded jog type
movements.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 16/72

3.8.3.1 Requirements

The command handler will reject the TELEOP command with an error message if the kinematics
cannot be activated because the one or more joints have not been homed. In addition, if any joint is in
motion (GET MOTION INPOS FLAG() == FALSE), then the command will be ignored (with no error
message). This behavior is controlled by code that is now located in the function set operating mode()
in control.c. I believe the command should not be silently ignored, instead the command handler
should determine whether it can be executed and return an error if it cannot.

3.8.3.2 Results

If the machine is already in teleop mode, nothing. Otherwise the machine is placed in teleop mode.
The kinematics code is activated, interpolators are drained and flushed, and the Cartesian velocity
commands are set to zero.

3.8.4 COORD

The COORD command places the machine in coordinated mode. In coord mode, movement of the
machine is based on Cartesian coordinates using kinematics, rather than on individual joints as in
free mode. In addition, the main trajectory planner is used to generate motion, based on queued
LINE, CIRCLE, and/or PROBE commands. Coord mode is the mode that is used when executing a
G-code program.

3.8.4.1 Requirements

The command handler will reject the COORD command with an error message if the kinematics cannot
be activated because the one or more joints have not been homed. In addition, if any joint is in
motion (GET MOTION INPOS FLAG() == FALSE), then the command will be ignored (with no error
message). This behavior is controlled by code that is now located in the function set operating mode()
in control.c. I believe the command should not be silently ignored, instead the command handler
should determine whether it can be executed and return an error if it cannot.

3.8.4.2 Results
If the machine is already in coord mode, nothing. Otherwise, the machine is placed in coord mode.

The kinematics code is activated, interpolators are drained and flushed, and the trajectory planner
queues are empty. The trajectory planner is active and awaiting a LINE, CIRCLE, or PROBE command.

3.8.5 ENABLE

The ENABLE command enables the motion controller.

3.8.5.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.5.2 Results

If the controller is already enabled, nothing. If not, the controller is enabled. Queues and interpolators
are flushed. Any movement or homing operations are terminated. The amp-enable outputs associated
with active joints are turned on. If forward kinematics are not available, the machine is switched to
free mode.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 17/72

3.8.6 DISABLE

The DISABLE command disables the motion controller.

3.8.6.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.6.2 Results

If the controller is already disabled, nothing. If not, the controller is disabled. Queues and inter-
polators are flushed. Any movement or homing operations are terminated. The amp-enable outputs
associated with active joints are turned off. If forward kinematics are not available, the machine is
switched to free mode.

3.8.7 ENABLE_AMPLIFIER

The ENABLE AMPLIFIER command turns on the amp enable output for a single output amplifier,
without changing anything else. Can be used to enable a spindle speed controller.

3.8.7.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.7.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually
it will set the amp enable HAL pin true.

3.8.8 DISABLE_AMPLIFIER

The DISABLE AMPLIFIER command turns off the amp enable output for a single amplifier, without
changing anything else. Again, useful for spindle speed controllers.

3.8.8.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.8.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually
it will set the amp enable HAL pin false.

3.8.9 ACTIVATE_JOINT

The ACTIVATE JOINT command turns on all the calculations associated with a single joint, but does
not change the joint’s amp enable output pin.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 18/72

3.8.9.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.9.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, however, any
subsequent ENABLE or DISABLE commands will modify the joint’s amp enable pin.

3.8.10 DEACTIVATE_JOINT

The DEACTIVATE JOINT command turns off all the calculations associated with a single joint, but
does not change the joint’s amp enable output pin.

3.8.10.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.10.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, and subsequent
ENABLE or DISABLE commands will not modify the joint’s amp enable pin.

3.8.11 ENABLE_WATCHDOG

The ENABLE WATCHDOG command enables a hardware based watchdog (if present).

3.8.11.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.11.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new
watchdog interface may be designed in the future.

3.8.12 DISABLE_WATCHDOG

The DISABLE WATCHDOG command disables a hardware based watchdog (if present).

3.8.12.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.12.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new
watchdog interface may be designed in the future.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 19/72

3.8.13 PAUSE

The PAUSE command stops the trajectory planner. It has no effect in free or teleop mode. At this
point I don’t know if it pauses all motion immediately, or if it completes the current move and then
pauses before pulling another move from the queue.

3.8.13.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.13.2 Results

The trajectory planner pauses.

3.8.14 RESUME

The RESUME command restarts the trajectory planner if it is paused. It has no effect in free or teleop
mode, or if the planner is not paused.

3.8.14.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.14.2 Results

The trajectory planner resumes.

3.8.15 STEP

The STEP command restarts the trajectory planner if it is paused, and tells the planner to stop again
when it reaches a specific point. It has no effect in free or teleop mode. At this point I don’t know ex-
actly how this works. I'll add more documentation here when I dig deeper into the trajectory planner.

3.8.15.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.15.2 Results

The trajectory planner resumes, and later pauses when it reaches a specific point.

3.8.16 SCALE

The SCALE command scales all velocity limits and commands by a specified amount. It is used to
implement feed rate override and other similar functions. The scaling works in free, teleop, and coord
modes, and affects everything, including homing velocities, etc. However, individual joint velocity
limits are unaffected.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 20/ 72

3.8.16.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.16.2 Results

All velocity commands are scaled by the specified constant.

3.8.17 OVERRIDE_LIMITS

The OVERRIDE LIMITS command prevents limits from tripping until the end of the next JOG com-
mand. It is normally used to allow a machine to be jogged off of a limit switch after tripping. (The
command can actually be used to override limits, or to cancel a previous override.)

3.8.17.1 Requirements

None. The command can be issued at any time, and will always be accepted. (I think it should only
work in free mode.)

3.8.17.2 Results

Limits on all joints are over-ridden until the end of the next JOG command. (This is currently broken...
once an OVERRIDE LIMITS command is received, limits are ignored until another OVERRIDE LIMITS
command re-enables them.)

3.8.18 HOME

The HOME command initiates a homing sequence on a specified joint. The actual homing sequence is
determined by a number of configuration parameters, and can range from simply setting the current
position to zero, to a multi-stage search for a home switch and index pulse, followed by a move to an
arbitrary home location. For more information about the homing sequence, see the homing section of
the Integrator Manual.

3.8.18.1 Requirements

The command will be ignored silently unless the machine is in free mode.

3.8.18.2 Results

Any jog or other joint motion is aborted, and the homing sequence starts.

3.8.19 JOG_CONT

The JOG_CONT command initiates a continuous jog on a single joint. A continuous jog is generated
by setting the free mode trajectory planner’s target position to a point beyond the end of the joint’s
range of travel. This ensures that the planner will move constantly until it is stopped by either the
joint limits or an ABORT command. Normally, a GUI sends a JOG CONT command when the user
presses a jog button, and ABORT when the button is released.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 21/72

3.8.19.1 Requirements

The command handler will reject the JOG_ CONT command with an error message if machine is not in
free mode, or if any joint is in motion (GET MOTION INPOS FLAG() == FALSE), or if motion is not
enabled. It will also silently ignore the command if the joint is already at or beyond its limit and the
commanded jog would make it worse.

3.8.19.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, with
a target position beyond the end of joint travel, and a velocity limit of emcmotCommand->vel. This
starts the joint moving, and the move will continue until stopped by an ABORT command or by hitting
a limit. The free mode planner accelerates at the joint accel limit at the beginning of the move, and
will decelerate at the joint accel limit when it stops.

3.8.20 JOG_INCR

The JOG_INCR command initiates an incremental jog on a single joint. Incremental jogs are cumula-
tive, in other words, issuing two JOG INCR commands that each ask for 0.100 inches of movement
will result in 0.200 inches of travel, even if the second command is issued before the first one finishes.
Normally incremental jogs stop when they have traveled the desired distance, however they also stop
when they hit a limit, or on an ABORT command.

3.8.20.1 Requirements

The command handler will silently reject the JOG INCR command if machine is not in free mode, or
if any joint is in motion (GET MOTION INPOS FLAG() == FALSE), or if motion is not enabled. It will
also silently ignore the command if the joint is already at or beyond its limit and the commanded jog
would make it worse.

3.8.20.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the
target position is incremented/decremented by emcmotCommand->offset, and the velocity limit is set
to emcmotCommand->vel. The free mode trajectory planner will generate a smooth trapezoidal move
from the present position to the target position. The planner can correctly handle changes in the
target position that happen while the move is in progress, so multiple JOG INCR commands can be
issued in quick succession. The free mode planner accelerates at the joint accel limit at the beginning
of the move, and will decelerate at the joint accel limit to stop at the target position.

3.8.21 JOG_ABS

The JOG ABS command initiates an absolute jog on a single joint. An absolute jog is a simple move
to a specific location, in joint coordinates. Normally absolute jogs stop when they reach the desired
location, however they also stop when they hit a limit, or on an ABORT command.

3.8.21.1 Requirements

The command handler will silently reject the JOG_ABS command if machine is not in free mode, or if
any joint is in motion (GET MOTION INPOS FLAG() == FALSE), or if motion is not enabled. It will
also silently ignore the command if the joint is already at or beyond its limit and the commanded jog
would make it worse.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 22 /72

3.8.21.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the
target position is set to emcmotCommand->offset, and the velocity limit is set to emcmotCommand-
>vel. The free mode trajectory planner will generate a smooth trapezoidal move from the present
position to the target position. The planner can correctly handle changes in the target position that
happen while the move is in progress. If multiple JOG_ABS commands are issued in quick succession,
each new command changes the target position and the machine goes to the final commanded position.
The free mode planner accelerates at the joint accel limit at the beginning of the move, and will
decelerate at the joint accel limit to stop at the target position.

3.8.22 SET_LINE

The SET LINE command adds a straight line to the trajectory planner queue.

(More later)

3.8.23 SET CIRCLE

The SET CIRCLE command adds a circular move to the trajectory planner queue.

(More later)

3.8.24 SET _TELEOP VECTOR

The SET TELEOP VECTOR command instructs the motion controller to move along a specific vector
in Cartesian space.

(More later)

3.8.25 PROBE

The PROBE command instructs the motion controller to move toward a specific point in Cartesian
space, stopping and recording its position if the probe input is triggered.

(More later)

3.8.26 CLEAR_PROBE_FLAG

The CLEAR PROBE FLAG command is used to reset the probe input in preparation for a PROBE
command. (Question: why shouldn’t the PROBE command automatically reset the input?)

(More later)

3.8.27 SET _xix

There are approximately 15 SET xxx commands, where xxx is the name of some configuration param-
eter. It is anticipated that there will be several more SET commands as more parameters are added.
I would like to find a cleaner way of setting and reading configuration parameters. The existing meth-
ods require many lines of code to be added to multiple files each time a parameter is added. Much of
that code is identical or nearly identical for every parameter.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 23/ 72

3.9 Backlash and Screw Error Compensation

+ FIXME Backlash and Screw Error Compensation

3.10 Task controller (EMCTASK)

3.10.1 State

Task has three possible internal states: E-stop, E-stop Reset, and Machine On.

3.11 10 controller (EMCIO)

The I/O Controller is part of TASK. It interacts with external I/O using HAL pins.

Currently ESTOP/Enable, coolant, and tool changing are handled by iocontrol. These are relatively
low speed events, high speed coordinated I/O is handled in motion.

emctaskmain.cc sends I/O commands via taskclass.cc.

iocontrol main loop process:

* checks to see it HAL inputs have changed

» checks if read tool inputs() indicates the tool change is finished and set emcioStatus.status

3.12 (000

FIXME User Interfaces

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 24172

3.13 libnml Introduction

libnml is derived from the NIST rcslib without all the multi-platform support. Many of the wrappers
around platform specific code has been removed along with much of the code that is not required
by LinuxCNC. It is hoped that sufficient compatibility remains with rcslib so that applications can be
implemented on non-Linux platforms and still be able to communicate with LinuxCNC.

This chapter is not intended to be a definitive guide to using libnml (or rcslib), instead, it will eventually
provide an overview of each C++ class and their member functions. Initially, most of these notes will
be random comments added as the code scrutinized and modified.

3.14 LinkedLlist

Base class to maintain a linked list. This is one of the core building blocks used in passing NML
messages and assorted internal data structures.

3.15 LinkedListNode

Base class for producing a linked list - Purpose, to hold pointers to the previous and next nodes, pointer
to the data, and the size of the data.

No memory for data storage is allocated.

3.16 SharedMemory

Provides a block of shared memory along with a semaphore (inherited from the Semaphore class). Cre-
ation and destruction of the semaphore is handled by the SharedMemory constructor and destructor.

3.17 ShmBuffer

Class for passing NML messages between local processes using a shared memory buffer. Much of
internal workings are inherited from the CMS class.

3.18 Timer

The Timer class provides a periodic timer limited only by the resolution of the system clock. If, for
example, a process needs to be run every 5 seconds regardless of the time taken to run the process,
the following code snippet demonstrates how :

main()
{
timer = new Timer(5.0); /* Initialize a timer with a 5 second loop */
while(0) {
/* Do some process */
timer.wait(); /* Wait till the next 5 second interval */
}

delete timer;

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 25/72

3.19 Semaphore

The Semaphore class provides a method of mutual exclusions for accessing a shared resource. The
function to get a semaphore can either block until access is available, return after a timeout, or
return immediately with or without gaining the semaphore. The constructor will create a semaphore
or attach to an existing one if the ID is already in use.

The Semaphore::destroy() must be called by the last process only.

3.20 CMS

At the heart of libnml is the CMS class, it contains most of the functions used by libnml and ultimately
NML. Many of the internal functions are overloaded to allow for specific hardware dependent methods
of data passing. Ultimately, everything revolves around a central block of memory (referred to as the
message buffer or just buffer). This buffer may exist as a shared memory block accessed by other
CMS/NML processes, or a local and private buffer for data being transferred by network or serial
interfaces.

The buffer is dynamically allocated at run time to allow for greater flexibility of the CMS/NML sub-
system. The buffer size must be large enough to accommodate the largest message, a small amount
for internal use and allow for the message to be encoded if this option is chosen (encoded data will
be covered later). The following figure is an internal view of the buffer space.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 26 /72

Buffer Name [32 char]

CMS Header {
Read,
Message ID
Message Size

}

Data Space

CMS buffer The CMS base class is primarily responsible for creating the communications pathways
and interfacing to the operating system.

3.21 Configuration file format

NML configuration consists of two types of line formats. One for Buffers, and a second for Processes
that connect to the buffers.

3.21.1 Buffer line
The original NIST format of the buffer line is:

* B name type host size neut RPC# buffer# max_procs key [type specific configs]
* B - identifies this line as a Buffer configuration.

e name - is the identifier of the buffer.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 27172

* type - describes the buffer type - SHMEM, LOCMEM, FILEMEM, PHANTOM, or GLOBMEM.
¢ host - is either an IP address or host name for the NML server
e size - is the size of the buffer

* neut - a boolean to indicate if the data in the buffer is encoded in a machine independent format, or
raw.

* RPC# - Obsolete - Place holder retained for backward compatibility only.
e buffer# - A unique ID number used if a server controls multiple buffers.
* max_procs - is the maximum processes allowed to connect to this buffer.

* key - is a numerical identifier for a shared memory buffer

3.21.2 Type specific configs

The buffer type implies additional configuration options whilst the host operating system precludes
certain combinations. In an attempt to distill published documentation in to a coherent format, only
the SHMEM buffer type will be covered.

* mutex=0s _sem - default mode for providing semaphore locking of the buffer memory.
* mutex=none - Not used

* mutex=no_interrupts - not applicable on a Linux system

* mutex=no_switching - not applicable on a Linux system

* mutex=mao split - Splits the buffer in to half (or more) and allows one process to access part of the
buffer whilst a second process is writing to another part.

* TCP=(port number) - Specifies which network port to use.
e UDP=(port number) - ditto

e STCP=(port number) - ditto

e serialPortDevName=(serial port) - Undocumented.

* passwd=file name.pwd - Adds a layer of security to the buffer by requiring each process to provide
a password.

* bsem - NIST documentation implies a key for a blocking semaphore, and if bsem=-1, blocking reads
are prevented.

¢ queue - Enables queued message passing.

¢ ascii - Encode messages in a plain text format

* disp - Encode messages in a format suitable for display (???)

* xdr - Encode messages in External Data Representation. (see rpc/xdr.h for details).

* diag - Enables diagnostics stored in the buffer (timings and byte counts ?)

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 28/ 72

3.21.3 Process line

The original NIST format of the process line is:

P name buffer type host ops server timeout master c_num [type specific configs]

P - identifies this line as a Process configuration.

e name - is the identifier of the process.

* buffer - is one of the buffers defined elsewhere in the config file.

* type - defines whether this process is local or remote relative to the buffer.

* host - specifies where on the network this process is running.

* ops - gives the process read only, write only, or read/write access to the buffer.

* server - specifies if this process will running a server for this buffer.

» timeout - sets the timeout characteristics for accesses to the buffer.

* master - indicates if this process is responsible for creating and destroying the buffer.

* ¢ num - an integer between zero and (max_procs -1)

3.21.4 Configuration Comments

Some of the configuration combinations are invalid, whilst others imply certain constraints. On a
Linux system, GLOBMEM is obsolete, whilst PHANTOM is only really useful in the testing stage of an
application, likewise for FILEMEM. LOCMEM is of little use for a multi-process application, and only
offers limited performance advantages over SHMEM. This leaves SHMEM as the only buffer type to
use with LinuxCNC.

The neut option is only of use in a multi-processor system where different (and incompatible) archi-
tectures are sharing a block of memory. The likelihood of seeing a system of this type outside of a
museum or research establishment is remote and is only relevant to GLOBMEM buffers.

The RPC number is documented as being obsolete and is retained only for compatibility reasons.

With a unique buffer name, having a numerical identity seems to be pointless. Need to review the
code to identify the logic. Likewise, the key field at first appears to be redundant, and it could be
derived from the buffer name.

The purpose of limiting the number of processes allowed to connect to any one buffer is unclear from
existing documentation and from the original source code. Allowing unspecified multiple processes
to connect to a buffer is no more difficult to implement.

The mutex types boil down to one of two, the default “os sem” or "mao split”. Most of the NML
messages are relatively short and can be copied to or from the buffer with minimal delays, so split
reads are not essential.

Data encoding is only relevant when transmitted to a remote process - Using TCP or UDP implies
XDR encoding. Whilst ASCII encoding may have some use in diagnostics or for passing data to an
embedded system that does not implement NML.

UDP protocols have fewer checks on data and allows a percentage of packets to be dropped. TCP is
more reliable, but is marginally slower.

If LinuxCNC is to be connected to a network, one would hope that it is local and behind a firewall.
About the only reason to allow access to LinuxCNC via the Internet would be for remote diagnostics
- This can be achieved far more securely using other means, perhaps by a web interface.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 29/ 72

The exact behavior when timeout is set to zero or a negative value is unclear from the NIST docu-
ments. Only INF and positive values are mentioned. However, buried in the source code of rcslib, it
is apparent that the following applies:

timeout > 0 Blocking access until the timeout interval is reached or access to the buffer is available.
timeout = 0 Access to the buffer is only possible if no other process is reading or writing at the time.

timeout < 0 or INF Access is blocked until the buffer is available.

3.22 NML base class

Expand on the lists and the relationship between NML, NMLmsg, and the lower level cms classes.
Not to be confused with NMLmsg, RCS STAT MSG, or RCS CMD MSG.

NML is responsible for parsing the config file, configuring the cms buffers and is the mechanism for
routing messages to the correct buffer(s). To do this, NML creates several lists for:

* cms buffers created or connected to.
» processes and the buffers they connect to

* a long list of format functions for each message type

This last item is probably the nub of much of the malignment of libnml/rcslib and NML in general. Each
message that is passed via NML requires a certain amount of information to be attached in addition to
the actual data. To do this, several formatting functions are called in sequence to assemble fragments
of the overall message. The format functions will include NML TYPE, MSG TYPE, in addition to the
data declared in derived NMLmsg classes. Changes to the order in which the formatting functions
are called and also the variables passed will break compatibility with rcslib if messed with - There
are reasons for maintaining rcslib compatibility, and good reasons for messing with the code. The
question is, which set of reasons are overriding?

3.22.1 NML internals

3.22.1.1 NML constructor

NML::NML() parses the config file and stores it in a linked list to be passed to cms constructors in
single lines. It is the function of the NML constructor to call the relevant cms constructor for each
buffer and maintain a list of the cms objects and the processes associated with each buffer.

It is from the pointers stored in the lists that NML can interact with cms and why Doxygen fails to
show the real relationships involved.

ao

The config is stored in memory before passing a pointer to a specific line to the cms constructor. The
cms constructor then parses the line again to extract a couple of variables... It would make more
sense to do ALL the parsing and save the variables in a struct that is passed to the cms constructor
- This would eliminate string handling and reduce duplicate code in cms...

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 30/72

3.22.1.2 NML read/write

Calls to NML::read and NML::write both perform similar tasks in so much as processing the message
- The only real variation is in the direction of data flow.

A call to the read function first gets data from the buffer, then calls format output(), whilst a write
function would call format_input() before passing the data to the buffer. It is in format xxx() that the
work of constructing or deconstructing the message takes place. A list of assorted functions are called
in turn to place various parts of the NML header (not to be confused with the cms header) in the right
order - The last function called is emcFormat() in emc.cc.

3.22.1.3 NMLmsg and NML relationships

NMLmsg is the base class from which all message classes are derived. Each message class must have
a unique ID defined (and passed to the constructor) and also an update(*cms) function. The update()
will be called by the NML read/write functions when the NML formatter is called — the pointer to the
formatter will have been declared in the NML constructor at some point. By virtue of the linked lists
NML creates, it is able to select cms pointer that is passed to the formatter and therefor which buffer
is to be used.

3.23 Adding custom NML commands

LinuxCNC is pretty awesome, but some parts need some tweaking. As you know communication
is done through NML channels, the data sent through such a channel is one of the classes defined
in emc.hh (implemented in emc.cc). If somebody needs a message type that doesn’t exist, he should
follow these steps to add a new one. (The Message I added in the example is called EMC 10 GENERIC
(inherits EMC 10 CMD MSG (inherits RCS CMD_ MSQG)))

1. add the definition of the EMC 10 GENERIC class to emc2/src/emc/nml intf/emc.hh
2. add the type define: #define EMC I0 GENERIC TYPE ((NMLTYPE) 1605)

a. (I chose 1605, because it was available) to emc2/src/emc/nml intf/emc.hh
3. add case EMC I0 GENERIC TYPE to emcFormat in emc2/src/emc/nml intf/emc.cc
4. add case EMC 10 _GENERIC TYPE to emc symbol lookup in emc2/src/emc/nml intf/emc.cc
5. add EMC I0 GENERIC::update function to emc2/src/emc/nml intf/femc.cc

Recompile, and the new message should be there. The next part is to send such messages from
somewhere, and receive them in another place, and do some stuff with it.

3.24 The Tool Table and Toolchanger

LinuxCNC interfaces with toolchanger hardware, and has an internal toolchanger abstraction. Linux-
CNC manages tool information in a tool table file.

3.24.1 Toolchanger abstraction in LinuxCNC

LinuxCNC supports two kinds of toolchanger hardware, called nonrandom and random. The INI set-
ting [EMCIO]JRANDOM TOOLCHANGER controls which of these kinds of hardware LinuxCNC thinks
it is connected to.

0000 V2.10.0~preO~refs-pull-3188-merge~f406dc4c51, 09 Oct 2023 31/72

3.24.1.1 Nonrandom Toolchangers

Nonrandom toolchanger hardware puts each tool back in the pocket it was originally loaded from.

Examples of nonrandom toolchanger hardware are the “manual” toolchanger, lathe tool turrents, and
rack toolchangers.

When configured for a nonrandom toolchanger, LinuxCNC does not change the pocket number in
the tool table file as tools are loaded and unloaded. Internal to LinuxCNC, on tool change the tool
information is copied from the tool table’s source pocket to pocket 0 (which represents the spindle),
replacing whatever tool information was previously there.

1

In LinuxCNC configured for nonrandom toolchanger, tool 0 (TO) has special meaning: "no tool”. TO
may not appear in the tool table file, and changing to TO will result in LinuxCNC thinking it