
LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 ii

Contents

I Getting Started & Configuration 1

1 Getting Started with LinuxCNC 2
1.1 About LinuxCNC . 2

1.1.1 The Software . 2
1.1.2 The Operating System . 3
1.1.3 Getting Help . 3

1.1.3.1 Web Forum . 3
1.1.3.2 IRC . 3
1.1.3.3 Mailing List . 4
1.1.3.4 Web Forum . 4
1.1.3.5 LinuxCNC Wiki . 4
1.1.3.6 Bug Reports . 4

1.2 System Requirements . 4
1.2.1 Minimum Requirements . 4
1.2.2 Kernel and Version requirements . 5

1.2.2.1 Preempt-RT with linuxcnc-uspace package . 5
1.2.2.2 RTAI with linuxcnc package . 5
1.2.2.3 Xenomai with linuxcnc-uspace package . 5
1.2.2.4 RTAI with linuxcnc-uspace package . 6

1.2.3 Problematic Hardware . 6
1.2.3.1 Laptops . 6
1.2.3.2 Video Cards . 6

1.3 Getting LinuxCNC . 6
1.3.1 Download the image . 6

1.3.1.1 Normal Download . 7
1.3.1.2 Download using zsync . 7
1.3.1.3 Verify the image . 7

1.3.2 Write the image to a bootable device . 8

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 iii

1.3.2.1 Raspberry Pi Image . 8
1.3.2.2 AMD-64 (x86-64, PC) Image using GUI tools 8
1.3.2.3 Command line - Linux . 8
1.3.2.4 Command line - MacOS . 8

1.3.3 Testing LinuxCNC . 9
1.3.4 Installing LinuxCNC . 9
1.3.5 Updates to LinuxCNC . 10
1.3.6 Install Problems . 10
1.3.7 Alternate Install Methods . 10

1.3.7.1 Installing on Debian Trixie (with Preempt-RT kernel) 11
1.3.7.2 Installing on Debian Trixie (with experimental RTAI kernel) 12
1.3.7.3 Installing on Raspbian 12 . 12

1.4 Running LinuxCNC . 12
1.4.1 Invoking LinuxCNC . 12
1.4.2 Configuration Launcher . 12
1.4.3 Next steps in configuration . 15
1.4.4 Simulator Configurations . 15
1.4.5 Configuration Resources . 16

1.5 Updating LinuxCNC . 16
1.5.1 Upgrade to the new version . 16

1.5.1.1 Apt Sources Configuration . 17
1.5.1.2 Upgrading to the new version . 18
1.5.1.3 Ubuntu . 19

1.5.2 Updating without Network . 19
1.5.3 Updating Configuration Files for 2.9 . 19

1.5.3.1 Stricter handling of pluggable interpreters 19
1.5.3.2 Canterp . 20
1.5.3.3 Spindle limits in the INI . 20

1.5.4 Updating Configuration Files for 2.10.y . 20
1.5.5 New HAL components . 20

1.5.5.1 Non-Realtime . 20
1.5.5.2 Realtime . 20

1.5.6 New Drivers . 20
1.6 Linux FAQ . 21

1.6.1 Automatic Login . 21
1.6.1.1 Debian . 21
1.6.1.2 Ubuntu . 21

1.6.2 Automatic Startup . 21
1.6.3 Terminal . 22

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 iv

1.6.4 Man Pages . 22
1.6.5 List Modules . 22
1.6.6 Editing a Root File . 22

1.6.6.1 The Command Line Way . 22
1.6.6.2 The GUI Way . 23
1.6.6.3 Root Access . 23

1.6.7 Terminal Commands . 23
1.6.7.1 Working Directory . 23
1.6.7.2 Changing Directories . 23
1.6.7.3 Listing files in a directory . 23
1.6.7.4 Finding a File . 24
1.6.7.5 Searching for Text . 24
1.6.7.6 Diagnostic Messages . 24

1.6.8 Convenience Items . 25
1.6.8.1 Terminal Launcher . 25

1.6.9 Hardware Problems . 25
1.6.9.1 Hardware Info . 25
1.6.9.2 Monitor Resolution . 25

1.6.10Paths . 25

2 General User Information 26
2.1 User Foreword . 26
2.2 LinuxCNC User Introduction . 27

2.2.1 Introduction . 27
2.2.2 How LinuxCNC Works . 27
2.2.3 Graphical User Interfaces . 29
2.2.4 User Interfaces . 37
2.2.5 Virtual Control Panels . 37
2.2.6 Languages . 40
2.2.7 Think Like a CNC Operator . 40
2.2.8 Modes of Operation . 41

2.3 Important User Concepts . 41
2.3.1 Trajectory Control . 41

2.3.1.1 Trajectory Planning . 41
2.3.1.2 Path Following . 42
2.3.1.3 Programming the Planner . 42
2.3.1.4 Planning Moves . 43

2.3.2 G-code . 44
2.3.2.1 Defaults . 44

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 v

2.3.2.2 Feed Rate . 44
2.3.2.3 Tool Radius Offset . 44

2.3.3 Homing . 44
2.3.4 Tool Changes . 44
2.3.5 Coordinate Systems . 44

2.3.5.1 G53 Machine Coordinate . 45
2.3.5.2 G54-59.3 User Coordinates . 45
2.3.5.3 When You Are Lost . 45

2.3.6 Machine Configurations . 45
2.4 Starting LinuxCNC . 47

2.4.1 Running LinuxCNC . 47
2.4.1.1 Configuration Selector . 48

2.5 CNC Machine Overview . 49
2.5.1 Mechanical Components . 49

2.5.1.1 Axes . 49
2.5.1.2 Spindle . 50
2.5.1.3 Coolant . 50
2.5.1.4 Feed and Speed Override . 50
2.5.1.5 Block Delete Switch . 50
2.5.1.6 Optional Program Stop Switch . 50

2.5.2 Control and Data Components . 50
2.5.2.1 Linear Axes . 50
2.5.2.2 Rotational Axes . 51
2.5.2.3 Controlled Point . 51
2.5.2.4 Coordinated Linear Motion . 51
2.5.2.5 Feed Rate . 51
2.5.2.6 Cooling . 52
2.5.2.7 Dwell . 52
2.5.2.8 Units . 52
2.5.2.9 Current Position . 52
2.5.2.10Selected Plane . 52
2.5.2.11Tool Carousel . 52
2.5.2.12Tool Change . 52
2.5.2.13Pallet Shuttle . 53
2.5.2.14Speed Override . 53
2.5.2.15Path Control Mode . 53

2.5.3 Interpreter Interaction with Switches . 53
2.5.3.1 Feed and Speed Override Switches . 53
2.5.3.2 Block Delete Switch . 53

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 vi

2.5.3.3 Optional Program Stop Switch . 53
2.5.4 Tool Table . 54
2.5.5 Parameters . 54

2.6 Lathe User Information . 55
2.6.1 Lathe Mode . 55
2.6.2 Lathe Tool Table . 55
2.6.3 Lathe Tool Orientation . 55
2.6.4 Tool Touch Off . 57

2.6.4.1 X Touch Off . 57
2.6.4.2 Z Touch Off . 57
2.6.4.3 The Z Machine Offset . 58

2.6.5 Spindle Synchronized Motion . 58
2.6.6 Arcs . 58

2.6.6.1 Arcs and Lathe Design . 59
2.6.6.2 Radius & Diameter Mode . 59

2.6.7 Tool Path . 59
2.6.7.1 Control point . 59
2.6.7.2 Cutting Angles without Cutter Comp . 60
2.6.7.3 Cutting a Radius . 61
2.6.7.4 Using Cutter Comp . 63

2.7 Plasma Cutting Primer for LinuxCNC Users . 63
2.7.1 What Is Plasma? . 63
2.7.2 Arc Initialisation . 64

2.7.2.1 High Frequency Start . 64
2.7.2.2 Blowback Start . 65

2.7.3 CNC Plasma . 65
2.7.4 Choosing a Plasma Machine for CNC operations . 66
2.7.5 Types Of Torch Height Control . 67
2.7.6 Arc OK Signal . 67
2.7.7 Initial Height Sensing . 68

2.7.7.1 Float Switches . 68
2.7.7.2 Ohmic Sensing . 68
2.7.7.3 Hypersensing with a MESA THCAD-5 . 69
2.7.7.4 Example HAL Code for Hypersensing . 70

2.7.8 THC Delay . 71
2.7.9 Torch Voltage Sampling . 71
2.7.10Torch Breakaway . 71
2.7.11Corner Lock / Velocity Anti-Dive . 72
2.7.12Void / Kerf Crossing . 72

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 vii

2.7.13Hole And Small Shape Cutting . 72
2.7.14I/O Pins For Plasma Controllers . 73

2.7.14.1Arc OK (input) . 73
2.7.14.2Torch On (output) . 74
2.7.14.3Float switch (input) . 74
2.7.14.4Ohmic Sensor enable (output) . 74
2.7.14.5Ohmic Sensing (input) . 74
2.7.14.6Torch Breakaway Sensor . 75

2.7.15G-code For Plasma Controllers . 75
2.7.15.1Enable/Disable THC Operation: . 75

2.7.16External Offsets and Plasma Cutting . 76
2.7.17Reading Arc Voltage With The Mesa THCAD . 76

2.7.17.1THCAD Connections . 77
2.7.17.2THCAD Initial Testing . 77
2.7.17.3Which Model THCAD To Use? . 77

2.7.18Post Processors And Nesting . 78
2.7.19Designing For Noisy Electrical Environments . 78
2.7.20Water Tables . 79
2.7.21Downdraft Tables . 79
2.7.22Designing For Speed And Acceleration . 79
2.7.23Distance Travelled Per Motor Revolution . 80
2.7.24QtPlasmaC LinuxCNC Plasma Configuration . 80
2.7.25Hypertherm RS485 Control . 80
2.7.26Post Processors For Plasma Cutting . 80

3 Configuration Wizards 82
3.1 Stepper Configuration Wizard . 82

3.1.1 Introduction . 82
3.1.2 Start Page . 83
3.1.3 Basic Information . 84
3.1.4 Parallel Port Setup . 86
3.1.5 Parallel Port 2 Setup . 87
3.1.6 Axis Configuration . 88

3.1.6.1 Finding Maximum Velocity . 90
3.1.6.2 Finding Maximum Acceleration . 91

3.1.7 Spindle Configuration . 91
3.1.7.1 Spindle Speed Control . 92
3.1.7.2 Spindle-synchronized motion . 92
3.1.7.3 Determining Spindle Calibration . 92

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 viii

3.1.8 Options . 93
3.1.9 Complete Machine Configuration . 94
3.1.10Axis Travels and Homes . 94

3.1.10.1Operating without Limit Switches . 95
3.1.10.2Operating without Home Switches . 95
3.1.10.3Home and Limit Switch wiring options . 95

3.2 Mesa Configuration Wizard . 96
3.2.1 Step by Step Instructions . 97
3.2.2 Create or Edit . 97
3.2.3 Basic Machine Information . 98
3.2.4 External Configuration . 100
3.2.5 GUI Configuration . 102
3.2.6 Mesa Configuration . 105
3.2.7 Mesa I/O Setup . 107
3.2.8 Parallel port configuration . 111
3.2.9 Axis Configuration . 112
3.2.10Spindle Configuration . 119
3.2.11Advanced Options . 121
3.2.12HAL Components . 122
3.2.13Advanced Usage Of PnCconf . 123

4 Configuration 126
4.1 Integrator Concepts . 126

4.1.1 File Locations . 126
4.1.1.1 Installed . 126
4.1.1.2 Command Line . 127

4.1.2 Files . 127
4.1.3 Stepper Systems . 127

4.1.3.1 Base Period . 127
4.1.3.2 Step Timing . 128

4.1.4 Servo Systems . 128
4.1.4.1 Basic Operation . 128
4.1.4.2 Proportional term . 130
4.1.4.3 Integral term . 130
4.1.4.4 Derivative term . 130
4.1.4.5 Loop tuning . 131
4.1.4.6 Manual tuning . 131

4.1.5 S-Curve Trajectory Planning . 131
4.1.5.1 Enabling . 131

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 ix

4.1.5.2 Tuning . 131
4.1.6 RTAI . 132

4.1.6.1 ACPI . 132
4.1.7 Computer/Machine Interface Hardware Options . 132

4.1.7.1 litehm2/rv901t . 132
4.2 Latency Testing . 132

4.2.1 What is latency? . 132
4.2.2 Latency Tests . 133

4.2.2.1 Latency Test . 133
4.2.2.2 Latency Plot . 134
4.2.2.3 Latency Histogram . 135

4.2.3 Latency tuning . 136
4.2.3.1 Tuning the BIOS for latency . 136
4.2.3.2 Tuning Preempt-RT for latency . 137

4.3 Stepper Tuning . 137
4.3.1 Getting the most out of Software Stepping . 137

4.3.1.1 Run a Latency Test . 138
4.3.1.2 Figure out what your drives expect . 138
4.3.1.3 Choose your BASE_PERIOD . 139
4.3.1.4 Use steplen, stepspace, dirsetup, and/or dirhold 140
4.3.1.5 No Guessing! . 140

4.4 INI Configuration . 140
4.4.1 The INI File Components . 140

4.4.1.1 Comments . 141
4.4.1.2 Sections . 141
4.4.1.3 Variables . 142
4.4.1.4 Custom Sections and Variables . 142
4.4.1.5 Include Files . 143

4.4.2 INI File Sections . 144
4.4.2.1 [EMC] Section . 144
4.4.2.2 [DISPLAY] Section . 144
4.4.2.3 [FILTER] Section . 148
4.4.2.4 [RS274NGC] Section . 150
4.4.2.5 [EMCMOT] Section . 152
4.4.2.6 [TASK] Section . 152
4.4.2.7 [HAL] section . 152
4.4.2.8 [HALUI] section . 154
4.4.2.9 [APPLICATIONS] Section . 154
4.4.2.10[TRAJ] Section . 154

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 x

4.4.2.11[KINS] Section . 157
4.4.2.12[AXIS_<letter>] Section . 157
4.4.2.13[JOINT_<num>] Sections . 158
4.4.2.14[SPINDLE_<num>] Section(s) . 165
4.4.2.15[EMCIO] Section . 165

4.5 Homing Configuration . 166
4.5.1 Overview . 166
4.5.2 Prerequisite . 166
4.5.3 Separate Home Switch Example Layout . 167
4.5.4 Shared Limit/Home Switch Example Layout . 168
4.5.5 Homing Sequence . 169
4.5.6 Configuration . 171

4.5.6.1 HOME_SEARCH_VEL . 171
4.5.6.2 HOME_LATCH_VEL . 171
4.5.6.3 HOME_FINAL_VEL . 171
4.5.6.4 HOME_IGNORE_LIMITS . 172
4.5.6.5 HOME_USE_INDEX . 172
4.5.6.6 HOME_INDEX_NO_ENCODER_RESET . 172
4.5.6.7 HOME_OFFSET . 172
4.5.6.8 HOME . 172
4.5.6.9 HOME_IS_SHARED . 173
4.5.6.10HOME_ABSOLUTE_ENCODER . 173
4.5.6.11HOME_SEQUENCE . 173
4.5.6.12VOLATILE_HOME . 174
4.5.6.13LOCKING_INDEXER . 174
4.5.6.14Immediate Homing . 174
4.5.6.15Inhibiting Homing . 175

4.6 Lathe Configuration . 176
4.6.1 Default Plane . 176
4.6.2 INI Settings . 176

4.7 Stepper Quickstart . 177
4.7.1 Latency Test . 177
4.7.2 Sherline . 177
4.7.3 Xylotex . 177
4.7.4 Machine Information . 177
4.7.5 Pinout Information . 178
4.7.6 Mechanical Information . 178

4.8 Stepper Configuration . 179
4.8.1 Introduction . 179

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xi

4.8.2 Maximum step rate . 180
4.8.3 Pinout . 180

4.8.3.1 Standard Pinout HAL . 180
4.8.3.2 Overview . 182
4.8.3.3 Changing the standard_pinout.hal . 182
4.8.3.4 Changing polarity of a signal . 182
4.8.3.5 Adding PWM Spindle Speed Control . 183
4.8.3.6 Adding an enable signal . 183
4.8.3.7 External ESTOP button . 183

4.9 Stepper Diagnostics . 183
4.9.1 Common Problems . 183

4.9.1.1 Stepper Moves One Step . 183
4.9.1.2 No Steppers Move . 183
4.9.1.3 Distance Not Correct . 184

4.9.2 Error Messages . 184
4.9.2.1 Following Error . 184
4.9.2.2 RTAPI Error . 184

4.9.3 Testing . 185
4.9.3.1 Step Timing . 185

4.10Filter Programs . 185
4.10.1Introduction . 185
4.10.2Setting up the INI for Program Filters . 185
4.10.3Making Python Based Filter Programs . 186

5 HAL (Hardware Abstraction Layer) 189
5.1 HAL Introduction . 189

5.1.1 HAL Overview . 189
5.1.2 Communication . 191
5.1.3 HAL System Design . 192

5.1.3.1 Part Selection . 193
5.1.3.2 Interconnection Design . 194
5.1.3.3 Implementation . 194
5.1.3.4 Testing . 194
5.1.3.5 Summary . 194

5.1.4 HAL Concepts . 195
5.1.5 HAL components . 197
5.1.6 Timing Issues In HAL . 197

5.2 HAL Basics . 198
5.2.1 HAL Commands . 198

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xii

5.2.1.1 loadrt . 198
5.2.1.2 addf . 199
5.2.1.3 loadusr . 200
5.2.1.4 net . 200
5.2.1.5 setp . 201
5.2.1.6 sets . 202
5.2.1.7 unlinkp . 202
5.2.1.8 Obsolete Commands . 202

5.2.2 HAL Data . 203
5.2.2.1 Bit . 203
5.2.2.2 Float . 203
5.2.2.3 s32 . 203
5.2.2.4 u32 . 203
5.2.2.5 s64 . 203
5.2.2.6 u64 . 203

5.2.3 HAL Files . 204
5.2.4 HAL Parameter . 204
5.2.5 Basic Logic Components . 204

5.2.5.1 and2 . 204
5.2.5.2 not . 205
5.2.5.3 or2 . 205
5.2.5.4 xor2 . 206

5.2.6 Logic Examples . 206
5.2.7 Conversion Components . 207

5.2.7.1 weighted_sum . 207
5.3 HAL TWOPASS . 207

5.3.1 TWOPASS . 207
5.3.2 Post GUI . 209
5.3.3 Excluding .hal files . 210
5.3.4 Examples . 210

5.4 HAL Tutorial . 211
5.4.1 Introduction . 211
5.4.2 Halcmd . 211

5.4.2.1 Notation . 211
5.4.2.2 Tab-completion . 211
5.4.2.3 The RTAPI environment . 212

5.4.3 A Simple Example . 212
5.4.3.1 Loading a component . 212
5.4.3.2 Examining the HAL . 212

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xiii

5.4.3.3 Making realtime code run . 214
5.4.3.4 Changing Parameters . 215
5.4.3.5 Saving the HAL configuration . 216
5.4.3.6 Exiting halrun . 216
5.4.3.7 Restoring the HAL configuration . 216
5.4.3.8 Removing HAL from memory . 217

5.4.4 Halmeter . 217
5.4.5 Stepgen Example . 219

5.4.5.1 Installing the components . 219
5.4.5.2 Connecting pins with signals . 221
5.4.5.3 Setting up realtime execution - threads and functions 221
5.4.5.4 Setting parameters . 223
5.4.5.5 Run it! . 223

5.4.6 Halscope . 223
5.4.6.1 Hooking up the scope probes . 226
5.4.6.2 Capturing our first waveforms . 229
5.4.6.3 Vertical Adjustments . 230
5.4.6.4 Triggering . 231
5.4.6.5 Horizontal Adjustments . 233
5.4.6.6 More Channels . 234
5.4.6.7 More samples . 235

5.5 HAL Examples . 235
5.5.1 Connecting Two Outputs . 235
5.5.2 Manual Toolchange . 236
5.5.3 Compute Velocity . 237
5.5.4 Soft Start Details . 238
5.5.5 Stand Alone HAL . 240

5.6 Core Components . 241
5.6.1 Motion . 241

5.6.1.1 Options . 242
5.6.1.2 Pins . 242
5.6.1.3 Parameters . 244
5.6.1.4 Functions . 244

5.6.2 Spindle . 245
5.6.2.1 Pins . 245

5.6.3 Axis and Joint Pins and Parameters . 246
5.6.4 iocontrol . 246

5.6.4.1 Pins . 246
5.6.5 INI settings . 246

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xiv

5.6.5.1 Pins . 247
5.7 HAL Component List . 248

5.7.1 Components . 248
5.7.1.1 User Interfaces (non-realtime) . 248
5.7.1.2 Motion (non-realtime) . 249
5.7.1.3 Hardware Drivers . 249
5.7.1.4 Mesa and other I/O Cards (Realtime) . 250
5.7.1.5 Utilities (non-realtime) . 250
5.7.1.6 Signal processing (Realtime) . 251
5.7.1.7 Signal generation (Realtime) . 253
5.7.1.8 Kinematics (Realtime) . 254
5.7.1.9 Motion control (Realtime) . 254
5.7.1.10Motor control (Realtime) . 255
5.7.1.11Simulation/Testing . 255
5.7.1.12Other (Realtime) . 255

5.7.2 Not categorized (auto generated from man pages) . 256
5.7.3 Without man page or broken link (auto generated from component list) 256
5.7.4 HAL API calls . 257
5.7.5 RTAPI calls . 257

5.8 HAL Component Descriptions . 258
5.8.1 StepGen . 259

5.8.1.1 Pins . 259
5.8.1.2 Parameters . 260
5.8.1.3 Step Types . 260
5.8.1.4 Functions . 261

5.8.2 PWMgen . 262
5.8.2.1 Output Types . 262
5.8.2.2 Pins . 263
5.8.2.3 Parameters . 263
5.8.2.4 Functions . 263

5.8.3 Encoder . 264
5.8.3.1 Pins . 264
5.8.3.2 Parameters . 265
5.8.3.3 Functions . 266

5.8.4 PID . 266
5.8.4.1 Pins . 266
5.8.4.2 Functions . 268

5.8.5 Simulated Encoder . 268
5.8.5.1 Pins . 268

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xv

5.8.5.2 Parameters . 268
5.8.5.3 Functions . 269

5.8.6 Debounce . 269
5.8.6.1 Pins . 269
5.8.6.2 Parameters . 269
5.8.6.3 Functions . 270

5.8.7 SigGen . 270
5.8.7.1 Pins . 270
5.8.7.2 Parameters . 271
5.8.7.3 Functions . 271

5.8.8 lut5 . 271
5.9 HAL Component Generator . 272

5.9.1 Introduction . 272
5.9.2 Installing . 273
5.9.3 Compiling . 273

5.9.3.1 Inside the source tree . 273
5.9.3.2 Realtime components outside the source tree 273
5.9.3.3 Non-realtime components outside the source tree 274

5.9.4 Using a Component . 274
5.9.5 Definitions . 275
5.9.6 Instance creation . 275
5.9.7 Implicit Parameters . 275
5.9.8 Syntax . 275

5.9.8.1 HAL functions . 277
5.9.8.2 Options . 277
5.9.8.3 License and Authorship . 279
5.9.8.4 Per-instance data storage . 279
5.9.8.5 Comments . 279

5.9.9 Restrictions . 280
5.9.10Convenience Macros . 280
5.9.11Components with one function . 281
5.9.12Component Personality . 281
5.9.13Examples . 281

5.9.13.1constant . 281
5.9.13.2sincos . 282
5.9.13.3out8 . 282
5.9.13.4hal_loop . 283
5.9.13.5arraydemo . 283
5.9.13.6rand . 283

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xvi

5.9.13.7logic (using personality) . 284
5.9.13.8General Functions . 285

5.9.14Command Line Usage . 285
5.10HALTCL Files . 285

5.10.1Compatibility . 286
5.10.2Haltcl Commands . 286
5.10.3Haltcl INI-file variables . 286
5.10.4Converting HAL files to Tcl files . 287
5.10.5Haltcl Notes . 288
5.10.6Haltcl Examples . 288
5.10.7Haltcl Interactive . 289
5.10.8Haltcl Distribution Examples (sim) . 289

5.11HAL User Interface . 289
5.11.1Introduction . 289
5.11.2MDI . 289
5.11.3Example Configuration . 290
5.11.4Halui Pin Reference . 290

5.11.4.1Abort . 290
5.11.4.2E-Stop . 290
5.11.4.3Feed Override . 290
5.11.4.4Mist . 291
5.11.4.5Flood . 291
5.11.4.6Homing . 291
5.11.4.7Machine . 291
5.11.4.8Max Velocity . 291
5.11.4.9MDI . 292
5.11.4.10Joint . 292
5.11.4.11Joint Jogging . 293
5.11.4.12Axis . 294
5.11.4.13Axis Jogging . 294
5.11.4.14Mode . 295
5.11.4.15Program . 295
5.11.4.16Rapid Override . 295
5.11.4.17Spindle Override . 296
5.11.4.18Spindle . 296
5.11.4.19Tool . 297

5.12Halui Examples . 297
5.12.1Remote Start . 297
5.12.2Pause & Resume . 298

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xvii

5.13Creating Non-realtime Python Components . 299
5.13.1Basic usage example . 299
5.13.2Non-realtime components and delays . 300
5.13.3Create pins and parameters . 300

5.13.3.1Changing the prefix . 300
5.13.4Reading and writing pins and parameters . 301

5.13.4.1Driving output (HAL_OUT) pins . 301
5.13.4.2Driving bidirectional (HAL_IO) pins . 301

5.13.5Exiting . 301
5.13.6Helpful Functions . 301
5.13.7Constants . 301
5.13.8System Information . 302

5.14Canonical Device Interfaces . 302
5.14.1Introduction . 302
5.14.2Digital Input . 302

5.14.2.1Pins . 302
5.14.2.2Parameters . 303
5.14.2.3Functions . 303

5.14.3Digital Output . 303
5.14.3.1Pins . 303
5.14.3.2Parameters . 303
5.14.3.3Functions . 303

5.14.4Analog Input . 303
5.14.4.1Pins . 303
5.14.4.2Parameters . 303
5.14.4.3Functions . 303

5.14.5Analog Output . 304
5.14.5.1Pins . 304
5.14.5.2Parameters . 304
5.14.5.3Functions . 304

5.15HAL Tools . 304
5.15.1Halcmd . 304
5.15.2Halmeter . 305
5.15.3Halshow . 307
5.15.4Halscope . 308
5.15.5Sim Pin . 308
5.15.6Simulate Probe . 309
5.15.7HAL Histogram . 310
5.15.8Halreport . 311

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xviii

6 Hardware Drivers 314
6.1 Parallel Port Driver . 314

6.1.1 Loading . 314
6.1.2 PCI Port Address . 317
6.1.3 Pins . 318
6.1.4 Parameters . 318
6.1.5 Functions . 318
6.1.6 Common problems . 319
6.1.7 Using DoubleStep . 319
6.1.8 probe_parport . 319

6.1.8.1 Installing probe_parport . 319
6.2 AX5214H Driver . 320

6.2.1 Installing . 320
6.2.2 Pins . 320
6.2.3 Parameters . 320
6.2.4 Functions . 320

6.3 General Mechatronics Driver . 321
6.3.1 I/O connectors . 322

6.3.1.1 Pins . 323
6.3.1.2 Parameters . 323

6.3.2 Axis connectors . 323
6.3.2.1 Axis interface modules . 324
6.3.2.2 Encoder . 325
6.3.2.3 StepGen module . 327
6.3.2.4 Enable and Fault signals . 330
6.3.2.5 Axis DAC . 330

6.3.3 CAN-bus servo amplifiers . 331
6.3.3.1 Pins . 332
6.3.3.2 Parameters . 332

6.3.4 Watchdog timer . 332
6.3.4.1 Pins . 332
6.3.4.2 Parameters . 332

6.3.5 End-, homing- and E-stop switches . 333
6.3.5.1 Pins . 334
6.3.5.2 Parameters . 334

6.3.6 Status LEDs . 334
6.3.6.1 CAN . 334
6.3.6.2 RS485 . 335
6.3.6.3 EMC . 335

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xix

6.3.6.4 Boot . 335
6.3.6.5 Error . 335

6.3.7 RS485 I/O expander modules . 335
6.3.7.1 Relay output module . 336
6.3.7.2 Digital input module . 337
6.3.7.3 DAC & ADC module . 338
6.3.7.4 Teach Pendant module . 339

6.3.8 Errata . 340
6.3.8.1 GM6-PCI card Errata . 340

6.4 GS2 VFD Driver . 340
6.4.1 Command Line Options . 340
6.4.2 Pins . 341
6.4.3 Parameters . 342

6.5 HAL Driver for Raspberry Pi GPIO pins . 342
6.5.1 Purpose . 342
6.5.2 Usage . 342
6.5.3 Pins . 343
6.5.4 Parameters . 343
6.5.5 Functions . 344
6.5.6 Pin Numbering . 344
6.5.7 Known Bugs . 344

6.6 Generic driver for any GPIO supported by gpiod. 344
6.6.1 Purpose . 344
6.6.2 Usage . 345
6.6.3 Pins . 346
6.6.4 Parameters . 346
6.6.5 Functions . 346
6.6.6 Pin Identification . 346
6.6.7 Troubleshooting permissions problems. 347
6.6.8 Author . 347
6.6.9 Known Bugs . 347

6.7 Mesa HostMot2 Driver . 347
6.7.1 Introduction . 347
6.7.2 Firmware Binaries . 348
6.7.3 Installing Firmware . 348
6.7.4 Loading HostMot2 . 348
6.7.5 Watchdog . 349

6.7.5.1 Pins . 349
6.7.5.2 Parameters . 349

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xx

6.7.6 HostMot2 Functions . 349
6.7.7 Pinouts . 349
6.7.8 PIN Files . 351
6.7.9 Firmware . 351
6.7.10HAL Pins . 351
6.7.11Configurations . 352
6.7.12GPIO . 354

6.7.12.1Pins . 354
6.7.12.2Parameters . 354

6.7.13StepGen . 354
6.7.13.1Pins . 355
6.7.13.2Parameters . 355
6.7.13.3Output Parameters . 356

6.7.14PWMGen . 356
6.7.14.1Pins . 356
6.7.14.2Parameters . 356
6.7.14.3Output Parameters . 357

6.7.15Encoder . 357
6.7.15.1Pins . 357
6.7.15.2Parameters . 358

6.7.165I25 Configuration . 358
6.7.16.1Firmware . 358
6.7.16.2Configuration . 358
6.7.16.3SSERIAL Configuration . 359
6.7.16.47I77 Limits . 359

6.7.17Example Configurations . 359
6.8 MB2HAL . 360

6.8.1 Introduction . 360
6.8.2 Usage . 360
6.8.3 Options . 360

6.8.3.1 Init Section . 360
6.8.3.2 Transaction Sections . 361
6.8.3.3 Error codes . 362

6.8.4 Example config file . 363
6.8.5 Pins . 368

6.8.5.1 fnct_01_read_coils . 368
6.8.5.2 fnct_02_read_discrete_inputs . 368
6.8.5.3 fnct_03_read_holding_registers . 368
6.8.5.4 fnct_04_read_input_registers . 368

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxi

6.8.5.5 fnct_05_write_single_coil . 368
6.8.5.6 fnct_06_write_single_register . 368
6.8.5.7 fnct_15_write_multiple_coils . 369
6.8.5.8 fnct_16_write_multiple_registers . 369

6.9 Mitsub VFD Driver . 369
6.9.1 Command Line Options . 369
6.9.2 Pins . 370
6.9.3 HAL example . 370
6.9.4 Configuring the Mitsubishi VFD for serial usage . 371

6.9.4.1 Connecting the Serial Port . 371
6.9.4.2 Modbus setup . 371

6.10Motenc Driver . 371
6.10.1Pins . 372
6.10.2Parameters . 372
6.10.3Functions . 373

6.11Opto22 Driver . 373
6.11.1The Adapter Card . 373
6.11.2The Driver . 374
6.11.3Pins . 374
6.11.4Parameters . 374
6.11.5FUNCTIONS . 374
6.11.6Configuring I/O Ports . 375
6.11.7Pin Numbering . 375

6.12Pico Drivers . 375
6.12.1Command Line Options . 376
6.12.2Pins . 376
6.12.3Parameters . 378
6.12.4Functions . 379

6.13Pluto P Driver . 379
6.13.1General Info . 379

6.13.1.1Requirements . 379
6.13.1.2Connectors . 379
6.13.1.3Physical Pins . 380
6.13.1.4LED . 380
6.13.1.5Power . 380
6.13.1.6PC interface . 380
6.13.1.7Rebuilding the FPGA firmware . 380
6.13.1.8For more information . 381

6.13.2Pluto Servo . 381

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxii

6.13.2.1Pinout . 381
6.13.2.2Input latching and output updating . 382
6.13.2.3HAL Functions, Pins and Parameters . 383
6.13.2.4Compatible driver hardware . 383

6.13.3Pluto Step . 383
6.13.3.1Pinout . 383
6.13.3.2Input latching and output updating . 384
6.13.3.3Step Waveform Timings . 384
6.13.3.4HAL Functions, Pins and Parameters . 385

6.14Powermax Modbus Driver . 385
6.14.1Pins . 386
6.14.2Description . 386
6.14.3Reference: . 386

6.15Servo To Go Driver . 387
6.15.1Installing . 387
6.15.2Pins . 387
6.15.3Parameters . 388
6.15.4Functions . 388

6.16Shuttle . 388
6.16.1Description . 388
6.16.2Setup . 389
6.16.3Pins . 389

6.17VFS11 VFD Driver . 390
6.17.1Command Line Options . 390
6.17.2Pins . 390
6.17.3Parameters . 392
6.17.4INI file configuration . 392
6.17.5HAL example . 393
6.17.6Panel operation . 394
6.17.7Error Recovery . 394
6.17.8Configuring the VFS11 VFD for Modbus usage . 394

6.17.8.1Connecting the Serial Port . 394
6.17.8.2Modbus setup . 394

6.17.9Programming Note . 395

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxiii

7 Hardware Examples 396
7.1 PCI Parallel Port . 396
7.2 Spindle Control . 397

7.2.1 0-10 Volt Spindle Speed . 397
7.2.2 PWM Spindle Speed . 397
7.2.3 Spindle Enable . 397
7.2.4 Spindle Direction . 398
7.2.5 Spindle Soft Start . 398
7.2.6 Spindle Feedback . 399

7.2.6.1 Spindle Synchronized Motion . 399
7.2.6.2 Spindle At Speed . 400

7.3 MPG Pendant . 400
7.4 GS2 Spindle . 402

7.4.1 Example . 402

8 ClassicLadder 404
8.1 ClassicLadder Introduction . 404

8.1.1 History . 404
8.1.2 Introduction . 404
8.1.3 Example . 405
8.1.4 Basic Latching On-Off Circuit . 406

8.2 ClassicLadder Programming . 407
8.2.1 Ladder Concepts . 407
8.2.2 Languages . 407
8.2.3 Components . 407

8.2.3.1 Files . 407
8.2.3.2 Realtime Module . 408
8.2.3.3 Variables . 408

8.2.4 Loading the ClassicLadder non-realtime module . 409
8.2.5 ClassicLadder GUI . 409

8.2.5.1 Sections Manager . 410
8.2.5.2 Section Display . 410
8.2.5.3 The Variable Windows . 412
8.2.5.4 Symbol Window . 414
8.2.5.5 The Editor window . 415
8.2.5.6 Config Window . 416

8.2.6 Ladder objects . 418
8.2.6.1 CONTACTS . 418
8.2.6.2 IEC TIMERS . 418

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxiv

8.2.6.3 TIMERS . 419
8.2.6.4 MONOSTABLES . 419
8.2.6.5 COUNTERS . 419
8.2.6.6 COMPARE . 420
8.2.6.7 VARIABLE ASSIGNMENT . 421
8.2.6.8 COILS . 423

8.2.7 ClassicLadder Variables . 424
8.2.8 GRAFCET (State Machine) Programming . 425
8.2.9 Modbus . 427
8.2.10MODBUS Settings . 430

8.2.10.1MODBUS Info . 431
8.2.10.2Communication Errors . 431

8.2.11Debugging modbus problems . 431
8.2.11.1Request . 433
8.2.11.2Error response . 434
8.2.11.3Data response . 435
8.2.11.4MODBUS Bugs . 436

8.2.12Setting up ClassicLadder . 436
8.2.12.1Add the Modules . 437
8.2.12.2Adding Ladder Logic . 437

8.3 ClassicLadder Examples . 442
8.3.1 Wrapping Counter . 442
8.3.2 Reject Extra Pulses . 443
8.3.3 External E-Stop . 444
8.3.4 Timer/Operate Example . 447

9 Advanced Topics 449
9.1 Kinematics . 449

9.1.1 Introduction . 449
9.1.1.1 Joints vs Axes . 449

9.1.2 Trivial Kinematics . 450
9.1.3 Non-trivial kinematics . 451

9.1.3.1 Forward transformation . 452
9.1.3.2 Inverse transformation . 453

9.1.4 Implementation details . 453
9.1.4.1 Kinematics module using the userkins.comp template 454

9.2 Setting up ”modified” Denavit-Hartenberg (DH) parameters for genserkins 454
9.2.1 Prelude . 454
9.2.2 General . 455

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxv

9.2.3 Modified DH-Parameters . 455
9.2.4 Modified DH-Parameters as used in genserkins . 455
9.2.5 Numbering of joints and parameters . 456
9.2.6 How to start . 456
9.2.7 Special cases . 456
9.2.8 Detailed Example (RV-6SL) . 456
9.2.9 Credits . 475

9.3 5-Axis Kinematics . 475
9.3.1 Introduction . 475
9.3.2 5-Axis Machine Tool Configurations . 475
9.3.3 Tool Orientation and Location . 475
9.3.4 Translation and Rotation Matrices . 476
9.3.5 Table Rotary/Tilting 5-Axis Configurations . 477

9.3.5.1 Transformations for a xyzac-trt machine tool with work offsets 479
9.3.5.2 Transformations for a xyzac-trt machine with rotary axis offsets 483
9.3.5.3 Transformations for a xyzbc-trt machine with rotary axis offsets 486

9.3.6 Table Rotary/Tilting Examples . 489
9.3.6.1 Vismach Simulation Models . 489
9.3.6.2 Tool-Length Compensation . 489

9.3.7 Custom Kinematics Components . 489
9.3.8 Figures . 491
9.3.9 REFERENCES . 493

9.4 Switchable Kinematics (switchkins) . 493
9.4.1 Introduction . 493
9.4.2 Switchable Kinematic Modules . 494

9.4.2.1 Identity letter assignments . 494
9.4.2.2 Backwards compatibility . 495

9.4.3 HAL Pins . 495
9.4.3.1 HAL Pin Summary . 495

9.4.4 Usage . 495
9.4.4.1 HAL Connections . 495
9.4.4.2 G-/M-code commands . 496
9.4.4.3 INI file limit settings . 496
9.4.4.4 Coordinate system offset considerations . 498
9.4.4.5 External offset considerations . 498

9.4.5 Simulation configs . 498
9.4.6 User kinematics provisions . 499
9.4.7 Warnings . 499
9.4.8 Code Notes . 499

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxvi

9.5 PID Tuning . 500
9.5.1 PID Controller . 500

9.5.1.1 Control loop basics . 500
9.5.1.2 Theory . 501
9.5.1.3 Loop Tuning . 501
9.5.1.4 Automatic PID tuning . 502

9.6 Remap Extending G-code . 503
9.6.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes 503

9.6.1.1 A Definition: Remapping Codes . 503
9.6.1.2 Why would you want to extend the RS274NGC Interpreter? 504

9.6.2 Getting started . 505
9.6.2.1 Builtin Remaps . 505
9.6.2.2 Picking a code . 506
9.6.2.3 Parameter handling . 506
9.6.2.4 Handling results . 507
9.6.2.5 Execution sequencing . 507
9.6.2.6 An minimal example remapped code . 507

9.6.3 Configuring Remapping . 507
9.6.3.1 The REMAP statement . 507
9.6.3.2 Useful REMAP option combinations . 508
9.6.3.3 The argspec parameter . 509

9.6.4 Upgrading an existing configuration for remapping 512
9.6.5 Remapping tool change-related codes: T, M6, M61 . 513

9.6.5.1 Overview . 513
9.6.5.2 Understanding the role of iocontrol with remapped tool change codes . 514
9.6.5.3 Specifying the M6 replacement . 515
9.6.5.4 Configuring iocontrol with a remapped M6 516
9.6.5.5 Writing the change and prepare O-word procedures 517
9.6.5.6 Making minimal changes to the built in codes, including M6 517
9.6.5.7 Specifying the T (prepare) replacement . 518
9.6.5.8 Error handling: dealing with abort . 519
9.6.5.9 Error handling: failing a remapped code NGC procedure 520

9.6.6 Remapping other existing codes: . 521
9.6.6.1 Automatic gear selection be remapping S (set spindle speed) 521
9.6.6.2 Adjusting the behavior of M0, M1 . 521
9.6.6.3 Adjusting the behavior of M7, M8, M9 . 521

9.6.7 Creating new G-code cycles . 521
9.6.8 Configuring Embedded Python . 522

9.6.8.1 Python plugin : INI file configuration . 522

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxvii

9.6.8.2 Executing Python statements from the interpreter 522
9.6.9 Programming Embedded Python in the RS274NGC Interpreter 523

9.6.9.1 The Python plugin namespace . 523
9.6.9.2 The Interpreter as seen from Python . 523
9.6.9.3 The Interpreter __init__ and __delete__ functions 523
9.6.9.4 Calling conventions: NGC to Python . 524
9.6.9.5 Calling conventions: Python to NGC . 527
9.6.9.6 Built in modules . 529

9.6.10Adding Predefined Named Parameters . 529
9.6.11Standard Glue routines . 530

9.6.11.1T: prepare_prolog and prepare_epilog . 530
9.6.11.2M6: change_prolog and change_epilog . 530
9.6.11.3G-code Cycles: cycle_prolog and cycle_epilog 531
9.6.11.4S (Set Speed) : setspeed_prolog and setspeed_epilog 532
9.6.11.5F (Set Feed) : setfeed_prolog and setfeed_epilog 532
9.6.11.6M61 Set tool number : settool_prolog and settool_epilog 532

9.6.12Remapped code execution . 532
9.6.12.1NGC procedure call environment during remaps 532
9.6.12.2Nested remapped codes . 532
9.6.12.3Sequence number during remaps . 532
9.6.12.4Debugging flags . 533
9.6.12.5Debugging Embedded Python code . 533

9.6.13Axis Preview and Remapped code execution . 534
9.6.14Remappable Codes . 535

9.6.14.1Existing codes which can be remapped . 535
9.6.14.2Currently unallocated G-codes: . 535
9.6.14.3Currently unallocated M-codes: . 538

9.6.15A short survey of LinuxCNC program execution . 539
9.6.15.1Interpreter state . 539
9.6.15.2Task and Interpreter interaction, Queuing and Read-Ahead 539
9.6.15.3Predicting the machine position . 540
9.6.15.4Queue-busters break position prediction . 540
9.6.15.5How queue-busters are dealt with . 540
9.6.15.6Word order and execution order . 541
9.6.15.7Parsing . 541
9.6.15.8Execution . 541
9.6.15.9Procedure execution . 541
9.6.15.10How tool change currently works . 541
9.6.15.11How Tx (Prepare Tool) works . 542

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxviii

9.6.15.12How M6 (Change tool) works . 542
9.6.15.13How M61 (Change tool number) works . 543

9.6.16Status . 544
9.6.17Changes . 544
9.6.18Debugging . 544

9.7 Moveoff Component . 544
9.7.1 Modifying an existing configuration . 545

9.8 Stand Alone Interpreter . 548
9.8.1 Usage . 548
9.8.2 Example . 549

9.9 External Axis Offsets . 549
9.9.1 INI File Settings . 549
9.9.2 HAL Pins . 550

9.9.2.1 Per-Axis Motion HAL Pins . 550
9.9.2.2 Other Motion HAL Pins . 550

9.9.3 Usage . 550
9.9.3.1 Offset Computation . 551
9.9.3.2 Machine-off/Machine-on . 551
9.9.3.3 Soft Limits . 551
9.9.3.4 Notes . 552
9.9.3.5 Warning . 552

9.9.4 Related HAL Components . 552
9.9.4.1 eoffset_per_angle.comp . 552

9.9.5 Testing . 552
9.9.6 Examples . 553

9.9.6.1 eoffsets.ini . 553
9.9.6.2 jwp_z.ini . 553
9.9.6.3 dynamic_offsets.ini . 554
9.9.6.4 opa.ini (eoffset_per_angle) . 554

9.10Tool Database Interface . 554
9.10.1Interface . 554

9.10.1.1INI file Settings . 554
9.10.1.2db_program operation (v2.1) . 555
9.10.1.3Usage . 556
9.10.1.4Example program . 557
9.10.1.5Python tooldb module . 557

9.10.2Simulation configs . 558
9.10.2.1Notes . 558

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxix

II Usage 559

10User Interfaces 560
10.1AXIS GUI . 560

10.1.1Introduction . 560
10.1.2Getting Started . 561

10.1.2.1INI settings . 561
10.1.2.2A Typical Session . 562

10.1.3AXIS Window . 562
10.1.3.1Menu Items . 563
10.1.3.2Toolbar buttons . 566
10.1.3.3Graphical Display Area . 567
10.1.3.4Text Display Area . 569
10.1.3.5Manual Control . 569
10.1.3.6MDI . 571
10.1.3.7Feed Override . 572
10.1.3.8Spindle Speed Override . 572
10.1.3.9Jog Speed . 572
10.1.3.10Max Velocity . 573

10.1.4Keyboard Controls . 573
10.1.4.1Feed Override Keys . 573

10.1.5Show LinuxCNC Status (linuxcnctop) . 574
10.1.6MDI interface . 575
10.1.7axis-remote . 576
10.1.8Manual Tool Change . 576
10.1.9Python modules . 576
10.1.10Using AXIS in Lathe Mode . 577
10.1.11Using AXIS in Foam Cutting mode . 579
10.1.12Advanced Configuration . 580

10.1.12.1Program Filters . 581
10.1.12.2The X Resource Database . 582
10.1.12.3Jogwheel . 582
10.1.12.4~/.axisrc . 582
10.1.12.5USER_COMMAND_FILE . 583
10.1.12.6user_live_update() . 583
10.1.12.7user_hal_pins() . 583
10.1.12.8External Editor . 583
10.1.12.9Virtual Control Panel . 583
10.1.12.10Preview Control . 583

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxx

10.1.12.11Touch Off using Actual Position . 584
10.1.13Axisui . 584
10.1.14AXIS Customization Hints . 585

10.1.14.1The update function . 585
10.1.14.2Disable the Close Dialog . 585
10.1.14.3Change the Text Font . 585
10.1.14.4Modify Rapid Rate with Keyboard Shortcuts 586
10.1.14.5Read the INI file . 586
10.1.14.6Read LinuxCNC Status . 586
10.1.14.7Change the current view . 586
10.1.14.8Creating new AXISUI HAL Pins . 586
10.1.14.9Creating new HAL Component and Pins . 587
10.1.14.10Switch Tabs with HAL Pins . 587
10.1.14.11Add a GOTO Home button . 587
10.1.14.12Add Button to manual frame . 588
10.1.14.13Reading Internal Variables . 588
10.1.14.14Hide Widgets . 590
10.1.14.15Change a label . 590
10.1.14.16Redirect an existing command . 590
10.1.14.17Change the DRO color . 590
10.1.14.18Change the Toolbar Buttons . 590
10.1.14.19Change Plotter Colors . 591

10.2GMOCCAPY . 592
10.2.1Introduction . 592
10.2.2Requirements . 593
10.2.3How to get GMOCCAPY . 593
10.2.4Basic Configuration . 594

10.2.4.1The DISPLAY Section . 595
10.2.4.2The TRAJ Section . 596
10.2.4.3Macro Buttons . 596
10.2.4.4Embedded Tabs and Panels . 598
10.2.4.5User Created Messages . 601
10.2.4.6Preview Control . 602
10.2.4.7User Command File . 602
10.2.4.8User CSS File . 603
10.2.4.9Logging . 603

10.2.5HAL Pins . 604
10.2.5.1Right and Bottom Button Lists . 604
10.2.5.2Velocities and Overrides . 607

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxi

10.2.5.3Jog HAL Pins . 609
10.2.5.4Jog Velocities and Turtle-Jog HAL Pin . 610
10.2.5.5Jog Increment HAL Pins . 610
10.2.5.6Hardware Unlock Pin . 611
10.2.5.7Error/Warning Pins . 611
10.2.5.8User Created Message HAL Pins . 611
10.2.5.9Spindle Feedback Pins . 612
10.2.5.10Pins to Indicate Program Progress Information 612
10.2.5.11Tool Related Pins . 612

10.2.6Auto Tool Measurement . 614
10.2.6.1Provided Pins . 615
10.2.6.2INI File Modifications . 615
10.2.6.3Needed Files . 616
10.2.6.4Needed HAL Connections . 617

10.2.7The Settings Page . 617
10.2.7.1Appearance . 618
10.2.7.2Hardware . 623
10.2.7.3Advanced Settings . 625

10.2.8Icon Theme . 627
10.2.8.1Custom Icon Theme . 628
10.2.8.2Symbolic Icons . 628

10.2.9Lathe Specific Section . 629
10.2.10Plasma Specific Section . 632
10.2.11Videos on YouTube . 632

10.2.11.1Basic Usage . 633
10.2.11.2Simulated Jog Wheels . 633
10.2.11.3Settings Page . 633
10.2.11.4Simulated Hardware Button . 633
10.2.11.5User Tabs . 633
10.2.11.6Tool Measurement Videos . 633

10.2.12Known Problems . 633
10.2.12.1Strange numbers in the info area . 633
10.2.12.2Not ending macro . 634

10.3The Touchy Graphical User Interface . 634
10.3.1Panel Configuration . 635

10.3.1.1HAL connections . 635
10.3.1.2Recommended for any setup . 636

10.3.2Setup . 636
10.3.2.1Enabling Touchy . 636

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxii

10.3.2.2Preferences . 636
10.3.2.3Macros . 637

10.4Gscreen . 637
10.4.1Introduction . 637

10.4.1.1Glade File . 642
10.4.1.2PyGTK . 642

10.4.2GladeVCP . 643
10.4.2.1Overview . 643
10.4.2.2Build a GladeVCP Panel . 644

10.4.3Building a simple clean-sheet custom screen . 645
10.4.4Handler file example . 647

10.4.4.1Adding Keybindings Functions . 648
10.4.4.2Linuxcnc State Status . 648
10.4.4.3Jogging Keys . 649

10.4.5Gscreen Start Up . 649
10.4.6INI Settings . 651
10.4.7User Dialog Messages . 651

10.4.7.1Copy the Stock Handler/Glade File For Modification 652
10.5QtDragon GUI . 653

10.5.1Introduction . 653
10.5.1.1QtDragon . 653
10.5.1.2QtDragon_lathe . 654
10.5.1.3QtDragon_hd . 655
10.5.1.4QtDragon_hd_vertical . 655

10.5.2Getting Started - The INI File . 655
10.5.2.1Display . 656
10.5.2.2Preferences . 656
10.5.2.3Logging . 656
10.5.2.4Override controls . 656
10.5.2.5Spindle controls . 656
10.5.2.6Jogging increments . 657
10.5.2.7Grid Increments . 657
10.5.2.8Jog speed . 657
10.5.2.9User message dialog system . 657
10.5.2.10Embed Custom VCP Panels . 658
10.5.2.11Subroutine Paths . 659
10.5.2.12Preview Control . 659
10.5.2.13Program Extensions/Filters . 659
10.5.2.14Probe/Touchplate/Laser Settings . 660

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxiii

10.5.2.15Abort detection . 660
10.5.2.16Startup codes . 661
10.5.2.17Macro Buttons . 661
10.5.2.18Post GUI HAL File . 661
10.5.2.19Post GUI HAL Command . 661
10.5.2.20HAL Bridge . 662
10.5.2.21Builtin Sample Configurations . 662

10.5.3Key Bindings . 663
10.5.4Buttons . 663
10.5.5Virtual Keyboard . 663
10.5.6HAL Pins . 663
10.5.7HAL files . 665
10.5.8Manual Tool Changes . 665
10.5.9Spindle . 665
10.5.10Auto Raise Z Axis on Program Pause . 665
10.5.11Z level compensation . 666

10.5.11.1Using G-code Ripper for Z level Compensation 667
10.5.12Probing . 669

10.5.12.1Versa Probe . 670
10.5.12.2Basic probe . 672
10.5.12.3Customizing Probe Screen Widget . 675

10.5.13Touch plate . 675
10.5.14Auto Tool Measurement . 676

10.5.14.1Overview . 676
10.5.14.2Workflow Overview . 676
10.5.14.3Detailed Workflow Example . 678
10.5.14.4Work Piece Height Probing in QtDragon_hd 679
10.5.14.5Work Piece Height Probing . 680
10.5.14.6Tool Measurement Pins . 681
10.5.14.7Tool Measurement INI File Modifications . 682
10.5.14.8Required HAL Connections . 683

10.5.15Run from Line . 684
10.5.16Laser buttons . 684
10.5.17Tabs Description . 684

10.5.17.1Main tab . 684
10.5.17.2File Tab . 684
10.5.17.3Offsets Tab . 685
10.5.17.4Tool Tab . 685
10.5.17.5Status Tab . 685

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxiv

10.5.17.6Probe Tab . 685
10.5.17.7Camview Tab . 685
10.5.17.8G-codes Tab . 686
10.5.17.9Setup Tab . 686
10.5.17.10Settings Tab . 687
10.5.17.11Utilities Tab . 687
10.5.17.12User Tab . 687

10.5.18Styles . 688
10.5.19Internationalisation . 688
10.5.20Customization . 689

10.5.20.1Stylesheets . 689
10.5.20.2Qt Designer and Python code . 692

10.6NGCGUI . 694
10.6.1Overview . 694
10.6.2Demonstration Configurations . 695
10.6.3Library Locations . 697
10.6.4Standalone Usage . 698

10.6.4.1Standalone NGCGUI . 698
10.6.4.2Standalone PyNGCGUI . 698

10.6.5Embedding NGCGUI . 699
10.6.5.1Embedding NGCGUI in AXIS . 699
10.6.5.2Embedding PyNGCGUI as a GladeVCP tab page in a GUI 700
10.6.5.3Additional INI File items required for NCGUI or PyNGCGUI 700
10.6.5.4Truetype Tracer . 702
10.6.5.5INI File Path Specifications . 702
10.6.5.6Summary of INI File item details for NGCGUI usage 703

10.6.6File Requirements for NGCGUI Compatibility . 705
10.6.6.1Single-File Gcode (.ngc) Subroutine Requirements 705
10.6.6.2Gcode-meta-compiler (.gcmc) file requirements 707

10.6.7DB25 Example . 708
10.6.8Creating a subroutine . 711

10.7TkLinuxCNC GUI . 712
10.7.1Introduction . 712
10.7.2Getting Started . 712

10.7.2.1A typical session with TkLinuxCNC . 712
10.7.3Elements of the TkLinuxCNC window . 713

10.7.3.1Main buttons . 713
10.7.3.2Offset display status bar . 714
10.7.3.3Coordinate Display Area . 714

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxv

10.7.3.4TkLinuxCNC Interpreter / Automatic Program Control 714
10.7.3.5Manual Control . 714
10.7.3.6Code Entry . 715
10.7.3.7Jog Speed . 716
10.7.3.8Feed Override . 716
10.7.3.9Spindle speed Override . 716

10.7.4Keyboard Controls . 716
10.8QtPlasmaC . 716

10.8.1Preamble . 716
10.8.2License . 717
10.8.3Introduction . 717
10.8.4Installing LinuxCNC . 720

10.8.4.1If The User Does Not Have Linux Installed . 721
10.8.4.2Package Installation (Buildbot) If The User Has Linux on Debian 12 (Book-

worm) . 721
10.8.4.3Package Installation (Buildbot) If The User Has Linux on Debian 12 (Book-

worm) or Debian 11 (Bullseye) . 721
10.8.4.4Run In Place Installation If The User Has Linux Installed 721

10.8.5Creating A QtPlasmaC Configuration . 721
10.8.5.1Modes . 721
10.8.5.2Available I/Os . 722
10.8.5.3Recommended Settings: . 723
10.8.5.4Configuring . 724
10.8.5.5Qt Dependency Errors . 729
10.8.5.6Initial Setup . 729

10.8.6Migrating to QtPlasmaC From PlasmaC (AXIS or GMOCCAPY) 733
10.8.7Other QtPlasmaC Setup Considerations . 733

10.8.7.1Low-pass Filter . 733
10.8.7.2Contact Bounce . 733
10.8.7.3Contact Load . 734
10.8.7.4Desktop Launcher . 735
10.8.7.5QtPlasmaC Files . 735
10.8.7.6INI File . 736

10.8.8QtPlasmaC GUI Overview . 738
10.8.8.1Exiting QtPlasmaC . 738
10.8.8.2MAIN Tab . 738
10.8.8.3Preview Views . 745
10.8.8.4CONVERSATIONAL Tab . 745
10.8.8.5PARAMETERS Tab . 746

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxvi

10.8.8.6SETTINGS Tab . 752
10.8.8.7STATISTICS Tab . 756

10.8.9Using QtPlasmaC . 756
10.8.9.1Units Systems . 757
10.8.9.2Preamble and Postamble Codes . 757
10.8.9.3Mandatory Codes . 758
10.8.9.4Coordinates . 758
10.8.9.5Cut Feed Rate . 758
10.8.9.6Material File . 758
10.8.9.7Manual Material Handling . 760
10.8.9.8Automatic Material Handling . 760
10.8.9.9Material Addition Via Magic Comments In G-code 761
10.8.9.10Material Converter . 762
10.8.9.11LASER . 765
10.8.9.12CAMERA . 767
10.8.9.13Path Tolerance . 768
10.8.9.14Paused Motion . 769
10.8.9.15Pause At End Of Cut . 769
10.8.9.16Multiple Tools . 769
10.8.9.17Velocity Reduction . 770
10.8.9.18THC (Torch Height Controller) . 771
10.8.9.19Cutter Compensation . 772
10.8.9.20Initial Height Sense (IHS) Skip . 772
10.8.9.21Probing . 773
10.8.9.22Offset Probing . 773
10.8.9.23Cut Types . 774
10.8.9.24Hole Cutting - Intro . 775
10.8.9.25Hole Cutting . 775
10.8.9.26Hole Cutting - Automatic . 777
10.8.9.27Single Cut . 778
10.8.9.28Thick Materials . 780
10.8.9.29Mesh Mode (Expanded Metal Cutting) . 780
10.8.9.30Ignore Arc OK . 781
10.8.9.31Cut Recovery . 781
10.8.9.32Run From Line . 782
10.8.9.33Scribe . 784
10.8.9.34Spotting . 786
10.8.9.35Tube Cutting . 787
10.8.9.36Virtual Keyboard Custom Layouts . 787

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxvii

10.8.9.37Keyboard Shortcuts . 788
10.8.9.38MDI . 789

10.8.10Conversational Shape Library . 790
10.8.10.1Conversational Settings . 792
10.8.10.2Conversational Lines And Arcs . 792
10.8.10.3Conversational Single Shape . 793
10.8.10.4Conversational Group Of Shapes . 795
10.8.10.5Conversational Block . 795
10.8.10.6Conversational Saving A Job . 796

10.8.11Error Messages . 797
10.8.11.1Error Logging . 797
10.8.11.2Error Message Display . 797
10.8.11.3Critical Errors . 797
10.8.11.4Warning Messages . 799

10.8.12Updating QtPlasmaC . 800
10.8.12.1Standard Update . 800
10.8.12.2Continuous Update . 800

10.8.13Modify An Existing QtPlasmaC Configuration . 800
10.8.14Customizing QtPlasmaC GUI . 800

10.8.14.1Add A Custom Style . 801
10.8.14.2Create A New Style . 801
10.8.14.3Returning To The Default Styling . 802
10.8.14.4Custom Python Code . 802
10.8.14.5Custom G-code Filter . 803

10.8.15QtPlasmaC Advanced Topics . 804
10.8.15.1Custom User Buttons . 804
10.8.15.2Peripheral Offsets (Laser, Camera, Scribe, Offset Probe) 811
10.8.15.3Keep Z Motion . 813
10.8.15.4External HAL Pins . 813
10.8.15.5Hide Program Buttons . 814
10.8.15.6Tuning Mode 0 Arc OK . 815
10.8.15.7Lost Arc Delay . 815
10.8.15.8Zero Window . 816
10.8.15.9Tuning Void Sensing . 816
10.8.15.10Max Offset . 816
10.8.15.11Enable Tabs During Automated Motion . 816
10.8.15.12Override Jog Inhibit Via Z+ Jog . 817
10.8.15.13QtPlasmaC State Outputs . 817
10.8.15.14QtPlasmaC Debug Print . 818

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxviii

10.8.15.15Hypertherm PowerMax Communications . 818
10.8.15.16Moving Pierce . 819

10.8.16Internationalisation . 823
10.8.17Appendix . 824

10.8.17.1Example Configurations . 824
10.8.17.2NGC Samples . 825
10.8.17.3QtPlasmaC Specific G-codes . 825
10.8.17.4QtPlasmaC G-code Examples . 826
10.8.17.5Mesa THCAD . 828
10.8.17.6RS485 Connections . 830
10.8.17.7Arc OK With A Reed Relay . 832
10.8.17.8Contact Load Schematics . 834

10.8.18Known Issues . 834
10.8.18.1Keyboard Jogging . 834
10.8.18.2NO_FORCE_HOMING . 835

10.8.19Contributing Code To QtPlasmaC . 835
10.8.20Support . 836

10.9MDRO GUI . 836
10.9.1Introduction . 836
10.9.2Getting Started . 837

10.9.2.1INI File Options . 837
10.9.2.2Command Line Options . 838
10.9.2.3Pins . 838

10.9.3MDRO Window . 838
10.9.4Index operations . 839
10.9.5Simulation . 839

11G-code Programming 840
11.1Coordinate Systems . 840

11.1.1Introduction . 840
11.1.2Machine Coordinate System . 840

11.1.2.1Machine coordinates moves: G53 . 840
11.1.3Coordinate Systems . 841

11.1.3.1Default Coordinate System . 842
11.1.3.2Setting Coordinate System Offsets . 843

11.1.4Local and Global Offsets . 843
11.1.4.1The G52 command . 843

11.1.5G92 Axes Offsets . 844
11.1.5.1The G92 commands . 844

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xxxix

11.1.5.2Setting G92 Values . 845
11.1.5.3G92 Persistence Cautions . 845
11.1.5.4G92 and G52 Interaction Cautions . 846

11.1.6Sample Programs Using Offsets . 846
11.1.6.1Sample Program Using Workpiece Coordinate Offsets 846
11.1.6.2Sample Program Using G52 Offsets . 847

11.2Tool Compensation . 847
11.2.1Touch Off . 847

11.2.1.1Using G10 L1/L10/L11 . 848
11.2.2Tool Table . 848

11.2.2.1Tool Table Format . 849
11.2.2.2Tool IO . 850
11.2.2.3Tool Changers . 852

11.2.3Tool Length Compensation . 852
11.2.4Cutter Radius Compensation . 853

11.2.4.1Overview . 854
11.2.4.2Examples . 856

11.3Tool Edit GUI . 857
11.3.1Overview . 857
11.3.2Column Sorting . 858
11.3.3Columns Selection . 859
11.3.4Stand Alone Use . 859

11.4Overview of G-Code Programming . 860
11.4.1Overview . 860
11.4.2Format of a line . 860

11.4.2.1/: Block Delete . 861
11.4.2.2Optional Line Number . 861
11.4.2.3Words, Parameters, Subroutines, Comments 861
11.4.2.4End of Line Marker . 862

11.4.3Numbers . 862
11.4.4Parameters . 863

11.4.4.1Numbered Parameters . 864
11.4.4.2Subroutine Codes and Parameters . 866
11.4.4.3Named Parameters . 866
11.4.4.4Predefined Named Parameters . 867
11.4.4.5System Parameters . 869

11.4.5HAL pins and INI values . 869
11.4.6Expressions . 870
11.4.7Binary Operators . 870

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xl

11.4.8Equality and floating-point values . 871
11.4.9Functions . 871
11.4.10Repeated Items . 872
11.4.11Item order . 872
11.4.12Commands and Machine Modes . 873
11.4.13Polar Coordinates . 873
11.4.14Modal Groups . 875
11.4.15Comments . 876
11.4.16Messages . 877
11.4.17Probe Logging . 877
11.4.18Logging . 877
11.4.19Abort Messages . 878
11.4.20Debug Messages . 878
11.4.21Print Messages . 878
11.4.22Comment Parameters . 878
11.4.23File Requirements . 879
11.4.24File Size . 879
11.4.25G-code Order of Execution . 879
11.4.26G-code Best Practices . 880
11.4.27Linear and Rotary Axis . 881
11.4.28Common Error Messages . 881

11.5G-Codes . 881
11.5.1Conventions . 881
11.5.2G-Code Quick Reference Table . 882
11.5.3G0 Rapid Move . 883

11.5.3.1Rapid Velocity Rate . 883
11.5.4G1 Linear Move . 884
11.5.5G2, G3 Arc Move . 884

11.5.5.1Center Format Arcs . 885
11.5.5.2Center Format Examples . 887
11.5.5.3Radius Format Arcs . 888

11.5.6G4 Dwell . 889
11.5.7G5 Cubic Spline . 889
11.5.8G5.1 Quadratic Spline . 890
11.5.9G5.2 G5.3 NURBS Block . 891
11.5.10G7 Lathe Diameter Mode . 892
11.5.11G8 Lathe Radius Mode . 892
11.5.12G10 L0 Reload Tool Table Data . 893
11.5.13G10 L1 Set Tool Table . 893

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xli

11.5.14G10 L2 Set Coordinate System . 894
11.5.15G10 L10 Set Tool Table . 895
11.5.16G10 L11 Set Tool Table . 896
11.5.17G10 L20 Set Coordinate System . 896
11.5.18G17 - G19.1 Plane Select . 897
11.5.19G20, G21 Units . 897
11.5.20G28, G28.1 Go/Set Predefined Position . 897
11.5.21G30, G30.1 Go/Set Predefined Position . 898
11.5.22G33 Spindle Synchronized Motion . 898
11.5.23G33.1 Rigid Tapping . 899
11.5.24G38.n Straight Probe . 900
11.5.25G40 Compensation Off . 902
11.5.26G41, G42 Cutter Compensation . 902
11.5.27G41.1, G42.1 Dynamic Cutter Compensation . 903
11.5.28G43 Tool Length Offset . 903
11.5.29G43.1 Dynamic Tool Length Offset . 904
11.5.30G43.2 Apply additional Tool Length Offset . 905
11.5.31G49 Cancel Tool Length Compensation . 905
11.5.32G52 Local Coordinate System Offset . 906
11.5.33G53 Move in Machine Coordinates . 906
11.5.34G54-G59.3 Select Coordinate System . 906
11.5.35G61 Exact Path Mode . 907
11.5.36G61.1 Exact Stop Mode . 907
11.5.37G64 Path Blending . 907
11.5.38G70 Lathe finishing cycle . 910
11.5.39G71 G72 Lathe roughing cycles . 911
11.5.40G73 Drilling Cycle with Chip Breaking . 912
11.5.41G74 Left-hand Tapping Cycle with Dwell . 913
11.5.42G76 Threading Cycle . 914
11.5.43G80-G89 Canned Cycles . 916

11.5.43.1Common Words . 917
11.5.43.2Sticky Words . 917
11.5.43.3Repeat Cycle . 917
11.5.43.4Retract Mode . 917
11.5.43.5Canned Cycle Errors . 917
11.5.43.6Preliminary and In-Between Motion . 918
11.5.43.7Why use a canned cycle? . 918

11.5.44G80 Cancel Canned Cycle . 920
11.5.45G81 Drilling Cycle . 921

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlii

11.5.46G82 Drilling Cycle, Dwell . 926
11.5.47G83 Peck Drilling Cycle . 926
11.5.48G84 Right-hand Tapping Cycle, Dwell . 927
11.5.49G85 Boring Cycle, Feed Out . 927
11.5.50G86 Boring Cycle, Spindle Stop, Rapid Move Out . 928
11.5.51G87 Back Boring Cycle . 928
11.5.52G88 Boring Cycle, Spindle Stop, Manual Out . 928
11.5.53G89 Boring Cycle, Dwell, Feed Out . 928
11.5.54G90, G91 Distance Mode . 928
11.5.55G90.1, G91.1 Arc Distance Mode . 929
11.5.56G92 Coordinate System Offset . 929
11.5.57G92.1, G92.2 Reset G92 Offsets . 930
11.5.58G92.3 Restore G92 Offsets . 930
11.5.59G93, G94, G95 Feed Rate Mode . 930
11.5.60G96, G97 Spindle Control Mode . 931
11.5.61G98, G99 Canned Cycle Return Level . 931

11.6M-Codes . 932
11.6.1M-Code Quick Reference Table . 932
11.6.2M0, M1 Program Pause . 932
11.6.3M2, M30 Program End . 932
11.6.4M60 Pallet Change Pause . 933
11.6.5M3, M4, M5 Spindle Control . 933
11.6.6M6 Tool Change . 934

11.6.6.1Manual Tool Change . 934
11.6.6.2Tool Changer . 934

11.6.7M7, M8, M9 Coolant Control . 934
11.6.8M19 Orient Spindle . 935
11.6.9M48, M49 Speed and Feed Override Control . 935
11.6.10M50 Feed Override Control . 936
11.6.11M51 Spindle Speed Override Control . 936
11.6.12M52 Adaptive Feed Control . 936
11.6.13M53 Feed Stop Control . 936
11.6.14M61 Set Current Tool . 936
11.6.15M62 - M65 Digital Output Control . 937
11.6.16M66 Wait on Input . 937
11.6.17M67 Analog Output, Synchronized . 938
11.6.18M68 Analog Output, Immediate . 938
11.6.19M70 Save Modal State . 939
11.6.20M71 Invalidate Stored Modal State . 940

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xliii

11.6.21M72 Restore Modal State . 940
11.6.22M73 Save and Autorestore Modal State . 941
11.6.23M98 and M99 . 941

11.6.23.1Selectively Restoring Modal State . 942
11.6.24M100-M199 User Defined Commands . 942

11.7O Codes . 944
11.7.1Use of O-codes . 944
11.7.2Numbering . 944
11.7.3Comments . 944
11.7.4Subroutines . 944

11.7.4.1Fanuc-Style Numbered Programs . 945
11.7.5Looping . 947
11.7.6Conditional . 948
11.7.7Repeat . 948
11.7.8Indirection . 949
11.7.9Calling Files . 949
11.7.10Subroutine return values . 950
11.7.11Errors . 950

11.8Other Codes . 950
11.8.1F: Set Feed Rate . 950
11.8.2S: Set Spindle Speed . 950
11.8.3T: Select Tool . 951

11.9G-Code Examples . 951
11.9.1Mill Examples . 951

11.9.1.1Helical Hole Milling . 951
11.9.1.2Slotting . 952
11.9.1.3Grid Probe . 952
11.9.1.4Smart Probe . 953
11.9.1.5Tool Length Probe . 954
11.9.1.6Hole Probe . 954
11.9.1.7Cutter Compensation . 954

11.9.2Lathe Examples . 955
11.9.2.1Threading . 955

11.10Image to G-Code . 955
11.10.1What is a depth map? . 955
11.10.2Integrating image-to-gcode with the AXIS user interface 956
11.10.3Using image-to-gcode . 956
11.10.4Option Reference . 956

11.10.4.1Units . 956

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xliv

11.10.4.2Invert Image . 956
11.10.4.3Normalize Image . 956
11.10.4.4Expand Image Border . 956
11.10.4.5Tolerance (units) . 956
11.10.4.6Pixel Size (units) . 957
11.10.4.7Plunge Feed Rate (units per minute) . 957
11.10.4.8Feed Rate (units per minute) . 957
11.10.4.9Spindle Speed (RPM) . 957
11.10.4.10Scan Pattern . 957
11.10.4.11Scan Direction . 957
11.10.4.12Depth (units) . 957
11.10.4.13Step Over (pixels) . 958
11.10.4.14Tool Diameter . 958
11.10.4.15Safety Height . 958
11.10.4.16Tool Type . 958
11.10.4.17Lace bounding . 958
11.10.4.18Contact angle . 958
11.10.4.19Roughing offset and depth per pass . 959

11.11RS274/NGC Differences . 959
11.11.1Changes from RS274/NGC . 959
11.11.2Additions to RS274/NGC . 960

12Virtual Control Panels 962
12.1PyVCP . 962

12.1.1Introduction . 962
12.1.2Panel Construction . 963
12.1.3Security . 964
12.1.4AXIS . 964

12.1.4.1Example Panel . 964
12.1.5Stand Alone . 966
12.1.6Widgets . 967

12.1.6.1Syntax . 967
12.1.6.2General Notes . 967
12.1.6.3Label . 968
12.1.6.4Multi_Label . 969
12.1.6.5LEDs . 969
12.1.6.6Buttons . 970
12.1.6.7Number Displays . 972
12.1.6.8Number Inputs . 975

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlv

12.1.6.9Images . 979
12.1.6.10Containers . 981

12.2PyVCP Examples . 986
12.2.1AXIS . 986
12.2.2Floating Panels . 986
12.2.3Jog Buttons Example . 987

12.2.3.1Create the Widgets . 988
12.2.3.2Make Connections . 990

12.2.4Port Tester . 991
12.2.5GS2 RPM Meter . 994

12.2.5.1The Panel . 994
12.2.5.2The Connections . 996

12.2.6Rapid to Home Button . 996
12.3GladeVCP: Glade Virtual Control Panel . 998

12.3.1What is GladeVCP? . 998
12.3.1.1PyVCP versus GladeVCP at a glance . 998

12.3.2A Quick Tour with the Example Panel . 999
12.3.2.1Exploring the example panel . 1002
12.3.2.2Exploring the User Interface description . 1003
12.3.2.3Exploring the Python callback . 1003

12.3.3Creating and Integrating a Glade user interface . 1003
12.3.3.1Prerequisite: Glade installation . 1003
12.3.3.2Running Glade to create a new user interface 1003
12.3.3.3Testing a panel . 1004
12.3.3.4Preparing the HAL command file . 1005
12.3.3.5Integrating into AXIS, like PyVCP . 1005
12.3.3.6Embedding as a Tab . 1006
12.3.3.7Integrating into Touchy . 1006
12.3.3.8Loading Builtin Panels . 1007

12.3.4GladeVCP command line options . 1007
12.3.5Understanding the GladeVCP startup process . 1008
12.3.6HAL Widget reference . 1009

12.3.6.1Widget and HAL pin naming . 1009
12.3.6.2Python attributes and methods of HAL Widgets 1010
12.3.6.3Setting pin and widget values . 1010
12.3.6.4The hal-pin-changed signal . 1011
12.3.6.5Buttons . 1011
12.3.6.6Scales . 1012
12.3.6.7SpinButton . 1013

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlvi

12.3.6.8Hal_Dial . 1013
12.3.6.9Jog Wheel . 1015
12.3.6.10Speed Control . 1017
12.3.6.11Label . 1019
12.3.6.12Containers . 1019
12.3.6.13LED . 1020
12.3.6.14ProgressBar . 1021
12.3.6.15ComboBox . 1022
12.3.6.16Bars . 1022
12.3.6.17Meter . 1024
12.3.6.18HAL_Graph . 1025
12.3.6.19Gremlin tool path preview for NGC files . 1025
12.3.6.20HAL_Offset . 1028
12.3.6.21DRO widget . 1028
12.3.6.22Combi_DRO widget . 1030
12.3.6.23IconView (File Select) . 1034
12.3.6.24Calculator widget . 1037
12.3.6.25Tooleditor widget . 1037
12.3.6.26Offsetpage . 1039
12.3.6.27HAL_sourceview widget . 1041
12.3.6.28MDI history . 1042
12.3.6.29Animated function diagrams: HAL widgets in a bitmap 1043

12.3.7Action Widgets Reference . 1043
12.3.7.1VCP Action Widgets . 1044
12.3.7.2VCP Action Python . 1044
12.3.7.3VCP ToggleAction widgets . 1045
12.3.7.4The Action_MDI Toggle and Action_MDI widgets 1046
12.3.7.5A simple example: Execute MDI command on button press 1046
12.3.7.6Parameter passing with Action_MDI and ToggleAction_MDI widgets 1046
12.3.7.7An advanced example: Feeding parameters to an O-word subroutine . . . 1047
12.3.7.8Preparing for an MDI Action, and cleaning up afterwards 1047
12.3.7.9Using the LinuxCNC Stat object to deal with status changes 1048

12.3.8GladeVCP Programming . 1049
12.3.8.1User Defined Actions . 1049
12.3.8.2Core Library . 1049
12.3.8.3An example: adding custom user callbacks in Python 1050
12.3.8.4HAL value change events . 1050
12.3.8.5Programming model . 1050
12.3.8.6Initialization sequence . 1052

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlvii

12.3.8.7Multiple callbacks with the same name . 1053
12.3.8.8The GladeVCP -U <useropts> flag . 1053
12.3.8.9Persistent variables in GladeVCP . 1053
12.3.8.10Using persistent variables . 1053
12.3.8.11Saving the state on GladeVCP shutdown . 1054
12.3.8.12Saving state when Ctrl-C is pressed . 1055
12.3.8.13Hand-editing INI (.ini) files . 1055
12.3.8.14Adding HAL pins . 1055
12.3.8.15Adding timers . 1056
12.3.8.16Setting HAL widget properties programmatically 1056
12.3.8.17Value-changed callback with hal_glib . 1057
12.3.8.18Examples, and rolling your own GladeVCP application 1057

12.3.9FAQ . 1057
12.3.10Troubleshooting . 1058
12.3.11Implementation note: Key handling in AXIS . 1058
12.3.12Adding Custom Widgets . 1059
12.3.13Auxiliary GladeVCP Applications . 1059

12.4GladeVCP Library modules . 1060
12.4.1Info . 1060
12.4.2Action . 1062

12.5QtVCP . 1064
12.5.1Showcase . 1064
12.5.2Overview . 1070

12.5.2.1QtVCP Widgets . 1071
12.5.2.2INI Settings . 1071
12.5.2.3Qt Designer UI File . 1072
12.5.2.4Handler Files . 1072
12.5.2.5Libraries Modules . 1073
12.5.2.6Themes . 1073
12.5.2.7Local Files . 1073
12.5.2.8Modifying Stock Screens . 1074

12.5.3VCP Panels . 1077
12.5.3.1Builtin Panels . 1077
12.5.3.2Custom Panels . 1081

12.5.4Build A Simple Clean-sheet Custom Screen . 1083
12.5.4.1Overview . 1083
12.5.4.2Get Qt Designer To Include LinuxCNC Widgets 1083
12.5.4.3Build The Screen .ui File . 1084
12.5.4.4Handler file . 1087

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlviii

12.5.4.5INI Configuration . 1087
12.5.5Handler File In Detail . 1087

12.5.5.1Overview . 1088
12.5.5.2IMPORT Section . 1091
12.5.5.3INSTANTIATE LIBRARIES Section . 1091
12.5.5.4HANDLER CLASS Section . 1091
12.5.5.5INITIALIZE Section . 1091
12.5.5.6SPECIAL FUNCTIONS Section . 1092
12.5.5.7STATUS CALLBACKS Section . 1093
12.5.5.8CALLBACKS FROM FORM Section . 1093
12.5.5.9GENERAL FUNCTIONS Section . 1093
12.5.5.10KEY BINDING Section . 1093
12.5.5.11CLOSING EVENT Section . 1093

12.5.6Connecting Widgets to Python Code . 1093
12.5.6.1Overview . 1094
12.5.6.2Using Qt Designer to add Slots . 1094
12.5.6.3Python Handler Changes . 1095

12.5.7More Information . 1096
12.6QtVCP Virtual Control Panels . 1096

12.6.1Builtin Virtual Control Panels . 1096
12.6.1.1copy . 1096
12.6.1.2spindle_belts . 1097
12.6.1.3test_dial . 1099
12.6.1.4test_button . 1100
12.6.1.5test_led . 1100
12.6.1.6test_panel . 1101
12.6.1.7cam_align . 1102
12.6.1.8sim_panel . 1105
12.6.1.9tool_dialog . 1106

12.6.2vismach 3D Simulation Panels . 1106
12.6.2.1QtVCP vismach_mill_xyz . 1106
12.6.2.2QtVCP vismach_router_atc . 1107
12.6.2.3QtVCP vismach_scara . 1108
12.6.2.4QtVCP vismach_millturn . 1109
12.6.2.5QtVCP vismach_mill_5axis_gantry . 1110
12.6.2.6QtVCP vismach_fanuc_200f . 1111

12.6.3Custom Virtual Control Panels . 1112
12.6.4Embedding QtVCP Virtual Control Panels into QtVCP Screens 1113

12.6.4.1Embedding Commands . 1113

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlix

12.6.4.2Location of builtin Panels . 1113
12.6.4.3Location of Custom Panels . 1114
12.6.4.4Handler Programming Tips . 1114
12.6.4.5Designer Widget Tips . 1114
12.6.4.6Handler Patching - Subclassing Builtin Panels 1114

12.7QtVCP Widgets . 1115
12.7.1HAL Only Widgets . 1116

12.7.1.1CheckBox Widget . 1116
12.7.1.2DetachTabWidget - Container Widget With User Detachable Panels 1116
12.7.1.3DoubleScale - Spin Button Entry Widget . 1116
12.7.1.4FocusOverlay - Focus Overlay Widget . 1116
12.7.1.5Gauge - Round Dial Gauge Widget . 1118
12.7.1.6GeneralHALInput - General Signals/Slots Input Connection Widget 1119
12.7.1.7GeneralHALOutput - General Signals/Slots Output Connection Widget . . . 1119
12.7.1.8GridLayout - Grid Layout Widget . 1120
12.7.1.9HalBar - HAL Bar Level Indicator . 1120
12.7.1.10HALPad - HAL Buttons Joypad . 1121
12.7.1.11HALLabel - HAL Label Widget . 1123
12.7.1.12LCDNumber - LCD Style Number Readout Widget 1124
12.7.1.13LED - Indicator Widget . 1124
12.7.1.14PushButton - HAL Pin Toggle Widget . 1125
12.7.1.15RadioButton Widget . 1125
12.7.1.16Slider - HAL Pin Value Adjusting Widget . 1125
12.7.1.17TabWidget - Tab Widget . 1126
12.7.1.18WidgetSwitcher - Multi-widget Layout View Switcher Widget 1126
12.7.1.19XEmbed - Program Embedding Widget . 1127

12.7.2Machine Controller Widgets . 1127
12.7.2.1ActionButton - Machine Controller Action Control Widget 1127
12.7.2.2ActionToolButton - Optional Actions Menu Button Widget 1130
12.7.2.3AxisToolButton - Select and Set Axis Widget 1130
12.7.2.4BasicProbe - Simple Mill Probing Widget . 1132
12.7.2.5CamView - Workpiece Alignment and Origin Setting Widget 1132
12.7.2.6DROLabel - Axis Position Display Widget . 1132
12.7.2.7FileManager - File Loading Selector Widget 1135
12.7.2.8GcodeDisplay - G-code Text Display Widget 1136
12.7.2.9GcodeEditor - G-code Program Editor Widget 1137
12.7.2.10GCodeGraphics - G-code Graphic Backplot Widget 1138
12.7.2.11JointEnableWidget - FIXME . 1142
12.7.2.12JogIncrements - Jog Increments Value Selection Widget 1142

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 l

12.7.2.13MacroTab - Special Macros Widget . 1143
12.7.2.14OperatorValueLine - Operator Value Line Entry Widget 1145
12.7.2.15MDILine - MDI Commands Line Entry Widget 1146
12.7.2.16MDIHistory - MDI Commands History Widget 1147
12.7.2.17MDITouchy - Touch Screen MDI Entry Widget 1148
12.7.2.18OriginOffsetView - Origins View and Setting Widget 1150
12.7.2.19RadioAxisSelector - FIXME . 1151
12.7.2.20RoundButton - Round Shapped ActionButton Widget 1151
12.7.2.21StateLabel - Controller Modes State Label Display Widget 1151
12.7.2.22StatusLabel - Controller Variables State Label Display Widget 1152
12.7.2.23StatusImageSwitcher - Controller Status Image Switcher 1154
12.7.2.24StatusStacked - Mode Status Display Switching Widget 1156
12.7.2.25ScreenOption - General Options Setting widget 1156
12.7.2.26StatusSlider - Controller Setting Adjustment Slider Widget 1161
12.7.2.27StateLED - Controller State LED Widget . 1162
12.7.2.28StatusAdjustmentBar - Controller Value Setting Widget 1163
12.7.2.29SystemToolButton - User System Selection Widget 1164
12.7.2.30StateEnableGridlayout - Controller State Enabled Container Widget . . 1164
12.7.2.31StatusImageSwitcher - Controller Status Image Switching Widget 1164
12.7.2.32ToolOffsetView - Tools Offsets View And Edit Widget 1165
12.7.2.33VersaProbe - Mill Probing Widget . 1167

12.7.3Dialog Widgets . 1167
12.7.3.1LcncDialog - General Message Dialog Widget 1168
12.7.3.2ToolDialog - Manual Tool Change Dialog Widget 1169
12.7.3.3FileDialog - Load and Save File Chooser Dialog Widget 1170
12.7.3.4OriginOffsetDialog - Origin Offset Setting Dialog Widget 1171
12.7.3.5ToolOffsetDialog - Tool Offset Setting Dialog Widget 1172
12.7.3.6ToolChooserDialog - Tool Chooser Dialog Widget 1172
12.7.3.7MachineLog - Machine Events Journal Display Widget 1173
12.7.3.8MacroTabDialog - Macro Launch Dialog Widget 1174
12.7.3.9CamViewDialog - WebCam Part Alignment Dialog Widget 1174
12.7.3.10EntryDialog - Edit Line Dialog Widget . 1174
12.7.3.11CalculatorDialog - Calculator Dialog Widget 1174
12.7.3.12RunFromLine - Run-From-Line Dialog Widget 1176
12.7.3.13VersaProbeDialog - Part Touch Probing Dialog Widget 1177
12.7.3.14MachineLogDialog - Machine and Debugging Logs Dialog Widget 1178

12.7.4Other Widgets . 1178
12.7.4.1NurbsEditor - NURBS Editing Widget . 1179
12.7.4.2JoyPad - 5 button D-pad Widget . 1179

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 li

12.7.4.3WebWidget . 1181
12.7.5BaseClass/Mixin Widgets . 1182

12.7.5.1IndicatedPushButtons . 1182
12.7.6Import-Only Widgets . 1185

12.7.6.1Auto Height . 1185
12.7.6.2G-code Utility . 1185
12.7.6.3Facing . 1186
12.7.6.4Hole Circle . 1186
12.7.6.5Hole Enlarge . 1187
12.7.6.6Qt NGCGUI . 1187
12.7.6.7Qt PDF . 1189
12.7.6.8Qt Vismach . 1189
12.7.6.9Hal Selection Box . 1189

12.8QtVCP Libraries modules . 1189
12.8.1Status . 1189

12.8.1.1Usage . 1190
12.8.1.2Example . 1190

12.8.2Info . 1190
12.8.2.1Available data and defaults . 1191
12.8.2.2User message dialog info . 1192
12.8.2.3Embedded program info . 1192
12.8.2.4Helpers . 1192
12.8.2.5Usage . 1192

12.8.3Action . 1193
12.8.3.1Helpers . 1193
12.8.3.2Usage . 1193

12.8.4Qhal . 1195
12.8.4.1Attributes . 1195
12.8.4.2Constants . 1196
12.8.4.3References . 1196

12.8.5QPin . 1196
12.8.5.1Signals . 1196
12.8.5.2Attributes . 1196
12.8.5.3References . 1197
12.8.5.4Example . 1197

12.8.6Tool . 1197
12.8.6.1Helpers . 1197

12.8.7Path . 1198
12.8.7.1Referenced Paths . 1198

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 lii

12.8.7.2Helpers . 1199
12.8.7.3Usage . 1200

12.8.8VCPWindow . 1200
12.8.8.1Usage . 1200

12.8.9Aux_program_loader . 1200
12.8.9.1Helpers . 1201
12.8.9.2Usage . 1201

12.8.10Keylookup . 1202
12.8.10.1Usage . 1202
12.8.10.2Key Defines . 1203

12.8.11Messages . 1205
12.8.11.1Properties . 1205
12.8.11.2HAL Pins . 1206
12.8.11.3Examples . 1206

12.8.12multimessages . 1207
12.8.12.1Properties . 1207
12.8.12.2Examples . 1208

12.8.13Notify . 1208
12.8.13.1Properties . 1209

12.8.14Preferences . 1209
12.8.15Player . 1209

12.8.15.1Sounds . 1209
12.8.15.2Usage . 1210
12.8.15.3Example . 1210

12.8.16Virtual Keyboard . 1210
12.8.17Toolbar Actions . 1211

12.8.17.1Actions . 1211
12.8.17.2Submenus . 1211
12.8.17.3Usage . 1211
12.8.17.4Examples . 1211

12.8.18Qt Vismach Machine Graphics library . 1212
12.8.18.1Builtin Samples . 1212
12.8.18.2Primitives Library . 1212
12.8.18.3Usage . 1214
12.8.18.4More Information . 1215

12.9QtVismach . 1215
12.9.1Introduction . 1215
12.9.2Hierarchy of Machine Design . 1217
12.9.3Start the script . 1218

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 liii

12.9.4HAL pins. 1218
12.9.5Creating Parts . 1218

12.9.5.1Import STL or OBJ Files . 1218
12.9.5.2Build from Geometric Primitives . 1219

12.9.6Moving Model Parts . 1220
12.9.6.1Translating Model parts . 1220
12.9.6.2Rotating Model Parts . 1220

12.9.7Animating Parts . 1220
12.9.7.1HalTranslate . 1220
12.9.7.2HalRotate . 1221
12.9.7.3HalToolCylinder . 1221
12.9.7.4HalToolTriangle . 1221
12.9.7.5HAL Adjustable Primitives . 1221

12.9.8Assembling the model . 1222
12.9.9Other functions . 1223

12.9.9.1Color . 1223
12.9.9.2HALColorFlip . 1223
12.9.9.3HALColorRGB . 1223
12.9.9.4Heads Up Display . 1224
12.9.9.5HAL Heads Up Display . 1224
12.9.9.6HideCollection . 1224
12.9.9.7Plot Color Based on Motion Type . 1225
12.9.9.8Capture . 1225
12.9.9.9main . 1225

12.9.10Tips . 1226
12.9.11Basic structure of a QtVismach script . 1226
12.9.12Builtin Vismach Sample Panels . 1227

12.10QtVCP: Building Custom Widgets . 1227
12.10.1Overview . 1227

12.10.1.1Widgets . 1227
12.10.1.2Qt Designer . 1228
12.10.1.3Initialization Process . 1228
12.10.1.4cleanup process . 1229

12.10.2Custom HAL Widgets . 1229
12.10.3Custom Controller Widgets Using STATUS . 1230

12.10.3.1In The Imports Section . 1231
12.10.3.2In The Instantiate Libraries Section . 1232
12.10.3.3In The Custom Widget Class Definition Section 1232

12.10.4Custom Controller Widgets with Actions . 1234

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 liv

12.10.5Stylesheet Property Changes Based On Events . 1236
12.10.6Use Stylesheets To Change Custom Widget Properties 1237
12.10.7Widget Plugins . 1237

12.10.7.1Gridlayout Example . 1238
12.10.7.2SystemToolbutton Example . 1238
12.10.7.3Making a plugin with a MenuEntry dialog box 1239

12.11QtVCP Handler File Code Snippets . 1242
12.11.1Preference File Loading/Saving . 1242
12.11.2Use QSettings To Read/Save Variables . 1242
12.11.3Add A Basic Style Editor . 1243
12.11.4Request Dialog Entry . 1243
12.11.5Speak a Startup Greeting . 1244
12.11.6ToolBar Functions . 1245
12.11.7Add HAL Pins That Call Functions . 1246
12.11.8Read/Write System HAL Pins Directly . 1246
12.11.9Add A Special Max Velocity Slider Based On Percent 1247
12.11.10Toggle Continuous Jog On and Off . 1247
12.11.11Class Patch The File Manager Widget . 1248
12.11.12Adding Widgets Programmatically . 1250
12.11.13Update/Read Objects Periodically . 1253
12.11.14External Control With ZMQ . 1254

12.11.14.1ZMQ Messages Reading . 1254
12.11.14.2ZMQ Messages Writing . 1255

12.11.15Sending Messages To Status Bar Or Desktop Notify Dialogs 1256
12.11.16Catch Focus Changes . 1257
12.11.17Read Command Line Load Time Options . 1257
12.11.18G-code to read Qt preferences . 1258

12.12QtVCP Development . 1259
12.12.1Overview . 1259
12.12.2Builtin Locations . 1259
12.12.3QtVCP Startup To Shutdown . 1259

12.12.3.1QtVCP Startup . 1260
12.12.3.2QtVCP Shutdown . 1260

12.12.4Path Information . 1260
12.12.5Idiosyncrasies . 1261

12.12.5.1Error Code Collecting . 1261
12.12.5.2Jog Rate . 1261
12.12.5.3Keybinding . 1261
12.12.5.4Preference File . 1262
12.12.5.5Widget Special Setup Functions . 1262
12.12.5.6Dialogs . 1262
12.12.5.7Styles (Themes) . 1262

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 lv

13User Interface Programming 1263
13.1Panelui . 1263

13.1.1Introduction . 1263
13.1.2Loading Commands . 1263
13.1.3panelui.ini file reference . 1264
13.1.4Internal Command reference . 1266
13.1.5ZMQ Messages . 1269
13.1.6Handler File Extension . 1269

13.2The LinuxCNC Python module . 1270
13.2.1Introduction . 1270
13.2.2Usage Patterns for the LinuxCNC NML interface . 1271
13.2.3Reading LinuxCNC status with the linuxcnc Python module 1271

13.2.3.1linuxcnc.stat attributes . 1271
13.2.3.2The axis dictionary . 1277
13.2.3.3The joint dictionary . 1277
13.2.3.4The spindle dictionary . 1278

13.2.4Preparing to send commands . 1279
13.2.5Sending commands through linuxcnc.command . 1280

13.2.5.1linuxcnc.command attributes . 1280
13.2.5.2linuxcnc.command methods: . 1280

13.2.6Reading the error channel . 1284
13.2.7Reading INI file values . 1284
13.2.8The linuxcnc.positionlogger type . 1285

13.2.8.1members . 1285
13.2.8.2methods . 1285

13.3The HAL Python module . 1286
13.3.1Basic usage . 1286
13.3.2Functions . 1286

13.4GStat Python Module . 1289
13.4.1Intro . 1289
13.4.2Sample GStat Code . 1290

13.4.2.1Sample HAL component code pattern . 1290
13.4.2.2GladeVCP Python extension code pattern . 1291
13.4.2.3QtVCP Python extension code pattern . 1291

13.4.3Messages . 1292
13.4.4Functions . 1299
13.4.5Known Issues . 1301

13.5Vismach . 1301
13.5.1Start the script . 1303

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 lvi

13.5.2Create the HAL pins. 1303
13.5.3Creating Parts . 1303
13.5.4Moving Parts . 1304
13.5.5Animating Parts . 1304
13.5.6Assembling the model. 1305
13.5.7Other functions . 1306
13.5.8Basic structure of a Vismach script. 1307

III Glossary, Copyright & History 1308

14Overleaf 1309

15Glossary 1310

16Copyright 1316
16.1Legal Section . 1316

16.1.1Copyright Terms . 1316
16.1.2GNU Free Documentation License . 1316

17LinuxCNC History 1321
17.1Origin . 1321

17.1.1Name Change . 1322
17.1.2Additional Info . 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1 / 1322

Part I

Getting Started & Configuration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 2 / 1322

Chapter 1

Getting Started with LinuxCNC

1.1 About LinuxCNC

1.1.1 The Software

• LinuxCNC (the Enhanced Machine Control) is a software system for computer control of machine
tools such as milling machines and lathes, robots such as puma and scara and other computer
controlled machines up to 9 axes.

• LinuxCNC is free software with open source code. Current versions of LinuxCNC are entirely li-
censed under the GNU General Public License and Lesser GNU General Public License (GPL and
LGPL).

• LinuxCNC provides:

– easy discovery and testing without installation with the Live Image,
– easy installation from the Live Image,
– easy to use graphical configuration wizards to rapidly create a configuration specific to the ma-

chine,
– directly available as regular packages of recent releases of Debian (since Bookworm) and Ubuntu

(since Kinetic Kudu),
– a graphical user interface (actually several interfaces to choose from),
– graphical interface creation tools (Glade, Qt),
– an interpreter for G-code (the RS-274 machine tool programming language),
– a realtime motion planning system with look-ahead,
– operation of low-level machine electronics such as sensors and motor drives,
– an easy to use breadboard layer for quickly creating a unique configuration for your machine,
– a software PLC programmable with ladder diagrams.

• It does not provide drawing (CAD - Computer Aided Design) or G-code generation from the drawing
(CAM - Computer Automated Manufacturing) functions.

• It can make coordinated moves with up to 9 axes and up to 16 extra axes can be controlled individ-
ually.

• It supports a variety of hardware interfaces.

• The control can operate true servos (analog or PWM) with the feedback loop closed by the LinuxCNC
software at the computer, or open loop with step-servos or stepper motors.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 3 / 1322

• Motion control features include: cutter radius and length compensation, path deviation limited to
a specified tolerance, lathe threading, synchronized axis motion, adaptive feedrate, operator feed
override, and constant velocity control.

• Support for non-Cartesian motion systems is provided via custom kinematics modules. Available
architectures include hexapods (Stewart platforms and similar concepts) and systems with rotary
joints to provide motion such as PUMA or SCARA robots.

• LinuxCNC runs on Linux using real time extensions.

1.1.2 The Operating System

LinuxCNC is available as ready-to-use packages for Debian distributions.

1.1.3 Getting Help

1.1.3.1 Web Forum

A web forum can be found at https://forum.linuxcnc.org or by following the link at the top of the
linuxcnc.org home page.
This is quite active but the demographic is more user-biased than the mailing list. If you want to be
sure that your message is seen by the developers then the mailing list is to be preferred.

1.1.3.2 IRC

IRC stands for Internet Relay Chat. It is a live connection to other LinuxCNC users. The LinuxCNC
IRC channel is #linuxcnc on libera.chat.
The simplest way to get on the IRC is to use the embedded web client client from libera.

Some IRC etiquette

• Ask specific questions… Avoid questions like ”Can someone help me?”.
• If you’re really new to all this, think a bit about your question before typing it. Make sure you

give enough information so someone can answer your question or solve your problem.
• Have some patience when waiting for an answer. Sometimes it takes a while to formulate an

answer, or everyone might be busy working or something.
• Set up your IRC account with your unique name so people will know who you are. If you use

the java client, use the same name every time you log in. This helps people remember who
you are. If you have been on before, many will remember past discussions with you which will
save time on both ends.

Sharing Files
The most common way to share files on the IRC is to upload the file to one of the following or a
similar service and paste the link:

• For text: https://pastebin.com/, https://gist.github.com/, https://0bin.net/, https://paste.debian.net/-

• For pictures: https://imagebin.org/, https://imgur.com/, https://bayimg.com/
• For files: https://filedropper.com/, https://filefactory.com/, https://1fichier.com/

https://forum.linuxcnc.org
https://web.libera.chat/#linuxcnc
https://pastebin.com/
https://gist.github.com/
https://0bin.net/
https://paste.debian.net/
https://imagebin.org/
https://imgur.com/
https://bayimg.com/
https://filedropper.com/
https://filefactory.com/
https://1fichier.com/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 4 / 1322

1.1.3.3 Mailing List

An Internet Mailing List is a way to put questions out for everyone on that list to see and answer at
their convenience. You get better exposure to your questions on a mailing list than on the IRC but
answers take longer. In a nutshell you e-mail a message to the list and either get daily digests or
individual replies back depending on how you set up your account.
You can subscribe to the emc-users mailing list at: https://lists.sourceforge.net/lists/listinfo/emc-users.

1.1.3.4 Web Forum

A web forum can be found at https://forum.linuxcnc.org/ or by following the link at the top of the
https://linuxcnc.org/ home page.
This is quite active but the demographic is more user-biased than the mailing list. If you want to be
sure that your message is seen by the developers then the mailing list is to be preferred.

1.1.3.5 LinuxCNC Wiki

A Wiki site is a user maintained web site that anyone can add to or edit.
The user maintained LinuxCNC Wiki site contains a wealth of information and tips at: http://wiki.linuxcnc.org

1.1.3.6 Bug Reports

Report bugs on the LinuxCNC Github github bug tracker.

1.2 System Requirements

1.2.1 Minimum Requirements

The minimum system to run LinuxCNC and Debian / Ubuntu may vary depending on the exact usage.
Stepper systems in general require faster threads to generate step pulses than servo systems. You
can use the Live CD to test the software before committing to a permanent installation on a computer.
Keep in mind that the Latency Test numbers are more important than the processor speed for software
step generation. More information on the Latency Test is here. In addition, LinuxCNC needs to be run
on an operating system that uses a specially modified kernel, see Kernel and Version Requirements.
Additional information is on the LinuxCNC Wiki site: Hardware Requirements
LinuxCNC and Debian Linux should run reasonably well on a computer with the following minimum
hardware specification. These numbers are not the absolute minimum but will give reasonable per-
formance for most stepper systems.

• 1.2 GHz 64-bit x86 processor or Raspberry Pi 4 or better.

• 512 MB of RAM, 4 GB with GUI to avoid surprises

• No hard disk for Live CD, 8 GB or more for permanent installation

• Graphics card capable of at least 1024x768 resolution, which is not using the NVidia or ATI fglrx
proprietary drivers. Modern onboard graphic chipsets seem to generally be OK.

• Internet connection (not strictly needed, but very useful for updates and for communicating with
the LinuxCNC community)

https://lists.sourceforge.net/lists/listinfo/emc-users
https://forum.linuxcnc.org/
https://linuxcnc.org/
http://wiki.linuxcnc.org/
https:///github.com/LinuxCNC/linuxcnc/issues
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Hardware_Requirements

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 5 / 1322

Minimum hardware requirements change as Linux distributions evolve so check the Debian web site
for details on the Live CD you’re using. Older hardware may benefit from selecting an older version
of the Live CD when available.
If you plan not to rely on the distribution of readily executable programs (”binaries”) and/or aim at
contributing to the source tree of LinuxCNC, then there is a good chance you want a second computer
to perform the compilation. Even though LinuxCNC and your developments could likely be executed
at the same time with respect to disk space, RAM and even CPU speed, a machine that is busy will
have worse latencies, so you are unlikely to compile your source tree and produce chips at the same
time.

1.2.2 Kernel and Version requirements

LinuxCNC requires a kernel modified for realtime use to control real machine hardware. However, it
can run on a standard kernel in simulation mode for purposes such as checking G-code, testing config
files and learning the system. To work with these kernel versions there are two versions of LinuxCNC
distributed. The package names are ”linuxcnc” and ”linuxcnc-uspace”.
The realtime kernel options are preempt-rt, RTAI and Xenomai.
You can discover the kernel version of your system with the command:
uname -a

If you see (as above) -rt- in the kernel name then you are running the preempt-rt kernel and should
install the ”uspace” version of LinuxCNC. You should also install uspace for ”sim” configs on non-
realtime kernels.
If you see -rtai- in the kernel name then you are running RTAI realtime. See below for the LinuxCNC
version to install.

1.2.2.1 Preempt-RT with linuxcnc-uspace package

Preempt-RT is the newest of the realtime systems, and is also the version that is closest to a mainline
kernel. Preempt-RT kernels are available as precompiled packages from the main repositories. The
search term ”PREEMPT_RT” will find them, and one can be downloaded and installed just like any
other package. Preempt-RT will generally have the best driver support and is the only option for
systems using the Mesa ethernet-connected hardware driver cards. In general preempt-rt has the
worst latency of the available systems, but there are exceptions.

1.2.2.2 RTAI with linuxcnc package

RTAI has been the mainstay of LinuxCNC distributions for many years. It will generally give the
best realtime performance in terms of low latency, but might have poorer peripheral support and not
as many screen resolutions. An RTAI kernel is available from the LinuxCNC package repository. If
you installed from the Live/Install image then switching kernel and LinuxCNC flavour is described in
[Installing-RTAI].

1.2.2.3 Xenomai with linuxcnc-uspace package

Xenomai is also supported, but you will have to find or build the kernel and compile LinuxCNC from
source to utilise it.

https://www.debian.org/releases/devel/amd64/ch02.en.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 6 / 1322

1.2.2.4 RTAI with linuxcnc-uspace package

It is also possible to run LinuxCNC with RTAI in user-space mode. As with Xenomai you will need to
compile from source to do this.

1.2.3 Problematic Hardware

1.2.3.1 Laptops

Laptops are not generally suited to real time software step generation. Again a Latency Test run for
an extended time will give you the info you need to determine suitability.

1.2.3.2 Video Cards

If your installation pops up with 800 x 600 screen resolution then most likely Debian does not recognize
your video card or monitor. This can sometimes be worked-around by installing drivers or creating /
editing Xorg.conf files.

1.3 Getting LinuxCNC

This section describes the recommended way to download and make a fresh install of LinuxCNC.
There are also Alternate Install Methods for the adventurous. If you have an existing install that you
want to upgrade, go to the Updating LinuxCNC section instead.

Note
To operate machinery LinuxCNC requires a special kernel with real-time extensions. There are three
possibilities here: preempt-rt, RTAI or Xenomai. In addition there are two versions of LinuxCNC which
work with these kernels. See the table below for details. However for code testing and simulation it
is possible to run the linuxcnc-uspace application on a stock kernel of the distribution.

Fresh installs of LinuxCNC are most easily created using the Live/Install Image. This is a hybrid ISO
filesystem image that can be written to a USB storage device or a DVD and used to boot a computer. At
boot time you will be given a choice of booting the ”Live” system (to run LinuxCNC without making any
permanent changes to your computer) or booting the Installer (to install LinuxCNC and its operating
system onto your computer’s hard drive).
The outline of the process looks like this:

1. Download the Live/Install Image.

2. Write the image to a USB storage device or DVD.

3. Boot the Live system to test out LinuxCNC.

4. Boot the Installer to install LinuxCNC.

1.3.1 Download the image

This section describes some methods for downloading the Live/Install image.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 7 / 1322

1.3.1.1 Normal Download

Software for LinuxCNC to download is presented on the project’s Downloads page. Most users
will aim for the disk image for Intel/AMD PCs, the URL will resemble https://www.linuxcnc.org/iso/-
linuxcnc_2.9.8-amd64.hybrid.iso.
For the Raspberry Pi, multiple images are provided to address differences between the RPi4 and RPi5.

Note
Do not use the regular Raspbian distribution for LinuxCNC that may have shipped with your RPi starter
kit - that will not have the real-time kernel and you cannot migrate from Raspbian to Debian’s kernel
image.

1.3.1.2 Download using zsync

zsync is a download application that efficiently resumes interrupted downloads and efficiently trans-
fers large files with small modifications (if you have an older local copy). Please note, it needs to use
the http protocol, not https. Use zsync if your download of the image using the Normal Download
method is frequently interrupted.
zsync in Linux

1. Install zsync using Synaptic or, by running the following in a terminal
sudo apt-get install zsync

2. Then run this command to download the iso to your computer
zsync https://www.linuxcnc.org/iso/linuxcnc_2.9.8-amd64.hybrid.iso

Please remember to confirm the checksum of the downloaded iso as described below, since the au-
thenticity of the server is not guaranteed with the http protocol.
zsync in Windows There is a Windows port of zsync. It works as a console application and can be
downloaded from https://www.assembla.com/spaces/zsync-windows/documents .

1.3.1.3 Verify the image

(This step is unnecessary if you used zsync)

1. After downloading, verify the checksum of the image to ensure integrity.

md5sum linuxcnc-2.9.8-amd64.iso

or
sha256sum linuxcnc-2.9.8-amd64.iso

1. Then compare to these checksums

amd64 (PC)
md5sum: cf77d61fcba9641d7205ac33751e5f38
sha256sum: 72eab92d7c34c238b0429054dc52d240df8dc5f083e769a39194cfac3e4984e8
arm64 (Pi)
md5sum: 4547e8a72433efb033f0a5cf166a5cd2
sha256sum: ff3ba9b8dfb93baf1e2232746655f8521a606bc0fab91bffc04ba74cc3be6bf0

Verify md5sum on Windows or Mac Windows does not come with an md5sum program, but there
are alternatives. More information can be found at: How To MD5SUM

https://linuxcnc.org/downloads/
https://www.linuxcnc.org/iso/linuxcnc_2.9.8-amd64.hybrid.iso
https://www.linuxcnc.org/iso/linuxcnc_2.9.8-amd64.hybrid.iso
https://www.assembla.com/spaces/zsync-windows/documents
https://help.ubuntu.com/community/HowToMD5SUM

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 8 / 1322

1.3.2 Write the image to a bootable device

The LinuxCNC Live/Install ISO Image is a hybrid ISO image which can be written directly to a USB
storage device (flash drive) or a DVD and used to boot a computer. The image is too large to fit on a
CD.

1.3.2.1 Raspberry Pi Image

The Raspbery Pi image is a complete SD card image and should be written to an SD card with the
[Raspberry Pi Imager App](https://www.raspberrypi.com/software/). Note that the imager app can
open the .zip file directly, no need to expand.

1.3.2.2 AMD-64 (x86-64, PC) Image using GUI tools

Download and install Balena Etcher from https://etcher.balena.io/#download-etcher (Linux, Windows,
Mac) and write the downloaded image to a USB drive.
If your image fails to boot then please also try Rufus. It looks more complicated but seems to be more
compatible with various BIOSes.

1.3.2.3 Command line - Linux

1. Connect a USB storage device (for example a flash drive or thumb drive type device).

2. Determine the device file corresponding to the USB flash drive. This information can be found
in the output of sudo dmesg after connecting the device. cat /proc/partitions may also be
helpful.

3. Use the dd command to write the image to your USB storage device. For example, if your storage
device showed up as /dev/sde, then use this command:
dd if=linuxcnc_2.9.8-amd64.hybrid.iso of=/dev/sde bs=4k status=progress

1.3.2.4 Command line - MacOS

1. Open a terminal and type
diskutil list

2. Insert the USB and note the name of the new disk that appears, e.g. /dev/disk5.

3. Unmount the USB. The number found above should be substituted in place of the N.
diskutil unmountDisk /dev/diskN

4. Transfer the data with dd, as for Linux above. Note that the disk name has an added ”r” at the
beginning.
sudo dd if=linuxcnc_2.9.8-amd64.hybrid.iso of=/dev/rdiskN bs=1m status=progress

Writing the image to a DVD in Linux

1. Insert a blank DVD into your burner. A CD/DVD Creator or Choose Disc Type window will pop
up. Close this, as we will not be using it.

https://www.raspberrypi.com/software/
https://etcher.balena.io/#download-etcher
https://rufus.ie/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 9 / 1322

2. Browse to the downloaded image in the file browser.

3. Right click on the ISO image file and choose Write to Disc.

4. Select the write speed. It is recommended that you write at the lowest possible speed.

5. Start the burning process.

6. If a choose a file name for the disc image window pops up, just pick OK.

Writing the image to a DVD in Windows

1. Download and install Infra Recorder, a free and open source image burning program: https://infrarecorder.org/-
.

2. Insert a blank CD in the drive and select Do nothing or Cancel if an auto-run dialog pops up.

3. Open Infra Recorder, and select the Actions menu, then Burn image.

Writing the image to a DVD in Mac OSX

1. Download the .iso file

2. Right-click on the file in the Finder window and select ”Burn to disc”. (The option to burn to disc
will only appear if the machine has an optical drive fitted or connected.)

1.3.3 Testing LinuxCNC

With the USB storage device plugged in or the DVD in the DVD drive, shut down the computer then
turn the computer back on. This will boot the computer from the Live/Install Image and choose the
Live boot option.

Note
If the system does not boot from the DVD or USB stick, it may be necessary to change the boot order
in the PC BIOS.

Once the computer has booted up you can try out LinuxCNC without installing it. You can not create
custom configurations or modify most system settings in a Live session, but you can (and should) run
the latency test.
To try out LinuxCNC: from the Applications/CNC menu pick LinuxCNC. A dialog box will open from
which you can choose one of many sample configurations. At this point it only really makes sense
to pick a ”sim” configuration. Some of the sample configurations include onscreen 3D simulated
machines, look for ”Vismach” to see these.
To see if your computer is suitable for software step pulse generation run the Latency Test as shown
here.
At the time of writing the Live Image is only available with the preempt-rt kernel and a matching
LinuxCNC. On some hardware this might not offer good enough latency. There is an experimental
version available using the RTAI realtime kernel which will often give better latency.

1.3.4 Installing LinuxCNC

To install LinuxCNC from the Live CD select Install (Graphical) at bootup.

https://infrarecorder.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 10 / 1322

1.3.5 Updates to LinuxCNC

With the normal install the Update Manager will notify you of updates to LinuxCNC when you go on
line and allow you to easily upgrade with no Linux knowledge needed. It is OK to upgrade everything
except the operating system when asked to.

Warning
Do not upgrade the operating system to a new version if prompted to do so. You should accept
OS updates however, especially security updates.

1.3.6 Install Problems

In rare cases you might have to reset the BIOS to default settings if during the Live CD install it cannot
recognize the hard drive during the boot up.

1.3.7 Alternate Install Methods

The easiest, preferred way to install LinuxCNC is to use the Live/Install Image as described above.
That method is as simple and reliable as we can make it, and is suitable for novice users and experi-
enced users alike. However, this will typically replace any existing operating system. If you have files
on the target PC that you want to keep, then use one of the methods described in this section.
In addition, for experienced users who are familiar with Debian system administration (finding install
images, manipulating apt sources, changing kernel flavors, etc), new installs are supported on fol-
lowing platforms: (”amd64” means ”64-bit”, and is not specific to AMD processors, it will run on any
64-bit x86 system)

Debian Trixie amd64 &
arm64

preempt-rt linuxcnc-
uspace

machine
control &
simulation

Debian Troxie amd64 RTAI linuxcnc machine control
Distribution Architecture Kernel Package name Typical use
Debian
Bookworm

amd64 & arm64 preempt-rt linuxcnc-uspace machine control
& simulation

Debian
Bookworm

amd64 RTAI linuxcnc machine control

Debian Bullseye amd64 preempt-rt linuxcnc-uspace machine control
& simulation

Any Any Stock linuxcnc-uspace simulation ONLY

Note
LinuxCNC v2.9 is not supported on Debian 9 or older.

Preempt-RT kernels The Preempt-rt kernels are available for Debian from the regular debian.org
archive. The package is called linux-image-rt-*. Simply install the package in the same way as any
other package from the Synaptic Package manager or with apt-get at the command-line.
RTAI Kernels The RTAI kernels are available for download from the linuxcnc.org debian archive. The
apt source is:

• Debian Trixie: deb http://linuxcnc.org trixie base

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 11 / 1322

• Debian Bookworm: deb http://linuxcnc.org bookworm base

• Debian Bullseye: deb http://linuxcnc.org bullseye base

• Debian Buster: deb http://linuxcnc.org buster base

LinuxCNC and the RTAI kernel are now only available for 64-bit OSes but there are very few surviving
systems that can not run a 64-bit OS.

1.3.7.1 Installing on Debian Trixie (with Preempt-RT kernel)

1. Install Debian Trixie (Debian 13), amd64 version. You can download the installer here: https://www.debian.org/-
distrib/

2. After burning the iso and booting up if you don’t want Gnome desktop select Advanced Options
> Alternative desktop environments and pick the one you like. Then select Install or Graphical
Install.

Warning
Do not enter a root password, if you do sudo is disabled and you won’t be able to complete
the following steps.

3. Run the following in a terminal to bring the machine up to date with the latest packages.
sudo apt-get update
sudo apt-get dist-upgrade

Note
It is possible to download a version of LinuxCNC directly from Debian (currently version 2.9.4)
but a more up-to-date version (2.9.8) can be installed from the LinuxCNC repository.

4. Install the Preempt-RT kernel and modules
sudo apt-get install linux-image-rt-amd64

5. Re-boot, and select the Linux 6.1.0-10-rt-amd64 kernel. The exact kernel version might be dif-
ferent, look for the ”-rt” suffix. This might be hidden in the ”Advanced options for Debian Book-
worm” sub-menu in Grub. When you log in, verify that ̀PREEMPT RT ̀is reported by the following
command.
uname -v

6. Open Applications Menu > System > Synaptic Package Manager search for linux-image and right
click on the original non-rt and select Mark for Complete Removal. Reboot. This is to force the
system to boot from the RT kernel. If you prefer to retain both kernels then the other kernels
need not be deleted, but grub boot configuration changes will be needed beyond the scope of
this document.

7. Add the LinuxCNC Archive Signing Key to your apt keyring by downloading [the LinuxCNC in-
staller script](https://www.linuxcnc.org/linuxcnc-install.sh). You will need to make the script ex-
ecutable to run it:
chmod +x linuxcnc-install.sh

Then you can run the installer:

sudo ./linuxcnc-install.sh

https://www.debian.org/distrib/
https://www.debian.org/distrib/
https://www.linuxcnc.org/linuxcnc-install.sh

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 12 / 1322

1.3.7.2 Installing on Debian Trixie (with experimental RTAI kernel)

1. This kernel and LinuxCNC version can be installed on top of the Live DVD install, or alternatively
on a fresh Install of Debian Trixie 64-bit as described above.

2. You can add the LinuxCNC archive signing key and repository information by downloading and
running the installer script as described above. If an RTAI kernel is detected it will stop before
installing any packages.

3. Update the package list from linuxcnc.org
sudo apt-get update

4. Remove the existing uspace version of LinuxCNC and install the new realtime kernel, RTAI and
the RTAI-version of LinuxCNC.
sudo apt-get purge linuxcnc-uspace
sudo apt-get purge linuxcnc-doc*
sudo apt-get install linuxcnc

Reboot the machine, ensuring that the system boots from the new 5.4.258-rtai kernel.

1.3.7.3 Installing on Raspbian 12

Don’t do that. The latencies are too bad with the default kernel and the PREEMPT_RT (the RT is
important) kernel of Debian does not boot on the Pi (as of 1/2024). Please refer to the .iso images
provided online on the regular LinuCNC download page. You can create them yourself following the
scripts provided online.

1.4 Running LinuxCNC

1.4.1 Invoking LinuxCNC

After installation, LinuxCNC starts just like any other Linux program: run it from the terminal by
issuing the command linuxcnc, or select it in the Applications -> CNC menu.

1.4.2 Configuration Launcher

When starting LinuxCNC (from the CNC menu or from the command line without specifying an INI
file) the Configuration Selector dialog starts.
The Configuration Selector dialog allows the user to pick one of their existing configurations (My
Configurations) or select a new one (from the Sample Configurations) to be copied to their home
directory. Copied configurations will appear under My Configurations on the next invocation of the
Configuration Selector.
The Configuration Selector offers a selection of configurations organized:

• My Configurations - User configurations located in linuxcnc/configs in your home directory.

• Sample Configurations - Sample configurations, when selected, are copied to linuxcnc/configs. Once
a sample configuration was copied to your local directory, the launcher will offer it as My Configu-
rations. The names under which these local configurations are presented correspond to the names
of the directories within the configs/ directory:

https://linuxcnc.org/downloads/
https://github.com/rodw-au/rpi-img-builder-lcnc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 13 / 1322

– sim - Configurations that include simulated hardware. These can be used for testing or learning
how LinuxCNC works.

– by_interface - Configurations organized by GUI.
– by_machine - Configurations organized by machine.
– apps - Applications that do not require starting linuxcnc but may be useful for testing or trying

applications like PyVCP or GladeVCP.
– attic - Obsolete or historical configurations.

The sim configurations are often the most useful starting point for new users and are organized around
supported GUIs:

• axis - Keyboard and Mouse GUI

• craftsman - Touch Screen GUI (no longer maintained ???)

• gmoccapy - Touch Screen GUI

• gscreen - Touch Screen GUI

• pyvcp_demo - Python Virtual Control Panel

• qtaxis - Touch Screen GUI, axis lookalike

• qtdragon - Touch Screen GUI

• qtdragon_hd - Touch Screen GUI, high definition

• qtplasmac - Touch Screen GUI, for plasma tables

• qttouchy - Touch Screen GUI

• tklinuxcnc - Keyboard and Mouse GUI (no longer maintained)

• touchy - Touch Screen GUI

• woodpecker - Touch Screen GUI

A GUI configuration directory may contain subdirectories with configurations that illustrate special
situations or the embedding of other applications.
The by_interface configurations are organized around common, supported interfaces like:

• general mechatronics

• mesa

• parport

• pico

• pluto

• servotogo

• vigilant

• vitalsystems

Related hardware may be required to use these configurations as starting points for a system.
The by_machine configurations are organized around complete, known systems like:

• boss

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 14 / 1322

• cooltool

• scortbot erIII

• sherline

• smithy

• tormach

A complete system may be required to use these configurations.
The apps items are typically either:

1. utilities that don’t require starting linuxcnc

2. demonstrations of applications that can be used with linuxcnc

• info - creates a file with system information that may be useful for problem diagnosis.
• gladevcp - Example GladeVCP applications.
• halrun - Starts halrun in an terminal.
• latency - Applications to investigate latency
– latency-histogram-1 - histogram for single servo thread
– latency-histogram - histogram
– latency-test - standard test
– latency-plot - stripchart

• parport - Applications to test parport.
• pyvcp - Example pyvcp applications.
• xhc-hb04 - Applications to test an xhc-hb04 USB wireless MPG

Note
Under the Apps directory, only applications that are usefully modified by the user are offered for
copying to the user’s directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 15 / 1322

Figure 1.1: LinuxCNC Configuration Selector

Click any of the listed configurations to display specific information about it. Double-click a configu-
ration or click OK to start the configuration.
Select Create Desktop Shortcut and then click OK to add an icon on the Ubuntu desktop to directly
launch this configuration without showing the Configuration Selector screen.
When you select a configuration from the Sample Configurations section, it will automatically place a
copy of that config in the ~/linuxcnc/configs directory.

1.4.3 Next steps in configuration

After finding the sample configuration that uses the same interface hardware as your machine (or a
simulator configuration), and saving a copy to your home directory, you can customize it according to
the details of your machine. Refer to the Integrator Manual for topics on configuration.

1.4.4 Simulator Configurations

All configurations listed under Sample Configurations/sim are intended to run on any computer. No
specific hardware is required and real-time support is not needed.
These configurations are useful for studying individual capabilities or options. The sim configurations
are organized according to the graphical user interface used in the demonstration. The directory for
axis contains the most choices and subdirectories because it is the most tested GUI. The capabilities
demonstrated with any specific GUI may be available in other GUIs as well.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 16 / 1322

1.4.5 Configuration Resources

The Configuration Selector copies all files needed for a configuration to a new subdirectory of ~/lin-
uxcnc/configs (equivalently: /home/username/linuxcnc/configs). Each created directory will include
at least one INI file (iniflename.ini) that is used to describe a specific configuration.
File resources within the copied directory will typically include one or more INI file (filename.ini)
for related configurations and a tool table file (toolfilename.tbl). Additionally, resources may include
HAL files (filename.hal, filename.tcl), a README file for describing the directory, and configuration
specific information in a text file named after a specific configuration (inifilename.txt). That latter two
files are displayed when using the Configuration Selector.
The supplied sample configurations may specify the parameter HALFILE (filename.hal) in the config-
uration INI file that are not present in the copied directory because they are found in the system HAL
file library. These files can be copied to the user configuration directory and altered as required by
the user for modification or test. Since the user configuration directory is searched first when finding
HAL files, local modifications will then prevail.
The Configuration selector makes a symbolic link in the user configuration directory (named hallib)
that points to the system HAL file library. This link simplifies copying a library file. For example, to
copy the library core_sim.hal file in order to make local modifications:
cd ~/linuxcnc/configs/name_of_configuration
cp hallib/core_sim.hal core_sim.hal

1.5 Updating LinuxCNC

Updating LinuxCNC to a new minor release (ie to a new version in the same stable series, for example
from 2.9.7 to 2.9.8) is an automatic process if your PC is connected to the internet. You will see an
update prompt after a minor release along with other software updates. If you don’t have an internet
connection to your PC see Updating without Network.

1.5.1 Upgrade to the new version

This section describes how to upgrade LinuxCNC from version 2.8.x to a 2.9.y version. It assumes
that you have an existing 2.8 install that you want to update.
To upgrade LinuxCNC from a version older than 2.8, you have to first upgrade your old install to 2.8,
then follow these instructions to upgrade to the new version.
If you do not have an old version of LinuxCNC to upgrade, then you’re best off making a fresh install
of the new version as described in the section Getting LinuxCNC.
Furthermore, if you are running Ubuntu Precise, Debian Wheezy or Debian Buster it is well worth
considering making a backup of the ”linuxcnc” directory on removable media and performing a clean
install of a newer OS and LinuxCNC version as these releases were EOL in 2017, 2018 and 2022
respectively. If you are running on Ubuntu Lucid then you will have to do this, as Lucid is no longer
supported by LinuxCNC (it was EOL in 2013).
To upgrade major versions like 2.8 to 2.9 when you have a network connection at the machine you need
to disable the old linuxcnc.org apt sources in the file /etc/apt/sources.list and add a new linuxcnc.org
apt source for 2.9, then upgrade LinuxCNC.
The details will depend on which platform you’re running on. Open a terminal then type lsb_release
-ic to find this information out:
lsb_release -ic
Distributor ID: Debian
Codename: Trixie

https://linuxcnc.org/docs/2.8/html/getting-started/updating-linuxcnc.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 17 / 1322

You should be running on Debian Bullseye, Bookworm or Trixie or Ubuntu 20.04 ”Focal Fossa” or
newer. LinuxCNC 2.9.y will not run on older distributions than these.
You will also need to check which realtime kernel is being used:
uname -r
6.1.0-10-rt-amd64

If you see (as above) -rt- in the kernel name then you are running the preempt-rt kernel and should
install the ”uspace” version of LinuxCNC. You should also install uspace for ”sim” configs on non-
realtime kernels.
If you see -rtai- in the kernel name then you are running RTAI realtime. See below for the LinuxCNC
version to install. RTAI packages are available for Bookworm and Buster but not currently for Bullseye.

1.5.1.1 Apt Sources Configuration

• Open the Software Sources window. The process for doing this differs slightly on the three sup-
ported platforms:

– Debian:
∗ Click on Applications Menu, then System, then Synaptic Package Manager.
∗ In Synaptic, click on the Settingsmenu, then click Repositories to open the Software Sources

window.
– Ubuntu Precise:

∗ Click on the Dash Home icon in the top left.
∗ In the Search field, type ”software”, then click on the Ubuntu Software Center icon.
∗ In the Ubuntu Software Center window, click on the Editmenu, then click on Software Sources...

to open the Software Sources window.
– Ubuntu Lucid:

∗ Click the System menu, then Administration, then Synaptic Package Manager.
∗ In Synaptic, click on the Settings menu, then click on Repositories to open the Software
Sources window.

• In the Software Sources window, select the Other Software tab.

• Delete or un-check all the old linuxcnc.org entries (leave all non-linuxcnc.org lines as they are).

• Click the Add button and add a new apt line. The line will be slightly different on the different
platforms:

Table 1.2: Tabular overview on variants of the Operating
System and the corresponding configuration of the repos-
itory. The configuration can be performed in the GUI of
the package manager or in the file /etc/apt/sources.list.

OS / Realtime Version Repository
Debian Bullseye - preempt deb https://linuxcnc.org bullseye base 2.9-uspace
Debian Bookworm - preempt deb https://linuxcnc.org bookworm base 2.9-uspace
Debian Bookworm - RTAI deb https://linuxcnc.org bookworm base 2.9-rt
Debian Trixie - preempt deb https://linuxcnc.org trixie base 2.9-uspace
Debian Trixie - RTAI deb https://linuxcnc.org trixie base 2.9-rt

https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 18 / 1322

Figure 1.2: Figure with a screenshot of the repository configuration of the synaptic package manager.

• Click Add Source, then Close in the Software Sources window. If it pops up a window informing
you that the information about available software is out-of-date, click the Reload button.

1.5.1.2 Upgrading to the new version

Now your computer knows where to get the new version of the software, next we need to install it.
The process again differs depending on your platform.
Debian uses the Synaptic Package Manager.

• Open Synaptic using the instructions in Setting apt sources above.

• Click the Reload button.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 19 / 1322

• Use the Search function to search for linuxcnc.

• The package is called ”linuxcnc” for RTAI kernels and ”linuxcnc-uspace” for preempt-rt.

• Click the check box to mark the new linuxcnc and linuxcnc-doc-* packages for upgrade. The package
manager may select a number of additional packages to be installed, to satisfy dependencies that
the new linuxcnc package has.

• Click the Apply button, and let your computer install the new package. The old linuxcnc package
will be automatically upgraded to the new one.

1.5.1.3 Ubuntu

• Click on the Dash Home icon in the top left.

• In the Search field, type ”update”, then click on the Update Manager icon.

• Click the Check button to fetch the list of packages available.

• Click the Install Updates button to install the new versions of all packages.

1.5.2 Updating without Network

To update without a network connection you need to download the .deb then install it with dpkg. The
.debs can be found in https://linuxcnc.org/dists/ .
You have to drill down from the above link to find the correct deb for your installation. Open a terminal
and type in lsb_release -ic to find the release name of your OS.
> lsb_release -ic
Distributor ID: Debian
Codename: trixie

Pick the OS from the list then pick the major version you want like 2.9-rt for RTAI or 2.9-uspace for
preempt-rt.
Next pick the type of computer you have: binary-amd64 for 64-bit PC or binary-arm64 (64bit) for
Raspberry Pi.
Next pick the version you want from the bottom of the list like linuxcnc-uspace_2.9.8_amd64.deb
(choose the latest by date). Download the deb and copy it to your home directory. You can rename
the file to something a bit shorter with the file manager like linuxcnc_2.9.8.deb then open a terminal
and install it with the package manager with this command:
sudo dpkg -i linuxcnc_2.9.8.deb

1.5.3 Updating Configuration Files for 2.9

1.5.3.1 Stricter handling of pluggable interpreters

If you just run regular G-code and you don’t know what a pluggable interpreter is, then this section
does not affect you.
A seldom-used feature of LinuxCNC is support for pluggable interpreters, controlled by the undocu-
mented [TASK]INTERPRETER INI setting.
Versions of LinuxCNC before 2.9.0 used to handle an incorrect [TASK]INTERPRETER setting by auto-
matically falling back to using the default G-code interpreter.
Since 2.9.0, an incorrect [TASK]INTERPRETER value will cause LinuxCNC to refuse to start up. Fix this
condition by deleting the [TASK]INTERPRETER setting from your INI file, so that LinuxCNC will use
the default G-code interpreter.

https://linuxcnc.org/dists/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 20 / 1322

1.5.3.2 Canterp

If you just run regular G-code and you don’t use the canterp pluggable interpreter, then this section
does not affect you.
In the extremely unlikely event that you are using canterp, know that the module has moved from
/usr/lib/libcanterp.so to /usr/lib/linuxcnc/canterp.so, and the [TASK]INTERPRETER setting
correspondingly needs to change from libcanterp.so to canterp.so.

1.5.3.3 Spindle limits in the INI

It is now possible to add settings to the [SPINDLE] section of the INI file
MAX_FORWARD_VELOCITY = 20000 The maximum spindle speed (in rpm)
MIN_FORWARD_VELOCITY = 3000 The minimum spindle speed (in rpm)
MAX_REVERSE_VELOCITY = 20000 This setting will default to MAX_FORWARD_VELOCITY if omit-
ted.
MIN_REVERSE_VELOCITY = 3000 ̀ This setting is equivalent to MIN_FORWARD_VELOCITY but for
reverse spindle rotation. It will default to the MIN_FORWARD_VELOCITY if omitted.
INCREMENT = 200 Sets the step size for spindle speed increment / decrement commands. This can
have a different value for each spindle. This setting is effective with AXIS and Touchy but note that
some control screens may handle things differently.
HOME_SEARCH_VELOCITY = 100 - Accepted but currently does nothing
HOME_SEQUENCE = 0 - Accepted but currently does nothing

1.5.4 Updating Configuration Files for 2.10.y

Touchy: the Touchy MACRO entries should now be placed in a [MACROS] section of the INI rather
than in the [TOUCHY] section. This is part of a process of commonising the INI setting between GUIs.

1.5.5 New HAL components

1.5.5.1 Non-Realtime

mdro mqtt-publisher pi500_vfd pmx485-test qtplasmac-cfg2prefs qtplasmac-materials qtplasmac-plasmac2qt
qtplasmac-setup sim-torch svd-ps_vfd

1.5.5.2 Realtime

anglejog div2 enum filter_kalman flipflop homecomp limit_axis mesa_uart millturn scaled_s32_sums
tof ton

1.5.6 New Drivers

A framework for controlling ModBus devices using the serial ports on many Mesa cards has been
introduced. http://linuxcnc.org/docs/2.9/html/drivers/mesa_modbus.html
A new GPIO driver for any GPIO which is supported by the gpiod library is now included: http://linuxcnc.org/-
docs/2.9/html/drivers/hal_gpio.html

http://linuxcnc.org/docs/2.9/html/drivers/mesa_modbus.html
http://linuxcnc.org/docs/2.9/html/drivers/hal_gpio.html
http://linuxcnc.org/docs/2.9/html/drivers/hal_gpio.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 21 / 1322

1.6 Linux FAQ

These are some basic Linux commands and techniques for new to Linux users. More complete infor-
mation can be found on the web or by using the man pages.

1.6.1 Automatic Login

1.6.1.1 Debian

Debian Stretch uses the Xfce desktop environment by default, with the lightDM display manager
lightDM. To get automatic login with Stretch:

• In a terminal, use the command:

$ /usr/sbin/lightdm --show-config

• Make a note of the absolute path to the configuration file lightdm.conf.

• Edit that file with a pure text editor (gedit, nano, etc), as root.

• Find and uncomment the lines:

#autologin-user=
#autologin-user-timeout=0

• Set autologin-user=your_user_name

• Save and reboot.

1.6.1.2 Ubuntu

When you install LinuxCNC with the Ubuntu LiveCD the default is to have to log in each time you turn
the computer on. To enable automatic login go to System > Administration > Login Window. If it is
a fresh install the Login Window might take a second or three to pop up. You will have to have your
password that you used for the install to gain access to the Login Window Preferences window. In the
Security tab check off Enable Automatic Login and pick a user name from the list (that would be you).

1.6.2 Automatic Startup

To have LinuxCNC start automatically with your config after turning on the computer go to System >
Preferences > Sessions > Startup Applications, click Add. Browse to your config and select the .ini
file. When the file picker dialog closes, add linuxcnc and a space in front of the path to your .ini file.
Example:
linuxcnc /home/mill/linuxcnc/config/mill/mill.ini

The documentation refers to your respective .ini file as INI-file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 22 / 1322

1.6.3 Terminal

Many things need to be done from the terminal like checking the kernel message buffer with dmesg.
Ubuntu and Linux Mint have a keyboard shortcut Ctrl + Alt + t. Debian Stretch does not have any
keyboard shortcuts defined. It can be easily created with the Configuration Manager. Most modern
file managers support the right key to open a terminal just make sure your right clicking on a blank
area or a directory not a file name. Most OS’s have the terminal as a menu item, usually in Accessories.

1.6.4 Man Pages

A man page (short for manual page) is a form of software documentation usually found on a UNIX or
UNIX-like operating system like Linux.
To view a man page open up a terminal to find out something about the find command in the terminal
window type:
man find

Use the Page Up and Page Down keys to view the man page and the Q key to quit viewing.

Note
Viewing the man page from the terminal may not get the expected man page. For example if you
type in man abs you will get the C abs not the LinuxCNC abs. It is best to view the LinuxCNC man
pages in the HTML documents.

1.6.5 List Modules

Sometimes when troubleshooting you need to get a list of modules that are loaded. In a terminal
window type:
lsmod

If you want to send the output from lsmod to a text file in a terminal window type:
lsmod > mymod.txt

The resulting text file will be located in the home directory if you did not change directories when you
opened up the terminal window and it will be named mymod.txt or what ever you named it.

1.6.6 Editing a Root File

When you open the file browser and you see the owner of the file is root you must do extra steps to edit
that file. Editing some root files can have bad results. Be careful when editing root files. Generally,
you can open and view most root files, but they will open in read only mode.

1.6.6.1 The Command Line Way

Open a terminal and type
sudo gedit

Open the file with File > Open > Edit

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 23 / 1322

1.6.6.2 The GUI Way

1. Right click on the desktop and select Create Launcher.

2. Type a name in like sudo edit.

3. Type gksudo ”gnome-open %u” as the command and save the launcher to your desktop.

4. Drag a file onto your launcher to open and edit.

1.6.6.3 Root Access

In Ubuntu you can become root by typing in ”sudo -i” in a terminal window then typing in your pass-
word. Be careful, because you can really foul things up as root if you don’t know what you’re doing.

1.6.7 Terminal Commands

1.6.7.1 Working Directory

To find out the path to the present working directory in the terminal window, type:
pwd

1.6.7.2 Changing Directories

To change the working directory to the one one level up, i.e., the parent directory, in the terminal
window type:
cd ..

To move up two levels in the terminal window type:
cd ../..

To move directly to your home directory, in the terrminal window use the cd command with no argu-
ments:
cd

To move down to the linuxcnc/configs subdirectory in the terminal window type:
cd linuxcnc/configs

1.6.7.3 Listing files in a directory

To view a list of all the files and subdirectories in the terminal window type:
dir

or
ls

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 24 / 1322

1.6.7.4 Finding a File

The find command can be a bit confusing to a new Linux user. The basic syntax is:
find starting-directory parameters actions

For example to find all the .ini files in your linuxcnc directory you first need to use the pwd command
to find out the directory.
Open a new terminal window and type:
pwd

And pwd might return the following result:
/home/joe

With this information put the command together like this:
find /home/joe/linuxcnc -name *.ini -print

The -name is the name of the file your looking for and the -print tells it to print out the result to the
terminal window. The *.ini tells find to return all files that have the .ini extension. The backslash is
needed to escape the shell meta-characters. See the find man page for more information on find.

1.6.7.5 Searching for Text

grep -irl ’text to search for’ *

This will find all the files that contain the text to search for in the current directory and all the subdi-
rectories below it, while ignoring the case. The -i is for ignore case and the -r is for recursive (include
all subdirectories in the search). The -l option will return a list of the file names, if you leave the -l off
you will also get the text where each occurrence of the ”text to search for” is found. The * is a wild
card for search all files. See the grep man page for more information.

1.6.7.6 Diagnostic Messages

To view the diagnostic messages use ”dmesg” from the command window. To save the diagnostic
messages to a file use the redirection operator >, like this:
dmesg > bootmsg.txt

The contents of this file can be copied and pasted on line to share with people trying to help you
diagnose your problem.
To clear the message buffer type this:
sudo dmesg -c

This can be helpful to do just before launching LinuxCNC, so that there will only be a record of infor-
mation related to the current launch of LinuxCNC.
To find the built in parallel port address use grep to filter the information out of dmesg.
After boot up open a terminal and type:
dmesg|grep parport

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 25 / 1322

1.6.8 Convenience Items

1.6.8.1 Terminal Launcher

If you want to add a terminal launcher to the panel bar on top of the screen you typically can right click
on the panel at the top of the screen and select ”Add to Panel”. Select Custom Application Launcher
and Add. Give it a name and put gnome-terminal in the command box.

1.6.9 Hardware Problems

1.6.9.1 Hardware Info

To find out what hardware is connected to your motherboard in a terminal window type:
lspci -v

1.6.9.2 Monitor Resolution

During installation Ubuntu attempts to detect the monitor settings. If this fails you are left with a
generic monitor with a maximum resolution of 800x600.
Instructions for fixing this are located here:
https://help.ubuntu.com/community/FixVideoResolutionHowto

1.6.10 Paths

Relative Paths Relative paths are based on the startup directory which is the directory containing
the INI-file. Using relative paths can facilitate relocation of configurations but requires a good under-
standing of linux path specifiers.

./f0 is the same as f0, e.g., a file named f0 in the startup directory

../f1 refers to a file f1 in the parent directory

../../f2 refers to a file f2 in the parent of the parent directory

../../../f3 etc.

https://help.ubuntu.com/community/FixVideoResolutionHowto

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 26 / 1322

Chapter 2

General User Information

2.1 User Foreword

LinuxCNC is modular and flexible. These attributes lead many to see it as a confusing jumble of little
things and wonder why it is the way it is. This page attempts to answer that question before you get
into the thick of things.
LinuxCNC started at the National Institute of Standards and Technology in the USA. It grew up using
UNIX as its operating system. UNIX made it different. Among early UNIX developers there grew a
set of code writing ideas that some call the UNIX way. These early LinuxCNC authors followed those
ways.
Eric S. Raymond, in his book The Art of UNIX Programming, summarizes the UNIX philosophy as
the widely-used engineering philosophy, ”Keep it Simple, Stupid” (KISS Principle). He then describes
how he believes this overall philosophy is applied as a cultural UNIX norm, although unsurprisingly
it is not difficult to find severe violations of most of the following in actual UNIX practice:

• Rule of Modularity: Write simple parts connected by clean interfaces.

• Rule of Clarity: Clarity is better than cleverness.

• Rule of Composition: Design programs to be connected to other programs.

• Rule of Separation: Separate policy from mechanism; separate interfaces from engines.1

Mr. Raymond offered several more rules but these four describe essential characteristics of the Lin-
uxCNC motion control system.
The Modularity rule is critical. Throughout these handbooks you will find talk of the interpreter or
task planner or motion or HAL. Each of these is a module or collection of modules. It’s modularity
that allows you to connect together just the parts you need to run your machine.
The Clarity rule is essential. LinuxCNC is a work in progress — it is not finished nor will it ever be. It
is complete enough to run most of the machines we want it to run. Much of that progress is achieved
because many users and code developers are able to look at the work of others and build on what they
have done.
The Composition rule allows us to build a predictable control system from the many modules avail-
able by making them connectable. We achieve connectability by setting up standard interfaces to sets
of modules and following those standards.
The Separation rule requires that we make distinct parts that do little things. By separating functions
debugging is much easier and replacement modules can be dropped into the system and comparisons
easily made.

1Found at link:https://en.wikipedia.org/wiki/Separation_of_mechanism_and_policy, 2022-11-13

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 27 / 1322

What does the UNIX way mean for you as a user of LinuxCNC. It means that you are able to make
choices about how you will use the system. Many of these choices are a part of machine integration,
but many also affect the way you will use your machine. As you read you will find many places where
you will need to make comparisons. Eventually you will make choices, ”I’ll use this interface rather
than that” or, “I’ll write part offsets this way rather than that way.”. Throughout these handbooks we
describe the range of abilities currently available.
As you begin your journey into using LinuxCNC we offer two cautionary notes:2

• Paraphrasing the words of Doug Gwyn on UNIX: ”LinuxCNC was not designed to stop its users from
doing stupid things, as that would also stop them from doing clever things.”

• Likewise the words of Steven King: ”LinuxCNC is user-friendly. It just isn’t promiscuous about
which users it’s friendly with.”

A series of videos on YouTube provide plenty of evidence a transition to LinuxCNC is possible no
matter what your regular computer operating system may be. That said, with the advent of additive
manufacturing like 3D printing there is an increasing interest by the broader IT community in CNC
machining and it should be possible to find someone with complementary skills/equipment near to
you to jointly overcome the initial hurdles.

2.2 LinuxCNC User Introduction

2.2.1 Introduction

This document is focused on the use of LinuxCNC, it is intended for readers who have already installed
and configured it. Some information on installation is given in the following chapters. The complete
documentation on installation and configuration can be found in the integrator’s manual.

2.2.2 How LinuxCNC Works

LinuxCNC is a suite of highly-customisable applications for the control of a Computer Numerically
Controlled (CNC) mills and lathes, 3D printers, robots, laser cutters, plasma cutters and other auto-
mated devices. It is capable of providing coordinated control of up to 9 axes of movement.
At its heart, LinuxCNC consists of several key components that are integrated together to form one
complete system:

• a Graphical User Interface (GUI), which forms the basic interface between the operator, the software
and the CNC machine itself;

• the Hardware Abstraction Layer (HAL), which provides a method of linking all the various internal
virtual signals generated and received by LinuxCNC with the outside world, and

• the high level controllers that coordinate the generation and execution of motion control of the CNC
machine, namely the motion controller (EMCMOT), the discrete input/output controller (EMCIO)
and the task executor (EMCTASK).

The below illustration is a simple block diagram showing what a typical 3-axis CNC mill with stepper
motors might look like:

2Found at link:https://en.wikipedia.org/wiki/Unix_philosophy, 07/06/2008

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 28 / 1322

Figure 2.1: Simple LinuxCNC Controlled Machine

A computer running LinuxCNC sends a sequence of pulses via the parallel port to the stepper drives,
each of which has one stepper motor connected to it. Each drive receives two independent signals;
one signal to command the drive to move its associated stepper motor in a clockwise or anti-clockwise
direction, and a second signal that defines the speed at which that stepper motor rotates.
While a stepper motor system under parallel port control is illustrated, a LinuxCNC system can also
take advantage of a wide variety of dedicated hardware motion control interfaces for increased speed
and I/O capabilities. A full list of interfaces supported by LinuxCNC can be found on the Supported
Hardware page of the Wiki.
In most circumstances, users will create a configuration specific to their mill setup using either the
Stepper Configuration Wizard (for CNC systems operating using the computers’ parallel port) or the
Mesa Hardware Wizard (for more advanced systems utilising a Mesa Anything I/O PCI card). Running
either wizard will create several folders on the computers’ hard drive containing a number of config-
uration files specific to that CNC machine, and an icon placed on the desktop to allow easy launching
of LinuxCNC.
For example, if the Stepper Configuration Wizard was used to create a setup for the 3-axis CNC
mill illustrated above entitled My_CNC, the folders created by the wizard would typically contain the
following files:

• Folder: My_CNC

– My_CNC.ini
The INI file contains all the basic hardware information regarding the operation of the CNC mill,
such as the number of steps each stepper motor must turn to complete one full revolution, the
maximum rate at which each stepper may operate at, the limits of travel of each axis or the
configuration and behaviour of limit switches on each axis.

– My_CNC.hal
This HAL file contains information that tells LinuxCNC how to link the internal virtual signals to

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 29 / 1322

physical connections beyond the computer. For example, specifying pin 4 on the parallel port to
send out the Z axis step direction signal, or directing LinuxCNC to cease driving the X axis motor
when a limit switch is triggered on parallel port pin 13.

– custom.hal
Customisations to the mill configuration beyond the scope of the wizard may be performed by
including further links to other virtual points within LinuxCNC in this HAL file. When starting a
LinuxCNC session, this file is read and processed before the GUI is loaded. An example may in-
clude initiating Modbus communications to the spindle motor so that it is confirmed as operational
before the GUI is displayed.

– custom_postgui.hal
The custom_postgui HAL file allows further customisation of LinuxCNC, but differs from cus-
tom.HAL in that it is processed after the GUI is displayed. For example, after establishing Modbus
communications to the spindle motor in custom.hal, LinuxCNC can use the custom_postgui file to
link the spindle speed readout from the motor drive to a bargraph displayed on the GUI.

– postgui_backup.hal
This is provided as a backup copy of the custom_postgui.hal file to allow the user to quickly re-
store a previously-working postgui HAL configuration. This is especially useful if the user wants
to run the Configuration Wizard again under the same My_CNC name in order to modify some
parameters of the mill. Saving the mill configuration in the Wizard will overwrite the existing
custom_postgui file while leaving the postgui_backup file untouched.

– tool.tbl
A tool table file contains a parameterised list of any cutting tools used by the mill. These param-
eters can include cutter diameter and length, and is used to provide a catalogue of data that tells
LinuxCNC how to compensate its motion for different sized tools within a milling operation.

• Folder: nc_files
The nc_files folder is provided as a default location to store the G-code programs used to drive the
mill. It also includes a number of subfolders with G-code examples.

2.2.3 Graphical User Interfaces

A graphical user interface is the part of the LinuxCNC that the machine tool operator interacts with.
LinuxCNC comes with several types of user interfaces which may be chosen from by editing certain
fields contained in the INI file:

AXIS
AXIS, the standard keyboard GUI interface. This is also the default GUI launched when a Con-
figuration Wizard is used to create a desktop icon launcher:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 30 / 1322

Figure 2.2: AXIS, the standard keyboard GUI interface

Touchy
Touchy, a touch screens GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 31 / 1322

Figure 2.3: Touchy, a touch screen GUI

Gscreen
Gscreen, a user-configurable touch screen GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 32 / 1322

Figure 2.4: Gscreen, a configurable base touch screen GUI

GMOCCAPY
GMOCCAPY, a touch screen GUI based on Gscreen. GMOCCAPY is also designed to work equally
well in applications where a keyboard and mouse are the preferred methods of controlling the
GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 33 / 1322

Figure 2.5: GMOCCAPY, a touch screen GUI based on Gscreen

NGCGUI
NGCGUI, a subroutine GUI that provides wizard-style programming of G code. NGCGUI may be
run as a standalone program or embedded into another GUI as a series of tabs. The following
screenshot shows NGCGUI embedded into AXIS:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 34 / 1322

Figure 2.6: NGCGUI, a graphical interface integrated into AXIS

TkLinuxCNC
TkLinuxCNC, another interface based on Tcl/Tk. Once the most popular interface after AXIS.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 35 / 1322

Figure 2.7: TkLinuxCNC graphical interface

QtDragon
QtDragon, a touch screen GUI based on QtVCP using the PyQt5 library. It comes in two versions
QtDragon and QtDragon_hd. They are very similar in features but QtDragon_hd is made for
larger monitors.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 36 / 1322

Figure 2.8: QtDragon, a touch screen GUI based on QtVCP

QtPlasmaC
QtPlasmaC, a touch screen plasma cutting GUI based on QtVCP using the PyQt5 library. It comes
in three aspect ratios, 16:9, 4:3, and 9:16.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 37 / 1322

Figure 2.9: QtPlasmaC, a touch screen plasma cutting GUI based on QtVCP

2.2.4 User Interfaces

These User interfaces are a way to interact with LinuxCNC outside of the graphical user interfaces.

halui
A HAL based user interface allowing to control LinuxCNC using buttons and switches

linuxcncrsh
A telnet based user interface allowing to send commands from remote computers.

2.2.5 Virtual Control Panels

As mentioned above, many of LinuxCNC’s GUIs may be customized by the user. This may be done to
add indicators, readouts, switches or sliders to the basic appearance of one of the GUIs for increased
flexibility or functionality. Two styles of Virtual Control Panel are offered in LinuxCNC:

PyVCP
PyVCP, a Python-based virtual control panel that can be added to the AXIS GUI. PyVCP only
utilises virtual signals contained within the Hardware Abstraction Layer, such as the spindle-at-
speed indicator or the Emergency Stop output signal, and has a simple no-frills appearance. This
makes it an excellent choice if the user wants to add a Virtual Control Panel with minimal fuss.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 38 / 1322

Figure 2.10: PyVCP Example Embedded Into AXIS GUI

GladeVCP
GladeVCP, a Glade-based virtual control panel that can be added to the AXIS or Touchy GUIs.
GladeVCP has the advantage over PyVCP in that it is not limited to the display or control of HAL
virtual signals, but can include other external interfaces outside LinuxCNC such as window or
network events. GladeVCP is also more flexible in how it may be configured to appear on the
GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 39 / 1322

Figure 2.11: GladeVCP Example Embedded Into AXIS GUI

QtVCP
QtVCP, a PyQt5-based virtual control panel that can be added to most GUIs or run as a standalone
panel. QtVCP has the advantage over PyVCP in that it is not limited to the display or control of
HAL virtual signals, but can include other external interfaces outside LinuxCNC such as window
or network events by extending with python code. QtVCP is also more flexible in how it may be
configured to appear on the GUI with many special widgets:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 40 / 1322

Figure 2.12: QtVCP Example Embedded Into QtDragon GUI

2.2.6 Languages

LinuxCNC uses translation files to translate LinuxCNC User Interfaces into many languages including
French, German, Italian, Finnish, Russian, Romanian, Portuguese and Chinese. Assuming a transla-
tion has been created, LinuxCNC will automatically use whatever native language you log in with when
starting the Linux operating system. If your language has not been translated, contact a developer
on IRC, the mailing list or the User Forum for assistance.

2.2.7 Think Like a CNC Operator

This manual does not pretend to teach you how to use a lathe or a milling machine. Becoming an
experienced operator takes a lot of time and requires a lot of work. An author once said, We learn
by experience, if one possesses it all. Broken tools, vices attacked and the scars are evidence of
the lessons learned. A beautiful finish, tight tolerances and caution during the work are evidence of
lessons learned. No machine nor program can replace human experience.
Now that you start working with the LinuxCNC software, you have to put yourself in the shoes of an
operator. You must be in the role of someone in charge of a machine. It’s a machine that will wait
for your commands and then execute the orders that you will give it. In these pages, we will give the
explanations which will help you to become a good CNC operator with LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 41 / 1322

2.2.8 Modes of Operation

When LinuxCNC is running, there are three different major modes used for inputting commands.
These are Manual, Auto, and Manual Data Input (MDI). Changing from one mode to another makes
a big difference in the way that the LinuxCNC control behaves. There are specific things that can be
done in one mode that cannot be done in another. An operator can home an axis in manual mode but
not in auto or MDI modes. An operator can cause the machine to execute a whole file full of G-codes
in the auto mode but not in manual or MDI.
In manual mode, each command is entered separately. In human terms a manual command might be
”turn on coolant” or ”jog X at 25 inches per minute”. These are roughly equivalent to flipping a switch
or turning the hand wheel for an axis. These commands are normally handled on one of the graphical
interfaces by pressing a button with the mouse or holding down a key on the keyboard. In auto mode,
a similar button or key press might be used to load or start the running of a whole program of G-code
that is stored in a file. In the MDI mode the operator might type in a block of code and tell the machine
to execute it by pressing the <return> or <enter> key on the keyboard.
Some motion control commands are available concurrently and will cause the same changes in motion
in all modes. These include Abort, Emergency Stop, and Feed Rate Override. Commands like these
should be self explanatory.
The AXIS user interface hides some of the distinctions between Auto and the other modes by making
auto-commands available at most times. It also blurs the distinction between Manual and MDI, be-
cause some Manual commands like Touch Off are actually implemented by sending MDI commands. It
does this by automatically changing to the mode that is needed for the action the user has requested.

2.3 Important User Concepts

This chapter covers important user concepts that should be understood before attempting to run a
CNC machine with G-code.

2.3.1 Trajectory Control

2.3.1.1 Trajectory Planning

Trajectory planning, in general, is the means by which LinuxCNC follows the path specified by your
G-code program, while still operating within the limits of your machinery.
A G-code program can never be fully obeyed. For example, imagine you specify as a single-line pro-
gram the following move:
G1 X1 F10 (G1 is linear move, X1 is the destination, F10 is the speed)

In reality, the whole move can’t be made at F10, since the machine must accelerate from a stop, move
toward X=1, and then decelerate to stop again. Sometimes part of the move is done at F10, but for
many moves, especially short ones, the specified feed rate is never reached at all. Having short moves
in your G-code can cause your machine to slow down and speed up for the longer moves if the naive
cam detector is not employed with G64 Pn.
The basic acceleration and deceleration described above is not complex and there is no compromise
to be made. In the INI file the specified machine constraints, such as maximum axis velocity and axis
acceleration, must be obeyed by the trajectory planner.
For more information on the Trajectory Planner INI options see the Trajectory Section in the INI
chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 42 / 1322

2.3.1.2 Path Following

A less straightforward problem is that of path following. When you program a corner in G-code, the
trajectory planner can do several things, all of which are right in some cases:

• It can decelerate to a stop exactly at the coordinates of the corner, and then accelerate in the new
direction.

• It can also do what is called blending, which is to keep the feed rate up while going through the
corner, making it necessary to round the corner off in order to obey machine constraints.

You can see that there is a trade off here: you can slow down to get better path following, or keep the
speed up and have worse path following. Depending on the particular cut, the material, the tooling,
etc., the programmer may want to compromise differently.
Rapid moves also obey the current trajectory control. With moves long enough to reach maximum
velocity on a machine with low acceleration and no path tolerance specified, you can get a fairly
round corner.

2.3.1.3 Programming the Planner

The trajectory control commands are as follows:

G61
(Exact Path Mode) G61 visits the programmed point exactly, even though that means it might
temporarily come to a complete stop in order to change direction to the next programmed point.

G61.1
(Exact Stop Mode) G61.1 tells the planner to come to an exact stop at every segment’s end. The
path will be followed exactly but complete feed stops can be destructive for the part or tool,
depending on the specifics of the machining.

G64
(Blend Without Tolerance Mode) G64 is the default setting when you start LinuxCNC. G64 is just
blending and the naive cam detector is not enabled. G64 and G64 P0 tell the planner to sacrifice
path following accuracy in order to keep the feed rate up. This is necessary for some types of
material or tooling where exact stops are harmful, and can work great as long as the programmer
is careful to keep in mind that the tool’s path will be somewhat more curvy than the program
specifies. When using G0 (rapid) moves with G64 use caution on clearance moves and allow
enough distance to clear obstacles based on the acceleration capabilities of your machine.

G64 P- Q-
(Blend With Tolerance Mode) This enables the naive cam detector and enables blending with a
tolerance. If you program G64 P0.05, you tell the planner that you want continuous feed, but at
programmed corners you want it to slow down enough so that the tool path can stay within 0.05
user units of the programmed path. The exact amount of slowdown depends on the geometry of
the programmed corner and the machine constraints, but the only thing the programmer needs to
worry about is the tolerance. This gives the programmer complete control over the path following
compromise. The blend tolerance can be changed throughout the program as necessary. Beware
that a specification of G64 P0 has the same effect as G64 alone (above), which is necessary for
backward compatibility for old G-code programs. See the G64 section of the G-code chapter.

Blending without tolerance
The controlled point will touch each specified movement at at least one point. The machine
will never move at such a speed that it cannot come to an exact stop at the end of the current
movement (or next movement, if you pause when blending has already started). The distance
from the end point of the move is as large as it needs to be to keep up the best contouring feed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 43 / 1322

Naive CAM Detector
Successive G1 moves that involve only the XYZ axes that deviate less than Q- from a straight
line are merged into a single straight line. This merged movement replaces the individual G1
movements for the purposes of blending with tolerance. Between successive movements, the
controlled point will pass no more than P- from the actual endpoints of the movements. The
controlled point will touch at least one point on each movement. The machine will never move
at such a speed that it cannot come to an exact stop at the end of the current movement (or
next movement, if you pause when blending has already started). On G2/3 moves in the G17
(XY) plane, when the maximum deviation of an arc from a straight line is less than the G64 Q-
tolerance, the arc is broken into two lines (from start of arc to midpoint, and from midpoint
to end). Those lines are then subject to the naive cam algorithm for lines. Thus, line-arc, arc-
arc, and arc-line cases as well as line-line benefit from the naive cam detector. This improves
contouring performance by simplifying the path.

In the following figure the blue line represents the actual machine velocity. The red lines are the
acceleration capability of the machine. The horizontal lines below each plot is the planned move.
The upper plot shows how the trajectory planner will slow the machine down when short moves are
encountered, to stay within the limits of the machines acceleration setting to be able to come to an
exact stop at the end of the next move. The bottom plot shows the effect of the Naive Cam Detector
to combine the moves and do a better job of keeping the velocity as planned.

Figure 2.13: Naive CAM Detector

2.3.1.4 Planning Moves

Make sure moves are long enough to suit your machine/material. Principally because of the rule that
the machine will never move at such a speed that it cannot come to a complete stop at the end of
the current movement, there is a minimum movement length that will allow the machine to keep up
a requested feed rate with a given acceleration setting.
The acceleration and deceleration phase each use half the INI file MAX_ACCELERATION. In a blend
that is an exact reversal, this causes the total axis acceleration to equal the INI file MAX_ACCELERATION.
In other cases, the actual machine acceleration is somewhat less than the INI file acceleration.
To keep up the feed rate, the move must be longer than the distance it takes to accelerate from 0 to
the desired feed rate and then stop again. Using A as 1/2 the INI file MAX_ACCELERATION and F as
the feed rate in units per second, the acceleration time is ta = F/A and the acceleration distance is
da = F*ta/2. The deceleration time and distance are the same, making the critical distance d = da +
dd = 2 * da = F2/A.
For example, for a feed rate of 1 inch per second and an acceleration of 10 inches/sec2, the critical
distance is 12/10 = 1/10 = 0.1 inches.
For a feed rate of 0.5 inch per second, the critical distance is 52/100 = 25/100 = 0.025 inches.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 44 / 1322

2.3.2 G-code

2.3.2.1 Defaults

When LinuxCNC first starts up many G- and M-codes are loaded by default. The current active G- and
M-codes can be viewed on the MDI tab in the Active G-codes: window in the AXIS interface. These
G- and M-codes define the behavior of LinuxCNC and it is important that you understand what each
one does before running LinuxCNC. The defaults can be changed when running a G-code file and left
in a different state than when you started your LinuxCNC session. The best practice is to set the
defaults needed for the job in the preamble of your G-code file and not assume that the defaults have
not changed. Printing out the G-code Quick Reference page can help you remember what each one
is.

2.3.2.2 Feed Rate

How the feed rate is applied depends on if an axis involved with the move is a rotary axis. Read and
understand the Feed Rate section if you have a rotary axis or a lathe.

2.3.2.3 Tool Radius Offset

Tool Radius Offset (G41/42) requires that the tool be able to touch somewhere along each programmed
move without gouging the two adjacent moves. If that is not possible with the current tool diameter
you will get an error. A smaller diameter tool may run without an error on the same path. This means
you can program a cutter to pass down a path that is narrower than the cutter without any errors.
See the Cutter Compensation section for more information.

2.3.3 Homing

After starting LinuxCNC each axis must be homed prior to running a program or running a MDI
command. If your machine does not have home switches a match mark on each axis can aid in homing
the machine coordinates to the same place each time. Once homed your soft limits that are set in the
INI file will be used.
If you want to deviate from the default behavior, or want to use the Mini interface, you will need to set
the option NO_FORCE_HOMING = 1 in the [TRAJ] section of your INI file. More information on homing
can be found in the Integrator Manual.

2.3.4 Tool Changes

There are several options when doing manual tool changes. See the [EMCIO] section for information
on configuration of these options. Also see the G28 and G30 section of the G-code chapter.

2.3.5 Coordinate Systems

The Coordinate Systems can be confusing at first. Before running a CNC machine you must under-
stand the basics of the coordinate systems used by LinuxCNC. In depth information on the LinuxCNC
Coordinate Systems is in the Coordinate System section of this manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 45 / 1322

2.3.5.1 G53 Machine Coordinate

When you home LinuxCNC you set the G53 Machine Coordinate System to 0 for each axis homed.
No other coordinate systems or tool offsets are changed by homing.
The only time you move in the G53 machine coordinate system is when you program a G53 on the
same line as a move. Normally you are in the G54 coordinate system.

2.3.5.2 G54-59.3 User Coordinates

Normally you use the G54 Coordinate System. When an offset is applied to a current user coordinate
system, a small blue ball with lines will be at the machine origin when your DRO is displaying Posi-
tion: Relative Actual in AXIS. If your offsets are temporary use the Zero Coordinate System from the
Machine menu or program G10 L2 P1 X0 Y0 Z0 at the end of your G-code file. Change the P number
to suit the coordinate system you wish to clear the offset in.

• Offsets stored in a user coordinate system are retained when LinuxCNC is shut down.

• Using the Touch Off button in AXIS sets an offset for the chosen User Coordinate System.

2.3.5.3 When You Are Lost

If you’re having trouble getting 0,0,0 on the DRO when you think you should, you may have some
offsets programmed in and need to remove them.

• Move to the Machine origin with G53 G0 X0 Y0 Z0

• Clear any G92 offset with G92.1

• Use the G54 coordinate system with G54

• Set the G54 coordinate system to be the same as the machine coordinate system with G10 L2 P1
X0 Y0 Z0 R0.

• Turn off tool offsets with G49

• Turn on the Relative Coordinate Display from the menu

Now you should be at the machine origin X0 Y0 Z0 and the relative coordinate system should be the
same as the machine coordinate system.

2.3.6 Machine Configurations

The following diagram shows a typical mill showing direction of travel of the tool and the mill table and
limit switches. Notice how the mill table moves in the opposite direction of the Cartesian coordinate
system arrows shown by the Tool Direction image. This makes the tool move in the correct direction
in relation to the material.
Note also the position of the limit switches and the direction of activation of their cams. Several
combinations are possible, for example it is possible (contrary to the drawing) to place a single fixed
limit switch in the middle of the table and two mobile cams to activate it. In this case the limits will
be reversed, +X will be on the right of the table and -X on the left. This inversion does not change
anything from the point of view of the direction of movement of the tool.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 46 / 1322

Figure 2.14: Typical Mill Configuration

The following diagram shows a typical lathe showing direction of travel of the tool and limit switches.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 47 / 1322

Figure 2.15: Typical Lathe Configuration

2.4 Starting LinuxCNC

2.4.1 Running LinuxCNC

LinuxCNC is started with the script file linuxcnc.
linuxcnc [options] [<INI-file>]

linuxcnc script options
linuxcnc: Run LinuxCNC

Usage:
$ linuxcnc -h
This help

$ linuxcnc [Options]
Choose the configuration INI file graphically

$ linuxcnc [Options] path/to/your_ini_file
Name the configuration INI file using its path

$ linuxcnc [Options] -l
Use the previously used configuration INI file

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 48 / 1322

Options:
-d: Turn on ”debug” mode
-v: Turn on ”verbose” mode
-r: Disable redirection of stdout and stderr to ~/linuxcnc_print.txt and

~/linuxcnc_debug.txt when stdin is not a tty.
Used when running linuxcnc tests non-interactively.

-l: Use the last-used INI file
-k: Continue in the presence of errors in HAL files
-t ”tpmodulename [parameters]”

specify custom trajectory_planning_module
overrides optional INI setting [TRAJ]TPMOD

-m ”homemodulename [parameters]”
specify custom homing_module
overrides optional INI setting [EMCMOT]HOMEMOD

-H ”dirname”: search dirname for HAL files before searching
INI directory and system library:
/home/git/linuxcnc-dev/lib/hallib

Note:
The -H ”dirname” option may be specified multiple times

If the linuxcnc script is passed an INI file it reads the INI file and starts LinuxCNC. The INI file [HAL]
section specifies the order of loading up HAL files if more than one is used. Once the HAL=xxx.hal
files are loaded then the GUI is loaded then the POSTGUI=.xxx.hal file is loaded. If you create PyVCP
or GladeVCP objects with HAL pins you must use the postgui HAL file to make any connections to
those pins. See the [HAL] section of the INI configuration for more information.

2.4.1.1 Configuration Selector

If no INI file is passed to the linuxcnc script it loads the configuration selector so you can choose and
save a sample configuration. Once a sample configuration has been saved it can be modified to suit
your application. The configuration files are saved in linuxcnc/configs directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 49 / 1322

2.5 CNC Machine Overview

This section gives a brief description of how a CNC machine is viewed from the input and output ends
of the Interpreter.

2.5.1 Mechanical Components

A CNC machine has many mechanical components that may be controlled or may affect the way in
which control is exercised. This section describes the subset of those components that interact with
the Interpreter. Mechanical components that do not interact directly with the Interpreter, such as the
jog buttons, are not described here, even if they affect control.

2.5.1.1 Axes

Any CNC machine has one or more Axes. Different types of CNC machines have different combina-
tions. For instance, a 4-axis milling machine may have XYZA or XYZB axes. A lathe typically has XZ
axes. A foam-cutting machine may have XYUV axes. In LinuxCNC, the case of a XYYZ gantry machine
with two motors for one axis is better handled by kinematics rather than by a second linear axis.

Note
If the motion of mechanical components is not independent, as with hexapod machines, the
RS274/NGC language and the canonical machining functions will still be usable, as long as the lower
levels of control know how to control the actual mechanisms to produce the same relative motion of
tool and workpiece as would be produced by independent axes. This is called kinematics.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 50 / 1322

Note
With LinuxCNC, the case of the XYYZ gantry machine with two motors for one axis is better handled
by the kinematics than by an additional linear axis.

.Primary Linear Axes The X, Y, and Z axes produce linear motion in three mutually orthogonal direc-
tions.
.Secondary Linear Axes The U, V, and W axes produce linear motion in three mutually orthogonal
directions. Typically, X and U are parallel, Y and V are parallel, and Z and W are parallel.
.Rotational Axes The A, B and C axes produce angular motion (rotation). Typically, A rotates around
a line parallel to X, B rotates around a line parallel to Y, and C rotates around a line parallel to Z.

2.5.1.2 Spindle

A CNC machine typically has a spindle which holds one cutting tool, probe, or the material in the case
of a lathe. The spindle may or may not be controlled by the CNC software. LinuxCNC offers support
for up to 8 spindles, which can be individually controlled and can run simultaneously at different
speeds and in different directions.

2.5.1.3 Coolant

Flood coolant and mist coolant may each be turned on independently. The RS274/NGC language turns
them off together see section M7 M8 M9.

2.5.1.4 Feed and Speed Override

A CNC machine can have separate feed and speed override controls, which let the operator specify
that the actual feed rate or spindle speed used in machining at some percentage of the programmed
rate.

2.5.1.5 Block Delete Switch

A CNC machine can have a block delete switch. See the Block Delete section.

2.5.1.6 Optional Program Stop Switch

A CNC machine can have an optional program stop switch. See the Optional Program Stop section.

2.5.2 Control and Data Components

2.5.2.1 Linear Axes

The X, Y, and Z axes form a standard right-handed coordinate system of orthogonal linear axes. Posi-
tions of the three linear motion mechanisms are expressed using coordinates on these axes.
The U, V and W axes also form a standard right-handed coordinate system. X and U are parallel, Y
and V are parallel, and Z and W are parallel (when A, B, and C are rotated to zero).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 51 / 1322

2.5.2.2 Rotational Axes

The rotational axes are measured in degrees as wrapped linear axes in which the direction of positive
rotation is counterclockwise when viewed from the positive end of the corresponding X, Y, or Z-axis.
By wrapped linear axis, we mean one on which the angular position increases without limit (goes
towards plus infinity) as the axis turns counterclockwise and deceases without limit (goes towards
minus infinity) as the axis turns clockwise. Wrapped linear axes are used regardless of whether or
not there is a mechanical limit on rotation.
Clockwise or counterclockwise is from the point of view of the workpiece. If the workpiece is fastened
to a turntable which turns on a rotational axis, a counterclockwise turn from the point of view of the
workpiece is accomplished by turning the turntable in a direction that (for most common machine
configurations) looks clockwise from the point of view of someone standing next to the machine. 3

2.5.2.3 Controlled Point

The controlled point is the point whose position and rate of motion are controlled. When the tool
length offset is zero (the default value), this is a point on the spindle axis (often called the gauge
point) that is some fixed distance beyond the end of the spindle, usually near the end of a tool holder
that fits into the spindle. The location of the controlled point can be moved out along the spindle axis
by specifying some positive amount for the tool length offset. This amount is normally the length of
the cutting tool in use, so that the controlled point is at the end of the cutting tool. On a lathe, tool
length offsets can be specified for X and Z axes, and the controlled point is either at the tool tip or
slightly outside it (where the perpendicular, axis-aligned lines touched by the front and side of the
tool intersect).

2.5.2.4 Coordinated Linear Motion

To drive a tool along a specified path, a machining center must often coordinate the motion of several
axes. We use the term coordinated linear motion to describe the situation in which, nominally, each
axis moves at constant speed and all axes move from their starting positions to their end positions at
the same time. If only the X, Y, and Z axes (or any one or two of them) move, this produces motion in a
straight line, hence the word linear in the term. In actual motions, it is often not possible to maintain
constant speed because acceleration or deceleration is required at the beginning and/or end of the
motion. It is feasible, however, to control the axes so that, at all times, each axis has completed the
same fraction of its required motion as the other axes. This moves the tool along same path, and we
also call this kind of motion coordinated linear motion.
Coordinated linear motion can be performed either at the prevailing feed rate, or at traverse rate, or
it may be synchronized to the spindle rotation. If physical limits on axis speed make the desired rate
unobtainable, all axes are slowed to maintain the desired path.

2.5.2.5 Feed Rate

The rate at which the controlled point moves is nominally a steady rate which may be set by the
user. In the Interpreter, the feed rate is interpreted as follows (unless inverse time feed or feed per
revolution modes are being used, in which case see section G93-G94-G95-Mode).

1. If any of XYZ are moving, F is in units per minute in the XYZ cartesian system, and all other axes
(ABCUVW) move so as to start and stop in coordinated fashion.

2. Otherwise, if any of UVW are moving, F is in units per minute in the UVW cartesian system, and
all other axes (ABC) move so as to start and stop in coordinated fashion.

3If the parallelism requirement is violated, the system builder will have to say how to distinguish clockwise from counter-
clockwise.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 52 / 1322

3. Otherwise, the move is pure rotary motion and the F word is in rotary units in the ABC pseudo-
cartesian system.

2.5.2.6 Cooling

Flood or droplets cooling can be enabled separately. RS274/NGC language stops them together. See
section about cooling control.

2.5.2.7 Dwell

A machining center may be commanded to dwell (i.e., keep all axes unmoving) for a specific amount
of time. The most common use of dwell is to break and clear chips, so the spindle is usually turning
during a dwell. Regardless of the Path Control Mode (see section Path Control) the machine will stop
exactly at the end of the previous programmed move, as though it was in exact path mode.

2.5.2.8 Units

Units used for distances along the X, Y, and Z axes may be measured in millimeters or inches. Units for
all other quantities involved in machine control cannot be changed. Different quantities use different
specific units. Spindle speed is measured in revolutions per minute. The positions of rotational axes
are measured in degrees. Feed rates are expressed in current length units per minute, or degrees per
minute, or length units per spindle revolution, as described in section G93 G94 G95.

2.5.2.9 Current Position

The controlled point is always at some location called the current position, and the controller always
knows where that is. The numbers representing the current position must be adjusted in the absence
of any axis motion if any of several events take place:

1. Length units are changed.

2. Tool length offset is changed.

3. Coordinate system offsets are changed.

2.5.2.10 Selected Plane

There is always a selected plane, which must be the XY-plane, the YZ-plane, or the XZ-plane of the
machining center. The Z-axis is, of course, perpendicular to the XY-plane, the X-axis to the YZ-plane,
and the Y-axis to the XZ-plane.

2.5.2.11 Tool Carousel

Zero or one tool is assigned to each slot in the tool carousel.

2.5.2.12 Tool Change

A machining center may be commanded to change tools.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 53 / 1322

2.5.2.13 Pallet Shuttle

The two pallets may be exchanged by command.

2.5.2.14 Speed Override

The speed override buttons can be activated (they function normally) or rendered inoperative (they no
longer have any effect). The RS274/NGC language has a command that activates all the buttons and
another that disables them. See inhibition and activation speed correctors. See also here for further
details.

2.5.2.15 Path Control Mode

The machining center may be put into any one of three path control modes:

exact stop mode
In exact stop mode, the machine stops briefly at the end of each programmed move.

exact path mode
In exact path mode, the machine follows the programmed path as exactly as possible, slowing or
stopping if necessary at sharp corners of the path.

continuous mode
In continuous mode, sharp corners of the path may be rounded slightly so that the feed rate may
be kept up (but by no more than the tolerance, if specified).

See sections G61 and G64.

2.5.3 Interpreter Interaction with Switches

The Interpreter interacts with several switches. This section describes the interactions in more detail.
In no case does the Interpreter know what the setting of any of these switches is.

2.5.3.1 Feed and Speed Override Switches

The Interpreter will interpret RS274/NGC commands which enable M48 or disable M49 the feed and
speed override switches. For certain moves, such as the traverse out of the end of a thread during a
threading cycle, the switches are disabled automatically.
LinuxCNC reacts to the speed and feed override settings when these switches are enabled.
See the M48 M49 Override section for more information.

2.5.3.2 Block Delete Switch

If the block delete switch is on, lines of G-code which start with a slash (the block delete character)
are not interpreted. If the switch is off, such lines are interpreted. Normally the block delete switch
should be set before starting the NGC program.

2.5.3.3 Optional Program Stop Switch

If this switch is on and an M1 code is encountered, program execution is paused.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 54 / 1322

2.5.4 Tool Table

A tool table is required to use the Interpreter. The file tells which tools are in which tool changer slots
and what the size and type of each tool is. The name of the tool table is defined in the INI file:
[EMCIO]
tool table file
TOOL_TABLE = tooltable.tbl

The default filename probably looks something like the above, but you may prefer to give your machine
its own tool table, using the same name as your INI file, but with a tbl extension:
TOOL_TABLE = acme_300.tbl

or:
TOOL_TABLE = EMC-AXIS-SIM.tbl

For more information on the specifics of the tool table format, see the Tool Table Format section.

2.5.5 Parameters

In the RS274/NGC language view, a machining center maintains an array of numerical parameters
defined by a system definition (RS274NGC_MAX_PARAMETERS). Many of them have specific uses
especially in defining coordinate systems. The number of numerical parameters can increase as de-
velopment adds support for new parameters. The parameter array persists over time, even if the
machining center is powered down. LinuxCNC uses a parameter file to ensure persistence and gives
the Interpreter the responsibility for maintaining the file. The Interpreter reads the file when it starts
up, and writes the file when it exits.
All parameters are available for use in G-code programs.
The format of a parameter file is shown in the following table. The file consists of any number of
header lines, followed by one blank line, followed by any number of lines of data. The Interpreter
skips over the header lines. It is important that there be exactly one blank line (with no spaces or
tabs, even) before the data. The header line shown in the following table describes the data columns,
so it is suggested (but not required) that that line always be included in the header.
The Interpreter reads only the first two columns of the table. The third column, Comment, is not read
by the Interpreter.
Each line of the file contains the index number of a parameter in the first column and the value to
which that parameter should be set in the second column. The value is represented as a double-
precision floating point number inside the Interpreter, but a decimal point is not required in the file.
All of the parameters shown in the following table are required parameters and must be included in
any parameter file, except that any parameter representing a rotational axis value for an unused axis
may be omitted. An error will be signaled if any required parameter is missing. A parameter file may
include any other parameter, as long as its number is in the range 1 to 5400. The parameter numbers
must be arranged in ascending order. An error will be signaled if not. Any parameter included in the
file read by the Interpreter will be included in the file it writes as it exits. The original file is saved as
a backup file when the new file is written. Comments are not preserved when the file is written.

Table 2.1: Parameter File Format

Parameter Number Parameter Value Comment
5161 0.0 G28 Home X
5162 0.0 G28 Home Y

See the Parameters section for more information.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 55 / 1322

2.6 Lathe User Information

This chapter will provide information specific to lathes.

2.6.1 Lathe Mode

If your CNC machine is a lathe, there are some specific changes you will probably want to make to
your INI file in order to get the best results from LinuxCNC.
If you are using the AXIS display, have AXIS display your lathe tools properly. See the INI Configuration
section for more details.
To set up AXIS for Lathe Mode.
[DISPLAY]

Tell the AXIS GUI our machine is a lathe.
LATHE = TRUE

Lathe Mode in AXIS does not set your default plane to G18 (XZ). You must program that in the preamble
of each G-code file or (better) add it to your INI file, like this:
[RS274NGC]

G-code modal codes (modes) that the interpreter is initialized with
on startup
RS274NGC_STARTUP_CODE = G18 G20 G90

If your using GMOCCAPY then see the the GMOCCAPY Lathe section.

2.6.2 Lathe Tool Table

The ”Tool Table” is a text file that contains information about each tool. The file is located in the
same directory as your configuration and is called ”tool.tbl” by default. The tools might be in a tool
changer or just changed manually. The file can be edited with a text editor or be updated using G10
L1,L10,L11. There is also a built-in tool table editor in the AXIS display. The maximum number of
entries in the tool table is 56. The maximum tool and pocket number is 99999.
Earlier versions of LinuxCNC had two different tool table formats for mills and lathes, but since the
2.4.x release, one tool table format is used for all machines. Just ignore the parts of the tool table that
don’t pertain to your machine, or which you don’t need to use. For more information on the specifics
of the tool table format, see the Tool Table Section.

2.6.3 Lathe Tool Orientation

The following figure shows the lathe tool orientations with the center line angle of each orientation
and info on FRONTANGLE and BACKANGLE.
The FRONTANGLE and BACKANGLE are clockwise starting at a line parallel to Z+.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 56 / 1322

Figure 2.16: Lathe Tool Orientations

In AXIS the following figures show what the Tool Positions look like, as entered in the tool table.
Tool Positions 1, 2, 3 & 4

Tool Positions 5, 6, 7 & 8

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 57 / 1322

2.6.4 Tool Touch Off

When running in lathe mode in AXIS you can set the X and Z in the tool table using the Touch Off
window. If you have a tool turret you normally have Touch off to fixture selected when setting up your
turret. When setting the material Z zero you have Touch off to material selected. For more information
on the G-codes used for tools see M6, Tn, and G43. For more information on tool touch off options in
AXIS see Tool Touch Off.

2.6.4.1 X Touch Off

The X axis offset for each tool is normally an offset from the center line of the spindle.
One method is to take your normal turning tool and turn down some stock to a known diameter. Using
the Tool Touch Off window enter the measured diameter (or radius if in radius mode) for that tool.
Then using some layout fluid or a marker to coat the part bring each tool up till it just touches the dye
and set its X offset to the diameter of the part used using the tool touch off. Make sure any tools in
the corner quadrants have the nose radius set properly in the tool table so the control point is correct.
Tool touch off automatically adds a G43 so the current tool is the current offset.
A typical session might be:

1. Home each axis if not homed.

2. Set the current tool with Tn M6 G43 where n is the tool number.

3. Select the X axis in the Manual Control window.

4. Move the X to a known position or take a test cut and measure the diameter.

5. Select Touch Off and pick Tool Table then enter the position or the diameter.

6. Follow the same sequence to correct the Z axis.

Note: if you are in Radius Mode you must enter the radius, not the diameter.

2.6.4.2 Z Touch Off

The Z axis offsets can be a bit confusing at first because there are two elements to the Z offset. There
is the tool table offset, and the machine coordinate offset. First we will look at the tool table offsets.
One method is to use a fixed point on your lathe and set the Z offset for all tools from this point. Some
use the spindle nose or chuck face. This gives you the ability to change to a new tool and set its Z
offset without having to reset all the tools.
A typical session might be:

1. Home each axis if not homed.

2. Make sure no offsets are in effect for the current coordinate system.

3. Set the current tool with Tn M6 G43 where n is the tool number.

4. Select the Z axis in the Manual Control window.

5. Bring the tool close to the control surface.

6. Using a cylinder move the Z away from the control surface until the cylinder just passes between
the tool and the control surface.

7. Select Touch Off and pick Tool Table and set the position to 0.0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 58 / 1322

8. Repeat for each tool using the same cylinder.

Now all the tools are offset the same distance from a standard position. If you change a tool like a
drill bit you repeat the above and it is now in sync with the rest of the tools for Z offset. Some tools
might require a bit of cyphering to determine the control point from the touch off point. For example,
if you have a 0.125” wide parting tool and you touch the left side off but want the right to be Z0, then
enter 0.125” in the touch off window.

2.6.4.3 The Z Machine Offset

Once all the tools have the Z offset entered into the tool table, you can use any tool to set the machine
offset using the machine coordinate system.
A typical session might be:

1. Home each axis if not homed.

2. Set the current tool with Tn M6 where n is the tool number.

3. Issue a G43 so the current tool offset is in effect.

4. Bring the tool to the work piece and set the machine Z offset.

If you forget to set the G43 for the current tool when you set the machine coordinate system offset,
you will not get what you expect, as the tool offset will be added to the current offset when the tool is
used in your program.

2.6.5 Spindle Synchronized Motion

Spindle synchronized motion requires a quadrature encoder connected to the spindle with one index
pulse per revolution. See the motion man page and the Spindle Control Example for more information.
Threading The G76 threading cycle is used for both internal and external threads. For more infor-
mation see the G76 Section.
Constant Surface Speed CSS or Constant Surface Speed uses the machine X origin modified by
the tool X offset to compute the spindle speed in RPM. CSS will track changes in tool offsets. The X
machine origin should be when the reference tool (the one with zero offset) is at the center of rotation.
For more information see the G96 Section.
Feed per Revolution Feed per revolution will move the Z axis by the F amount per revolution. This
is not for threading, use G76 for threading. For more information see the G95 Section.

2.6.6 Arcs

Calculating arcs can be mind challenging enough without considering radius and diameter mode on
lathes as well as machine coordinate system orientation. The following applies to center format arcs.
On a lathe you should include G18 in your preamble as the default is G17 even if you’re in lathe mode,
in the user interface AXIS. Arcs in G18 XZ plane use I (X axis) and K (Z axis) offsets.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 59 / 1322

2.6.6.1 Arcs and Lathe Design

The typical lathe has the spindle on the left of the operator and the tools on the operator side of the
spindle center line. This is typically set up with the imaginary Y axis (+) pointing at the floor.
The following will be true on this type of setup:

• The Z axis (+) points to the right, away from the spindle.

• The X axis (+) points toward the operator, and when on the operator side of the spindle the X values
are positive.

Some lathes with tools on the back side have the imaginary Y axis (+) pointing up.
G2/G3 Arc directions are based on the axis they rotate around. In the case of lathes, it is the imaginary
Y axis. If the Y axis (+) points toward the floor, you have to look up for the arc to appear to go in the
correct direction. So looking from above you reverse the G2/G3 for the arc to appear to go in the
correct direction.

2.6.6.2 Radius & Diameter Mode

When calculating arcs in radius mode you only have to remember the direction of rotation as it applies
to your lathe.
When calculating arcs in diameter mode X is diameter and the X offset (I) is radius even if you’re in
G7 diameter mode.

2.6.7 Tool Path

2.6.7.1 Control point

The control point for the tool follows the programmed path. The control point is the intersection of a
line parallel to the X and Z axis and tangent to the tool tip diameter, as defined when you touch off the
X and Z axes for that tool. When turning or facing straight sided parts the cutting path and the tool
edge follow the same path. When turning radius and angles the edge of the tool tip will not follow the
programmed path unless cutter comp is in effect. In the following figures you can see how the control
point does not follow the tool edge as you might assume.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 60 / 1322

Figure 2.17: Control point

2.6.7.2 Cutting Angles without Cutter Comp

Now imagine we program a ramp without cutter comp. The programmed path is shown in the following
figure. As you can see in the figure the programmed path and the desired cut path are one and the
same as long as we are moving in an X or Z direction only.

Figure 2.18: Ramp Entry

Now as the control point progresses along the programmed path the actual cutter edge does not follow
the programmed path as shown in the following figure. There are two ways to solve this, cutter comp
and adjusting your programmed path to compensate for tip radius.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 61 / 1322

Figure 2.19: Ramp Path

In the above example it is a simple exercise to adjust the programmed path to give the desired actual
path by moving the programmed path for the ramp to the left the radius of the tool tip.

2.6.7.3 Cutting a Radius

In this example we will examine what happens during a radius cut without cutter comp. In the next
figure you see the tool turning the OD of the part. The control point of the tool is following the
programmed path and the tool is touching the OD of the part.

Figure 2.20: Turning Cut

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 62 / 1322

In this next figure you can see as the tool approaches the end of the part the control point still follows
the path but the tool tip has left the part and is cutting air. You can also see that even though a radius
has been programmed the part will actually end up with a square corner.

Figure 2.21: Radius Cut

Now you can see as the control point follows the radius programmed the tool tip has left the part and
is now cutting air.

Figure 2.22: Radius Cut

In the final figure we can see the tool tip will finish cutting the face but leave a square corner instead
of a nice radius. Notice also that if you program the cut to end at the center of the part a small amount

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 63 / 1322

of material will be left from the radius of the tool. To finish a face cut to the center of a part you have
to program the tool to go past center at least the nose radius of the tool.

Figure 2.23: Face Cut

2.6.7.4 Using Cutter Comp

• When using cutter comp on a lathe think of the tool tip radius as the radius of a round cutter.

• When using cutter comp the path must be large enough for a round tool that will not gouge into the
next line.

• When cutting straight lines on the lathe you might not want to use cutter comp. For example boring
a hole with a tight fitting boring bar you may not have enough room to do the exit move.

• The entry move into a cutter comp arc is important to get the correct results.

2.7 Plasma Cutting Primer for LinuxCNC Users

2.7.1 What Is Plasma?

Plasma is a fourth state of matter, an ionised gas which has been heated to an extremely high tem-
perature and ionised so that it becomes electrically conductive. The plasma arc cutting and gouging
processes use this plasma to transfer an electrical arc to the workpiece. The metal to be cut or re-
moved is melted by the heat of the arc and then blown away. While the goal of plasma arc cutting is
the separation of the material, plasma arc gouging is used to remove metals to a controlled depth and
width.
Plasma torches are similar in design to the automotive spark plug. They consist of negative and
positive sections separated by a center insulator. Inside the torch, the pilot arc starts in the gap
between the negatively charged electrode and the positively charged tip. Once the pilot arc has
ionised the plasma gas, the superheated column of gas flows through the small orifice in the torch tip,
which is focused on the metal to be cut.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 64 / 1322

In a Plasma Cutting Torch a cool gas enters Zone B, where a pilot arc between the electrode and the
torch tip heats and ionises the gas. The main cutting arc then transfers to the workpiece through the
column of plasma gas in Zone C. By forcing the plasma gas and electric arc through a small orifice, the
torch delivers a high concentration of heat to a small area. The stiff, constricted plasma arc is shown
in Zone C. Direct current (DC) straight polarity is used for plasma cutting, as shown in the illustration.
Zone A channels a secondary gas that cools the torch. This gas also assists the high velocity plasma
gas in blowing the molten metal out of the cut allowing for a fast, slag - free cut.

2.7.2 Arc Initialisation

There are two main methods for arc initialisation for plasma cutters that are designed for CNC opera-
tion. Whilst other methods are used on some machines (such as scratch start where physical contact
with the material is required), they are unsuited for CNC applications..

2.7.2.1 High Frequency Start

This start type is widely employed, and has been around the longest. Although it is older technology, it
works well, and starts quickly. But, because of the high frequency high voltage power that is required
generated to ionise the air, it has some drawbacks. It often interferes with surrounding electronic
circuitry, and can even damage components. Also a special circuit is needed to create a Pilot arc.
Inexpensive models will not have a pilot arc, and require touching the consumable to the work to
start. Employing a HF circuit also can increase maintenance issues, as there are usually adjustable
points that must be cleaned and readjusted from time to time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 65 / 1322

2.7.2.2 Blowback Start

This start type uses air pressure supplied to the cutter to force a small piston or cartridge inside the
torch head back to create a small spark between the inside surface of the consumable, ionising the
air, and creating a small plasma flame. This also creates a ”pilot arc” that provides a plasma flame
that stays on, whether in contact with the metal or not. This is a very good start type that is now used
by several manufacturers. It’s advantage is that it requires somewhat less circuitry, is a fairly reliable
and generates far less electrical noise.
For entry level air plasma CNC systems, the blowback style is much preferred to minimise electrical
interference with electronics and standard PCs, but the High frequency start still rules supreme in
larger machines from 200 A and up. These require industrial level PCs and electronics, and even com-
mercial manufacturers have had issues with faults because they have failed to account for electrical
noise in their designs.

2.7.3 CNC Plasma

Plasma operations on CNC machines is quite unique in comparison to milling or turning and is a bit of
an orphan process. Uneven heating of the material from the plasma arc will cause the sheet to bend
and buckle. Most sheets of metal do not come out of the mill or press in a very even or flat state.
Thick sheets (30 mm plus) can be out of plane as much as 50 mm to 100 mm. Most other CNC G-code
operations will start from a known reference or a piece of stock that has a known size and shape and
the G-code is written to rough the excess off and then finally cut the finished part. With plasma the
unknown state of the sheet makes it impossible to generate G-code that will cater for these variances
in the material.
A plasma Arc is oval in shape and the cutting height needs to be controlled to minimise bevelled edges.
If the torch is too high or too low then the edges can become excessively bevelled. It is also critical
that the torch is held perpendicular to the surface.

• Torch to work distance can impact edge bevel

• Negative cut angle: torch too low, increase torch to work distance.

• Positive cut angle: torch too high, decrease torch to work distance.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 66 / 1322

Note
A slight variation in cut angles may be normal, as long as it is within tolerance.

The ability to precisely control the cutting height in such a hostile and ever changing environment is
a very difficult challenge. Fortunately there is a very linear relationship between Torch height (Arc
length) and arc voltage as this graph shows.

This graph was prepared from a sample of about 16,000 readings at varying cut height and the re-
gression analysis shows 7.53 V/mm with 99.4% confidence. In this particular instance this sample was
taken from an Everlast 50 A machine being controlled by LinuxCNC.
Torch voltage then becomes an ideal process control variable to use to adjust the cut height. Let’s
assume for simplicity that voltage changes by 10 V/mm. This can be restated to be 1 Volt per 0.1 mm
(0.004”). Major plasma machine manufacturers (eg Hypertherm, Thermal Dynamics and ESAB), pro-
duce cut charts that specify the recommended cut height and estimated arc voltage at this height as
well as some additional data. So if the arc voltage is 1 V higher than the manufacturers specification,
the controller simply needs to lower the torch by 0.1 mm (0.004”) to move back to the desired cut
height. A torch height control unit (THC) is traditionally used to manage this process.

2.7.4 Choosing a Plasma Machine for CNC operations

There are a plethora of plasma machines available on the market today and not all of them are suited
for CNC use. CNC Plasma cutting is a complex operation and it is recommended that integrators
choose a suitable plasma machine. Failure to do this is likely to cause hours and hours of fruitless
trouble shooting trying to work around the lack of what many would consider to be mandatory features.
Whilst rules are made to be broken if you fully understand the reasons the rule apply, we consider a
new plasma table builder should select a machine with the following features:

• Blowback start to minimise electrical noise to simplify construction

• A Machine torch is preferred but many have used hand torches.

• A fully shielded torch tip to allow ohmic sensing

If you have the budget, a higher end machines will supply:

• Manufacturer provided cut charts which will save many hours and material waste calibrating cut
parameters

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 67 / 1322

• Dry Contacts for ArcOK

• Terminals for Arc On switch

• Raw arc voltage or divided arc voltage output

• Optionally a RS485 interface if using a Hypertherm plasma cutter and want to control it from the
LinuxCNC console.

• Higher duty cycles

In recent times, another class of machine which includes some of these features has become available
at around USD $550. One example is the Herocut55i available on Amazon but there is yet no feedback
from users. This Machine features a blowback torch, ArcOK output, torch start contacts and raw arc
voltage.

2.7.5 Types Of Torch Height Control

Most THC units are external devices and many have a fairly crude “bit bang” adjustment method.
They provide two signals back to the LinuxCNC controller. One turns on if the Z axis should move
up and the other turns on if the Z axis should move down. Neither signal is true if the torch is at
the correct height. The popular Proma 150 THC is one example of this type of THC. The LinuxCNC
THCUD component is designed to work with this type of THC.
With the release of the Mesa THCAD voltage to frequency interface, LinuxCNC was able to decode the
actual torch voltage via an encoder input. This allowed LinuxCNC to control the Z axis and eliminate
external hardware. Early implementations utilising the THCAD replicated the “bit bang” approach.
The LinuxCNC THC component is an example of this approach.
Jim Colt of Hypertherm is on record saying that the best THC controllers were fully integrated into the
CNC controller itself. Of course he was referring to high end systems manufactured by Hypertherm,
Esab, Thermal Dynamics and others such as Advanced Robotic Technology in Australia, little dreaming
that open source could produce systems using this approach that rival high end systems.
The inclusion of external offsets in LinuxCNC V2.8 allowed plasma control in LinuxCNC to rise to a
whole new level. External Offsets refers to the ability to apply an offset to the axis commanded position
external to the motion controller. This is perfect for plasma THC control as a method to adjust the
torch height in real time based on our chosen process control methodology. Following a number
of experimental builds, the Plasmac configuration was incorporated into LinuxCNC 2.8. QtPlasmaC
has superceded Plasmac in LinuxCNC 2.9. This has been an extremely ambitious project and many
people around the globe have been involved in testing and improving the feature set. QtPlasmaC is
unique in that its design goal was to support all THCs including the simple bit bang ones through
to sophisticated torch voltage control, if the voltage is made available to LinuxCNC via a THCAD or
some other voltage sensor. What’s more, QtPlasmaC is designed to be a stand alone system that does
not need any additional G-code subroutines and allows the user to define their own cut charts that
are stored in the system and accessible by a drop-down.

2.7.6 Arc OK Signal

Plasma machines that have a CNC interface contain a set of dry contacts (eg a relay) that close when a
valid arc is established and each side of these contacts are bought out onto pins on the CNC interface.
A plasma table builder should connect one side of these pins to field power and the other to an input
pin. This then allows the CNC controller to know when a valid arc is established and also when an
arc is lost unexpectedly. There is a potential trap here when the input is a high impedance circuit
such as a Mesa card. If the dry contacts are a simple relay, there is a high probability that the current
passing through the relay is less than the minimum current specification. Under these conditions, the
relay contacts can suffer from a buildup of oxide which over time can result in intermittent contact

./qtplasmac.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 68 / 1322

operation. To prevent this from happening, a pull down resistor should be installed on the controller
input pin. Care should be taken to ensure that this resistor is selected to ensure the minimum current
passes through the relay and is of sufficient wattage to handle the power in the circuit. Finally, the
resistor should be mounted in such a way that the generated heat does not damage anything whilst
in operation.
If you have an ArcOK signal, it is recommended it is used over and above any synthesised signal to
eliminate potential build issues. A synthesised signal available from an external THC or QtPlasmaC’s
Mode 0 can’t fully replace the ArcOK circuitry in a plasma inverter. Some build issues have been
observed where misconfiguration or incompatibility with the plasma inverter has occurred from a
synthesised ArcOK signal. By and large however, a correctly configured synthesised ArcOK signal is
fine.
A simple and effective ArcOK signal can be achieved with a simple reed relay. Wrap 3 turns of one of
the plasma cutter’s thick cables, e.g. the material clamp cable, around it. Place the relay in an old
pen tube for protection and connect one side of the relay to field power and the other end to your
ArcOK input pin.

2.7.7 Initial Height Sensing

Because the cutting height is such a critical system parameter and the material surface is inherently
uneven, a Z axis mechanism needs a method to sense the material surface. There are three methods
this can be achieved:

1. Current sensing to detect increased motor torque,

2. a “float” switch and an electrical or

3. an “ohmic” sensing circuit that is closed when the torch shield contacts the material.

Current sensing is not a viable technique for DIY tables but float switches and ohmic sensing are
discussed below:

2.7.7.1 Float Switches

The torch is mounted on a sliding stage that can move up when the torch tip contacts the material
surface and trigger a switch or sensor. Often this is achieved under G-code control using the G38
commands. If this is the case, then after initial probing, it is recommended to probe away from the
surface until the probe signal is lost at a slower speed. Also, ensure the switch hysteresis is accounted
for.
Regardless of the probing method used, it is strongly recommended that float switch is implemented
so that there is a fallback or secondary signal to avoid damage to the torch from a crash.

2.7.7.2 Ohmic Sensing

Ohmic sensing relies on contact between the torch and the material acting as a switch to activate an
electrical signal that is sensed by the CNC controller. Provided the material is clean, this can be a
much more accurate method of sensing the material than a float switch which can cause deflection
of the material surface. This ohmic sensing circuit is operating in an extremely hostile environment
so a number of failsafes need to be implemented to ensure safety of both the CNC electronics and
the operator. In plasma cutting, the earth clamp attached to the material is positive and the torch is
negative. It is recommended that:

1. Ohmic sensing only be implemented where the torch has a shield that is isolated from the torch
tip that conveys the cutting arc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 69 / 1322

2. The ohmic circuit uses a totally separate isolated power supply that activates an opto-isolated
relay to enable the probing signal to be transmitted to the CNC controller.

3. The positive side of the circuit should be at the torch

4. Both sides of the circuit needs to be isolated by opto-isolated relays until probing is being under-
taken

5. Blocking diodes be used to prevent arc voltage entering the ohmic sensing circuit.

The following is an example circuit that has been proven to work and is compatible with the LinuxCNC
QtPlasmaC configuration.

2.7.7.3 Hypersensing with a MESA THCAD-5

A more sophisticated method of material sensing that eliminates the relays and diodes is to use another
THCAD-5 to monitor the material sensing circuit voltage from an isolated power supply. The advantage
this has is the THCAD is designed for the hostile plasma electrical environment and totally and safely
isolates the logic side from the high voltage side.
To implement this method, a second encoder input is required.
If using a mesa card, different firmware is available to provide 2 additional Encoder A inputs on the
Encoder B and Encoder Index pins. This firmware is available for download for the 7I76E and 7I96
boards from the Mesa web site on the product pages.
The THCAD is sensitive enough to see the ramp up in circuit voltage as contact pressure increases.
The ohmic.comp component included in LinuxCNC can monitor the sensing voltage and set a voltage
threshold above which it is deemed contact is made and an output is enabled. By monitoring the volt-
age, a lower “break circuit” threshold can be set to build in strong switch hysteresis. This minimises
false triggering. In our testing, we found the material sensing using this method was more sensitive
and robust as well as being simpler to implement the wiring. One further advantage is using software
outputs instead of physical I/O pins is that it frees up pins to use for other purposes. This advantage
is helpful to get the most out of the Mesa 7I96 which has limited I/O pins.
The following circuit diagram shows how to implement a hypersensing circuit.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 70 / 1322

We used a 15 W Mean Well HDR-15 Ultra Slim DIN Rail Supply 24 V DIN rail based isolated power
supply. This is a double insulated Isolation Class II device that will withstand any arc voltage that
might be applied to the terminals.

2.7.7.4 Example HAL Code for Hypersensing

The following HAL code can be pasted into your QtPlasmaC’s custom.hal to enable Ohmic sensing on
Encoder 2 of a 7I76E. Install the correct bit file and connect the THCAD to IDX+ and IDX-. Be sure
to change the calibration settings to agree with your THCAD-5.
--- Load the Component ---
loadrt ohmic names=ohmicsense
addf ohmicsense servo-thread

--- 7I76E ENCODER 2 SETUP FOR OHMIC SENSING---
setp hm2_7i76e.0.encoder.02.scale -1
setp hm2_7i76e.0.encoder.02.counter-mode 1

--- Configure the component ---
setp ohmicsense.thcad-0-volt-freq 140200
setp ohmicsense.thcad-max-volt-freq 988300
setp ohmicsense.thcad-divide 32
setp ohmicsense.thcad-fullscale 5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 71 / 1322

setp ohmicsense.volt-divider 4.9
setp ohmicsense.ohmic-threshold 22.0
setp ohmicsense.ohmic-low 1.0
net ohmic-vel ohmicsense.velocity-in <= hm2_7i76e.0.encoder.02.velocity

--- Replace QtPlasmaC’s Ohmic sensing signal ---
unlinkp db_ohmic.in
net ohmic-true ohmicsense.ohmic-on => db_ohmic.in
net plasmac:ohmic-enable => ohmicsense.is-probing

2.7.8 THC Delay

When an arc is established, arc voltage peaks significantly and then settles back to a stable voltage
at cut height. As shown by the green line in the image below.

It is important for the plasma controller to “wait it out” before auto sampling the torch voltage and
commencing THC control. If enabled too early, the voltage will be above the desired cut Volts and the
torch will be driven down in an attempt to address a perceived over-height condition.
In our testing this varies between machines and material from 0.5 to 1.5 seconds. Therefore a delay
of 1.5 s after a valid ArcOK signal is received before enabling THC control is a safe initial setting. If
you want to shorten this for a given material, LinuxCNC’s Halscope will allow you to plot the torch
voltage and make informed decisions about the shortest safe delay is used.

Note
If the cut velocity is not near the desired cut speed at the end of this delay, the controller should wait
until this is achieved before enabling the THC.

2.7.9 Torch Voltage Sampling

Rather than relying on the manufacturer’s cut charts to set the desired torch voltage, many people
(the writer included) prefer to sample the voltage as the THC is enabled and use that as a set point.

2.7.10 Torch Breakaway

It is recommended that a mechanism is provided to allow the torch to “break away” or fall off in the
case of impact with the material or a cut part that has tipped up. A sensor should be installed to allow
the CNC controller to detect if this has occurred and pause the running program. Usually a break
away is implemented using magnets to secure the torch to the Z axis stage.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 72 / 1322

2.7.11 Corner Lock / Velocity Anti-Dive

The LinuxCNC trajectory planner is responsible for translating velocity and acceleration commands
into motion that obey the laws of physics. For example, motion will slow when negotiating a corner.
Whilst this is not a problem with milling machines or routers, this poses a particular problem for
plasma cutting as the arc voltage increases as motion slows. This will cause the THC to drive the
torch down. One of the enormous advantages of a THC control embedded within the LinuxCNC motion
controller is that it knows what is going on at all times. So it becomes a trivial matter to monitor the
current velocity (motion.current-velocity) and to hold THC operation if it falls below a set threshold
(e.g., 10% below the desired feedrate).

2.7.12 Void / Kerf Crossing

If the plasma torch passes over a void while cutting, arc voltage rapidly rises and the THC responds by
violent downward motion which can smash the torch into the material possibly damaging it. This is a
situation that is difficult to detect and handle. To a certain extent it can be mitigated by good nesting
techniques but can still occur on thicker material when a slug falls away. This is the one problem that
has yet to be solved within the LinuxCNC open source movement.
One suggested technique is to monitor the rate of change in torch Volts over time (dv/dt) because
this parameter is orders of magnitude higher when crossing a void than what occurs due to normal
warpage of the material. The following graph shows a low resolution plot of dv/dt (in blue) while
crossing a void. The red curve is a moving average of torch Volts.

So it should be possible to compare the moving average with the dv/dt and halt THC operation once
the dv/dt exceeds the normal range expected due to warpage. More work needs to be done in this
area to come up with a working solution in LinuxCNC.

2.7.13 Hole And Small Shape Cutting

It is recommended that you slow down cutting when cutting holes and small shapes.
John Moore says: “If you want details on cutting accurate small holes look up the sales sheets on
Hypertherm’s True Hole Technology also look on PlasmaSpider, user seanp has posted extensively on
his work using simple air plasma.
The generally accepted method to get good holes from 37mm dia. and down to material thickness
with minimal taper using an air plasma is:

1. Use recommended cutting current for consumables.

2. Use fixed (no THC) recommended cutting height for consumables.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 73 / 1322

3. Cut from 60% to 70% of the recommended feed rate of consumables and materials.

4. Start lead in at or near center of hole.

5. Use perpendicular lead in.

6. No lead out, either a slight over burn or early torch off depending on what works best for you.

You will need to experiment to get exact hole size because the kerf with this method will be wider
than your usual straight cut.”
This slow down can be achieved by manipulating the feed rate directly in your post processor or by
using adaptive feed and an analog pin as input. This lets you use M67/M68 to set the percentage of
desired feed to cut at.

• Knowing The Feedrate

From the preceding discussion it is evident that the plasma controller needs to know the feed rate
set by the user. This poses a problem with LinuxCNC because the Feedrate is not saved by LinuxCNC
after the G-code is buffered and parsed. There are two approaches to work around this:

1. Remap the F command and save the commanded feedrate set in G-code via an M67/M68 com-
mand.

2. Storing the cut charts in the plasma controller and allow the current feedrate be queried by the
G-code program (as QtPlasmaC does).

A feature newly added to LinuxCNC 2.9 that is useful for plasma cutting are the state tags. This adds
a “tag” that is available to motion containing the current feed and speed rates for all active motion
commands.

2.7.14 I/O Pins For Plasma Controllers

Plasma cutters require several additional pins. In LinuxCNC, there are no hard and fast rules about
which pin does what. In this discussion we will assume the plasma inverter has a CNC interface and
the controller card has active high inputs are in use (e.g., Mesa 7I76E).
Plasma tables can be large machines and we recommend that you take the time to install separate
max/min limit switches and homing switches for each joint. The exception might be the Z axis lower
limit. When a homing switch is triggered the joint decelerates fairly slowly for maximum accuracy.
This means that if you wish to use homing velocities that are commensurate with table size, you can
overshoot the initial trigger point by 50-100 mm. If you use a shared home/limit switch, you have to
move the sensor off the trigger point with the final HOME_OFFSET or you will trigger a limit switch
fault as the machine comes out of homing. This means you could lose 50 mm or more of axis travel
with shared home/limit switches. This does not happen if separate home and limit switches are used.
The following pins are usually required (note that suggested connections may not be appropriate for
a QtPlasmaC configuration):

2.7.14.1 Arc OK (input)

• Inverter closes dry contacts when a valid arc is established

• Connect Field power to one Inverter ArcOK terminal.

• Connect other Inverter Ok Terminal to input pin.

• Usually connected to one of the ̀ ̀motion.digital- ̀ <̀nn> pins for use from G-code with M66

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 74 / 1322

2.7.14.2 Torch On (output)

• Triggers a relay to close the torch on switch in the inverter.

• Connect the torch on terminals on the inverter to the relay output terminals.

• Connect one side of the coil to the output pin.

• Connect the other side of the coil to Field Power ground.

• If a mechanical relay is used, connect a flyback diode (e.g., IN400x series) across the coil terminals
with the band on the diode pointing towards the output pin.

• If a Solid State Relay is used, polarity may need to be observed on the outputs.

• In some circumstances, the onboard spindle relay on a Mesa card can be used instead of an external
relay.

• Usually connected to spindle.0.on.

Warning
It is strongly recommended that the torch cannot be enabled while this pin is false otherwise
the torch will not be extinguished when estop is pressed.

2.7.14.3 Float switch (input)

• Used for surface probing. A sensor or switch that is activated if the torch slides up when it hits the
material.

• Connect proximity sensor output to chosen input pin. If mechanical switches are used. Connect
one side of the switch to field power and the other side of the switch to input.

• Usually connected to motion.probe-input.

2.7.14.4 Ohmic Sensor enable (output)

• See the ohmic sensing schematic.

• Connect output pin to one side of the isolation relays and the other side to field power ground.

• In a non-QtPlasmaC configuration, usually triggered by a ̀ ̀motion.digital-out- ̀ <̀nn> so it can be
controlled in G-code by M62/M63/M64/M65.

2.7.14.5 Ohmic Sensing (input)

• Take care to follow the ohmic sensing schematic shown previously.

• An isolated power supply triggers a relay when the torch shield contacts the material.

• Connect field power to one output terminal and the other to the input.

• Take care to observe relay polarity if opto-coupled solid State relays are used.

• Usually connected to motion.probe-input and may be or’d with the float switch.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 75 / 1322

As can be seen, plasma tables are pin intensive and we have already consumed about 15 inputs before
the normal estops are added. Others have other views but it is the writer’s opinion that the Mesa
7I76E is preferred over the cheaper 7I96 to allow for MPG’s, scale and axis selection switch and other
features you may wish to add over time. If your table uses servos, there are a number of alternatives.
Whilst there are other suppliers, designing your machine around the Mesa ecosystem will simplify
use of their THCAD board to read arc voltage.

2.7.14.6 Torch Breakaway Sensor

• As mentioned earlier, a breakaway sensor should be installed that is triggered if the torch crashes
and falls off.

• Usually, this would be connected to halui.program-pause so the fault can be rectified and the
program resumed.

2.7.15 G-code For Plasma Controllers

Most plasma controllers offer a method to change settings from G-code. LinuxCNC support this via
M67/M68 for analog commands and M62-M65 for digital (on/off commands). How this is implemented is
totally arbitrary. Lets look at how the LinuxCNC QtPlasmaC configuration does this:
Select Material Settings in QtPlasmaC and Use the Feedrate for that Material.
M190 Pn
M66 P3 L3 Q1
F#<_hal[plasmac.cut-feed-rate]>
M3 S1

Note
Users with a very large number of entries in the QtPlasmaC Materials Table may need to increase the
Q parameter (e.g., from Q1 to Q2).

2.7.15.1 Enable/Disable THC Operation:

M62 P2 will disable THC (synchronised with motion)
M63 P2 will enable THC (synchronised with motion)
M64 P2 will disable THC (immediately)
M65 P2 will enable THC (immediately)

Reduce Cutting Speeds: (e.g., for hole cutting)
M67 E3 Q0 would set the velocity to 100% of requested~speed
M67 E3 Q40 would set the velocity to 40% of requested~speed
M67 E3 Q60 would set the velocity to 60% of requested~speed
M67 E3 Q100 would set the velocity to 100% of requested~speed

Cutter Compensation:
G41.1 D#<_hal[plasmac_run.kerf-width-f]> ; for left of programmed path
G42.1 D#<_hal[plasmac_run.kerf-width-f]> for right of programmed path
G40 to turn compensation off

Note
Integrators should familiarise themselves with the LinuxCNC documentation for the various LinuxCNC
G-code commands mentioned above.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 76 / 1322

2.7.16 External Offsets and Plasma Cutting

External Offsets were introduced to LinuxCNC with version 2.8. By external, it means that we can
apply an offset external to the G-code that the trajectory planner knows nothing about. It easiest
to explain with an example. Picture a lathe with an external offset being applied by a mathematical
formula to machine a lobe on a cam. So the lathe is blindly spinning around with the cut diameter set
to a fixed diameter and the external offset moves the tool in and out to machine the cam lobe via an
applied external offset. To configure our lathe to machine this cam, we need to allocate some portion
of the axis velocity and acceleration to external offsets or the tool can’t move. This is where the INI
variable OFFSET_AV_RATIO comes in. Say we decide we need to allocate 20% of the velocity and
acceleration to the external offset to the Z axis. We set this equal to 0.2. The consequence of this is
that your maximum velocity and acceleration for the Lathe’s Z axis is only 80% of what it could be.
External offsets are a very powerful method to make torch height adjustments to the Z axis via a
THC. But plasma is all about high velocities and rapid acceleration so it makes no sense to limit these
parameters. Fortunately in a plasma machine, the Z axis is either 100% controlled by the THC or it
isn’t. During the development of LinuxCNC’s external offsets it was recognised that Z axis motion
by G-code and by THC were mutually exclusive. This allows us to trick external offsets into giving
100 % of velocity and acceleration all of the time. We can do this by doubling the machine’s Z axis
velocity and acceleration settings in the INI file and set OFFSET_AV_RATIO = 0.5. That way 100% of
the maximum velocity and acceleration will be available for both probing and THC.
Example: On a metric machine with a NEMA23 motor with a direct drive to a 5 mm ball screw, 60 mm/s
maximum velocity and 700 mm/s2 acceleration were determined to be safe values without loss of steps.
For this machine, set the Z axis in the INI file as follows:
[AXIS_Z]
OFFSET_AV_RATIO = 0.5
MAX_VELOCITY = 120
MAX_ACCELERATION = 1400

The joint associated with this axis would have the velocity and acceleration variables set as follows:
[JOINT_n]
MAX_VELOCITY = 60
MAX_ACCELERATION = 700

For further information about external offsets (for version 2.8 or later) please read the [AXIS_<letter>]
Section of the INI file document and External Axis Offsets in the LinuxCNC documentation.

2.7.17 Reading Arc Voltage With The Mesa THCAD

The Mesa THCAD board is a remarkably well priced and accurate voltage to frequency converter that
is designed for the hostile noisy electrical environment associated with plasma cutting. Internally it
has a 0-10 V range. This range can be simply extended by the addition of some resistors as described
in the documentation. This board is available in three versions, the newer THCAD-5 with a 0-5 V
range, the THCAD-10 with a 0-10 Volt range and the THCAD-300 which is pre-calibrated for a 300 Volt
extended range. Each board is individually calibrated and a sticker is applied to the board that states
the frequency at 0 Volts and full scale. For use with LinuxCNC, it is recommended that the 1/32
divisor be selected by the appropriate link on the board. In this case, be sure to also divide the stated
frequencies by 32. This is more appropriate for the 1 kHz servo thread and also allows more time for
the THCAD to average and smooth the output.
There is a lot of confusion around how to decode the THCAD output. So let’s consider the Mesa 7I76E
and the THCAD-10 for a moment with the following hypothetical calibration data:

• Full scale � 928 kHz (928 kHz/32 = 29 kHz)

• 0 V � 121.6 kHz (121.6 kHz/32 = 3.8 kHz)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 77 / 1322

Because the full scale is 10 Volts, then the frequency per Volt is:
(29000 Hz - 3800 Hz) / 10 V = 2520 Hz per Volt
So assuming we have a 5 Volt input, the calculated frequency would be:
(2520 Hz/V * 5 V) + 3800 Hz = 16400 Hz
So now it should be fairly clear how to convert the frequency to its voltage equivalent:
Voltage = (frequency [Hz] - 3800 Hz) / (2520 Hz/V)

2.7.17.1 THCAD Connections

On the high voltage side:

• Connect the divided or raw arc voltage to IN+ and IN-

• Connect the interconnect cable shield to the Shield connection.

• Connect the other Shield terminal to frame ground.

Assuming it is connected to a Mesa 7I76E, connect the output to the spindle encoder input:

• THCAD +5 V to TB3 Pin 6 (+5 VP)

• THCAD -5 V to TB3 Pin 1 (GND)

• THCAD FOUT+ to TB3 Pin 7 (ENC A+)

• THCAD FOUT- to TB3 Pin 8 (ENC A-)

2.7.17.2 THCAD Initial Testing

Make sure you have the following lines in your INI file (assuming a Mesa 7I76E):
setp hm2_7i76e.0.encoder.00.scale -1
setp hm2_7i76e.0.encoder.00.counter-mode 1

Power up your controller and open Halshow (AXIS: Show Homing Configuration), drill down to find
the hm2_7i76e.0.encoder.00.velocity pin. With 0 Volts applied, it should be hovering around the
0 Volt frequency (3,800 in our example). Grab a 9 Volt battery and connect it to IN+ and IN-. For a
THCAD-10 you can now calculate the expected velocity (26,480 in our hypothetical example). If you
pass this test, then you are ready to configure your LinuxCNC plasma controller.

2.7.17.3 Which Model THCAD To Use?

The THCAD-5 is useful if you intend to use it for ohmic sensing. There is no doubt the THCAD-
10 is the more flexible device and it is easy to alter the scaling. However, there is one caveat that
can come into play with some cheaper plasma cutters with an inbuilt voltage divider. That is, the
internal resistors may be sensed by the THCAD as being part of its own external resistance and return
erroneous results. For example, the 16:1 divider on the Everlast plasma cutters needs to be treated
as 24:1 (and 50:1 becomes 75:1). This is not a problem with more reputable brands (e.g., Thermal
Dynamics, Hypertherm, ESAB etc). So if you are seeing lower than expected cutting voltages, it might
be preferable to reconfigure the THCAD to read raw arc voltage.
Remembering that plasma arc voltages are potentially lethal, here are some suggested criteria.
Pilot Arc Start Because there is not likely to be any significant EMI, you should be able to safely
install the THCAD in your control panel if you have followed our construction guidelines.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 78 / 1322

• If you do not have a voltage divider, either install scaling resistors inside the plasma cutter and
install the THCAD in the control panel or follow the suggestions for HF start machines.

• If you have a voltage divider, install a THCAD-10 in your control panel. We’ve had no problems with
this configuration with a 120 A Thermal Dynamics plasma cutter.

HF Start Install the THCAD at the inverter as the frequency signal is far more immune to EMI noise.

• If you do not have a voltage divider and you have room inside the plasma cutter, install a THCAD-300
inside the plasma cutter.

• If you do not have a voltage divider and you do not have room inside the plasma cutter, install a
THCAD-10 in a metal case outside the plasma cutter and install 50% of the scaling resistance on
each of the IN+ and IN- inside the plasma cutter case so no lethal voltages come out of the case.

• If you have a voltage divider, install a THCAD-10 in a metal case outside the plasma cutter

Raw Arc voltage presented on a connector In this case, regardless of the arc starting method,
there are probably already resistors included in the circuitry to avoid lethal shocks so a THCAD-10 is
advised so this resistance (typically 200 kΩ) can be accounted for when choosing a scaling resistor as
these resistors will distort the voltage reported by the THCAD-300.

2.7.18 Post Processors And Nesting

Plasma is no different to other CNC operations in that it is:

1. Designed in CAD (where it is output as a DXF or sometimes SVG format).

2. Processed in CAM to generate final G-code that is loaded to the machine

3. Cutting the parts via CNC G-code commands.

Some people achieve good results with Inkscape and G-code tools but SheetCam is a very well priced
solution and there are a number of post processors available for LinuxCNC. SheetCam has a number
of advanced features designed for plasma cutting and for the price, is a no brainer for anybody doing
regular plasma cutting.

2.7.19 Designing For Noisy Electrical Environments

Plasma cutting is inherently an extremely hostile and noisy electrical environment. If you have EMI
problems things won’t work correctly. You might fire the torch and the computer will reboot in a more
obvious example, but you can have any number of other odd symptoms. They will pretty much all
happen only when the torch is cutting - often when it is first fired.
Therefore, system builders should select components carefully and design from the ground up to cope
with this hostile environment to avoid the impact of Electro-Magnetic Interference (EMI). Failure to
do this could result in countless hours of fruitless troubleshooting.
Choosing ethernet boards such as the Mesa 7I76E or the cheaper 7I96 helps by allowing the PC to be
located away from the electronics and the plasma machine. This hardware also allows the use of 24
Volt logic systems which are much more noise tolerant. Components should be mounted in a metal
enclosure connected to the mains earth. It is strongly recommended that an EMI filter is installed on
the mains power connection. The simplest way is to use a EMI filtered mains power IEC connector
commonly used on PC’s and electric appliances which allows this to be achieved with no extra work.
Plan the layout of components in the enclosure so that mains power, high voltage motor wires and

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 79 / 1322

logic signals are kept as separate as possible from each other. If they do have to cross, keep them at
90 degrees.
Peter Wallace from Mesa Electronics suggests: ”If you have a CNC compatible plasma source with a
voltage divider, I would mount the THCAD inside your electronics enclosure with all the other motion
hardware. If you have a manual plasma source and you are reading raw plasma voltage, I would mount
the THCAD as close to the plasma source as possible (even inside the plasma source case if it fits). In
this case, make sure that all low side THCAD connections are fully isolated from the plasma source. If
you use a shielded box for the THCAD, the shield should connect to your electronic enclosure ground,
not the plasma source ground.”
It is recommended to run a separate earth wire from motor cases and the torch back to a central star
grounding point on the machine. Connect the plasma ground lead to this point and optionally an earth
rod driven into the ground as close as possible to the machine (particularly if its a HF start plasma
machine).
External wiring to motors should be shielded and appropriately sized to handle the current passing
through the circuit. The shield should be left unconnected at the motor end and earthed at the control
box end. Consider using an additional pin on any connectors into the control box so the earth can be
extended through into the control box and earthed to the chassis right at the stepper/servo motor
controller itself.
We are aware of at least one commercial system builder who has had problems with induced electrical
noise on the ohmic sensing circuit. Whilst this can be mitigated by using ferrite beads and coiling the
cable, adding a feed through power line filter is also recommended where the ohmic sensing signal
enters the electronics enclosure.
Tommy Berisha, the master of building plasma machines on a budget says: “If on a budget, consider
using old laptop power bricks. They are very good, filtering is good, completely isolated, current
limited (this becomes very important when something goes wrong), and fitting 2 or 3 of them in series
is easy as they are isolated. Be aware that some do have the grounding wired to the negative output
terminal, so it has to be disconnected, simply done by using a power cable with no ground contacts.”

2.7.20 Water Tables

The minimum water level under the cut level of the torch should be around 40 mm, having space under
slats is nice so the water can level and escape during cutting, having a bit of water above the metal
plate being cut is really nice as it gets rid of the little bit of dust, running it submerged is the best way
but not preferable for systems with part time use as it will corrode the torch. Adding baking soda to
the water will keep the table in a nice condition for many years as it does not allow corrosion while
the slats are under water and it also reduces the smell of water vapour. Some people use a water
reservoir with a compressed air inlet so they can push the water from the reservoir up to the water
table on demand and thus allow changes in water levels.

2.7.21 Downdraft Tables

Many commercial tables utilise a down draft design so fans are used to suck air down through the
slats to capture fumes and sparks. Often tables are zoned so only a section below the torch is opened
to the outgoing vent, often using air rams and air solenoids to open shutters. Triggering these zones
is relatively straightforward if you use the axis or joint position from one of the motion pins and the
lincurve component to map downdraft zones to the correct output pin.

2.7.22 Designing For Speed And Acceleration

In plasma cutting, speed and acceleration are king. The higher the acceleration, the less the machine
needs to slow down when negotiating corners. This implies that the gantry should be as light as

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 80 / 1322

possible without sacrificing torsional stiffness. A 100 mm x 100 mm x 2 mm aluminium box section
has equivalent torsional stiffness to an 80 mm x 80 mm T slot extrusion yet is 62% lighter. So does the
convenience of T slots outweigh the additional construction?

2.7.23 Distance Travelled Per Motor Revolution

Stepper motors suffer from resonance and a direct drive pinion is likely to mean that the motor is
operating under unfavourable conditions. Ideally, for plasma machines a distance of around 15-25 mm
per motor revolution is considered ideal but even around 30 mm per revolutions is still acceptable. A
5 mm pitch ball screw with a 3:1 or 5:1 reduction drive is ideal for the Z axis.

2.7.24 QtPlasmaC LinuxCNC Plasma Configuration

The QtPlasmaC which is comprised of a HAL component (plasmac.hal) plus a complete configurations
for the QtPlasmaC GUI has received considerable input from many in the LinuxCNC Open Source
movement that have advanced the understanding of plasma controllers since about 2015. There has
been much testing and development work in getting QtPlasmaC to its current working state. Ev-
erything from circuit design to G-code control and configuration has been included. Additionally,
QtPlasmaC supports external THC’s such as the Proma 150 but really comes into its own when paired
with a Mesa controller as this allows the integrator to include the Mesa THCAD voltage to frequency
converter which is purpose built to deal with the hostile plasma environment.
QtPlasmaC is designed to stand alone and includes the ability to include your cutting charts yet also
includes features to be used with a post processor like SheetCam.
The QtPlasmaC system is now included in Version 2.9 and above of LinuxCNC. It is now quite mature
and has been significantly enhanced since the first version of this guide was written. QtPlasmaC
will define LinuxCNC’s plasma support for many years to come as it includes all of the features a
proprietary high end plasma control system at an open source price.

2.7.25 Hypertherm RS485 Control

Some Hypertherm plasma cutters have a RS485 interface to allow the controller (e.g., LinuxCNC) to
set amps.pressure and mode. A number of people have used a non-realtime component written in
Python to achieve this. More recently, QtPlasmaC now supports this interface natively. Refer to the
QtPlasmaC documentation for how to use it.
The combination of a slow baud rate used by Hypertherm and the non-realtime component, make this
fairly slow to alter machine states so it generally not viable to change settings on the fly while cutting.
When selecting a RS485 interface to use at the PC end, users have reported that USB to RS485
interfaces are not reliable. Good reliable results have been achieved using a hardware based RS232
interface (e.g., PCI/PCIe or motherboard port) and an appropriate RS485 converter. Some users have
reported success with a Sunix P/N: SER5037A PCI RS2322 card a generic XC4136 RS232 to RS485
converter (which may sometimes include a USB cable as well).

2.7.26 Post Processors For Plasma Cutting

CAM programs (Computer Aided Manufacture) are the bridge between CAD (Computer Aided Design)
and the final CNC (Computer Numerical Control) operation. They often include a user configurable
post processor to define the code that is generated for a specific machine or dialect of G-code.
Many LinuxCNC users are perfectly happy with using Inkscape to convert SVG vector based files to
G-code. If you are using a plasma cutter for hobby or home use, consider this option.

./qtplasmac.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 81 / 1322

However, if your needs are more complex, probably the best and most reasonably priced solution
is SheetCam. SheetCam supports both Windows and Linux and post processors are available for it
including the QtPlasmaC configuration. SheetCam allows you to nest parts over a full sheet of material
and allows you to configure toolsets and code snippets to suit your needs. SheetCam post processors
are text files written in the Lua programming language and are generally easy to modify to suit your
exact requirements. For further information, consult the SheetCam web site and their support forum.
Another popular post-processor is included with the popular Fusion360 package but the included
post-processors will need some customisation.
LinuxCNC is a CNC application and discussions of CAM techniques other than this introductory dis-
cussion are out of scope of LinuxCNC.

https://sheetcam.com

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 82 / 1322

Chapter 3

Configuration Wizards

3.1 Stepper Configuration Wizard

3.1.1 Introduction

LinuxCNC is capable of controlling a wide range of machinery using many different hardware inter-
faces.
StepConf is a program that generates configuration files for LinuxCNC for a specific class of CNC
machine: those that are controlled via a standard parallel port, and controlled by signals of type step
& direction.
StepConf is installed when you install LinuxCNC and is in the CNC menu.
StepConf places a file in the linuxcnc/config directory to store the choices for each configuration you
create. When you change something, you need to pick the file that matches your configuration name.
The file extension is .stepconf.
The StepConf Wizard works best with at least 800 x 600 screen resolution.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 83 / 1322

3.1.2 Start Page

Figure 3.1: StepConf Entry Page

The three first radio buttons are self-explanatory:

• Create New - Creates a fresh configuration.

• Modify - Modify an existing configuration. After selecting this a file picker pops up so you can select
the .stepconf file for modification. If you made any modifications to the main HAL or the INI file
these will be lost. Modifications to custom.hal and custom_postgui.hal will not be changed by the
StepConf Wizard. StepConf will highlight the lastconf that was built.

• Import - Import a Mach configuration file and attempt to convert it to a LinuxCNC config file. After
the import, you will go though the pages of StepConf to confirm/modify the entries. The original
mach XML file will not be changed.

These next options will be recorded in a preference file for the next run of StepConf.

• Create Desktop Shortcut - This will place a link on your desktop to the files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 84 / 1322

• Create Desktop Launcher - This will place a launcher on your desktop to start your application.

• Create Simulated Hardware - This allows you to build a config for testing, even if you don’t have
the actual hardware.

3.1.3 Basic Information

Figure 3.2: Basic Information Page

• Create Simulated Hardware - This allows you to build a config for testing, even if you don’t have
the actual hardware.

• Machine Name - Choose a name for your machine. Use only uppercase letters, lowercase letters,
digits, - and _.

• Axis Configuration - Choose XYZ (Mill), XYZA (4-axis mill) or XZ (Lathe).

• Machine Units - Choose Inch or mm. All subsequent entries will be in the chosen units. Changing
this also changes the default values in the Axes section. If you change this after selecting values in
any of the axes sections, they will be over-written by the default values of the selected units.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 85 / 1322

• Driver Type - If you have one of the stepper drivers listed in the pull down box, choose it. Otherwise,
select Other and find the timing values in your driver’s data sheet and enter them as nano seconds
in the Driver Timing Settings. If the data sheet gives a value in microseconds, multiply by 1000.
For example, enter 4.5 µs as 4500 ns.
A list of some popular drives, along with their timing values, is on the LinuxCNC.org Wiki under
Stepper Drive Timing.
Additional signal conditioning or isolation such as optocouplers and RC filters on break out boards
can impose timing constraints of their own, in addition to those of the driver. You may find it
necessary to add some time to the drive requirements to allow for this.
The LinuxCNC Configuration Selector has configs for Sherline already configured. * Step Time -
How long the step pulse is on in nano seconds. If your not sure about this setting a value of 20,000
will work with most drives. * Step Space - Minimum time between step pulses in nano seconds.
If your not sure about this setting a value of 20,000 will work with most drives. * Direction Hold
- How long the direction pin is held after a change of direction in nanoseconds. If your not sure
about this setting a value of 20,000 will work with most drives. * Direction Setup - How long before
a direction change after the last step pulse in nanoseconds. If your not sure about this setting a
value of 20,000 will work with most drives. * One / Two Parport - Select how many parallel port are
to be configured. * Base Period Maximum Jitter - Enter the result of the Latency Test here. To run a
latency test press the Test Base Period Jitter button. See the Latency Test section for more details.

Figure 3.3: Latency Test

• Max Step Rate - StepConf automatically calculates the Max Step Rate based on the driver charac-
teristics entered and the latency test result.

• Min Base Period - StepConf automatically determines the Min Base Period based on the driver
characteristics entered and latency test result.

The important number from the result of the Latency Test is the max jitter. In the example above,
9075 nanoseconds (ns), or 9.075 microseconds (µs), is the highest jitter. Enter the max jitter it in the
Base Period Maximum Jitter box.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 86 / 1322

3.1.4 Parallel Port Setup

Figure 3.4: Parallel Port Setup Page

You may specify the address as a hexadecimal (often 0x378) or as linux’s default port number (probably
0)
For each pin, choose the signal which matches your parallel port pinout. Turn on the invert check box
if the signal is inverted (0V for true/active, 5V for false/inactive).

• Output pinout presets - Automatically set pins 2 through 9 according to the Sherline standard (Di-
rection on pins 2, 4, 6, 8) or the Xylotex standard (Direction on pins 3, 5, 7, 9).

• Inputs and Outputs - If the input or output is not used set the option to Unused.

• External E-Stop - This can be selected from an input pin drop down box. A typical E-Stop chain uses
all normally closed contacts.

• Homing & Limit Switches - These can be selected from an input pin drop down box for most config-
urations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 87 / 1322

• Charge Pump - If your driver board requires a charge pump signal select Charge Pump from the
drop down list for the output pin you wish to connect to your charge pump input. The charge pump
output is connected to the base thread by StepConf. The charge pump output will be about 1/2 of
the maximum step rate shown on the Basic Machine Configuration page.

• Plasma Arc Voltage - If you require a Mesa THCAD to input a plasma arc voltage then select Plasma
Arc Voltage from the list of output pins. This will enable a THCAD page during the setup procedure
for the entry of the card parameters.

3.1.5 Parallel Port 2 Setup

Figure 3.5: Parallel Port 2 Setup Page

The second Parallel port (if selected) can be configured and It’s pins assigned on this page. No step and
direction signals can be selected. You may select in or out to maximizes the number of input/output
pins that are available. You may specify the address as a hexadecimal (often 0x378) or as linux’s
default port number (probably 1).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 88 / 1322

3.1.6 Axis Configuration

Figure 3.6: Axis Configuration Screen

• Motor Steps Per Revolution - The number of full steps per motor revolution. If you know how many
degrees per step the motor is (e.g., 1.8 degree), then divide 360 by the degrees per step to find the
number of steps per motor revolution.

• Driver Microstepping - The amount of microstepping performed by the driver. Enter 2 for half-
stepping.

• Pulley Ratio - If your machine has pulleys between the motor and leadscrew, enter the ratio here.
If not, enter 1:1.

• Leadscrew Pitch - Enter the pitch of the leadscrew here. If you chose Inch units, enter the number
of threads per inch. If you chose mm units, enter the number of millimeters per revolution (e.g.,
enter 2 for 2mm/rev). If the machine travels in the wrong direction, enter a negative number here
instead of a positive number, or invert the direction pin for the axis.

• Maximum Velocity - Enter the maximum velocity for the axis in units per second.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 89 / 1322

• Maximum Acceleration - The correct values for these items can only be determined through exper-
imentation. See Finding Maximum Velocity to set the speed and Finding Maximum Acceleration to
set the acceleration.

• Home Location - The position the machine moves to after completing the homing procedure for this
axis. For machines without home switches, this is the location the operator manually moves the
machine to before pressing the Home button. If you combine the home and limit switches you must
move off of the switch to the home position or you will get a joint limit error.

• Table Travel - The range of travel for that axis based on the machine origin. The home location must
be inside the Table Travel and not equal to one of the Table Travel values.

• Home Switch Location - The location at which the home switch trips or releases relative to the
machine origin. This item and the two below only appear when Home Switches were chosen in the
Parallel Port Pinout. If you combine home and limit switches the home switch location can not be
the same as the home position or you will get a joint limit error.

• Home Search Velocity - The velocity to use when searching for the home switch. If the switch is
near the end of travel, this velocity must be chosen so that the axis can decelerate to a stop before
hitting the end of travel. If the switch is only closed for a short range of travel (instead of being
closed from its trip point to one end of travel), this velocity must be chosen so that the axis can
decelerate to a stop before the switch opens again, and homing must always be started from the
same side of the switch. If the machine moves the wrong direction at the beginning of the homing
procedure, negate the value of Home Search Velocity.

• Home Latch Direction - Choose Same to have the axis back off the switch, then approach it again
at a very low speed. The second time the switch closes, the home position is set. Choose Opposite
to have the axis back off the switch and when the switch opens, the home position is set.

• Time to accelerate to max speed - Time to reach maximum speed calculated from Max Acceleration
and Max Velocity.

• Distance to accelerate to max speed - Distance to reach maximum speed from a standstill.

• Pulse rate at max speed - Information computed based on the values entered above. The greatest
Pulse rate at max speed determines the BASE_PERIOD. Values above 20000Hz may lead to slow
response time or even lockups (the fastest usable pulse rate varies from computer to computer)

• Axis SCALE - The number that will be used in the INI file [SCALE] setting. This is how many steps
per user unit.

• Test this axis - This will open a window to allow testing for each axis. This can be used after filling
out all the information for this axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 90 / 1322

Figure 3.7: Axis Test

Test this axis is a basic tester that only outputs step and direction signals to try different values for
acceleration and velocity.

Important
In order to use test this axis you have to manually enable the axis if this is required. If your
driver has a charge pump you will have to bypass it. Test this axis does not react to limit switch
inputs. Use with caution.

3.1.6.1 Finding Maximum Velocity

Begin with a low Acceleration (for example, 2 inches/s2 or 50 mm/s2) and the velocity you hope to
attain. Using the buttons provided, jog the axis to near the center of travel. Take care because with
a low acceleration value, it can take a surprising distance for the axis to decelerate to a stop.
After gauging the amount of travel available, enter a safe distance in Test Area, keeping in mind that
after a stall the motor may next start to move in an unexpected direction. Then click Run. The machine
will begin to move back and forth along this axis. In this test, it is important that the combination of
Acceleration and Test Area allow the machine to reach the selected Velocity and cruise for at least
a short distance — the more distance, the better this test is. The formula d = 0.5 * v * v/a gives
the minimum distance required to reach the specified velocity with the given acceleration. If it is
convenient and safe to do so, push the table against the direction of motion to simulate cutting forces.
If the machine stalls, reduce the speed and start the test again.
If the machine did not obviously stall, click the Run button off. The axis now returns to the position
where it started. If the position is incorrect, then the axis stalled or lost steps during the test. Reduce
Velocity and start the test again.
If the machine doesn’t move, stalls, or loses steps, no matter how low you turn Velocity, verify the
following:

• Correct step waveform timings

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 91 / 1322

• Correct pinout, including Invert on step pins

• Correct, well-shielded cabling

• Physical problems with the motor, motor coupling, leadscrew, etc.

Once you have found a speed at which the axis does not stall or lose steps during this testing procedure,
reduce it by 10% and use that as the axis Maximum Velocity.

3.1.6.2 Finding Maximum Acceleration

With the Maximum Velocity you found in the previous step, enter the acceleration value to test. Using
the same procedure as above, adjust the Acceleration value up or down as necessary. In this test, it is
important that the combination of Acceleration and Test Area allow the machine to reach the selected
Velocity. Once you have found a value at which the axis does not stall or lose steps during this testing
procedure, reduce it by 10% and use that as the axis Maximum Acceleration.

3.1.7 Spindle Configuration

Figure 3.8: Spindle Configuration Page

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 92 / 1322

This page only appears when Spindle PWM is chosen in the Parallel Port Pinout page for one of the
outputs.

3.1.7.1 Spindle Speed Control

If Spindle PWM appears on the pinout, the following information should be entered:

• PWM Rate - The carrier frequency of the PWM signal to the spindle. Enter 0 for PDM mode, which
is useful for generating an analog control voltage. Refer to the documentation for your spindle
controller for the appropriate value.

• Speed 1 and 2, PWM 1 and 2 - The generated configuration file uses a simple linear relationship
to determine the PWM value for a given RPM value. If the values are not known, they can be
determined. For more information see Determining Spindle Calibration.

3.1.7.2 Spindle-synchronized motion

When the appropriate signals from a spindle encoder are connected to LinuxCNC via HAL, LinuxCNC
supports lathe threading. These signals are:

• Spindle Index - Is a pulse that occurs once per revolution of the spindle.

• Spindle Phase A - This is a pulse that occurs in multiple equally-spaced locations as the spindle
turns.

• Spindle Phase B (optional) - This is a second pulse that occurs, but with an offset from Spindle
Phase A. The advantages to using both A and B are direction sensing, increased noise immunity,
and increased resolution.

If Spindle Phase A and Spindle Index appear on the pinout, the following information should be en-
tered:

• Use Spindle-At-Speed - With encoder feedback one can choose to have LinuxCNC wait for the spindle
to reach the commanded speed before feed moves. Select this option and set the close enough scale.

• Speed Display Filter Gain - Setting for adjusting the stability of the visual spindle speed display.

• Cycles per revolution - The number of cycles of the Spindle A signal during one revolution of the
spindle. This option is only enabled when an input has been set to Spindle Phase A

• Maximum speed in thread - The maximum spindle speed used in threading. For a high spindle RPM
or a spindle encoder with high resolution, a low value of BASE_PERIOD is required.

3.1.7.3 Determining Spindle Calibration

Enter the following values in the Spindle Configuration page:

Speed 1: 0 PWM 1: 0
Speed 2: 1000 PWM 2: 1

Finish the remaining steps of the configuration process, then launch LinuxCNC with your configura-
tion. Turn the machine on and select the MDI tab. Start the spindle turning by entering: M3 S100.
Change the spindle speed by entering a different S-number: S800. Valid numbers (at this point) range
from 1 to 1000.
For two different S-numbers, measure the actual spindle speed in RPM. Record the S-numbers and
actual spindle speeds. Run StepConf again. For Speed enter the measured speed, and for PWM enter
the S-number divided by 1000.
Because most spindle drivers are somewhat nonlinear in their response curves, it is best to:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 93 / 1322

• Make sure the two calibration speeds are not too close together in RPM.

• Make sure the two calibration speeds are in the range of speeds you will typically use while milling.

For instance, if your spindle will go from 0 RPM to 8000 RPM, but you generally use speeds from 400
RPM (10%) to 4000 RPM (100%), then find the PWM values that give 1600 RPM (40%) and 2800 RPM
(70%).

3.1.8 Options

Figure 3.9: Advanced Options Configuration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 94 / 1322

• Include Halui - This will add the Halui user interface component. See the HALUI Chapter for more
information on.

• Include PyVCP - This option adds the PyVCP panel base file or a sample file to work on. See the
PyVCP Chapter for more information.

• Include ClassicLadder PLC - This option will add the ClassicLadder PLC (Programmable Logic Con-
troller). See the ClassicLadder Chapter for more information.

• Onscreen Prompt For Tool Change - If this box is checked, LinuxCNC will pause and prompt you to
change the tool when M6 is encountered. This feature is usually only useful if you have presettable
tools.

3.1.9 Complete Machine Configuration

Click Apply to write the configuration files. Later, you can re-run this program and tweak the settings
you entered before.

3.1.10 Axis Travels and Homes

Figure 3.10: Axis Travel and Home

For each axis, there is a limited range of travel. The physical end of travel is called the hard stop.

Warning
If a mechanical hard stop were to be exceeded, the screw or the machine frame would be
damaged!

Before the hard stop there is a limit switch. If the limit switch is encountered during normal operation,
LinuxCNC shuts down the motor amplifier. The distance between the hard stop and limit switch must
be long enough to allow an unpowered motor to coast to a stop.
Before the limit switch there is a soft limit. This is a limit enforced in software after homing. If a MDI
command or G-code program would pass the soft limit, it is not executed. If a jog would pass the soft
limit, it is terminated at the soft limit.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 95 / 1322

The home switch can be placed anywhere within the travel (between hard stops). As long as external
hardware does not deactivate the motor amplifiers when the limit switch is reached, one of the limit
switches can be used as a home switch.
The zero position is the location on the axis that is 0 in the machine coordinate system. Usually the
zero position will be within the soft limits. On lathes, constant surface speed mode requires that
machine X=0 correspond to the center of spindle rotation when no tool offset is in effect.
The home position is the location within travel that the axis will be moved to at the end of the homing
sequence. This value must be within the soft limits. In particular, the home position should never be
exactly equal to a soft limit.

3.1.10.1 Operating without Limit Switches

A machine can be operated without limit switches. In this case, only the soft limits stop the machine
from reaching the hard stop. Soft limits only operate after the machine has been homed.

3.1.10.2 Operating without Home Switches

A machine can be operated without home switches. If the machine has limit switches, but no home
switches, it is best to use a limit switch as the home switch (e.g., choose Minimum Limit + Home X
in the pinout). If the machine has no switches at all, or the limit switches cannot be used as home
switches for another reason, then the machine must be homed by eye or by using match marks.
Homing by eye is not as repeatable as homing to switches, but it still allows the soft limits to be
useful.

3.1.10.3 Home and Limit Switch wiring options

The ideal wiring for external switches would be one input per switch. However, the PC parallel port
only offers a total of 5 inputs, while there are as many as 9 switches on a 3-axis machine. Instead,
multiple switches are wired together in various ways so that a smaller number of inputs are required.
The figures below show the general idea of wiring multiple switches to a single input pin. In each
case, when one switch is actuated, the value seen on INPUT goes from logic HIGH to LOW. However,
LinuxCNC expects a TRUE value when a switch is closed, so the corresponding Invert box must be
checked on the pinout configuration page. The pull up resistor show in the diagrams pulls the input
high until the connection to ground is made and then the input goes low. Otherwise the input might
float between on and off when the circuit is open. Typically for a parallel port you might use 47 kΩ;.

Figure 3.11: Normally Closed Switches (N/C) wiring in series (simplified diagram)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 96 / 1322

Figure 3.12: Normally Open Switches (N/O) wiring in parallel (simplified diagram)

The following combinations of switches are permitted in StepConf:

• Combine home switches for all axes

• Combine limit switches for all axes

• Combine both limit switches for one axis

• Combine both limit switches and the home switch for one axis

• Combine one limit switch and the home switch for one axis

The last two combinations are also appropriate when the type contact + home is used.

3.2 Mesa Configuration Wizard

PnCconf is made to help build configurations that utilize specific Mesa Anything I/O products.
It can configure closed loop servo systems or hardware stepper systems. It uses a similar wizard
approach as StepConf (used for software stepping, parallel port driven systems).
PnCconf is still in a development stage (Beta) so there are some bugs and lacking features. Please
report bugs and suggestions to the LinuxCNC forum page or mailing list.
There are two trains of thought when using PnCconf:
One is to use PnCconf to always configure your system - if you decide to change options, reload
PnCconf and allow it to configure the new options. This will work well if your machine is fairly standard
and you can use custom files to add non standard features. PnCconf tries to work with you in this
regard.
The other is to use PnCconf to build a config that is close to what you want and then hand edit every-
thing to tailor it to your needs. This would be the choice if you need extensive modifications beyond
PnCconf’s scope or just want to tinker with / learn about LinuxCNC.
You navigate the wizard pages with the forward, back, and cancel buttons there is also a help button
that gives some help information about the pages, diagrams and an output page.

Tip
PnCconf’s help page should have the most up to date info and has additional details.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 97 / 1322

3.2.1 Step by Step Instructions

Figure 3.13: PnCconf Splash

3.2.2 Create or Edit

This allows you to select a previously saved configuration or create a new one. If you pick Modify a
configuration and then press Next a file selection box will show. PnCconf preselects your last saved
file. Choose the config you wish to edit. If you made any changes to the main HAL or INI files PnCconf
will overwrite those files and those changes will be lost. Some files will not be over written and
PnCconf places a note in those files. It also allows you to select desktop shortcut / launcher options.
A desktop shortcut will place a folder icon on the desktop that points to your new configuration files.
Otherwise you would have to look in your home folder under linuxcnc/configs.
A Desktop launcher will add an icon to the desktop for starting your config directly. You can also
launch it from the main menu by using the Configuration Selector LinuxCNC found in CNC menu and
selecting your config name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 98 / 1322

3.2.3 Basic Machine Information

Figure 3.14: PnCconf Basic

Machine Basics
If you use a name with spaces PnCconf will replace the spaces with underscores (as a loose rule
Linux doesn’t like spaces in names). Picking an axis configuration selects what type of machine
you are building and what axes are available. The ”Machine units” selector allows data entry of
metric or imperial units in later steps in the configuration process.

Tip
Defaults are not converted when using metric so make sure they are sane values!

Computer Response Time
The servo period sets the heart beat of the system. Latency describes the difference between
the time that the system is scheduled to perform and action and the time that it actually does

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 99 / 1322

perform the action. Just like a railroad, LinuxCNC requires everything on a very tight and consis-
tent timeline or bad things happen. LinuxCNC requires and uses a real-time operating system,
which just means it has a low-latency (lateness) response time. When LinuxCNC requires and is
performing calculations, it cannot be interrupted by lower priority requests (such as user input
to screen buttons or drawing etc).

Testing the latency is crucial and a key thing to check before proceeding further. Please follow the
directions on the Latency Test page before proceeding further.
Now we are happy with the latency and must pick a servo period. In most cases a servo period of
1000000 ns is fine (that gives a 1 kHz servo calculation rate - 1000 calculations a second). If you
are building a closed loop servo system that controls torque (current) rather than velocity (voltage)
a faster rate would be better - something like 200000 (5 kHz calculation rate). The problem with
lowering the servo rate is that it leaves less time available for the computer to do other things besides
LinuxCNC’s calculations. Typically the display (GUI) becomes less responsive. You must decide on a
balance. Keep in mind that if you tune your closed loop servo system then change the servo period
you probably will need to tune them again.

I/O Control Ports/Boards
PnCconf is capable of configuring machines that have up to two Mesa boards and three parallel
ports. Parallel ports can only be used for simple low speed (servo rate) I/O.

Mesa
You must choose at least one Mesa board as PnCconf will not configure the parallel ports to count
encoders or output step or PWM signals. The mesa cards available in the selection box are based
on what PnCconf finds for firmware on the systems. There are options to add custom firmware
and/or blacklist (ignore) some firmware or boards using a preference file. If no firmware is found
PnCconf will show a warning and use internal sample firmware - no testing will be possible. One
point to note is that if you choose two PCI Mesa cards there currently is no way to predict which
card is 0 and which is 1 - you must test - moving the cards could change their order. If you
configure with two cards both cards must be installed for tests to function.

Parallel Port
Up to 3 parallel ports (referred to as parports) can be used as simple I/O. You must set the address
of the parport. You can either enter the Linux parallel port numbering system (0,1,or 2) or enter
the actual address. The address for an on board parport is often 0x0278 or 0x0378 (written in
hexadecimal) but can be found in the BIOS page. The BIOS page is found when you first start
your computer you must press a key to enter it (such as F2). On the BIOS page you can find
the parallel port address and set the mode such as SPP, EPP, etc on some computers this info is
displayed for a few seconds during start up. For PCI parallel port cards the address can be found
by pressing the parport address search button. This pops up the help output page with a list of
all the PCI devices that can be found. In there should be a reference to a parallel port device
with a list of addresses. One of those addresses should work. Not all PCI parallel ports work
properly. Either type can be selected as in (maximum amount of input pins) or out (maximum
amount of output pins).

GUI Front-end list
This specifies the graphical display screens LinuxCNC will use. Each one has different option.

AXIS

• fully supports lathes.

• is the most developed and used front-end

• is designed to be used with mouse and keyboard

• is tkinter based so integrates PyVCP (Python based virtual control panels) naturally.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 100 / 1322

• has a 3D graphical window.

• allows VCP integrated on the side or in center tab

TkLinuxCNC

• hi contrast bright blue screen

• separate graphics window

• no VCP integration

Touchy

• Touchy was designed to be used with a touchscreen, some minimal physical switches and a MPG
wheel.

• requires cycle-start, abort, and single-step signals and buttons

• It also requires shared axis MPG jogging to be selected.

• is GTK based so integrates GladeVCP (virtual control panels) naturally.

• allows VCP panels integrated in the center Tab

• has no graphical window

• look can be changed with custom themes

QtPlasmaC

• fully featured plasmac configuration based on the QtVCP infrastructure.

• mouse/keyboard operation or touchscreen operation

• no VCP integration

3.2.4 External Configuration

This page allows you to select external controls such as for jogging or overrides.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 101 / 1322

Figure 3.15: External Controls

If you select a Joystick for jogging, You will need it always connected for LinuxCNC to load. To use
the analog sticks for useful jogging you probably need to add some custom HAL code. MPG jogging
requires a pulse generator connected to a MESA encoder counter. Override controls can either use
a pulse generator (MPG) or switches (such as a rotary dial). External buttons might be used with a
switch based OEM joystick.

Joystick jogging
Requires a custom device rule to be installed in the system. This is a file that LinuxCNC uses to
connect to Linux’s device list. PnCconf will help to prepare this file.

• Search for device rule will search the system for rules, you can use this to find the name of
devices you have already built with PnCconf.

• Add a device rule will allow you to configure a new device by following the prompts. You will
need your device available.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 102 / 1322

• test device allows you to load a device, see its pin names and check its functions with halmeter.

joystick jogging uses HALUI and hal_input components.

External buttons
allows jogging the axis with simple buttons at a specified jog rate. Probably best for rapid jogging.

MPG Jogging
Allows you to use a Manual Pulse Generator to jog the machine’s axis.

MPG’s are often found on commercial grade machines. They output quadrature pulses that can be
counted with a MESA encoder counter. PnCconf allows for an MPG per axis or one MPG shared with
all axis. It allows for selection of jog speeds using switches or a single speed.
The selectable increments option uses the mux16 component. This component has options such as
debounce and gray code to help filter the raw switch input.

Overrides
PnCconf allows overrides of feed rates and/or spindle speed using a pulse generator (MPG) or
switches (eg. rotary).

3.2.5 GUI Configuration

Here you can set defaults for the display screens, add virtual control panels (VCP), and set some
LinuxCNC options..

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 103 / 1322

Figure 3.16: GUI Configuration

Front-end GUI Options
The default options allows general defaults to be chosen for any display screen.

AXIS defaults are options specific to AXIS. If you choose size, position or force maximize options then
PnCconf will ask if it is alright to overwrite a preference file (.axisrc). Unless you have manually added
commands to this file it is fine to allow it. Position and force max can be used to move AXIS to a second
monitor if the system is capable.
Touchy defaults are options specific to Touchy. Most of Touchy’s options can be changed while Touchy
is running using the preference page. Touchy uses GTK to draw its screen, and GTK supports themes.
Themes controls the basic look and feel of a program. You can download themes from the net or edit
them yourself. There are a list of the current themes on the computer that you can pick from. To help
some of the text to stand out PnCconf allows you to override the Themes’s defaults. The position and
force max options can be used to move Touchy to a second monitor if the system is capable.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 104 / 1322

QtPlasmaC options are specific to QtPlasmac, any common options that are not required will be dis-
abled. If QtPlasmac is selected then the following screen will be a user button setup screen that is
specific to QtPlasmaC and VCP options will not be available.

VCP options
Virtual Control Panels allow one to add custom controls and displays to the screen. AXIS and
Touchy can integrate these controls inside the screen in designated positions. There are two
kinds of VCPs - PyVCP which uses Tkinter to draw the screen and GladeVCP that uses GTK to
draw the screen.

PyVCP
PyVCPs screen XML file can only be hand built. PyVCPs fit naturally in with AXIS as they both
use TKinter.

HAL pins are created for the user to connect to inside their custom HAL file. There is a sample spindle
display panel for the user to use as-is or build on. You may select a blank file that you can later add
your controls widgets to or select a spindle display sample that will display spindle speed and indicate
if the spindle is at requested speed.
PnCconf will connect the proper spindle display HAL pins for you. If you are using AXIS then the panel
will be integrated on the right side. If not using AXIS then the panel will be separate stand-alone from
the front-end screen.
You can use the geometry options to size and move the panel, for instance to move it to a second
screen if the system is capable. If you press the Display sample panel button the size and placement
options will be honored.

GladeVCP
GladeVCPs fit naturally inside of Touchy screen as they both use GTK to draw them, but by
changing GladeVCP’s theme it can be made to blend pretty well in AXIS (try Redmond).

It uses a graphical editor to build its XML files. HAL pins are created for the user to connect to, inside
of their custom HAL file.
GladeVCP also allows much more sophisticated (and complicated) programming interaction, which
PnCconf currently doesn’t leverage (see GladeVCP in the manual).
PnCconf has sample panels for the user to use as-is or build on. With GladeVCP PnCconf will allow
you to select different options on your sample display.
Under sample options select which ones you would like. The zero buttons use HALUI commands which
you could edit later in the HALUI section.
Auto Z touch-off also requires the classic ladder touch-off program and a probe input selected. It
requires a conductive touch-off plate and a grounded conductive tool. For an idea on how it works
see:
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?ClassicLadderExamples#Single_button_probe_touchoff
Under Display Options, size, position, and force max can be used on a stand-alone panel for such
things as placing the screen on a second monitor if the system is capable.
You can select a GTK theme which sets the basic look and feel of the panel. You Usually want this to
match the front-end screen. These options will be used if you press the Display sample button. With
GladeVCP depending on the front-end screen, you can select where the panel will display.
You can force it to be stand-alone or with AXIS it can be in the center or on the right side, with Touchy
it can be in the center.

Defaults and Options

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?ClassicLadderExamples#Single_button_probe_touchoff

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 105 / 1322

• Require homing before MDI / Running
– If you want to be able to move the machine before homing uncheck this checkbox.

• Popup Tool Prompt
– Choose between an on screen prompt for tool changes or export standard signal names for

a User supplied custom tool changer HAL file
• Leave spindle on during tool change:
– Used for lathes

• Force individual manual homing
• Move spindle up before tool change
• Restore joint position after shutdown
– Used for non-trivial kinematics machines

• Random position tool changers
– Used for tool changers that do not return the tool to the same pocket. You will need to add

custom HAL code to support tool changers.

3.2.6 Mesa Configuration

The Mesa configuration pages allow one to utilize different firmwares. On the basic page you selected
a Mesa card here you pick the available firmware and select what and how many components are
available.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 106 / 1322

Figure 3.17: Mesa Board Configuration

Parport address is used only with Mesa parport card, the 7i43. An on board parallel port usually uses
0x278 or 0x378 though you should be able to find the address from the BIOS page. The 7i43 requires
the parallel port to use the EPP mode, again set in the BIOS page. If using a PCI parallel port the
address can be searched for by using the search button on the basic page.

Note
Many PCI cards do not support the EPP protocol properly.

PDM PWM and 3PWM base frequency sets the balance between ripple and linearity. If using Mesa
daughter boards the docs for the board should give recommendations.

Important
It’s important to follow these to avoid damage and get the best performance.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 107 / 1322

The 7i33 requires PDM and a PDM base frequency of 6 MHz
The 7i29 requires PWM and a PWM base frequency of 20 kHz
The 7i30 requires PWM and a PWM base frequency of 20 kHz
The 7i40 requires PWM and a PWM base frequency of 50 kHz
The 7i48 requires UDM and a PWM base frequency of 24 kHz

Watchdog time out
is used to set how long the MESA board will wait before killing outputs if communication is
interrupted from the computer. Please remember Mesa uses active low outputs meaning that
when the output pin is on, it is low (approx 0 volts) and if it is off the output in high (approx 5
volts) make sure your equipment is safe when in the off (watchdog bitten) state.

Number of coders/PWM generators/STEP generators
You may choose the number of available components by deselecting unused ones. Not all com-
ponent types are available with all firmware.

Choosing less then the maximum number of components allows one to gain more GPIO pins. If using
daughter boards keep in mind you must not deselect pins that the card uses. For instance some
firmware supports two 7i33 cards, If you only have one you may deselect enough components to
utilize the connector that supported the second 7i33. Components are deselected numerically by the
highest number first then down with out skipping a number. If by doing this the components are not
where you want them then you must use a different firmware. The firmware dictates where, what and
the max amounts of the components. Custom firmware is possible, ask nicely when contacting the
LinuxCNC developers and Mesa. Using custom firmware in PnCconf requires special procedures and
is not always possible - though I try to make PnCconf as flexible as possible.
After choosing all these options press the Accept Component Changes button and PnCconf will update
the I/O setup pages. Only I/O tabs will be shown for available connectors, depending on the Mesa
board.

3.2.7 Mesa I/O Setup

The tabs are used to configure the input and output pins of the Mesa boards. PnCconf allows one to
create custom signal names for use in custom HAL files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 108 / 1322

Figure 3.18: Mesa I/O C2 Setup

On this tab with this firmware the components are setup for a 7i33 daughter board, usually used with
closed loop servos. Note the component numbers of the encoder counters and PWM drivers are not
in numerical order. This follows the daughter board requirements.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 109 / 1322

Figure 3.19: Mesa I/O C3 Setup

On this tab all the pins are GPIO. Note the 3 digit numbers - they will match the HAL pin number.
GPIO pins can be selected as input or output and can be inverted.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 110 / 1322

Figure 3.20: Mesa I/O C4 Setup

On this tab there are a mix of step generators and GPIO. Step generators output and direction pins
can be inverted. Note that inverting a Step Gen-A pin (the step output pin) changes the step timing.
It should match what your controller expects.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 111 / 1322

3.2.8 Parallel port configuration

The parallel port can be used for simple I/O similar to Mesa’s GPIO pins.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 112 / 1322

3.2.9 Axis Configuration

Figure 3.21: Axis Drive Configuration

This page allows configuring and testing of the motor and/or encoder combination. If using a servo
motor an open loop test is available, if using a stepper a tuning test is available.

Open Loop Test
An open loop test is important as it confirms the direction of the motor and encoder. The motor
should move the axis in the positive direction when the positive button is pushed and also the
encoder should count in the positive direction. The axis movement should follow the Machinery’s
Handbook 1 standards or AXIS graphical display will not make much sense. Hopefully the help
page and diagrams can help figure this out. Note that axis directions are based on TOOL move-
ment not table movement. There is no acceleration ramping with the open loop test so start with
lower DAC numbers. By moving the axis a known distance one can confirm the encoder scaling.
The encoder should count even without the amp enabled depending on how power is supplied to
the encoder.

1”axis nomenclature” in the chapter ”Numerical Control” in the ”Machinery’s Handbook” published by Industrial Press.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 113 / 1322

Warning
If the motor and encoder do not agree on counting direction then the servo will run away when
using PID control.

Since at the moment PID settings can not be tested in PnCconf the settings are really for when you
re-edit a config - enter your tested PID settings.

DAC scale
DAC scaling, max output and offset are used to tailor the DAC output.

Compute DAC
These two values are the scale and offset factors for the axis output to the motor amplifiers. The
second value (offset) is subtracted from the computed output (in volts), and divided by the first
value (scale factor), before being written to the D/A converters. The units on the scale value are
in true volts per DAC output volts. The units on the offset value are in volts. These can be used
to linearize a DAC.

Specifically, when writing outputs, the LinuxCNC first converts the desired output in quasi-SI units to
raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like: The value for scale can
be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.
Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from
the sensor readings. The value for this offset is obtained by finding the value of your output which
yields 0.0 for the actuator output. If the DAC is linearized, this offset is normally 0.0.
The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the
combined effects of amplifier gain, DAC non-linearity, DAC units, etc. To do this, follow this procedure:

• Build a calibration table for the output, driving the DAC with a desired voltage and measuring the
result:

Table 3.2: Output Voltage Measurements

Raw Measured
-10 -9.93

-9 -8.83
0 -0.96
1 -0.03
9 9.87

10 10.07

• Do a least-squares linear fit to get coefficients a, b such that meas=a*raw+b

• Note that we want raw output such that our measured result is identical to the commanded output.
This means

– cmd=a*raw+b
– raw=(cmd-b)/a

• As a result, the a and b coefficients from the linear fit can be used as the scale and offset for the
controller directly.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 114 / 1322

MAX OUTPUT
The maximum value for the output of the PID compensation that is written to the motor ampli-
fier, in volts. The computed output value is clamped to this limit. The limit is applied before
scaling to raw output units. The value is applied symmetrically to both the plus and the minus
side.

Tuning Test
The tuning test unfortunately only works with stepper based systems. Again confirm the di-
rections on the axis is correct. Then test the system by running the axis back and forth, If the
acceleration or max speed is too high you will lose steps. While jogging, Keep in mind it can
take a while for an axis with low acceleration to stop. Limit switches are not functional during
this test. You can set a pause time so each end of the test movement. This would allow you to
set up and read a dial indicator to see if you are losing steps.

Stepper Timing
Stepper timing needs to be tailored to the step controller’s requirements. PnCconf supplies
some default controller timing or allows custom timing settings. See https://wiki.linuxcnc.org/-
cgi-bin/wiki.pl?Stepper_Drive_Timing for some more known timing numbers (feel free to add
ones you have figured out). If in doubt use large numbers such as 5000 this will only limit max
speed.

Brushless Motor Control
These options are used to allow low level control of brushless motors using special firmware and
daughter boards. It also allows conversion of HALL sensors from one manufacturer to another.
It is only partially supported and will require one to finish the HAL connections. Contact the
mail-list or forum for more help.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 115 / 1322

Figure 3.22: Axis Scale Calculation

The scale settings can be directly entered or one can use the calculate scale button to assist. Use the
check boxes to select appropriate calculations. Note that pulley teeth requires the number of teeth
not the gear ratio. Worm turn ratio is just the opposite it requires the gear ratio. If your happy with
the scale press apply otherwise push cancel and enter the scale directly.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 116 / 1322

Figure 3.23: Axis Configuration

Also refer to the diagram tab for two examples of home and limit switches. These are two examples
of many different ways to set homing and limits.

Important
It is very important to start with the axis moving in the right direction or else getting homing
right is very difficult!

Remember positive and negative directions refer to the TOOL not the table as per the Machinists
handbook.

On a typical knee or bed mill

• when the TABLE moves out that is the positive Y direction
• when the TABLE moves left that is the positive X direction
• when the TABLE moves down that is the positive Z direction

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 117 / 1322

• when the HEAD moves up that is the positive Z direction

On a typical lathe

• when the TOOL moves right, away from the chuck
• that is the positive Z direction
• when the TOOL moves toward the operator
• that is the positive X direction. Some lathes have X opposite (e.g., tool on back side), that will

work fine but AXIS graphical display can not be made to reflect this.

When using homing and / or limit switches LinuxCNC expects the HAL signals to be true when the
switch is being pressed / tripped. If the signal is wrong for a limit switch then LinuxCNC will think
the machine is on end of limit all the time. If the home switch search logic is wrong LinuxCNC will
seem to home in the wrong direction. What it actually is doing is trying to BACK off the home switch.

Decide on limit switch location
Limit switches are the back up for software limits in case something electrical goes wrong, e.g.,
in case of a servo runaway. Limit switches should be placed so that the machine does not hit
the physical end of the axis movement. Remember the axis will coast past the contact point if
moving fast. Limit switches should be active low on the machine, i.e., power runs through the
switches all the time - a loss of power (open switch) trips. While one could wire them the other
way, this is fail safe. This may need to be inverted so that the HAL signal in LinuxCNC in active
high - a TRUE means the switch was tripped. When starting LinuxCNC if you get an on-limit
warning, and axis is NOT tripping the switch, inverting the signal is probably the solution. (use
HALMETER to check the corresponding HAL signal eg. joint.0.pos-lim-sw-in X axis positive limit
switch)

Decide on the home switch location
If you are using limit switches You may as well use one as a home switch. A separate home switch
is useful if you have a long axis that in use is usually a long way from the limit switches or moving
the axis to the ends presents problems of interference with material. Note, a long shaft in a lathe
makes it hard to home to limits with out the tool hitting the shaft, so a separate home switch
closer to the middle may be better. If you have an encoder with index then the home switch acts
as a course home and the index will be the actual home location.

Decide on the MACHINE ORIGIN position
MACHINE ORIGIN is what LinuxCNC uses to reference all user coordinate systems from. I can
think of little reason it would need to be in any particular spot. There are only a few G-codes
that can access the MACHINE COORDINATE system.(G53, G30 and G28) If using tool-change-
at-G30 option having the origin at the tool change position may be convenient. By convention, it
may be easiest to have the ORIGIN at the home switch.

Decide on the (final) HOME POSITION
this just places the carriage at a consistent and convenient position after LinuxCNC figures out
where the ORIGIN is.

Measure / calculate the positive / negative axis travel distances
Move the axis to the origin. Mark a reference on the movable slide and the non-movable support
(so they are in line) move the machine to the end of limits. Measure between the marks that is
one of the travel distances. Move the table to the other end of travel. Measure the marks again.
That is the other travel distance. If the ORIGIN is at one of the limits then that travel distance
will be zero.

(machine) ORIGIN
The Origin is the MACHINE zero point. (not the zero point you set your cutter / material at).
LinuxCNC uses this point to reference everything else from. It should be inside the software
limits. LinuxCNC uses the home switch location to calculate the origin position (when using
home switches or must be manually set if not using home switches.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 118 / 1322

Travel distance
This is the maximum distance the axis can travel in each direction. This may or may not be able
to be measured directly from origin to limit switch. The positive and negative travel distances
should add up to the total travel distance.

POSITIVE TRAVEL DISTANCE
This is the distance the Axis travels from the Origin to the positive travel distance or the total
travel minus the negative travel distance. You would set this to zero if the origin is positioned at
the positive limit. The will always be zero or a positive number.

NEGATIVE TRAVEL DISTANCE
This is the distance the Axis travels from the Origin to the negative travel distance. or the total
travel minus the positive travel distance. You would set this to zero if the origin is positioned
at the negative limit. This will always be zero or a negative number. If you forget to make this
negative PnCconf will do it internally.

(Final) HOME POSITION
This is the position the home sequence will finish at. It is referenced from the Origin so can be
negative or positive depending on what side of the Origin it is located. When at the (final) home
position if you must move in the Positive direction to get to the Origin, then the number will be
negative.

HOME SWITCH LOCATION
This is the distance from the home switch to the Origin. It could be negative or positive depending
on what side of the Origin it is located. When at the home switch location if you must move in the
Positive direction to get to the Origin, then the number will be negative. If you set this to zero
then the Origin will be at the location of the limit switch (plus distance to find index if used).

Home Search Velocity
Course home search velocity in units per minute.

Home Search Direction
Sets the home switch search direction either negative (i.e., towards negative limit switch) or
positive (i.e., towards positive limit switch).

Home Latch Velocity
Fine Home search velocity in units per minute.

Home Final Velocity
Velocity used from latch position to (final) home position in units per minute. Set to 0 for max
rapid speed.

Home latch Direction
Allows setting of the latch direction to the same or opposite of the search direction.

Use Encoder Index For Home
LinuxCNC will search for an encoder index pulse while in the latch stage of homing.

Use Compensation File
Allows specifying a Comp filename and type. Allows sophisticated compensation. See AXIS
Section of the INI chapter.

Use Backlash Compensation
Allows setting of simple backlash compensation. Can not be used with Compensation File. See
AXIS Section of the INI chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 119 / 1322

Figure 3.24: AXIS Help Diagram

The diagram should help to demonstrate an example of limit switches and standard axis movement
directions. In this example the Z axis was two limit switches, the positive switch is shared as a home
switch. The MACHINE ORIGIN (zero point) is located at the negative limit. The left edge of the car-
riage is the negative trip pin and the right the positive trip pin. We wish the FINAL HOME POSITION
to be 4 inches away from the ORIGIN on the positive side. If the carriage was moved to the positive
limit we would measure 10 inches between the negative limit and the negative trip pin.

3.2.10 Spindle Configuration

If you select spindle signals then this page is available to configure spindle control.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 120 / 1322

Tip
Many of the option on this page will not show unless the proper option was selected on previous
pages!

Figure 3.25: Spindle Motor/Encoder Configuration

This page is similar to the axis motor configuration page.
There are some differences:

• Unless one has chosen a stepper driven spindle there is no acceleration or velocity limiting.

• There is no support for gear changes or ranges.

• If you picked a VCP spindle display option then spindle-at-speed scale and filter settings may be
shown.

• Spindle-at-speed allows LinuxCNC to wait till the spindle is at the requested speed before moving
the axis. This is particularly handy on lathes with constant surface feed and large speed diameter
changes. It requires either encoder feedback or a digital spindle-at-speed signal typically connected
to a VFD drive.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 121 / 1322

• If using encoder feedback, you may select a spindle-at-speed scale setting that specifies how close
the actual speed must be to the requested speed to be considered at-speed.

• If using encoder feedback, the VCP speed display can be erratic - the filter setting can be used to
smooth out the display. The encoder scale must be set for the encoder count / gearing used.

• If you are using a single input for a spindle encoder you must add the line: setp hm2_7i43.0.encoder.00.counter-
mode 1 (changing the board name and encoder number to your requirements) into a custom HAL
file. See the Encoders Section in Hostmot2 for more info about counter mode.

3.2.11 Advanced Options

This allows setting of HALUI commands and loading of ClassicLadder and sample ladder programs.
If you selected GladeVCP options such as for zeroing axis, there will be commands showing. See the
HALUI Chapter for more info on using custom halcmds. There are several ladder program options.
The Estop program allows an external ESTOP switch or the GUI frontend to throw an Estop. It also
has a timed lube pump signal. The Z auto touch-off is with a touch-off plate, the GladeVCP touch-off
button and special HALUI commands to set the current user origin to zero and rapid clear. The serial
modbus program is basically a blank template program that sets up ClassicLadder for serial modbus.
See the ClassicLadder Chapter in the manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 122 / 1322

Figure 3.26: PnCconf, advanced options

3.2.12 HAL Components

On this page you can add additional HAL components you might need for custom HAL files. In this
way one should not have to hand edit the main HAL file, while still allowing user needed components.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 123 / 1322

Figure 3.27: HAL Components

The first selection is components that pncconf uses internally. You may configure pncconf to load
extra instances of the components for your custom HAL file.
Select the number of instances your custom file will need, PnCconf will add what it needs after them.
Meaning if you need 2 and PnCconf needs 1 PnCconf will load 3 instances and use the last one.

Custom Component Commands
This selection will allow you to load HAL components that PnCconf does not use. Add the loadrt
or loadusr command, under the heading loading command Add the addf command under the
heading Thread command. The components will be added to the thread between reading of
inputs and writing of outputs, in the order you write them in the thread command.

3.2.13 Advanced Usage Of PnCconf

PnCconf does its best to allow flexible customization by the user. PnCconf has support for custom
signal names, custom loading of components, custom HAL files and custom firmware.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 124 / 1322

There are also signal names that PnCconf always provides regardless of options selected, for user’s
custom HAL files With some thought most customizations should work regardless if you later select
different options in PnCconf.
Eventually if the customizations are beyond the scope of PnCconf’s frame work you can use PnCconf
to build a base config or use one of LinuxCNC’s sample configurations and just hand edit it to what
ever you want.

Custom Signal Names
If you wish to connect a component to something in a custom HAL file write a unique signal name
in the combo entry box. Certain components will add endings to your custom signal name:

Encoders will add < customname > +:

• position

• count

• velocity

• index-enable

• reset

Steppers add:

• enable

• counts

• position-cmd

• position-fb

• velocity-fb

PWM add:

• enable

• value

GPIO pins will just have the entered signal name connected to it
In this way one can connect to these signals in the custom HAL files and still have the option to move
them around later.

Custom Signal Names
The HAL Components page can be used to load components needed by a user for customization.

Loading Custom Firmware
PnCconf searches for firmware on the system and then looks for the XML file that it can convert
to what it understands. These XML files are only supplied for officially released firmware from
the LinuxCNC team. To utilize custom firmware one must convert it to an array that PnCconf
understands and add its file path to PnCconf’s preference file. By default this path searches the
desktop for a folder named custom_firmware and a file named firmware.py.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 125 / 1322

The hidden preference file is in the user’s home file, is named .pncconf-preferences and require one
to select show hidden files in your file manager to see and edit it or on the command line you use ls
with the -a option. The contents of this file can be seen when you first load PnCconf - press the help
button and look at the output page.
Ask on the LinuxCNC mail-list or forum for info about converting custom firmware. Not all firmware
can be utilized with PnCconf.

Custom HAL Files
There are four custom files that you can use to add HAL commands to:

• custom.hal is for HAL commands that don’t have to be run after the GUI frontend loads. It is
run after the configuration-named HAL file.

• custom_postgui.hal is for commands that must be run after AXIS loads or a standalone PyVCP
display loads.

• custom_gvcp.hal is for commands that must be run after GladeVCP is loaded.
• shutdown.hal is for commands to run when LinuxCNC shuts down in a controlled manner.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 126 / 1322

Chapter 4

Configuration

4.1 Integrator Concepts

4.1.1 File Locations

LinuxCNC looks for the configuration and G-code files in a specific place. The location depends on
how you run LinuxCNC.

4.1.1.1 Installed

If your running LinuxCNC from the Live CD or you installed via a .deb and use the configuration picker
LinuxCNC from the menu LinuxCNC looks in the following directories:

• The LinuxCNC directory is located at /home/user-name/linuxcnc.

• The Configuration directories are located at /home/user-name/linuxcnc/configs.

– Configuration files are located at /home/user-name/linuxcnc/configs/name-of-config.

• G-code files are located at /home/user-name/linuxcnc/nc_files’.

For example for a configuration called Mill and a user name Fred the directory and file structure
would look like this.

• /home/fred/linuxcnc

• /home/fred/linuxcnc/nc_files

• /home/fred/linuxcnc/configs/mill

– /home/fred/linuxcnc/configs/mill/mill.ini
– /home/fred/linuxcnc/configs/mill/mill.hal
– /home/fred/linuxcnc/configs/mill/mill.var
– /home/fred/linuxcnc/configs/mill/tool.tbl

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 127 / 1322

4.1.1.2 Command Line

If you run LinuxCNC from the command line and specify the name and location of the INI file the file
locations can be in a different place. To view the options for running LinuxCNC from the command
line run linuxcnc -h.

Note
Optional locations for some files can be configured in the INI file. See the
<<sub:ini:sec:display,[DISPLAY]>> section and the <<sub:ini:sec:rs274ngc,[RS274NGC]>>
section.

4.1.2 Files

Each configuration directory requires at least the following files:

• An INI file .ini

• A HAL file .hal or HALTCL file .tcl specified in the HAL section of the INI file.

Note
Other files may be required for some GUIs.

Optionally you can also have:

• A Variables file .var

– If you omit a .var file in a directory but include <<sub:ini:sec:rs274ngc,[RS274NGC]>> PARAM-
ETER_FILE=somefilename.var, the file will be created for you when LinuxCNC starts.

– If you omit a .var file and omit the item [RS274NGC] PARAMETER_FILE, a var file named rs274ngc.var
will be created when LinuxCNC starts. There may be some confusing messages if [RS274NGC]PARAMETER_FILE
is omitted.

• A Tool Table file .tbl if <<sub:ini:sec:emcmot,[EMCMOT]>> TOOL_TABLE has been specified in the
INI file. Some configurations do not need a tool table.

4.1.3 Stepper Systems

4.1.3.1 Base Period

BASE_PERIOD is the heartbeat of your LinuxCNC computer.1 Every period, the software step genera-
tor decides if it is time for another step pulse. A shorter period will allow you to generate more pulses
per second, within limits. But if you go too short, your computer will spend so much time generating
step pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper
drive requirements affect the shortest period you can use.
Worst case latencies might only happen a few times a minute, and the odds of bad latency happening
just as the motor is changing direction are low. So you can get very rare errors that ruin a part every
once in a while and are impossible to troubleshoot.

1This section refers to using stepgen, LinuxCNC’s built-in step generator. Some hardware devices have their own step
generator and do not use LinuxCNC’s built-in one. In that case, refer to your hardware manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 128 / 1322

The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest tim-
ing requirement of your drive, and the worst case latency of your computer. This is not always the best
choice. For example, if you are running a drive with a 20 µs direction signal hold time requirement,
and your latency test said you have a maximum latency of 11 µs , then if you set the BASE_PERIOD
to 20+11 = 31 µs you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per
second in another mode.
The problem is with the 20 µs hold time requirement. That plus the 11 µs latency is what forces us to
use a slow 31 µs period. But the LinuxCNC software step generator has some parameters that let you
increase the various times from one period to several. For example, if steplen 2 is changed from 1 to
2, then there will be two periods between the beginning and end of the step pulse. Likewise, if dirhold
3 is changed from 1 to 3, there will be at least three periods between the step pulse and a change of
the direction pin.
If we can use dirhold to meet the 20 µs hold time requirement, then the next longest time is the 4.5 µs
high time. Add the 11 µs latency to the 4.5 µs high time, and you get a minimum period of 15.5 µs
. When you try 15.5 µs , you find that the computer is sluggish, so you settle on 16 µs . If we leave
dirhold at 1 (the default), then the minimum time between step and direction is the 16 µs period minus
the 11 µs latency = 5 µs , which is not enough. We need another 15 µs . Since the period is 16 µs , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the
step pulse to the changing direction pin is 5+16=21 µs , and we don’t have to worry about the drive
stepping the wrong direction because of latency.
For more information on stepgen see the stepgen section.

4.1.3.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes impor-
tant. If the drive steps on the falling edge then the output pin should be inverted.

4.1.4 Servo Systems

4.1.4.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are
more costly and complex. Unlike stepper systems, servo systems require some type of position feed-
back device, and must be adjusted or tuned, as they don’t quite work right out of the box as a stepper
system might. These differences exist because servos are a closed loop system, unlike stepper motors
which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram
of how a servomotor system is connected.

2steplen refers to a parameter that adjusts the performance of LinuxCNC’s built-in step generator, stepgen, which is a HAL
component. This parameter adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.

3dirhold refers to a parameter that adjusts the length of the direction hold time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 129 / 1322

Figure 4.1: Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the
summing amplifier drives the power amplifier, the power amplifier drives the motor, the motor drives
the load (and the feedback device), and the feedback device (and the input signal) drive the motor.
This looks very much like a circle (a closed loop) where A controls B, B controls C, C controls D, and
D controls A.
If you have not worked with servo systems before, this will no doubt seem a very strange idea at first,
especially as compared to more normal electronic circuits, where the inputs proceed smoothly to the
outputs, and never go back.4 If everything controls everything else, how can that ever work, who’s
in charge? The answer is that LinuxCNC can control this system, but it has to do it by choosing one
of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is
called PID.
PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction
to the current error, the Integral value determines the reaction based on the sum of recent errors, and
the Derivative value determines the reaction based on the rate at which the error has been changing.
They are three common mathematical techniques that are applied to the task of getting a working
process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis
position and the set point is the commanded axis position.

4If it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where
what the outputs are doing now depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then
nevermind.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 130 / 1322

Figure 4.2: PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action
designed for specific process requirements. The response of the controller can be described in terms
of the responsiveness of the controller to an error, the degree to which the controller overshoots the
set point and the degree of system oscillation.

4.1.4.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to
the current error value. A high proportional gain results in a large change in the output for a given
change in the error. If the proportional gain is too high, the system can become unstable. In contrast,
a small gain results in a small output response to a large input error. If the proportional gain is too
low, the control action may be too small when responding to system disturbances.
In the absence of disturbances, pure proportional control will not settle at its target value, but will
retain a steady state error that is a function of the proportional gain and the process gain. Despite
the steady-state offset, both tuning theory and industrial practice indicate that it is the proportional
term that should contribute the bulk of the output change.

4.1.4.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude
of the error and the duration of the error. Summing the instantaneous error over time (integrating
the error) gives the accumulated offset that should have been corrected previously. The accumulated
error is then multiplied by the integral gain and added to the controller output.
The integral term (when added to the proportional term) accelerates the movement of the process
towards set point and eliminates the residual steady-state error that occurs with a proportional only
controller. However, since the integral term is responding to accumulated errors from the past, it can
cause the present value to overshoot the set point value (cross over the set point and then create a
deviation in the other direction).

4.1.4.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time
(i.e., its first derivative with respect to time) and multiplying this rate of change by the derivative gain.
The derivative term slows the rate of change of the controller output and this effect is most noticeable
close to the controller set point. Hence, derivative control is used to reduce the magnitude of the
overshoot produced by the integral component and improve the combined controller-process stability.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 131 / 1322

4.1.4.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are
chosen incorrectly, the controlled process input can be unstable, i.e., its output diverges, with or
without oscillation, and is limited only by saturation or mechanical breakage. Tuning a control loop
is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

4.1.4.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output
of the loop oscillates, then the P should be set to be approximately half of that value for a quarter
amplitude decay type response. Then increase I until any offset is correct in sufficient time for the
process. However, too much I will cause instability. Finally, increase D, if required, until the loop
is acceptably quick to reach its reference after a load disturbance. However, too much D will cause
excessive response and overshoot. A fast PID loop tuning usually overshoots slightly to reach the set
point more quickly; however, some systems cannot accept overshoot, in which case an over-damped
closed-loop system is required, which will require a P setting significantly less than half that of the P
setting causing oscillation.

4.1.5 S-Curve Trajectory Planning

S-curve trajectory planning limits jerk (the rate of change of acceleration) to provide smoother mo-
tion. This can reduce machine vibration and improve surface finish, but requires tuning additional
parameters.

4.1.5.1 Enabling

Set in the INI file:
[TRAJ]
PLANNER_TYPE = 1 # 0=trapezoidal (default), 1=S-curve
MAX_LINEAR_JERK = 1000.0 # Machine units/s^3

[JOINT_n]
MAX_JERK = 1000.0

S-curve planning is only active when PLANNER_TYPE = 1 and MAX_LINEAR_JERK > 0.

4.1.5.2 Tuning

Start with a conservative jerk value and increase gradually:
MAX_JERK b’’≈b’’ 10 to 100 × MAX_ACCELERATION

Typical values: 100-100,000 units/s3 depending on machine rigidity and units (mm values are typically
1000x larger than inch values).
Increase MAX_LINEAR_JERK until motion becomes sluggish or following errors increase, then reduce
slightly. Test with coordinated moves and arcs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 132 / 1322

4.1.6 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance.
The RTAI patched kernel lets you write applications with strict timing constraints. RTAI gives you the
ability to have things like software step generation which require precise timing.

4.1.6.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which
interfere with RT performance (for example: power management, CPU power down, CPU frequency
scaling, etc). The LinuxCNC kernel (and probably all RTAI-patched kernels) has ACPI disabled. ACPI
also takes care of powering down the system after a shutdown has been started, and that’s why you
might need to push the power button to completely turn off your computer. The RTAI group has been
improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

4.1.7 Computer/Machine Interface Hardware Options

4.1.7.1 litehm2/rv901t

Litehm2 is a board-agnostic port of the HostMot2 FPGA firmware. The first board it supports is the
linsn rv901t, which was originally built as a LED controller board, but due to the available I/O it is
well suited to act as a machine controller. It offers around 80 5V-buffered I/O ports and can switch
between all input and all output. it is also easily modified to split the ports half/half between input
and output. The rv901t interfaces to the computer via Gigabit or 100Mbit Ethernet.
Litehm2 is based on the LiteX framework which supports a wide range of FPGA boards. Currently
only the rv901t is supported, but support for more boards is under development.
More information can be found at https://github.com/sensille/litehm2.

4.2 Latency Testing

4.2.1 What is latency?

Latency is how long it takes the PC to stop what it is doing and respond to an external request, such
as running one of LinuxCNC’s periodic realtime threads. The lower the latency, the faster you can run
the realtime threads, and the smoother motion will be (and potentially faster, in the case of software
stepping).
Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within
10 microseconds each and every time can give better results than the latest and fastest P4 Hyper-
threading beast.
The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a
number of other things can hurt the latency. The best way to find out what you are dealing with is to
run the latency test.
Generating step pulses in software has one very big advantage - it’s free. Just about every PC that
has a parallel port is capable of outputting step pulses that are generated by the software.
However, software step pulses also have some disadvantages:

• limited maximum step rate

• jitter in the generated pulses

• loads the CPU

https://github.com/sensille/litehm2

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 133 / 1322

4.2.2 Latency Tests

LinuxCNC includes several latency tests. They all produce equivalent information. Running these
tests will help determine if a computers is suitable for driving a CNC machine.

Note
Do not run LinuxCNC or StepConf while the latency test is running.

4.2.2.1 Latency Test

The latency test can be run a few different ways.
If you are using PnCconf to configure your machine, you can launch the Latency Test by clicking the
”Test Base Period Jitter button’ during the 2nd step of the process.
If you are using StepConf to configure your machine, you can launch the Latency Test by clicking the
”Test Base Period Jitter button’ during the 2nd step of the process.
If you want to run the test from the command line, open a terminal window (in Ubuntu, from Applica-
tions → Accessories → Terminal) and run the following command:
latency-test

This will start the latency test with a base-thread period of 25 µs and a servo-thread period of 1 ms.
The period times may be specified on the command line:
latency-test 50000 1000000

This will start the latency test with a base-thread period of 50 µs and a servo-thread period of 1 ms.
For available options, on the command line enter:
latency-test -h

After starting a latency test you should see something like this:

Figure 4.3: HAL Latency Test

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 134 / 1322

While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are.
The important number for software stepping is the max jitter of the base thread. In the example
above, that is 6693 nanoseconds (ns), or 6.693 microseconds (µs). Record this number, and enter it
in StepConf when it is requested.
In the example above, latency-test only ran for a few seconds. You should run the test for at least sev-
eral minutes; sometimes the worst case latency doesn’t happen very often, or only happens when you
do some particular action. For instance, one Intel motherboard worked pretty well most of the time,
but every 64 seconds it had a very bad 300 µs latency. Fortunately that was fixable, see Section 4.2.3.
So, what do the results mean?
If your Max Jitter number is less than about 20,000 nanoseconds, the computer should give very nice
results with software stepping or a dedicated hardware card such as a Mesa Anything I/O card.
If the Max Jitter number is between 20,000 and 50,000 nanoseconds, you can still get good results
with software stepping, but your maximum step rate might be a little disappointing, especially if you
use microstepping or have very fine pitch leadscrews. You can, however, achieve excellent results
using a hardware card.
If the Max Jitter number is between 50,000 and 500,000 nanoseconds, you cannot use software step-
ping. You can, however, achieve acceptable results using a hardware card.
If the Max Jitter number is above 500,000 nanoseconds, you cannot use software stepping or a hard-
ware card with LinuxCNC and achieve acceptable results.

Note
If you get high numbers, there may be ways to improve them. Another PC had very bad latency
(several million nanoseconds) when using the onboard video. But a $5 used video card solved the
problem. LinuxCNC does not require bleeding-edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.

Tip
Additional command line tools are available for examining latency when LinuxCNC is not running.

4.2.2.2 Latency Plot

latency-plot makes a strip chart recording for a base and a servo thread. It may be useful to see spikes
in latency when other applications are started or used. Usage:
latency-plot --help

Usage:
latency-plot --help | -?
latency-plot --hal [Options]

Options:
--base ns (base thread interval in nanoseconds, default: 25000)
--servo ns (servo thread interval in nanoseconds, default: 1000000)
--time ms (report interval in milliseconds, default: 1000)
--relative (relative clock time (default))
--actual (actual clock time)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 135 / 1322

Figure 4.4: latency-plot Window

4.2.2.3 Latency Histogram

The application latency-histogram displays a histogram of latency (jitter) for a base and servo thread.
Usage:

latency-histogram --help | -?
latency-histogram [Options]

Options:
--base ns (base thread interval in nanoseconds, default: 25000, min: 5000)
--servo ns (servo thread interval in nanoseconds, default: 1000000, min: 25000)
--bbinsize ns (base bin size in nanoseconds, default: 100
--sbinsize ns (servo bin size in nanoseconds, default: 100
--bbins n (base bins, default: 200
--sbins n (servo bins, default: 200
--logscale 0|1 (y axis log scale, default: 1)
--text note (additional note, default: ””)
--show (show count of undisplayed bins)
--nobase (servo thread only)
--verbose (progress and debug)
--nox (no gui, display elapsed,min,max,sdev for each thread)

Note
When determining the latency, LinuxCNC and HAL should not be running, stop with halrun -U. Large
number of bins and/or small binsizes will slow updates. For single thread, specify --nobase (and
options for servo thread). Measured latencies outside the +/- bin range are reported with special end
bars. Use --show to show count for the off-chart [pos|neg] bin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 136 / 1322

Figure 4.5: latency-histogram Window

4.2.3 Latency tuning

LinuxCNC can run on many different hardware platforms and with many different realtime kernels,
and they all may benefit from tuning for optimal latency.
A primary goal in tuning the system for LinuxCNC is to reserve a CPU for the exclusive use of Lin-
uxCNC’s realtime tasks, so that other tasks (both user programs and kernel threads) do not interfere
with LinuxCNC’s access to that CPU.
When specific tuning options are believed to be universally helpful LinuxCNC does this tuning auto-
matically at startup, but many tuning options are machine-specific and cannot be done automatically.
The person installing LinuxCNC will need to experimentally determine the optimal tuning for their
system.

4.2.3.1 Tuning the BIOS for latency

PC BIOSes vary wildly in their latency behavior.
Tuning the BIOS is tedious because you have to reboot the computer, make one small tweak in the
BIOS, boot Linux, and run the latency test (potentially for a long time) to see what effects your BIOS
change had. Then repeat for all the other BIOS settings you want to try.
Because BIOSes are all different and non-standard, providing a detailed BIOS tuning guide is not
practical. In general, some things to try tuning in the BIOS are:

• Disable ACPI, APM, and any other power-saving features. This includes anything related to power
saving, suspending, CPU sleep states, CPU frequency scaling, etc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 137 / 1322

• Disable CPU ”turbo” mode.

• Disable CPU hyperthreading.

• Disable (or otherwise control) System Management Interrupt (SMI).

• Disable any hardware you do not intend to use.

4.2.3.2 Tuning Preempt-RT for latency

The Preempt-RT kernel may benefit from tuning in order to provide the best latency for LinuxCNC.
Tuning may be done via the kernel command line, sysctl, and via files in /proc and /sys.
Some tuning parameters to look into:

Kernel command line
Details here: https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

• isolcpus: Prevent most non-LinuxCNC processes from using these CPUs, leaving more CPU
time available for LinuxCNC.

• irqaffinity: Select which CPUs service interrupts, so that the CPUs reserved for LinuxCNC
realtime don’t have to perform this task.

• rcu_nocbs: Prevent RCU callbacks from running on these CPUs.
• rcu_nocb_poll: Poll for RCU callbacks instead of using sleep/wake.
• nohz_full: Disable clock tick on these CPUs.

Sysctl
Details here: https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

• sysctl.kernel.sched_rt_runtime_us: Set to -1 to remove the limit on how much time real-
time tasks may use.

4.3 Stepper Tuning

4.3.1 Getting the most out of Software Stepping

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a
parallel port that is capable of outputting step pulses that are generated by the software. However,
software step pulses also have some disadvantages:

• limited maximum step rate

• jitter in the generated pulses

• loads the CPU

This chapter has some steps that can help you get the best results from software generated steps.

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 138 / 1322

4.3.1.1 Run a Latency Test

The CPU is not the only factor determining latency. Motherboards, graphics cards, USB ports and
many other things can degrade it. The best way to know what to expect from a PC is to run the RT
latency tests.
Run the latency test as described in the Latency Test chapter.
While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are.
The last number in the column labeled Max Jitter is the most important. Write it down - you will need
it later. It contains the worst latency measurement during the entire run of the test. In the example
above, that is 6693 nano-seconds, or 6,69 micro-seconds, which is excellent. However the example
only ran for a few seconds (it prints one line every second). You should run the test for at least several
minutes; sometimes the worst case latency doesn’t happen very often, or only happens when you do
some particular action. I had one Intel motherboard that worked pretty well most of the time, but
every 64 seconds it had a very bad 300 µs latency. Fortunately that is fixable, see Fixing SMI issues
on the LinuxCNC Wiki
So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds
(15000-20000 nanoseconds), the computer should give very nice results with software stepping. If
the max latency is more like 30-50 microseconds, you can still get good results, but your maximum
step rate might be a little disappointing, especially if you use microstepping or have very fine pitch
leadscrews. If the numbers are 100 µs or more (100,000 nanoseconds), then the PC is not a good
candidate for software stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC
is not a good candidate for LinuxCNC, regardless of whether you use software stepping or not.
Note that if you get high numbers, there may be ways to improve them. For example, one PC had very
bad latency (several milliseconds) when using the onboard video. But a $5 used video card solved the
problem - LinuxCNC does not require bleeding edge hardware.

4.3.1.2 Figure out what your drives expect

Different brands of stepper drives have different timing requirements on their step and direction
inputs. So you need to dig out (or Google for) the data sheet that has your drive’s specs.
From the Gecko G202 manual:

Step Frequency: 0 to 200 kHz
Step Pulse ”0” Time: 0.5 µs min (Step on falling edge)
Step Pulse ”1” Time: 4.5 µs min
Direction Setup: 1 µs min (20 µs min hold time after Step edge)

From the Gecko G203V manual:

Step Frequency: 0 to 333 kHz
Step Pulse ”0” Time: 2.0 µs min (Step on rising edge)
Step Pulse ”1” Time: 1.0 µs min

Direction Setup:
200 ns (0.2 µs) before step pulse rising edge
200 ns (0.2 µs) hold after step pulse rising edge

From the Xylotex datasheet:

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 139 / 1322

Minimum DIR setup time before rising edge of STEP Pulse 200 ns Minimum
DIR hold time after rising edge of STEP pulse 200 ns
Minimum STEP pulse high time 2.0 µs
Minimum STEP pulse low time 1.0 µs
Step happens on rising edge

Once you find the numbers, write them down too - you need them in the next step.

4.3.1.3 Choose your BASE_PERIOD

BASE_PERIOD is the heartbeat of your LinuxCNC computer. Every period, the software step genera-
tor decides if it is time for another step pulse. A shorter period will allow you to generate more pulses
per second, within limits. But if you go too short, your computer will spend so much time generating
step pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper
drive requirements affect the shortest period you can use, as we will see in a minute.
Let’s look at the Gecko example first. The G202 can handle step pulses that go low for 0.5 µs and
high for 4.5 µs, it needs the direction pin to be stable 1 µs before the falling edge, and remain stable
for 20 µs after the falling edge. The longest timing requirement is the 20 µs hold time. A simple
approach would be to set the period at 20 µs. That means that all changes on the STEP and DIR lines
are separated by 20 µs. All is good, right?
Wrong! If there was ZERO latency, then all edges would be separated by 20 µs, and everything would
be fine. But all computers have some latency. Latency means lateness. If the computer has 11 µs of
latency, that means sometimes the software runs as much as 11 µs later than it was supposed to. If
one run of the software is 11 µs late, and the next one is on time, the delay from the first to the second
is only 9 µs. If the first one generated a step pulse, and the second one changed the direction bit, you
just violated the 20 µs G202 hold time requirement. That means your drive might have taken a step
in the wrong direction, and your part will be the wrong size.
The really nasty part about this problem is that it can be very very rare. Worst case latencies might
only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you get very rare errors that ruin a part every once in a while and are impossible
to troubleshoot.
The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest
timing requirement of your drive, and the worst case latency of your computer. If you are running a
Gecko with a 20 µs hold time requirement, and your latency test said you have a maximum latency of
11 µs, then if you set the BASE_PERIOD to 20+11 = 31 µs (31000 nano-seconds in the ini file), you
are guaranteed to meet the drive’s timing requirements.
But there is a tradeoff. Making a step pulse requires at least two periods. One to start the pulse, and
one to end it. Since the period is 31 µs, it takes 2x31 = 62 µs to create a step pulse. That means the
maximum step rate is only 16,129 steps per second. Not so good. (But don’t give up yet, we still have
some tweaking to do in the next section.)
For the Xylotex, the setup and hold times are very short, 200 ns each (0.2 µs). The longest time is
the 2 µs high time. If you have 11 µs latency, then you can set the BASE_PERIOD as low as 11+2=13
µs. Getting rid of the long 20 µs hold time really helps! With a period of 13 µs, a complete step takes
2x13 = 26 µs, and the maximum step rate is 38,461 steps per second!
But you can’t start celebrating yet. Note that 13 µs is a very short period. If you try to run the step
generator every 13 µs, there might not be enough time left to run anything else, and your computer
will lock up. If you are aiming for periods of less than 25 µs, you should start at 25 µs or more, run
LinuxCNC, and see how things respond. If all is well, you can gradually decrease the period. If the
mouse pointer starts getting sluggish, and everything else on the PC slows down, your period is a
little too short. Go back to the previous value that let the computer run smoothly.
In this case, suppose you started at 25 µs, trying to get to 13 µs, but you find that around 16 µs is the
limit - any less and the computer doesn’t respond very well. So you use 16 µs. With a 16 µs period and

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 140 / 1322

11 µs latency, the shortest output time will be 16-11 = 5 µs. The drive only needs 2 µs, so you have
some margin. Margin is good - you don’t want to lose steps because you cut the timing too close.
What is the maximum step rate? Remember, two periods to make a step. You settled on 16 µs for the
period, so a step takes 32 µs. That works out to a not bad 31,250 steps per second.

4.3.1.4 Use steplen, stepspace, dirsetup, and/or dirhold

In the last section, we got the Xylotex drive to a 16 µs period and a 31,250 step per second maximum
speed. But the Gecko was stuck at 31 µs and a not-so-nice 16,129 steps per second. The Xylotex
example is as good as we can make it. But the Gecko can be improved.
The problem with the G202 is the 20 µs hold time requirement. That plus the 11 µs latency is what
forces us to use a slow 31 µs period. But the LinuxCNC software step generator has some parameters
that let you increase the various time from one period to several. For example, if steplen is changed
from 1 to 2, then it there will be two periods between the beginning and end of the step pulse. Likewise,
if dirhold is changed from 1 to 3, there will be at least three periods between the step pulse and a
change of the direction pin.
If we can use dirhold to meet the 20 µs hold time requirement, then the next longest time is the 4.5
µs high time. Add the 11 µs latency to the 4.5 µs high time, and you get a minimum period of 15.5
µs. When you try 15.5 µs, you find that the computer is sluggish, so you settle on 16 µs. If we leave
dirhold at 1 (the default), then the minimum time between step and direction is the 16 µs period minus
the 11 µs latency = 5 µs, which is not enough. We need another 15 µs. Since the period is 16 µs, we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the
step pulse to the changing direction pin is 5+16=21 µs, and we don’t have to worry about the Gecko
stepping the wrong direction because of latency.
If the computer has a latency of 11 µs, then a combination of a 16 µs base period, and a dirhold value
of 2 ensures that we will always meet the timing requirements of the Gecko. For normal stepping (no
direction change), the increased dirhold value has no effect. It takes two periods totalling 32 µs to
make each step, and we have the same 31,250 step per second rate that we got with the Xylotex.
The 11 µs latency number used in this example is very good. If you work through these examples with
larger latency, like 20 or 25 µs, the top step rate for both the Xylotex and the Gecko will be lower.
But the same formulas apply for calculating the optimum BASE_PERIOD, and for tweaking dirhold or
other step generator parameters.

4.3.1.5 No Guessing!

For a fast AND reliable software based stepper system, you cannot just guess at periods and other
configuration parameters. You need to make measurements on your computer, and do the math to
ensure that your drives get the signals they need.
To make the math easier, I’ve created an Open Office spreadsheet Step Timing Calculator. You enter
your latency test result and your stepper drive timing requirements and the spreadsheet calculates
the optimum BASE_PERIOD. Next, you test the period to make sure it won’t slow down or lock up
your PC. Finally, you enter the actual period, and the spreadsheet will tell you the stepgen parameter
settings that are needed to meet your drive’s timing requirements. It also calculates the maximum
step rate that you will be able to generate.
I’ve added a few things to the spreadsheet to calculate max speed and stepper electrical calculations.

4.4 INI Configuration

4.4.1 The INI File Components

A typical INI file follows a rather simple layout that includes;

https://wiki.linuxcnc.org/uploads/StepTimingCalculator.ods

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 141 / 1322

• comments

• sections

• variables

Each of these elements is separated on single lines. Each end of line or newline character creates a
new element.

4.4.1.1 Comments

A comment line is started with a ; or a # mark. When the INI reader sees either of these marks at the
start a line, the rest of the line is ignored by the software. Comments can be used to describe what
an INI element will do.
; This is my mill configuration file.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different
variables.
DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone
carelessly edits a list like this and leaves two of the lines uncommented, the first one encountered will
be used.
Note that inside a variable, the ”#” and ”;” characters do not denote comments:
INCORRECT = value # and a comment

Correct Comment
CORRECT = value

4.4.1.2 Sections

Related parts of an INI file are separated into sections. A section name is enclosed in brackets like
this: [THIS_SECTION]. The order of sections is unimportant. Sections begin at the section name and
end at the next section name.
The following sections are used by LinuxCNC:

• [EMC] general information

• [DISPLAY] settings related to the graphical user interface

• [FILTER] settings input filter programs

• [RS274NGC] settings used by the G-code interpreter

• [EMCMOT] settings used by the real time motion controller

• [TASK] settings used by the task controller

• [HAL] specifies .hal files

• [HALUI] MDI commands used by HALUI

• [APPLICATIONS] Other applications to be started by LinuxCNC

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 142 / 1322

• [TRAJ] additional settings used by the real time motion controller

• [JOINT_n] individual joint variables

• [AXIS_l] individual axis variables

• [KINS] kinematics variables

• [EMCIO] settings used by the I/O Controller

4.4.1.3 Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the
first non-white space character after the = up to the end of the line is passed as the value, so you can
embed spaces in string symbols if you want to or need to. A variable name is often called a keyword.
Variable Example
MACHINE = My Machine

A variable line may be extended to multiple lines with a terminal backslash (\) character. A maximum of
MAX_EXTEND_LINES (==20) are allowed. There must be no whitespace following the trailing backslash
character.
Section identifiers may not be extended to multiple lines.
Variable with Line extends Example
APP = sim_pin \
ini.0.max_acceleration \
ini.1.max_acceleration \
ini.2.max_acceleration \
ini.0.max_velocity \
ini.1.max_velocity \
ini.2.max_velocity

Boolean Variables Boolean values can be on one of TRUE, YES or 1 for true/enabled and one of FALSE,
NO or 0 for false/disabled. The case is ignored.
The following sections detail each section of the configuration file, using sample values for the con-
figuration lines.
Variables that are used by LinuxCNC must always use the section names and variable names as shown.

4.4.1.4 Custom Sections and Variables

Most sample configurations use custom sections and variables to put all of the settings into one loca-
tion for convenience.
To add a custom variable to an existing LinuxCNC section, simply include the variable in that section.
Custom Variable Example, assigning the value LINEAR to the variable TYPE, and the value
16000 to the variable SCALE.
[JOINT_0]
TYPE = LINEAR
...
SCALE = 16000

To introduce a custom section with its own variables, add the section and variables to the INI file.
Custom Section Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 143 / 1322

[PROBE]
Z_FEEDRATE = 50
Z_OFFSET = 12
Z_SAFE_DISTANCE = -10

To use the custom variables in your HAL file, put the section and variable name in place of the value.
HAL Example
setp offset.1.offset [PROBE]Z_OFFSET
setp stepgen.0.position-scale [JOINT_0]SCALE

Note
The value stored in the variable must match the type specified by the component pin.

To use the custom variables in G-code, use the global variable syntax #<_ini[section]variable>.
The following example shows a simple Z-axis touch-off routine for a router or mill using a probe plate.
G-code Example
G91
G38.2 Z#<_ini[probe]z_safe_distance> F#<_ini[probe]z_feedrate>
G90
G1 Z#5063
G10 L20 P0 Z#<_ini[probe]z_offset>

4.4.1.5 Include Files

An INI file may include the contents of another file by using a #INCLUDE directive.
#INCLUDE Format
#INCLUDE filename

The filename can be specified as:

• a file in the same directory as the INI file

• a file located relative to the working directory

• an absolute file name (starts with a /)

• a user-home-relative file name (starts with a ~)

Multiple #INCLUDE directives are supported.
#INCLUDE Examples
#INCLUDE joint_0.inc
#INCLUDE ../parallel/joint_1.inc
#INCLUDE below/joint_2.inc
#INCLUDE /home/myusername/myincludes/display.inc
#INCLUDE ~/linuxcnc/myincludes/rs274ngc.inc

The #INCLUDE directives are supported for one level of expansion only — an included file may not
include additional files. The recommended file extension is .inc. Do not use a file extension of .ini for
included files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 144 / 1322

4.4.2 INI File Sections

4.4.2.1 [EMC] Section

• VERSION = 1.1 - The format version of this configuration. Any value other than 1.1 will cause the
configuration checker to run and try to update the configuration to the new style joint axes type of
configuration.

• MACHINE = My Controller - This is the name of the controller, which is printed out at the top of
most graphical interfaces. You can put whatever you want here as long as you make it a single line
long.

• DEBUG = 0 - Debug level 0 means no messages will be printed when LinuxCNC is run from a terminal.
Debug flags are usually only useful to developers. See src/emc/nml_intf/debugflags.h for other
settings.

• RCS_DEBUG = 1 RCS debug messages to show. Print only errors (1) by default if EMC_DEBUG_RCS
and EMC_DEBUG_RCS bits in DEBUG are unset, otherwise print all (-1). Use this to select RCS debug
messages. See src/libnml/rcs/rcs_print.hh for all MODE flags.

• RCS_DEBUG_DEST = STDOUT - how to output RCS_DEBUG messages (NULL, STDOUT, STDERR, FILE,
LOGGER, MSGBOX).

• RCS_MAX_ERR = -1 - Number after which RCS errors are not reported anymore (-1 = infinite).

• NML_FILE = /usr/share/linuxcnc/linuxcnc.nml - Set this if you want to use a non-default NML
configuration file.

4.4.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every
user interface. There are several interfaces, like AXIS, GMOCCAPY, Touchy, QtVCP’s QtDragon and
Gscreen. AXIS is an interface for use with normal computer and monitor, Touchy is for use with touch
screens. GMOCCAPY can be used both ways and offers also many connections for hardware controls.
Descriptions of the interfaces are in the Interfaces section of the User Manual.

• DISPLAY = axis - The file name of the executable providing the user interface to use. Prominent
valid options are (all in lower case): axis, touchy, gmoccapy, gscreen, tklinuxcnc, qtvcp, qtvcp
qtdragon or qtvcp qtplasmac.

• POSITION_OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show on the DRO
when the user interface starts. The RELATIVE coordinate system reflects the G92 and G5x coordi-
nate offsets currently in effect.

• POSITION_FEEDBACK = COMMANDED - The coordinate value (COMMANDED or ACTUAL) to show on the
DRO when the user interface starts. In AXIS this can be changed from the View menu. The COM-
MANDED position is the position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors if they have feedback like most servo systems. Typically the COMMANDED
value is used.

• DRO_FORMAT_MM = %+08.6f - Override the default DRO formatting in metric mode (normally 3 dec-
imal places, padded with spaces to 6 digits to the left). The example above will pad with zeros,
display 6 decimal digits and force display of a + sign for positive numbers. Formatting follows
Python practice: https://docs.python.org/2/library/string.html#format-specification-mini-language
. An error will be raised if the format can not accept a floating-point value.

https://docs.python.org/2/library/string.html#format-specification-mini-language

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 145 / 1322

• DRO_FORMAT_IN = % 4.1f - Override the default DRO formatting in imperial mode (normally 4 deci-
mal places, padded with spaces to 6 digits to the left). The example above will display only one deci-
mal digit. Formatting follows Python practice: https://docs.python.org/2/library/string.html#format-
specification-mini-language . An error will be raised if the format can not accept a floating-point
value.

• CONE_BASESIZE = .25 - Override the default cone/tool base size of .5 in the graphics display. Valid
values are between 0.025 and 2.0.

• DISABLE_CONE_SCALING = TRUE - Any non-empty value (including ”0”) will override the default be-
havior of scaling the cone/tool size using the extents of the currently loaded G-code program in the
graphics display.

• MAX_FEED_OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of
the programmed feed rate.

• MIN_SPINDLE_OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means 50%
of the programmed spindle speed. (This is used to set the minimum spindle speed.)

• MIN_SPINDLE_0_OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means
50% of the programmed spindle speed. (This is used to set the minimum spindle speed.) On multi
spindle machine there will be entries for each spindle number. Only used by the QtVCP based user
interfaces.

• MAX_SPINDLE_OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means
100% of the programmed spindle speed.

• MAX_SPINDLE_0_OVERRIDE = 1.0 - The maximum feed override the user may select. 1.2 means
120% of the programmed feed rate. On multi spindle machine there will be entries for each spindle
number. Only used by the QtVCP based user interfaces.

• DEFAULT_SPINDLE_SPEED = 100 - The default spindle RPM when the spindle is started in manual
mode. If this setting is not present, this defaults to 1 RPM for AXIS and 300 RPM for GMOCCAPY.

– deprecated - use the [SPINDLE_n] section instead

• DEFAULT_SPINDLE_0_SPEED = 100 - The default spindle RPM when the spindle is started in manual
mode. On multi spindle machine there will be entries for each spindle number. Only used by the
QtVCP-based user interfaces.

– deprecated - use the [SPINDLE_n] section instead.

• SPINDLE_INCREMENT = 200 - The increment used when clicking increase/decrease buttons. Only
used by the QtVCP based user interfaces.

– deprecated - use the [SPINDLE_n] section instead.

• MIN_SPINDLE_0_SPEED = 1000 - The minimum RPM that can be manually selected. On multi spin-
dle machine there will be entries for each spindle number. Only used by the QtVCP-based user
interfaces.

– deprecated - use the [SPINDLE_n] section instead.

• MAX_SPINDLE_0_SPEED = 20000 - The maximum RPM that can be manually selected. On multi spin-
dle machine there will be entries for each spindle number. Only used by the QtVCP-based user
interfaces.

– deprecated - use the [SPINDLE_n] section instead.

• PROGRAM_PREFIX = ~/linuxcnc/nc_files - The default directory for G-code files, named subrou-
tines, and user-defined M-codes. The PROGRAM_PREFIX directory is searched before the directories
listed in [RS274]SUBROUTINE_PATH and [RS274]USER_M_PATH.

https://docs.python.org/2/library/string.html#format-specification-mini-language
https://docs.python.org/2/library/string.html#format-specification-mini-language

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 146 / 1322

• INTRO_GRAPHIC = emc2.gif - The image shown on the splash screen.

• INTRO_TIME = 5 - The maximum time to show the splash screen, in seconds.

• CYCLE_TIME = 100 - Cycle time of the display GUI. Depending on the screen, this can be in seconds
or ms (ms preferred). This is often the update rate rather then sleep time between updates. If the
update time is not set right the screen can become unresponsive or very jerky. A value of 100 ms
(0.1 s) is a common setting though a range of 50 - 200 ms (.05 - .2 s) may be useable. An under
powered CPU may see improvement with a longer setting. Usually the default is fine.

• PREVIEW_TIMEOUT = 5 - Timeout (in seconds) for loading graphical preview of G-code. Currently
AXIS only.

• HOMING_PROMPT = TRUE - Any non-empty value (including ”0”) will enable showing a prompt mes-
sage with homing request, when the Power On button is pressed in AXIS GUI. Pressing the ”Ok”
button in prompt message is equivalent to pressing the ”Home All” button(or the Ctrl-HOME key).

• FOAM_W = 1.5 sets the foam W height.

• FOAM_Z = 0 sets the foam Z height.

• GRAPHICAL_MAX_FILE_SIZE = 20 largest size (in mega bytes) that will be displayed graphically. If
the program is bigger than this setting, a bounding box will be displayed. By default, this setting
is at 20 MB or 1/4 of the system memory, which ever is smaller. A negative value is interpreted as
unlimited.

Note
The following [DISPLAY] items are used by GladeVCP and PyVCP, see the embedding a tab section of
the GladeVCP Chapter or the PyVCP Chapter for more information.

• EMBED_TAB_NAME = GladeVCP demo

• EMBED_TAB_COMMAND = halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID\} -u ./gladevcp/hitcounter.py
./gladevcp/manual-example.ui

Note
Different user interface programs use different options, and not every option is supported by every
user interface. See AXIS GUI document for AXIS details. See GMOCCAPY document for GMOCCAPY
details.

• DEFAULT_LINEAR_VELOCITY = .25 - The default velocity for linear jogs, in machine units per second.

• MIN_VELOCITY = .01 - The approximate lowest value the jog slider.

• MAX_LINEAR_VELOCITY = 1.0 - The maximum velocity for linear jogs, in machine units per second.

• MIN_LINEAR_VELOCITY = .01 - The approximate lowest value the jog slider.

• DEFAULT_ANGULAR_VELOCITY = .25 - The default velocity for angular jogs, in machine units per
second.

• MIN_ANGULAR_VELOCITY = .01 - The approximate lowest value the angular jog slider.

• MAX_ANGULAR_VELOCITY = 1.0 - The maximum velocity for angular jogs, in machine units per sec-
ond.

• INCREMENTS = 1 mm, .5 in, ... - Defines the increments available for incremental jogs. The IN-
CREMENTS can be used to override the default. The values can be decimal numbers (e.g., 0.1000)
or fractional numbers (e.g., 1/16), optionally followed by a unit (cm, mm, um, inch, in or mil). If
a unit is not specified the machine unit is assumed. Metric and imperial distances may be mixed:
INCREMENTS = 1 inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 147 / 1322

• GRIDS = 10 mm, 1 in, ... - Defines the preset values for grid lines. The value is interpreted the
same way as INCREMENTS.

• OPEN_FILE = /full/path/to/file.ngc - The file to show in the preview plot when AXIS starts.
Use a blank string ”” and no file will be loaded at start up. GMOCCAPY will not use this setting, as
it offers a corresponding entry on its settings page.

• EDITOR = gedit - The editor to use when selecting File > Edit to edit the G-code from the AXIS
menu. This must be configured for this menu item to work. Another valid entry is gnome-terminal
-e vim. This entry does not apply to GMOCCAPY, as GMOCCAPY has an integrated editor.

• TOOL_EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting
”File > Edit tool table…” in AXIS). Other valid entries are gedit, gnome-terminal -e vim, and
gvim. This entry does not apply to GMOCCAPY, as GMOCCAPY has an integrated editor.

• PYVCP = /filename.xml - The PyVCP panel description file. See the PyVCP Chapterfor more infor-
mation.

• PYVCP_POSITION = BOTTOM - The placement of the PyVCP panel in the AXIS user interface. If this
variable is omitted the panel will default to the right side. The only valid alternative is BOTTOM. See
the PyVCP Chapter for more information.

• LATHE = 1 - Any non-empty value (including ”0”) causes axis to use ”lathe mode” with a top view
and with Radius and Diameter on the DRO.

• BACK_TOOL_LATHE = 1 - Any non-empty value (including ”0”) causes axis to use ”back tool lathe
mode” with inverted X axis.

• FOAM = 1 - Any non-empty value (including ”0”) causes axis to change the display for foam-cutter
mode.

• GEOMETRY = XYZABCUVW - Controls the preview and backplot of motion. This item consists of a
sequence of axis letters and control characters, optionally preceded with a ”-” sign:

1. The letters X, Y, Z specify translation along the named coordinate.
2. The letters A, B, C specify rotation about the corresponding axes X, Y, Z.
3. The letters U, V, W specify translation along the related axes X, Y, Z.
4. Each letter specified must occur in [TRAJ]COORDINATES to have an effect.
5. A ”-” character preceding any letter inverts the direction of the operation.
6. The translation and rotation operations are evaluated right-to-left. So using GEOMETRY=XYZBC

specifies a C rotation followed by a B rotation followed by Z, Y, X translations. The ordering of
consecutive translation letters is immaterial.

7. The proper GEOMETRY string depends on the machine configuration and the kinematics used
to control it. The order of the letters is important. For example, rotating around C then B is
different than rotating around B then C.

8. Rotations are by default applied with respect to the machine origin. Example: GEOMETRY=CXYZ
first translates the control point to X, Y, Z and then performs a C rotation about the Z axis
centered at the machine origin.

9. UVW translation example: GEOMETRY=XYZUVW causes UVW to move in the coordinate system of
the tool and XYZ to move in the coordinate system of the material.

10. Foam-cutting machines (FOAM = 1) should specify ”XY;UV” or leave the value blank even though
this value is presently ignored in foam-cutter mode. A future version may define what ”;” means,
but if it does ”XY;UV” will mean the same as the current foam default.

11. Experimental: If the exclamation mark (!) character is included in the GEOMETRY string,
display points for A, B, C rotations respect the X, Y, Z offsets set by G5x, G92 codes. Example:
Using GEOMETRY = !CXZ for a machine with [TRAJ]COORDINATES=XZC. This provision applies
for liveplots only — G-code previews should be done with zero G5x, G92 offsets. This can be

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 148 / 1322

facilitated by setting offsets in programs only when task is running as indicated by #<_task>
== 1. If nonzero offsets exist at startup due to persistence, offsets should be zeroed and preview
reloaded.

Note
If no [DISPLAY]GEOMETRY is included in the INI file, a default is provided by the [DISPLAY]DISPLAY
GUI program (typically ”XYZABCUVW”).

• ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into
a number of straight lines; a semicircle is divided into ARCDIVISION parts. Larger values give
a more accurate preview, but take longer to load and result in a more sluggish display. Smaller
values give a less accurate preview, but take less time to load and may result in a faster display.
The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).

• MDI_HISTORY_FILE = - The name of a local MDI history file. If this is not specified, AXIS will save the
MDI history in .axis_mdi_history in the user ̀s home directory. This is useful if you have multiple
configurations on one computer.

• JOG_AXES = - The order in which jog keys are assigned to axis letters. The left and right ar-
rows are assigned to the first axis letter, up and down to the second, page up/page down to the
third, and left and right bracket to the fourth. If unspecified, the default is determined from the
[TRAJ]COORDINATES, [DISPLAY]LATHE and [DISPLAY]FOAM values.

• JOG_INVERT = - For each axis letter, the jog direction is inverted. The default is ”X” for lathes and
blank otherwise.

Note
The settings for JOG_AXES and JOG_INVERT apply to world mode jogging by axis coordinate letter
and are in effect while in world mode after successful homing. When operating in joint mode prior
to homing, keyboard jog keys are assigned in a fixed sequence: left/right: joint0, up/down: joint1,
page up/page down: joint2, left/right bracket: joint3

• USER_COMMAND_FILE = mycommands.py - The name of an optional, configuration-specific Python file
sourced by the AXIS GUI instead of the user-specific file ~/.axisrc.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

• HELP_FILE = tklinucnc.txt - Path to help file.

4.4.2.3 [FILTER] Section

AXIS and GMOCCAPY have the ability to send loaded files through a filter program. This filter can
do any desired task: Something as simple as making sure the file ends with M2, or something as
complicated as detecting whether the input is a depth image, and generating G-code to mill the shape
it defines. The [FILTER] section of the INI file controls how filters work. First, for each type of file,
write a PROGRAM_EXTENSION-line. Then, specify the program to execute for each type of file. This
program is given the name of the input file as its first argument, and must write RS274NGC code to
standard output. This output is what will be displayed in the text area, previewed in the display area,
and executed by LinuxCNC when Run.

• PROGRAM_EXTENSION = .extension Description

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 149 / 1322

If your post processor outputs files in all caps you might want to add the following line:
PROGRAM_EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-G-code converter included with LinuxCNC.
PROGRAM_EXTENSION = .png,.gif,.jpg # Greyscale Depth Image
png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode

An example of a custom G-code converter located in the linuxcnc directory.
PROGRAM_EXTENSION = .gcode 3D Printer
gcode = /home/mill/linuxcnc/convert.py

Note
The program file associated with an extension must have either the full path to the program or be
located in a directory that is on the system path.

It is also possible to specify an interpreter:
PROGRAM_EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc_files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle. Many more G-code generators are on the LinuxCNC Wiki site
https://wiki.linuxcnc.org/.
Python filters should use the print function to output the result to AXIS.
This example program filters a file and adds a W axis to match the Z axis. It depends on there being
a space between each axis word to work.
#!/usr/bin/env python3

import sys

def main(argv):

openfile = open(argv[0], ’r’)
file_in = openfile.readlines()
openfile.close()

file_out = []
for line in file_in:
print(line)
if line.find(’Z’) != -1:
words = line.rstrip(’\n’)
words = words.split(’ ’)
newword = ’’
for i in words:
if i[0] == ’Z’:
newword = ’W’+ i[1:]

if len(newword) > 0:
words.append(newword)
newline = ’ ’.join(words)
file_out.append(newline)

https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 150 / 1322

else:
file_out.append(line)

for item in file_out:
print(”%s” % item)

if __name__ == ”__main__”:
main(sys.argv[1:])

• FILTER_PROGRESS=%d
If the environment variable AXIS_PROGRESS_BAR is set, then lines written to stderr of the form
above sets the AXIS progress bar to the given percentage. This feature should be used by any filter
that runs for a long time.

4.4.2.4 [RS274NGC] Section

• PARAMETER_FILE = myfile.var - The file located in the same directory as the INI file which contains
the parameters used by the interpreter (saved between runs).

• ORIENT_OFFSET = 0 - A float value added to the R word parameter of an M19 Orient Spindle oper-
ation. Used to define an arbitrary zero position regardless of encoder mount orientation.

• RS274NGC_STARTUP_CODE = G17 G20 G40 G49 G64 P0.001 G80 G90 G92.1 G94 G97 G98 - A string
of NC codes that the interpreter is initialized with. This is not a substitute for specifying modal G-
codes at the top of each NGC file, because the modal codes of machines differ, and may be changed
by G-code interpreted earlier in the session.

• SUBROUTINE_PATH = ncsubroutines:/tmp/testsubs:lathesubs:millsubs - Specifies a colon (:)
separated list of up to 10 directories to be searched when single-file subroutines are specified in G-
code. These directories are searched after searching [DISPLAY]PROGRAM_PREFIX (if it is specified)
and before searching [WIZARD]WIZARD_ROOT (if specified). The paths are searched in the order
that they are listed. The first matching subroutine file found in the search is used. Directories are
specified relative to the current directory for the INI file or as absolute paths. The list must contain
no intervening whitespace.

• G64_DEFAULT_TOLERANCE = n (Default: 0) Default P value for G64 if P is not called out.

• G64_DEFAULT_NAIVETOLERANCE = n (Default: 0) Default Q value for G64 if Q is not called out.

• CENTER_ARC_RADIUS_TOLERANCE_INCH = n (Default: 0.00005)

• CENTER_ARC_RADIUS_TOLERANCE_MM = n (Default: 0.00127)

• USER_M_PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separated
directories for user defined functions. Directories are specified relative to the current directory for
the INI file or as absolute paths. The list must contain no intervening whitespace.
A search is made for each possible user defined function, typically (M100-M199). The search order
is:

1. [DISPLAY]PROGRAM_PREFIX (if specified)
2. If [DISPLAY]PROGRAM_PREFIX is not specified, search the default location: nc_files
3. Then search each directory in the list [RS274NGC]USER_M_PATH.

The first executable M1xx found in the search is used for each M1xx.

Note
The maximum number of USER_M_PATH directories is defined at compile time (typ:
USER_DEFINED_FUNCTION_MAX_DIRS == 5).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 151 / 1322

• INI_VARS = 1 (Default: 1)
Allows G-code programs to read values from the INI file using the format #<_ini[section]name>.
See G-code Parameters.

• HAL_PIN_VARS = 1 (Default: 1)
Allows G-code programs to read the values of HAL pins using the format #<_hal[HAL item]>. Vari-
able access is read-only. See G-code Parameters for more details and an important caveat.

• RETAIN_G43 = 0 (Default: 0)
When set, you can turn on G43 after loading the first tool, and then not worry about it through the
program. When you finally unload the last tool, G43 mode is canceled.

• OWORD_NARGS = 0 (Default: 0)
If this feature is enabled then a called subroutine can determine the number of actual positional
parameters passed by inspecting the #<n_args> parameter.

• NO_DOWNCASE_OWORD = 0 (Default: 0)
Preserve case in O-word names within comments if set, enables reading of mixed-case HAL items
in structured comments like (debug, #<_hal[MixedCaseItem]).

• OWORD_WARNONLY = 0 (Default: 0)
Warn rather than error in case of errors in O-word subroutines.

• DISABLE_G92_PERSISTENCE = 0 (Default: 0) Allow to clear the G92 offset automatically when config
start-up.

• DISABLE_FANUC_STYLE_SUB = 0 (Default: 0) If there is reason to disable Fanuc subroutines set it to
1.

• PARAMETER_G73_PECK_CLEARANCE = .020 (default: Metric machine: 1mm, imperial machine:
.050 inches) Chip breaking back-off distance in machine units

• PARAMETER_G83_PECK_CLEARANCE = .020 (default: Metric machine: 1mm, imperial machine:
.050 inches) Clearance distance from last feed depth when machine rapids back to bottom of hole,
in machine units.

Note
The above six options were controlled by the FEATURES bitmask in versions of LinuxCNC prior to 2.8.
This INI tag will no longer work.
For reference:
FEATURES & 0x1 -> RETAIN_G43
FEATURES & 0x2 -> OWORD_NARGS
FEATURES & 0x4 -> INI_VARS
FEATURES & 0x8 -> HAL_PIN_VARS
FEATURES & 0x10 -> NO_DOWNCASE_OWORD
FEATURES & 0x20 -> OWORD_WARNONLY

Note
[WIZARD]WIZARD_ROOT is a valid search path but the Wizard has not been fully implemented and the
results of using it are unpredictable.

• LOG_LEVEL = 0 Specify the log_level (default: 0)

• LOG_FILE = file-name.log
For specify the file used for log the data.

• REMAP=M400 modalgroup=10 argspec=Pq ngc=myprocedure See Remap Extending G-code chapter
for details.

• ON_ABORT_COMMAND=O <on_abort> call See Remap Extending G-code chapter for details.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 152 / 1322

4.4.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values
from this section to load the motion controller. For more information on the motion controller see the
Motion section.

• EMCMOT = motmod - the motion controller name is typically used here.

• BASE_PERIOD = 50000 - the Base task period in nanoseconds.

• SERVO_PERIOD = 1000000 - This is the ”Servo” task period in nanoseconds.

• TRAJ_PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

• COMM_TIMEOUT = 1.0 - Number of seconds to wait for Motion (the realtime part of the motion con-
troller) to acknowledge receipt of messages from Task (the non-realtime part of the motion con-
troller).

• HOMEMOD = alternate_homing_module [home_parms=value] The HOMEMOD variable is optional. If
specified, use a specified (user-built) module instead of the default (homemod). Module parameters
(home_parms) may be included if supported by the named module. The setting may be overridden
from the command line using the -m option ($ linuxcnc -h).

4.4.2.6 [TASK] Section

• TASK = milltask - Specifies the name of the task executable. The task executable does various
things, such as

– communicate with the UIs over NML,
– communicate with the realtime motion planner over non-HAL shared memory, and
– interpret G-code. Currently there is only one task executable that makes sense for 99.9% of users,

milltask.

• CYCLE_TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the
polling interval when waiting for motion to complete, when executing a pause instruction, and when
accepting a command from a user interface. There is usually no need to change this number.

4.4.2.7 [HAL] section

• HALFILE = example.hal - Execute the file example.hal at start up.
If HALFILE is specified multiple times, the files are interpreted in the order they appear in the INI file.
HAL files are descriptive, the execution of what is described in HAL files is triggered by the threads
in which functions are embedded, not by the reading of the HAL file. Almost all configurations
will have at least one HALFILE, and stepper systems typically have two such files, i.e., one which
specifies the generic stepper configuration (core_stepper.hal) and one which specifies the machine
pin out (xxx_pinout.hal).
HAL files specified in the HALFILES variable are found using a search. If the named file is found in
the directory containing the INI file, it is used. If the named file is not found in this INI file directory,
a search is made using a system library of HAL files.
If LinuxCNC is started with the linuxcnc script using the ”-H dirname” option, the specified dirname
is prepended to the search described above so that dirname is searched first. The ”-H dirname”
option may be specified more than once, directories are prepended in order.
A HALFILE may also be specified as an absolute path (when the name starts with a / character).
Absolute paths are not recommended as their use may limit relocation of configurations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 153 / 1322

• HALFILE = texample.tcl [arg1 [arg2] …] - Execute the tcl file texample.tcl at start up with arg1,
arg2, etc. as argv list. Files with a .tcl suffix are processed as above but use haltcl for processing.
See the HALTCL Chapter for more information.

• HALFILE = LIB:sys_example.hal - Execute the system library file sys_example.hal at start up. Ex-
plicit use of the LIB: prefix causes use of the system library HALFILE without searching the INI file
directory.

• HALFILE = LIB:sys_texample.tcl [arg1 [arg2…]] - Execute the system library file sys_texample.tcl
at start up. Explicit use of the LIB: prefix causes use of the system library HALFILE without search-
ing the INI file directory.

HALFILE items specify files that loadrt HAL components and make signal connections between com-
ponent pins. Common mistakes are

1. omission of the addf statement needed to add a component’s function(s) to a thread,
2. incomplete signal (net) specifiers.

Omission of required addf statements is almost always an error. Signals usually include one or more
input connections and a single output (but both are not strictly required). A system library file is
provided to make checks for these conditions and report to stdout and in a pop-up GUI:
HALFILE = LIB:halcheck.tcl [nopopup]

Note
The LIB:halcheck.tcl line should be the last [HAL]HALFILE. Specify the nopopup option to suppress
the popup message and allow immediate starting. Connections made using a POSTGUI_HALFILE are
not checked.

• TWOPASS = ON - Use twopass processing for loading HAL components. With TWOPASS processing,
lines of files specified in [HAL]HALFILE are processed in two passes. In the first pass (pass0), all
HALFILES are read and multiple appearances of loadrt and loadusr commands are accumulated.
These accumulated load commands are executed at the end of pass0. This accumulation allows
load lines to be specified more than once for a given component (provided the names= names used
are unique on each use). In the second pass (pass1), the HALFILES are reread and all commands
except the previously executed load commands are executed.

• TWOPASS = nodelete verbose - The TWOPASS feature can be activated with any non-null string in-
cluding the keywords verbose and nodelete. The verbose keyword causes printing of details to
stdout. The nodelete keyword preserves temporary files in /tmp.

For more information see the HAL TWOPASS chapter.

• HALCMD = command - Execute command as a single HAL command. If HALCMD is specified multiple
times, the commands are executed in the order they appear in the INI file. HALCMD-lines are executed
after all HALFILE-lines.

• SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending
on the hardware drivers used, this may make it possible to set outputs to defined values when
LinuxCNC is exited normally. However, because there is no guarantee this file will be executed (for
instance, in the case of a computer crash), it is not a replacement for a proper physical e-stop chain
or other protections against software failure.

• POSTGUI_HALFILE = example2.hal - Execute example2.hal after the GUI has created its HAL pins.
Some GUIs create HAL pins and support the use of a postgui halfile to use them. GUIs that support
postgui HAL files include Touchy, AXIS, Gscreen, and GMOCCAPY.
See section PyVCP with AXIS for more information.

• HALUI = halui - adds the HAL user interface pins.
For more information see the HAL User Interface chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 154 / 1322

4.4.2.8 [HALUI] section

• MDI_COMMAND = G53 G0 X0 Y0 Z0 - An MDI command can be executed by using halui.mdi-command-00.
Increment the number for each command listed in the [HALUI] section. It is also possible to start
subroutines. MDI_COMMAND = o<yoursub> CALL [#<yourvariable>]

4.4.2.9 [APPLICATIONS] Section

LinuxCNC can start other applications before the specified GUI is started. The applications can be
started after a specified delay to allow for GUI-dependent actions (like creating GUI-specific HAL
pins).

• DELAY = value - seconds to wait before starting other applications. A delay may be needed if an
application has dependencies on [HAL]POSTGUI_HALFILE actions or GUI-created HAL pins (default
DELAY=0).

• ‘APP = ̀ appname [arg1 [arg2 …]]’ - Application to be started. This specification can be included
multiple times. The appname can be explicitly named as an absolute or tilde specified filename
(first character is / or ~), a relative filename (first characters of filename are ./), or as a file in the
INI file directory. If no executable file is found using these names, then the user search PATH is
used to find the application.
Examples:

– Simulate inputs to HAL pins for testing (using sim_pin — a simple GUI to set inputs to parameters,
unconnected pins, or signals with no writers):
APP = sim_pin motion.probe-input halui.abort motion.analog-in-00

– Invoke halshow with a previuosly saved watchlist. Since LinuxCNC sets the working directory to
the directory for the INI file, you can refer to files in that directory (example: my.halshow):
APP = halshow my.halshow

– Alternatively, a watchlist file identified with a full pathname could be specified:
APP = halshow ~/saved_shows/spindle.halshow

– Open halscope using a previously saved configuration:
APP = halscope -i my.halscope

4.4.2.10 [TRAJ] Section

Warning
The new Trajectory Planner (TP) is on by default. If you have no TP settings in your [TRAJ]
section - LinuxCNC defaults to:
ARC_BLEND_ENABLE = 1
ARC_BLEND_FALLBACK_ENABLE = 0
ARC_BLEND_OPTIMIZATION_DEPTH = 50
ARC_BLEND_GAP_CYCLES = 4
ARC_BLEND_RAMP_FREQ = 100

The [TRAJ] section contains general parameters for the trajectory planning module in motion.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 155 / 1322

• ARC_BLEND_ENABLE = 1 - Turn on new TP. If set to 0 TP uses parabolic blending (1 segment look
ahead) (Default: 1).

• ARC_BLEND_FALLBACK_ENABLE = 0 - Optionally fall back to parabolic blends if the estimated speed is
faster. However, this estimate is rough, and it seems that just disabling it gives better performance
(Default: 0).

• ARC_BLEND_OPTIMIZATION_DEPTH = 50 - Look ahead depth in number of segments.
To expand on this a bit, you can choose this value somewhat arbitrarily. Here’s a formula to estimate
how much depth you need for a particular config:
n = v_max / (2.0 * a_max * t_c)
where:
n = optimization depth
v_max = max axis velocity (UU / sec)
a_max = max axis acceleration (UU / sec)
t_c = servo period (seconds)

So, a machine with a maximum axis velocity of 10 IPS, a max acceleration of 100 IPS2, and a servo
period of 0.001 s would need:
10 / (2.0 * 100 * 0.001) = 50 segments to always reach maximum velocity along the fastest axis.
In practice, this number isn’t that important to tune, since the look ahead rarely needs the full depth
unless you have lots of very short segments. If during testing, you notice strange slowdowns and
can’t figure out where they come from, first try increasing this depth using the formula above.
If you still see strange slowdowns, it may be because you have short segments in the program. If
this is the case, try adding a small tolerance for Naive CAM detection. A good rule of thumb is this:
min_length ~= v_req * t_c
where:
v_req = desired velocity in UU / sec
t_c = servo period (seconds)

If you want to travel along a path at 1 IPS = 60 IPM, and your servo period is 0.001 s, then any
segments shorter than min_length will slow the path down. If you set Naive CAM tolerance to
around this min length, overly short segments will be combined together to eliminate this bottle-
neck. Of course, setting the tolerance too high means big path deviations, so you have to play
with it a bit to find a good value. I’d start at 1/2 of the min_length, then work up as needed. *
ARC_BLEND_GAP_CYCLES = 4 How short the previous segment must be before the trajectory plan-
ner consumes it.
Often, a circular arc blend will leave short line segments in between the blends. Since the geometry
has to be circular, we can’t blend over all of a line if the next one is a little shorter. Since the
trajectory planner has to touch each segment at least once, it means that very tiny segments will
slow things down significantly. My fix to this way to ”consume” the short segment by making it a
part of the blend arc. Since the line+blend is one segment, we don’t have to slow down to hit the
very short segment. Likely, you won’t need to touch this setting. * ARC_BLEND_RAMP_FREQ = 20 -
This is a cutoff frequency for using ramped velocity.
Ramped velocity in this case just means constant acceleration over the whole segment. This is less
optimal than a trapezoidal velocity profile, since the acceleration is not maximized. However, if
the segment is short enough, there isn’t enough time to accelerate much before we hit the next
segment. Recall the short line segments from the previous example. Since they’re lines, there’s no
cornering acceleration, so we’re free to accelerate up to the requested speed. However, if this line
is between two arcs, then it will have to quickly decelerate again to be within the maximum speed
of the next segment. This means that we have a spike of acceleration, then a spike of deceleration,
causing a large jerk, for very little performance gain. This setting is a way to eliminate this jerk for
short segments.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 156 / 1322

Basically, if a segment will complete in less time than 1 / ARC_BLEND_RAMP_FREQ, we don’t
bother with a trapezoidal velocity profile on that segment, and use constant acceleration. (Set-
ting ARC_BLEND_RAMP_FREQ = 1000 is equivalent to always using trapezoidal acceleration, if the
servo loop is 1 kHz).
You can characterize the worst-case loss of performance by comparing the velocity that a trapezoidal
profile reaches vs. the ramp:
v_ripple = a_max / (4.0 * f)
where:
v_ripple = average velocity ”loss” due to ramping
a_max = max axis acceleration
f = cutoff frequency from INI

For the aforementioned machine, the ripple for a 20 Hz cutoff frequency is 100 / (4 * 20) = 1.25 IPS.
This seems high, but keep in mind that it is only a worst-case estimate. In reality, the trapezoidal
motion profile is limited by other factors, such as normal acceleration or requested velocity, and so
the actual performance loss should be much smaller. Increasing the cutoff frequency can squeeze
out more performance, but make the motion rougher due to acceleration discontinuities. A value in
the range 20 Hz to 200 Hz should be reasonable to start.

Finally, no amount of tweaking will speed up a tool path with lots of small, tight corners, since you’re
limited by cornering acceleration.

• SPINDLES = 3 - The number of spindles to support. It is imperative that this number matches the
”num_spindles” parameter passed to the motion module.

• COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are
valid. Only axes named in COORDINATES are accepted in G-code. It is permitted to write an axis
name more than once (e.g., X Y Y Z for a gantry machine). For the common trivkins kinematics,
joint numbers are assigned in sequence according to the trivkins parameter coordinates=. So, for
trivkins coordinates=xz, joint0 corresponds to X and joint1 corresponds to Z. See the kinematics
man page ($ man kins) for information on trivkins and other kinematics modules.

• LINEAR_UNITS = <units>_ - Specifies themachine units for linear axes. Possible choices are mm or
inch. This does not affect the linear units in NC code (the G20 and G21 words do this).

• ANGULAR_UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are
deg, degree (360 per circle), rad, radian (2*π per circle), grad, or gon (400 per circle). This does
not affect the angular units of NC code. In RS274NGC, A-, B- and C- words are always expressed in
degrees.

• DEFAULT_LINEAR_VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per
second. The value shown in AXIS equals machine units per minute.

• DEFAULT_LINEAR_ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration
used for ”teleop” (Cartesian space) jogs, in machine units per second per second.

• MAX_LINEAR_VELOCITY = 5.0 - The maximum velocity for any axis or coordinated move, inmachine
units per second. The value shown equals 300 units per minute.

• MAX_LINEAR_ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis
move, in machine units per second per second.

• PLANNER_TYPE = 0 - Selects the trajectory planner type: 0 = trapezoidal (default), 1 = S-curve with
jerk limiting. S-curve planning is only active when PLANNER_TYPE = 1 AND MAX_LINEAR_JERK > 0.

• MAX_LINEAR_JERK = 0.0 - The maximum jerk (rate of change of acceleration) for coordinated moves,
in machine units per second cubed. When set to 0 (default), jerk limiting is disabled. When greater
than 0 and PLANNER_TYPE = 1, enables S-curve trajectory planning.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 157 / 1322

• DEFAULT_LINEAR_JERK = 0.0 - The default jerk value for coordinated moves, in machine units per
second cubed. When set to 0, MAX_LINEAR_JERK is used.

• POSITION_FILE = position.txt - If set to a non-empty value, the joint positions are stored between
runs in this file. This allows the machine to start with the same coordinates it had on shutdown.
This assumes there was no movement of the machine while powered off. If unset, joint positions are
not stored and will begin at 0 each time LinuxCNC is started. This can help on smaller machines
without home switches. If using the Mesa resolver interface this file can be used to emulate absolute
encoders and eliminate the need for homing (with no loss of accuracy). See the hostmot2 manpage
for more details.

• NO_FORCE_HOMING = 1 - The default behavior is for LinuxCNC to force the user to home the machine
before any MDI command or a program is run. Normally, only jogging is allowed before homing. For
configurations using identity kinematics, setting NO_FORCE_HOMING = 1 allows the user to make MDI
moves and run programs without homing the machine first. Interfaces using identity kinematics
without homing ability will need to have this option set to 1.

Warning
LinuxCNC will not know your joint travel limits when using NO_FORCE_HOMING = 1.

• HOME = 0 0 0 0 0 0 0 0 0 - World home position needed for kinematics modules that compute
world coordinates using kinematicsForward() when switching from joint to teleop mode. Up to nine
coordinate values (X Y Z A B C U V W) may be specified, unused trailing items may be omitted. This
value is only used for machines with nontrivial kinematics. On machines with trivial kinematics
(mill, lathe, gantry types) this value is ignored. Note: The sim hexapod config requires a non-zero
value for the Z coordinate.

• TPMOD = alternate_trajectory_planning module [tp_parms=value]
The TPMOD variable is optional. If specified, use a specified (user-built) module instead of the default
(tpmod). Module parameters (tp_parms) may be included if supported by the named module. The
setting may be overridden from the command line using the -t option ($ linuxcnc -h).

• NO_PROBE_JOG_ERROR = 0 - Allow to bypass probe tripped check when you jog manually.

• NO_PROBE_HOME_ERROR = 0 - Allow to bypass probe tripped check when homing is in progress.

4.4.2.11 [KINS] Section

• JOINTS = 3 - Specifies the number of joints (motors) in the system. For example, a trivkins XYZ
machine with a single motor for each axis has 3 joints. A gantry machine with one motor on each
of two of the axes, and two motors on the third axis, has 4 joints. (This config variable may be used
by a GUI to set the number of joints (num_joints) specified to the motion module (motmod).)

• KINEMATICS = trivkins - Specify a kinematics module for the motion module. GUIs may use this
variable to specify the loadrt-line in HAL files for the motmod module. For more information on
kinematics modules see the manpage: $ man kins.

4.4.2.12 [AXIS_<letter>] Section

The <letter> specifies one of: X Y Z A B C U V W

• TYPE = LINEAR - The type of this axis, either LINEAR or ANGULAR. Required if this axis is not a default
axis type. The default axis types are X,Y,Z,U,V,W = LINEAR and A,B,C = ANGULAR. This setting is
effective with the AXIS GUI but note that other GUI’s may handle things differently.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 158 / 1322

• MAX_VELOCITY = 1.2 - Maximum velocity for this axis in machine units per second.

• MAX_ACCELERATION = 20.0 - Maximum acceleration for this axis in machine units per second squared.

• MAX_JERK = 0.0 - Maximum jerk for this axis in machine units per second cubed. Used when S-
curve trajectory planning is enabled. When set to 0 (default), no per-axis jerk limiting is applied.

• MIN_LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion. The axis must be homed before MIN_LIMIT is
in force. For a rotary axis (A,B,C typ) with unlimited rotation having no MIN_LIMIT for that axis in
the [AXIS_<letter>] section a value of -1e99 is used.

• MAX_LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion. The axis must be homed before MAX_LIMIT is
in force. For a rotary axis (A,B,C typ) with unlimited rotation having no MAX_LIMIT for that axis in
the [AXIS_<letter>] section a value of 1e99 is used.

• WRAPPED_ROTARY = 1 - When this is set to 1 for an ANGULAR axis the axis will move 0-359.999
degrees. Positive Numbers will move the axis in a positive direction and negative numbers will
move the axis in the negative direction.

• LOCKING_INDEXER_JOINT = 4 - This value selects a joint to use for a locking indexer for the specified
axis <letter>. In this example, the joint is 4 which would correspond to the B axis for a XYZAB
system with trivkins (identity) kinematics. When set, a G0 move for this axis will initiate an unlock
with the joint.4.unlock pin then wait for the joint.4.is-unlocked pin then move the joint at
the rapid rate for that joint. After the move the joint.4.unlock will be false and motion will wait
for joint.4.is-unlocked to go false. Moving with other joints is not allowed when moving a locked
rotary joint. To create the unlock pins, use the motmod parameter:
unlock_joints_mask=jointmask

The jointmask bits are: (LSB)0:joint0, 1:joint1, 2:joint2, …
Example: loadrt motmod ... unlock_joints_mask=0x38 creates unlock-pins for joints 3,4,5.

• OFFSET_AV_RATIO = 0.1 - If nonzero, this item enables the use of HAL input pins for external axis
offsets:
axis.<letter>.eoffset-enable
axis.<letter>.eoffset-count
axis.<letter>.eoffset-scale

See the chapter: External Axis Offsets for usage information.

4.4.2.13 [JOINT_<num>] Sections

The<num> specifies the joint number 0 … (num_joints-1) The value of num_joints is set by [KINS]JOINTS=.
The [JOINT_0], [JOINT_1], etc. sections contains general parameters for the individual components
in the joint control module. The joint section names begin numbering at 0, and run through the number
of joints specified in the [KINS]JOINTS entry minus 1.
Typically (for systems using trivkins kinematics, there is a 1:1 correspondence between a joint and an
axis coordinate letter):

• JOINT_0 = X

• JOINT_1 = Y

• JOINT_2 = Z

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 159 / 1322

• JOINT_3 = A

• JOINT_4 = B

• JOINT_5 = C

• JOINT_6 = U

• JOINT_7 = V

• JOINT_8 = W

Other kinematics modules with identity kinematics are available to support configurations with partial
sets of axes. For example, using trivkins with coordinates=XZ, the joint-axes relationships are:

• JOINT_0 = X

• JOINT_1 = Z

For more information on kinematics modules see the manpage kins (on the UNIX terminal type man
kins).

• TYPE = LINEAR - The type of joint, either LINEAR or ANGULAR.

• UNITS = INCH - If specified, this setting overrides the related [TRAJ] UNITS setting, e.g., [TRAJ]LINEAR_UNITS
if the TYPE of this joint is LINEAR, [TRAJ]ANGULAR_UNITS if the TYPE of this joint is ANGULAR.

• MAX_VELOCITY = 1.2 - Maximum velocity for this joint in machine units per second.

• MAX_ACCELERATION = 20.0 - Maximum acceleration for this joint in machine units per second squared.

• MAX_JERK = 0.0 - Maximum jerk for this joint in machine units per second cubed. Used when S-
curve trajectory planning is enabled. When set to 0 (default), no per-joint jerk limiting is applied.

• BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to
make up for small deficiencies in the hardware used to drive an joint. If backlash is added to an
joint and you are using steppers the STEPGEN_MAXACCEL must be increased to 1.5 to 2 times the
MAX_ACCELERATION for the joint. Excessive backlash compensation can cause an joint to jerk as it
changes direction. If a COMP_FILE is specified for a joint BACKLASH is not used.

• COMP_FILE = file.extension - The compensation file consists of map of position information for the
joint. Compensation file values are in machine units. Each set of values are are on one line separated
by a space. The first value is the nominal value (the commanded position). The second and third
values depend on the setting of COMP_FILE_TYPE. Points in between nominal values are interpolated
between the two nominals. Compensation files must start with the smallest nominal and be in
ascending order to the largest value of nominals. File names are case sensitive and can contain
letters and/or numbers. Currently the limit inside LinuxCNC is for 256 triplets per joint.
If COMP_FILE is specified for a joint, BACKLASH is not used.

• COMP_FILE_TYPE = 0 or 1 - Specifies the type of compensation file. The first value is the nominal
(commanded) position for both types.
A COMP_FILE_TYPE must be specified for each COMP_FILE.

– Type 0: The second value specifies the actual position as the joint is moving in the positive direc-
tion (increasing value). The third value specifies the actual position as the joint is moving in the
negative direction (decreasing value).
Type 0 Example
-1.000 -1.005 -0.995
0.000 0.002 -0.003
1.000 1.003 0.998

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 160 / 1322

– Type 1: The second value specifies positive offset from nominal while traveling in the positive
direction. The third value specifies the negative offset from nominal while traveling in a negative
direction.
Type 1 Example
-1.000 0.005 -0.005
0.000 0.002 -0.003
1.000 0.003 -0.004

• MIN_LIMIT = -1000 - The minimum limit for joint motion, in machine units. When this limit is
reached, the controller aborts joint motion. For a rotary joint with unlimited rotation having no
MIN_LIMIT for that joint in the [JOINT_N] section a the value -1e99 is used.

• MAX_LIMIT = 1000 - The maximum limit for joint motion, in machine units. When this limit is
reached, the controller aborts joint motion. For a rotary joint with unlimited rotation having no
MAX_LIMIT for that joint in the [JOINT_N] section a the value 1e99 is used.

Note
For identity kinematics, the [JOINT_N]MIN_LIMIT/MAX_LIMIT settings must equal or exceed the
corresponding (one-to-one identity) [AXIS_L] limits. These settings are verified at startup when the
trivkins kinematics modules is specified.

Note
The [JOINT_N]MIN_LIMIT/MAX_LIMIT settings are enforced while jogging in joint mode prior to hom-
ing. After homing, [AXIS_L]MIN_LIMIT/MAX_LIMIT coordinate limits are used as constraints for axis
(coordinate letter) jogging and by the trajectory planning used for G-code moves (programs and MDI
commands). The trajectory planner works in Cartesian space (XYZABCUVW) and has no information
about the motion of joints implemented by any kinematics module. It is possible for joint limit viola-
tions to occur for G-code that obeys trajectory planning position limits when non identity kinematics
are used. The motion module always detects joint position limit violations and faults if they occur
during the execution of G-code commands. See also related GitHub issue #97.

• MIN_FERROR = 0.010 - This is the value in machine units by which the joint is permitted to deviate
from commanded position at very low speeds. If MIN_FERROR is smaller than FERROR, the two
produce a ramp of error trip points. You could think of this as a graph where one dimension is speed
and the other is permitted following error. As speed increases the amount of following error also
increases toward the FERROR value.

• FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the difference
between commanded and sensed position exceeds this amount, the controller disables servo calcu-
lations, sets all the outputs to 0.0, and disables the amplifiers. If MIN_FERROR is present in the INI
file, velocity-proportional following errors are used. Here, the maximum allowable following error
is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJ]MAX_VELOCITY, and
proportionally smaller following errors for slower speeds. The maximum allowable following error
will always be greater than MIN_FERROR. This prevents small following errors for stationary axes
from inadvertently aborting motion. Small following errors will always be present due to vibration,
etc.

• LOCKING_INDEXER = 1 - Indicates the joint is used as a locking indexer.

These parameters are Homing related, for a better explanation read the Homing Configuration Chap-
ter.

• HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

https://github.com/LinuxCNC/linuxcnc/issues/97

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 161 / 1322

• HOME_OFFSET = 0.0 - The joint position of the home switch or index pulse, in machine units. When
the home point is found during the homing process, this is the position that is assigned to that point.
When sharing home and limit switches and using a home sequence that will leave the home/limit
switch in the toggled state, the home offset can be used define the home switch position to be other
than 0 if your HOME position is desired to be 0.

• HOME_SEARCH_VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direc-
tion of travel. A value of zero means assume that the current location is the home position for the
machine. If your machine has no home switches you will want to leave this value at zero.

• HOME_LATCH_VEL = 0.0 - Homing velocity in machine units per second to the home switch latch
position. Sign denotes direction of travel.

• HOME_FINAL_VEL = 0.0 - Velocity in machine units per second from home latch position to home
position. If left at 0 or not included in the joint rapid velocity is used. Must be a positive number.

• HOME_USE_INDEX = NO - If the encoder used for this joint has an index pulse, and the motion card
has provision for this signal you may set it to yes. When it is yes, it will affect the kind of home
pattern used. Currently, you can’t home to index with steppers unless you’re using StepGen in
velocity mode and PID.

• HOME_INDEX_NO_ENCODER_RESET = NO - Use YES if the encoder used for this joint does not reset
its counter when an index pulse is detected after assertion of the joint index_enable HAL pin.
Applicable only for HOME_USE_INDEX = YES.

• HOME_IGNORE_LIMITS = NO - When you use the limit switch as a home switch and the limit switch
this should be set to YES. When set to YES the limit switch for this joint is ignored when homing.
You must configure your homing so that at the end of your home move the home/limit switch is not
in the toggled state you will get a limit switch error after the home move.

• HOME_IS_SHARED = <n> - If the home input is shared by more than one joint set <n> to 1 to prevent
homing from starting if the one of the shared switches is already closed. Set <n> to 0 to permit
homing if a switch is closed.

• HOME_ABSOLUTE_ENCODER = 0 | 1 | 2 - Used to indicate the joint uses an absolute encoder. At a re-
quest for homing, the current joint value is set to the HOME_OFFSET value. If the HOME_ABSOLUTE_ENCODER
setting is 1, the machine makes the usual final move to the HOME value. If the HOME_ABSOLUTE_ENCODER
setting is 2, no final move is made.

• HOME_SEQUENCE = <n> - Used to define the ”Home All” sequence. <n> must start at 0 or 1 or -1.
Additional sequences may be specified with numbers increasing by 1 (in absolute value). Skipping
of sequence numbers is not allowed. If a HOME_SEQUENCE is omitted, the joint will not be homed
by the ”Home All” function. More than one joint can be homed at the same time by specifying the
same sequence number for more than one joint. A negative sequence number is used to defer the
final move for all joints having that (negative or positive) sequence number. For additional info, see:
HOME SEQUENCE.

• VOLATILE_HOME = 0 - When enabled (set to 1) this joint will be unhomed if the Machine Power is
off or if E-Stop is on. This is useful if your machine has home switches and does not have position
feedback such as a step and direction driven machine.

These parameters are relevant to joints controlled by servos.

Warning
The following are custom INI file entries that you may find in a sample INI file or a wizard
generated file. These are not used by the LinuxCNC software. They are only there to put
all the settings in one place. For more information on custom INI file entries see the Custom
Sections and Variables subsection.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 162 / 1322

The following items might be used by a PID component and the assumption is that the output is volts.

• DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine
units.
This is often set to a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict
rules. Looser (larger) settings allow less servo hunting at the expense of lower accuracy. Tighter
(smaller) settings attempt higher accuracy at the expense of more servo hunting. Is it really more
accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.
Be careful about going below 1 encoder count, since you may create a condition where there is no
place that your servo is happy. This can go beyond hunting (slow) to nervous (rapid), and even to
squealing which is easy to confuse with oscillation caused by improper tuning. Better to be a count
or two loose here at first, until you’ve been through gross tuning at least.
Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

• BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is
added to the output. In most cases it should be left at zero. However, it can sometimes be useful to
compensate for offsets in servo amplifiers, or to balance the weight of an object that moves vertically.
Bias is turned off when the PID loop is disabled, just like all other components of the output.

• P = 50 - The proportional gain for the joint servo. This value multiplies the error between com-
manded and actual position in machine units, resulting in a contribution to the computed voltage

for the motor amplifier. The units on the P gain are volts per machine unit, e.g.,

• I = 0 - The integral gain for the joint servo. The value multiplies the cumulative error between
commanded and actual position in machine units, resulting in a contribution to the computed voltage

for the motor amplifier. The units on the I gain are volts per machine unit second, e.g.,

• D = 0 - The derivative gain for the joint servo. The value multiplies the difference between the cur-
rent and previous errors, resulting in a contribution to the computed voltage for the motor amplifier.

The units on the D gain are volts per machine unit per second, e.g.,

• FF0 = 0 - The 0th order feed forward gain. This number is multiplied by the commanded position,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF0

gain are volts per machine unit, e.g.,

• FF1 = 0 - The 1st order feed forward gain. This number is multiplied by the change in commanded
position per second, resulting in a contribution to the computed voltage for the motor amplifier. The

units on the FF1 gain are volts per machine unit per second, e.g.,

• FF2 = 0 - The 2nd order feed forward gain. This number is multiplied by the change in commanded
position per second per second, resulting in a contribution to the computed voltage for the mo-
tor amplifier. The units on the FF2 gain are volts per machine unit per second per second, e.g.,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 163 / 1322

• OUTPUT_SCALE = 1.000

• OUTPUT_OFFSET = 0.000
These two values are the scale and offset factors for the joint output to the motor amplifiers.
The second value (offset) is subtracted from the computed output (in volts), and divided by the first
value (scale factor), before being written to the D/A converters. The units on the scale value are
in true volts per DAC output volts. The units on the offset value are in volts. These can be used to
linearize a DAC. Specifically, when writing outputs, the LinuxCNC first converts the desired output
in quasi-SI units to raw actuator values, e.g., Volts for an amplifier DAC. This scaling looks like:

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI
units]/[actuator units]. For example, on a machine with a velocity mode amplifier such that 1 V
results in 250 mm/s velocity.

Note that the units of the offset are in machine units, e.g. mm/s, and they are pre-subtracted from
the sensor readings. The value for this offset is obtained by finding the value of your output which
yields 0.0 for the actuator output. If the DAC is linearized, this offset is normally 0.0.
The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the
combined effects of amplifier gain, DAC non-linearity, DAC units, etc.
To do this, follow this procedure.

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring
the result.

2. Do a least-squares linear fit to get coefficients a, b such that
3. Note that we want raw output such that our measured result is identical to the commanded

output. This means
a.
b.

4. As a result, the a and b coefficients from the linear fit can be used as the scale and offset for
the controller directly.

See the following table for an example of voltage measurements.

Table 4.1: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87

10 10.87

• MAX_OUTPUT = 10 - The maximum value for the output of the PID compensation that is written to the
motor amplifier, in volts. The computed output value is clamped to this limit. The limit is applied
before scaling to raw output units. The value is applied symmetrically to both the plus and the
minus side.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 164 / 1322

• INPUT_SCALE = 20000 - in Sample configs

• ENCODER_SCALE = 20000 - in PnCconf built configs

Specifies the number of pulses that corresponds to a move of one machine unit as set in the [TRAJ]
section. For a linear joint one machine unit will be equal to the setting of LINEAR_UNITS. For an angular
joint one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we
have:

These parameters are relevant to joints controlled by steppers.

Warning
The following are custom INI file entries that you may find in a sample INI file or a wizard
generated file. These are not used by the LinuxCNC software and meant only to put all the
settings in one place. For more information on custom INI file entries see the Custom Sections
and Variables subsection.

The following items might be used by a StepGen component.

• SCALE = 4000 - in Sample configs

• STEP_SCALE = 4000 - in PnCconf built configs

Specifies the number of pulses that corresponds to a move of one machine unit as set in the [TRAJ]
section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
joint one machine unit will be equal to the setting of LINEAR_UNITS. For an angular joint one unit is
equal to the setting in ANGULAR_UNITS. For servo systems, this is the number of feedback pulses per
machine unit. A second number, if specified, is ignored.
For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired
machine units of inch, we have:

Note
Old INI and HAL files used INPUT_SCALE for this value.

• ENCODER_SCALE = 20000 (Optionally used in PnCconf built configs) - Specifies the number of pulses
that corresponds to a move of one machine unit as set in the [TRAJ] section. For a linear joint one
machine unit will be equal to the setting of LINEAR_UNITS. For an angular joint one unit is equal to
the setting in ANGULAR_UNITS. A second number, if specified, is ignored. For example, on a 2000
counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

• STEPGEN_MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10%
larger than the joint MAX_ACCELERATION. This value improves the tuning of StepGen’s ”position
loop”. If you have added backlash compensation to an joint then this should be 1.5 to 2 times
greater than MAX_ACCELERATION.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 165 / 1322

• STEPGEN_MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as
well. If specified, it should also be 1% to 10% larger than the joint MAX_VELOCITY. Subsequent
testing has shown that use of STEPGEN_MAXVEL does not improve the tuning of StepGen’s position
loop.

4.4.2.14 [SPINDLE_<num>] Section(s)

The <num> specifies the spindle number 0 … (num_spindles-1)
The value of num_spindles is set by [TRAJ]SPINDLES= .
By default maximum velocity of the spindle in forward and reverse is approximately 2147483000 RPM.
By default minimum velocity of the spindle in forward and reverse is 0 RPM.
By default the increment is 100 RPM.
You change these default by setting the following INI variables:

Note
These settings are for the motion controller component. Control screens can limit these settings
further.

• MAX_FORWARD_VELOCITY = 20000 The maximum spindle speed (in rpm) for the specified spindle.
Optional. This will also set MAX_REVERSE_VELOCITY to the negative value unless overridden.

• MIN_FORWARD_VELOCITY = 3000 The minimum spindle speed (in rpm) for the specified spindle. Op-
tional. Many spindles have a minimum speed below which they should not be run. Any spindle
speed command below this limit will be /increased/ to this limit.

• MAX_REVERSE_VELOCITY = 20000 This setting will default to MAX_FORWARD_VELOCITY if omitted. It
can be used in cases where the spindle speed is limited in reverse. Set to zero for spindles which
must not be run in reverse. In this context ”max” refers to the absolute magnitude of the spindle
speed.

• MIN_REVERSE_VELOCITY = 3000 T̀his setting is equivalent to MIN_FORWARD_VELOCITY but for re-
verse spindle rotation. It will default to the MIN_FORWARD_VELOCITY if omitted.

• INCREMENT = 200 Sets the step size for spindle speed increment / decrement commands. This can
have a different value for each spindle. This setting is effective with AXIS and Touchy but note that
some control screens may handle things differently.

• HOME_SEARCH_VELOCITY = 100 - FIXME: Spindle homing not yet working. Sets the homing speed
(rpm) for the spindle. The spindle will rotate at this velocity during the homing sequence until the
spindle index is located, at which point the spindle position will be set to zero. Note that it makes
no sense for the spindle home position to be any value other than zero, and so there is no provision
to do so.

• HOME_SEQUENCE = 0 - FIXME: Spindle homing not yet working Controls where in the general hom-
ing sequence the spindle homing rotations occur. Set the HOME_SEARCH_VELOCITY to zero to avoid
spindle rotation during the homing sequence.

4.4.2.15 [EMCIO] Section

• TOOL_TABLE = tool.tbl - The file which contains tool information, described in the User Manual.

• DB_PROGRAM = db_program - Path to an executable program that manages tool data. When a DB_PROGRAM
is specified, a TOOL_TABLE entry is ignored.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 166 / 1322

• TOOL_CHANGE_POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool
change if three digits are used. Specifies the XYZABC location when 6 digits are used. Specifies
the XYZABCUVW location when 9 digits are used. Tool Changes can be combined. For example if
you combine the quill up with change position you can move the Z first then the X and Y.

• TOOL_CHANGE_WITH_SPINDLE_ON = 1 - The spindle will be left on during the tool change when the
value is 1. Useful for lathes or machines where the material is in the spindle, not the tool.

• TOOL_CHANGE_QUILL_UP = 1 - The Z axis will be moved to machine zero prior to the tool change
when the value is 1. This is the same as issuing a G0 G53 Z0.

• TOOL_CHANGE_AT_G30 = 1 - The machine is moved to reference point defined by parameters 5181-
5186 for G30 if the value is 1. For more information see G-code Parameters and G-code G30-G30.1.

• RANDOM_TOOLCHANGER = 1 - This is for machines that cannot place the tool back into the pocket it
came from. For example, machines that exchange the tool in the active pocket with the tool in the
spindle.

4.5 Homing Configuration

4.5.1 Overview

Homing sets the zero origin of the G53 machine coordinates. Soft limits are defined relative to the
machine origin. The soft limits automatically decelerate and stop the axes before they hit the limits
switches A properly configured and functioning machine will not move beyond soft(ware) limits and
will have the machine origin set as repeatable as the home switch/index mechanism is. Linuxcnc can
be homed by eye (alignment marks), with switches, with switches and an encoder index, or by using
absolute encoders. Homing seems simple enough - just move each joint to a known location, and set
LinuxCNC’s internal variables accordingly. However, different machines have different requirements,
and homing is actually quite complicated.

Note
While it is possible to use LinuxCNC without homing switches/home procedures or limit switches, It
defeats the extra security of the soft limits.

4.5.2 Prerequisite

Homing relies on some fundamental machine assumptions.

• The negative and positive directions are based on Tool Movement which can be different from the
actual machine movement. I.e., on a mill typically the table moves rather then the tool.

• Everything is referenced from the G53 machine zero origin, the origin can be anywhere (even out-
side where you can move)

• The G53 machine zero origin is typically inside the soft limits area but not necessarily.

• The homing switch offset sets where the origin is, but even it is referenced from the origin.

• When using encoder index homing, the home switch offset is calculated from the encoder reference
position, after the home switch has been tripped.

• The negative soft(ware) limits are the most you can move in the negative direction after homing.
(but they might not be negative in the absolute sense)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 167 / 1322

• The positive soft(ware) limits are the most you can move in the positive direction after homing. (but
they might not be positive in the absolute sense, though it is usual to set it as a positive number)

• Soft(ware) limits are inside the limit switch area.

• (Final) Homed Position is inside the soft limit area

• (If using switch based homing) the homing switch(es) either utilize the limit switches (shared home
/ limit switch), or when using a separate home switch, are inside the limit switch area.

• If using a separate homing switch, it is possible to start homing on the wrong side of the home
switch, which combined with HOME_IGNORE_LIMITS option will lead to a hard crash. You can
avoid this by making the home switch toggle its state when the trip dog is on a particular side until
it returns passed the trip point again. Said another way, the home switch state must represent the
position of the dog relative to the switch (i.e. before or after the switch), and must stay that way
even if the dog coasts past the switch in the same direction.

Note
While it is possible to use LinuxCNC with the G53 machine origin outside the soft machine limits, if
you use G28 or G30 without setting the parameters it goes to the origin by default. This would trip
the limit switches before getting to position.

4.5.3 Separate Home Switch Example Layout

This example shows minimum and maximum limit switches with a separate home switch.

Figure 4.6: Demonstrative Separate Switch Layout

• A is the negative soft limit

• B is the G53 machine coordinate Origin

• C is the home switch trip point

• D is the positive soft limit

• H is the final home position (HOME) = 0 units

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 168 / 1322

• The -L and +L are the limit switches trip points

• A<->B is the negative soft limits (MIN_LIMITS) = -3 units

• B<->C is the home_offset (HOME_OFFSET) = -2.3 units

• B<->D is the positive soft limits (MAX_LIMITS) = 7 units

• A<->D is the total travel = 10 units

• The distance between the limit switches and soft limits (-L<->A and D<-+L) is magnified in this
example

• Note that there is distance between the limit switches and actual physical hard contact for coasting
after the amplifier is disabled.

Note
Homing sets the G53 coordinate system, while the machine origin (zero point) can be anywhere,
setting the zero point at the negative soft limit makes all G53 coordinates positive, which is probably
easiest to remember. Do this by setting MIN_LIMIT = 0 and make sure MAX_LIMIT is positive.

4.5.4 Shared Limit/Home Switch Example Layout

This example shows a maximum limit switch and a combined minimum limit/home switch.

Figure 4.7: Demonstrative Shared Switch Layout

• A is the negative soft limit.

• B is the G53 machine coordinate Origin.

• C is the home switch trip point shared with (-L) minimum limit trip.

• D is the positive soft limit.

• H is the final home position (HOME) = 3 units.

• The -L and +L are the limit switch trip points.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 169 / 1322

• A<->B is the negative soft limits (MIN_LIMITS) = 0 units.

• B<->C is the home_offset (HOME_OFFSET) = -0.7 units.

• B<->D is the positive soft limits (MAX_LIMITS) 10 units.

• A<->D is the total travel = 10 units.

• The distance between the limits switches and soft limits (-L<->A and D<->+L) is magnified in this
example.

• Note that there is distance between the limit switches and actual physical hard contact for coasting
after the amplifier is disabled.

4.5.5 Homing Sequence

There are four possible homing sequences defined by the sign of HOME_SEARCH_VEL and HOME_LATCH_VEL,
along with the associated configuration parameters as shown in the following table. Two basic con-
ditions exist, HOME_SEARCH_VEL and HOME_LATCH_VEL are the same sign or they are opposite
signs. For a more detailed description of what each configuration parameter does, see the following
section.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 170 / 1322

Figure 4.8: Homing Sequences

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 171 / 1322

4.5.6 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [JOINT_n]
section of the INI file.

Homing Type HOME_SEARCH_VELHOME_LATCH_VELHOME_USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES

Switch-only nonzero nonzero NO
Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

4.5.6.1 HOME_SEARCH_VEL

This variable has units of machine-units per second.
The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch;
the search stage of homing is skipped.
If HOME_SEARCH_VEL is non-zero, then LinuxCNC assumes that there is a home switch. It be-
gins by checking whether the home switch is already tripped. If tripped it backs off the switch at
HOME_SEARCH_VEL. The direction of the back-off is opposite the sign of HOME_SEARCH_VEL. Then
it searches for the home switch by moving in the direction specified by the sign of HOME_SEARCH_VEL,
at a speed determined by its absolute value. When the home switch is detected, the joint will stop as
fast as possible, but there will always be some overshoot. The amount of overshoot depends on the
speed. If it is too high, the joint might overshoot enough to hit a limit switch or crash into the end of
travel. On the other hand, if HOME_SEARCH_VEL is too low, homing can take a long time.

4.5.6.2 HOME_LATCH_VEL

This variable has units of machine-units per second.
Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination
of the home switch (if present) and index pulse location (if present). It will usually be slower than
the search velocity to maximize accuracy. If HOME_SEARCH_VEL and HOME_LATCH_VEL have the
same sign, then the latch phase is done while moving in the same direction as the search phase. (In
that case, LinuxCNC first backs off the switch, before moving towards it again at the latch velocity.)
If HOME_SEARCH_VEL and HOME_LATCH_VEL have opposite signs, the latch phase is done while
moving in the opposite direction from the search phase. That means LinuxCNC will latch the first pulse
after it moves off the switch. If HOME_SEARCH_VEL is zero (meaning there is no home switch), and
this parameter is nonzero, LinuxCNC goes ahead to the index pulse search. If HOME_SEARCH_VEL
is non-zero and this parameter is zero, it is an error and the homing operation will fail. The default
value is zero.

4.5.6.3 HOME_FINAL_VEL

This variable has units of machine-units per second.
It specifies the speed that LinuxCNC uses when it makes its move from HOME_OFFSET to the HOME
position. If the HOME_FINAL_VEL is missing from the INI file, then the maximum joint speed is used
to make this move. The value must be a positive number.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 172 / 1322

4.5.6.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether
LinuxCNC will ignore the limit switch input for this joint while homing. This setting will not ignore
limit inputs for other joints. If you do not have a separate home switch set this to YES and connect the
limit switch signal to the joint home switch input in HAL. LinuxCNC will ignore the limit switch input
for this joint while homing. To use only one input for all homing and limits you will have to block the
limit signals of the joints not homing in HAL and home one joint at a time.

4.5.6.5 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME_USE_INDEX = YES),
LinuxCNC will latch on the rising edge of the index pulse. If false, LinuxCNC will latch on either
the rising or falling edge of the home switch (depending on the signs of HOME_SEARCH_VEL and
HOME_LATCH_VEL). The default value is NO.

Note
HOME_USE_INDEX requires connections in your HAL file to joint.n.index-enable from the
encoder.n.index-enable.

4.5.6.6 HOME_INDEX_NO_ENCODER_RESET

Default is NO. Use YES if the encoder used for this joint does not reset its counter when an index pulse
is detected after assertion of the joint index_enable HAL pin. Applicable only for HOME_USE_INDEX
= YES.

4.5.6.7 HOME_OFFSET

This defines the location of the origin zero point of the G53 machine coordinate system. It is the dis-
tance (offset), in joint units, from the machine origin to the home switch trip point or index pulse.
After detecting the switch trip point/index pulse, LinuxCNC sets the joint coordinate position to
HOME_OFFSET, thus defining the origin, which the soft limits references from. The default value
is zero.

Note
The home switch location, as indicated by the HOME_OFFSET variable, can be inside or outside the
soft limits. They will be shared with or inside the hard limit switches.

4.5.6.8 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the
home switch or home switch then index pulse (depending on configuration), and setting the coordinate
of that point to HOME_OFFSET, LinuxCNC makes a move to HOME as the final step of the homing
process. The default value is zero. Note that even if this parameter is the same as HOME_OFFSET,
the joint will slightly overshoot the latched position as it stops. Therefore there will always be a
small move at this time (unless HOME_SEARCH_VEL is zero, and the entire search/latch stage was
skipped). This final move will be made at the joint’s maximum velocity unless HOME_FINAL_VEL has
been set.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 173 / 1322

Note
The distinction between HOME_OFFSET and HOME is that HOME_OFFSET first establishes the origin
location and scale on the machine by applying the HOME_OFFSET value to the location where home
was found, and then HOME says where the joint should move to on that scale.

4.5.6.9 HOME_IS_SHARED

If there is not a separate home switch input for this joint, but a number of momentary switches wired
to the same pin, set this value to 1 to prevent homing from starting if one of the shared switches is
already closed. Set this value to 0 to permit homing even if the switch is already closed.

4.5.6.10 HOME_ABSOLUTE_ENCODER

Use for absolute encoders. When a request is made to home the joint, the current joint position is set
to the [JOINT_n]HOME_OFFSET value.
The final move to the [JOINT_n]HOME position is optional according to theHOME_ABSOLUTE_ENCODER
setting:
HOME_ABSOLUTE_ENCODER = 0 (Default) joint does not use an absolute encoder
HOME_ABSOLUTE_ENCODER = 1 Absolute encoder, final move to [JOINT_n]HOME
HOME_ABSOLUTE_ENCODER = 2 Absolute encoder, NO final move to [JOINT_n]HOME

Note
A HOME_IS_SHARED setting is silently ignored.

Note
A request to rehome the joint is silently ignored.

4.5.6.11 HOME_SEQUENCE

Used to define a multi-joint homing sequence HOME ALL and enforce homing order (e.g., Z may not
be homed if X is not yet homed). A joint may be homed after all joints with a lower (absolute value)
HOME_SEQUENCE have already been homed and are at the HOME_OFFSET. If two joints have the
same HOME_SEQUENCE, they may be homed at the same time.

Note
If HOME_SEQUENCE is not specified then the joint will not be homed by the HOME ALL sequence
(but may be homed by individual joint-specific homing commands).

The initial HOME_SEQUENCE number may be 0, 1 (or -1). The absolute value of sequence num-
bers must increment by one — skipping sequence numbers is not supported. If a sequence number is
omitted, HOME ALL homing will stop upon completion of the last valid sequence number.
Negative HOME_SEQUENCE values indicate that joints in the sequence should synchronize the
final move to [JOINT_n]HOME by waiting until all joints in the sequence are ready. If any joint has a
negativeHOME_SEQUENCE value, then all joints with the same absolute value (positive or negative)
of the HOME_SEQUENCE item value will synchronize the final move.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 174 / 1322

A negativeHOME_SEQUENCE also applies to commands to home a single joint. If the HOME_SEQUENCE
value is negative, all joints having the same absolute value of that HOME_SEQUENCE will be homed
together with a synchronized final move. If the HOME_SEQUENCE value is zero or positive, a
command to home the joint will home only the specified joint.
Joint mode jogging of joints having a negative HOME_SEQUENCE is disallowed. In common gantry
applications, such jogging can lead to misalignment (racking). Note that conventional jogging in world
coordinates is always available once a machine is homed.
Examples for a 3 joint system
Two sequences (0,1), no synchronization
[JOINT_0]HOME_SEQUENCE = 0
[JOINT_1]HOME_SEQUENCE = 1
[JOINT_2]HOME_SEQUENCE = 1

Two sequences, joints 1 and 2 synchronized
[JOINT_0]HOME_SEQUENCE = 0
[JOINT_1]HOME_SEQUENCE = -1
[JOINT_2]HOME_SEQUENCE = -1

With mixed positive and negative values, joints 1 and 2 synchronized
[JOINT_0]HOME_SEQUENCE = 0
[JOINT_1]HOME_SEQUENCE = -1
[JOINT_2]HOME_SEQUENCE = 1

One sequence, no synchronization
[JOINT_0]HOME_SEQUENCE = 0
[JOINT_1]HOME_SEQUENCE = 0
[JOINT_2]HOME_SEQUENCE = 0

One sequence, all joints synchronized
[JOINT_0]HOME_SEQUENCE = -1
[JOINT_1]HOME_SEQUENCE = -1
[JOINT_2]HOME_SEQUENCE = -1

4.5.6.12 VOLATILE_HOME

If this setting is true, this joint becomes unhomed whenever the machine transitions into the OFF
state. This is appropriate for any joint that does not maintain position when the joint drive is off.
Some stepper drives, especially microstep drives, may need this.

4.5.6.13 LOCKING_INDEXER

If this joint is a locking rotary indexer, it will unlock before homing, and lock afterward.

4.5.6.14 Immediate Homing

If a joint does not have home switches or does not have a logical home position like a rotary joint and
you want that joint to home at the current position when the ”Home All” button is pressed in the AXIS
GUI, then the following INI entries for that joint are needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 175 / 1322

HOME_SEARCH_VEL = 0
HOME_LATCH_VEL = 0
HOME_USE_INDEX = NO
HOME_OFFSET = 0 (Or the home position offset (HOME))
HOME_SEQUENCE = 0 (or other valid sequence number)

Note
The default values for unspecified HOME_SEARCH_VEL, HOME_LATCH_VEL, HOME_USE_INDEX, HOME,
and HOME_OFFSET are zero, so they may be omitted when requesting immediate homing. A valid
HOME_SEQUENCE number should usually be included since omitting a HOME_SEQUENCE eliminates
the joint from HOME ALL behavior as noted above.

4.5.6.15 Inhibiting Homing

A HAL pin (motion.homing-inhibit) is provided to disallow homing initiation for both ”Home All” and
individual joint homing.
Some systems take advantage of the provisions for synchronizing final joint homing moves as con-
trolled by negative [JOINT_N]HOME_SEQUENCE= INI file items. By default, the synchronization
provisions disallow joint jogging prior to homing in order to prevent joint jogs that could misalign
the machine (gantry racking for example).
System integrator can allow joint jogging prior to homing with HAL logic that switches the [JOINT_N]HOME_SEQUENCE
items. This logic should also assert the motion.homing-inhibit pin to ensure that homing is not in-
advertently initiated when joint jogging is enabled.
Example: Synced joints 0,1 using negative sequence (-1) for synchronized homing with a switch (al-
low_jjog) that selects a positive sequence (1) for individual joint jogging prior to homing (partial HAL
code):
loadrt mux2 names=home_sequence_mux
loadrt conv_float_s32 names=home_sequence_s32
setp home_sequence_mux.in0 -1
setp home_sequence_mux.in1 1
addf home_sequence_mux servo-thread
addf home_sequence_s32 servo-thread
...
net home_seq_float <= home_sequence_mux.out
net home_seq_float => home_sequence_s32.in
net home_seq_s32 <= home_sequence_s32.out
net home_seq_s32 => ini.0.home_sequence
net home_seq_s32 => ini.1.home_sequence
...
allow_jjog: pin created by a virtual panel or hardware switch
net hsequence_select <= allow_jjog
net hsequence_select => home_sequence_mux.sel
net hsequence_select => motion.homing-inhibit

Note
INI HAL pins (like ini.N.home_sequence) are not available until milltask starts so execution of the
above HAL commands should be deferred using a postgui HAL file or a delayed [APPLICATION]APP=
script.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 176 / 1322

Note
Realtime synchronization of joint jogging for multiple joints requires additional HAL connec-
tions for the Manual-Pulse-Generator (MPG) type jog pins (joint.N.enable, joint.N.scale,
joint.N.counts).

An example simulation config (gantry_jjog.ini) that demonstrates joint jogging when using negative
home sequences is located in the: configs/sim/axis/gantry/ directory.

4.6 Lathe Configuration

4.6.1 Default Plane

When LinuxCNC’s interpreter was first written, it was designed for mills. That is why the default
plane is XY (G17). A normal lathe only uses the XZ plane (G18). To change the default plane place the
following line in the INI file in the RS274NGC section.
RS274NGC_STARTUP_CODE = G18

The above can be overwritten in a G-code program so always set important things in the preamble of
the G-code file.

4.6.2 INI Settings

The following INI settings are needed for lathe mode in Axis in addition to or replacing normal settings
in the INI file. These historical settings use identity kinematics (trivkins) and three joints (0,1,2)
corresponding to coordinates x, y, z. The joint 1 for the unused y axis is required but not used in these
historical configurations. Simulated lathe configs may use these historical settings. GMOCCAPY also
uses the mentioned settings, but does offer additional settings, check the GMOCCAPY section for
details.
[DISPLAY]
DISPLAY = axis
LATHE = 1
...

[KINS]
KINEMATICS = trivkins
JOINTS = 3

[TRAJ]
COORDINATES = X Z
...

[JOINT_0]
...
[JOINT_2]
...
[AXIS_X]
...
[AXIS_Z]
...

With joints_axes incorporation, a simpler configuration can be made with just the two required joints
by specifying trivkins with the coordinates= parameter:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 177 / 1322

[DISPLAY]
DISPLAY = axis
LATHE = 1
...

[KINS]
KINEMATICS = trivkins coordinates=xz
JOINTS = 2

[TRAJ]
COORDINATES = X Z
...

[JOINT_0]
...
[JOINT_1]
...
[AXIS_X]
...
[AXIS_Z]
...

4.7 Stepper Quickstart

This section assumes you have done a standard install from the Live CD. After installation it is rec-
ommended that you connect the computer to the Internet and wait for the update manager to pop up
and get the latest updates for LinuxCNC and Ubuntu before continuing.

4.7.1 Latency Test

The Latency Test determines how late your computer processor is in responding to a request. Some
hardware can interrupt the processing which could cause missed steps when running a CNC machine.
This is the first thing you need to do. Follow the instructions here to run the latency test.

4.7.2 Sherline

If you have a Sherline several predefined configurations are provided. This is on the main menu
CNC/EMC then pick the Sherline configuration that matches yours and save a copy.

4.7.3 Xylotex

If you have a Xylotex you can skip the following sections and go straight to the Stepper Config Wizard.
LinuxCNC has provided quick setup for the Xylotex machines.

4.7.4 Machine Information

Gather the information about each axis of your machine.
Drive timing is in nano seconds. If you’re unsure about the timing many popular drives are included
in the stepper configuration wizard. Note some newer Gecko drives have different timing than the
original one. A list is also on the user maintained LinuxCNC wiki site of more drives.

https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 178 / 1322

Axis Drive Type Step Time
(ns)

Step Space
(ns)

Dir. Hold
(ns)

Dir. Setup
(ns)

X
Y
Z

4.7.5 Pinout Information

Gather the information about the connections from your machine to the PC parallel port.

Output Pin Typ.
Function

If Different Input Pin Typ.
Function

If Different

1 E-Stop Out 10 X Limit/Home
2 X Step 11 Y Limit/Home
3 X Direction 12 Z Limit/Home
4 Y Step 13 A Limit/Home
5 Y Direction 15 Probe In
6 Z Step
7 Z Direction
8 A Step
9 A Direction
14 Spindle CW
16 Spindle PWM
17 Amplifier

Enable

Note any pins not used should be set to Unused in the drop down box. These can always be changed
later by running StepConf again.

4.7.6 Mechanical Information

Gather information on steps and gearing. The result of this is steps per user unit which is used for
SCALE in the INI file.

Axis Steps/Rev. Micro Steps Motor Teeth Leadscrew
Teeth

Leadscrew
Pitch

X
Y
Z

• Steps per revolution - is how many stepper-motor-steps it takes to turn the stepper motor one rev-
olution. Typical is 200.

• Micro Steps - is how many steps the drive needs to move the stepper motor one full step. If mi-
crostepping is not used, this number will be 1. If microstepping is used the value will depend on
the stepper drive hardware.

• Motor Teeth and Leadscrew Teeth - is if you have some reduction (gears, chain, timing belt, etc.)
between the motor and the leadscrew. If not, then set these both to 1.

• Leadscrew Pitch - is how much movement occurs (in user units) in one leadscrew turn. If you’re
setting up in inches then it is inches per turn. If you’re setting up in millimeters then it is millimeters
per turn.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 179 / 1322

The net result you’re looking for is how many CNC-output-steps it takes to move one user unit (inches
or mm).

Example 4.1 Units inches
Stepper = 200 steps per revolution
Drive = 10 micro steps per step
Motor Teeth = 20
Leadscrew Teeth = 40
Leadscrew Pitch = 0.2000 inches per turn

From the above information, the leadscrew moves 0.200 inches per turn. - The motor turns 2.000
times per 1 leadscrew turn. - The drive takes 10 microstep inputs to make the stepper step once. -
The drive needs 2000 steps to turn the stepper one revolution.
So the scale needed is:

Example 4.2 Units mm
Stepper = 200 steps per revolution
Drive = 8 micro steps per step
Motor Teeth = 30
Leadscrew Teeth = 90
Leadscrew Pitch = 5.00 mm per turn

From the above information: - The leadscrew moves 5.00 mm per turn. - The motor turns 3.000 times
per 1 leadscrew turn. - The drive takes 8 microstep inputs to make the stepper step once. - The drive
needs 1600 steps to turn the stepper one revolution.
So the scale needed is:

4.8 Stepper Configuration

4.8.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See
the Stepper Configuration Wizard Chapter.
This chapter describes some of the more common settings for manually setting up a stepper based
system. These systems are using stepper motors with drives that accept step & direction signals.
It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the
motors), yet the system needs to be configured properly so the motors don’t stall or lose steps.
Most of this chapter is based on a sample config released along with LinuxCNC. The config is called
stepper_inch, and can be found by running the Configuration Picker.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 180 / 1322

4.8.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE_PERIODs for step-
and-direction output. The maximum requested step rate is the product of an axis’ MAX_VELOCITY and
its INPUT_SCALE. If the requested step rate is not attainable, following errors will occur, particularly
during fast jogs and G0 moves.
If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one step
is possible for each BASE_PERIOD, doubling the maximum step rate.
The other remedies are to decrease one or more of: the BASE_PERIOD (setting this too low will cause
the machine to become unresponsive or even lock up), the INPUT_SCALE (if you can select different
step sizes on your stepper driver, change pulley ratios, or leadscrew pitch), or the MAX_VELOCITY
and STEPGEN_MAXVEL.
If no valid combination of BASE_PERIOD, INPUT_SCALE, and MAX_VELOCITY is acceptable, then
consider using hardware step generation (such as with the LinuxCNC-supported Universal Stepper
Controller, Mesa cards, and others).

4.8.3 Pinout

One of the major flaws in EMC was that you couldn’t specify the pinout without recompiling the source
code. EMC2 was far more flexible, and thus now in LinuxCNC (thanks to the Hardware Abstraction
Layer) you can easily specify which signal goes where. See the HAL Basics for more information on
HAL.
As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside
the HAL.

Note
We are presenting one axis to keep it short, all others are similar.

The ones relevant for our pinout are:
signals: Xstep, Xdir & Xen
pins: parport.0.pin-XX-out & parport.0.pin-XX-in

Depending on what you have chosen in your INI file you are using either standard_pinout.hal or xy-
lotex_pinout.hal. These are two files that instruct the HAL how to link the various signals & pins.
Further on we’ll investigate the standard_pinout.hal.

4.8.3.1 Standard Pinout HAL

This file contains several HAL commands, and usually looks like this:
standard pinout config file for 3-axis steppers
using a parport for I/O
#
first load the parport driver
loadrt hal_parport cfg=”0x0378”
#
next connect the parport functions to threads
read inputs first
addf parport.0.read base-thread 1
write outputs last
addf parport.0.write base-thread -1
#

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 181 / 1322

finally connect physical pins to the signals
net Xstep => parport.0.pin-03-out
net Xdir => parport.0.pin-02-out
net Ystep => parport.0.pin-05-out
net Ydir => parport.0.pin-04-out
net Zstep => parport.0.pin-07-out
net Zdir => parport.0.pin-06-out

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

connect ”spindle on” motion controller pin to a physical pin
net spindle-on spindle.0.on => parport.0.pin-09-out

###
You might use something like this to enable chopper drives when machine ON
the Xen signal is defined in core_stepper.hal
###

net Xen => parport.0.pin-01-out

###
If you want active low for this pin, invert it like this:
###

setp parport.0.pin-01-out-invert 1

###
A sample home switch on the X axis (axis 0). make a signal,
link the incoming parport pin to the signal, then link the signal
to LinuxCNC’s axis 0 home switch input pin.
###

net Xhome parport.0.pin-10-in => joint.0.home-sw-in

###
Shared home switches all on one parallel port pin?
that’s ok, hook the same signal to all the axes, but be sure to
set HOME_IS_SHARED and HOME_SEQUENCE in the INI file.
###

net homeswitches <= parport.0.pin-10-in
net homeswitches => joint.0.home-sw-in
net homeswitches => joint.1.home-sw-in
net homeswitches => joint.2.home-sw-in

###
Sample separate limit switches on the X axis (axis 0)
###

net X-neg-limit parport.0.pin-11-in => joint.0.neg-lim-sw-in
net X-pos-limit parport.0.pin-12-in => joint.0.pos-lim-sw-in

###
Just like the shared home switches example, you can wire together
limit switches. Beware if you hit one, LinuxCNC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this
extreme position to avoid a hard stop.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 182 / 1322

###

net Xlimits parport.0.pin-13-in => joint.0.neg-lim-sw-in joint.0.pos-lim-sw-in

The lines starting with # are comments, and their only purpose is to guide the reader through the file.

4.8.3.2 Overview

There are a couple of operations that get executed when the standard_pinout.hal gets executed/inter-
preted:

• The Parport driver gets loaded (see the Parport Chapter for details).

• The read & write functions of the parport driver get assigned to the base thread 5.

• The step & direction signals for axes X, Y, Z get linked to pins on the parport.

• Further I/O signals get connected (estop loopback, toolchanger loopback).

• A spindle-on signal gets defined and linked to a parport pin.

4.8.3.3 Changing the standard_pinout.hal

If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and
locate the parts you want to change.
If you want for example to change the pin for the X-axis Step & Directions signals, all you need to do
is to change the number in the parport.0.pin-XX-out name:
net Xstep parport.0.pin-03-out
net Xdir parport.0.pin-02-out

can be changed to:
net Xstep parport.0.pin-02-out
net Xdir parport.0.pin-03-out

or basically any other out pin you like.
Hint: make sure you don’t have more than one signal connected to the same pin.

4.8.3.4 Changing polarity of a signal

If external hardware expects an ”active low” signal, set the corresponding -invert parameter. For
instance, to invert the spindle control signal:
setp parport.0.pin-09-out-invert TRUE

5The fastest thread in the LinuxCNC setup, usually the code gets executed every few tens of microseconds.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 183 / 1322

4.8.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:
loadrt pwmgen output_type=0
addf pwmgen.update servo-thread
addf pwmgen.make-pulses base-thread
net spindle-speed-cmd spindle.0.speed-out => pwmgen.0.value
net spindle-on spindle.0.on => pwmgen.0.enable
net spindle-pwm pwmgen.0.pwm => parport.0.pin-09-out
setp pwmgen.0.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

4.8.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of the
motors. For this reason there are already defined signals called Xen, Yen, Zen.
To connect them use the following example:
net Xen parport.0.pin-08-out

You can either have one single pin that enables all drives; or several, depending on the setup you
have. Note, however, that usually when one axis faults, all the other drives will be disabled as well,
so having only one enable signal / pin for all drives is a common practice.

4.8.3.7 External ESTOP button

The standard_pinout.hal file assumes no external ESTOP button. For more information on an external
E-Stop see the estop_latch man page.

4.9 Stepper Diagnostics

If what you get is not what you expect many times you just got some experience. Learning from the
experience increases your understanding of the whole. Diagnosing problems is best done by divide
and conquer. By this I mean if you can remove 1/2 of the variables from the equation each time you
will find the problem the fastest. In the real world this is not always the case, but it’s usually a good
place to start.

4.9.1 Common Problems

4.9.1.1 Stepper Moves One Step

The most common reason in a new installation for a stepper motor not to move is that the step and
direction signals are exchanged. If you press the jog forward and jog backward keys, alternately , and
the stepper moves one step each time, and in the same direction, there is your clue.

4.9.1.2 No Steppers Move

Many drives have an enable pin or need a charge pump to enable the output.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 184 / 1322

4.9.1.3 Distance Not Correct

If you command the axis to move a specific distance and it does not move that distance, then your
scale setting is wrong.

4.9.2 Error Messages

4.9.2.1 Following Error

The concept of a following error is strange when talking about stepper motors. Since they are an open
loop system, there is no position feedback to let you know if you actually are out of range. LinuxCNC
calculates if it can keep up with the motion called for, and if not, then it gives a following error.
Following errors usually are the result of one of the following on stepper systems.

• FERROR too small

• MIN_FERROR too small

• MAX_VELOCITY too fast

• MAX_ACCELERATION too fast

• BASE_PERIOD set too long

• Backlash added to an axis

Any of the above can cause the real-time pulsing to not be able to keep up the requested step rate.
This can happen if you didn’t run the latency test long enough to get a good number to plug into the
StepConf Wizard, or if you set the Maximum Velocity or Maximum Acceleration too high.
If you added backlash you need to increase the STEPGEN_MAXACCEL up to double the MAX_ACCELERATION
in the AXIS section of the INI file for each axis you added backlash to. LinuxCNC uses ”extra acceler-
ation” at a reversal to take up the backlash. Without backlash correction, step generator acceleration
can be just a few percent above the motion planner acceleration.

4.9.2.2 RTAPI Error

When you get this error:
RTAPI: ERROR: Unexpected realtime delay on task n

This error is generated by rtapi based on an indication from RTAI that a deadline was missed. It is
usually an indication that the BASE_PERIOD in the [EMCMOT] section of the ini file is set too low. You
should run the Latency Test for an extended period of time to see if you have any delays that would
cause this problem. If you used the StepConf Wizard, run it again, and test the Base Period Jitter
again, and adjust the Base Period Maximum Jitter on the Basic Machine Information page. You might
have to leave the test running for an extended period of time to find out if some hardware causes
intermittent problems.
LinuxCNC tracks the number of CPU cycles between invocations of the real-time thread. If some
element of your hardware is causing delays or your realtime threads are set too fast you will get this
error.

Note
This error is only displayed once per session. If you had your BASE_PERIOD too low you could get
hundreds of thousands of error messages per second if more than one was displayed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 185 / 1322

4.9.3 Testing

4.9.3.1 Step Timing

If you are seeing an axis ending up in the wrong location over multiple moves, it is likely that you
do not have the correct direction hold times or step timing for your stepper drivers. Each direction
change may be losing a step or more. If the motors are stalling, it is also possible you have either the
MAX_ACCELERATION or MAX_VELOCITY set too high for that axis.
The following program will test the Z axis configuration for proper setup. Copy the program to your
\~/emc2/nc_files directory and name it TestZ.ngc or similar. Zero your machine with Z = 0.000 at the
table top. Load and run the program. It will make 200 moves back and forth from 0.5 to 1”. If you
have a configuration issue, you will find that the final position will not end up 0.500” that the axis
window is showing. To test another axis just replace the Z with your axis in the G0 lines.
(test program to see if Z axis loses position)
(msg, test 1 of Z axis configuration)
G20 #1000=100 (loop 100 times)
(this loop has delays after moves)
(tests acc and velocity settings)
o100 while [#1000]

G0 Z1.000
G4 P0.250
G0 Z0.500
G4 P0.250
#1000 = [#1000 - 1]

o100 endwhile
(msg, test 2 of Z axis configuration S to continue)
M1 (stop here)
#1000=100 (loop 100 times)
(the next loop has no delays after moves)
(tests direction hold times on driver config and also max accel setting)
o101 while [#1000]

G0 Z1.000
G0 Z0.500
#1000 = [#1000 - 1]

o101 endwhile
(msg, Done...Z should be exactly .5” above table)
M2

4.10 Filter Programs

4.10.1 Introduction

Most of LinuxCNC’s screens have the ability to send loaded files through a filter program or use the
filter program to make G-code. Such a filter can do any desired task: Something as simple as making
sure the file ends with M2, or something as complicated as generating G-code from an image.

4.10.2 Setting up the INI for Program Filters

The [FILTER] section of the INI file controls how filters work. First, for each type of file, write a
PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write rs274ngc code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by LinuxCNC when Run. The following lines add support for the image-to-gcode converter
included with LinuxCNC:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 186 / 1322

[FILTER]
PROGRAM_EXTENSION = .png,.gif Greyscale Depth Image
png = image-to-gcode
gif = image-to-gcode

It is also possible to specify an interpreter:
PROGRAM_EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc_files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle.

Figure 4.9: Circular Holes

If the filter program sends lines to stderr of the form:
FILTER_PROGRESS=10

It will set the screens progress bar to the given (10 in this case) percentage. This feature should be
used by any filter that runs for a long time.

4.10.3 Making Python Based Filter Programs

Here is a very basic example of the filtering mechanics: When run through a Linucnc screen that
offers program filtering, it will produce and write a line of G-code every 100th of a second to standard
output. It also sends a progress message out to the UNIX standard error stream. If there was an error
it would post an error message and exit with an exitcode of 1.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 187 / 1322

import time
import sys

for i in range(0,100):
try:

simulate calculation time
time.sleep(.1)

output a line of G-code
print(’G0 X1’, file=sys.stdout)

update progress
print(’FILTER_PROGRESS={}’.format(i), file=sys.stderr)

except:
This causes an error message
print(’Error; But this was only a test’, file=sys.stderr)
raise SystemExit(1)

Here is a similar program but it actually could filter. It puts up a PyQt5 dialog with a cancel button.
Then it reads the program line by line and passes it to standard output. As it goes along, it updates
any process listening to standard error output.
#!/usr/bin/env python3

import sys
import os
import time

from PyQt5.QtWidgets import (QApplication, QDialog, QDialogButtonBox,
QVBoxLayout,QDialogButtonBox)

from PyQt5.QtCore import QTimer, Qt

class CustomDialog(QDialog):

def __init__(self, path):
super(CustomDialog, self).__init__(None)
self.setWindowFlags(self.windowFlags() | Qt.WindowStaysOnTopHint)
self.setWindowTitle(”Filter-with-GUI Test”)

QBtn = QDialogButtonBox.Cancel

self.buttonBox = QDialogButtonBox(QBtn)
self.buttonBox.rejected.connect(self.reject)

self.layout = QVBoxLayout()
self.layout.addWidget(self.buttonBox)
self.setLayout(self.layout)

self.line = 0
self._percentDone = 0

if not os.path.exists(path):
print(”Path: ’{}’ doesn’t exist:”.format(path), file=sys.stderr)
raise SystemExit(1)

self.infile = open(path, ”r”)
self.temp = self.infile.readlines()

calculate percent update interval
self.bump = 100/float(len(self.temp))

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 188 / 1322

self._timer = QTimer()
self._timer.timeout.connect(self.process)
self._timer.start(100)

def reject(self):
This provides an error message
print(’You asked to cancel before finished.’, file=sys.stderr)
raise SystemExit(1)

def process(self):
try:

get next line of code
codeLine = self.temp[self.line]

process the line somehow

push out processed code
print(codeLine, file=sys.stdout)
self.line +=1

update progress
self._percentDone += self.bump
print(’FILTER_PROGRESS={}’.format(int(self._percentDone)), file=sys.stderr)

if done end with no error/error message
if self._percentDone >= 99:

print(’FILTER_PROGRESS=-1’, file=sys.stderr)
self.infile.close()
raise SystemExit(0)

except Exception as e:
This provides an error message
print((’Something bad happened:’,e), file=sys.stderr)
this signals the error message should be shown
raise SystemExit(1)

if __name__ == ”__main__”:
if (len(sys.argv)>1):

path = sys.argv[1]
else:

path = None
app = QApplication(sys.argv)
w = CustomDialog(path=path)
w.show()
sys.exit(app.exec_())

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 189 / 1322

Chapter 5

HAL (Hardware Abstraction Layer)

5.1 HAL Introduction

LinuxCNC is about interacting with hardware. But few users have the same exact hardware speci-
fications - similar, but not the same. And even for the exact same hardware, there may be different
ways to use it, say for different materials or with different mills, which would require adaptations to
the control of an already running system. An abstraction was needed to make it easier to configure
LinuxCNC for a wide variety of hardware devices. At the highest level, it could simply be a way to
allow a number of building blocks to be loaded and interconnected to assemble a complex system.
This chapter introduces to that Hardware Abstraction Layer. You will see that many of the building
blocks are indeed, drivers for hardware devices. However, HAL can do more than just configure
hardware drivers.

5.1.1 HAL Overview

The Hardware Abstraction Layer (or with a reference to the 2001 Space Odyssey movie just ”HAL”) is
a software to

• provide the infrastructure for the communication with and between the many software and hard-
ware components of the system.

• optionally process and/or override that information as it flows from component to component.

In itself, this Middleware is agnostic about its application on CNC. An Internet search, for example,
found an astronomical application to control telescopes using LinuxCNC. Motors move the telescope
into the right position, and it needs to know how to map motor activity with the effect of that posi-
tioning with the real world. Such a synchronisation of motor positions with real-world positions is
reminiscent of what CNC machines need to do, or space craft.
Any machine controller needs to know:

• about its internal state and how this maps to the environment (machine coordinates, state of switch-
es/regulators),

• how actuators are expected to change that state,

• how allow for updates of the internal state by sensors (encoders, probes).

The HAL layer consists of parts (referred to as ”components”) that

https://en.wikipedia.org/wiki/2001:_A_Space_Odyssey_(film)
https://en.wikipedia.org/wiki/Middleware

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 190 / 1322

• are connected with each other, e.g., to update position data or have the planning algorithm tell the
motors about the next step.

• may know how to communicate with hardware,

• may simply process incoming data and provide data outputs to other components,

• are always periodically executed either

– with a very high frequency of a few microseconds (µs) execution time, called base thread, e.g., to
1. give a stepper motor a trigger to step ahead, or to
2. read out the position presented by an encoder.

– with a lower frequency every millisecond (ms), e.g. to
1. adjust the planning for the next moves to complete a G-code instruction.

– as non-realtime ”user-space” components that run a ”main loop” just like any other software, and
may be interrupted or delayed when the rest of the system is busy or overloaded.

Taken together, HAL allows

1. to program for a machine that the programmer does not know directly, but may rely on a pro-
gramming interface with well-specified effect on the machine. That interface may be used to

• tell the machine what to do
• listen to what the machine wants to tell about the state it is in.

2. Vertical Abstractions: The human system integrator of such machine uses HAL

• to describe what the machine is looking like and how what cable controls which motor that
drives which axis.

• The description of the machine, the programmer’s interfaces and the user’s interface somehow
”meet” in that abstract layer.

3. Horizontal Abstractions:

• Not all machines have all kinds of features
• Mills, Lathes and Robots share many
– features (motors, joints, …),
– planning algorithms for their movements.

HAL has no direct interaction with the user. But multiple interfaces have been provided that allow
HAL to be manipulated

• from the command line using the ”halcmd” command.

• from Python scripts and

• from within C/C++ programs,

but none of these interfaces are HAL itself.
HAL itself is not a program, it consists of one or more lists of loaded programs (the components) that
are periodically executed (in strict sequence), and an area of shared-memory that these components
use to interchange data. The main HAL script runs only once at machine startup, setting up the
realtime threads and the shared-memory locations, loading the components and setting up the data
links between them (the ”signals” and ”pins”).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 191 / 1322

In principle multiple machines could share a common HAL to allow them to inter-operate, however
the current implementation of LinuxCNC is limited to a single interpreter and a single Task module.
Currently this is almost always a G-code interpreter and ”milltask” (which was found to also work well
for lathes and adequately for robots) but these modules are selectable at load-time. With an increasing
interest in the control of multiple cooperating machines, to overcome this limitation is likely one of
the prime steps for the future development of LinuxCNC to address. It is a bit tricky though and the
community is still organizing its thoughts on this.
HAL lies at the core of LinuxCNC and is used and/or extended by all the parts of LinuxCNC, which
includes the GUIs. The G-code (or alternative language) interpreter knows how to interpret the G-code
and translates it into machine operations by triggering signals in HAL. The user may query HAL in
various ways to gain information about its state, which then also represents the state of the machine.
Whilst writing during the development of version 2.9, the GUIs still make bit of an exception to that
rule and may know something that HAL does not (need to) know.

5.1.2 Communication

HAL is special in that it can communicate really fast

• with other programs, but in particular

• with its components that typically run in one of the realtime threads.

And while communicating, the part of LinuxCNC that is talked to does not need to prepare for the
communication: All these actions are performed asynchronously, i.e. no component is interrupting
its regular execution to receive a signal and signals can be sent rightaway, i.e., an application may
wait until a particular message has arrived - like an enable-signal, but it does not need to prepare for
receiving that message.
The communication system

• represents and controls all the hardware attached to the system,

• starts and stops other communicating programs.

The communication with the hardware of the machine itself is performed by respective dedicated HAL
components.
The HAL layer is a shared space in which all the many parts that constitute LinuxCNC are exchanging
information. That space features pins that are identified by a name, though a LinuxCNC engineer
may prefer the association with a pin of an electronic circuit. These pins can carry numerical and
logical values, boolean, float and signed and unsigned integers. There is also a (relatively new) pin
type named hal_port intended for byte streams, and a framework for exchanging more complex data
called hal_stream (which uses a private shared memory area, rather than a HAL pin). These latter
two types are used relatively infrequently.
With HAL you can send a signal to that named pin. Every part of HAL can read that pin that holds that
value of the signal. That is until a new signal is sent to the same named pin to substitute the previous
value. The core message exchange system of HAL is agnostic about CNC, but HAL ships with a large
number of components that know a lot about CNC and present that information via pins. There are
pins representing

• static information about the machine

• the current state of the machine

– end switches
– positions counted by steppers or as measured by encoders

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 192 / 1322

• recipients for instructions

– manual control of machine position (”jogging”)
– positions that stepper motors should take next

In a analogy to electronic cables, pins can be wired, so the value changing in one pin serves as input
to another pin. HAL components prepare such input and output pins and are thus automatically
triggered to perform.
HAL Components The many ”expert” software parts of LinuxCNC are typically implemented as com-
ponents of HAL, conceptually also referred to as modules. These computer-implemented experts per-
petually read from HAL about a state that the machine should strive to achieve and compare that
desired state with the state the machine is in at the current moment. When there is a difference
between what should be and what the current state is then some action is performed to reduce that
difference, while perpetually writing updates of the current states back to the HAL data space.
There are components specializing on how to talk to stepper motors, and other components know how
to control servos. On a higher level, some components know how the machine’s axes are arranged
in 3D and yet others know how to perform a smooth movement from one point in space to another.
Lathes, mills and robots will differ in the LinuxCNC component that are active, i.e. that are loaded
by a HAL configuration file for that machine. Still, two machines may be looking very different since
built for very different purposes, but when they both use servo motors then they can still both use the
same HAL servo component.
Origin of the Incentive to Move On the lowest (closest to hardware) level, e.g. for stepper motors,
the description of a state of that motor is very intuitive: It is the number of steps in a particular direc-
tion. A difference between the desired position and the actual position translates into a movement.
Speeds, acceleration and other parameters may be internally limited in the component itself, or may
optionally be limited by upstream components. (For example, in most cases the moment-by-moment
axis position values sent to the step-generator components have already been limited and shaped to
suit the configured machine limits or the current feed rate.)
Any G-code line is interpreted and triggers a set of routines that in turn know how to communicate
with components that are on a middle layer, e.g., to create a circle.
Pins and Signals HAL has a special place in the heart of its programmers for the way that the data
flow between modules is represented. When traditional programmers think of variables, addresses or
I/O ports, HAL refers to ”pins”. And those pins are connected or assigned values to via signals. Much
like an electrical engineer would connect wires between pins of components of a mill, a HAL engineer
establishes the data flow between pins of module instances.
The LinuxCNC GUIS (AXIS, GMOCCAPY, Touchy, etc.) will represent the states of some pins (such as
limit switches) but other graphical tools also exist for troubleshooting and configuration: Halshow,
Halmeter, Halscope and Halreport.
The remainder of this introduction presents

• the syntax of how pins of different components are connected in the HAL configuration files, and

• software to inspect the values of pins

– at any given moment,
– developing over time.

5.1.3 HAL System Design

.HAL is based on traditional system design techniques.
HAL is based on the same principles that are used to design hardware circuits and systems, so it is
useful to examine those principles first. Any system, including a CNC machine, consists of intercon-
nected components. For the CNC machine, those components might be the main controller, servo

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 193 / 1322

amps or stepper drives, motors, encoders, limit switches, pushbutton pendants, perhaps a VFD for
the spindle drive, a PLC to run a toolchanger, etc. The machine builder must aselect, mount and wire
these pieces together to make a complete system.

Figure 5.1: HAL Concept - Connecting like electrical circuits.

Figure one would be written in HAL code like this:
net signal-blue component.0.pin1-in component.1.pin1-out
net signal-red component.0.pin3-out component.1.pin3-in component.1.pin4-in

5.1.3.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them as
black boxes. During the design stage, he decides which parts he is going to use - steppers or servos,
which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s decisions
about which specific components to use is based on what that component does and the specifications
supplied by the manufacturer of the device. The size of a motor and the load it must drive will affect
the choice of amplifier needed to run it. The choice of amplifier may affect the kinds of feedback
needed by the amp and the velocity or position signals that must be sent to the amp from a control.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 194 / 1322

In the HAL world, the integrator must decide what HAL components are needed. Usually every inter-
face card will require a driver. Additional components may be needed for software generation of step
pulses, PLC functionality, and a wide variety of other tasks.

5.1.3.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will be
interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens for a
servo drive or PLC. They need to be wired together. The motors connect to the servo amps, the limit
switches connect to the controller, and so on. As the machine builder works on the design, he creates
a large wiring diagram that shows how all the parts should be interconnected.
When using HAL, components are interconnected by signals. The designer must decide which signals
are needed, and what they should connect.

5.1.3.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired
and mounted, and then they are interconnected according to the wiring diagram. In a physical system,
each interconnection is a piece of wire that needs to be cut and connected to the appropriate terminals.
HAL provides a number of tools to help build a HAL system. Some of the tools allow you to connect
(or disconnect) a single wire. Other tools allow you to save a complete list of all the parts, wires, and
other information about the system, so that it can be rebuilt with a single command.

5.1.3.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see whether
a limit switch is working or to measure the DC voltage going to a servo motor. He may hook up an
oscilloscope to check the tuning of a drive, or to look for electrical noise. He may find a problem
that requires the wiring diagram to be changed; perhaps a part needs to be connected differently or
replaced with something completely different.
HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools
needed for testing and tuning a system. The same commands used to build the system can be used to
make changes as needed.

5.1.3.5 Summary

This document is aimed at people who already know how to do this kind of hardware system integra-
tion, but who do not know how to connect the hardware to LinuxCNC. See the Remote Start Example
section in the HAL UI Examples documentation.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 195 / 1322

Figure 5.2: Remote Start Example (Schema)

The traditional hardware design as described above ends at the edge of the main control. Outside the
control are a bunch of relatively simple boxes, connected together to do whatever is needed. Inside,
the control is a big mystery — one huge black box that we hope works.
HAL extends this traditional hardware design method to the inside of the big black box. It makes
device drivers and even some internal part of the controller into smaller black boxes that can be
interconnected and even replaced just like the external hardware. It allows the systemwiring diagram
to show part of the internal controller, rather than just a big black box. And most importantly, it allows
the integrator to test and modify the controller using the same methods he would use on the rest of
the hardware.
Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk about
using extra flexible eight conductor shielded cable to connect an encoder to the servo input board in
the computer, the reader immediately understands what it is and is led to the question, what kinds of
connectors will I need to make up each end. The same sort of thinking is essential for the HAL but
the specific train of thought may take a bit to get on track. Using HAL words may seem a bit strange
at first, but the concept of working from one connection to the next is the same.
This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If
you are comfortable with the idea of interconnecting hardware black boxes, you will probably have
little trouble using HAL to interconnect software black boxes.

5.1.4 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional glossary
because these terms are not arranged in alphabetical order. They are arranged by their relationship
or flow in the HAL way of things.
Component:: When we talked about hardware design, we referred to the individual pieces as parts,
building blocks, black boxes, etc. The HAL equivalent is a component or HAL component. This docu-
ment uses HAL component when there is likely to be confusion with other kinds of components, but
normally just uses component. A HAL component is a piece of software with well-defined inputs, out-
puts, and behavior, that can be installed and interconnected as needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 196 / 1322

Many HAL Components model the behaviour of a tangible part of a machine, and a pinmay indeed be
meant to be connected to a physical pin on the device to communicate with it, hence the names. But
most often this is not the case. Imagine a retrofit of a manual lathe/mill. What LinuxCNC implements
is how the machine presents itself to the outside world, and it is secondary if the implementation how
to draw a circle is implemented on the machine already or provided from LinuxCNC. And it is common
to add buttons to the imaginary retrofit that signal an action, like an emergency stop. LinuxCNC and
the machine become one. And that is through the HAL.
Parameter:: Many hardware components have adjustments that are not connected to any other com-
ponents but still need to be accessed. For example, servo amps often have trim pots to allow for tuning
adjustments, and test points where a meter or scope can be attached to view the tuning results. HAL
components also can have such items, which are referred to as parameters. There are two types of
parameters: Input parameters are equivalent to trim pots - they are values that can be adjusted by
the user, and remain fixed once they are set. Output parameters cannot be adjusted by the user - they
are equivalent to test points that allow internal signals to be monitored.
Pin:: Hardware components have terminals which are used to interconnect them. The HAL equivalent
is a pin or HAL pin. HAL pin is used when needed to avoid confusion. All HAL pins are named, and
the pin names are used when interconnecting them. HAL pins are software entities that exist only
inside the computer.
Physical_Pin:: Many I/O devices have real physical pins or terminals that connect to external hard-
ware, for example the pins of a parallel port connector. To avoid confusion, these are referred to as
physical pins. These are the things that stick out into the real world.

Note
You may be wondering what relationship there is between the HAL_pins, physical_pins and external
elements like encoders or a STG card: we are dealing here with interfaces of data translation/con-
version type.

Signal:: In a physical machine, the terminals of real hardware components are interconnected by
wires. The HAL equivalent of a wire is a signal or HAL signal. HAL signals connect HAL pins together
as required by the machine builder. HAL signals can be disconnected and reconnected at will (even
while the machine is running).
Type:: When using real hardware, you would not connect a 24 Volt relay output to the +/-10 V analog
input of a servo amp. HAL pins have the same restrictions, which are based upon their type. Both
pins and signals have types, and signals can only be connected to pins of ffvthe same type. Currently
there are 4 types, as follows:
+ - bit - a single TRUE/FALSE or ON/OFF value - float - a 64 bit floating point value, with approxi-
mately 53 bits of resolution and over 1000 bits of dynamic range. - u32 - a 32 bit unsigned integer,
legal values are 0 to 4,294,967,295 - s32 - a 32 bit signed integer, legal values are -2,147,483,648 to
+2,147,483,647 - u64 - a 64 bit unsigned integer, legal values are 0 to 18,446,744,073,709,551,615 -
s64 - a 64 bit signed integer, legal values are -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
Function:: Real hardware components tend to act immediately on their inputs. For example, if the
input voltage to a servo amp changes, the output also changes automatically. However software
components cannot act automatically. Each component has specific code that must be executed to
do whatever that component is supposed to do. In some cases, that code simply runs as part of
the component. However in most cases, especially in realtime components, the code must run in a
specific sequence and at specific intervals. For example, inputs should be read before calculations
are performed on the input data, and outputs should not be written until the calculations are done.
In these cases, the code is made available to the system in the form of one or more functions. Each
function is a block of code that performs a specific action. The system integrator can use threads to
schedule a series of functions to be executed in a particular order and at specific time intervals.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 197 / 1322

Thread:: A thread is a list of functions that runs at specific intervals as part of a realtime task. When
a thread is first created, it has a specific time interval (period), but no functions. Functions can be
added to the thread, and will be executed in order every time the thread runs.
As an example, suppose we have a parport component named hal_parport. That component defines
one or more HAL pins for each physical pin. The pins are described in that component’s doc section:
Their names, how each pin relates to the physical pin, are they inverted, can you change polarity,
etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It takes code to do
that, and that is where functions come into the picture. The parport component needs at least two
functions: One to read the physical input pins and update the HAL pins, the other to take data from
the HAL pins and write it to the physical output pins. Both of these functions are part of the parport
driver.

5.1.5 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that
can be installed and interconnected as needed. The section HAL Components List lists all available
components and a brief description of what each does.

5.1.6 Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon,
simply connecting two pins with a HAL-signal falls far short of the action of the physical case.
True relay logic consists of relays connected together, and when a contact opens or closes, current
flows (or stops) immediately. Other coils may change state, etc., and it all just happens. But in PLC
style ladder logic, it doesn’t work that way. Usually in a single pass through the ladder, each rung is
evaluated in the order in which it appears, and only once per pass. A perfect example is a single rung
ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.
If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and
de-energize it. That means the contacts close again, etc., etc. The relay becomes a buzzer.
With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung,
then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact
feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open, and
de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate determined
by how often the PLC evaluates the rung.
In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version
of ClassicLadder exports a function to do exactly that. Meanwhile, a thread is the thing that runs the
function at specific time intervals. Just like you can choose to have a PLC evaluate all its rungs every
10 ms, or every second, you can define HAL threads with different periods.
What distinguishes one thread from another is not what the thread does - that is determined by which
functions are connected to it. The real distinction is simply how often a thread runs.
In LinuxCNC you might have a 50 µs thread and a 1 ms thread. These would be created based on
BASE_PERIOD and SERVO_PERIOD, the actual times depend on the values in your INI file.
The next step is to decide what each thread needs to do. Some of those decisions are the same in
(nearly) any LinuxCNC system. For instance, motion-command-handler is always added to servo-
thread.
Other connections would be made by the integrator. These might include hooking the STG driver’s
encoder read and DAC write functions to the servo thread, or hooking StepGen’s function to the base-
thread, along with the parport function(s) to write the steps to the port.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 198 / 1322

5.2 HAL Basics

This document provides a reference to the basics of HAL.

5.2.1 HAL Commands

More detailed information can be found in the man page for halcmd: run man halcmd in a terminal
window.
To see the HAL configuration and check the status of pins and parameters use the HAL Configuration
window on the Machine menu in AXIS. To watch a pin status open the Watch tab and click on each
pin you wish to watch and it will be added to the watch window.

Figure 5.3: HAL Configuration Window

5.2.1.1 loadrt

The command loadrt loads a real time HAL component. Real time component functions need to be
added to a thread to be updated at the rate of the thread. You cannot load a non-realtime component
into the realtime space.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 199 / 1322

loadrt Syntax and Example
loadrt <component> <options>
loadrt mux4 count=1

5.2.1.2 addf

The addf command adds a function to a real-time thread. If the StepConf wizard was used to create
the configuration, two threads have been created (̀ ̀base-thread ̀ ̀ and ̀ ̀servo-thread ̀ ̀).
addf adds function functname to thread threadname. Default is to add the function in the order they
are in the file. If position is specified, adds the function to that spot in the thread. A negative position
indicates the position with respect to the end of the thread. For example 1 is start of thread, -1 is the
end of the thread, -3 is third from the end.
For some functions it is important to load them in a certain order, like the parport read and write
functions. The function name is usually the component name plus a number. In the following example
the component or2 is loaded and show function shows the name of the or2 function.
$ halrun
halcmd: loadrt or2
halcmd: show function
Exported Functions:
Owner CodeAddr Arg FP Users Name
00004 f8bc5000 f8f950c8 NO 0 or2.0

You have to add a function from a HAL real time component to a thread to get the function to update at
the rate of the thread. Usually there are two threads as shown in this example. Some components use
floating point math and must be added to a thread that supports floating point math. The FP indicates
if floating point math is supported in that thread.
$ halrun
halcmd: loadrt motmod base_period_nsec=55555 servo_period_nsec=1000000 num_joints=3
halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
995976 YES servo-thread (0, 0)
55332 NO base-thread (0, 0)

• base-thread (the high-speed thread): This thread handles items that need a fast response, like
making step pulses, and reading and writing the parallel port. Does not support floating point
math.

• servo-thread (the slow-speed thread): This thread handles items that can tolerate a slower response,
like the motion controller, ClassicLadder, and the motion command handler and supports floating
point math.

addf Syntax and Example
addf <function> <thread>
addf mux4.0 servo-thread

Note
If the component requires a floating point thread that is usually the slower servo-thread.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 200 / 1322

5.2.1.3 loadusr

The command loadusr loads a non-realtime HAL component. Non-realtime programs are their own
separate processes, which optionally talk to other HAL components via pins and parameters. You
cannot load realtime components into non-realtime space.
Flags may be one or more of the following:

-W to wait for the component to become ready. The component is assumed to have
the same name as the first argument of the command.

-Wn <name> to wait for the component, which will have the given <name>. This only
applies if the component has a name option.

-w to wait for the program to exit
-i to ignore the program return value (with -w)
-n name a component when it is a valid option for that component.

Syntax and Examples of loadusr
loadusr <component> <options>
loadusr halui
loadusr -Wn spindle gs2_vfd -n spindle

In English it means loadusr wait for name spindle component gs2_vfd name spindle.

5.2.1.4 net

The command net creates a connection between a signal and one or more pins. If the signal does not
exist net creates the new signal. This replaces the need to use the command newsig. The optional
direction arrows <=, => and <=> make it easier to follow the logic when reading a net command line
and are not used by the net command. The direction arrows must be separated by a space from the
pin names.
Syntax and Examples of net
net signal-name pin-name <optional arrow> <optional second pin-name>
net home-x joint.0.home-sw-in <= parport.0.pin-11-in

In the above example home-x is the signal name, joint.0.home-sw-in is a Direction IN pin, <= is the
optional direction arrow, and parport.0.pin-11-in is a Direction OUT pin. This may seem confusing
but the in and out labels for a parallel port pin indicates the physical way the pin works not how it is
handled in HAL.
A pin can be connected to a signal if it obeys the following rules:

• An IN pin can always be connected to a signal.

• An IO pin can be connected unless there’s an OUT pin on the signal.

• An OUT pin can be connected only if there are no other OUT or IO pins on the signal.

The same signal-name can be used in multiple net commands to connect additional pins, as long as
the rules above are obeyed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 201 / 1322

Figure 5.4: Signal Direction

This example shows the signal xStep with the source being stepgen.0.out and with two readers,
parport.0.pin-02-out and parport.0.pin-08-out. Basically the value of stepgen.0.out is sent to
the signal xStep and that value is then sent to parport.0.pin-02-out and parport.0.pin-08-out.
signal source destination destination
net xStep stepgen.0.out => parport.0.pin-02-out parport.0.pin-08-out

Since the signal xStep contains the value of stepgen.0.out (the source) you can use the same signal
again to send the value to another reader. To do this just use the signal with the readers on another
line.
signal destination2
net xStep => parport.0.pin-06-out

I/O pins An I/O pin like encoder.N.index-enable can be read or set as allowed by the component.

5.2.1.5 setp

The command setp sets the value of a pin or parameter. The valid values will depend on the type of
the pin or parameter. It is an error if the data types do not match.
Some components have parameters that need to be set before use. Parameters can be set before use
or while running as needed. You cannot use setp on a pin that is connected to a signal.
Syntax and Examples of setp

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 202 / 1322

setp <pin/parameter-name> <value>
setp parport.0.pin-08-out TRUE

5.2.1.6 sets

The command sets sets the value of a signal.
Syntax and Examples of sets
sets <signal-name> <value>
net mysignal and2.0.in0 pyvcp.my-led
sets mysignal 1

It is an error if:

• The signal-name does not exist

• If the signal already has a writer

• If value is not the correct type for the signal

5.2.1.7 unlinkp

The command unlinkp unlinks a pin from the connected signal. If no signal was connected to the pin
prior running the command, nothing happens. The unlinkp command is useful for trouble shooting.
Syntax and Examples of unlinkp
unlinkp <pin-name>
unlinkp parport.0.pin-02-out

5.2.1.8 Obsolete Commands

The following commands are depreciated and may be removed from future versions. Any new config-
uration should use the net command. These commands are included so older configurations will still
work.
The command linksp creates a connection between a signal and one pin.
Syntax and Examples of linksp
linksp <signal-name> <pin-name>
linksp X-step parport.0.pin-02-out

The linksp command has been superseded by the net command.
The command linkps creates a connection between one pin and one signal. It is the same as linksp
but the arguments are reversed.
Syntax and Examples of linkps
linkps <pin-name> <signal-name>
linkps parport.0.pin-02-out X-Step

The linkps command has been superseded by the net command.
the command newsig creates a new HAL signal by the name <signame> and the data type of <type>.
Type must be bit, s32, u32, s64, u64 or float. Error if <signame> already exists.
Syntax and Examples of newsig

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 203 / 1322

newsig <signame> <type>
newsig Xstep bit

More information can be found in the HAL manual or the man pages for halrun.

5.2.2 HAL Data

5.2.2.1 Bit

A bit value is an on or off.

• bit values = true or 1 and false or 0 (True, TRUE, true are all valid)

5.2.2.2 Float

A float is a floating point number. In other words the decimal point can move as needed.

• float values = a 64 bit floating point value, with approximately 53 bits of resolution and over 210 (~
1000) bits of dynamic range.

For more information on floating point numbers see:
https://en.wikipedia.org/wiki/Floating_point

5.2.2.3 s32

An s32 number is a whole number that can have a negative or positive value.

• s32 values = integer numbers from -2147483648 to 2147483647

5.2.2.4 u32

A u32 number is a whole number that is positive only.

• u32 values = integer numbers from 0 to 4294967295

5.2.2.5 s64

An s64 number is a whole number that can have a negative or positive value.

• s64 values = integer numbers from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

5.2.2.6 u64

A u64 number is a whole number that is positive only.

• u64 values = integer numbers from 0 to 18,446,744,073,709,551,615

https://en.wikipedia.org/wiki/Floating_point

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 204 / 1322

5.2.3 HAL Files

If you used the Stepper Config Wizard to generate your config you will have up to three HAL files in
your config directory.

• my-mill.hal (if your config is named my-mill) This file is loaded first and should not be changed if
you used the Stepper Config Wizard.

• custom.hal This file is loaded next and before the GUI loads. This is where you put your custom
HAL commands that you want loaded before the GUI is loaded.

• custom_postgui.hal This file is loaded after the GUI loads. This is where you put your custom HAL
commands that you want loaded after the GUI is loaded. Any HAL commands that use PyVCP
widgets need to be placed here.

5.2.4 HAL Parameter

Two parameters are automatically added to each HAL component when it is created. These parame-
ters allow you to scope the execution time of a component.

.time Time is the number of CPU cycles it took to execute the function.

.tmax Tmax is the maximum number of CPU cycles it took to execute the function.

tmax is a read/write parameter so the user can set it to 0 to get rid of the first time initialization on
the function’s execution time.

5.2.5 Basic Logic Components

HAL contains several real time logic components. Logic components follow a Truth Table that states
what the output is for any given input. Typically these are bit manipulators and follow electrical logic
gate truth tables.
For further components see HAL Components List or the man pages.

5.2.5.1 and2

The and2 component is a two input and-gate. The truth table below shows the output based on each
combination of input.
Syntax
and2 [count=N] | [names=name1[,name2...]]

Functions
and2.n

Pins
and2.N.in0 (bit, in)
and2.N.in1 (bit, in)
and2.N.out (bit, out)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 205 / 1322

Table 5.3: Truth Table of and2

in0 in1 out
False False False
True False False
False True False
True True True

5.2.5.2 not

The not component is a bit inverter.
Syntax
not [count=n] | [names=name1[,name2...]]

Functions
not.all
not.n

Pins
not.n.in (bit, in)
not.n.out (bit, out)

Table 5.4: Truth Table of not

in out
True False
False True

5.2.5.3 or2

The or2 component is a two input or-gate.
Syntax
or2[count=n] | [names=name1[,name2...]]

Functions
or2.n

Pins
or2.n.in0 (bit, in)
or2.n.in1 (bit, in)
or2.n.out (bit, out)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 206 / 1322

Table 5.5: or2 Truth Table

in0 in1 out
True False True
True True True
False True True
False False False

5.2.5.4 xor2

The xor2 component is a two input xor (exclusive or)-gate.
Syntax
xor2[count=n] | [names=name1[,name2...]]

Functions
xor2.n

Pins
xor2.n.in0 (bit, in)
xor2.n.in1 (bit, in)
xor2.n.out (bit, out)

Table 5.6: xor2 Truth Table

in0 in1 out
True False True
True True False
False True True
False False False

5.2.6 Logic Examples

.Example using and2

loadrt and2 count=1
addf and2.0 servo-thread
net my-sigin1 and2.0.in0 <= parport.0.pin-11-in
net my-sigin2 and2.0.in1 <= parport.0.pin-12-in
net both-on parport.0.pin-14-out <= and2.0.out

In the above example one copy of and2 is loaded into real time space and added to the servo thread.
Next pin-11 of the parallel port is connected to the in0 bit of the and gate. Next pin-12 is connected
to the in1 bit of the and gate. Last we connect the and2 out bit to the parallel port pin-14. So following
the truth table for and2 if pin 11 and pin 12 are on then the output pin 14 will be on.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 207 / 1322

5.2.7 Conversion Components

5.2.7.1 weighted_sum

The weighted sum converts a group of bits into an integer. The conversion is the sum of the weights
of the bits present plus any offset. It’s similar to binary coded decimal but with more options. The
hold bit interrupts the input processing, so that the sum value no longer changes.
Syntax for loading component weighted_sum
loadrt weighted_sum wsum_sizes=size[,size,...]

Creates groups of ̀ ̀weighted_sum ̀ ̀s, each with the given number of input bits (size).
To update the weighted_sum, the process_wsums must be attached to a thread.
Add process_wsums to servo thread
addf process_wsums servo-thread

Which updates the weighted_sum component.
In the following example, a copy of the AXIS HAL configuration window, bits 0 and 2 are TRUE, they
have no offset. The weight (weight) of bit 0 is 1, that of bit 2 is 4, so the sum is 5.

Table 5.7: Component pins of weighted_sum

Owner Type Dir Value Name
10 bit In TRUE wsum.0.bit.0.in
10 s32 I/O 1 wsum.0.bit.0.weight
10 bit In FALSE wsum.0.bit.1.in
10 s32 I/O 2 wsum.0.bit.1.weight
10 bit In TRUE wsum.0.bit.2.in
10 s32 I/O 4 wsum.0.bit.2.weight
10 bit In FALSE wsum.0.bit.3.in
10 s32 I/O 8 wsum.0.bit.3.weight
10 bit In FALSE wsum.0.hold
10 s32 I/O 0 wsum.0.offset
10 s32 Out 5 wsum.0.sum

5.3 HAL TWOPASS

5.3.1 TWOPASS

This section describes an option to have multiple load-commands for multiple instances of the same
component at different positions in the file or among different files. Internally, this requires to read
the HAL file twice, hence the name TWOPASS. Supported since LinuxCNC version 2.5, the TWOPASS
processing of LinuxCNC configuration files helps with their modularization and readability. To recall,
LinuxCNC configuration files are specified in a LinuxCNC INI file as [HAL]HALFILE=filename.
Normally, a set of one or more LinuxCNC configuration files must use a single, unique loadrt line to
load a realtime component, which may create multiple instances of the component. For example, if
you use a two-input AND gate component (and2) in three different places in your setup, you would
need to have a single line somewhere to specify:
Example resulting in real-time components with default names and2.0, and2.1, and2.2.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 208 / 1322

loadrt and2 count=3

Configurations are more readable if you specify with the names= option for components where it is
supported, e.g.:
Example load command resulting in explicitly named components aa, ab, ac.
loadrt and2 names=aa,ab,ac

It can be a maintenance problem to keep track of the components and their names, since when you
add (or remove) a component, you must find and update the single loadrt directive applicable to the
component.
TWOPASS processing is enabled by including an INI file parameter in the [HAL] section,
where ”anystring” can be any non-null string.
[HAL]

TWOPASS = anystring

With TWOPASS enabled, you can have multiple specifications like:
loadrt and2 names=aa
...
loadrt and2 names=ab,ac
...
loadrt and2 names=ad

These commands can appear in different HAL files. The HAL files are processed in the order of their
appearance in the INI file, in multiple HALFILE assignments.
The TWOPASS option can be specified with options to add output for debugging (verbose) and to
prevent deletion of temporary files (nodelete). The options are separated with commas.
Example
[HAL]
TWOPASS = on,verbose,nodelete

With TWOPASS processing, all [HAL]HALFILES are first read and multiple appearances of loadrt
directives for each module are accumulated. Non-realtime components (loadusr) are loaded in order
but no other LinuxCNC commands are executed in the initial pass.

Note
Non-realtime components should use the wait (-W) option to ensure the component is ready before
other commands are executed.

After the initial pass, the realtime modules are loaded (loadrt) automatically

• with a number equal to the total number when using the count= option or

• with all of the individual names specified when using the names= option.

A second pass is then made to execute all of the other LinuxCNC instructions specified in the HAL-
FILES. The addf commands that associate a component’s functions with thread execution are executed
in the order of appearance with other commands during this second pass.
While you can use either the count= or names= options, they are mutually exclusive — only one type
can be specified for a given module.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 209 / 1322

TWOPASS processing is most effective when using the names= option. This option allows you to
provide unique names that are mnemonic or otherwise relevant to the configuration. For example, if
you use a derivative component to estimate the velocities and accelerations on each (x,y,z) coordinate,
using the count= method will give arcane component names like ddt.0, ddt.1, ddt.2, etc.
Alternatively, using the names= option like:
loadrt ddt names=xvel,yvel,zvel
...
loadrt ddt names=xaccel,yaccel,zaccel

results in components sensibly named xvel, yvel, zvel, xaccel, yaccel, zaccel.
Many comps supplied with the distribution are created with the halcompile utility and support the
names= option. These include the common logic components that are the glue of many LinuxCNC
configurations.
User-created comps that use the halcompile utility automatically support the names= option as well.
In addition to comps generated with the halcompile utility, numerous other comps support the names=option.
Comps that support names= option include: at_pid, encoder, encoder_ratio, pid, siggen, and sim_encoder.
Two-step processing occurs before the GUI is loaded. When using a [HAL]POSTGUI_HALFILE, it is
convenient to place all the [HAL]POSTGUI_HALFILE loadrt declarations for the necessary compo-
nents in a preloaded HAL file.
Example of a HAL section when using a POSTGUI_HALFILE
[HAL]

TWOPASS = on
HALFILE = core_sim.hal
HALFILE = sim_spindle_encoder.hal
HALFILE = axis_manualtoolchange.hal
HALFILE = simulated_home.hal
HALFILE = load_for_postgui.hal <- loadrt lines for components in postgui.hal

POSTGUI_HALFILE = postgui.hal
HALUI = halui

5.3.2 Post GUI

Some GUIs support HAL files that are processed after the GUI is started in order to connect LinuxCNC
pins that are created by the GUI. When using a postgui HAL file with TWOPASS processing, include
all loadrt items for components added by postgui HAL files in a separate HAL file that is processed
before the GUI. The addf commands can also be included in the file.
Example
[HAL]
TWOPASS = on
HALFILE = file_1.hal
...
HALFILE = file_n.hal
HALFILE = file_with_all_loads_for_postgui.hal
...
POSTGUI_HALFILE = the_postgui_file.hal

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 210 / 1322

5.3.3 Excluding .hal files

TWOPASS processing converts .hal files to equivalent .tcl files and uses haltcl to find loadrt and addf
commands in order to accumulate and consolidate their usage. Loadrt parameters that conform to
the simple names= (or count=) parameters accepted by the HAL Component Generator (halcompile)
are expected. More complex parameter items included in specialized LinuxCNC components may not
be handled properly.
A .hal file may be excluded from TWOPASS processing by including a magic comment line anywhere in
the .hal file. The magic comment line must begin with the string: #NOTWOPASS. Files specified with this
magic comment are sourced by halcmd using the -k (keep going if failure) and -v (verbose) options.
This exclusion provision can be used to isolate problems or for loading any special LinuxCNC compo-
nent that does not require or benefit from TWOPASS processing.
Ordinarily, the loadrt ordering of realtime components is not critical, but loadrt ordering for special
components can be enforced by placing the such loadrt directives in an excluded file.

Note
While the order of loadrt directives is not usually critical, ordering of addf directives is often very
important for proper operation of servo loop components.

Excluded HAL file example
$ cat twopass_excluded.hal
The following magic comment causes this file to
be excluded from twopass processing:
NOTWOPASS

debugging component with complex options:
loadrt mycomponent parm1=”abc def” parm2=ghi
show pin mycomponent

ordering special components
loadrt component_1
loadrt component_2

Note
Case and whitespace within the magic comment are ignored. The loading of components that use
names= or count= parameters (typically built by halcompile) should not be used in excluded files,
as that would eliminate the benefits of TWOPASS processing. The LinuxCNC commands that create
signals (net) and commands that establish execution order (addf) should not be placed in excluded
files. This is especially true for addf commands since their ordering may be important.

5.3.4 Examples

Examples of TWOPASS usage for a simulator are included in the directories:

configs/sim/axis/twopass/
configs/sim/axis/simtcl/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 211 / 1322

5.4 HAL Tutorial

5.4.1 Introduction

Configuration moves from theory to device — HAL device that is. For those who have had just a bit of
computer programming, this section is the Hello World of the HAL.
halrun can be used to create a working system. It is a command line or text file tool for configuration
and tuning. The following examples illustrate its setup and operation.

5.4.2 Halcmd

halcmd is a command line tool for manipulating HAL. A more complete man page exists for halcmd and
installed together with LinuxCNC, from source or from a package. If LinuxCNC has been compiled as
run-in-place, the man page is not installed but is accessible in the LinuxCNC main directory with the
following command:
$ man -M docs/man halcmd

5.4.2.1 Notation

For this tutorial, commands for the operating system are typically shown without the prompt provided
by the UNIX shell, i.e typically a dollar sign ($) or a hash/double cross (#). When communicating
directly with the HAL through halcmd or halrun, the prompts are shown in the examples. The terminal
window is in Applications/Accessories from the main Ubuntu menu bar.
Terminal Command Example - prompts
me@computer:~linuxcnc$ halrun
(will be shown like the following line)
halrun

(the halcmd: prompt will be shown when running HAL)
halcmd: loadrt counter
halcmd: show pin

5.4.2.2 Tab-completion

Your version of halcmd may include tab-completion. Instead of completing file names as a shell does,
it completes commands with HAL identifiers. You will have to type enough letters for a unique match.
Try pressing tab after starting a HAL command:
Tab-completion
halcmd: loa<TAB>
halcmd: load
halcmd: loadrt
halcmd: loadrt cou<TAB>
halcmd: loadrt counter

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 212 / 1322

5.4.2.3 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in
realtime, and all HAL components store data in shared memory so realtime components can access it.
Regular Linux does not support realtime programming or the type of shared memory that HAL needs.
Fortunately, there are realtime operating systems (RTOS’s) that provide the necessary extensions to
Linux. Unfortunately, each RTOS does things a little differently.
To address these differences, the LinuxCNC team came up with RTAPI, which provides a consistent
way for programs to talk to the RTOS. If you are a programmer who wants to work on the internals
of LinuxCNC, you may want to study linuxcnc/src/rtapi/rtapi.h to understand the API. But if you are
a normal person, all you need to know about RTAPI is that it (and the RTOS) needs to be loaded into
the memory of your computer before you do anything with HAL.

5.4.3 A Simple Example

5.4.3.1 Loading a component

For this tutorial, we are going to assume that you have successfully installed the Live CD and, if using
a RIP 1, invoke the rip-environment script to prepare your shell. In that case, all you need to do is load
the required RTOS and RTAPI modules into memory. Just run the following command from a terminal
window:
Loading HAL
cd linuxcnc
halrun
halcmd:

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the prompt is
now shown as halcmd:. This is because subsequent commands will be interpreted as HAL commands,
not shell commands.
For the first example, we will use a HAL component called siggen, which is a simple signal generator.
A complete description of the siggen component can be found in the SigGen section of this Manual.
It is a realtime component. To load the ”siggen” component, use the HAL command loadrt.
Loading siggen
halcmd: loadrt siggen

5.4.3.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd, the command line tool used to config-
ure the HAL. This tutorial will introduce only a selection of halcmd features. For a more complete
description try man halcmd, or see the reference in HAL Commands section of this document. The
first halcmd feature is the show command. This command displays information about the current
state of the HAL. To show all installed components:
Show Components with halrun/halcmd
halcmd: show comp

Loaded HAL Components:
ID Type Name PID State
3 RT siggen ready
2 User halcmd2177 2177 ready

1Run In Place, when the source files have been downloaded to a user directory and are compiled and executed directly from
there.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 213 / 1322

Since halcmd itself is also a HAL component, it will always show up in the list. The number after
”halcmd” in the component list is the UNIX process ID. It is possible to run more than one copy of
halcmd at the same time (in different terminal windows for example), so the PID is added to the end
of the name to make it unique. The list also shows the siggen component that we installed in the
previous step. The RT under Type indicates that siggen is a realtime component. The User under
Type indicates it is a non-realtime component.
Next, let’s see what pins siggen makes available:
Show Pins
halcmd: show pin

Component Pins:
Owner Type Dir Value Name

3 float IN 1 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT 0 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT 0 siggen.0.sawtooth
3 float OUT 0 siggen.0.sine
3 float OUT 0 siggen.0.square
3 float OUT 0 siggen.0.triangle

This command displays all of the pins in the current HAL. A complex system could have dozens or
hundreds of pins. But right now there are only nine pins. Of these pins eight are floating point and
one is bit (boolean). Six carry data out of the siggen component and three are used to transfer settings
into the component. Since we have not yet executed the code contained within the component, some
the pins have a value of zero.
The next step is to look at parameters:
Show Parameters
halcmd: show param

Parameters:
Owner Type Dir Value Name

3 s32 RO 0 siggen.0.update.time
3 s32 RW 0 siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now, each parameter has
the default value it was given when the component was loaded. Note the column labeled Dir. The
parameters labeled -W are writable ones that are never changed by the component itself, instead
they are meant to be changed by the user to control the component. We will see how to do this
later. Parameters labeled R- are read only parameters. They can be changed only by the component.
Finally, parameter labeled RW are read-write parameters. That means that they are changed by the
component, but can also be changed by the user. Note: The parameters siggen.0.update.time and
siggen.0.update.tmax are for debugging purposes and won’t be covered in this section.
Most realtime components export one or more functions to actually run the realtime code they contain.
Let’s see what function(s) siggen exported:
Show Functions with halcmd ̀
halcmd: show funct

Exported Functions:
Owner CodeAddr Arg FP Users Name
00003 f801b000 fae820b8 YES 0 siggen.0.update

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 214 / 1322

The siggen component exported a single function. It requires floating point. It is not currently linked
to any threads, so users is zero 2.

5.4.3.3 Making realtime code run

To actually run the code contained in the function siggen.0.update, we need a realtime thread. The
component called threads that is used to create a new thread. Lets create a thread called ”test-thread”
with a period of 1 ms (1,000 µs or 1,000,000 ns):
halcmd: loadrt threads name1=test-thread period1=1000000

Let’s see if that worked:
Show Threads
halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
999855 YES test-thread (0, 0)

It did. The period is not exactly 1,000,000 ns because of hardware limitations, but we have a thread
that runs at approximately the correct rate, and which can handle floating point functions. The next
step is to connect the function to the thread:
Add Function
halcmd: addf siggen.0.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the addf
(add function) command to actually change something in the HAL. We told halcmd to add the function
siggen.0.update to the thread test-thread, and if we look at the thread list again, we see that it
succeeded:
halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
999855 YES test-thread (0, 0)

1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the HAL
is first started, the thread(s) are not actually running. This is to allow you to completely configure the
system before the realtime code starts. Once you are happy with the configuration, you can start the
realtime code like this:
halcmd: start

Now the signal generator is running. Let’s look at its output pins:
halcmd: show pin

Component Pins:
Owner Type Dir Value Name

3 float IN 1 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT -0.1640929 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset

2CodeAddr and Arg fields were used during development and should probably disappear.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 215 / 1322

3 float OUT -0.4475303 siggen.0.sawtooth
3 float OUT 0.9864449 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT -0.1049393 siggen.0.triangle

And let’s look again:
halcmd: show pin

Component Pins:
Owner Type Dir Value Name

3 float IN 1 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT 0.0507619 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.516165 siggen.0.sawtooth
3 float OUT 0.9987108 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT 0.03232994 siggen.0.triangle

We did two show pin commands in quick succession, and you can see that the outputs are no longer
zero. The sine, cosine, sawtooth, and triangle outputs are changing constantly. The square output is
also working, however it simply switches from +1.0 to -1.0 every cycle.

5.4.3.4 Changing Parameters

The real power of HAL is that you can change things. For example, we can use the setp command to
set the value of a parameter. Let’s change the amplitude of the signal generator from 1.0 to 5.0:
Set Pin
halcmd: setp siggen.0.amplitude 5

Check the parameters and pins again
halcmd: show param

Parameters:
Owner Type Dir Value Name

3 s32 RO 1754 siggen.0.update.time
3 s32 RW 16997 siggen.0.update.tmax

halcmd: show pin

Component Pins:
Owner Type Dir Value Name

3 float IN 5 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT 0.8515425 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT 2.772382 siggen.0.sawtooth
3 float OUT -4.926954 siggen.0.sine
3 float OUT 5 siggen.0.square
3 float OUT 0.544764 siggen.0.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5, and that the pins now have
larger values.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 216 / 1322

5.4.3.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show command.
However two of the commands actually changed things. As we design more complex systems with
HAL, we will use many commands to configure things just the way we want them. HAL has the memory
of an elephant, and will retain that configuration until we shut it down. But what about next time? We
don’t want to manually enter a bunch of commands every time we want to use the system.
Saving the configuration of the entire HAL with a single command.
halcmd: save

components
loadrt threads name1=test-thread period1=1000000
loadrt siggen
pin aliases
signals
nets
parameter values
setp siggen.0.update.tmax 14687
realtime thread/function links
addf siggen.0.update test-thread

The output of the save command is a sequence of HAL commands. If you start with an empty HAL
and run all these commands, you will get the configuration that existed when the save command was
issued. To save these commands for later use, we simply redirect the output to a file:
Save configuration to a file with halcmd
halcmd: save all saved.hal

5.4.3.6 Exiting halrun

When you’re finished with your HAL session type exit at the ”halcmd:” prompt. This will return
you to the system prompt and close down the HAL session. Do not simply close the terminal window
without shutting down the HAL session.
Exit HAL
halcmd: exit

5.4.3.7 Restoring the HAL configuration

To restore the HAL configuration stored in the file ”saved.hal”, we need to execute all of those HAL
commands. To do that, we use ”-f _<file name>_” which reads commands from a file, and ”-I”
(upper case i) which shows the halcmd prompt after executing the commands:
Run a Saved File
halrun -I -f saved.hal

Notice that there is not a ”start” command in saved.hal. It’s necessary to issue it again (or edit the
file saved.hal to add it there).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 217 / 1322

5.4.3.8 Removing HAL from memory

If an unexpected shutdown of a HAL session occurs you might have to unload HAL before another
session can begin. To do this type the following command in a terminal window.
Removing HAL
halrun -U

5.4.4 Halmeter

You can build very complex HAL systems without ever using a graphical interface. However there is
something satisfying about seeing the result of your work. The first and simplest GUI tool for the HAL
is halmeter. It is a very simple program that is the HAL equivalent of the handy multimeter (or analog
meter for the old timers).
It allows to observe the pins, signals or parameters by displaying the current value of these entities.
It is very easy to use application for graphical environments. In a console type:
halmeter

Two windows will appear. The selection window is the largest and includes three tabs:

• One lists all the pins currently defined in HAL,

• one lists all the signals,

• one lists all the parameters.

Click on a tab, then click on one of the items to select it. The small window will show the name and
value of the selected item. The display is updated approximately 10 times per second. To free screen
space, the selection window can be closed with the Close button. On the little window, hidden under
the selection window at program launch, the Select button, re-opens the selection window and the
Exit button stops the program and closes both windows.
It is possible to run several halmeters simultaneously, which makes it possible to visualize several
items at the same time. To open a halmeter and release the console by running it in the background,
run the following command:
halmeter &

It is possible to launch halmeter and make it immediately display an item. For this, add pin|sig|par[am]
name arguments on the command line. It will display the signal, pin, or parameter name as soon as
it will start. If the indicated item does not exist, it will start normally.
Finally, if an item is specified for display, it is possible add -s in front of pin|sig|param to tell halmeter
to use an even smaller window. The item name will be displayed in the title bar instead of below the
value and there will be no button. This is useful for displaying a lot of halmeters in a small space.
We will use the siggen component again to check out halmeter. If you just finished the previous
example, then you can load siggen using the saved file. If not, we can load it just like we did before:
halrun
halcmd: loadrt siggen
halcmd: loadrt threads name1=test-thread period1=1000000
halcmd: addf siggen.0.update test-thread
halcmd: start
halcmd: setp siggen.0.amplitude 5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 218 / 1322

At this point we have the siggen component loaded and running. It’s time to start halmeter.
Starting Halmeter
halcmd: loadusr halmeter

The first window you will see is the ”Select Item to Probe” window.

Figure 5.5: Halmeter Select Window

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one
displays all the signals, and the third displays all the parameters. We would like to look at the pin
siggen.0.cosine first, so click on it then click the ”Close” button. The probe selection dialog will
close, and the meter looks something like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 219 / 1322

Figure 5.6: Halmeter Window

To change what the meter displays press the ”Select” button which brings back the ”Select Item to
Probe” window.
You should see the value changing as siggen generates its cosine wave. Halmeter refreshes its display
about 5 times per second.
To shut down halmeter, just click the exit button.
If you want to look at more than one pin, signal, or parameter at a time, you can just start more
halmeters. The halmeter window was intentionally made very small so you could have a lot of them
on the screen at once.

5.4.5 Stepgen Example

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow
you to load and connect a number of simple components to make up a complex system. The next
example will use two components.
Before we can begin building this new example, we want to start with a clean slate. If you just finished
one of the previous examples, we need to remove the all components and reload the RTAPI and HAL
libraries.
halcmd: exit

5.4.5.1 Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this com-
ponent refer to the stepgen section of the Integrator Manual. In this example we will use the velocity
control type of StepGen. For now, we can skip the details, and just run the following commands.
In this example we will use the velocity control type from the stepgen component.
halrun
halcmd: loadrt stepgen step_type=0,0 ctrl_type=v,v
halcmd: loadrt siggen
halcmd: loadrt threads name1=fast fp1=0 period1=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The second
command loads our old friend siggen, and the third one creates two threads, a fast one with a period
of 50 microseconds (µs) and a slow one with a period of 1 millisecond (ms). The fast thread doesn’t
support floating point functions.
As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins and
parameters than before:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 220 / 1322

halcmd: show pin

Component Pins:
Owner Type Dir Value Name

4 float IN 1 siggen.0.amplitude
4 bit OUT FALSE siggen.0.clock
4 float OUT 0 siggen.0.cosine
4 float IN 1 siggen.0.frequency
4 float IN 0 siggen.0.offset
4 float OUT 0 siggen.0.sawtooth
4 float OUT 0 siggen.0.sine
4 float OUT 0 siggen.0.square
4 float OUT 0 siggen.0.triangle
3 s32 OUT 0 stepgen.0.counts
3 bit OUT FALSE stepgen.0.dir
3 bit IN FALSE stepgen.0.enable
3 float OUT 0 stepgen.0.position-fb
3 bit OUT FALSE stepgen.0.step
3 float IN 0 stepgen.0.velocity-cmd
3 s32 OUT 0 stepgen.1.counts
3 bit OUT FALSE stepgen.1.dir
3 bit IN FALSE stepgen.1.enable
3 float OUT 0 stepgen.1.position-fb
3 bit OUT FALSE stepgen.1.step
3 float IN 0 stepgen.1.velocity-cmd

halcmd: show param

Parameters:
Owner Type Dir Value Name

4 s32 RO 0 siggen.0.update.time
4 s32 RW 0 siggen.0.update.tmax
3 u32 RW 0x00000001 stepgen.0.dirhold
3 u32 RW 0x00000001 stepgen.0.dirsetup
3 float RO 0 stepgen.0.frequency
3 float RW 0 stepgen.0.maxaccel
3 float RW 0 stepgen.0.maxvel
3 float RW 1 stepgen.0.position-scale
3 s32 RO 0 stepgen.0.rawcounts
3 u32 RW 0x00000001 stepgen.0.steplen
3 u32 RW 0x00000001 stepgen.0.stepspace
3 u32 RW 0x00000001 stepgen.1.dirhold
3 u32 RW 0x00000001 stepgen.1.dirsetup
3 float RO 0 stepgen.1.frequency
3 float RW 0 stepgen.1.maxaccel
3 float RW 0 stepgen.1.maxvel
3 float RW 1 stepgen.1.position-scale
3 s32 RO 0 stepgen.1.rawcounts
3 u32 RW 0x00000001 stepgen.1.steplen
3 u32 RW 0x00000001 stepgen.1.stepspace
3 s32 RO 0 stepgen.capture-position.time
3 s32 RW 0 stepgen.capture-position.tmax
3 s32 RO 0 stepgen.make-pulses.time
3 s32 RW 0 stepgen.make-pulses.tmax
3 s32 RO 0 stepgen.update-freq.time
3 s32 RW 0 stepgen.update-freq.tmax

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 221 / 1322

5.4.5.2 Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL
signals to connect the two components. We are going to pretend that the two step pulse generators
are driving the X and Y axis of a machine. We want to move the table in circles. To do this, we will
send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen module creates the sine
and cosine, but we need wires to connect the modules together. In the HAL, wires are called signals.
We need to create two of them. We can call them anything we want, for this example they will be
X-vel and Y-vel. The signal X-vel is intended to run from the cosine output of the signal generator to
the velocity input of the first step pulse generator. The first step is to connect the signal to the signal
generator output. To connect a signal to a pin we use the net command.
net command
halcmd: net X-vel <= siggen.0.cosine

To see the effect of the net command, we show the signals again.
halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine

When a signal is connected to one or more pins, the show command lists the pins immediately follow-
ing the signal name. The arrow shows the direction of data flow - in this case, data flows from pin
siggen.0.cosine to signal X-vel. Now let’s connect the X-vel to the velocity input of a step pulse
generator.
halcmd: net X-vel => stepgen.0.velocity-cmd

We can also connect up the Y axis signal Y-vel. It is intended to run from the sine output of the signal
generator to the input of the second step pulse generator. The following command accomplishes in
one line what two net commands accomplished for X-vel.
halcmd: net Y-vel siggen.0.sine => stepgen.1.velocity-cmd

Now let’s take a final look at the signals and the pins connected to them.
halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine

==> stepgen.0.velocity-cmd
float 0 Y-vel <== siggen.0.sine

==> stepgen.1.velocity-cmd

The show sig command makes it clear exactly how data flows through the HAL. For example, the X-vel
signal comes from pin siggen.0.cosine, and goes to pin stepgen.0.velocity-cmd.

5.4.5.3 Setting up realtime execution - threads and functions

Thinking about data flowing through ”wires” makes pins and signals fairly easy to understand. Threads
and functions are a little more difficult. Functions contain the computer instructions that actually get
things done. Thread are the method used to make those instructions run when they are needed. First
let’s look at the functions available to us.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 222 / 1322

halcmd: show funct

Exported Functions:
Owner CodeAddr Arg FP Users Name
00004 f9992000 fc731278 YES 0 siggen.0.update
00003 f998b20f fc7310b8 YES 0 stepgen.capture-position
00003 f998b000 fc7310b8 NO 0 stepgen.make-pulses
00003 f998b307 fc7310b8 YES 0 stepgen.update-freq

In general, you will have to refer to the documentation for each component to see what its functions
do. In this case, the function siggen.0.update is used to update the outputs of the signal generator.
Every time it is executed, it calculates the values of the sine, cosine, triangle, and square outputs. To
make smooth signals, it needs to run at specific intervals.
The other three functions are related to the step pulse generators.
The first one, stepgen.capture_position, is used for position feedback. It captures the value of an
internal counter that counts the step pulses as they are generated. Assuming no missed steps, this
counter indicates the position of the motor.
The main function for the step pulse generator is stepgen.make_pulses. Every time make_pulses
runs it decides if it is time to take a step, and if so sets the outputs accordingly. For smooth step
pulses, it should run as frequently as possible. Because it needs to run so fast, make_pulses is highly
optimized and performs only a few calculations. Unlike the others, it does not need floating point
math.
The last function, stepgen.update-freq, is responsible for doing scaling and some other calculations
that need to be performed only when the frequency command changes.
What this means for our example is that we want to run siggen.0.update at a moderate rate to
calculate the sine and cosine values. Immediately after we run siggen.0.update, we want to run
stepgen.update_freq to load the new values into the step pulse generator. Finally we need to run
stepgen.make_pulses as fast as possible for smooth pulses. Because we don’t use position feedback,
we don’t need to run stepgen.capture_position at all.
We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what
threads we have available.
halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
49849 NO fast (0, 0)

The two threads were created when we loaded threads. The first one, slow, runs every millisec-
ond, and is capable of running floating point functions. We will use it for siggen.0.update and
stepgen.update_freq. The second thread is fast, which runs every 50 microseconds (µs), and does
not support floating point. We will use it for stepgen.make_pulses. To connect the functions to the
proper thread, we use the addf command. We specify the function first, followed by the thread.
halcmd: addf siggen.0.update slow
halcmd: addf stepgen.update-freq slow
halcmd: addf stepgen.make-pulses fast

After we give these commands, we can run the show thread command again to see what happened.
halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 223 / 1322

1 siggen.0.update
2 stepgen.update-freq

49849 NO fast (0, 0)
1 stepgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will
run.

5.4.5.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By
default, the siggen component generates signals that swing from +1 to -1. For our example that is
fine, we want the table speed to vary from +1 to -1 inches per second. However the scaling of the step
pulse generator isn’t quite right. By default, it generates an output frequency of 1 step per second
with an input of 1.0. It is unlikely that one step per second will give us one inch per second of table
movement. Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200 step
per rev stepper with 10x microstepping. So it takes 2000 steps for one revolution of the screw, and
5 revolutions to travel one inch. That means the overall scaling is 10000 steps per inch. We need
to multiply the velocity input to the step pulse generator by 10000 to get the proper output. That
is exactly what the parameter stepgen.n.velocity-scale is for. In this case, both the X and Y axis
have the same scaling, so we set the scaling parameters for both to 10000.
halcmd: setp stepgen.0.position-scale 10000
halcmd: setp stepgen.1.position-scale 10000
halcmd: setp stepgen.0.enable 1
halcmd: setp stepgen.1.enable 1

This velocity scaling means that when the pin stepgen.0.velocity-cmd is 1.0, the step generator will
generate 10000 pulses per second (10 kHz). With the motor and leadscrew described above, that will
result in the axis moving at exactly 1.0 inches per second. This illustrates a key HAL concept - things
like scaling are done at the lowest possible level, in this case in the step pulse generator. The internal
signal X-vel is the velocity of the table in inches per second, and other components such as siggen
don’t know (or care) about the scaling at all. If we changed the leadscrew, or motor, we would change
only the scaling parameter of the step pulse generator.

5.4.5.5 Run it!

We now have everything configured and are ready to start it up. Just like in the first example, we use
the start command.
halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out
step pulses, varying from 10 kHz forward to 10 kHz reverse and back again every second. Later in
this tutorial we’ll see how to bring those internal signals out to run motors in the real world, but first
we want to look at them and see what is happening.

5.4.6 Halscope

The previous example generates some very interesting signals. But much of what happens is far
too fast to see with halmeter. To take a closer look at what is going on inside the HAL, we want an
oscilloscope. Fortunately HAL has one, called halscope.
Halscope has two parts - a realtime part that reads the HAL signals, and a non-realtime part that
provides the GUI and display. However, you don’t need to worry about this because the non-realtime
part will automatically load the realtime part when needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 224 / 1322

With LinuxCNC running in a terminal you can start halscope with the following command.
Starting Halscope
halcmd loadusr halscope

If LinuxCNC is not running or the autosave.halscope file does not match the pins available in the
current running LinuxCNC the scope GUI window will open, immediately followed by a Realtime
function not linked dialog that looks like the following figure. To change the sample rate left click on
the samples box.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 225 / 1322

Figure 5.7: Realtime function not linked dialog

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample once
per millisecond, so click on the 1.00 ms thread slow and leave the multiplier at 1. We will also leave
the record length at 4000 samples, so that we can use up to four channels at one time. When you
select a thread and then click OK, the dialog disappears, and the scope window looks something like
the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 226 / 1322

Figure 5.8: Initial scope window

5.4.6.1 Hooking up the scope probes

At this point, Halscope is ready to use. We have already selected a sample rate and record length, so
the next step is to decide what to look at. This is equivalent to hooking virtual scope probes to the
HAL. Halscope has 16 channels, but the number you can use at any one time depends on the record
length - more channels means shorter records, since the memory available for the record is fixed at
approximately 16,000 samples.
The channel buttons run across the bottom of the halscope screen. Click button 1, and you will see the
Select Channel Source dialog as shown in the following figure. This dialog is very similar to the one
used by Halmeter. We would like to look at the signals we defined earlier, so we click on the Signals
tab, and the dialog displays all of the signals in the HAL (only two for this example).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 227 / 1322

Figure 5.9: Select Channel Source

To choose a signal, just click on it. In this case, we want channel 1 to display the signal X-vel. Click
on the Signals tab then click on X-vel and the dialog closes and the channel is now selected.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 228 / 1322

Figure 5.10: Select Signal

The channel 1 button is pressed in, and channel number 1 and the name X-vel appear below the row
of buttons. That display always indicates the selected channel - you can have many channels on the
screen, but the selected one is highlighted, and the various controls like vertical position and scale
always work on the selected one.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 229 / 1322

Figure 5.11: Halscope

To add a signal to channel 2, click the 2 button. When the dialog pops up, click the Signals tab, then
click on Y-vel. We also want to look at the square and triangle wave outputs. There are no signals
connected to those pins, so we use the Pins tab instead. For channel 3, select siggen.0.triangle
and for channel 4, select siggen.0.square.

5.4.6.2 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start
the scope, click the Normal button in the Run Mode section of the screen (upper right). Since we
have a 4000 sample record length, and are acquiring 1000 samples per second, it will take halscope
about 2 seconds to fill half of its buffer. During that time a progress bar just above the main screen
will show the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we haven’t
configured one yet, it will wait forever. To manually trigger it, click the Force button in the Trigger
section at the top right. You should see the remainder of the buffer fill, then the screen will display
the captured waveforms. The result will look something like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 230 / 1322

Figure 5.12: Captured Waveforms

The Selected Channel box at the bottom tells you that the purple trace is the currently selected one,
channel 4, which is displaying the value of the pin siggen.0.square. Try clicking channel buttons 1
through 3 to highlight the other three traces.

5.4.6.3 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we use
the Vertical controls in the box to the right of the screen. These controls act on the currently selected
channel. When adjusting the gain, notice that it covers a huge range - unlike a real scope, this one
can display signals ranging from very tiny (pico-units) to very large (Tera-units). The position control
moves the displayed trace up and down over the height of the screen only. For larger adjustments the
offset button should be used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 231 / 1322

Figure 5.13: Vertical Adjustment

The large Selected Channel button at the bottom indicates that channel 1 is currently selected channel
and that it matches the X-vel signal. Try clicking on the other channels to put their traces in evidence
and to be able to move them with the Pos cursor.

5.4.6.4 Triggering

Using the Force button is a rather unsatisfying way to trigger the scope. To set up real triggering,
click on the Source button at the bottom right. It will pop up the Trigger Source dialog, which is
simply a list of all the probes that are currently connected. Select a probe to use for triggering by
clicking on it. For this example we will use channel 3, the triangle wave as shown in the following
figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 232 / 1322

Figure 5.14: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders
in the Trigger box along the right edge. The level can be adjusted from the top to the bottom of the
screen, and is displayed below the sliders. The position is the location of the trigger point within
the overall record. With the slider all the way down, the trigger point is at the end of the record, and
halscope displays what happened before the trigger point. When the slider is all the way up, the trigger
point is at the beginning of the record, displaying what happened after it was triggered. The trigger
point is visible as a vertical line in the progress box above the screen. The trigger polarity can be
changed by clicking the button just below the trigger level display. It will then become descendant.
Note that changing the trigger position stops the scope once the position has been adjusted, you
relaunch the scope by clicking on the Normal button of Run mode the group.
Now that we have adjusted the vertical controls and triggering, the scope display looks something
like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 233 / 1322

Figure 5.15: Waveforms with Triggering

5.4.6.5 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to expand the
waveforms horizontally, and the position slider to determine which part of the zoomed waveform is
visible. However, sometimes simply expanding the waveforms isn’t enough and you need to increase
the sampling rate. For example, we would like to look at the actual step pulses that are being gener-
ated in our example. Since the step pulses may be only 50 µs long, sampling at 1 kHz isn’t fast enough.
To change the sample rate, click on the button that displays the number of samples and sample rate
to bring up the Select Sample Rate dialog figure. For this example, we will click on the 50 µs thread,
fast, which gives us a sample rate of about 20 kHz. Now instead of displaying about 4 seconds worth
of data, one record is 4000 samples at 20 kHz, or about 0.20 seconds.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 234 / 1322

Figure 5.16: Sample Rate Dialog

5.4.6.6 More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only 4
at a time. Before we select any more channels, we need to turn off a couple. Clicking on a selected
channel button (black border) will turn the channel off. So click on the channel 2 button, then click
again on this button and the channel will turn off. Then click twice on channel 3 and do the same
for channel 4. Even though the channels are turned off, they still remember what they are connected
to, and in fact we will continue to use channel 3 as the trigger source. To add new channels, select
channel 5, and choose pin stepgen.0.dir, then channel 6, and select stepgen.0.step. Then click run
mode Normal to start the scope, and adjust the horizontal zoom to 5 ms per division. You should see
the step pulses slow down as the velocity command (channel 1) approaches zero, then the direction
pin changes state and the step pulses speed up again. You might want toincrease the gain on channel
1 to about 20 milli per division to better see the change in the velocity command. The result should
look like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 235 / 1322

Figure 5.17: Step Pulses

5.4.6.7 More samples

If you want to record more samples at once, restart realtime and load halscope with a numeric argu-
ment which indicates the number of samples you want to capture.
halcmd loadusr halscope 80000

If the scope_rt component was not already loaded, halscope will load it and request 80000 total sam-
ples, so that when sampling 4 channels at a time there will be 20000 samples per channel. (If scope_rt
was already loaded, the numeric argument to halscope will have no effect).

5.5 HAL Examples

All of these examples assume you are starting with a StepConf-based configuration and have two
threads base-thread and servo-thread. The StepConf wizard will create an empty custom.hal and a
custom_postgui.hal file. The custom.hal file will be loaded after the configuration HAL file and the
custom_postgui.hal file is loaded after the GUI has been loaded.

5.5.1 Connecting Two Outputs

To connect two outputs to an input you can use the or2 component. The or2 works like this, if either
input to or2 is on then the or2 output is on. If neither input to or2 is on the or2 output is off.
For example to have two PyVCP buttons both connected to one LED.
The .xml file to instruct PyVCP to prepare a GUI that features two buttons (named ”button-1”
and ”button-2”) and an LED (named ”led-1”).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 236 / 1322

<pyvcp>
<button>
<halpin>”button-1”</halpin>
<text>”Button 1”</text>

</button>

<button>
<halpin>”button-2”</halpin>
<text>”Button 2”</text>

</button>

<led>
<halpin>”led-1”</halpin>
<size>50</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</led>
</pyvcp>

The postgui.hal file, read after the GUI is set up and ports ready to accept the logic described
in HAL.
loadrt or2
addf or2.0 servo-thread
net button-1 or2.0.in0 <= pyvcp.button-1
net button-2 or2.0.in1 <= pyvcp.button-2
net led-1 pyvcp.led-1 <= or2.0.out

When you run this example in an axis simulator created with the StepConf Wizard, you can open a
terminal and see the pins created with loadrt or2 by typing in halcmd show pin or2 in the terminal.
Running halcmd on the UNIX command line to show the pins crafted with module or2.
$ halcmd show pin or2
Component Pins:
Owner Type Dir Value Name

22 bit IN FALSE or2.0.in0 <== button-1
22 bit IN FALSE or2.0.in1 <== button-2
22 bit OUT FALSE or2.0.out ==> led-1

You can see from the HAL command show pin or2 that the button-1 pin is connected to the or2.0.in0
pin. From the direction arrow you can see that the button is and output and the or2.0.in0 is an input.
The output from or2 goes to the input of the LED.

5.5.2 Manual Toolchange

In this example it is assumed that you’re rolling your own configuration and wish to add the HAL
Manual Toolchange window. The HAL Manual Toolchange is primarily useful if you have presettable
tools and you store the offsets in the tool table. If you need to touch off for each tool change then it is
best just to split up your G-code. To use the HAL Manual Toolchange window you basically have to

1. load the hal_manualtoolchange component,

2. then send the iocontrol tool change to the hal_manualtoolchange change and

3. send the hal_manualtoolchange changed back to the iocontrol tool changed.

A pin is provided for an external input to indicate the tool change is complete.
This is an example of manual toolchange with the HAL Manual Toolchange component:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 237 / 1322

loadusr -W hal_manualtoolchange
net tool-change iocontrol.0.tool-change => hal_manualtoolchange.change
net tool-changed iocontrol.0.tool-changed <= hal_manualtoolchange.changed
net external-tool-changed hal_manualtoolchange.change_button <= parport.0.pin-12-in
net tool-number iocontrol.0.tool-prep-number => hal_manualtoolchange.number
net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

This is an example of manual toolchange without the HAL Manual Toolchange component:
net tool-number <= iocontrol.0.tool-prep-number
net tool-change-loopback iocontrol.0.tool-change => iocontrol.0.tool-changed
net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

5.5.3 Compute Velocity

This example uses ddt, mult2 and abs to compute the velocity of a single axis. For more information
on the real time components see the man pages or the HAL Components List (Section 5.1.5).
The first thing is to check your configuration to make sure you are not using any of the real time
components all ready. You can do this by opening up the HAL Configuration window and look for the
components in the pin section. If you are then find the HAL file that they are being loaded in and
increase the counts and adjust the instance to the correct value. Add the following to your custom.hal
file.
Load the realtime components.
loadrt ddt count=1
loadrt mult2 count=1
loadrt abs count=1

Add the functions to a thread so it will get updated.
addf ddt.0 servo-thread
addf mult2.0 servo-thread
addf abs.0 servo-thread

Make the connections.
setp mult2.in1 60
net xpos-cmd ddt.0.in
net X-IPS mult2.0.in0 <= ddt.0.out
net X-ABS abs.0.in <= mult2.0.out
net X-IPM abs.0.out

In this last section we are setting the mult2.0.in1 to 60 to convert the inch per second to inch per
minute (IPM) that we get from the ddt.0.out.
The xpos-cmd sends the commanded position to the ddt.0.in. The ddt computes the derivative of the
change of the input.
The ddt2.0.out is multiplied by 60 to give IPM.
The mult2.0.out is sent to the abs to get the absolute value.
The following figure shows the result when the X axis is moving at 15 IPM in the minus direction.
Notice that we can get the absolute value from either the abs.0.out pin or the X-IPM signal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 238 / 1322

Figure 5.18: HAL: Velocity Example

5.5.4 Soft Start Details

This example shows how the HAL components lowpass, limit2 or limit3 can be used to limit how fast
a signal changes.
In this example we have a servo motor driving a lathe spindle. If we just used the commanded
spindle speeds on the servo it will try to go from present speed to commanded speed as fast as it
can. This could cause a problem or damage the drive. To slow the rate of change we can send the
spindle.N.speed-out through a limiter before the PID, so that the PID command value changes to
new settings more slowly.
Three built-in components that limit a signal are:

• limit2 limits the range and first derivative of a signal.

• limit3 limits the range, first and second derivatives of a signal.

• lowpass uses an exponentially-weighted moving average to track an input signal.

To find more information on these HAL components check the man pages.
Place the following in a text file called softstart.hal. If you’re not familiar with Linux place the file in
your home directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 239 / 1322

loadrt threads period1=1000000 name1=thread
loadrt siggen
loadrt lowpass
loadrt limit2
loadrt limit3
net square siggen.0.square => lowpass.0.in limit2.0.in limit3.0.in
net lowpass <= lowpass.0.out
net limit2 <= limit2.0.out
net limit3 <= limit3.0.out
setp siggen.0.frequency .1
setp lowpass.0.gain .01
setp limit2.0.maxv 2
setp limit3.0.maxv 2
setp limit3.0.maxa 10
addf siggen.0.update thread
addf lowpass.0 thread
addf limit2.0 thread
addf limit3.0 thread
start
loadusr halscope

Open a terminal window and run the file with the following command.
halrun -I softstart.hal

When the HAL Oscilloscope first starts up click OK to accept the default thread.
Next you have to add the signals to the channels. Click on channel 1 then select square from the
Signals tab. Repeat for channels 2-4 and add lowpass, limit2, and limit3.
Next to set up a trigger signal click on the Source None button and select square. The button will
change to Source Chan 1.
Next click on Single in the Run Mode radio buttons box. This will start a run and when it finishes you
will see your traces.
To separate the signals so you can see them better click on a channel then use the Pos slider in the
Vertical box to set the positions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 240 / 1322

To see the effect of changing the set point values of any of the components you can change them in
the terminal window. To see what different gain settings do for lowpass just type the following in the
terminal window and try different settings.
setp lowpass.0.gain *.01

After changing a setting run the oscilloscope again to see the change.
When you’re finished type exit in the terminal window to shut down halrun and close the halscope.
Don’t close the terminal window with halrun running as it might leave some things in memory that
could prevent LinuxCNC from loading.
For more information on Halscope see the HAL manual and the tutorial.

5.5.5 Stand Alone HAL

In some cases you might want to run a GladeVCP screen with just HAL. For example say you had a
stepper driven device that all you need is to run a stepper motor. A simple Start/Stop interface is all
you need for your application so no need to load up and configure a full blown CNC application.
In the following example we have created a simple GladeVCP panel with one stepper.
Basic Syntax

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 241 / 1322

load the winder.glade GUI and name it winder
loadusr -Wn winder gladevcp -c winder -u handler.py winder.glade

load realtime components
loadrt threads name1=fast period1=50000 fp1=0 name2=slow period2=1000000
loadrt stepgen step_type=0 ctrl_type=v
loadrt hal_parport cfg=”0x378 out”

add functions to threads
addf stepgen.make-pulses fast
addf stepgen.update-freq slow
addf stepgen.capture-position slow
addf parport.0.read fast
addf parport.0.write fast

make HAL connections
net winder-step parport.0.pin-02-out <= stepgen.0.step
net winder-dir parport.0.pin-03-out <= stepgen.0.dir
net run-stepgen stepgen.0.enable <= winder.start_button

start the threads
start

comment out the following lines while testing and use the interactive
option halrun -I -f start.hal to be able to show pins etc.

wait until the GladeVCP GUI named winder terminates
waitusr winder

stop HAL threads
stop

unload HAL all components before exiting
unloadrt all

5.6 Core Components

See also the man pages motion(9).

5.6.1 Motion

These pins and parameters are created by the realtime motmod module.
This module provides a HAL interface for LinuxCNC’s motion planner.
Basically motmod takes in a list of waypoints and generates a nice blended and constraint-limited
stream of joint positions to be fed to the motor drives.
Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio,
default is 4 each. The number of Spindles is set with num_spindles, default is 1.
Pin and parameter names starting with axis.L and joint.N are read and updated by the motion-controller
function.
Motion is loaded with the motmod command. A kins should be loaded before motion.
loadrt motmod base_period_nsec=[’period’] servo_period_nsec=[’period’]

traj_period_nsec=[’period’] num_joints=[’0-9’]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 242 / 1322

num_dio=[’1-64’] num_aio=[’1-16’] unlock_joints_mask=[’0xNN’]
num_spindles=[’1-8’]

• base_period_nsec = 50000 - the Base task period in nanoseconds. This is the fastest thread in the
machine.

Note
On servo-based systems, there is generally no reason for base_period_nsec to be smaller than
servo_period_nsec. On machines with software step generation, the base_period_nsec determines
the maximum number of steps per second. In the absence of long step length and step space
requirements, the absolute maximum step rate is one step per base_period_nsec. Thus, the
base_period_nsec shown above gives an absolute maximum step rate of 20,000 steps per second.
50,000 ns (50 us) is a fairly conservative value. The smallest usable value is related to the Latency
Test result, the necessary step length, and the processor speed. Choosing a base_period_nsec that
is too low can lead to the ”Unexpected real time delay” message, lockups, or spontaneous reboots.

• servo_period_nsec = 1000000 - This is the Servo task period in nanoseconds. This value will be
rounded to an integer multiple of base_period_nsec. This period is used even on systems based on
stepper motors.
This is the rate at which new motor positions are computed, following error is checked, PID output
values are updated, and so on. Most systems will not need to change this value. It is the update
rate of the low level motion planner.

• traj_period_nsec = 100000 - This is the Trajectory Planner task period in nanoseconds. This value
will be rounded to an integer multiple of servo_period_nsec. Except for machines with unusual
kinematics (e.g., hexapods) there is no reason to make this value larger than servo_period_nsec.

5.6.1.1 Options

If the number of digital I/O needed is more than the default of 4 you can add up to 64 digital I/O by
using the num_dio option when loading motmod.
If the number of analog I/O needed is more than the default of 4 you can add up to 16 analog I/O by
using the num_aio option when loading motmod.
The unlock_joints_mask parameter is used to create pins for a joint used as a locking indexer (typically
a rotary). The mask bits select the joint(s). The LSB of the mask selects joint 0. Example:
unlock_joints_mask=0x38 selects joints 3,4,5

5.6.1.2 Pins

These pins, parameters, and functions are created by the realtime motmod module.

• motion.adaptive-feed - (float, in) When adaptive feed is enabled with M52 P1 , the commanded
velocity is multiplied by this value. This effect is multiplicative with the NML-level feed override
value and motion.feed-hold. As of version 2.9 of LinuxCNC it is possible to use a negative adaptive
feed value to run the G-code path in reverse.

• motion.analog-in-00 - (float, in) These pins (00, 01, 02, 03 or more if configured) are controlled by
M66.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 243 / 1322

• motion.analog-out-00 - (float, out) These pins (00, 01, 02, 03 or more if configured) are controlled
by M67 or M68.

• motion.coord-error - (bit, out) TRUE when motion has encountered an error, such as exceeding a
soft limit

• motion.coord-mode - (bit, out) TRUE when motion is in coordinated mode, as opposed to teleop
mode

• motion.current-vel - (float, out) The current tool velocity in user units per second.

• motion.digital-in-00 - (bit, in) These pins (00, 01, 02, 03 or more if configured) are controlled by
M62-65.

• motion.digital-out-00 - (bit, out) These pins (00, 01, 02, 03 or more if configured) are controlled by
the M62-65.

• motion.distance-to-go - (float,out) The distance remaining in the current move.

• motion.enable - (bit, in) If this bit is driven FALSE, motion stops, the machine is placed in the
machine off state, and a message is displayed for the operator. For normal motion, drive this bit
TRUE.

• motion.feed-hold - (bit, in) When Feed Stop Control is enabled with M53 P1, and this bit is TRUE,
the feed rate is set to 0.

• motion.feed-inhibit - (bit, in) When this bit is TRUE, the feed rate is set to 0. This will be delayed
during spindle synch moves till the end of the move.

• motion.in-position - (bit, out) TRUE if the machine is in position.

• motion.motion-enabled - (bit, out) TRUE when in machine on state.

• motion.motion-type - (s32, out) These values are from src/emc/nml_intf/motion_types.h

– 0: Idle (no motion)
– 1: Traverse
– 2: Linear feed
– 3: Arc feed
– 4: Tool change
– 5: Probing
– 6: Rotary axis indexing

• motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

• motion.probe-input - (bit, in) G38.n uses the value on this pin to determine when the probe has made
contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

• motion.program-line - (s32, out) The current program line while executing. Zero if not running or
between lines while single stepping.

• motion.requested-vel - (float, out) The current requested velocity in user units per second. This
value is the F-word setting from the G-code file, possibly reduced to accommodate machine veloc-
ity and acceleration limits. The value on this pin does not reflect the feed override or any other
adjustments.

• motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated
mode

• motion.tooloffset.x … motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect;
it could come from the tool table (G43 active), or it could come from the G-code (G43.1 active)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 244 / 1322

• motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

• motion.probe-input - (bit, in) G38.n uses the value on this pin to determine when the probe has made
contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

• motion.program-line - (s32, out) The current program line while executing. Zero if not running or
between lines while single stepping.

• motion.requested-vel - (float, out) The current requested velocity in user units per second. This
value is the F-word setting from the G-code file, possibly reduced to accommodate machine veloc-
ity and acceleration limits. The value on this pin does not reflect the feed override or any other
adjustments.

• motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated
mode

• motion.tooloffset.x … motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect;
it could come from the tool table (G43 active), or it could come from the G-code (G43.1 active)

5.6.1.3 Parameters

Many of these parameters serve as debugging aids, and are subject to change or removal at any time.

• motion-command-handler.time - (s32, RO)

• motion-command-handler.tmax - (s32, RW)

• motion-controller.time - (s32, RO)

• motion-controller.tmax - (s32, RW)

• motion.debug-bit-0 - (bit, RO) This is used for debugging purposes.

• motion.debug-bit-1 - (bit, RO) This is used for debugging purposes.

• motion.debug-float-0 - (float, RO) This is used for debugging purposes.

• motion.debug-float-1 - (float, RO) This is used for debugging purposes.

• motion.debug-float-2 - (float, RO) This is used for debugging purposes.

• motion.debug-float-3 - (float, RO) This is used for debugging purposes.

• motion.debug-s32-0 - (s32, RO) This is used for debugging purposes.

• motion.debug-s32-1 - (s32, RO) This is used for debugging purposes.

• motion.servo.last-period - (u32, RO) The number of CPU cycles between invocations of the servo
thread. Typically, this number divided by the CPU speed gives the time in seconds, and can be used
to determine whether the realtime motion controller is meeting its timing constraints

• motion.servo.last-period-ns - (float, RO)

5.6.1.4 Functions

Generally, these functions are both added to the servo-thread in the order shown.

• motion-command-handler - Receives and processes motion commands

• motion-controller - Runs the LinuxCNC motion controller

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 245 / 1322

5.6.2 Spindle

LinuxCNC can control upto eight spindles. Motion will produce the following pins: The N (integer
between 0 and 7) substitutes the spindle number.

5.6.2.1 Pins

* spindle.N.at-speed - (bit, in) Motion will pause until this pin is TRUE, under the following conditions:
before the first feed move after each spindle start or speed change; before the start of every
chain of spindle-synchronized moves; ** and if in CSS mode, at every rapid to feed transition. This
input can be used to ensure that the spindle is up to speed before starting a cut, or that a lathe spindle
in CSS mode has slowed down after a large to small facing pass before starting the next pass at the
large diameter. Many VFDs have an at speed output. Otherwise, it is easy to generate this signal
with the HAL near component, by comparing requested and actual spindle speeds. * spindle.N.brake
- (bit, out) TRUE when the spindle brake should be applied. * spindle.N.forward - (bit, out) TRUE
when the spindle should rotate forward. * spindle.N.index-enable - (bit, I/O) For correct operation of
spindle synchronized moves, this pin must be hooked to the index-enable pin of the spindle encoder.
* spindle.N.inhibit - (bit, in) When this bit is TRUE, the spindle speed is set to 0. * spindle.N.on - (bit,
out) TRUE when spindle should rotate. * spindle.N.reverse - (bit, out) TRUE when the spindle should
rotate backward * spindle.N.revs - (float, in) For correct operation of spindle synchronized moves,
this signal must be hooked to the position pin of the spindle encoder. The spindle encoder position
should be scaled such that spindle-revs increases by 1.0 for each rotation of the spindle in the clock-
wise (M3) direction. * spindle.N.speed-in - (float, in) Feedback of actual spindle speed in rotations
per second. This is used by feed-per-revolution motion (G95). If your spindle encoder driver does not
have a velocity output, you can generate a suitable one by sending the spindle position through a ddt
component. If you do not have a spindle encoder, you can loop back spindle.N.speed-out-rps. * spin-
dle.N.speed-out - (float, out) Commanded spindle speed in rotations per minute. Positive for spindle
forward (M3), negative for spindle reverse (M4). * spindle.N.speed-out-abs - (float, out) Commanded
spindle speed in rotations per minute. This will always be a positive number. * spindle.N.speed-
out-rps - (float, out) Commanded spindle speed in rotations per second. Positive for spindle forward
(M3), negative for spindle reverse (M4). * spindle.N.speed-out-rps-abs - (float, out) Commanded spin-
dle speed in rotations per second. This will always be a positive number. * spindle.N.orient-angle -
(float,out) Desired spindle orientation for M19. Value of the M19 R word parameter plus the value of
the [RS274NGC]ORIENT_OFFSET INI parameter. * spindle.N.orient-mode - (s32,out) Desired spindle
rotation mode M19. Default 0. * spindle.N.orient - (out,bit) Indicates start of spindle orient cycle. Set
by M19. Cleared by any of M3, M4, or M5. If spindle-orient-fault is not zero during spindle-orient
true, the M19 command fails with an error message. * spindle.N.is-oriented - (in, bit) Acknowledge
pin for spindle-orient. Completes orient cycle. If spindle-orient was true when spindle-is-oriented was
asserted, the spindle-orient pin is cleared and the spindle-locked pin is asserted. Also, the spindle-
brake pin is asserted. * spindle.N.orient-fault - (s32, in) Fault code input for orient cycle. Any value
other than zero will cause the orient cycle to abort. * spindle.N.lock - (bit, out) Spindle orient complete
pin. Cleared by any of M3, M4, or M5.
HAL pin usage for M19 orient spindle Conceptually the spindle is in one of the following modes:

• rotation mode (the default)

• searching for desired orientation mode

• orientation complete mode.

When an M19 is executed, the spindle changes to searching for desired orientation, and the spindle.__N__.orient
HAL pin is asserted. The desired target position is specified by the spindle.__N__.orient-angle and
spindle.__N__.orient-fwd pins and driven by the M19 R and P parameters.
The HAL support logic is expected to react to spindle.__N__.orient by moving the spindle to the
desired position. When this is complete, the HAL logic is expected to acknowledge this by asserting
the spindle.__N__.is-oriented pin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 246 / 1322

Motion then acknowledges this by deasserting the spindle.__N__.orient pin and asserts the spindle.__N__.locked
pin to indicate orientation complete mode. It also raises the spindle.__N__.brake pin. The spindle
now is in orientation complete mode.
If, during spindle.__N__.orient being true, and spindle.__N__.is-oriented not yet asserted the
spindle.__N__.orient-fault pin has a value other than zero, the M19 command is aborted, a mes-
sage including the fault code is displayed, and the motion queue is flushed. The spindle reverts to
rotation mode.
Also, any of the M3, M4 or M5 commands cancel either searching for desired orientation or orientation
completemode. This is indicated by deasserting both the spindle-orient and spindle-locked pins.
The spindle-orient-mode pin reflects the M19 P word and shall be interpreted as follows:

• 0: rotate clockwise or counterclockwise for smallest angular movement

• 1: always rotate clockwise

• 2: always rotate counterclockwise

It can be used with the orient HAL component which provides a PID command value based on spindle
encoder position, spindle-orient-angle and spindle-orient-mode.

5.6.3 Axis and Joint Pins and Parameters

These pins and parameters are created by the realtime motmod module. [In trivial kinematics ma-
chines, there is a one-to-one correspondence between joints and axes.] They are read and updated by
the motion-controller function.
See the motion man page motion(9) for details on the pins and parameters.

5.6.4 iocontrol

iocontrol - accepts non-realtime I/O commands via NML, interacts with HAL.
iocontrol’s HAL pins are turned on and off in non-realtime context. If you have strict timing require-
ments or simply need more I/O, consider using the realtime synchronized I/O provided by motion
instead.

5.6.4.1 Pins

* iocontrol.0.coolant-flood (bit, out) TRUE when flood coolant is requested. * iocontrol.0.coolant-mist
(bit, out) TRUE when mist coolant is requested. * iocontrol.0.emc-enable-in (bit, in) Should be driven
FALSE when an external E-Stop condition exists. * iocontrol.0.tool-change (bit, out) TRUE when a
tool change is requested. * iocontrol.0.tool-changed (bit, in) Should be driven TRUE when a tool
change is completed. * iocontrol.0.tool-number (s32, out) The current tool number. * iocontrol.0.tool-
prep-number (s32, out) The number of the next tool, from the RS274NGC T-word. * iocontrol.0.tool-
prepare (bit, out) TRUE when a tool prepare is requested. * iocontrol.0.tool-prepared (bit, in) Should
be driven TRUE when a tool prepare is completed. * iocontrol.0.user-enable-out (bit, out) FALSE when
an internal E-Stop condition exists. * iocontrol.0.user-request-enable (bit, out) TRUE when the user
has requested that E-Stop be cleared.

5.6.5 INI settings

A number of INI settings are made available as HAL input pins.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 247 / 1322

5.6.5.1 Pins

N refers to a joint number, L refers to an axis letter.

• ini.N.ferror - (float, in) [JOINT_N]FERROR

• ini.N.min_ferror - (float, in) [JOINT_N]MIN_FERROR

• ini.N.backlash - (float, in) [JOINT_N]BACKLASH

• ini.N.min_limit - (float, in) [JOINT_N]MIN_LIMIT

• ini.N.max_limit - (float, in) [JOINT_N]MAX_LIMIT

• ini.N.max_velocity - (float, in) [JOINT_N]MAX_VELOCITY

• ini.N.max_acceleration - (float, in) [JOINT_N]MAX_ACCELERATION

• ini.N.home - (float, in) [JOINT_N]HOME

• ini.N.home_offset - (float, in) [JOINT_N]HOME_OFFSET

• ini.N.home_offset - (s32, in) [JOINT_N]HOME_SEQUENCE

• ini.L.min_limit - (float, in) [AXIS_L]MIN_LIMIT

• ini.L.max_limit - (float, in) [AXIS_L]MAX_LIMIT

• ini.L.max_velocity - (float, in) [AXIS_L]MAX_VELOCITY

• ini.L.max_acceleration - (float, in) [AXIS_L]MAX_ACCELERATION

Note
The per-axis min_limit and max_limit pins are honored continuously after homing. The per-axis
ferror and min_ferror pins are honored when the machine is on and not in position. The per-axis
max_velocity and max_acceleration pins are sampled when the machine is on and the motion_state
is free (homing or jogging) but are not sampled when in a program is running (auto mode) or in MDI
mode. Consequently, changing the pin values when a program is running will not have effect until
the program is stopped and the motion_state is again free.

• ini.traj_arc_blend_enable - (bit, in) [TRAJ]ARC_BLEND_ENABLE

• ini.traj_arc_blend_fallback_enable - (bit, in) [TRAJ]ARC_BLEND_FALLBACK_ENABLE

• ini.traj_arc_blend_gap_cycles - (float, in) [TRAJ]ARC_BLEND_GAP_CYCLES

• ini.traj_arc_blend_optimization_depth - (float, in) [TRAJ]ARC_BLEND_OPTIMIZATION_DEPTH

• ini.traj_arc_blend_ramp_freq - (float, in) [TRAJ]ARC_BLEND_RAMP_FREQ

Note
The traj_arc_blend pins are sampled continuously but changing pin values while a program is running
may not have immediate effect due to queueing of commands.

• ini.traj_default_acceleration - (float, in) [TRAJ]DEFAULT_ACCELERATION

• ini.traj_default_velocity - (float, in) [TRAJ]DEFAULT_VELOCITY

• ini.traj_max_acceleration - (float, in) [TRAJ]MAX_ACCELERATION

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 248 / 1322

S-curve trajectory planning pins (sampled continuously, can be changed at runtime):

• ini.traj_planner_type - (s32, in) [TRAJ]PLANNER_TYPE

• ini.traj_max_jerk - (float, in) [TRAJ]MAX_LINEAR_JERK

• ini.traj_default_jerk - (float, in) [TRAJ]DEFAULT_LINEAR_JERK

Per-axis jerk limit pins (where L is x, y, z, a, b, c, u, v, or w):

• ini.L.jerk - (float, in) [AXIS__L_]MAX_JERK

Per-joint jerk limit pins (where N is the joint number 0-8):

• ini.N.jerk - (float, in) [JOINT__N_]MAX_JERK

5.7 HAL Component List

5.7.1 Components

Most of the commands in the following list have their own dedicated man pages. Some will have
expanded descriptions, some will have limited descriptions. From this list you know what components
exist, and you can use man name on your UNIX command line to get additional information. To view
the information in the man page, in a terminal window type:
man axis

The one or other setup of a UNIX system may require to explicitly specify the section of the man page.
If you do not find the man page or the name of the man page is already taken by another UNIX tool
with the LinuxCNC man page residing in another section, then try to explicitly specify the section, as
in man _section-no_ axis, with section-no = 1 for non-realtime and 9 for realtime components.

Note
See also the Man Pages section of the docs main page or the directory listing. To search in the man
pages, use the UNIX tool apropos.

5.7.1.1 User Interfaces (non-realtime)

axis AXIS LinuxCNC (The Enhanced Machine Controller) GUI
axis-remote AXIS Remote Interface
gmoccapy Touchy LinuxCNC Graphical User Interface
gscreen Touchy LinuxCNC Graphical User Interface
halui Observe HAL pins and command LinuxCNC through NML
mdro manual only Digital Read Out (DRO)
ngcgui Framework for conversational G-code generation on the controller
panelui
pyngcgui Python implementation of NGCGUI
touchy AXIS - TOUCHY LinuxCNC Graphical User Interface

gladevcp Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets

../index.html
../man/man1/axis.1.html
../man/man1/axis-remote.1.html
../man/man1/gmoccapy.1.html
../man/man1/gscreen.1.html
../man/man1/halui.1.html
../man/man1/mdro.1.html
../man/man1/ngcgui.1.html
../man/man1/panelui.1.html
../man/man1/pyngcgui.1.html
../man/man1/touchy.1.html
../man/man1/gladevcp.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 249 / 1322

gladevcp_demoGladeVCP - used by sample configs to demonstrate Glade Virtual_demo
gremlin_view G-code graphical preview
moveoff_gui GUI for the moveoff component
pyui Utility for panelui
pyvcp Virtual Control Panel for LinuxCNC
pyvcp_demo Python Virtual Control Panel demonstration component
qtvcp Qt based virtual control panel

5axisgui Vismach Virtual Machine GUI
hbmgui Vismach Virtual Machine GUI
hexagui Vismach Virtual Machine GUI
lineardelta Vismach Virtual Machine GUI
maho600gui hexagui - Vismach Virtual Machine GUI
max5gui hexagui - Vismach Virtual Machine GUI
melfagui Vismach Virtual Machine GUI
puma560gui puma560agui - Vismach Virtual Machine GUI
pumagui Vismach Virtual Machine GUI
rotarydelta Vismach Virtual Machine GUI
scaragui Vismach Virtual Machine GUI
xyzac-trt-
gui

Vismach Virtual Machine GUI

xyzbc-trt-
gui

Vismach Virtual Machine GUI

xyzab-tdr-
gui

Vismach Virtual Machine GUI

5.7.1.2 Motion (non-realtime)

io iocontrol - interacts with HAL or G-code in non-realtime
iocontrol Interacts with HAL or G-code in non-realtime
mdi Send G-code commands from the terminal to the running LinuxCNC

instance
milltask Non-realtime task controller for LinuxCNC

5.7.1.3 Hardware Drivers

elbpcom Communicate with Mesa Ethernet cards
gs2_vfd HAL non-realtime component for Automation Direct GS2 VFDs
hy_gt_vfd HAL non-realtime component for Huanyang GT-series VFDs
hy_vfd HAL non-realtime component for Huanyang VFDs
mb2hal MB2HAL is a generic non-realtime HAL component to communicate with

one or more Modbus devices. Modbus RTU and Modbus TCP are supported.
mitsub_vfd HAL non-realtime component for Mitsubishi A500 F500 E500 A500 D700

E700 F700-series VFDs (others may work)
monitor-
xhc-hb04

Monitors the XHC-HB04 pendant and warns of disconnection

pi500_vfd Powtran PI500 modbus driver
pmx485 Modbus communications with a Powermax Plasma Cutter
pmx485-
test

Modbus communications testing with a Powermax Plasma Cutter

shuttle control HAL pins with the ShuttleXpress, ShuttlePRO, and ShuttlePRO2
device made by Contour Design

../man/man1/gladevcp_demo.1.html
../man/man1/gremlin_view.1.html
../man/man1/moveoff_gui.1.html
../man/man1/pyui.1.html
../man/man1/pyvcp.1.html
../man/man1/pyvcp_demo.1.html
../man/man1/qtvcp.1.html
../man/man1/5axisgui.1.html
../man/man1/hbmgui.1.html
../man/man1/hexagui.1.html
../man/man1/lineardelta.1.html
../man/man1/maho600gui.1.html
../man/man1/max5gui.1.html
../man/man1/melfagui.1.html
../man/man1/puma560gui.1.html
../man/man1/pumagui.1.html
../man/man1/rotarydelta.1.html
../man/man1/scaragui.1.html
../man/man1/xyzac-trt-gui.1.html
../man/man1/xyzac-trt-gui.1.html
../man/man1/xyzbc-trt-gui.1.html
../man/man1/xyzbc-trt-gui.1.html
../man/man1/xyzab-tdr-gui.1.html
../man/man1/xyzab-tdr-gui.1.html
../man/man1/io.1.html
../man/man1/iocontrol.1.html
../man/man1/mdi.1.html
../man/man1/milltask.1.html
../man/man1/elbpcom.1.html
../man/man1/gs2_vfd.1.html
../man/man1/hy_gt_vfd.1.html
../man/man1/hy_vfd.1.html
../man/man1/mb2hal.1.html
../man/man1/mitsub_vfd.1.html
../man/man1/monitor-xhc-hb04.1.html
../man/man1/monitor-xhc-hb04.1.html
../man/man1/pi500_vfd.1.html
../man/man1/pmx485.1.html
../man/man1/pmx485-test.1.html
../man/man1/pmx485-test.1.html
../man/man1/shuttle.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 250 / 1322

svd-ps_vfd HAL non-realtime component for SVD-P(S) VFDs
vfdb_vfd HAL non-realtime component for Delta VFD-B Variable Frequency Drives
vfs11_vfd HAL non-realtime component for Toshiba-Schneider VF-S11 Variable

Frequency Drives
wj200_vfd Hitachi wj200 Modbus driver
xhc-hb04 Non-realtime HAL component for the xhc-hb04 pendant
xhc-hb04-
accels

Obsolete script for jogging wheel

xhc-
whb04b-6

Non-realtime jog dial HAL component for the wireless XHC WHB04B-6
USB device

5.7.1.4 Mesa and other I/O Cards (Realtime)

hal_ppmc Pico Systems driver for analog servo, PWM and Stepper controller
hal_bb_gpio Driver for BeagleBone GPIO pins
hal_parport Realtime HAL component to communicate with one or more PC parallel

ports
hm2_7i43 Mesa Electronics driver for the 7I43 EPP Anything IO board with

HostMot2. (See the man page for more information)
hm2_7i90 LinuxCNC HAL driver for the Mesa Electronics 7I90 EPP Anything IO

board with HostMot2 firmware
hm2_eth LinuxCNC HAL driver for the Mesa Electronics Ethernet Anything IO

boards, with HostMot2 firmware
hm2_pci Mesa Electronics driver for the 5I20, 5I22, 5I23, 4I65, and 4I68 Anything

I/O boards, with HostMot2 firmware. (See the man page for more
information)

hm2_rpspi LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards,
with HostMot2 firmware

hm2_spi LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards,
with HostMot2 firmware

hostmot2 Mesa Electronics driver for the HostMot2 firmware.
max31855 Support for the MAX31855 Thermocouple-to-Digital converter using

bitbanged SPI
mesa_7i65 Mesa Electronics driver for the 7I65 eight-axis servo card. (See the man

page for more information)
mesa_pktgyro_testPktUART simple test with Microstrain 3DM-GX3-15 gyro
mesa_uart An example component demonstrating how to access the Hostmot2 UART
opto_ac5 Realtime driver for opto22 PCI-AC5 cards
pluto_servo Pluto-P driver and firmware for the parallel port FPGA, for servos
pluto_step Pluto-P driver for the parallel port FPGA, for steppers
serport Hardware driver for the digital I/O bits of the 8250 and 16550 serial port
setsserial An utility for setting Smart Serial NVRAM parameters
sserial hostmot2 - Smart Serial LinuxCNC HAL driver for the Mesa Electronics

HostMot2 Smart-Serial remote cards

5.7.1.5 Utilities (non-realtime)

hal-
histogram

Plots the value of a HAL pin as a histogram

halcompile Build, compile and install LinuxCNC HAL components
halmeter Observe HAL pins, signals, and parameters
halcmd Manipulate the LinuxCNC HAL from the command line
halcmd_twopassUtility script used when parsing HAL files. It allows to have multiple

load-commands for multiple instances of the same component.

../man/man1/svd-ps_vfd.1.html
../man/man1/vfdb_vfd.1.html
../man/man1/vfs11_vfd.1.html
../man/man1/wj200_vfd.1.html
../man/man1/xhc-hb04.1.html
../man/man1/xhc-hb04-accels.1.html
../man/man1/xhc-hb04-accels.1.html
../man/man1/xhc-whb04b-6.1.html
../man/man1/xhc-whb04b-6.1.html
../man/man9/hal_bb_gpio.9.html
../man/man9/hal_parport.9.html
../man/man9/hm2_7i43.9.html
../man/man9/hm2_7i90.9.html
../man/man9/hm2_eth.9.html
../man/man9/hm2_pci.9.html
../man/man9/hm2_rpspi.9.html
../man/man9/hm2_spi.9.html
../man/man9/hostmot2.9.html
../man/man9/max31855.9.html
../man/man9/mesa_7i65.9.html
../man/man9/mesa_pktgyro_test.9.html
../man/man9/mesa_uart.9.html
../man/man9/opto_ac5.9.html
../man/man9/serport.9.html
../man/man9/setsserial.9.html
../man/man9/sserial.9.html
../man/man1/hal-histogram.1.html
../man/man1/hal-histogram.1.html
../man/man1/halcompile.1.html
../man/man1/halmeter.1.html
../man/man1/halcmd.1.html
../man/man1/halcmd_twopass.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 251 / 1322

halreport Creates a report on the status of the HAL
halrmt Remote-control interface for LinuxCNC
halrun Manipulate the LinuxCNC HAL from the command line
halsampler Sample data from HAL in realtime
halscope Software oscilloscope for viewing real time waveforms of HAL pins and

signals
halshow Show HAL parameters, pins and signals
halstreamer Stream file data into HAL in real time
haltcl Manipulates the LinuxCNC HAL from the command line using Tcl
image-to-
gcode

Converts bitmap images to G-code

inivar Query an INI file
latency-
histogram

Plots histogram of machine latency

latency-plot Another way to view latency numbers
latency-test Tests the realtime system latency
linuxcncmkdesktopCreate a desktop icon for LinuxCNC
modcompile Utility for compiling Modbus drivers
motion-
logger

Log motion commands sent from LinuxCNC

pncconf Configuration wizard for Mesa cards
sim_pin GUI for displaying and setting one or more HAL inputs
stepconf Configuration wizard for parallel-port based machines
update_ini Converts 2.7 format INI files to 2.8 format
debuglevel Sets the debug level for the non-realtime part of LinuxCNC
emccalib Adjust ini tuning variables on the fly with save option
hal_input Control HAL pins with any Linux input device, including USB HID devices
linuxcnc_info Collects information about the LinuxCNC version and the host
linuxcnc_module_helperControls root access for system hardware
linuxcnc_var Retrieves LinuxCNC variables
linuxcnc LinuxCNC (The Enhanced Machine Controller)
linuxcnclcd LinuxCNC Graphical User Interface for LCD character display
linuxcncrsh Text-mode interface for commanding LinuxCNC over the network
linuxcncsvr Allows network access to LinuxCNC internals via NML
linuxcnctop Live LinuxCNC status description
rs274 Standalone G-code interpreter
schedrmt Telnet based scheduler for LinuxCNC
setup_designerA script to configure the system for use of Qt Designer
teach-in Jog the machine to a position, and record the state
tool_mmap_readA component of the tool database system (an alternative to the classic

tooltable)
tool_watch A component of the tool database system (an alternative to the classic

tooltable)
tooledit Tooltable editor

5.7.1.6 Signal processing (Realtime)

and2 Two-input AND gate. For out to be true both inputs must be true. (and2)
bitwise Computes various bitwise operations on the two input values
dbounce Filter noisy digital inputs Details
debounce Filter noisy digital inputs Details description
demux Select one of several output pins by integer and/or or individual bits
edge Edge detector
estop_latch E-stop latch
flipflop D-type flip-flop

../man/man1/halreport.1.html
../man/man1/halrmt.1.html
../man/man1/halrun.1.html
../man/man1/halsampler.1.html
../man/man1/halscope.1.html
../man/man1/halshow.1.html
../man/man1/halstreamer.1.html
../man/man1/haltcl.1.html
../man/man1/image-to-gcode.1.html
../man/man1/image-to-gcode.1.html
../man/man1/inivar.1.html
../man/man1/latency-histogram.1.html
../man/man1/latency-histogram.1.html
../man/man1/latency-plot.1.html
../man/man1/latency-test.1.html
../man/man1/linuxcncmkdesktop.1.html
../man/man1/modcompile.1.html
../man/man1/motion-logger.1.html
../man/man1/motion-logger.1.html
../man/man1/pncconf.1.html
../man/man1/sim_pin.1.html
../man/man1/stepconf.1.html
../man/man1/update_ini.1.html
../man/man1/debuglevel.1.html
../man/man1/emccalib.1.html
../man/man1/hal_input.1.html
../man/man1/linuxcnc_info.1.html
../man/man1/linuxcnc_module_helper.1.html
../man/man1/linuxcnc_var.1.html
../man/man1/linuxcnc.1.html
../man/man1/linuxcnclcd.1.html
../man/man1/linuxcncrsh.1.html
../man/man1/linuxcncsvr.1.html
../man/man1/linuxcnctop.1.html
../man/man1/rs274.1.html
../man/man1/schedrmt.1.html
../man/man1/setup_designer.1.html
../man/man1/teach-in.1.html
../man/man1/tool_mmap_read.1.html
../man/man1/tool_watch.1.html
../man/man1/tooledit.1.html
../man/man9/and2.9.html
../man/man9/and2.9.html
../man/man9/bitwise.9.html
../man/man9/dbounce.9.html
../man/man9/dbounce.9.html
../man/man9/debounce.9.html
../man/man9/debounce.9.html
../man/man9/demux.9.html
../man/man9/edge.9.html
../man/man9/estop_latch.9.html
../man/man9/flipflop.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 252 / 1322

logic General logic function component
lut5 5-input logic function based on a look-up table description
match8 8-bit binary match detector
multiclick Single-, double-, triple-, and quadruple-click detector
multiswitch Toggles between a specified number of output bits
not Inverter
oneshot One-shot pulse generator
or2 Two-input OR gate
reset Resets an IO signal
select8 8-bit binary match detector.
tof IEC TOF timer - delay falling edge on a signal
toggle Push-on, push-off from momentary pushbuttons
toggle2nist Toggle button to nist logic
ton IEC TON timer - delay rising edge on a signal
timedelay Equivalent of a time-delay relay.
tp IEC TP timer - generate a high pulse of defined duration on rising edge
tristate_bit Places signal on an I/O pin only when enabled, similar to a tristate buffer in

electronics
tristate_float Places signal on an I/O pin only when enabled, similar to a tristate buffer in

electronics
xor2 Two-input XOR (exclusive OR) gate

abs_s32 Computes the absolute value and sign of a integer input signal
abs_s64 Computes the absolute value and sign of a 64 bit integer input signal
abs Computes the absolute value and sign of a float input signal
biquad Biquad IIR filter
blend Perform linear interpolation between two values
comp Two input comparator with hysteresis
counter Counts input pulses (deprecated). Use the encoder component.
ddt Computes the derivative of the input function.
deadzone Returns the center if within the threshold.
div2 Quotient of two floating point inputs.
hypot Three-input hypotenuse (Euclidean distance) calculator.
ilowpass Low-pass filter with integer inputs and outputs
integ Integrator
invert Computes the inverse of the input signal.
filter_kalman Unidimensional Kalman filter, also known as linear quadratic estimation

(LQE)
knob2float Converts counts (probably from an encoder) to a float value.
led_dim HAL component for dimming LEDs
lowpass Low-pass filter
limit1 Limits the output signal to fall between min and max. 3

limit2 Limits the output signal to fall between min and max. Limit its slew rate to
less than maxv per second. 4

limit3 Limit the output signal to fall between min and max. Limit its slew rate to
less than maxv per second. Limit its second derivative to less than MaxA
per second squared 5.

lincurve One-dimensional lookup table
maj3 Compute the majority of 3 inputs
minmax Tracks the minimum and maximum values of the input to the outputs.
mult2 Product of two inputs.
mux16 Select from one of 16 input values (multiplexer).
mux2 Select from one of two input values (multiplexer).
mux4 Select from one of four input values (multiplexer).
mux8 Select from one of eight input values (multiplexer).
mux_generic Select one from several input values (multiplexer).

../man/man9/logic.9.html
../man/man9/lut5.9.html
../man/man9/match8.9.html
../man/man9/multiclick.9.html
../man/man9/multiswitch.9.html
../man/man9/not.9.html
../man/man9/oneshot.9.html
../man/man9/or2.9.html
../man/man9/reset.9.html
../man/man9/select8.9.html
../man/man9/tof.9.html
../man/man9/toggle.9.html
../man/man9/toggle2nist.9.html
../man/man9/ton.9.html
../man/man9/timedelay.9.html
../man/man9/tp.9.html
../man/man9/tristate_bit.9.html
../man/man9/tristate_float.9.html
../man/man9/xor2.9.html
../man/man9/abs_s32.9.html
../man/man9/abs_s64.9.html
../man/man9/abs.9.html
../man/man9/biquad.9.html
../man/man9/blend.9.html
../man/man9/comp.9.html
../man/man9/counter.9.html
../man/man9/ddt.9.html
../man/man9/deadzone.9.html
../man/man9/div2.9.html
../man/man9/hypot.9.html
../man/man9/ilowpass.9.html
../man/man9/integ.9.html
../man/man9/invert.9.html
../man/man9/filter_kalman.9.html
../man/man9/knob2float.9.html
../man/man9/led_dim.9.html
../man/man9/lowpass.9.html
../man/man9/limit1.9.html
../man/man9/limit2.9.html
../man/man9/limit3.9.html
../man/man9/lincurve.9.html
../man/man9/maj3.9.html
../man/man9/minmax.9.html
../man/man9/mult2.9.html
../man/man9/mux16.9.html
../man/man9/mux2.9.html
../man/man9/mux4.9.html
../man/man9/mux8.9.html
../man/man9/mux_generic.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 253 / 1322

near Determine whether two values are roughly equal.
offset Adds an offset to an input, and subtracts it from the feedback value.
safety_latch latch for error signals
sample_hold Sample and Hold.
scaled_s32_sumsSum of four inputs (each with a scale)
scale Applies a scale and offset to its input.
sum2 Sum of two inputs (each with a gain) and an offset.
time Accumulated run-time timer counts HH:MM:SS of active input.
timedelta Component that measures thread scheduling timing behavior.
updown Counts up or down, with optional limits and wraparound behavior.
wcomp Window comparator.
watchdog Monitor one to thirty-two inputs for a heartbeat.
weighted_sumConvert a group of bits to an integer.
xhc_hb04_util xhc-hb04 convenience utility

5.7.1.7 Signal generation (Realtime)

charge_pump Creates a square-wave for the charge pump input of some controller
boards.

pwmgen Software PWM/PDM generation, see description.
siggen Signal generator, see description.
sim_encoder Simulated quadrature encoder, see description.
stepgen Software step pulse generation, see description.

bin2gray Converts a number to the gray-code representation
bitmerge Converts individual input bits into an unsigned-32
bitslice Converts an unsigned-32 input into individual bits
conv_bit_float Converts from bit to float
conv_bit_s32 Converts from bit to s32
conv_bit_u32 Converts from bit to u32
conv_float_s32Converts from float to s32
conv_float_u32Converts from float to u32
conv_s32_bit Converts from s32 to bit
conv_s32_floatConverts from s32 to float
conv_s32_u32 Converts from s32 to u32
conv_u32_bit Converts from u32 to bit
conv_u32_floatConverts from u32 to float
conv_u32_s32 Converts from u32 to s32
conv_bit_s64 Convert a value from bit to s64
conv_bit_u64 Convert a value from bit to u64
conv_float_s64Convert a value from float to s64
conv_float_u64Convert a value from float to u64
conv_s32_s64 Convert a value from s32 to s64
conv_s32_u64 Convert a value from s32 to u64
conv_s64_bit Convert a value from s64 to bit
conv_s64_floatConvert a value from s64 to float
conv_s64_s32 Convert a value from s64 to s32
conv_s64_u32 Convert a value from s64 to u32
conv_s64_u64 Convert a value from s64 to u64
conv_u32_s64 Convert a value from u32 to s64

3When the input is a position, this means that the position is limited.
4When the input is a position, this means that position and velocity are limited.
5When the input is a position, this means that position, velocity, and acceleration are limited.

../man/man9/near.9.html
../man/man9/offset.9.html
../man/man9/safety_latch.9.html
../man/man9/sample_hold.9.html
../man/man9/scaled_s32_sums.9.html
../man/man9/scale.9.html
../man/man9/sum2.9.html
../man/man9/time.9.html
../man/man9/timedelta.9.html
../man/man9/updown.9.html
../man/man9/wcomp.9.html
../man/man9/watchdog.9.html
../man/man9/weighted_sum.9.html
../man/man9/xhc_hb04_util.9.html
../man/man9/charge_pump.9.html
../man/man9/pwmgen.9.html
../man/man9/siggen.9.html
../man/man9/sim_encoder.9.html
../man/man9/stepgen.9.html
../man/man9/bin2gray.9.html
../man/man9/bitmerge.9.html
../man/man9/bitslice.9.html
../man/man9/conv_bit_float.9.html
../man/man9/conv_bit_s32.9.html
../man/man9/conv_bit_u32.9.html
../man/man9/conv_float_s32.9.html
../man/man9/conv_float_u32.9.html
../man/man9/conv_s32_bit.9.html
../man/man9/conv_s32_float.9.html
../man/man9/conv_s32_u32.9.html
../man/man9/conv_u32_bit.9.html
../man/man9/conv_u32_float.9.html
../man/man9/conv_u32_s32.9.html
../man/man9/conv_bit_s64.9.html
../man/man9/conv_bit_u64.9.html
../man/man9/conv_float_s64.9.html
../man/man9/conv_float_u64.9.html
../man/man9/conv_s32_s64.9.html
../man/man9/conv_s32_u64.9.html
../man/man9/conv_s64_bit.9.html
../man/man9/conv_s64_float.9.html
../man/man9/conv_s64_s32.9.html
../man/man9/conv_s64_u32.9.html
../man/man9/conv_s64_u64.9.html
../man/man9/conv_u32_s64.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 254 / 1322

conv_u32_u64Convert a value from u32 to u64
conv_u64_bit Convert a value from u64 to bit
conv_u64_floatConvert a value from u64 to float
conv_u64_s32 Convert a value from u64 to s32
conv_u64_s64 Convert a value from u64 to s64
conv_u64_u32Convert a value from u64 to u32
gray2bin Converts gray-code input to binary

5.7.1.8 Kinematics (Realtime)

corexy_by_hal CoreXY kinematics
differential Kinematics for a differential transmission
gantry LinuxCNC HAL component for driving multiple joints from a single axis
gantrykins Kinematics module that maps one axis to multiple joints.
genhexkins Gives six degrees of freedom in position and orientation (XYZABC). The

location of the motors is defined at compile time.
genserkins Kinematics that can model a general serial-link manipulator with up to 6

angular joints.
gentrivkins 1:1 correspondence between joints and axes. Most standard milling

machines and lathes use the trivial kinematics module.
kins Kinematics definitions for LinuxCNC.
lineardeltakinsKinematics for a linear delta robot
matrixkins Calibrated kinematics for 3-axis machines
maxkins Kinematics for a tabletop 5 axis mill named max with tilting head (B axis)

and horizontal rotary mounted to the table (C axis). Provides UVW motion
in the rotated coordinate system.

millturn Switchable kinematics for a mill-turn machine
pentakins
pumakins Kinematics for PUMA-style robots.
rosekins Kinematics for a rose engine
rotatekins The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.
scarakins Kinematics for SCARA-type robots.
tripodkins The joints represent the distance of the controlled point from three

predefined locations (the motors), giving three degrees of freedom in
position (XYZ).

userkins Template for user-built kinematics
xyzab_tdr_kinsSwitchable kinematics for 5 axis machine with rotary table A and B
xyzacb_trsrn Switchable kinematics for 6 axis machine with a rotary table C, rotary

spindle B and nutating spindle A
xyzbca_trsrn Switchable kinematics for 6 axis machine with a rotary table B, rotary

spindle C and nutating spindle A

5.7.1.9 Motion control (Realtime)

feedcomp Multiply the input by the ratio of current velocity to the feed rate.
homecomp Homing module template
limit_axis Dynamic range based axis limits
motion Accepts NML motion commands, interacts with HAL in realtime
simple_tp This component is a single axis simple trajectory planner, same as used for

jogging in LinuxCNC.
tpcomp Trajectory Planning (tp) module skeleton

../man/man9/conv_u32_u64.9.html
../man/man9/conv_u64_bit.9.html
../man/man9/conv_u64_float.9.html
../man/man9/conv_u64_s32.9.html
../man/man9/conv_u64_s64.9.html
../man/man9/conv_u64_u32.9.html
../man/man9/gray2bin.9.html
../man/man9/corexy_by_hal.9.html
../man/man9/differential.9.html
../man/man9/gantry.9.html
../man/man9/gantrykins.9.html
../man/man9/genhexkins.9.html
../man/man9/genserkins.9.html
../man/man9/gentrivkins.9.html
../man/man9/kins.9.html
../man/man9/lineardeltakins.9.html
../man/man9/matrixkins.9.html
../man/man9/maxkins.9.html
../man/man9/millturn.9.html
../man/man9/pentakins.9.html
../man/man9/pumakins.9.html
../man/man9/rosekins.9.html
../man/man9/rotatekins.9.html
../man/man9/scarakins.9.html
../man/man9/tripodkins.9.html
../man/man9/userkins.9.html
../man/man9/xyzab_tdr_kins.9.html
../man/man9/xyzacb_trsrn.9.html
../man/man9/xyzbca_trsrn.9.html
../man/man9/feedcomp.9.html
../man/man9/homecomp.9.html
../man/man9/limit_axis.9.html
../man/man9/motion.9.html
../man/man9/simple_tp.9.html
../man/man9/tpcomp.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 255 / 1322

5.7.1.10 Motor control (Realtime)

at_pid Proportional/integral/derivative controller with auto tuning.
bldc BLDC and AC-servo control component
clarke2 Two input version of Clarke transform
clarke3 Clarke (3 phase to Cartesian) transform
clarkeinv Inverse Clarke transform
encoder Software counting of quadrature encoder signals, see description.
pid Proportional/integral/derivative controller, description.
pwmgen Software PWM/PDM generation, see description.
stepgen Software step pulse generation, see description.

5.7.1.11 Simulation/Testing

axistest Used to allow testing of an axis. Used In PnCConf.
rtapi_app creates a simulated real time environment
sim-torch A simulated plasma torch
sim_axis_hardwareA component to simulate home and limit switches
sim_home_switchHome switch simulator
sim_matrix_kbconvert HAL pin inputs to key codes
sim_parport A component to simulate the pins of the hal_parport component
sim_spindle Simulated spindle with index pulse
simulate_probesimulate a probe input

5.7.1.12 Other (Realtime)

anglejog Jog two axes (or joints) at an angle
classicladder Realtime software PLC based on ladder logic. See ClassicLadder chapter

for more information.
charge_pump Creates a square-wave for the charge pump input of some controller

boards.
encoder_ratio Electronic gear to synchronize two axes.
enum Enumerate integer values into bits
eoffset_per_angleCompute External Offset Per Angle
gladevcp
(Realtime)

displays Virtual control Panels built with GTK / GLADE

histobins Histogram bins utility for scripts/hal-histogram
joyhandle Sets nonlinear joypad movements, deadbands and scales.
latencybins Comp utility for scripts/latency-histogram
message Display a message
moveoff Component for HAL-only offsets
raster Outputs laser power based upon pre programmed rastering data
sampler Sample data from HAL in real time.
siggen Signal generator, see description.
sphereprobe Probe a pretend hemisphere.
threads Creates hard realtime HAL threads.
threadtest Component for testing thread behavior.
steptest Used by StepConf to allow testing of acceleration and velocity values for an

axis.
streamer Stream file data into HAL in real time.
supply Set output pins with values from parameters (deprecated).

../man/man9/at_pid.9.html
../man/man9/bldc.9.html
../man/man9/clarke2.9.html
../man/man9/clarke3.9.html
../man/man9/clarkeinv.9.html
../man/man9/encoder.9.html
../man/man9/pid.9.html
../man/man9/pwmgen.9.html
../man/man9/stepgen.9.html
../man/man9/axistest.9.html
../man/man1/rtapi_app.1.html
../man/man1/sim-torch.1.html
../man/man9/sim_axis_hardware.9.html
../man/man9/sim_home_switch.9.html
../man/man9/sim_matrix_kb.9.html
../man/man9/sim_parport.9.html
../man/man9/sim_spindle.9.html
../man/man1/simulate_probe.1.html
../man/man9/anglejog.9.html
../man/man9/classicladder.9.html
../man/man9/charge_pump.9.html
../man/man9/encoder_ratio.9.html
../man/man9/enum.9.html
../man/man9/eoffset_per_angle.9.html
../man/man9/gladevcp.9.html
../man/man9/gladevcp.9.html
../man/man9/histobins.9.html
../man/man9/joyhandle.9.html
../man/man9/latencybins.9.html
../man/man9/message.9.html
../man/man9/moveoff.9.html
../man/man9/raster.9.html
../man/man9/sampler.9.html
../man/man9/siggen.9.html
../man/man9/sphereprobe.9.html
../man/man9/threads.9.html
../man/man9/threadtest.9.html
../man/man9/steptest.9.html
../man/man9/streamer.9.html
../man/man9/supply.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 256 / 1322

laserpower Scales laser power output based upon velocity input power and distance to
go

lcd Stream HAL data to an LCD screen
matrix_kb Convert integers to HAL pins. Optionally scan a matrix of I/O ports to

create those integers.

gearchange Select from one of two speed ranges.
orient Provide a PID command input for orientation mode based on current

spindle position, target angle and orient mode
spindle Control a spindle with different acceleration and deceleration and optional

gear change scaling
spindle_monitorSpindle at-speed and underspeed detection

carousel Orient a toolchanger carousel using various encoding schemes
hal_manualtoolchangeHAL non-realtime component to enable manual tool changes&.

thc Torch Height Control using a Mesa THC card or any analog to velocity input
thcud Torch Height Control Up/Down Input
ohmic LinuxCNC HAL component that uses a Mesa THCAD (A/D card) for ohmic

sensing
plasmac A plasma cutter controller

5.7.2 Not categorized (auto generated from man pages)

axis
hm2_modbus A hostmot2 driver that implements the Modbus protocol using the PktUART

ports&.
hm2_spix LinuxCNC HAL driver for the Mesa Electronics Anything IO boards with

SPI enabled HostMot2 firmware&.
joint_axis_mapperTranslate faults from Joint to Axis
mesambccc Utility for compiling hm2_modbus command control description files
millturn millturn, millturngui - Vismach Virtual Machine GUI
millturngui
mqtt-
publisher

send HAL pin data to MQTT broker periodically

qtplasmac-
materials

Create a plasma materials file&.

qtplasmac_gcodePython script shipping with Plasmac, a Plasma cutting system&.
scorbot-er-
3

to link the Intellitek Scorbot educational robot to LinuxCNC

sendkeys send input events based on pins or scancodes from HAL
thermistor compute temperature indicated by a thermistor

5.7.3 Without man page or broken link (auto generated from component
list)

hal_ppmc
pluto_servo
pluto_step

../man/man9/laserpower.9.html
../man/man9/lcd.9.html
../man/man9/matrix_kb.9.html
../man/man9/gearchange.9.html
../man/man9/orient.9.html
../man/man9/spindle.9.html
../man/man9/spindle_monitor.9.html
../man/man9/carousel.9.html
../man/man1/hal_manualtoolchange.1.html
../man/man9/thc.9.html
../man/man9/thcud.9.html
../man/man9/ohmic.9.html
../man/man9/plasmac.9.html
../man/man9/axis.9.html
../man/man9/hm2_modbus.9.html
../man/man9/hm2_spix.9.html
../man/man9/joint_axis_mapper.9.html
../man/man1/mesambccc.1.html
../man/man1/millturn.1.html
../man/man1/millturngui.1.html
../man/man1/mqtt-publisher.1.html
../man/man1/mqtt-publisher.1.html
../man/man1/qtplasmac-materials.1.html
../man/man1/qtplasmac-materials.1.html
../man/man1/qtplasmac_gcode.1.html
../man/man1/scorbot-er-3.1.html
../man/man1/scorbot-er-3.1.html
../man/man1/sendkeys.1.html
../man/man1/thermistor.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 257 / 1322

5.7.4 HAL API calls

hal_add_funct_to_thread.3
hal_bit_t.3
hal_create_thread.3
hal_del_funct_from_thread.3
hal_exit.3
hal_export_funct.3
hal_export_functf.3
hal_float_t.3
hal_get_lock.3
hal_init.3
hal_link.3
hal_malloc.3
hal_param_bit_new.3
hal_param_bit_newf.3
hal_param_float_new.3
hal_param_float_newf.3
hal_param_new.3
hal_param_s32_new.3
hal_param_s32_newf.3
hal_param_u32_new.3
hal_param_u32_newf.3
hal_parport.3
hal_pin_bit_new.3
hal_pin_bit_newf.3
hal_pin_float_new.3
hal_pin_float_newf.3
hal_pin_new.3
hal_pin_s32_new.3
hal_pin_s32_newf.3
hal_pin_u32_new.3
hal_pin_u32_newf.3
hal_ready.3
hal_s32_t.3
hal_set_constructor.3
hal_set_lock.3
hal_signal_delete.3
hal_signal_new.3
hal_start_threads.3
hal_type_t.3
hal_u32_t.3
hal_unlink.3
hal.3

5.7.5 RTAPI calls

EXPORT_FUNCTION.3
MODULE_AUTHOR.3
MODULE_DESCRIPTION.3
MODULE_LICENSE.3
RTAPI_MP_ARRAY_INT.3
RTAPI_MP_ARRAY_LONG.3
RTAPI_MP_ARRAY_STRING.3
RTAPI_MP_INT.3

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 258 / 1322

RTAPI_MP_LONG.3
RTAPI_MP_STRING.3
rtapi.3
rtapi_app_exit.3
rtapi_app_main.3
rtapi_clock_set_period.3
rtapi_delay.3
rtapi_delay_max.3
rtapi_exit.3
rtapi_get_clocks.3
rtapi_get_msg_level.3
rtapi_get_time.3
rtapi_inb.3
rtapi_init.3
rtapi_module_param.3
RTAPI_MP_ARRAY_INT.3
RTAPI_MP_ARRAY_LONG.3
RTAPI_MP_ARRAY_STRING.3
RTAPI_MP_INT.3
RTAPI_MP_LONG.3
RTAPI_MP_STRING.3
rtapi_mutex.3
rtapi_outb.3
rtapi_print.3
rtapi_prio.3
rtapi_prio_highest.3
rtapi_prio_lowest.3
rtapi_prio_next_higher.3
rtapi_prio_next_lower.3
rtapi_region.3
rtapi_release_region.3
rtapi_request_region.3
rtapi_set_msg_level.3
rtapi_shmem.3
rtapi_shmem_delete.3
rtapi_shmem_getptr.3
rtapi_shmem_new.3
rtapi_snprintf.3
rtapi_task_delete.3
rtapi_task_new.3
rtapi_task_pause.3
rtapi_task_resume.3
rtapi_task_start.3
rtapi_task_wait.3

5.8 HAL Component Descriptions

This chapter provides details on core functionalities of LinuxCNC that demand exact timing for

• the generation of signals that is interpreted by hardware (like motors) or

• for the interpretation of signals sent by the hardware (like encoders).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 259 / 1322

5.8.1 StepGen

This component provides software based generation of step pulses in response to position or velocity
commands. In position mode, it has a built in pre-tuned position loop, so PID tuning is not required.
In velocity mode, it drives a motor at the commanded speed, while obeying velocity and acceleration
limits. It is a realtime component only, and depending on CPU speed, etc., is capable of maximum step
rates of 10 kHz to perhaps 50 kHz. The step pulse generator block diagram shows three block dia-
grams, each is a single step pulse generator. The first diagram is for step type 0, (step and direction).
The second is for step type 1 (up/down, or pseudo-PWM), and the third is for step types 2 through
14 (various stepping patterns). The first two diagrams show position mode control, and the third one
shows velocity mode. Control mode and step type are set independently, and any combination can be
selected.
Step Pulse Generator Block Diagram position mode
:images/stepgen-block-diag.png
Loading stepgen component
halcmd: loadrt stepgen step_type=<type-array> [ctrl_type=<ctrl_array>]

<type-array>
is a series of comma separated decimal integers. Each number causes a single step pulse gen-
erator to be loaded, the value of the number determines the stepping type.

<ctrl_array>
is a comma separated series of p or v characters, to specify position or velocity mode.

ctrl_type
is optional, if omitted, all of the step generators will be position mode.

For example:
halcmd: loadrt stepgen step_type=0,0,2 ctrl_type=p,p,v

Will install three step generators. The first two use step type 0 (step and direction) and run in position
mode. The last one uses step type 2 (quadrature) and runs in velocity mode. The default value for
<config-array> is 0,0,0 which will install three type 0 (step/dir) generators. The maximum number of
step generators is 8 (as defined by MAX_CHAN in stepgen.c). Each generator is independent, but all
are updated by the same function(s) at the same time. In the following descriptions, <chan> is the
number of a specific generator. The first generator is number 0.
Unloading stepgen component
halcmd: unloadrt stepgen

5.8.1.1 Pins

On the step type and control type selected.

• (float) stepgen. _̀_<chan>__.position-cmd ̀ - Desired motor position, in position units (position mode
only).

• (float) stepgen. _̀_<chan>__.velocity-cmd ̀ - Desired motor velocity, in position units per second
(velocity mode only).

• s32) stepgen. _̀_<chan>__.counts ̀ - Feedback position in counts, updated by capture_position().

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 260 / 1322

• (float) stepgen. _̀_<chan>__.position-fb ̀ - Feedback position in position units, updated by cap-
ture_position().

• (bit) stepgen. _̀_<chan>__.enable ̀ - Enables output steps - when false, no steps are generated.

• (bit) stepgen. _̀_<chan>__.step ̀ - Step pulse output (step type 0 only).

• (bit) stepgen. _̀_<chan>__.dir ̀ - Direction output (step type 0 only).

• (bit) stepgen. _̀_<chan>__.up ̀ - UP pseudo-PWM output (step type 1 only).

• (bit) stepgen. _̀_<chan>__.down ̀ - DOWN pseudo-PWM output (step type 1 only).

• (bit) stepgen. _̀_<chan>__.phase-A ̀ - Phase A output (step types 2-14 only).

• (bit) stepgen. _̀_<chan>__.phase-B ̀ - Phase B output (step types 2-14 only).

• (bit) stepgen. _̀_<chan>__.phase-C ̀ - Phase C output (step types 3-14 only).

• (bit) stepgen. _̀_<chan>__.phase-D ̀ - Phase D output (step types 5-14 only).

• (bit) stepgen. _̀_<chan>__.phase-E ̀ - Phase E output (step types 11-14 only).

5.8.1.2 Parameters

* (float) stepgen. _̀_<chan>__.position-scale ̀ - Steps per position unit. This parameter is used for both
output and feedback. * (float) stepgen. _̀_<chan>__.maxvel ̀ - Maximum velocity, in position units per
second. If 0.0, has no effect. * (float) stepgen. _̀_<chan>__.maxaccel ̀ - Maximum accel/decel rate,
in positions units per second squared. If 0.0, has no effect. * (float) stepgen. _̀_<chan>__.frequency ̀
- The current step rate, in steps per second. * (float) stepgen. _̀_<chan>__.steplen ̀ - Length of a
step pulse (step type 0 and 1) or minimum time in a given state (step types 2-14), in nano-seconds.
* (float) stepgen. _̀_<chan>__.stepspace ̀ - Minimum spacing between two step pulses (step types
0 and 1 only), in nano-seconds. Set to 0 to enable the stepgen doublefreq function. To use double-
freq the parport reset function must be enabled. * (float) stepgen. _̀_<chan>__.dirsetup ̀ - Minimum
time from a direction change to the beginning of the next step pulse (step type 0 only), in nanosec-
onds. * (float) stepgen. _̀_<chan>__.dirhold ̀ - Minimum time from the end of a step pulse to a direc-
tion change (step type 0 only), in nanoseconds. * (float) stepgen. _̀_<chan>__.dirdelay ̀ - Minimum
time any step to a step in the opposite direction (step types 1-14 only), in nano-seconds. * (s32)
stepgen. _̀_<chan>__.rawcounts ̀ - The raw feedback count, updated by make_pulses().
In position mode, the values of maxvel and maxaccel are used by the internal position loop to avoid
generating step pulse trains that the motor cannot follow. When set to values that are appropriate for
the motor, even a large instantaneous change in commanded position will result in a smooth trape-
zoidal move to the new location. The algorithm works by measuring both position error and velocity
error, and calculating an acceleration that attempts to reduce both to zero at the same time. For more
details, including the contents of the control equation box, consult the code.
In velocity mode, maxvel is a simple limit that is applied to the commanded velocity, and maxaccel is
used to ramp the actual frequency if the commanded velocity changes abruptly. As in position mode,
proper values for these parameters ensure that the motor can follow the generated pulse train.

5.8.1.3 Step Types

Step generator supports 15 different step sequences:
Step Type 0 Step type 0 is the standard step and direction type. When configured for step type 0, there
are four extra parameters that determine the exact timing of the step and direction signals. In the
following figure the meaning of these parameters is shown. The parameters are in nanoseconds, but
will be rounded up to an integer multiple of the thread period for the threaed that callsmake_pulses().
For example, if make_pulses() is called every 16 µs, and steplen is 20000, then the step pulses will be

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 261 / 1322

2 x 16 = 32 µs long. The default value for all four of the parameters is 1 ns, but the automatic rounding
takes effect the first time the code runs. Since one step requires steplen ns high and stepspace ns low,
the maximum frequency is 1,000,000,000 divided by (steplen + stepspace)’. If maxfreq is set higher
than that limit, it will be lowered automatically. If maxfreq is zero, it will remain zero, but the output
frequency will still be limited.
When using the parallel port driver the step frequency can be doubled using the parport reset function
together with StepGen’s doublefreq setting.

Figure 5.19: Step and Direction Timing

Step Type 1 Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending
on the direction of travel. Each pulse is steplen ns long, and the pulses are separated by at least
stepspace ns. The maximum frequency is the same as for step type 0. If maxfreq is set higher than
the limit it will be lowered. If maxfreq is zero, it will remain zero but the output frequency will still
be limited.

Warning
Do not use the parport reset function with step types 2 - 14. Unexpected results can happen.

Step Type 2 - 14 Step types 2 through 14 are state based, and have from two to five outputs. On
each step, a state counter is incremented or decremented. The Two-and-Three-Phase, Four-Phase,
and Five-Phase show the output patterns as a function of the state counter. The maximum frequency
is 1,000,000,000 divided by steplen, and as in the other modes, maxfreq will be lowered if it is above
the limit.
Two-and-Three-Phase Step Types Step Types: Two-and-Three-Phase
Four-Phase Step Types Step Types: Four-Phase
Five-Phase Step Types Step Types: Five-Phase

5.8.1.4 Functions

The component exports three functions. Each function acts on all of the step pulse generators -
running different generators in different threads is not supported.

• (funct) stepgen.make-pulses - High speed function to generate and count pulses (no floating point).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 262 / 1322

• (funct) stepgen.update-freq - Low speed function does position to velocity conversion, scaling and
limiting.

• (funct) stepgen.capture-position - Low speed function for feedback, updates latches and scales
position.

The high speed function stepgen.make-pulses should be run in a very fast thread, from 10 to 50 µs
depending on the capabilities of the computer. That thread’s period determines the maximum step
frequency, since steplen, stepspace, dirsetup, dirhold, and dirdelay are all rounded up to a integer
multiple of the thread periond in nanoseconds. The other two functions can be called at a much lower
rate.

5.8.2 PWMgen

This component provides software based generation of PWM (Pulse Width Modulation) and PDM
(Pulse Density Modulation) waveforms. It is a realtime component only, and depending on CPU speed,
etc., is capable of PWM frequencies from a few hundred Hertz at pretty good resolution, to perhaps
10 kHz with limited resolution.
Loading PWMgen
loadrt pwmgen output_type=<config-array>

The <config-array> is a series of comma separated decimal integers. Each number causes a single
PWM generator to be loaded, the value of the number determines the output type. The following ex-
ample will install three PWM generators. There is no default value, if <config-array> is not specified,
no PWM generators will be installed. The maximum number of frequency generators is 8 (as defined
by MAX_CHAN in pwmgen.c). Each generator is independent, but all are updated by the same func-
tion(s) at the same time. In the following descriptions, <chan> is the number of a specific generator.
The first generator is number 0.
Loading PWMgen Example
loadrt pwmgen output_type=0,1,2

Will install three PWM generators. The first will use an output of type 0 (PWM only), the next one will
use a type 1 output (PWM and direction) and the third will use a type 2 output (UP and DOWN). There
is no default value, if <config-array> is not not specified, no PWM generator will be installed. The
maximum number of frequency generators is 8 (as defined by MAX_CHAN in pwmgen.c). Each gener-
ator is independent, but all are updated by the same function(s), at the same time. In the descriptions
that follow, <chan> is the number of specific generators. The numbering of PWM generators starts
at 0.
Unloading PWMgen
unloadrt pwmgen

5.8.2.1 Output Types

The PWM generator supports three different output types.

• Output type 0 - PWM output pin only. Only positive commands are accepted, negative values are
treated as zero (and will be affected by the parameter min-dc if it is non-zero).

• Output type 1 - PWM/PDM and direction pins. Positive and negative inputs will be output as pos-
itive and negative PWM. The direction pin is false for positive commands, and true for negative
commands. If your control needs positive PWM for both CW and CCW use the abs component to
convert your PWM signal to positive value, when a negative input is input.

../man/man9/abs.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 263 / 1322

• Output type 2 - UP and DOWN pins. For positive commands, the PWM signal appears on the up
output, and the down output remains false. For negative commands, the PWM signal appears on the
down output, and the up output remains false. Output type 2 is suitable for driving most H-bridges.

5.8.2.2 Pins

Each PWM generator will have the following pins:

• (float) pwmgen. _̀_<chan>__.value ̀ - Command value, in arbitrary units. Will be scaled by the scale
parameter (see below).

• (bit) pwmgen. _̀_<chan>__.enable ̀ - Enables or disables the PWM generator outputs.

Each PWM generator will also have some of these pins, depending on the output type selected:

• (bit) pwmgen. _̀_<chan>__.pwm ̀ - PWM (or PDM) output, (output types 0 and 1 only).

• (bit) pwmgen. _̀_<chan>__.dir ̀ - Direction output (output type 1 only).

• (bit) pwmgen. _̀_<chan>__.up ̀ - PWM/PDM output for positive input value (output type 2 only).

• (bit) pwmgen. _̀_<chan>__.down ̀ - PWM/PDM output for negative input value (output type 2 only).

5.8.2.3 Parameters

• (float) pwmgen. _̀_<chan>__.scale ̀ - Scaling factor to convert value from arbitrary units to duty cy-
cle. For example if scale is set to 4000 and the input value passed to the pwmgen. _̀_<chan>__.value ̀
is 4000 then it will be 100% duty-cycle (always on). If the value is 2000 then it will be a 50% 25 Hz
square wave.

• (float) pwmgen. _̀_<chan>__.pwm-freq ̀ - Desired PWM frequency, in Hz. If 0.0, generates PDM
instead of PWM. If set higher than internal limits, next call of update_freq() will set it to the internal
limit. If non-zero, and dither is false, next call of update_freq() will set it to the nearest integer
multiple of the make_pulses() function period.

• (bit) pwmgen. _̀_<chan>__.dither-pwm ̀ - If true, enables dithering to achieve average PWM frequen-
cies or duty cycles that are unobtainable with pure PWM. If false, both the PWM frequency and the
duty cycle will be rounded to values that can be achieved exactly.

• (float) pwmgen. _̀_<chan>__.min-dc ̀ - Minimum duty cycle, between 0.0 and 1.0 (duty cycle will go
to zero when disabled, regardless of this setting).

• (float) pwmgen. _̀_<chan>__.max-dc ̀ - Maximum duty cycle, between 0.0 and 1.0.

• (float) pwmgen. _̀_<chan>__.curr-dc ̀ - Current duty cycle - after all limiting and rounding (read
only).

5.8.2.4 Functions

The component exports two functions. Each function acts on all of the PWM generators - running
different generators in different threads is not supported.

• (funct) pwmgen.make-pulses - High speed function to generate PWM waveforms (no floating point).
The high speed function pwmgen.make-pulses should be run in the base (fastest) thread, from 10 to
50 µs depending on the capabilities of the computer. That thread’s period determines the maximum
PWM carrier frequency, as well as the resolution of the PWM or PDM signals. If the base thread is
50,000 ns then every 50 µs the module decides if it is time to change the state of the output. At 50%
duty cycle and 25 Hz PWM frequency this means that the output changes state every (1/25) s / 50 µs
* 50% = 400 iterations. This also means that you have a 800 possible duty cycle values (without
dithering).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 264 / 1322

• (funct) pwmgen.update - Low speed function to scale and limit value and handle other parameters.
This is the function of the module that does the more complicated mathematics to work out how
many base-periods the output should be high for, and how many it should be low for.

5.8.3 Encoder

This component provides software based counting of signals from quadrature (or single-pulse) en-
coders. It is a realtime component only, and depending on CPU speed, latency, etc., is capable of
maximum count rates of 10 kHz to perhaps up to 50 kHz.
The base thread should be 1/2 count speed to allow for noise and timing variation. For example if you
have a 100 pulse per revolution encoder on the spindle and your maximum RPM is 3000 the maximum
base thread should be 25 µs. A 100 pulse per revolution encoder will have 400 counts. The spindle
speed of 3000 RPM = 50 RPS (revolutions per second). 400 * 50 = 20,000 counts per second or 50 µs
between counts.
The Encoder Counter Block Diagram is a block diagram of one channel of an encoder counter.
Encoder Counter Block Diagram
:images/encoder-block-diag.png
Loading Encoder
halcmd: loadrt encoder [num_chan=<counters>]

<counters> is the number of encoder counters that you want to install. If num_chan is not specified,
three counters will be installed. The maximum number of counters is 8 (as defined by MAX_CHAN
in encoder.c). Each counter is independent, but all are updated by the same function(s) at the same
time. In the following descriptions, <chan> is the number of a specific counter. The first counter is
number 0.
Unloading Encoder
halcmd: unloadrt encoder

5.8.3.1 Pins

• encoder._<chan>_.counter-mode (bit, I/O) (default: FALSE) - Enables counter mode. When true,
the counter counts each rising edge of the phase-A input, ignoring the value on phase-B. This is
useful for counting the output of a single channel (non-quadrature) sensor. When false, it counts in
quadrature mode.

• encoder._<chan>_.missing-teeth (s32, In) (default: 0) - Enables the use of missing-tooth index.
This allows a single IO pin to provide both position and index information. If the encoder wheel has
58 teeth with two missing, spaced as if there were 60(common for automotive crank sensors) then
the position-scale should be set to 60 and missing-teeth to 2. To use this mode counter-mode should
be set true. This mode will work for lathe threading but not for rigid tapping.

• encoder._<chan>_.counts (s32, Out) - Position in encoder counts.

• encoder._<chan>_.counts-latched (s32, Out) - Not used at this time.

• encoder._<chan>_.index-enable (bit, I/O) - When True, counts and position are reset to zero on
next rising edge of Phase Z.
At the same time, index-enable is reset to zero to indicate that the rising edge has occurred. The
index-enable pin is bi-directional. If index-enable is False, the Phase Z channel of the encoder will
be ignored, and the counter will count normally. The encoder driver will never set index-enable
True. However, some other component may do so.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 265 / 1322

• encoder._<chan>_.latch-falling (bit, In) (default: TRUE) - Not used at this time.

• encoder._<chan>_.latch-input (bit, In) (default: TRUE) - Not used at this time.

• encoder._<chan>_.latch-rising (bit, In) - Not used at this time.

• encoder._<chan>_.min-speed-estimate (float, in) - Determine the minimum true velocity magni-
tude, at which velocity will be estimated as nonzero and position-interpolated will be interpolated.
The units of min-speed-estimate are the same as the units of velocity. Scale factor, in counts
per length unit. Setting this parameter too low will cause it to take a long time for velocity to go to
0 after encoder pulses have stopped arriving.

• encoder._<chan>_.phase-A (bit, In) - Phase A of the quadrature encoder signal.

• encoder._<chan>_.phase-B (bit, In) - Phase B of the quadrature encoder signal.

• encoder._<chan>_.phase-Z (bit, In) - Phase Z (index pulse) of the quadrature encoder signal.

• encoder._<chan>_.position (float, Out) - Position in scaled units (see position-scale).

• encoder._<chan>_.position-interpolated (float, Out) - Position in scaled units, interpolated be-
tween encoder counts.
The position-interpolated attempts to interpolate between encoder counts, based on the most re-
cently measured velocity. Only valid when velocity is approximately constant and above min-speed-estimate.
Do not use for position control, since its value is incorrect at low speeds, during direction reversals,
and during speed changes.
However, it allows a low ppr encoder (including a one pulse per revolution encoder) to be used for
lathe threading, and may have other uses as well.

• encoder._<chan>_.position-latched (float, Out) - Not used at this time.

• encoder._<chan>_.position-scale (float, I/O) - Scale factor, in counts per length unit. For exam-
ple, if position-scale is 500, then 1000 counts of the encoder will be reported as a position of 2.0
units.

• encoder._<chan>_.rawcounts (s32, In) - The raw count, as determined by update-counters. This
value is updated more frequently than counts and position. It is also unaffected by reset or the index
pulse.

• encoder._<chan>_.reset (bit, In) - When True, force counts and position to zero immediately.

• encoder._<chan>_.velocity (float, Out) - Velocity in scaled units per second. encoder uses an
algorithm that greatly reduces quantization noise as compared to simply differentiating the position
output. When the magnitude of the true velocity is below min-speed-estimate, the velocity output
is 0.

• encoder._<chan>_.x4-mode (bit, I/O) (default: TRUE) - Enables times-4 mode. When true, the
counter counts each edge of the quadrature waveform (four counts per full cycle). When false, it
only counts once per full cycle. In counter-mode, this parameter is ignored. The 1x mode is useful
for some jogwheels.

5.8.3.2 Parameters

• encoder._<chan>_.capture-position.time (s32, RO)

• encoder._<chan>_.capture-position.tmax (s32, RW)

• encoder._<chan>_.update-counters.time (s32, RO)

• encoder._<chan>_.update-counter.tmax (s32, RW)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 266 / 1322

5.8.3.3 Functions

The component exports two functions. Each function acts on all of the encoder counters - running
different counters in different threads is not supported.

• (funct) encoder.update-counters - High speed function to count pulses (no floating point).

• (funct) encoder.capture-position - Low speed function to update latches and scale position.

5.8.4 PID

This component provides Proportional/Integral/Derivative control loops. It is a realtime component
only. For simplicity, this discussion assumes that we are talking about position loops, however this
component can be used to implement other feedback loops such as speed, torch height, temperature,
etc. The PID Loop Block Diagram is a block diagram of a single PID loop.
PID Loop Block Diagram
:images/pid-block-diag.png
Loading PID
halcmd: loadrt pid [num_chan=<loops>] [debug=1]

<loops> is the number of PID loops that you want to install. If num_chan is not specified, one loop
will be installed. The maximum number of loops is 16 (as defined by MAX_CHAN in pid.c). Each loop
is completely independent. In the following descriptions, <loopnum> is the loop number of a specific
loop. The first loop is number 0.
If debug=1 is specified, the component will export a few extra pins that may be useful during debugging
and tuning. By default, the extra pins are not exported, to save shared memory space and avoid
cluttering the pin list.
Unloading PID
halcmd: unloadrt pid

5.8.4.1 Pins

The three most important pins are

• (float) pid. _̀_<loopnum>__.command ̀ - The desired position, as commanded by another system
component.

• (float) pid. _̀_<loopnum>__.feedback ̀ - The present position, as measured by a feedback device
such as an encoder.

• (float) pid. _̀_<loopnum>__.output ̀ - A velocity command that attempts to move from the present
position to the desired position.

For a position loop, .command and .feedback are in position units. For a linear axis, this could be
inches, mm, meters, or whatever is relevant. Likewise, for an angular axis, it could be degrees,
radians, etc. The units of the .output pin represent the change needed to make the feedback match
the command. As such, for a position loop .output is a velocity, in inches/s, mm/s, degrees/s, etc. Time
units are always seconds, and the velocity units match the position units. If command and feedback
are in meters, then output is in meters per second.
Each loop has two pins which are used to monitor or control the general operation of the component.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 267 / 1322

• (float) pid.<loopnum>.error - Equals .command minus .feedback.

• (bit) pid.<loopnum>.enable - A bit that enables the loop. If .enable is false, all integrators are reset,
and the output is forced to zero. If .enable is true, the loop operates normally.

Pins used to report saturation. Saturation occurs when the output of the PID block is at its maximum
or minimum limit.

• (bit) pid.<loopnum>.saturated - True when output is saturated.

• (float) pid.<loopnum>.saturated_s - The time the output has been saturated.

• (s32) pid.<loopnum>.saturated_count - The time the output has been saturated.

The PID gains, limits, and other tunable features of the loop are available as pins so that they can be
adjusted dynamically for more advanced tuning possibilities.

• (float) pid.<loopnum>.Pgain - Proportional gain

• (float) pid.<loopnum>.Igain - Integral gain

• (float) pid.<loopnum>.Dgain - Derivative gain

• (float) pid.<loopnum>.bias - Constant offset on output

• (float) pid.<loopnum>.FF0 - Zeroth order feedforward - output proportional to command (position).

• (float) pid.<loopnum>.FF1 - First order feedforward - output proportional to derivative of command
(velocity).

• (float) pid.<loopnum>.FF2 - Second order feedforward - output proportional to 2nd derivative of
command (acceleration).

• (float) pid.<loopnum>.deadband - Amount of error that will be ignored

• (float) pid.<loopnum>.maxerror - Limit on error

• (float) pid.<loopnum>.maxerrorI - Limit on error integrator

• (float) pid.<loopnum>.maxerrorD - Limit on error derivative

• (float) pid.<loopnum>.maxcmdD - Limit on command derivative

• (float) pid.<loopnum>.maxcmdDD - Limit on command 2nd derivative

• (float) pid.<loopnum>.maxoutput - Limit on output value

All max* limits are implemented so that if the value of this parameter is zero, there is no limit.
If debug=1 was specified when the component was installed, four additional pins will be exported:

• (float) pid.<loopnum>.errorI - Integral of error.

• (float) pid.<loopnum>.errorD - Derivative of error.

• (float) pid.<loopnum>.commandD - Derivative of the command.

• (float) pid.<loopnum>.commandDD - 2nd derivative of the command.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 268 / 1322

5.8.4.2 Functions

The component exports one function for each PID loop. This function performs all the calculations
needed for the loop. Since each loop has its own function, individual loops can be included in different
threads and execute at different rates.

• (funct) pid.<loopnum>.do_pid_calcs - Performs all calculations for a single PID loop.

If you want to understand the exact algorithm used to compute the output of the PID loop, refer to

• figure PID Loop Block Diagram,

• the comments at the beginning of emc2/src/hal/components/pid.c, and of course to

• the code itself.

The loop calculations are in the C function calc_pid().

5.8.5 Simulated Encoder

The simulated encoder is exactly that. It produces quadrature pulses with an index pulse, at a speed
controlled by a HAL pin. Mostly useful for testing.
Loading sim-encoder
halcmd: loadrt sim-encoder num_chan=<number>

<number> is the number of encoders that you want to simulate If not specified, one encoder will be
installed. The maximum number is 8 (as defined by MAX_CHAN in sim_encoder.c).
Unloading sim-encoder
halcmd: unloadrt sim-encoder

5.8.5.1 Pins

• (float) sim-encoder. _̀_<chan-num>__.speed ̀ - The speed command for the simulated shaft.

• (bit) sim-encoder. _̀_<chan-num>__.phase-A ̀ - Quadrature output.

• (bit) sim-encoder. _̀_<chan-num>__.phase-B ̀ - Quadrature output.

• (bit) sim-encoder. _̀_<chan-num>__.phase-Z ̀ - Index pulse output.

When .speed is positive, .phase-A leads .phase-B.

5.8.5.2 Parameters

• (u32) sim-encoder. _̀_<chan-num>__.ppr ̀ - Pulses Per Revolution.

• (float) sim-encoder. _̀_<chan-num>__.scale ̀ - Scale Factor for .speed. The default is 1.0, which
means that .speed is in revolutions per second. Change to 60 for RPM, to 360 for degrees per
second, 6.283185 (= 2*π) for radians per second, etc.

Note that pulses per revolution is not the same as counts per revolution. A pulse is a complete quadra-
ture cycle. Most encoder counters will count four times during one complete cycle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 269 / 1322

5.8.5.3 Functions

The component exports two functions. Each function affects all simulated encoders.

• (funct) sim-encoder.make-pulses - High speed function to generate quadrature pulses (no floating
point).

• (funct) sim-encoder.update-speed - Low speed function to read .speed, do scaling, and set up
.make-pulses.

5.8.6 Debounce

Debounce is a realtime component that can filter the glitches created by mechanical switch contacts.
It may also be useful in other applications where short pulses are to be rejected.
Loading debounce
halcmd: loadrt debounce cfg=<config-string>

<config-string>
Is a series of comma separated decimal integers. Each number install a group of identical de-
bounce filters, the number determines how many filters are in the group.

Loading debounce Example
halcmd: loadrt debounce cfg=1,4,2

will install three groups of filters. Group 0 contains one filter, group 1 contains four, and group 2
contains two filters. The default value for <config-string> is ”1” which will install a single group con-
taining a single filter. The maximum number of groups 8 (as defined by MAX_GROUPS in debounce.c).
The maximum number of filters in a group is limited only by shared memory space. Each group is
completely independent. All filters in a single group are identical, and they are all updated by the
same function at the same time. In the following descriptions, <G> is the group number and <F> is
the filter number within the group. The first filter is group 0, filter 0.
Unloading debounce
halcmd: unloadrt debounce

5.8.6.1 Pins

Each individual filter has two pins.

• (bit) debounce. _̀_<G>__.__<F>__.in ̀ - Input of filter <F> in group <G>.
• (bit) debounce. _̀_<G>__.__<F>__.out ̀ - Output of filter <F> in group <G>.

5.8.6.2 Parameters

Each group of filters has one parameter6.

• (s32) debounce. _̀_<G>__.delay ̀ - Filter delay for all filters in group <G>.

The filter delay is in units of thread periods. The minimum delay is zero. The output of a zero delay
filter exactly follows its input - it doesn’t filter anything. As .delay increases, longer and longer
glitches are rejected. If .delay is 4, all glitches less than or equal to four thread periods will be
rejected.

6Each individual filter also has an internal state variable. There is a compile time switch that can export that variable as a
parameter. This is intended for testing, and simply wastes shared memory under normal circumstances.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 270 / 1322

5.8.6.3 Functions

Each group of filters has one function, which updates all the filters in that group simultaneously.
Different groups of filters can be updated from different threads at different periods.

• (funct) debounce.<G> - Updates all filters in group <G>.

5.8.7 SigGen

SigGen is a realtime component that generates square, triangle, and sine waves. It is primarily used
for testing.
Loading siggen
halcmd: loadrt siggen [num_chan=<chans>]

<chans>
is the number of signal generators that you want to install. If numchan is not specified, one signal
generator will be installed. The maximum number of generators is 16 (as defined by MAX_CHAN
in siggen.c). Each generator is completely independent. In the following descriptions is

<chan>
the number of a specific signal generator (the numbers start at 0).

Unloading siggen
halcmd: unloadrt siggen

5.8.7.1 Pins

Each generator has five output pins.

• (float) siggen. _̀_<chan>__.sine ̀ - Sine wave output.

• (float) siggen. _̀_<chan>__.cosine ̀ - Cosine output.

• (float) siggen. _̀_<chan>__.sawtooth ̀ - Sawtooth output.

• (float) siggen. _̀_<chan>__.triangle ̀ - Triangle wave output.

• (float) siggen. _̀_<chan>__.square ̀ - Square wave output.

All five outputs have the same frequency, amplitude, and offset.
In addition to the output pins, there are three control pins:

• (float) siggen. _̀_<chan>__.frequency ̀ - Sets the frequency in Hertz, default value is 1 Hz.

• (float) siggen. _̀_<chan>__.amplitude ̀ - Sets the peak amplitude of the output waveforms, default
is 1.

• (float) siggen. _̀_<chan>__.offset ̀ - Sets DC offset of the output waveforms, default is 0.

For example, if siggen.0.amplitude is 1.0 and siggen.0.offset is 0.0, the outputs will swing from
-1.0 to +1.0. If siggen.0.amplitude is 2.5 and siggen.0.offset is 10.0, then the outputs will swing
from 7.5 to 12.5.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 271 / 1322

5.8.7.2 Parameters

None. 7

5.8.7.3 Functions

• (funct) siggen. _̀_<chan>__.update ̀ - Calculates new values for all five outputs.

5.8.8 lut5

The lut5 component is a 5 input logic component based on a look up table.

• lut5 does not require a floating point thread.

Loading lut5
loadrt lut5 [count=N|names=name1[,name2...]]
addf lut5.N servo-thread | base-thread
setp lut5.N.function 0xN

lut5 Computing Function To compute the hexadecimal number for the function starting from the
top put a 1 or 0 to indicate if that row would be true or false. Next write down every number in
the output column starting from the top and writing them from right to left. This will be the binary
number. Using a calculator with a program view like the one in Ubuntu enter the binary number and
then convert it to hexadecimal and that will be the value for function.

Table 5.30: lut5 Look Up Table

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Output
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1

7Prior to version 2.1, frequency, amplitude, and offset were parameters. They were changed to pins to allow control by
other components.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 272 / 1322

Table 5.30: (continued)

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Output
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

lut5 Two Inputs Example In the following table we have selected the output state for each line that
we wish to be true.

Table 5.31: lut5 Two Inputs Example Look Up Table

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Output
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1

Looking at the output column of our example we want the output to be on when Bit 0 or Bit 0 and
Bit1 is on and nothing else. The binary number is b1010 (rotate the output 90 degrees CW). Enter
this number into the calculator then change the display to hexadecimal and the number needed for
function is 0xa. The hexadecimal prefix is 0x.

5.9 HAL Component Generator

5.9.1 Introduction

This section introduces to the compilation HAL components, i.e. the addition of some machinists’
knowledge on how to deal with the machine. It should be noted that such components do not nec-
essarily deal with the hardware directly. They often do, but not necessarily, e.g. there could be a
component to convert between imperial and metric scales, so this section does not require to dive
into the interaction with hardware.
Writing a HAL component can be a tedious process, most of it in setup calls to rtapi_ and hal_ functions
and associated error checking. halcompile will write all this code for you, automatically. Compiling
a HAL component is also much easier when using halcompile, whether the component is part of the
LinuxCNC source tree, or outside it.
For instance, when coded in C, a simple component such as ”ddt” is around 80 lines of code. The
equivalent component is very short when written using the halcompile preprocessor:
Simple Component Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 273 / 1322

component ddt ”Compute the derivative of the input function”;
pin in float in;
pin out float out;
variable double old;
option period no;
function _;
license ”GPL”; // indicates GPL v2 or later
;;
float tmp = in;
out = (tmp - old) / fperiod;
old = tmp;

5.9.2 Installing

To compile a component, if a packaged version of LinuxCNC is used, development packages have to
be installed using either Synaptic from the main menu System -> Administration -> Synaptic package
manager or by running one of the following commands in a terminal window:
Installation of Development packages for LinuxCNC
sudo apt install linuxcnc-dev
or
sudo apt install linuxcnc-uspace-dev

Another method is using the Synaptic package manager, from the Applications menu, to install the
linuxcnc-dev or linuxcnc-uspace-dev packages.

5.9.3 Compiling

5.9.3.1 Inside the source tree

Place the .comp file in the source directory linuxcnc/src/hal/components and re-run make. Comp
files are automatically detected by the build system.
If a .comp file is a driver for hardware, it may be placed in linuxcnc/src/hal/drivers and will be
built unless LinuxCNC is configured as a non-realtime simulator.

5.9.3.2 Realtime components outside the source tree

halcompile can process, compile, and install a realtime component in a single step, placing rtexample.ko
in the LinuxCNC realtime module directory:
[sudo] halcompile --install rtexample.comp

Note
sudo (for root permission) is needed when using LinuxCNC from a deb package install. When using
a Run-In-Place (RIP) build, root privileges should not be needed.

Or, it can process and compile in one step, leaving example.ko (or example.so for the simulator) in
the current directory:
halcompile --compile rtexample.comp

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 274 / 1322

Or it can simply process, leaving example.c in the current directory:
halcompile rtexample.comp

halcompile can also compile and install a component written in C, using the --install and --compile
options shown above:
[sudo] halcompile --install rtexample2.c

man-format documentation can also be created from the information in the declaration section:
halcompile --document -o example.9 rtexample.comp

The resulting manpage, example.9 can be viewed with
man ./example.9

or copied to a standard location for manual pages.

5.9.3.3 Non-realtime components outside the source tree

halcompile can process, compile, install, and document non-realtime components:
halcompile non-rt-example.comp
halcompile --compile non-rt-example.comp
[sudo] halcompile --install non-rt-example.comp
halcompile --document non-rt-example.comp

For some libraries (for example modbus) it might be necessary to add extra compiler and linker argu-
ments to enable the compiler to find and link the libraries. In the case of .comp files this can be done
via ”option” statements in the .comp file. For .c files this is not possible so the --extra-compile-args
and --extra-link-args parameters can be used instead. As an example, this command line can be
used to compile the vfdb_vfd.c component out-of-tree.
halcompile --userspace --install --extra-compile-args=”-I/usr/include/modbus” --extra-link- ←↩

args=”-lm -lmodbus -llinuxcncini” vfdb_vfd.c

Note
The effect of using both command-line and in-file extra-args is undefined.

5.9.4 Using a Component

Components need to be loaded and added to a thread before it can be employed. The provided func-
tionality can then be invoked directly and repeatedly by one of the threads or it is called by other
components that have their own respective triggers.
Example HAL script for installing a component (ddt) and executing it every millisecond.
loadrt threads name1=servo-thread period1=1000000
loadrt ddt
addf ddt.0 servo-thread

More information on loadrt and addf can be found in the HAL Basics.
To test your component you can follow the examples in the HAL Tutorial.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 275 / 1322

5.9.5 Definitions

• component - A component is a single real-time module, which is loaded with Halcmd loadrt. One
.comp file specifies one component. The component name and file name must match.

• instance - A component can have zero or more instances. Each instance of a component is created
equal (they all have the same pins, parameters, functions, and data) but behave independently when
their pins, parameters, and data have different values.

• singleton - It is possible for a component to be a ”singleton”, in which case exactly one instance is
created. It seldom makes sense to write a singleton component, unless there can literally only be
a single object of that kind in the system (for instance, a component whose purpose is to provide a
pin with the current UNIX time, or a hardware driver for the internal PC speaker).

5.9.6 Instance creation

For a singleton, the one instance is created when the component is loaded.
For a non-singleton, the count module parameter determines how many numbered instances are cre-
ated. If count is not specified, the names module parameter determines how many named instances
are created. If neither count nor names is specified, a single numbered instance is created.

5.9.7 Implicit Parameters

Functions are implicitly passed the period parameter which is the time in nanoseconds of the last
period to execute the component. Functions which use floating-point can also refer to fperiod which
is the floating-point time in seconds, or (period*1e-9). This can be useful in components that need the
timing information. See also option period below.

5.9.8 Syntax

A .comp file consists of a number of declarations, followed by ;; on a line of its own, followed by C
code implementing the module’s functions.
Declarations include:

• component HALNAME (DOC);

• pin PINDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (= START-
VALUE) (DOC) ;

• param PARAMDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (=
STARTVALUE) (DOC) ;

• function HALNAME (fp | nofp) (DOC);

• option OPT (VALUE);

• variable CTYPE STARREDNAME ([SIZE]);

• description DOC;

• examples DOC;

• notes DOC;

• see_also DOC;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 276 / 1322

• license LICENSE;

• author AUTHOR;

• include HEADERFILE;

Parentheses indicate optional items. A vertical bar indicates alternatives. Words inCAPITALS indicate
variable text, as follows:

• NAME - A standard C identifier

• STARREDNAME - A C identifier with zero or more * before it. This syntax can be used to declare
instance variables that are pointers. Note that because of the grammar, there may not be whitespace
between the * and the variable name.

• HALNAME - An extended identifier. When used to create a HAL identifier, any underscores are
replaced with dashes, and any trailing dash or period is removed, so that ”this_name_” will be
turned into ”this-name”, and if the name is ”_”, then a trailing period is removed as well, so that
”function _” gives a HAL function name like ”component.<num>” instead of ”component.<num>.”
If present, the prefix hal_ is removed from the beginning of the component name when creating
pins, parameters and functions.

In the HAL identifier for a pin or parameter, # denotes an array item, and must be used in conjunction
with a [SIZE] declaration. The hash marks are replaced with a 0-padded number with the same length
as the number of # characters.
When used to create a C identifier, the following changes are applied to the HALNAME:

1. Any ”#” characters, and any ”.”, ”_” or ”-” characters immediately before them, are removed.

2. Any remaining ”.” and ”-” characters are replaced with ”_”.

3. Repeated ”_” characters are changed to a single ”_” character.

A trailing ”_” is retained, so that HAL identifiers which would otherwise collide with reserved names
or keywords (e.g., min) can be used.

HALNAME C Identifier HAL Identifier
x_y_z x_y_z x-y-z
x-y.z x_y_z x-y.z
x_y_z_ x_y_z_ x-y-z
x.##.y x_y(MM) x.MM.z
x.## x(MM) x.MM

• if CONDITION - An expression involving the variable personality which is nonzero when the pin or
parameter should be created.

• SIZE - A number that gives the size of an array. The array items are numbered from 0 to SIZE-1.

• MAXSIZE : CONDSIZE - A number that gives the maximum size of the array, followed by an expres-
sion involving the variable personality and which always evaluates to less thanMAXSIZE. When the
array is created its size will be CONDSIZE.

• DOC - A string that documents the item. String can be a C-style ”double quoted” string, like:
”Selects the desired edge: TRUE means falling, FALSE means rising”

or a Python-style ”triple quoted” string, which may include embedded newlines and quote charac-
ters, such as:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 277 / 1322

”””The effect of this parameter, also known as ”the orb of zot”,
will require at least two paragraphs to explain.

Hopefully these paragraphs have allowed you to understand ”zot”
better.”””

Or a string may be preceded by the literal character r, in which case the string is interpreted like a
Python raw-string.
The documentation string is in ”groff -man” format. For more information on this markup format, see
groff_man(7). Remember that halcompile interprets backslash escapes in strings, so for instance to
set the italic font for the word example, write:
”\\fIexample\\fB”

In this case, r-strings are particularly useful, because the backslashes in an r-string need not be
doubled:
r”\fIexample\fB”

• TYPE - One of the HAL types: bit, s32, u32, s64, u64 or float. The names signed and unsigned may
also be used for s32 and u32 but s32 and u32 are preferred.

• PINDIRECTION - One of the following: in, out, or io. A component sets a value for an out pin, it
reads a value from an in pin, and it may read or set the value of an io pin.

• PARAMDIRECTION - One of the following: r or rw. A component sets a value for a r parameter, and
it may read or set the value of a rw parameter.

• STARTVALUE - Specifies the initial value of a pin or parameter. If it is not specified, then the default
is 0 or FALSE, depending on the type of the item.

• HEADERFILE - The name of a header file, either in double-quotes (include ”myfile.h”;) or in
angle brackets (include <systemfile.h>;). The header file will be included (using C’s #include)
at the top of the file, before pin and parameter declarations.

5.9.8.1 HAL functions

• fp - Indicates that the function performs floating-point calculations.

• nofp - Indicates that it only performs integer calculations. If neither is specified, fp is assumed.
Neither halcompile nor gcc can detect the use of floating-point calculations in functions that are
tagged nofp, but the use of such operations results in undefined behavior.

5.9.8.2 Options

The currently defined options are:

• option singleton yes - (default: no)
Do not create a countmodule parameter, and always create a single instance. With singleton, items
are named component-name.item-name and without singleton, items for numbered instances are
named component-name.<num>.item-name.

• option default_count number - (default: 1)
Normally, the module parameter count defaults to 1. If specified, the count will default to this value
instead.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 278 / 1322

• option count_function yes - (default: no)
Normally, the number of instances to create is specified in the module parameter count; if count_function
is specified, the value returned by the function int get_count(void) is used instead, and the count
module parameter is not defined.

• option rtapi_app no - (default: yes)
Normally, the functions rtapi_app_main() and rtapi_app_exit() are automatically defined. With
option rtapi_app no, they are not, and must be provided in the C code. Use the following prototypes:

‘int rtapi_app_main(void);‘

‘void rtapi_app_exit(void);‘

When implementing your own rtapi_app_main(), call the function int export(char *prefix,
long extra_arg) to register the pins, parameters, and functions for prefix.

• option data TYPE - (default: none) deprecated
If specified, each instance of the component will have an associated data block of type TYPE (which
can be a simple type like float or the name of a type created with typedef). In new components,
variable should be used instead.

• option extra_setup yes - (default: no)
If specified, call the function defined by EXTRA_SETUP for each instance. If using the automatically
defined rtapi_app_main, extra_arg is the number of this instance.

• option extra_cleanup yes - (default: no)
If specified, call the function defined byEXTRA_CLEANUP from the automatically defined rtapi_app_exit
or, in case of a detected error, in the automatically defined rtapi_app_main.

• option userspace yes - (default: no)
If specified, this file describes a non-realtime (formerly known as ”userspace”) component, rather
than a regular (i.e., realtime) one. A non-realtime component may not have functions defined
by the function directive. Instead, after all the instances are constructed, the C function void
user_mainloop(void); is called. When this function returns, the component exits. Typically,
user_mainloop() will use FOR_ALL_INSTS() to perform the update action for each instance, then
sleep for a short time. Another common action in user_mainloop() may be to call the event handler
loop of a GUI toolkit.

• option userinit yes - (default: no)
This option is ignored if the option userspace (see above) is set to no. If userinit is specified, the
function userinit(argc,argv) is called before rtapi_app_main() (and thus before the call to hal_init()
). This function may process the commandline arguments or take other actions. Its return type is
void; it may call exit() if it wishes to terminate rather than create a HAL component (e.g., because
the commandline arguments were invalid).

• option extra_link_args ”…” - (default: ””)
This option is ignored if the option userspace (see above) is set to no. When linking a non-realtime
component, the arguments given are inserted in the link line. Note that because compilation takes
place in a temporary directory, ”-L.” refers to the temporary directory and not the directory where
the .comp source file resides. This option can be set in the halcompile command-line with -extra-
link-args=”-L…..”. This alternative provides a way to set extra flags in cases where the input file is
a .c file rather than a .comp file.

• option extra_compile_args ”…” - (default: ””)
This option is ignored if the option userspace (see above) is set to no. When compiling a non-realtime
component, the arguments given are inserted in the compiler command line. If the input file is a .c
file this option can be set in the halcompile command-line with --extra-compile-args=”-I…..”. This
alternative provides a way to set extra flags in cases where the input file is a .c file rather than a
.comp file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 279 / 1322

• option homemod yes - (default: no)
Module is a custom Homing module loaded using [EMCMOT]HOMEMOD=modulename .

• option tpmod yes - (default: no)
Module is a custom Trajectory Planning (tp) module loaded using [TRAJ]TPMOD=modulename .

• option period no - (default: yes)
Control the implicit period parameter of the function(s) defined in the component. A standard
function has an implicit parameter period. Many components do no use the period parameter and
would cause a ”unused parameter” compiler warning. Setting option period no creates a function
declaration omitting the period parameter preventing the warning. Setting this option will also
prevent fperiod from being defined, as it depends on period.

If an option’s VALUE is not specified, then it is equivalent to specifying option … yes.
The result of assigning an inappropriate value to an option is undefined.
The result of using any other option is undefined.

5.9.8.3 License and Authorship

• LICENSE - Specify the license of the module for the documentation and for the MODULE_LICENSE()
module declaration. For example, to specify that the module’s license is GPL v2 or later:

‘license ”GPL”; // indicates GPL v2 or later‘

For additional information on the meaning of MODULE_LICENSE() and additional license identi-
fiers, see <linux/module.h> or the manual page rtapi_module_param(3).
This declaration is required.

• AUTHOR - Specify the author of the module for the documentation.

5.9.8.4 Per-instance data storage

• variable CTYPE STARREDNAME; + variable CTYPE STARREDNAME[SIZE]; + variable CTYPE STARREDNAME
= DEFAULT; + variable CTYPE STARREDNAME[SIZE] = DEFAULT;
Declare a per-instance variable STARREDNAME of typeCTYPE, optionally as an array of SIZE items,
and optionally with a default value DEFAULT. Items with no DEFAULT are initialized to all-bits-zero.
CTYPE is a simple one-word C type, such as float, u32, s32, int, etc. Access to array variables
uses square brackets.

If a variable is to be of a pointer type, there may not be any space between the ”*” and the variable
name. Therefore, the following is acceptable:
variable int *example;

But the following are not:
variable int* badexample;
variable int * badexample;

5.9.8.5 Comments

C++-style one-line comments (//...) and C-style multi-line comments (/* ... */) are both sup-
ported in the declaration section.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 280 / 1322

5.9.9 Restrictions

Though HAL permits a pin, a parameter, and a function to have the same name, halcompile does not.
Variable and function names that can not be used or are likely to cause problems include:

• Anything beginning with _comp.

• comp_id

• fperiod

• rtapi_app_main

• rtapi_app_exit

• extra_setup

• extra_cleanup

5.9.10 Convenience Macros

Based on the items in the declaration section, halcompile creates a C structure called struct __comp_state.
However, instead of referring to the members of this structure (e.g., *(inst->name)), they will gen-
erally be referred to using the macros below. The details of struct __comp_state and these macros
may change from one version of halcompile to the next.

• FUNCTION(_̀_name__) ̀ - Use this macro to begin the definition of a realtime function, which was
previously declared with function NAME. The function includes a parameter period which is the
integer number of nanoseconds between calls to the function. See also option period above.

• EXTRA_SETUP() - Use this macro to begin the definition of the function called to perform extra setup
of this instance. Return a negative UNIX errno value to indicate failure (e.g., return -EBUSY on
failure to reserve an I/O port), or 0 to indicate success.

• EXTRA_CLEANUP() - Use this macro to begin the definition of the function called to perform extra
cleanup of the component. Note that this function must clean up all instances of the component,
not just one. The ”pin_name”, ”parameter_name”, and ”data” macros may not be used here.

• pin_name or parameter_name - For each pin pin_name or param parameter_name there is a macro
which allows the name to be used on its own to refer to the pin or parameter. When pin_name or
parameter_name is an array, the macro is of the form pin_name(idx) or param_name(idx), where idx
is the index into the pin array. When the array is a variable-sized array, it is only legal to refer to
items up to its condsize.
When the item is a conditional item, it is only legal to refer to it when its condition evaluated to a
nonzero value.

• variable_name - For each variable variable_name there is a macro which allows the name to be used
on its own to refer to the variable. When variable_name is an array, the normal C-style subscript is
used: variable_name[idx].

• data - If ”option data” is specified, this macro allows access to the instance data.

• fperiod - The floating-point number of seconds between calls to this realtime function. See also
option period above.

• FOR_ALL_INSTS() {…} - For non-realtime components. This macro iterates over all the defined
instances. Inside the body of the loop, the pin_name, parameter_name, and data macros work as
they do in realtime functions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 281 / 1322

5.9.11 Components with one function

If a component has only one function and the string ”FUNCTION” does not appear anywhere after ;;,
then the portion after ;; is all taken to be the body of the component’s single function. See the Simple
Comp for an example of this.

5.9.12 Component Personality

If a component has any pins or parameters with an ”if condition” or ”[maxsize : condsize]”, it is called a
component with personality. The personality of each instance is specified when the module is loaded.
Personality can be used to create pins only when needed. For instance, personality is used in the logic
component, to allow for a variable number of input pins to each logic gate and to allow for a selection
of any of the basic boolean logic functions and, or, and xor.
The default number of allowed personality items is a compile-time setting (64). The default applies to
numerous components included in the distribution that are built using halcompile.
To alter the allowed number of personality items for user-built components, use the --personalities
option with halcompile. For example, to allow up to 128 personality times:
[sudo] halcompile --personalities=128 --install ...

When using components with personality, normal usage is to specify a personality item for each spec-
ified component instance. Example for 3 instances of the logic component:
loadrt logic names=and4,or3,nand5, personality=0x104,0x203,0x805

Note
If a loadrt line specifies more instances than personalities, the instances with unspecified personal-
ities are assigned a personality of 0. If the requested number of instances exceeds the number of
allowed personalities, personalities are assigned by indexing modulo the number of allowed person-
alities. A message is printed denoting such assignments.

5.9.13 Examples

5.9.13.1 constant

Note that the declaration ”function _” creates functions named ”constant.0”, etc. The file name must
match the component name.
component constant;
pin out float out;
param r float value = 1.0;
option period no;
function _;
license ”GPL”; // indicates GPL v2 or later
;;
FUNCTION(_) { out = value; }

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 282 / 1322

5.9.13.2 sincos

This component computes the sine and cosine of an input angle in radians. It has different capabilities
than the ”sine” and ”cosine” outputs of siggen, because the input is an angle, rather than running
freely based on a ”frequency” parameter.
The pins are declared with the names sin_ and cos_ in the source code so that they do not interfere
with the functions sin() and cos(). The HAL pins are still called sincos.<num>.sin.
component sincos;
pin out float sin_;
pin out float cos_;
pin in float theta;
option period no;
function _;
license ”GPL”; // indicates GPL v2 or later
;;
#include <rtapi_math.h>
FUNCTION(_) { sin_ = sin(theta); cos_ = cos(theta); }

5.9.13.3 out8

This component is a driver for a fictional card called ”out8”, which has 8 pins of digital output which
are treated as a single 8-bit value. There can be a varying number of such cards in the system, and they
can be at various addresses. The pin is called out_ because out is an identifier used in <asm/io.h>. It
illustrates the use of EXTRA_SETUP and EXTRA_CLEANUP to request an I/O region and then free it
in case of error or when the module is unloaded.
component out8;
pin out unsigned out_ ”Output value; only low 8 bits are used”;
param r unsigned ioaddr;

function _;

option period no;
option count_function;
option extra_setup;
option extra_cleanup;
option constructable no;

license ”GPL”; // indicates GPL v2 or later
;;
#include <asm/io.h>

#define MAX 8
int io[MAX] = {0,};
RTAPI_MP_ARRAY_INT(io, MAX, ”I/O addresses of out8 boards”);

int get_count(void) {
int i = 0;
for(i=0; i<MAX && io[i]; i++) { /* Nothing */ }
return i;

}

EXTRA_SETUP() {
if(!rtapi_request_region(io[extra_arg], 1, ”out8”)) {

// set this I/O port to 0 so that EXTRA_CLEANUP does not release the IO
// ports that were never requested.
io[extra_arg] = 0;
return -EBUSY;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 283 / 1322

}
ioaddr = io[extra_arg];
return 0;

}

EXTRA_CLEANUP() {
int i;
for(i=0; i < MAX && io[i]; i++) {

rtapi_release_region(io[i], 1);
}

}

FUNCTION(_) { outb(out_, ioaddr); }

5.9.13.4 hal_loop

component hal_loop;
pin out float example;

This fragment of a component illustrates the use of the hal_ prefix in a component name.
loop is a common name, and the hal_ prefix avoids potential name collisions with other unrelated
software. For example, on RTAI realtime systems realtime code runs in the kernel, so if the component
were named just loop it could easily conflict with the standard loop kernel module.
When loaded, halcmd show comp will show a component called hal_loop. However, the pin shown by
halcmd show pin will be loop.0.example, not hal-loop.0.example.

5.9.13.5 arraydemo

This realtime component illustrates use of fixed-size arrays:
component arraydemo ”4-bit Shift register”;
pin in bit in;
pin out bit out-# [4];
option period no;
function _ nofp;
license ”GPL”; // indicates GPL v2 or later
;;
int i;
for(i=3; i>0; i--) out(i) = out(i-1);
out(0) = in;

5.9.13.6 rand

This non-realtime component changes the value on its output pin to a new random value in the range
(0,1) about once every 1 ms.
component rand;
option userspace;

pin out float out;
license ”GPL”; // indicates GPL v2 or later
;;
#include <unistd.h>

void user_mainloop(void) {

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 284 / 1322

while(1) {
usleep(1000);
FOR_ALL_INSTS() out = drand48();

}
}

5.9.13.7 logic (using personality)

This realtime component shows how to use ”personality” to create variable-size arrays and optional
pins.
component logic ”LinuxCNC HAL component providing experimental logic functions”;
pin in bit in-##[16 : personality & 0xff];
pin out bit and if personality & 0x100;
pin out bit or if personality & 0x200;
pin out bit xor if personality & 0x400;
option period no;
function _ nofp;
description ”””
Experimental general ’logic function’ component. Can perform ’and’, ’or’
and ’xor’ of up to 16 inputs. Determine the proper value for ’personality’
by adding:
.IP \\(bu 4
The number of input pins, usually from 2 to 16
.IP \\(bu
256 (0x100) if the ’and’ output is desired
.IP \\(bu
512 (0x200) if the ’or’ output is desired
.IP \\(bu
1024 (0x400) if the ’xor’ (exclusive or) output is desired”””;
license ”GPL”; // indicates GPL v2 or later
;;
FUNCTION(_) {

int i, a=1, o=0, x=0;
for(i=0; i < (personality & 0xff); i++) {

if(in(i)) { o = 1; x = !x; }
else { a = 0; }

}
if(personality & 0x100) and = a;
if(personality & 0x200) or = o;
if(personality & 0x400) xor = x;

}

A typical load line for this component might be
loadrt logic count=3 personality=0x102,0x305,0x503

which creates the following pins:

• A 2-input AND gate: logic.0.and, logic.0.in-00, logic.0.in-01

• 5-input AND and OR gates: logic.1.and, logic.1.or, logic.1.in-00, logic.1.in-01, logic.1.in-02,
logic.1.in-03, logic.1.in-04,

• 3-input AND and XOR gates: logic.2.and, logic.2.xor, logic.2.in-00, logic.2.in-01, logic.2.in-02

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 285 / 1322

5.9.13.8 General Functions

This example shows how to call functions from the main function. It also shows how to pass reference
of HAL pins to those functions.
component example;
pin in s32 in;
pin out bit out1;
pin out bit out2;

option period no;
function _;
license ”GPL”;
;;

// general pin set true function
void set(hal_bit_t *p){

*p = 1;
}

// general pin set false function
void unset(hal_bit_t *p){

*p = 0;
}

//main function
FUNCTION(_) {

if (in < 0){
set(&out1);
unset(&out2);

}else if (in >0){
unset(&out2);
set(&out2);

}else{
unset(&out1);
unset(&out2);

}
}

This component uses two general function to manipulate a HAL bit pin referenced to it.

5.9.14 Command Line Usage

The halcompile man page gives details for invoking halcompile.
$ man halcompile

A brief summary of halcompile usage is given by:
$ halcompile --help

5.10 HALTCL Files

halcmd excels in specifying components and connections but these scripts offer no computational
capabilities. As a result, INI files are limited in the clarity and brevity that is possible with higher
level languages.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 286 / 1322

The haltcl facility provides a means to use Tcl scripting and its features for computation, looping,
branching, procedures, etc. in INI files. To use this functionality, you use the Tcl language and the
extension .tcl for HAL files.
The .tcl extension is understood by the main script (linuxcnc) that processes INI files. Haltcl files
are identified in the the HAL section of INI files (just like HAL files).
Example
[HAL]
HALFILE = conventional_file.hal
HALFILE = tcl_based_file.tcl

With appropriate care, HAL and Tcl files can be intermixed.

5.10.1 Compatibility

The halcmd language used in HAL files has a simple syntax that is actually a subset of the more
powerful general-purpose Tcl scripting language.

5.10.2 Haltcl Commands

Haltcl files use the Tcl scripting language augmented with the specific commands of the LinuxCNC
hardware abstraction layer (HAL). The HAL-specific commands are:
addf, alias,
delf, delsig,
getp, gets
ptype,
stype,
help,
linkpp, linkps, linksp, list, loadrt, loadusr, lock,
net, newsig,
save, setp, sets, show, source, start, status, stop,
unalias, unlinkp, unload, unloadrt, unloadusr, unlock,
waitusr

Two special cases occur for the gets and list commands due to conflicts with Tcl builtin commands.
For haltcl, these commands must be preceded with the keyword hal:
halcmd haltcl
------ ------
gets hal gets
list hal list

5.10.3 Haltcl INI-file variables

INI file variables are accessible by both halcmd and haltcl but with differing syntax. LinuxCNC INI
files use SECTION and ITEM specifiers to identify configuration items:
[SECTION_A]
ITEM1 = value_1
ITEM2 = value_2
...
[SECTION_B]
...

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 287 / 1322

The INI file values are accessible by text substitution in HAL files using the form:
[SECTION]ITEM

The same INI file values are accessible in Tcl files using the form of a Tcl global array variable:
$::SECTION(ITEM)

For example, an INI file item like:
[JOINT_0]
MAX_VELOCITY = 4

is expressed as [JOINT_0]MAX_VELOCITY in HAL files for halcmd
and as $::JOINT_0(MAX_VELOCITY) in Tcl files for haltcl.
Because INI files can repeat the same ITEM in the same SECTION multiple times, $::SECTION(ITEM)
is actually a Tcl list of each individual value.
When there is just one value and it is a simple value (all values that are just letters and numbers
without whitespace are in this group), then it is possible to treat $::SECTION(ITEM) as though it is
not a list.
When the value could contain special characters (quote characters, curly-brace characters, embedded
whitespace, and other characters that have special meaning in Tcl) then it is necessary to distinguish
between the list of values and the initial (and possibly only) value in the list.
In Tcl, this is written [lindex $::SECTION(ITEM) 0].
For example: given the following INI values
[HOSTMOT2]
DRIVER=hm2_eth
IPADDR=”10.10.10.10”
BOARD=7i92
CONFIG=”num_encoders=0 num_pwmgens=0 num_stepgens=6”

And this loadrt command:
loadrt $::HOSTMOT2(DRIVER) board_ip=$::HOSTMOT2(IPADDR) config=$::HOSTMOT2(CONFIG)

Here is the actual command that is run:
loadrt hm2_eth board_ip={”10.10.10.10”} config={”num_encoders=0 num_pwmgens=0 num_stepgens ←↩

=6”}

This fails because loadrt does not recognize the braces.
So to get the values just as entered in the INI file, re-write the loadrt line like this:
loadrt $::HOSTMOT2(DRIVER) board_ip=[lindex $::HOSTMOT2(IPADDR) 0] config=[lindex ←↩

$::HOSTMOT2(CONFIG) 0]

5.10.4 Converting HAL files to Tcl files

Existing HAL files can be converted to Tcl files by hand editing to adapt to the differences mentioned
above. The process can be automated with scripts that convert using these substitutions.
[SECTION]ITEM ---> $::SECTION(ITEM)
gets ---> hal gets
list ---> hal list

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 288 / 1322

5.10.5 Haltcl Notes

In haltcl, the value argument for the sets and setp commands is implicitly treated as an expression in
the Tcl language.
Example
set gain to convert deg/sec to units/min for JOINT_0 radius
setp scale.0.gain 6.28/360.0*$::JOINT_0(radius)*60.0

Whitespace in the bare expression is not allowed, use quotes for that:
setp scale.0.gain ”6.28 / 360.0 * $::JOINT_0(radius) * 60.0”

In other contexts, such as loadrt, you must explicitly use the Tcl expr command ([expr {}]) for com-
putational expressions.
Example
loadrt motion base_period=[expr {500000000/$::TRAJ(MAX_PULSE_RATE)}]

5.10.6 Haltcl Examples

Consider the topic of stepgen headroom. Software stepgen runs best with an acceleration constraint
that is ”a bit higher” than the one used by the motion planner. So, when using halcmd files, we force
INI files to have a manually calculated value.
[JOINT_0]
MAXACCEL = 10.0
STEPGEN_MAXACCEL = 10.5

With haltcl, you can use Tcl commands to do the computation and eliminate the STEPGEN_MAXACCEL
INI file item altogether:
setp stepgen.0.maxaccel $::JOINT_0(MAXACCEL)*1.05

Another haltcl feature is looping and testing. For example, many simulator configurations use
”core_sim.hal” or ”core_sim9.hal” HAL files. These differ because of the requirement to connect more
or fewer axes. The following haltcl code would work for any combination of axes in a trivkins machine.
Create position, velocity and acceleration signals for each axis
set ddt 0
for {set jnum 0} {$jnum < $::KINS(JOINTS)} {incr jnum} {
’list pin’ returns an empty list if the pin doesn’t exist
if {[hal list pin joint.${jnum}.motor-pos-cmd] == {}} {
continue

}
net ${jnum}pos joint.${jnum}.motor-pos-cmd => joint.$axno.motor-pos-fb \

=> ddt.$ddt.in
net ${axis}vel <= ddt.$ddt.out
incr ddt
net ${axis}vel => ddt.$ddt.in
net ${axis}acc <= ddt.$ddt.out
incr ddt

}
puts [show sig *vel]
puts [show sig *acc]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 289 / 1322

5.10.7 Haltcl Interactive

The halrun command recognizes haltcl files. With the -T option, haltcl can be run interaactively as a
Tcl interpreter. This capability is useful for testing and for standalone HAL applications.
Example
$ halrun -T haltclfile.tcl

5.10.8 Haltcl Distribution Examples (sim)

The configs/sim/axis/simtcl directory includes an INI file that uses a .tcl file to demonstrate a haltcl
configuration in conjunction with the usage of twopass processing. The example shows the use of Tcl
procedures, looping, the use of comments and output to the terminal.

5.11 HAL User Interface

5.11.1 Introduction

Halui is a HAL based user interface for LinuxCNC, it connects HAL pins to NML commands. Most of
the functionality (buttons, indicators etc.) that is provided by a traditional GUI (AXIS, GMOCCAPY,
QtDragon, etc.), is provided by HAL pins in Halui.
The easiest way to add halui is to add the following to the [HAL] section of the INI file:
[HAL]
HALUI = halui

An alternate way to invoke it (specially if you generate the configuration with StepConf) is to include
the following in your custom.hal file.
Make sure you use the correct path to your INI file.
loadusr halui -ini /path/to/inifile.ini

5.11.2 MDI

Sometimes the user wants to add more complicated tasks to be performed by the activation of a HAL
pin. This is possible by adding MDI commands to the INI file in the [HALUI] section. Example:
[HALUI]
MDI_COMMAND = G0 X0
MDI_COMMAND = G0 G53 Z0
MDI_COMMAND = G28
MDI_COMMAND = o<mysub>call
...

When halui starts it will read the MDI_COMMAND fields in the INI and export pins from 00 to the number
of MDI_COMMAND ’s found in the INI, up to a maximum of 64 commands. These pins can be connected
like any HAL pins. A common method is to use buttons provided by virtual control panels like shown
in the example Example for MDI_COMMAND connections.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 290 / 1322

Example 5.1 Example for MDI_COMMAND connections
HAL file
net quill-up halui.mdi-command-00 <= pyvcp.quillup
net reference-pos halui.mdi-command-01 <= pyvcp.referencepos
net call-mysub halui.mdi-command-02 <= pyvcp.callmysub

Nets connecting the halui.mdi-command-NN pins provided by halui.
$ halcmd show pin halui.mdi
Component Pins:
Owner Type Dir Value Name

10 bit IN FALSE halui.mdi-command-00 <== quill-up
10 bit IN FALSE halui.mdi-command-01 <== reference-pos
10 bit IN FALSE halui.mdi-command-02 <== call-mysub
...

When a halui MDI pin is set (pulsed) true, halui will send the MDI command defined in the INI. This
will not always succeed depending on the current operating mode (e.g., while in AUTO halui can’t
successfully send MDI commands).

5.11.3 Example Configuration

An example sim config (configs/sim/axis/halui_pyvcp/halui.ini) is included in the distribution.

5.11.4 Halui Pin Reference

All halui pins are also documented in the halui man page:
$ man halui

Or see http://linuxcnc.org/docs/devel/html/man/man1/halui.1.html

5.11.4.1 Abort

• halui.abort (bit, in) - pin to send an abort message (clears out most errors)

5.11.4.2 E-Stop

• halui.estop.activate (bit, in) - pin for requesting E-Stop

• halui.estop.is-activated (bit, out) - indicates E-stop reset

• halui.estop.reset (bit, in) - pin for requesting E-Stop reset

5.11.4.3 Feed Override

• halui.feed-override.count-enable (bit, in) - must be true for counts or direct-value to work.

• halui.feed-override.counts (s32, in) - counts * scale = FO percentage. Can be used with an encoder
or direct-value.

• halui.feed-override.decrease (bit, in) - pin for decreasing the FO (-=scale)

http://linuxcnc.org/docs/devel/html/man/man1/halui.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 291 / 1322

• halui.feed-override.increase (bit, in) - pin for increasing the FO (+=scale)

• halui.feed-override.reset (bit, in) - pin for resetting the FO (scale=1.0)

• halui.feed-override.direct-value (bit, in) - false when using encoder to change counts, true when
setting counts directly.

• halui.feed-override.scale (float, in) - pin for setting the scale for increase and decrease of feed-
override.

• halui.feed-override.value (float, out) - current FO value

5.11.4.4 Mist

• halui.mist.is-on (bit, out) - indicates mist is on

• halui.mist.off (bit, in) - pin for requesting mist off

• halui.mist.on (bit, in) - pin for requesting mist on

5.11.4.5 Flood

• halui.flood.is-on (bit, out) - indicates flood is on

• halui.flood.off (bit, in) - pin for requesting flood off

• halui.flood.on (bit, in) - pin for requesting flood on

5.11.4.6 Homing

• halui.home-all (bit, in) - pin for requesting all axis to home. This pin will only be there if HOME_SEQUENCE
is set in the INI file.

5.11.4.7 Machine

• halui.machine.units-per-mm (float out) - pin for machine units-per-mm (inch:1/25.4, mm:1) accord-
ing to inifile setting: [TRAJ]LINEAR_UNITS

• halui.machine.is-on (bit, out) - indicates machine on

• halui.machine.off (bit, in) - pin for requesting machine off

• halui.machine.on (bit, in) - pin for requesting machine on

5.11.4.8 Max Velocity

The maximum linear velocity can be adjusted from 0 to the MAX_VELOCITY that is set in the [TRAJ]
section of the INI file.

• halui.max-velocity.count-enable (bit, in) - must be true for counts or direct-value to work.

• halui.max-velocity.counts (s32, in) - counts * scale = MV percentage. Can be used with an encoder
or direct-value.

• halui.max-velocity.direct-value (bit, in) - false when using encoder to change counts, true when
setting counts directly.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 292 / 1322

• halui.max-velocity.decrease (bit, in) - pin for decreasing max velocity

• halui.max-velocity.increase (bit, in) - pin for increasing max velocity

• halui.max-velocity.scale (float, in) - the amount applied to the current maximum velocity with each
transition from off to on of the increase or decrease pin in machine units per second.

• halui.max-velocity.value (float, out) - is the maximum linear velocity in machine units per second.

5.11.4.9 MDI

• halui.mdi-command-<nn> (bit, in) - halui will try to send the MDI command defined in the INI.
<nn> is a two digit number starting at 00.
If the command succeeds then it will place LinuxCNC in the MDI mode and then back to Manual
mode.
If no [HALUI]MDI_COMMAND variables are set in the ini file, no halui.mdi-command-<nn> pins
will be exported by halui.

• halui.halui-mdi-is-running (bit, out) - execution status of MDI commands sent by halui. The status is
active even during mode switching. If no [HALUI]MDI_COMMAND variables are set in the ini file,
this pins will not be exported by halui.

5.11.4.10 Joint

N = joint number (0 … num_joints-1)
Example:

• halui.joint.N.select (bit in) - pin for selecting joint N

• halui.joint.N.is-selected (bit out) - status pin that joint N is selected

• halui.joint.N.has-fault (bit out) - status pin telling that joint N has a fault

• halui.joint.N.home (bit in) - pin for homing joint N

• halui.joint.N.is-homed (bit out) - status pin telling that joint N is homed

• halui.joint.N.on-hard-max-limit (bit out) - status pin telling that joint N is on the positive hardware
limit

• halui.joint.N.on-hard-min-limit (bit out) - status pin telling that joint N is on the negative hardware
limit

• halui.joint.N.on-soft-max-limit (bit out) - status pin telling that joint N is on the positive software
limit

• halui.joint.N.on-soft-min-limit (bit out) - status pin telling that joint N is on the negative software
limit

• halui.joint.N.override-limits (bit out) - status pin telling that joint N’s limits are temporarily over-
ridden

• halui.joint.N.unhome (bit in) - pin for unhoming joint N

• halui.joint.selected (u32 out) - selected joint number (0 … num_joints-1)

• halui.joint.selected.has-fault (bit out) - status pin selected joint is faulted

• halui.joint.selected.home (bit in) - pin for homing the selected joint

• halui.joint.selected.is-homed (bit out) - status pin telling that the selected joint is homed

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 293 / 1322

• halui.joint.selected.on-hard-max-limit (bit out) - status pin telling that the selected joint is on the
positive hardware limit

• halui.joint.selected.on-hard-min-limit (bit out) - status pin telling that the selected joint is on the
negative hardware limit

• halui.joint.selected.on-soft-max-limit (bit out) - status pin telling that the selected joint is on the
positive software limit

• halui.joint.selected.on-soft-min-limit (bit out) - status pin telling that the selected joint is on the
negative software limit

• halui.joint.selected.override-limits (bit out) - status pin telling that the selected joint’s limits are
temporarily overridden

• halui.joint.selected.unhome (bit in) - pin for unhoming the selected joint

5.11.4.11 Joint Jogging

N = joint number (0 … num_joints-1)

• halui.joint.jog-deadband (float in) - pin for setting jog analog deadband (jog analog inputs smaller/s-
lower than this - in absolute value - are ignored)

• halui.joint.jog-speed (float in) - pin for setting jog speed for plus/minus jogging.

• halui.joint.N.analog (float in) - pin for jogging the joint N using a float value (e.g. joy-stick). The
value, typically set between 0.0 and ±1.0, is used as a jog-speed multiplier.

• halui.joint.N.increment (float in) - pin for setting the jog increment for jointNwhen using increment-
plus/minus

• halui.joint.N.increment-minus (bit in) - a rising edge will will make joint N jog in the negative direc-
tion by the increment amount

• halui.joint.N.increment-plus (bit in) - a rising edge will will make joint N jog in the positive direction
by the increment amount

• halui.joint.N.minus (bit in) - pin for jogging joint N in negative direction at the halui.joint.jog-speed
velocity

• halui.joint.N.plus (bit in) - pin for jogging joint N in positive direction at the halui.joint.jog-speed
velocity

• halui.joint.selected.increment (float in) - pin for setting the jog increment for the selected joint when
using increment-plus/minus

• halui.joint.selected.increment-minus (bit in) - a rising edge will will make the selected joint jog in
the negative direction by the increment amount

• halui.joint.selected.increment-plus (bit in) - a rising edge will will make the selected joint jog in the
positive direction by the increment amount

• halui.joint.selected.minus (bit in) - pin for jogging the selected joint in negative direction at the
halui.joint.jog-speed velocity

• halui.joint.selected.plus (bit in) - pin for jogging the selected joint in positive direction at the halui.joint.jog-
speed velocity

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 294 / 1322

5.11.4.12 Axis

L = axis letter (xyzabcuvw)

• halui.axis.L.select (bit) - pin for selecting axis by letter

• halui.axis.L.is-selected (bit out) - status pin that axis L is selected

• halui.axis.L.pos-commanded (float out) - Commanded axis position in machine coordinates

• halui.axis.L.pos-feedback float out) - Feedback axis position in machine coordinates

• halui.axis.L.pos-relative (float out) - Feedback axis position in relative coordinates

5.11.4.13 Axis Jogging

L = axis letter (xyzabcuvw)

• halui.axis.jog-deadband (float in) - pin for setting jog analog deadband (jog analog inputs smaller/s-
lower than this (in absolute value) are ignored)

• halui.axis.jog-speed (float in) - pin for setting jog speed for plus/minus jogging.

• halui.axis.L.analog (float in) - pin for jogging the axis L using an float value (e.g. joystick). The
value, typically set between 0.0 and ±1.0, is used as a jog-speed multiplier.

• halui.axis.L.increment (float in) - pin for setting the jog increment for axis L when using increment-
plus/minus

• halui.axis.L.increment-minus (bit in) - a rising edge will will make axis L jog in the negative direction
by the increment amount

• halui.axis.L.increment-plus (bit in) - a rising edge will will make axis L jog in the positive direction
by the increment amount

• halui.axis.L.minus (bit in) - pin for jogging axis L in negative direction at the halui.axis.jog-speed
velocity

• halui.axis.L.plus (bit in) - pin for jogging axis L in positive direction at the halui.axis.jog-speed ve-
locity

• halui.axis.selected (u32 out) - selected axis (by index: 0:x 1:y 2:z 3:a 4:b 5:cr 6:u 7:v 8:w)

• halui.axis.selected.increment (float in) - pin for setting the jog increment for the selected axis when
using increment-plus/minus

• halui.axis.selected.increment-minus (bit in) - a rising edge will will make the selected axis jog in the
negative direction by the increment amount

• halui.axis.selected.increment-plus (bit in) - a rising edge will will make the selected axis jog in the
positive direction by the increment amount

• halui.axis.selected.minus (bit in) - pin for jogging the selected axis in negative direction at the
halui.axis.jog-speed velocity

• halui.axis.selected.plus (pin in) - for jogging the selected axis bit in in positive direction at the
halui.axis.jog-speed velocity

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 295 / 1322

5.11.4.14 Mode

• halui.mode.auto (bit, in) - pin for requesting auto mode

• halui.mode.is-auto (bit, out) - indicates auto mode is on

• halui.mode.is-joint (bit, out) - indicates joint by joint jog mode is on

• halui.mode.is-manual (bit, out) - indicates manual mode is on

• halui.mode.is-mdi (bit, out) - indicates MDI mode is on

• halui.mode.is-teleop (bit, out) - indicates coordinated jog mode is on

• halui.mode.joint (bit, in) - pin for requesting joint by joint jog mode

• halui.mode.manual (bit, in) - pin for requesting manual mode

• halui.mode.mdi (bit, in) - pin for requesting MDI mode

• halui.mode.teleop (bit, in) - pin for requesting coordinated jog mode

5.11.4.15 Program

• halui.program.block-delete.is-on (bit, out) - status pin telling that block delete is on

• halui.program.block-delete.off (bit, in) - pin for requesting that block delete is off

• halui.program.block-delete.on (bit, in) - pin for requesting that block delete is on

• halui.program.is-idle (bit, out) - status pin telling that no program is running

• halui.program.is-paused (bit, out) - status pin telling that a program is paused

• halui.program.is-running (bit, out) - status pin telling that a program is running

• halui.program.optional-stop.is-on (bit, out) - status pin telling that the optional stop is on

• halui.program.optional-stop.off (bit, in) - pin requesting that the optional stop is off

• halui.program.optional-stop.on (bit, in) - pin requesting that the optional stop is on

• halui.program.pause (bit, in) - pin for pausing a program

• halui.program.resume (bit, in) - pin for resuming a paused program

• halui.program.run (bit, in) - pin for running a program

• halui.program.step (bit, in) - pin for stepping in a program

• halui.program.stop (bit, in) - pin for stopping a program

5.11.4.16 Rapid Override

• halui.rapid-override.count-enable (bit in (default: TRUE)) - When TRUE, modify Rapid Override
when counts changes.

• halui.rapid-override.counts (s32 in) - counts X scale = Rapid Override percentage. Can be used
with an encoder or direct-value.

• halui.rapid-override.decrease (bit in) - pin for decreasing the Rapid Override (-=scale)

• halui.rapid-override.direct-value (bit in) - pin to enable direct value Rapid Override input

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 296 / 1322

• halui.rapid-override.increase (bit in) - pin for increasing the Rapid Override (+=scale)

• halui.rapid-override.scale (float in) - pin for setting the scale on changing the Rapid Override

• halui.rapid-override.value (float out) - current Rapid Override value

• halui.rapid-override.reset (bit, in) - pin for resetting the Rapid Override value (scale=1.0)

5.11.4.17 Spindle Override

• halui.spindle.N.override.count-enable (bit, in) - must be true for counts or direct-value to work.

• halui.spindle.N.override.counts (s32, in) - counts * scale = SO percentage. Can be used with an
encoder or direct-value.

• halui.spindle.N.override.decrease (bit, in) - pin for decreasing the SO (-=scale)

• halui.spindle.N.override.direct-value (bit, in) - false when using encoder to change counts, true
when setting counts directly.

• halui.spindle.N.override.increase (bit, in) - pin for increasing the SO (+=scale)

• halui.spindle.N.override.scale (float, in) - pin for setting the scale on changing the SO

• halui.spindle.N.override.value (float, out) - current SO value

• halui.spindle.N.override.reset (bit, in) - pin for resetting the SO value (scale=1.0)

5.11.4.18 Spindle

• halui.spindle.N.brake-is-on (bit, out) - indicates brake is on

• halui.spindle.N.brake-off (bit, in) - pin for deactivating spindle/brake

• halui.spindle.N.brake-on (bit, in) - pin for activating spindle-brake

• halui.spindle.N.decrease (bit, in) - decreases spindle speed

• halui.spindle.N.forward (bit, in) - starts the spindle with CW motion

• halui.spindle.N.increase (bit, in)- increases spindle speed

• halui.spindle.N.is-on (bit, out) - indicates spindle is on (either direction)

• halui.spindle.N.reverse (bit, in)- starts the spindle with a CCW motion

• halui.spindle.N.runs-backward (bit, out) - indicates spindle is on, and in reverse

• halui.spindle.N.runs-forward (bit, out) - indicates spindle is on, and in forward

• halui.spindle.N.start (bit, in) - starts the spindle

• halui.spindle.N.stop (bit, in) - stops the spindle

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 297 / 1322

5.11.4.19 Tool

• halui.tool.length-offset.a (float out) - current applied tool length offset for the A axis

• halui.tool.length-offset.b (float out) - current applied tool length offset for the B axis

• halui.tool.length-offset.c (float out) - current applied tool length offset for the C axis

• halui.tool.length-offset.u (float out) - current applied tool length offset for the U axis

• halui.tool.length-offset.v (float out) - current applied tool length offset for the V axis

• halui.tool.length-offset.w (float out) - current applied tool length offset for the W axis

• halui.tool.length-offset.x (float out) - current applied tool length offset for the X axis

• halui.tool.length-offset.y (float out) - current applied tool length offset for the Y axis

• halui.tool.length-offset.z (float out) - current applied tool length offset for the Z axis

• halui.tool.diameter (float out) - Current tool diameter, or 0 if no tool is loaded.

• halui.tool.number (u32, out) - indicates current selected tool

5.12 Halui Examples

For any Halui examples to work you need to add the following line to the [HAL] section of the INI file.
HALUI = halui

5.12.1 Remote Start

To connect a remote program start button to LinuxCNC you use the halui.program.run pin and the
halui.mode.auto pin. You have to ensure that it is OK to run first by using the halui.mode.is-auto
pin. You do this with an and2 component. The following figure shows how this is done. When the
Remote Run Button is pressed it is connected to both halui.mode.auto and and2.0.in0. If it is OK
for auto mode the pin halui.mode.is-auto will be on. If both the inputs to the and2.0 component
are on the and2.0.out will be on and this will start the program.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 298 / 1322

Figure 5.20: Remote Start Example

The hal commands needed to accomplish the above are:
net program-start-btn halui.mode.auto and2.0.in0 <= <your input pin>
net program-run-ok and2.0.in1 <= halui.mode.is-auto
net remote-program-run halui.program.run <= and2.0.out

Notice on line one that there are two reader pins, this can also be split up to two lines like this:
net program-start-btn halui.mode.auto <= <your input pin>
net program-start-btn and2.0.in0

5.12.2 Pause & Resume

This example was developed to allow LinuxCNC to move a rotary axis on a signal from an external
machine. The coordination between the two systems will be provided by two Halui components:

• halui.program.is-paused

• halui.program.resume

In your customized HAL file, add the following two lines that will be connected to your I/O to turn on
the program pause or to resume when the external system wants LinuxCNC to continue.
net ispaused halui.program.is paused => ”your output pin”
net resume halui.program.resume <= ”your input pin”

Your input and output pins are connected to the pins wired to the other controller. They may be
parallel port pins or any other I/O pins that you have access to.
This system works in the following way. When an M0 is encountered in your G-code, the halui.program.is-paused
signal goes true. This turns on your output pin so that the external controller knows that LinuxCNC
is paused.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 299 / 1322

To resume the LinuxCNC G-code program, when the external controller is ready it will make its output
true. This will signal LinuxCNC that it should resume executing G-code.
Difficulties in timing

• The ”resume” input return signal should not be longer than the time required to get the G-code
running again.

• The ”is-paused” output should no longer be active by the time the ”resume” signal ends.

These timing problems could be avoided by using ClassicLadder to activate the ”is-paused” output via
a monostable timer to deliver one narrow output pulse. The ”resume” pulse could also be received
via a monostable timer.

5.13 Creating Non-realtime Python Components

This section explains principles behind the implementation of HAL components with the Python pro-
gramming language.

5.13.1 Basic usage example

A non-realtime component begins by creating its pins and parameters, then enters a loop which will
periodically drive all the outputs from the inputs. The following component copies the value seen on
its input pin (passthrough.in) to its output pin (passthrough.out) approximately once per second.
#!/usr/bin/env python3
import hal, time
h = hal.component(”passthrough”)
h.newpin(”in”, hal.HAL_FLOAT, hal.HAL_IN)
h.newpin(”out”, hal.HAL_FLOAT, hal.HAL_OUT)
h.ready()
try:

while 1:
time.sleep(1)
h[’out’] = h[’in’]

except KeyboardInterrupt:
raise SystemExit

Copy the above listing into a file named ”passthrough”, make it executable (chmod +x), and place it
on your $PATH. Then try it out:
Screen copy with details on the execution of the newly created passthrough HAL module.
$ halrun

halcmd: loadusr passthrough

halcmd: show pin

Component Pins:
Owner Type Dir Value Name
03 float IN 0 passthrough.in
03 float OUT 0 passthrough.out

halcmd: setp passthrough.in 3.14

halcmd: show pin

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 300 / 1322

Component Pins:
Owner Type Dir Value Name
03 float IN 3.14 passthrough.in
03 float OUT 3.14 passthrough.out

5.13.2 Non-realtime components and delays

If you typed ”show pin” quickly, you may see that passthrough.out still had its old value of 0. This is
because of the call to time.sleep(1), which makes the assignment to the output pin occur at most once
per second. Because this is a non-realtime component, the actual delay between assignments can be
much longer if the memory used by the passthrough component is swapped to disk, as the assignment
could be delayed until that memory is swapped back in.
Thus, non-realtime components are suitable for user-interactive elements such as control panels (de-
lays in the range of milliseconds are not noticed, and longer delays are acceptable), but not for sending
step pulses to a stepper driver board (delays must always be in the range of microseconds, no matter
what).

5.13.3 Create pins and parameters

h = hal.component(”passthrough”)

The component itself is created by a call to the constructor hal.component. The arguments are the
HAL component name and (optionally) the prefix used for pin and parameter names. If the prefix is
not specified, the component name is used.
h.newpin(”in”, hal.HAL_FLOAT, hal.HAL_IN)

Then pins are created by calls to methods on the component object. The arguments are: pin name suf-
fix, pin type, and pin direction. For parameters, the arguments are: parameter name suffix, parameter
type, and parameter direction.

Table 5.33: HAL Option Names

Pin and Parameter Types: HAL_BIT HAL_FLOAT HAL_S32 HAL_U32
HAL_S64 HAL_U64 Pin

Directions:
HAL_IN HAL_OUT

HAL_IO Parameter
Directions:

HAL_RO HAL_RW

The full pin or parameter name is formed by joining the prefix and the suffix with a ”.”, so in the
example the pin created is called passthrough.in.
h.ready()

Once all the pins and parameters have been created, call the .ready() method.

5.13.3.1 Changing the prefix

The prefix can be changed by calling the .setprefix() method. The current prefix can be retrieved by
calling the .getprefix() method.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 301 / 1322

5.13.4 Reading and writing pins and parameters

For pins and parameters which are also proper Python identifiers, the value may be accessed or set
using the attribute syntax:
h.out = h.in

For all pins, whether or not they are also proper Python identifiers, the value may be accessed or set
using the subscript syntax:
h[’out’] = h[’in’]

To see all pins with their values, getpins returns all values in a dictionary of that component.
h.getpins()
>>>{’in’: 0.0, ’out’: 0.0}

5.13.4.1 Driving output (HAL_OUT) pins

Periodically, usually in response to a timer, all HAL_OUT pins should be ”driven” by assigning them a
new value. This should be done whether or not the value is different than the last one assigned. When
a pin is connected to a signal, its old output value is not copied into the signal, so the proper value
will only appear on the signal once the component assigns a new value.

5.13.4.2 Driving bidirectional (HAL_IO) pins

The above rule does not apply to bidirectional pins. Instead, a bidirectional pin should only be driven
by the component when the component wishes to change the value. For instance, in the canonical
encoder interface, the encoder component only sets the index-enable pin to FALSE (when an index
pulse is seen and the old value is TRUE), but never sets it to TRUE. Repeatedly driving the pin FALSE
might cause the other connected component to act as though another index pulse had been seen.

5.13.5 Exiting

A halcmd unload request for the component is delivered as a KeyboardInterrupt exception. When an
unload request arrives, the process should either exit in a short time, or call the .exit() method on
the component if substantial work (such as reading or writing files) must be done to complete the
shutdown process.

5.13.6 Helpful Functions

See Python HAL Interface for an overview of available functions.

5.13.7 Constants

Use these to specify details rather then the value they hold.

• HAL_BIT

• HAL_FLOAT

• HAL_S32

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 302 / 1322

• HAL_U32

• HAL_S64

• HAL_U64

• HAL_IN

• HAL_OUT

• HAL_RO

• HAL_RW

• MSG_NONE

• MSG_ALL

• MSG_DBG

• MSG_ERR

• MSG_INFO

• MSG_WARN

5.13.8 System Information

Read these to acquire information about the realtime system.

• is_kernelspace

• is_rt

• is_sim

• is_userspace

5.14 Canonical Device Interfaces

5.14.1 Introduction

The following sections show the pins, parameters, and functions that are supplied by ”canonical de-
vices”. All HAL device drivers should supply the same pins and parameters, and implement the same
behavior.
Note that only the _<io-type>_ and _<specific-name>_ fields are defined for a canonical device. The
_<device-name>, _<device-num>_, and _<chan-num>_ fields are set based on the characteristics of
the real device.

5.14.2 Digital Input

The canonical digital input (I/O type field: digin) is quite simple.

5.14.2.1 Pins

(bit) in:: State of the hardware input. (bit) in-not:: Inverted state of the input.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 303 / 1322

5.14.2.2 Parameters

None

5.14.2.3 Functions

(funct) read:: Read hardware and set in and in-not HAL pins.

5.14.3 Digital Output

The canonical digital output (I/O type field: digout) is also very simple.

5.14.3.1 Pins

(bit) out:: Value to be written (possibly inverted) to the hardware output.

5.14.3.2 Parameters

(bit) invert:: If TRUE, out is inverted before writing to the hardware.

5.14.3.3 Functions

(funct) write:: Read out and invert, and set hardware output accordingly.

5.14.4 Analog Input

The canonical analog input (I/O type: adcin). This is expected to be used for analog to digital con-
verters, which convert e.g. voltage to a continuous range of values.

5.14.4.1 Pins

(float) value:: The hardware reading, scaled according to the scale and offset parameters.
value = ((input reading, in hardware-dependent units) * scale) - offset

5.14.4.2 Parameters

(float) scale:: The input voltage (or current) will be multiplied by scale before being output to value.
(float) offset:: This will be subtracted from the hardware input voltage (or current) after the scale
multiplier has been applied. (float) bit_weight:: The value of one least significant bit (LSB). This is
effectively the granularity of the input reading. (float) hw_offset:: The value present on the input
when 0 Volts is applied to the input pin(s).

5.14.4.3 Functions

(funct) read:: Read the values of this analog input channel. This may be used for individual channel
reads, or it may cause all channels to be read.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 304 / 1322

5.14.5 Analog Output

The canonical analog output (I/O Type: adcout). This is intended for any kind of hardware that can
output a more-or-less continuous range of values. Examples are digital to analog converters or PWM
generators.

5.14.5.1 Pins

(float) value:: The value to be written. The actual value output to the hardware will depend on the
scale and offset parameters. (bit) enable:: If false, then output 0 to the hardware, regardless of the
value pin.

5.14.5.2 Parameters

(float) offset:: This will be added to the value before the hardware is updated. (float) scale:: This
should be set so that an input of 1 on the value pin will cause the analog output pin to read 1 volt.
(float) high_limit (optional):: When calculating the value to output to the hardware, if value + off-
set is greater than high_limit, then high_limit will be used instead. (float) low_limit (optional)::
When calculating the value to output to the hardware, if value + offset is less than low_limit, then
low_limit will be used instead. (float) bit_weight (optional):: The value of one least significant bit
(LSB), in volts (or mA, for current outputs). (float) hw_offset (optional):: The actual voltage (or cur-
rent) that will be output if 0 is written to the hardware.

5.14.5.3 Functions

(funct) write:: This causes the calculated value to be output to the hardware. If enable is false, then
the output will be 0, regardless of value, scale, and offset. The meaning of ”0” is dependent on the
hardware. For example, a bipolar 12-bit A/D may need to write 0x1FF (mid scale) to the D/A get 0
volts from the hardware pin. If enable is true, read scale, offset and value and output to the adc (scale
* value) + offset. If enable is false, then output 0.

5.15 HAL Tools

5.15.1 Halcmd

halcmd is a command line tool for manipulating the HAL. There is a rather complete man page for
halcmd, which will be installed if you have installed LinuxCNC from either source or a package. The
manpage provides usage info:
man halcmd

If you have compiled LinuxCNC for ”run-in-place”, you must source the rip-environment script to make
the man page available:
cd toplevel_directory_for_rip_build
. scripts/rip-environment
man halcmd

The HAL Tutorial has a number of examples of halcmd usage, and is a good tutorial for halcmd.

../man/man1/halcmd.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 305 / 1322

5.15.2 Halmeter

Halmeter is a voltmeter for the HAL. It lets you look at a pin, signal, or parameter, and displays the
current value of that item. It is pretty simple to use. Start it by typing halmeter in an X windows
shell. Halmeter is a GUI application. It will pop up a small window, with two buttons labeled ”Select”
and ”Exit”. Exit is easy - it shuts down the program. Select pops up a larger window, with three tabs.
One tab lists all the pins currently defined in the HAL. The next lists all the signals, and the last tab
lists all the parameters. Click on a tab, then click on a pin/signal/parameter. Then click on ”OK”. The
lists will disappear, and the small window will display the name and value of the selected item. The
display is updated approximately 10 times per second. If you click ”Accept” instead of ”OK”, the small
window will display the name and value of the selected item, but the large window will remain on the
screen. This is convenient if you want to look at a number of different items quickly.
You can have many halmeters running at the same time, if you want to monitor several items. If
you want to launch a halmeter without tying up a shell window, type halmeter & to run it in the
background. You can also make halmeter start displaying a specific item immediately, by adding
pin|sig|par[am] _<name>_ to the command line. It will display the pin, signal, or parameter<name>
as soon as it starts - if there is no such item, it will simply start normally. And finally, if you specify an
item to display, you can add -s before the pin|sig|param to tell halmeter to use a small window. The
item name will be displayed in the title bar instead of under the value, and there will be no buttons.
Useful when you want a lot of meters in a small amount of screen space.
Refer to Halmeter Tutorial section for more information.
halmeter can be loaded from a terminal or from AXIS. halmeter is faster than halshow at displaying
values. halmeter has two windows, one to pick the pin, signal, or parameter to monitor and one that
displays the value. Multiple ̀ ̀halmeter ̀ ̀s can be open at the same time. If you use a script to open
multiple ̀ ̀halmeter ̀ ̀s you can set the position of each one with -g X Y relative to the upper left corner
of your screen. For example:
loadusr halmeter pin hm2.0.stepgen.00.velocity-fb -g 0 500

See the man page for more options and the section Halmeter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 306 / 1322

Figure 5.21: Halmeter selection window

Figure 5.22: Halmeter watch window

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 307 / 1322

5.15.3 Halshow

halshow (complete usage description) can be started from the command line to show details for se-
lected components, pins, parameters, signals, functions, and threads of a running HAL. The WATCH
tab provides a continuous display of selected pin, parameters, and signal items. The File menu pro-
vides buttons to save the watch items to a watch list and to load an existing watch list. The watch list
items can also be loaded automatically on startup. For command line usage:
halshow --help
Usage:
halshow [Options] [watchfile]
Options:

--help (this help)
--fformat format_string_for_float
--iformat format_string_for_int

Notes:
Create watchfile in halshow using: ’File/Save Watch List’.
LinuxCNC must be running for standalone usage.

Figure 5.23: Halshow Watch Tab

A watchfile created using the File/Save Watch Listmenu item is formatted as a single line with tokens

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 308 / 1322

”pin+”, ”param+”, ”sig=+”, followed by the appropriate pin, param, or signal name. The token-name
pairs are separated by a space character.
Single Line Watchfile Example
pin+joint.0.pos-hard-limit pin+joint.1.pos-hard-limit sig+estop-loop

A watchfile created using the File/Save Watch List (multiline) menu item is formatted with separate
lines for each item identified with token-name pairs as described above.
Separated Lines Watchfile Example
pin+joint.0.pos-hard-limit
pin+joint.1.pos-hard-limit
sig+estop-loop

When loading a watchfile with the File/Load Watch List menu item, the token-name pairs may appear
as single or multiple lines. Blank lines and lines beginning with a # character are ignored.

5.15.4 Halscope

Halscope is an oscilloscope for the HAL. It lets you capture the value of pins, signals, and parameters
as a function of time. Complete operating instructions should be located here eventually. For now,
refer to section Halscope in the tutorial chapter, which explains the basics.
The halscope ”File” menu selector provides buttons to save a configuration or open a previously
saved configuration. When halscope is terminated, the last configuration is saved in a file named
autosave.halscope.
Configuration files may also be specified when starting halscope from the commandline. Commandline
help (-h) usage:
halscope -h
Usage:
halscope [-h] [-i infile] [-o outfile] [num_samples]

5.15.5 Sim Pin

sim_pin is a command line utility to display and update any number of writable pins, parameters or
signals.
sim_pin Usage
Usage:

sim_pin [Options] name1 [name2 ...] &

Options:
--help (this text)
--title title_string (window title, default: sim_pin)

Note: LinuxCNC (or a standalone HAL application) must be running
A named item can specify a pin, param, or signal
The item must be writable, e.g.:
pin: IN or I/O (and not connected to a signal with a writer)
param: RW
signal: connected to a writable pin

HAL item types bit,s32,u32,float are supported.

When a bit item is specified, a pushbutton is created

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 309 / 1322

to manage the item in one of three manners specified
by radio buttons:

toggle: Toggle value when button pressed
pulse: Pulse item to 1 once when button pressed
hold: Set to 1 while button pressed

The bit pushbutton mode can be specified on the command
line by formatting the item name:

namei/mode=[toggle | pulse | hold]
If the mode begins with an uppercase letter, the radio
buttons for selecting other modes are not shown

For complete information, see the man page:
man sim_pin

sim_pin Example (with LinuxCNC running)
halcmd loadrt mux2 names=example; halcmd net sig_example example.in0
sim_pin example.sel example.in1 sig_example &

Figure 5.24: sim_pin Window

5.15.6 Simulate Probe

simulate_probe is a simple GUI to simulate activation of the pin motion.probe-input. Usage:
simulate_probe &

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 310 / 1322

Figure 5.25: simulate_probe Window

5.15.7 HAL Histogram

hal-histogram is a command line utility to display histograms for HAL pins.
Usage:

hal-histogram --help | -?
or

hal-histogram [Options] [pinname]

Table 5.34: Options:

Option Value Description
--minvalue minvalue minimum bin, default: 0
--binsize binsize binsize, default: 100
--nbins nbins number of bins, default: 50

--logscale 0/1 y axis log scale, default: 1
--text note text display, default: ””
--show show count of undisplayed

nbins, default off
--verbose progress and debug, default

off

Notes:

1. LinuxCNC (or another HAL application) must be running.

2. If no pinname is specified, default is: motion-command-handler.time.

3. This app may be opened for 5 pins.

4. Pintypes float, s32, u32, bit are supported.

5. The pin must be associated with a thread supporting floating point. For a base thread, this may
require using loadrt motmod ... base_thread_fp=1 .

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 311 / 1322

Figure 5.26: hal-histogram Window

5.15.8 Halreport

halreport is a command-line utility that generates a report about HAL connections for a running
LinuxCNC (or other HAL) application. The report shows all signal connections and flags potential
problems. Information included:

1. System description and kernel version.

2. Signals and all connected output, io, and input pins.

3. Each pin’s component_function, thread, and addf-order.

4. Non-realtime component pins having non-ordered functions.

5. Identification of unknown functions for unhandled components.

6. Signals with no output.

7. Signals with no inputs.

8. Functions with no addf.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 312 / 1322

9. Warning tags for components marked as deprecated/obsolete in docs.

10. Real names for pins that use alias names.

The report can be generated from the command line and directed to an output file (or stdout if no
outfilename is specified):
halreport Usage
Usage:
halreport -h | --help (this help)

or
halreport [outfilename]

To generate the report for every LinuxCNC startup, include halreport and an output filename as an
[APPLICATIONS]APP entry in the INI file.
halreport Example
[APPLICATIONS]
APP = halreport /tmp/halreport.txt

The function addf-ordering can be important for servo loops where the sequence of the functions
computed at each servo period is important. Typically, the order is:

1. Read input pins,

2. do the motion command-handler and motion-controller functions,

3. perform pid calculations, and finally

4. write output pins.

For each signal in a critical path, the addf-order of the output pin should be numerically lower than
the addf-order of the critical input pins that it connects to.
For routine signal paths that handle switch inputs, non-realtime pins, etc., the addf-ordering is often
not critical. Moreover, the timing of non-realtime pin value changes cannot be controlled or guaran-
teed at the intervals typically employed for HAL threads.
Example report file excerpts showing a pid loop for a hostmot2 stepgen operated in velocity mode on
a trivkins machine with joint.0 corresponding to the X axis coordinate:
SIG: pos-fb-0
OUT: h.00.position-fb hm2_7i92.0.read servo-thread 001

(=hm2_7i92.0.stepgen.00.position-fb)
IN: X_pid.feedback X_pid.do-pid-calcs servo-thread 004
IN: joint.0.motor-pos-fb motion-command-handler servo-thread 002

.................... motion-controller servo-thread 003
...
SIG: pos-cmd-0
OUT: joint.0.motor-pos-cmd motion-command-handler servo-thread 002

..................... motion-controller servo-thread 003
IN: X_pid.command X_pid.do-pid-calcs servo-thread 004

...
SIG: motor-cmd-0
OUT: X_pid.output X_pid.do-pid-calcs servo-thread 004
IN: h.00.velocity-cmd hm2_7i92.0.write servo-thread 008

(=hm2_7i92.0.stepgen.00.velocity-cmd)

In the example above, the HALFILE uses halcmd aliases to simplify pin names for an hostmot2 FPGA
board with commands like:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 313 / 1322

alias pin hm2_7i92.0.stepgen.00.position-fb h.00.position-fb

Note
Questionable component function detection may occur for

1. unsupported (deprecated) components,

2. user-created components that use multiple functions or unconventional function naming, or

3. GUI-created non-realtime components that lack distinguishing characteristics such as a prefix
based on the GUI program name.

Questionable functions are tagged with a question mark ”?”.

Note
Component pins that cannot be associated with a known thread function report the function as ”Un-
known”.

halreport generates a connections report (without pin types, and current values) for a running HAL
application to aid in designing and verifying connections. This helps with the understanding what the
source of a pin value is. Use this information with applications like halshow, halmeter, halscope or
the halcmd show command in a terminal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 314 / 1322

Chapter 6

Hardware Drivers

6.1 Parallel Port Driver

The hal_parport component is a driver for the traditional PC parallel port. The port has a total of
17 physical pins. The original parallel port divided those pins into three groups: data, control, and
status. The data group consists of 8 output pins, the control group consists of 4 pins, and the status
group consists of 5 input pins.
In the early 1990s, the bidirectional parallel port was introduced, which allows the data group to be
used for output or input. The HAL driver supports the bidirectional port, and allows the user to set
the data group as either input or output. If configured as out, a port provides a total of 12 outputs
and 5 inputs. If configured as in, it provides 4 outputs and 13 inputs.
In some parallel ports, the control group pins are open collectors, which may also be driven low by an
external gate. On a board with open collector control pins. If configured as x, it provides 8 outputs,
and 9 inputs.
In some parallel ports, the control group has push-pull drivers and cannot be used as an input.

HAL and Open Collectors
HAL cannot automatically determine if the xmode bidirectional pins are actually open collectors (OC).
If they are not, they cannot be used as inputs, and attempting to drive them LOW from an external
source can damage the hardware.
To determine whether your port has open collector pins, load hal_parport in x mode. With no device
attached, HAL should read the pin as TRUE. Next, insert a 470 Ω resistor from one of the control pins
to GND. If the resulting voltage on the control pin is close to 0 V, and HAL now reads the pin as FALSE,
then you have an OC port. If the resulting voltage is far from 0 V, or HAL does not read the pin as
FALSE, then your port cannot be used in x mode.
The external hardware that drives the control pins should also use open collector gates, e.g. 74LS05.
On some computers, BIOS settings may affect whether xmode can be used. SPPmode is most likely
to work.

No other combinations are supported, and a port cannot be changed from input to output once the
driver is installed.
The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports are
numbered starting at zero.

6.1.1 Loading

The hal_parport driver is a real time component so it must be loaded into the real time thread with
loadrt. The configuration string describes the parallel ports to be used, and (optionally) their types.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 315 / 1322

If the configuration string does not describe at least one port, it is an error.
loadrt hal_parport cfg=”port [type] [port [type] ...]”

Specifying the Port Numbers below 16 refer to parallel ports detected by the system. This is the
simplest way to configure the hal_parport driver and cooperates with the Linux parport_pc driver if
it is loaded. A port of 0 is the first parallel port detected on the system, 1 is the next and so on.
Basic configuration This will use the first parallel port Linux detects:
loadrt hal_parport cfg=”0”

Using the Port Address Instead, the port address may be specified using the hex notation with the
0x prefix.
The config string represents the hexadecimal address of the port, optionally followed by a direction,
all repeated for each port. The directions are in, out, or x, and determine the direction of the physical
pins 2 to 9 of the D-Sub 25 connector. If the direction is not specified, the data group will by default
be configured as outputs. For example:
Command to load the real-time module hal_partport with the additional <config-string> to
specify the port at which the parallel-port card is expected.
loadrt hal_parport cfg=”0x278 0x378 in 0x20A0 out”

This example installs the drivers for a port 0x0278, with pins 2 to 9 as outputs (by default, since
neither in nor out is specified), a port 0x0378, with pins 2 to 9 as inputs and a 0x20A0 port, with pins
2 to 9 explicitly specified as outputs. Note that you must know the base address of the parallel ports
to configure the drivers correctly. For ISA bus ports, this is usually not a problem, since the ports
are almost always at a well-known address, such as 0x278 or 0x378 which are typically configured
in the BIOS. The addresses of PCI bus cards are usually found with lspci -v in an I/O ports line, or
in a kernel message after running sudo modprobe -a parport_pc. There is no default address, so if
<config-string> does not contain at least one address, it is an error.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 316 / 1322

Figure 6.1: Parport block diagram

Type For each parallel port handled by the hal_parport driver, a type can optionally be specified. The
type is one of in, out, epp, or x.

Table 6.1: Parallel Port Direction

Pin in out/epp x
1 out out in
2 in out out
3 in out out
4 in out out
5 in out out
6 in out out
7 in out out
8 in out out
9 in out out

10 in in in
11 in in in
12 in in in
13 in in in

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 317 / 1322

Table 6.1: (continued)

Pin in out/epp x
14 out out in
15 in in in
16 out out in
17 out out in

If the type is not specified, the default is out.
A type of epp is the same as out, but the hal_parport driver requests that the port switch into EPP
mode. The hal_parport driver does not use the EPP bus protocol, but on some systems EPP mode
changes the electrical characteristics of the port in a way that may make some marginal hardware
work better. The Gecko G540’s charge pump is known to require this on some parallel ports.
See the Note above about mode x.
Example with two parallel ports This will enable two system-detected parallel ports, the first in
output mode and the second in input mode:
loadrt hal_parport cfg=”0 out 1 in”

Parport R/W Functions You must also direct LinuxCNC to run the read and write functions.
addf parport.0.read base-thread
addf parport.0.write base-thread

6.1.2 PCI Port Address

One good PCI parport card is made with the Netmos 9815 chipset. It has good +5 V signals, and can
come in a single or dual ports.
To find the I/O addresses for PCI cards open a terminal window and use the list pci command:
lspci -v

Look for the entry with ”Netmos” in it. Example of a 2-port card:
0000:01:0a.0 Communication controller: \

Netmos Technology PCI 9815 Multi-I/O Controller (rev 01)
Subsystem: LSI Logic / Symbios Logic 2POS (2 port parallel adapter)
Flags: medium devsel, IRQ 5
I/O ports at b800 [size=8]
I/O ports at bc00 [size=8]
I/O ports at c000 [size=8]
I/O ports at c400 [size=8]
I/O ports at c800 [size=8]
I/O ports at cc00 [size=16]

From experimentation, I’ve found the first port (the on-card port) uses the third address listed (c000),
and the second port (the one that attaches with a ribbon cable) uses the first address listed (b800).
The following example shows the onboard parallel port and a PCI parallel port using the default out
direction.
loadrt hal_parport cfg=”0x378 0xc000”

Please note that your values will differ. The Netmos cards are Plug-N-Play, and might change their
settings depending on which slot you put them into, so if you like to get under the hood and re-arrange
things, be sure to check these values before you start LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 318 / 1322

6.1.3 Pins

• parport.<p>.pin- _̀_<n>__-out ̀ (bit) Drives a physical output pin.

• parport.<p>.pin- _̀_<n>__-in ̀ (bit) Tracks a physical input pin.

• parport.<p>.pin- _̀_<n>__-in-not ̀ (bit) Tracks a physical input pin, but inverted.

For each pin, <p> is the port number, and <n> is the physical pin number in the 25 pin D-shell
connector.
For each physical output pin, the driver creates a single HAL pin, for example: parport.0.pin-14-out.
For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin-12-in and
parport.0.pin-12-in-not.
The -in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The -in-not
HAL pin is inverted and is FALSE if the physical pin is high.

6.1.4 Parameters

• parport. _̀_<p>__.pin-__<n>__-out-invert ̀ (bit) Inverts an output pin.

• parport. _̀_<p>__.pin-__<n>__-out-reset ̀ (bit) (only for -out pins) TRUE if this pin should be reset
when the -reset function is executed.

• parport. _̀_<p>__.reset-time ̀ (U32) The time (in nanoseconds) between a pin is set by -write and
reset by the -reset function if it is enabled.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL -out pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL -out pin TRUE will drive the physical pin low.

6.1.5 Functions

• parport. _̀_<p>__.read ̀ (funct) Reads physical input pins of port number <p> and updates HAL
-in and -in-not pins.

• parport.read-all (funct) Reads physical input pins of all ports and updates HAL -in and -in-not
pins.

• parport. _̀_<p>__.write ̀ (funct) Reads HAL -out pins of port number <p> and updates that port’s
physical output pins.

• parport.write-all (funct) Reads HAL -out pins of all ports and updates all physical output pins.

• parport. _̀_<p>__.reset ̀ (funct) Waits until reset-time has elapsed since the associated write,
then resets pins to values indicated by -out-invert and -out-invert settings. reset must be later
in the same thread as write. If -reset is TRUE, then the reset function will set the pin to the value
of -out-invert. This can be used in conjunction with stepgen’s doublefreq to produce one step per
period. The stepgen stepspace for that pin must be set to 0 to enable doublefreq.

The individual functions are provided for situations where one port needs to be updated in a very fast
thread, but other ports can be updated in a slower thread to save CPU time. It is probably not a good
idea to use both an -all function and an individual function at the same time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 319 / 1322

6.1.6 Common problems

If loading the module reports
insmod: error inserting ’/home/jepler/emc2/rtlib/hal_parport.ko’:
-1 Device or resource busy

then ensure that the standard kernel module parport_pc is not loaded 1 and that no other device in
the system has claimed the I/O ports.
If the module loads but does not appear to function, then the port address is incorrect.

6.1.7 Using DoubleStep

To setup DoubleStep on the parallel port you must add the function parport.n.reset after parport.n.write
and configure stepspace to 0 and the reset time wanted. So that step can be asserted on every period in
HAL and then toggled off by parport after being asserted for time specified by parport. _̀_n__.reset-
time ̀.
For example:
loadrt hal_parport cfg=”0x378 out”
setp parport.0.reset-time 5000
loadrt stepgen step_type=0,0,0
addf parport.0.read base-thread
addf stepgen.make-pulses base-thread
addf parport.0.write base-thread
addf parport.0.reset base-thread
addf stepgen.capture-position servo-thread
...
setp stepgen.0.steplen 1
setp stepgen.0.stepspace 0

More information on DoubleStep can be found on the wiki.

6.1.8 probe_parport

In today’s PCs, parallel ports may require a plug and play (PNP) configuration before they can be
used. The kernel module probe_parport configures all PNP ports present. It must be loaded before
hal_parport. On machines without a PNP port, it can be loaded but will have no effect.

6.1.8.1 Installing probe_parport

If, when parport_pc kernel module is loaded with command:
sudo modprobe -a parport_pc; sudo rmmod parport_pc

Linux kernel outputs a message similar to:
parport: PnPBIOS parport detected.

Then use of this module will probably be necessary.
Finally, HAL parport components should be loaded:
loadrt probe_parport
loadrt hal_parport ...

1In the LinuxCNC packages for Ubuntu, the file /etc/modprobe.d/emc2 generally prevents parport_pc from being automat-
ically loaded.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?TweakingSoftwareStepGeneration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 320 / 1322

6.2 AX5214H Driver

The Axiom Measurement & Control AX5214H is a 48 channel digital I/O board. It plugs into an ISA
bus, and resembles a pair of 8255 chips. In fact it may be a pair of 8255 chips, but I’m not sure.
If/when someone starts a driver for an 8255 they should look at the ax5214 code, much of the work is
already done.

6.2.1 Installing

loadrt hal_ax5214h cfg=”<config-string>”

The config string consists of a hex port address, followed by an 8 character string of ”I” and ”O” which
sets groups of pins as inputs and outputs. The first two character set the direction of the first two 8
bit blocks of pins (0-7 and 8-15). The next two set blocks of 4 pins (16-19 and 20-23). The pattern
then repeats, two more blocks of 8 bits (24-31 and 32-39) and two blocks of 4 bits (40-43 and 44-47).
If more than one board is installed, the data for the second board follows the first. As an example, the
string ”0x220 IIIOIIOO 0x300 OIOOIOIO” installs drivers for two boards. The first board is at address
0x220, and has 36 inputs (0-19 and 24-39) and 12 outputs (20-23 and 40-47). The second board is
at address 0x300, and has 20 inputs (8-15, 24-31, and 40-43) and 28 outputs (0-7. 16-23, 32-39, and
44-47). Up to 8 boards may be used in one system.

6.2.2 Pins

• (bit) ax5214.<boardnum>.out-<pinnum> — Drives a physical output pin.

• (bit) ax5214.<boardnum>.in-<pinnum> — Tracks a physical input pin.

• (bit) ax5214.<boardnum>.in-<pinnum>-not — Tracks a physical input pin, inverted.

For each pin, <boardnum> is the board number (starts at zero), and <pinnum> is the I/O channel
number (0 to 47).
Note that the driver assumes active LOW signals. This is so that modules such as OPTO-22 will work
correctly (TRUE means output ON, or input energized). If the signals are being used directly without
buffering or isolation the inversion needs to be accounted for. The in- HAL pin is TRUE if the physical
pin is low (OPTO-22 module energized), and FALSE if the physical pin is high (OPTO-22 module off).
The in-<pinnum>-not HAL pin is inverted — it is FALSE if the physical pin is low (OPTO-22 module
energized). By connecting a signal to one or the other, the user can determine the state of the input.

6.2.3 Parameters

• (bit) ax5214.<boardnum>.out-<pinnum>-invert — Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is
FALSE, setting the HAL out- pin TRUE drives the physical pin low, turning ON an attached OPTO-22
module, and FALSE drives it high, turning OFF the OPTO-22 module. If -invert is TRUE, then setting
the HAL out- pin TRUE will drive the physical pin high and turn the module OFF.

6.2.4 Functions

• (funct) ax5214.<boardnum>.read — Reads all digital inputs on one board.

• (funct) ax5214.<boardnum>.write — Writes all digital outputs on one board.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 321 / 1322

6.3 General Mechatronics Driver

General Mechatronics GM6-PCI card based motion control system
For detailed description, please refer to the System integration manual.
The GM6-PCI motion control card is based on an FPGA and a PCI bridge interface ASIC. A small
automated manufacturing cell can be controlled, with a short time system integration procedure. The
following figure demonstrating the typical connection of devices related to the control system:

• It can control up to six axis, each can be stepper or CAN bus interface or analogue servo.

• GPIO: Four time eight I/O pins are placed on standard flat cable headers.

• RS485 I/O expander modules: RS485 bus was designed for interfacing with compact DIN-rail
mounted expander modules. An 8-channel digital input, an 8-channel relay output and an analogue
I/O (4x +/-10 Volts output and 8x +/-5 Volts input) modules are available now. Up to 16 modules
can be connected to the bus altogether.

• 20 optically isolated input pins: Six times three for the direct connection of two end switch and one
homing sensor for each joint. And additionally, two optically isolated E-stop inputs.

Installing:
loadrt hal_gm

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel
log, which can be viewed with dmesg.
Up to 3 boards may be used in one system.
The following connectors can be found on the GM6-PCI card:

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 322 / 1322

Figure 6.2: GM6-PCI card connectors and LEDs

6.3.1 I/O connectors

Figure 6.3: Pin numbering of GPIO connectors

Table 6.2: Pinout of GPIO connectors

9 7 5 3 1
IOx/7 IOx/5 IOx/3 IOx/1 VCC

10 8 6 4 2
GND IOx/6 IOx/4 IOx/2 IOx/0

Each pin can be configured as digital input or output. GM6-PCI motion control card has 4 general
purpose I/O (GPIO) connectors, with eight configurable I/O on each. Every GPIO pin and parameter
name begins as follows:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 323 / 1322

gm.<card_no>.gpio.<gpio_con_no>

where <gpio_con_no> is from 0 to 3.
State of the first pin of the first GPIO connector on the GM6-PCI card.
gm.0.gpio.0.in-0

HAL pins are updated by function
gm.<card_no>.read

6.3.1.1 Pins

Table 6.4: GPIO pins

Pins Type and
direction

Pin description

.in-<0-7> (bit, Out) Input pin

.in-not-<0-7> (bit, Out) Negated input pin

.out-<0-7> (bit, In) Output pin. Used only when GPIO is
set to output.

6.3.1.2 Parameters

Table 6.5: GPIO parameters

Pins Type and
direction

Parameter description

.is-out-<0-7> (bit, R/W) When True, the corresponding GPIO is
set to totem-pole output, other wise
set to high impedance input.

.invert-out-<0-7> (bit, R/W) When True, pin value will be inverted.
Used when pin is configured as output.

6.3.2 Axis connectors

Figure 6.4: Pin numbering of axis connectors

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 324 / 1322

Table 6.6: Pinout of axis connectors

1 Encoder A
2 +5 Volt (PC)
3 Encoder B
4 Encoder Index
5 Fault
6 Power Enabled
7 Step/CCW/B
8 Direction/CW/A
9 Ground (PC)

10 DAC serial line

6.3.2.1 Axis interface modules

Small sized DIN rail mounted interface modules gives easy way of connecting different types of servo
modules to the axis connectors. Seven different system configurations are presented in the System in-
tegration manual for evaluating typical applications. Also the detailed description of the Axis modules
can be found in the System integration manual.
For evaluating the appropriate servo-drive structure the modules have to be connected as the following
block diagram shows:

Figure 6.5: Servo axis interfaces

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 325 / 1322

6.3.2.2 Encoder

The GM6-PCI motion control card has six encoder modules. Each encoder module has three channels:

• Channel-A

• Channel-B

• Channel-I (index)

It is able to count quadrature encoder signals or step/dir signals. Each encoder module is connected
to the inputs of the corresponding RJ50 axis connector.
Every encoder pin and parameter name begins as follows:
gm.<card_no>.encoder.<axis_no>

where <axis_no> is from 0 to 5. For example, gm.0.encoder.0.position refers to the position of
encoder module of axis 0.
The GM6-PCI card counts the encoder signal independently from LinuxCNC. HAL pins are updated
by function:
gm.<card_no>.read

Table 6.7: Encoder pins

Pins Type and
direction

Pin description

.reset (bit, In) When True, resets counts and position
to zero.

.rawcounts (s32, Out) The raw count is the counts, but
unaffected by reset or the index pulse.

.counts (s32, Out) Position in encoder counts.

.position (float, Out) Position in scaled units
(=.counts/.position-scale).

.index-enabled (bit, IO) When True, counts and position are
rounded or reset (depends on
index-mode) on next rising edge of
channel-I. Every time position is reset
because of Index, the index-enabled
pin is set to 0 and remains 0 until
connected HAL pin does not set it.

.velocity (float, Out) Velocity in scaled units per second.
GM encoder uses high frequency
hardware timer to measure time
between encoder pulses in order to
calculate velocity. It greatly reduces
quantization noise as compared to
simply differentiating the position
output. When the measured velocity is
below min-speed-estimate, the
velocity output is 0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 326 / 1322

Table 6.8: Encoder parameters

Parameters Type and
Read/Write

Parameter description

.counter-mode (bit, R/W) When True, the counter counts each
rising edge of the channel-A input to
the direction determined by
channel-B. This is useful for counting
the output of a single channel
(non-quadrature) or step/dir signal
sensor. When false, it counts in
quadrature mode.

.index-mode (bit, R/W) When True and .index-enabled is also
true, .counts and .position are
rounded (based on .counts-per-rev) at
rising edge of channel-I. This is useful
to correct few pulses error caused by
noise. In round mode, it is essential to
set .counts-per-rev parameter
correctly. When .index-mode is False
and .index-enabled is true, .counts and
.position are reset at channel-I pulse.

.counts-per-rev (s32, R/V) Determine how many counts are
between two index pulses. It is used
only in round mode, so when both
.index-enabled and .index-mode
parameters are True. GM encoder
process encoder signal in 4x mode, so
for example in case of a 500 CPR
encoder it should be set to 2000. This
parameter can be easily measured by
setting .index-enabled True and
.index-mode False (so that .counts
resets at channel-I pulse), than move
axis by hand and see the maximum
magnitude of .counts pin in halmeter.

.index-invert (bit, R/W) When True, channel-I event (reset or
round) occur on falling edge of
channel-I signal, otherwise on rising
edge.

.min-speed-estimate(float, R/W) Determine the minimum measured
velocity magnitude at which .velocity
will be set as nonzero. Setting this
parameter too low will cause it to take
a long time for velocity to go to zero
after encoder pulses have stopped
arriving.

.position-scale (float, R/W) Scale in counts per length unit.
.position=.counts/.position-scale. For
example, if position-scale is 2000, then
1000 counts of the encoder will
produce a position of 0.5 units.

Setting encoder module of axis 0 to receive 500 CPR quadrature encoder signal and use
reset to round position.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 327 / 1322

setp gm.0.encoder.0.counter-mode 0 # 0: quad, 1: stepDir
setp gm.0.encoder.0.index-mode 1 # 0: reset pos at index, 1:round pos at index
setp gm.0.encoder.0.counts-per-rev 2000 # GM process encoder in 4x mode, 4x500=2000
setp gm.0.encoder.0.index-invert 0 #
setp gm.0.encoder.0.min-speed-estimate 0.1 # in position unit/s
setp gm.0.encoder.0.position-scale 20000 # 10 encoder rev cause the machine to move one ←↩

position unit (10x2000)

Connect encoder position to LinuxCNC joint position feedback
net Xpos-fb gm.0.encoder.0.position => joint.0.motor-pos-fb

6.3.2.3 StepGen module

The GM6-PCI motion control card has six StepGen modules, one for each joint. Each module has two
output signals. It can produce Step/Direction, Up/Down or Quadrature (A/B) pulses. Each StepGen
module is connected to the pins of the corresponding RJ50 axis connector.
Every StepGen pin and parameter name begins as follows:
gm.<card_no>.stepgen.<axis_no>

where <axis_no> is from 0 to 5. For example, gm.0.stepgen.0.position-cmd refers to the position
command of StepGen module of axis 0 on card 0.
The GM6-PCI card generates step pulses independently from LinuxCNC. HAL pins are updated by
function
gm.<card_no>.write

Table 6.9: StepGen module pins

Pins Type and
direction

Pin description

.enable (bit, In) StepGen produces pulses only when this pin
is true.

.count-fb (s32, Out) Position feedback in counts unit.

.position-fb (float, Out) Position feedback in position unit.

.position-cmd (float, In) Commanded position in position units. Used
in position mode only.

.velocity-cmd (float, In) Commanded velocity in position units per
second. Used in velocity mode only.

Table 6.10: StepGen module parameters

Parameters Type and
Read/Write

Parameter description

.step-type (u32, R/W) When 0, module produces Step/Dir signal.
When 1, it produces Up/Down step signals.
And when it is 2, it produces quadrature
output signals.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 328 / 1322

Table 6.10: (continued)

Parameters Type and
Read/Write

Parameter description

.control-type (bit, R/W) When True, .velocity-cmd is used as
reference and velocityvcontrol calculate
pulse rate output. When False,
.position-cmd is used as reference and
position control calculate pulse rate output.

.invert-step1 (bit, R/W) Invert the output of channel 1 (Step signal
in StepDir mode)

.invert-step2 (bit, R/W) Invert the output of channel 2 (Dir signal in
StepDir mode)

.maxvel (float, R/W) Maximum velocity in position units per
second. If it is set to 0.0, .maxvel parameter
is ignored.

.maxaccel (float, R/W) Maximum acceleration in position units per
second squared. mf it is set to 0.0,
.maxaccel parameter is ignored.

.position-scale (float, R/W) Scale in steps per length unit.

.steplen (u32, R/W) Length of step pulse in nano-seconds.

.stepspace (u32, R/W) Minimum time between two step pulses in
nano-seconds.

.dirdelay (u32, R/W) Minimum time between step pulse and
direction change in nanoseconds.

For evaluating the appropriate values see the timing diagrams below:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 329 / 1322

Figure 6.6: Reference signal timing diagrams

Setting StepGen module of axis 0 to generate 1000 step pulse per position unit
setp gm.0.stepgen.0.step-type 0 # 0:stepDir, 1:UpDown, 2:Quad
setp gm.0.stepgen.0.control-type 0 # 0:Pos. control, 1:Vel. Control
setp gm.0.stepgen.0.invert-step1 0
setp gm.0.stepgen.0.invert-step2 0
setp gm.0.stepgen.0.maxvel 0 # do not set maxvel for step

generator, let interpolator control it.
setp gm.0.stepgen.0.maxaccel 0 # do not set max acceleration for

step generator, let interpolator control it.
setp gm.0.stepgen.0.position-scale 1000 # 1000 step/position unit
setp gm.0.stepgen.0.steplen 1000 # 1000 ns = 1 µs
setp gm.0.stepgen.0.stepspace1000 # 1000 ns = 1 µs

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 330 / 1322

setp gm.0.stepgen.0.dirdelay 2000 # 2000 ns = 2 µs

Connect StepGen to axis 0 position reference and enable pins
net Xpos-cmd joint.0.motor-pos-cmd => gm.0.stepgen.0.position-cmd
net Xen joint.0.amp-enable-out => gm.0.stepgen.0.enable

6.3.2.4 Enable and Fault signals

The GM6-PCI motion control card has one enable output and one fault input HAL pins, both are
connected to each RJ50 axis connector and to the CAN connector.
HAL pins are updated by function:
gm.<card_no>.read

Table 6.11: Enable and Fault signal pins

Pins Type and
direction

Pin description

gm.<card_no>.power-
enable

(bit, In) If this pin is True,
* and Watch Dog Timer is not expired
* and there is no power fault
then power enable pins of axis- and
CAN connectors are set to high,
otherwise set to low.

gm.<card_no>.power-
fault

(bit, Out) Power fault input.

6.3.2.5 Axis DAC

The GM6-PCI motion control card has six serial axis DAC driver modules, one for each joint. Each
module is connected to the pin of the corresponding RJ50 axis connector. Every axis DAC pin and
parameter name begins as follows:
gm.<card_no>.dac.<axis_no>

where <axis_no> is from 0 to 5. For example, gm.0.dac.0.value refers to the output voltage of DAC
module of axis 0.
HAL pins are updated by function:
gm.<card_no>.write

Table 6.12: Axis DAC pins

Pins Type and
direction

Pin description

.enable (bit, In) Enable DAC output. When enable is
false, DAC output is 0.0 V.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 331 / 1322

Table 6.12: (continued)

Pins Type and
direction

Pin description

.value (float, In) Value of DAC output in Volts.

Table 6.13: Axis DAC parameters

Parameters Type and
direction

Parameter description

.offset (float, R/W) Offset is added to the value before the
hardware is updated.

.high-limit (float, R/W) Maximum output voltage of the
hardware in Volts.

.low-limit (float, R/W) Minimum output voltage of the
hardware in Volts.

.invert-serial (float, R/W) GM6-PCI card is communicating with
DAC hardware via fast serial
communication to highly reduce time
delay compared to PWM. DAC module
is recommended to be isolated which
is negating serial communication line.
In case of isolation, leave this
parameter to default (0), while in case
of none-isolation, set this parameter to
1.

6.3.3 CAN-bus servo amplifiers

The GM6-PCI motion control card has CAN module to drive CAN servo amplifiers. Implementation of
higher level protocols like CANopen is further development. Currently GM produced power amplifiers
has upper level driver which export pins and parameters to HAL. They receive position reference and
provide encoder feedback via CAN bus.
The frames are standard (11 bit) ID frames, with 4 byte data length. The baud rate is 1 Mbit/s.
The position command IDs for axis 0..5 are 0x10..0x15. The position feedback IDs for axis 0..5 are
0x20..0x25.
These configuration can be changed with the modification of hal_gm.c and recompiling LinuxCNC.
Every CAN pin and parameter name begins as follows:
gm.<card_no>.can-gm.<axis_no>

where <axis_no> is from 0 to 5. For example, gm.0.can-gm.0.position refers to the output position
of axis 0 in position units.
HAL pins are updated by function:
gm.<card_no>.write

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 332 / 1322

6.3.3.1 Pins

Table 6.14: CAN module pins

Pins Type and
direction

Pin description

.enable (bit, In) Enable sending position references.

.position-cmd (float, In) Commanded position in position units.

.position-fb (float, In) Feed back position in position units.

6.3.3.2 Parameters

Table 6.15: CAN module parameters

Parameters Type and
direction

Parameter description

.position-scale (float, R/W) Scale in per length unit.

6.3.4 Watchdog timer

Watchdog timer resets at function:
gm.<card_no>.read

6.3.4.1 Pins

Table 6.16: Watchdog pins

Pins Type and
direction

Pin description

gm.<card_no>.watchdog-expired(bit, Out) Indicates that watchdog timer is expired.

Watchdog timer overrun causes the set of power-enable to low in hardware.

6.3.4.2 Parameters

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 333 / 1322

Table 6.17: Watchdog parameters

Parameters Type and
direction

Parameter description

gm.<card_no>.watchdog-enable(bit, R/W) Enables watchdog timer.
It is strongly recommended to enable the
watchdog timer, because it can disable all
the servo amplifiers by pulling down all
enable signals in case of a PC error.

gm.<card_no>.watchdog-timeout-ns(float, R/W) Time interval in within the
gm.<card_no>.read function must be
executed. The gm.<card_no>.read is
typically added to servo-thread, so watch
timeout is typically set to 3 times of the
servo period.

6.3.5 End-, homing- and E-stop switches

Figure 6.7: Pin numbering of homing & end switch connector

Table 6.18: End- and homing switch connector pinout

25 23 21 19 17 15 13 11 9 7 5 3 1

GND 1/End- 2/End+ 2/Hom-
ing

3/End- 4/End+ 4/Hom-
ing

5/End- 6/End+ 6/Hom-
ing

E-
Stop

2
V+

(Ext.)

26 24 22 20 18 16 14 12 10 8 6 4 2

GND 1/End+ 1/Hom-
ing

2/End- 3/End+ 3/Hom-
ing

4/End- 5/End+ 5/Hom-
ing

6/End- E-
Stop

1
V+

(Ext.)

The GM6-PCI motion control card has two limit- and one homing switch input for each joint. All the
names of these pins begin as follows:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 334 / 1322

gm.<card_no>.joint.<axis_no>

where <axis_no> is from 0 to 5. For example, gm.0.joint.0.home-sw-in indicates the state of the
axis 0 home switch.
HAL pins are updated by function:
gm.<card_no>.read

6.3.5.1 Pins

Table 6.20: End- and homing switch pins

Pins Type and
direction

Pin description

.home-sw-in (bit, Out) Home switch input

.home-sw-in-not (bit, Out) Negated home switch input

.neg-lim-sw-in (bit, Out) Negative limit switch input

.neg-lim-sw-in-not (bit, Out) Negated negative limit switch input

.pos-lim-sw-in (bit, Out) Positive limit switch input

.pos-lim-sw-in-not (bit, Out) Negated positive limit switch input

6.3.5.2 Parameters

Table 6.21: E-stop switch parameters

Parameters Type and
direction

Parameter description

gm.0.estop.0.in (bit, Out) Estop 0 input
gm.0.estop.0.in-not (bit, Out) Negated Estop 0 input
gm.0.estop.1.in (bit, Out) Estop 1 input
gm.0.estop.1.in-not (bit, Out) Negated Estop 1 input

6.3.6 Status LEDs

6.3.6.1 CAN

Color: Orange

• Blink, during data communication.

• On, when any of the buffers are full - communication error.

• Off, when no data communication.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 335 / 1322

6.3.6.2 RS485

Color: Orange

• Blink, during initialization of modules on the bus

• On, when the data communication is up between all initialized modules.

• Off, when any of the initialized modules dropped off because of an error.

6.3.6.3 EMC

Color: White

• Blink, when LinuxCNC is running.

• Otherwise off.

6.3.6.4 Boot

Color: Green

• On, when system booted successfully.

• Otherwise off.

6.3.6.5 Error

Color: Red

• Off, when there is no fault in the system.

• Blink, when PCI communication error.

• On, when watchdog timer overflowed.

6.3.7 RS485 I/O expander modules

These modules were developed for expanding the I/O and function capability along an RS485 line of
the GM6-PCI motion control card.
Available module types:

• 8-channel relay output module - gives eight NO-NC relay output on a three pole terminal connector
for each channel.

• 8-channel digital input module - gives eight optical isolated digital input pins.

• 8 channel ADC and 4-channel DAC module - gives four digital-to-analogue converter outputs and
eight analogue-to-digital inputs. This module is also optically isolated from the GM6-PCI card.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 336 / 1322

Automatic node recognizing Each node connected to the bus was recognized by the GM6-PCI card
automatically. During starting LinuxCNC, the driver export pins and parameters of all available mod-
ules automatically.
Fault handling If a module does not answer regularly the GM6-PCI card drops down the module. If
a module with output do not gets data with correct CRC regularly, the module switch to error state
(green LED blinking), and turns all outputs to error state.
Connecting the nodes The modules on the bus have to be connected in serial topology, with termi-
nation resistors on the end. The start of the topology is the PCI card, and the end is the last module.

Figure 6.8: Connecting the RS485 nodes to the GM6-PCI card

Addressing Each node on the bus has a 4 bit unique address that can be set with a red DIP switch.
Status LED A green LED indicates the status of the module:

• Blink, when the module is only powered, but not jet identified, or when module is dropped down.

• Off, during identification (computer is on, but LinuxCNC not started)

• On, when it communicates continuously.

6.3.7.1 Relay output module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:
gm.<card_no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:
gm.<card_no>.rs485.<module ID>

where <module ID> is from 00 to 15.

Table 6.22: Relay output module pins

Pins Type and
direction

Pin description

.relay-<0-7> (bit, Out) Output pin for relay

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 337 / 1322

Table 6.23: Relay output module parameters

Parameters Type and
direction

Parameter description

.invert-relay-<0-7> (bit, R/W) Negate relay output pin

HAL example
gm.0.rs485.0.relay-0 # First relay of the node.

gm.0 # Identifies the first GM6-PCI motion control card (PCI card ←↩
address = 0)

.rs485.0 # Selects node with address 0 on the RS485 bus
.relay-0 # Selects the first relay

6.3.7.2 Digital input module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:
gm.<card_no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:
gm.<card_no>.rs485.<module ID>

where <module ID> is from 00 to 15.

Table 6.24: Digital input output module pins

Pins Type and
direction

Pin description

.in-<0-7> (bit, Out) Input pin

.in-not-<0-7> (bit, Out) Negated input pin

HAL example
gm.0.rs485.0.in-0 # First input of the node.

gm.0 # Identifies the first GM6-PCI motion control card (PCI card address ←↩
= 0)

.rs485.0 # Selects node with address 0 on the RS485 bus
.in-0 # Selects the first digital input module

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 338 / 1322

6.3.7.3 DAC & ADC module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:
gm.<card_no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:
gm.<card_no>.rs485.<module ID>

where <module ID> is from 00 to 15.

Table 6.25: DAC & ADC module pins

Pins Type and
direction

Pin description

.adc-<0-7> (float, Out) Value of ADC input in Volts.

.dac-enable-<0-3> (bit, In) Enable DAC output. When enable is false then
DAC output is set to 0.0 V.

.dac-<0-3> (float, In) Value of DAC output in Volts.

Table 6.26: DAC & ADC module parameters

Parameters Type and
direction

Parameter description

.adc-scale-<0-7> (float, R/W) The input voltage will be multiplied by scale
before being output to .adc- pin.

.adc-offset-<0-7> (float, R/W) Offset is subtracted from the hardware input
voltage after the scale multiplier has been
applied.

.dac-offset-<0-3> (float, R/W) Offset is added to the value before the hardware
is updated.

.dac-high-limit-<0-3> (float, R/W) Maximum output voltage of the hardware in Volts.

.dac-low-limit-<0-3> (float, R/W) Minimum output voltage of the hardware in Volts.

HAL example
gm.0.rs485.0.adc-0 # First analogue channel of the node.

gm.0 # Identifies the first GM6-PCI motion control card (PCI card address ←↩
= 0)

.rs485.0 # Selects node with address 0 on the RS485 bus
.adc-0 # Selects the first analogue input of the module

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 339 / 1322

6.3.7.4 Teach Pendant module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:
gm.<card_no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:
gm.<card_no>.rs485.<module ID>

where <module ID> is from 00 to 15. Note that on the Teach Pendant module it cannot be changed,
and pre-programmed as zero. Upon request it can be delivered with firmware pre-programmed dif-
ferent ID.

Table 6.27: Teach Pendant module pins

Pins Type and
direction

Pin description

.adc-<0-5> (float, Out) Value of ADC input in Volts.

.enc-reset (bit, In) When True, resets counts and position to zero.

.enc-counts (s32, Out) Position in encoder counts.

.enc-rawcounts (s32, Out) The raw count is the counts, but unaffected by
reset.

.enc-position (float, Out) Position in scaled units
(=.enc-counts/.enc-position-scale).

.in-<0-7> (bit, Out) Input pin

.in-not-<0-7> (bit, Out) Negated input pin

Table 6.28: Teach Pendant module parameters

Parameters Type and
direction

Parameter description

.adc-scale-<0-5> (float, R/W) The input voltage will be multiplied by scale
before being output to .adc- pin.

.adc-offset-<0-5> (float, R/W) Offset is subtracted from the hardware input
voltage after the scale multiplier has been
applied.

.enc-position-scale (float, R/W) Scale in per length unit.

HAL example
gm.0.rs485.0.adc-0 # First analogue channel of the node.

gm.0 # Identifies the first GM6-PCI motion control card (PCI card address ←↩
= 0)

.rs485.0 # Selects node with address 0 on the RS485 bus
.adc-0 # Selects the first analogue input of the module

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 340 / 1322

6.3.8 Errata

6.3.8.1 GM6-PCI card Errata

The revision number in this section refers to the revision of the GM6-PCI card device.
Rev. 1.2

• Error: The PCI card do not boot, when Axis 1. END B switch is active (low). Found on November
16, 2013.

• Reason: This switch is connected to a boot setting pin of FPGA

• Problem fix/workaround: Use other switch pin, or connect only normally open switch to this switch
input pin.

6.4 GS2 VFD Driver

This is a non-realtime HAL program for the GS2 series of VFDs at Automation Direct. 2

This component is loaded using the halcmd ”loadusr” command:
loadusr -Wn spindle-vfd gs2_vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component gs2_vfd, named spindle-vfd.
The HAL loadusr command is described in the loadusr chapter.

6.4.1 Command Line Options

• -b or --bits <n> (default: 8) Set number of data bits to n, where n must be from 5 to 8 inclusive.

• -d or --device <path> (default: /dev/ttyS0) Set the file path to the serial device node to use.

• -g or --debug Turn on debugging messages. This will also set the verbose flag. Debug mode will
cause all modbus messages to be printed in hex on the terminal.

• -n or --name <string> (default: gs2_vfd) Set the name of the HAL module. The HAL comp name will
be set to <string>, and all pin and parameter names will begin with <string>.

• -p or --parity {even,odd,none} (default: odd) Set serial parity to even, odd, or none.

• -r or --rate <n> (default: 38400) Set baud rate to n. It is an error if the rate is not one of the
following: 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.

• -s or --stopbits {1,2} (default: 1) Set serial stop bits to 1 or 2

• -t or --target <n> (default: 1) Set MODBUS target (slave) number. This must match the device
number you set on the GS2.

• -v or --verbose Turn on debug messages.

• -A or --accel-seconds <n> (default: 10.0) Seconds to accelerate the spindle from 0 to max. RPM.

• -D or --decel-seconds <n> (default: 0.0) Seconds to decelerate the spindle from max. RPM to 0. If
set to 0.0 the spindle will be allowed to coast to a stop without controlled deceleration.
2In Europe the equivalent can be found under the brand name Omron.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 341 / 1322

• -R or --braking-resistor This argument should be used when a braking resistor is installed on the
GS2 VFD (see Appendix A of the GS2 manual). It disables deceleration over-voltage stall prevention
(see GS2 modbus Parameter 6.05), allowing the VFD to keep braking even in situations where the
motor is regenerating high voltage. The regenerated voltage gets safely dumped into the braking
resistor.

Note
That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

6.4.2 Pins

With <name> being ”gs2_vfd” or the name given during loading with the -n option:

• <name>.DC-bus-volts (float, out) DC bus voltage of the VFD

• <name>.at-speed (bit, out) when drive is at commanded speed

• <name>.err-reset (bit, in) reset errors sent to VFD

• <name>.firmware-revision (s32, out) from the VFD

• <name>.frequency-command (float, out) from the VFD

• <name>.frequency-out (float, out) from the VFD

• <name>.is-stopped (bit, out) when the VFD reports 0 Hz output

• <name>.load-percentage (float, out) from the VFD

• <name>.motor-RPM (float, out) from the VFD

• <name>.output-current (float, out) from the VFD

• <name>.output-voltage (float, out) from the VFD

• <name>.power-factor (float, out) from the VFD

• <name>.scale-frequency (float, out) from the VFD

• <name>.speed-command (float, in) speed sent to VFD in RPM It is an error to send a speed faster
than the Motor Max RPM as set in the VFD.

• <name>.spindle-fwd (bit, in) 1 for FWD and 0 for REV sent to VFD

• <name>.spindle-rev (bit, in) 1 for REV and 0 if off

• <name>.spindle-on (bit, in) 1 for ON and 0 for OFF sent to VFD

• <name>.status-1 (s32, out) Drive Status of the VFD (see the GS2 manual)

• <name>.status-2 (s32, out) Drive Status of the VFD (see the GS2 manual)

Note
The status value is a sum of all the bits that are on. So a 163 which means the drive is in the run
mode is the sum of 3 (run) + 32 (freq set by serial) + 128 (operation set by serial).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 342 / 1322

6.4.3 Parameters

With <name> being gs2_vfd or the name given during loading with the -n option:

• <name>.error-count (s32, RW)

• <name>.loop-time (float, RW) how often the modbus is polled (default: 0.1)

• <name>.nameplate-HZ (float, RW) Nameplate Hz of motor (default: 60)

• <name>.nameplate-RPM (float, RW) Nameplate RPM of motor (default: 1730)

• <name>.retval (s32, RW) the return value of an error in HAL

• <name>.tolerance (s32, RW) speed tolerance (default: 0.01)

• <name>.ack-delay (s32, RW) number of read/write cycles before checking at-speed (default 2)

For an example of using this component to drive a spindle see the GS2 Spindle example.

6.5 HAL Driver for Raspberry Pi GPIO pins

Note: This driver will not be compiled into images aimed at non-ARM CPUS. It is only really intended
to work on the Raspberry Pi. It may, or may not, work on similar boards or direct clones.

6.5.1 Purpose

This driver allows the use of the Rapberry Pi GPIO pins in a way analogous to the parallel port driver
on x86 PCs. It can use the same step generators, encoder counters and similar components.

6.5.2 Usage

loadrt hal_pi_gpio dir=0x13407 exclude=0x1F64BF8

The ”dir” mask determines whether the pins are inputs and outputs, the exclude mask prevents the
driver from using the pins (and so allows them to be used for their normal RPi purposes such as SPI
or UART).
The mask can be in decimal or hexadecimal (hex may be easier as there will be no carries).
To determine the value of the masks, add up the hex/decimal values for all pins that should be con-
figured as output, and analogously for all pins that should be excluded according to the following
table.

Table 6.29: GPIO masks - mapping of GPIO numbers
(leftmost column) to physical pin numbers as printed on
the Raspberry Pi board (rightmost column) and the dec-
imal/hexadecimal values that contribute to the value of
the mask.

GPIO Num Decimal Hex Pin Num
2 1 0x00000001 3
3 2 0x00000002 5
4 4 0x00000004 7

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 343 / 1322

Table 6.29: (continued)

GPIO Num Decimal Hex Pin Num
5 8 0x00000008 29
6 16 0x00000010 31
7 32 0x00000020 26
8 64 0x00000040 24
9 128 0x00000080 21
10 256 0x00000100 19
11 512 0x00000200 23
12 1024 0x00000400 32
13 2048 0x00000800 33
14 4096 0x00001000 8
15 8192 0x00002000 10
16 16384 0x00004000 36
17 32768 0x00008000 11
18 65536 0x00010000 12
19 131072 0x00020000 35
20 262144 0x00040000 38
21 524288 0x00080000 40
22 1048576 0x00100000 15
23 2097152 0x00200000 16
24 4194304 0x00400000 18
25 8388608 0x00800000 22
26 16777216 0x01000000 37
27 33554432 0x02000000 13

Note: In the calculation of the individual pin’s mask value its GPIO numbers are used, the value being
derived as 2^(GPIO number - 2), whereas in the naming of the HAL pins it is the Raspberry Pi header
pin numbers.
So, for example, if you enable GPIO 17 as an output (dir=0x8000) then that output will be controlled
by the hal pin hal_pi_gpio.pin-11-out.

6.5.3 Pins

• hal_pi_gpio.pin-NN-out

• hal_pi_gpio.pin-NN-in

Depending on the dir and exclude masks.

6.5.4 Parameters

Only the standard timing parameters which are created for all components exist:

• hal_pi_gpio.read.tmax

• hal_pi_gpio.read.tmax-increased

• hal_pi_gpio.write.tmax

• hal_pi_gpio.write.tmax-increased

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 344 / 1322

For unknown reasons the driver also creates HAL pins to indicate timing:

• hal_pi_gpio.read.time

• hal_pi_gpio.write.time

6.5.5 Functions

• hal_pi_gpio.read - Add this to the base thread to update the HAL pin values to match the physical
input values.

• hal_pi_gpio.write - Add this to the base thread to update the physical pins to match the HAL
values.

Typically the read function will be early in the call list, before any encoder counters and the write
function will be later in the call list, after stepgen.make-pulses.

6.5.6 Pin Numbering

The GPIO connector and the pinout has been consistent since around 2015. These older Pi models
are probably a poor choice for LinuxCNC anyway. However, this driver is designed to work with them,
and will detect and correctly configure for the two alternative pinouts.
The current pinout mapping between GPIO numbers and connector pin numbers is included in the
table above.
Note that the config string uses GPIO numbers, but once the driver is loaded the HAL pin names refer
to connector pin numbers.
This may be more logical than it first appears. When setting up you need to configure enough pins
of each type, whilst avoiding overwriting any other functions that your system needs. Then once the
driver is loaded, in the HAL layer you just want to know where to connect the wires for each HAL pin.

6.5.7 Known Bugs

At the moment (2023-07-16) this driver only seems to work on Raspbian as the generic Debian image
does not set up the correct interfaces in /dev/gpiomem and restricts access to the /sys/mem interface.

6.6 Generic driver for any GPIO supported by gpiod.

This driver has been tested on the Raspberry Pi, and should also work on Banana Pi, BeagleBone,
Pine64 (et al.) and other single board computers, and potentially on other platforms.

6.6.1 Purpose

This driver allows the use of GPIO pins in a way analogous to the parallel port driver on x86 PCs. It
can use the same step generators, encoder counters and similar components.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 345 / 1322

6.6.2 Usage

loadrt hal_gpio inputs=GPIO5,GPIO6,GPIO12,GPIO13,GPIO16,GPIO17,GPIO18,GPIO19 \
outputs=GPIO20,GPIO21,GPIO22,GPIO23,GPIO24,GPIO25,GPIO26, ←↩

GPIO27 \
invert=GPIO20,GPIO27 \
reset=GPIO21,GPIO22

This driver relies on the libgpiod-dev library and the gpiod package, which contains a number of
utilities for configuring and querying GPIO. The GPIO pin names in the ”loadrt” line of the HAL given
above should be the names given by the gpioinfo command.
Sample output (truncated):
$ gpioinfo
gpiochip0 - 54 lines:

line 0: ”ID_SDA” unused input active-high
line 1: ”ID_SCL” unused input active-high
line 2: ”SDA1” unused input active-high
line 3: ”SCL1” unused input active-high
line 4: ”GPIO_GCLK” unused input active-high
line 5: ”GPIO5” unused input active-high
line 6: ”GPIO6” unused input active-high
line 7: ”SPI_CE1_N” unused input active-high
line 8: ”SPI_CE0_N” unused input active-high
line 9: ”SPI_MISO” unused input active-high
line 10: ”SPI_MOSI” unused input active-high
line 11: ”SPI_SCLK” unused input active-high
line 12: ”GPIO12” unused input active-high
line 13: ”GPIO13” unused input active-high
line 14: ”TXD1” unused input active-high
line 15: ”RXD1” unused input active-high
line 16: ”GPIO16” unused input active-high
line 17: ”GPIO17” unused input active-high
line 18: ”GPIO18” unused input active-high
line 19: ”GPIO19” unused input active-high
line 20: ”GPIO20” unused output active-high

...

A list of input and/or output pins should be specified as shown in the sample above. The \ character is
used for line continuation in HAL, and is used to improve readability. The pin names are case-sensitive
and there must be no spaces in the strings, neither between the comma-separated pins lists nor the
”=” signs.

Additional modifiers are

invert
(valid for outputs only). Inverts the sense of the physical pin relative to the value in HAL.

reset
(valid for outputs only). If any pins are allocated to the ”reset” list then a HAL parameter
hal_gpio.reset_ns will be created. This will have no effect unless the hal_gpio.reset func-
tion is added to a realtime thread. This should be placed after the hal_gpio.write function
and must be in the same thread. The behaviour of this function is equivalent to the same
function in the hal_parport driver, and it allows a step pulse every thread cycle. If the
hal_gpio.reset_ns time is set longer than 1/4 of the period of the thread that it is added to,
then the value will be reduced to 1/4 the thread period. There is a lower limit to how long
the pulse can be. With 8 pins in the output list the pulse width can not reduce lower than
5000 ns on an RPi4, for example.

https://tracker.debian.org/pkg/libgpiod

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 346 / 1322

The following functions are accepted in all versions, but are only effective if a version of libgpiod_dev
>= 1.6 is installed. They should be used in the same way as the parameters described above, and will
alter the electrical parameters of the GPIO pins if this is supported by the hardware.
opendrain
opensource
biasdisable
pulldown
pullup
The version of libgpiod-dev installed can be determined by the command gpioinfo -v

6.6.3 Pins

• hal_gpio.NAME-in - HAL_OUT The value of an input pin presented in to HAL

• hal_gpio.NAME-in-not - HAL_OUT An inverted version of the above, for convenience

• hal_gpio.NAME-out - HAL_IN use this pin to transfer a HAL bit value to a physical output

6.6.4 Parameters

• hal_gpio.reset_ns - HAL_RW - ”setp” this parameter to control the pulse length of pins added to the
”reset” list. The value will be limited between 0 and thread-period / 4.

6.6.5 Functions

• hal_gpio.read - Add this to the base thread to update the HAL pin values to match the physical input
values.

• hal_gpio.write - Add this to the base thread to update the physical pins to match the HAL values.

• hal_gpio.reset - Only exported if there are pins defined in the reset list. This should be placed after
the ”write” function, and should be in the same thread.

Typically, the read function will be early in the call list, before any encoder counters and the write
function will be later in the call list, after stepgen.make-pulses.

6.6.6 Pin Identification

Use the pin names returned by the gpioinfo utility. This uses the device-tree data. If the installed
OS does not have a device-tree database then the pins will all be called ”unnamed” (or similar) and
this driver can not be used.
A further update to this driver might allow access by index number, but this is not currently supported.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 347 / 1322

6.6.7 Troubleshooting permissions problems.

If ”access denied” messages are returned on loading the driver, try the following recipe: (Should not
be needed for Raspbian, and will need to be modified to match the actual GPIO chip name on non-Pi
platforms)

1. Create a new group gpio with the command
sudo groupadd gpio

2. Then to setup permissions for the ”gpio” group, create a file called 90-gpio-access in the
/etc/udev/rules.d/ directory with the following contents (this is copied from the Raspbian
install)
SUBSYSTEM==”bcm2835-gpiomem”, GROUP=”gpio”, MODE=”0660”
SUBSYSTEM==”gpio”, GROUP=”gpio”, MODE=”0660”
SUBSYSTEM==”gpio*”, PROGRAM=”/bin/sh -c ’\

chown -R root:gpio /sys/class/gpio && chmod -R 770 /sys/class/gpio;\
chown -R root:gpio /sys/devices/virtual/gpio &&\
chmod -R 770 /sys/devices/virtual/gpio;\
chown -R root:gpio /sys$devpath && chmod -R 770 /sys$devpath\

’”

SUBSYSTEM==”pwm*”, PROGRAM=”/bin/sh -c ’\
chown -R root:gpio /sys/class/pwm && chmod -R 770 /sys/class/pwm;\
chown -R root:gpio /sys/devices/platform/soc/*.pwm/pwm/pwmchip* &&\
chmod -R 770 /sys/devices/platform/soc/*.pwm/pwm/pwmchip*\

’”

3. Add the user who runs LinuxCNC to the gpio group with
sudo usermod -aG gpio <username>

6.6.8 Author

Andy Pugh

6.6.9 Known Bugs

None at this time.

6.7 Mesa HostMot2 Driver

6.7.1 Introduction

HostMot2 is an FPGA configuration developed by Mesa Electronics for their line ofAnything I/Omotion
control cards. The firmware is open source, portable and flexible. It can be configured (at compile-
time) with zero or more instances (an object created at runtime) of each of several Modules: encoders
(quadrature counters), PWM generators, and step/dir generators. The firmware can be configured (at
run-time) to connect each of these instances to pins on the I/O headers. I/O pins not driven by a Module
instance revert to general-purpose bi-directional digital I/O.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 348 / 1322

6.7.2 Firmware Binaries

50 Pin Header FPGA cards Several pre-compiled HostMot2 firmware binaries are available for the
different Anything I/O boards. This list is incomplete, check the hostmot2-firmware distribution for
up-to-date firmware lists.

• 3x20 (144 I/O pins): using hm2_pci module

– 24-channel servo
– 16-channel servo plus 24 step/dir generators

• 5I22 (96 I/O pins): using hm2_pci module

– 16-channel servo
– 8-channel servo plus 24 step/dir generators

• 5I20, 5I23, 4I65, 4I68 (72 I/O pins): using hm2_pci module

– 12-channel servo
– 8-channel servo plus 4 step/dir generators
– 4-channel servo plus 8 step/dir generators

• 7I43 (48 I/O pins): using hm2_7i43 module

– 8-channel servo (8 PWM generators & 8 encoders)
– 4-channel servo plus 4 step/dir generators

DB25 FPGA cards The 5I25 Superport FPGA card is preprogrammed when purchased and does not
need a firmware binary.

6.7.3 Installing Firmware

Depending on how you installed LinuxCNC you may have to open the Synaptic Package Manager from
the System menu and install the package for your Mesa card. The quickest way to find them is to do a
search for hostmot2 in the Synaptic Package Manager. Mark the firmware for installation, then apply.

6.7.4 Loading HostMot2

The LinuxCNC support for the HostMot2 firmware is split into a generic driver called hostmot2 and
two low-level I/O drivers for the Anything I/O boards. The low-level I/O drivers are hm2_7i43 and
hm2_pci (for all the PCI- and PC-104/Plus-based Anything I/O boards). The hostmot2 driver must be
loaded first, using a HAL command like this:
loadrt hostmot2

See the hostmot2(9) man page for details.
The hostmot2 driver by itself does nothing, it needs access to actual boards running the HostMot2
firmware. The low-level I/O drivers provide this access. The low-level I/O drivers are loaded with
commands like this:
loadrt hm2_pci config=”firmware=hm2/5i20/SVST8_4.BIT

num_encoders=3 num_pwmgens=3 num_stepgens=1”

The config parameters are described in the hostmot2 man page.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 349 / 1322

6.7.5 Watchdog

The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it.
The watchdog must be petted by LinuxCNC periodically or it will bite. The hm2 write function (see
below) pets the watchdog.
When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and
become high-impedance inputs (pulled high). The state of the HostMot2 firmware modules is not
disturbed (except for the configuration of the I/O Pins). Encoder instances keep counting quadrature
pulses, and pwm- and step-generators keep generating signals (which are not relayed to the motors,
because the I/O Pins have become inputs).
Resetting the watchdog resets the I/O pins to the configuration chosen at load-time.
If the firmware includes a watchdog, the following HAL objects will be exported:

6.7.5.1 Pins

• has_bit - (bit i/o) True if the watchdog has bit, False if the watchdog has not bit. If the watchdog
has bit and the has_bit bit is True, the user can reset it to False to resume operation.

6.7.5.2 Parameters

• timeout_ns - (u32 read/write) Watchdog timeout, in nanoseconds. This is initialized to 5,000,000
(5 milliseconds) at module load time. If more than this amount of time passes between calls to the
hm2 write function, the watchdog will bite.

6.7.6 HostMot2 Functions

• hm2_<BoardType>.<BoardNum>.read - Read all inputs, update input HAL pins.

• hm2_<BoardType>.<BoardNum>.write - Write all outputs.

• hm2_<BoardType>.<BoardNum>.read_gpio - Read the GPIO input pins only. (This function is not
available on the 7I43 due to limitations of the EPP bus.)

• hm2_<BoardType>.<BoardNum>.write_gpio - Write the GPIO control registers and output pins
only. (This function is not available on the 7I43 due to limitations of the EPP bus.)

Note
The above read_gpio and write_gpio functions should not normally be needed, since the GPIO bits are
read and written along with everything else in the standard read and write functions above, which
are normally run in the servo thread.
The read_gpio and write_gpio functions were provided in case some very fast (frequently updated)
I/O is needed. These functions should be run in the base thread. If you have need for this, please
send an email and tell us about it, and what your application is.

6.7.7 Pinouts

The hostmot2 driver does not have a particular pinout. The pinout comes from the firmware that the
hostmot2 driver sends to the Anything I/O board. Each firmware has different pinout, and the pinout
depends on how many of the available encoders, pwmgens, and stepgens are used. To get a pinout
list for your configuration after loading LinuxCNC in the terminal window type:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 350 / 1322

dmesg > hm2.txt

The resulting text file will contain lots of information as well as the pinout for the HostMot2 and any
error and warning messages.
To reduce the clutter by clearing the message buffer before loading LinuxCNC type the following in
the terminal window:
sudo dmesg -c

Now when you run LinuxCNC and then do a dmesg > hm2.txt in the terminal only the info from the
time you loaded LinuxCNC will be in your file along with your pinout. The file will be in the current
directory of the terminal window. Each line will contain the card name, the card number, the I/O
Pin number, the connector and pin, and the usage. From this printout you will know the physical
connections to your card based on your configuration.
An example of a 5I20 configuration:
[HOSTMOT2]
DRIVER=hm2_pci
BOARD=5i20
CONFIG=”firmware=hm2/5i20/SVST8_4.BIT num_encoders=1 num_pwmgens=1 num_stepgens=3”

The above configuration produced this printout.
[1141.053386] hm2/hm2_5i20.0: 72 I/O Pins used:
[1141.053394] hm2/hm2_5i20.0: IO Pin 000 (P2-01): IOPort
[1141.053397] hm2/hm2_5i20.0: IO Pin 001 (P2-03): IOPort
[1141.053401] hm2/hm2_5i20.0: IO Pin 002 (P2-05): Encoder #0, pin B (Input)
[1141.053405] hm2/hm2_5i20.0: IO Pin 003 (P2-07): Encoder #0, pin A (Input)
[1141.053408] hm2/hm2_5i20.0: IO Pin 004 (P2-09): IOPort
[1141.053411] hm2/hm2_5i20.0: IO Pin 005 (P2-11): Encoder #0, pin Index (Input)
[1141.053415] hm2/hm2_5i20.0: IO Pin 006 (P2-13): IOPort
[1141.053418] hm2/hm2_5i20.0: IO Pin 007 (P2-15): PWMGen #0, pin Out0 (PWM or Up) (Output)
[1141.053422] hm2/hm2_5i20.0: IO Pin 008 (P2-17): IOPort
[1141.053425] hm2/hm2_5i20.0: IO Pin 009 (P2-19): PWMGen #0, pin Out1 (Dir or Down) (←↩

Output)
[1141.053429] hm2/hm2_5i20.0: IO Pin 010 (P2-21): IOPort
[1141.053432] hm2/hm2_5i20.0: IO Pin 011 (P2-23): PWMGen #0, pin Not-Enable (Output)
<snip>...
[1141.053589] hm2/hm2_5i20.0: IO Pin 060 (P4-25): StepGen #2, pin Step (Output)
[1141.053593] hm2/hm2_5i20.0: IO Pin 061 (P4-27): StepGen #2, pin Direction (Output)
[1141.053597] hm2/hm2_5i20.0: IO Pin 062 (P4-29): StepGen #2, pin (unused) (Output)
[1141.053601] hm2/hm2_5i20.0: IO Pin 063 (P4-31): StepGen #2, pin (unused) (Output)
[1141.053605] hm2/hm2_5i20.0: IO Pin 064 (P4-33): StepGen #2, pin (unused) (Output)
[1141.053609] hm2/hm2_5i20.0: IO Pin 065 (P4-35): StepGen #2, pin (unused) (Output)
[1141.053613] hm2/hm2_5i20.0: IO Pin 066 (P4-37): IOPort
[1141.053616] hm2/hm2_5i20.0: IO Pin 067 (P4-39): IOPort
[1141.053619] hm2/hm2_5i20.0: IO Pin 068 (P4-41): IOPort
[1141.053621] hm2/hm2_5i20.0: IO Pin 069 (P4-43): IOPort
[1141.053624] hm2/hm2_5i20.0: IO Pin 070 (P4-45): IOPort
[1141.053627] hm2/hm2_5i20.0: IO Pin 071 (P4-47): IOPort
[1141.053811] hm2/hm2_5i20.0: registered
[1141.053815] hm2_5i20.0: initialized AnyIO board at 0000:02:02.0

Note
That the I/O Pin nnn will correspond to the pin number shown on the HAL Configuration screen for
GPIOs. Some of the StepGen, Encoder and PWMGen will also show up as GPIOs in the HAL Configu-
ration screen.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 351 / 1322

6.7.8 PIN Files

The default pinout is described in a .PIN file (human-readable text). When you install a firmware
package the .PIN files are installed in
/usr/share/doc/hostmot2-firmware-<board>/

6.7.9 Firmware

The selected firmware (.BIT file) and configuration is uploaded from the PC motherboard to the Mesa
mothercard on LinuxCNC startup. If you are using Run In Place, you must still install a hostmot2-
firmware-<board> package. There is more information about firmware and configuration in the Con-
figurations section.

6.7.10 HAL Pins

The HAL pins for each configuration can be seen by opening up Show HAL Configuration from the
Machine menu. All the HAL pins and parameters can be found there. The following figure is of the
5I20 configuration used above.

Figure 6.9: 5i20 HAL Pins

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 352 / 1322

6.7.11 Configurations

The Hostmot2 firmware is available in several versions, depending on what you are trying to accom-
plish. You can get a reminder of what a particular firmware is for by looking at the name. Let’s look
at a couple of examples.
In the 7I43 (two ports), SV8 (Servo 8) would be for having 8 servos or fewer, using the classic 7I33
4-axis (per port) servo board. So 8 servos would use up all 48 signals in the two ports. But if you
only needed 3 servos, you could say num_encoders=3 and num_pwmgens=3 and recover 5 servos at
6 signals each, thus gaining 30 bits of GPIO.
Or, in the 5I22 (four ports), SVST8_24 (Servo 8, Stepper 24) would be for having 8 servos or fewer
(7I33 x2 again), and 24 steppers or fewer (7I47 x2). This would use up all four ports. If you only
needed 4 servos you could say num_encoders=4 and num_pwmgens=4 and recover 1 port (and save
a 7I33). And if you only needed 12 steppers you could say num_stepgens=12 and free up one port
(and save a 7I47). So in this way we can save two ports (48 bits) for GPIO.
Here are tables of the firmwares available in the official packages. There may be additional firmwares
available at the Mesanet.com website that have not yet made it into the LinuxCNC official firmware
packages, so check there too.
3x20 (6-port various) Default Configurations (The 3x20 comes in 1M, 1.5M, and 2M gate versions. So
far, all firmware is available in all gate sizes.)

Firmware Encoder PWMGen StepGen GPIO
SV24 24 24 0 0
SVST16_24 16 16 24 0

5I22 (4-port PCI) Default Configurations (The 5I22 comes in 1M and 1.5M gate versions. So far, all
firmware is available in all gate sizes.)

Firmware Encoder PWM StepGen GPIO
SV16 16 16 0 0
SVST2_4_7I47 4 2 4 72
SVST8_8 8 8 8 0
SVST8_24 8 8 24 0

5I23 (3-port PCI) Default Configurations (The 5I23 has 400k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2_8 2 2 8 (tbl5) 12
SVST2_4_7I47 4 2 4 48
SV12_2X7I48_72 12 12 0 24
SV12IM_2X7I48_7212 (+IM) 12 0 12
SVST4_8 4 4 8 (tbl5) 0
SVST8_4 8 8 4 (tbl5) 0
SVST8_4IM2 8 (+IM) 8 4 8
SVST8_8IM2 8 (+IM) 8 8 0
SVTP6_7I39 6 0 (6 BLDC) 0 0

5I20 (3-port PCI) Default Configurations (The 5I20 has 200k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2_8 2 2 8 (tbl5) 12

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 353 / 1322

Firmware Encoder PWM StepGen GPIO
SVST2_4_7I47 4 2 4 48
SV12_2X7I48_72 12 12 0 24
SV12IM_2X7I48_7212 (+IM) 12 0 12
SVST8_4 8 8 4 (tbl5) 0
SVST8_4IM2 8 (+IM) 8 4 8

4I68 (3-port PC/104) Default Configurations (The 4I68 has 400k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2_4_7I47 4 2 4 48
SVST4_8 4 4 8 0
SVST8_4 8 8 4 0
SVST8_4IM2 8 (+IM) 8 4 8
SVST8_8IM2 8 (+IM) 8 8 0

4I65 (3-port PC/104) Default Configurations (The 4I65 has 200k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST8_4 8 8 4 0
SVST8_4IM2 8 (+IM) 8 4 8

7I43 (2-port parallel) 400k gate versions, Default Configurations

Firmware Encoder PWM StepGen GPIO
SV8 8 8 0 0
SVST4_4 4 4 4 (tbl5) 0
SVST4_6 4 4 6 (tbl3) 0
SVST4_12 4 4 12 0
SVST2_4_7I47 4 2 4 24

7I43 (2-port parallel) 200k gate versions, Default Configurations

Firmware Encoder PWM StepGen GPIO
SV8 8 8 0 0
SVST4_4 4 4 4 (tbl5) 0
SVST4_6 4 4 6 (tbl3) 0
SVST2_4_7I47 4 2 4 24

Even though several cards may have the same named .BIT file you cannot use a .BIT file that is not for
that card. Different cards have different clock frequencies so make sure you load the proper .BIT file
for your card. Custom hm2 firmwares can be created for special applications and you may see some
custom hm2 firmwares in the directories with the default ones.
When you load the board-driver (hm2_pci or hm2_7i43), you can tell it to disable instances of the three
primary modules (pwmgen, stepgen, and encoder) by setting the count lower. Any I/O pins belonging
to disabled module instances become GPIOs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 354 / 1322

6.7.12 GPIO

General Purpose I/O pins on the board which are not used by a module instance are exported to HAL as
full GPIO pins. Full GPIO pins can be configured at run-time to be inputs, outputs, or open drains, and
have a HAL interface that exposes this flexibility. I/O pins that are owned by an active module instance
are constrained by the requirements of the owning module, and have a restricted HAL interface.
GPIOs have names like hm2_<BoardType>.<BoardNum>.gpio.<IONum>. IONum is a three-digit
number. The mapping from IONum to connector and pin-on-that-connector is written to the syslog
when the driver loads, and it’s documented in Mesa’s manual for the Anything I/O boards.
The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the
Canonical Device Interface (part of the HAL General Reference document).
GPIO pins default to input.

6.7.12.1 Pins

• in - (Bit, Out) Normal state of the hardware input pin. Both full GPIO pins and I/O pins used as
inputs by active module instances have this pin.

• in_not - (Bit, Out) Inverted state of the hardware input pin. Both full GPIO pins and I/O pins used
as inputs by active module instances have this pin.

• out - (Bit, In) Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins
have this pin.

6.7.12.2 Parameters

• invert_output - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this
parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL pin.
Only full GPIO pins and I/O pins used as outputs by active module instances have this parameter.
To invert an active module pin you have to invert the GPIO pin not the module pin.

• is_opendrain - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this
parameter is false, the GPIO behaves as a normal output pin: the I/O pin on the connector is driven
to the value specified by the out HAL pin (possibly inverted), and the value of the in and in_not HAL
pins is undefined. If this parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the
out HAL pin drives the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance
state. In this high-impedance state the I/O pin floats (weakly pulled high), and other devices can
drive the value; the resulting value on the I/O pin is available on the in and in_not pins. Only full
GPIO pins and I/O pins used as outputs by active module instances have this parameter.

• is_output - (Bit, RW) If set to 0, the GPIO is an input. The I/O pin is put in a high-impedance state
(weakly pulled high), to be driven by other devices. The logic value on the I/O pin is available in the
in and in_not HAL pins. Writes to the out HAL pin have no effect. If this parameter is set to 1, the
GPIO is an output; its behavior then depends on the is_opendrain parameter. Only full GPIO pins
have this parameter.

6.7.13 StepGen

StepGens have names like hm2_<BoardType>.<BoardNum>.stepgen.<Instance>. Instance is a two-
digit number that corresponds to the HostMot2 stepgen instance number. There are num_stepgens
instances, starting with 00.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 355 / 1322

Each stepgen allocates 2-6 I/O pins (selected at firmware compile time), but currently only uses two:
Step and Direction outputs. 3

The StepGen representation is modeled on the stepgen software component. StepGen default is active
high step output (high during step time low during step space). To invert a StepGen output pin you
invert the corresponding GPIO pin that is being used by StepGen. To find the GPIO pin being used for
the StepGen output run dmesg as shown above.
Each StepGen instance has the following pins and parameters:

6.7.13.1 Pins

• control-type - (Bit, In) Switches between position control mode (0) and velocity control mode (1).
Defaults to position control (0).

• counts - (s32, Out) Feedback position in counts (number of steps).

• enable - (Bit, In) Enables output steps. When false, no steps are generated.

• position-cmd - (Float, In) Target position of stepper motion, in user-defined position units.

• position-fb - (Float, Out) Feedback position in user-defined position units (counts / position_scale).

• velocity-cmd - (Float, In) Target velocity of stepper motion, in user-defined position units per second.
This pin is only used when the stepgen is in velocity control mode (control-type=1).

• velocity-fb - (Float, Out) Feedback velocity in user-defined position units per second.

6.7.13.2 Parameters

• dirhold - (u32, RW) Minimum duration of stable Direction signal after a step ends, in nanoseconds.

• dirsetup - (u32, RW) Minimum duration of stable Direction signal before a step begins, in nanosec-
onds.

• maxaccel - (Float, RW) Maximum acceleration, in position units per second per second. If set to 0,
the driver will not limit its acceleration.

• maxvel - (Float, RW) Maximum speed, in position units per second. If set to 0, the driver will choose
the maximum velocity based on the values of steplen and stepspace (at the time that maxvel was
set to 0).

• position-scale - (Float, RW) Converts from counts to position units. position = counts / position_scale

• step_type - (u32, RW) Output format, like the step_type modparam to the software stegen(9) compo-
nent. 0 = Step/Dir, 1 = Up/Down, 2 = Quadrature. In Quadrature mode (step_type=2), the stepgen
outputs one complete Gray cycle (00 -> 01 -> 11 -> 10 -> 00) for each step it takes.

• steplen - (u32, RW) Duration of the step signal, in nanoseconds.

• stepspace - (u32, RW) Minimum interval between step signals, in nanoseconds.
3At present, the firmware supports multi-phase stepper outputs, but the driver doesn’t. Interested volunteers are solicited.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 356 / 1322

6.7.13.3 Output Parameters

The Step and Direction pins of each StepGen have two additional parameters. To find which I/O pin
belongs to which step and direction output run dmesg as described above.

• invert_output - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this
parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL pin.

• is_opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: the
I/O pin on the connector is driven to the value specified by the out HAL pin (possibly inverted). If
this parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the out HAL pin drives
the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance state. In this
high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and I/O
pins used as outputs by active module instances have this parameter.

6.7.14 PWMGen

PWMgens have names like hm2_<BoardType>.<BoardNum>.pwmgen.<Instance>. Instance is a two-
digit number that corresponds to the HostMot2 pwmgen instance number. There are num_pwmgens
instances, starting with 00.
In HM2, each pwmgen uses three output I/O pins: Not-Enable, Out0, and Out1. To invert a PWMGen
output pin you invert the corresponding GPIO pin that is being used by PWMGen. To find the GPIO
pin being used for the PWMGen output run dmesg as shown above.
The function of the Out0 and Out1 I/O pins varies with output-type parameter (see below).
The hm2 pwmgen representation is similar to the software pwmgen component. Each pwmgen in-
stance has the following pins and parameters:

6.7.14.1 Pins

• enable - (Bit, In) If true, the pwmgen will set its Not-Enable pin false and output its pulses. If enable
is false, pwmgen will set its Not-Enable pin true and not output any signals.

• value - (Float, In) The current pwmgen command value, in arbitrary units.

6.7.14.2 Parameters

• output-type - (s32, RW) This emulates the output_type load-time argument to the software pwmgen
component. This parameter may be changed at runtime, but most of the time you probably want
to set it at startup and then leave it alone. Accepted values are 1 (PWM on Out0 and Direction on
Out1), 2 (Up on Out0 and Down on Out1), 3 (PDM mode, PDM on Out0 and Dir on Out1), and 4
(Direction on Out0 and PWM on Out1, for locked antiphase).

• scale - (Float, RW) Scaling factor to convert value from arbitrary units to duty cycle: dc = value /
scale. Duty cycle has an effective range of -1.0 to +1.0 inclusive, anything outside that range gets
clipped.

• pdm_frequency - (u32, RW) This specifies the PDM frequency, in Hz, of all the pwmgen instances
running in PDM mode (mode 3). This is the pulse slot frequency; the frequency at which the pdm
generator in the Anything I/O board chooses whether to emit a pulse or a space. Each pulse (and
space) in the PDM pulse train has a duration of 1/pdm_frequency seconds. For example, setting
the pdm_frequency to 2*106 Hz (2 MHz) and the duty cycle to 50% results in a 1 MHz square wave,
identical to a 1 MHz PWM signal with 50% duty cycle. The effective range of this parameter is

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 357 / 1322

from about 1525 Hz up to just under 100 MHz. Note that the max frequency is determined by the
ClockHigh frequency of the Anything I/O board; the 5I20 and 7I43 both have a 100 MHz clock,
resulting in a 100 MHz max PDM frequency. Other boards may have different clocks, resulting in
different max PDM frequencies. If the user attempts to set the frequency too high, then it will be
clipped to the max supported frequency of the board.

• pwm_frequency - (u32, RW) This specifies the PWM frequency, in Hz, of all the pwmgen instances
running in the PWM modes (modes 1 and 2). This is the frequency of the variable-duty-cycle wave.
Its effective range is from 1 Hz up to 193 kHz. Note that the max frequency is determined by the
ClockHigh frequency of the Anything I/O board; the 5i20 and 7i43 both have a 100 MHz clock,
resulting in a 193 kHz max PWM frequency. Other boards may have different clocks, resulting in
different max PWM frequencies. If the user attempts to set the frequency too high, then it will be
clipped to the max supported frequency of the board. Frequencies below about 5 Hz are not terribly
accurate, but above 5 Hz they are pretty close.

6.7.14.3 Output Parameters

The output pins of each PWMGen have two additional parameters. To find which I/O pin belongs to
which output run dmesg as described above.

• invert_output - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If
this parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL
pin.

• is_opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: The
I/O pin on the connector is driven to the value specified by the out HAL pin (possibly inverted). If
this parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the out HAL pin drives
the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance state. In this
high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and
I/O pins used as outputs by active module instances have this parameter.

6.7.15 Encoder

Encoders have names like hm2_<BoardType>.<BoardNum>.encoder.<Instance>.. Instance is a two-
digit number that corresponds to the HostMot2 encoder instance number. There are num_encoders
instances, starting with 00.
Each encoder uses three or four input I/O pins, depending on how the firmware was compiled. Three-
pin encoders use A, B, and Index (sometimes also known as Z). Four-pin encoders use A, B, Index, and
Index-mask.
The hm2 encoder representation is similar to the one described by the Canonical Device Interface
(in the HAL General Reference document), and to the software encoder component. Each encoder
instance has the following pins and parameters:

6.7.15.1 Pins

• count - (s32, Out) Number of encoder counts since the previous reset.

• index-enable - (Bit, I/O) When this pin is set to True, the count (and therefore also position) are
reset to zero on the next Index (Phase-Z) pulse. At the same time, index-enable is reset to zero to
indicate that the pulse has occurred.

• position - (Float, Out) Encoder position in position units (count / scale).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 358 / 1322

• rawcounts - (s32, Out) Total number of encoder counts since the start, not adjusted for index or
reset.

• reset - (Bit, In) When this pin is TRUE, the count and position pins are set to 0. The value of the
velocity pin is not affected by this. The driver does not reset this pin to FALSE after resetting the
count to 0, that is the user’s job.

• velocity - (Float, Out) Estimated encoder velocity in position units per second.

6.7.15.2 Parameters

• counter-mode - (Bit, RW) Set to False (the default) for Quadrature. Set to True for Up/Down or for
single input on Phase A. Can be used for a frequency to velocity converter with a single input on
Phase A when set to true.

• filter - (Bit, RW) If set to True (the default), the quadrature counter needs 15 clocks to register
a change on any of the three input lines (any pulse shorter than this is rejected as noise). If set to
False, the quadrature counter needs only 3 clocks to register a change. The encoder sample clock
runs at 33 MHz on the PCI Anything I/O cards and 50 MHz on the 7I43.

• index-invert - (Bit, RW) If set to True, the rising edge of the Index input pin triggers the Index
event (if index-enable is True). If set to False, the falling edge triggers.

• index-mask - (Bit, RW) If set to True, the Index input pin only has an effect if the Index-Mask input
pin is True (or False, depending on the index-mask-invert pin below).

• index-mask-invert - (Bit, RW) If set to True, Index-Mask must be False for Index to have an effect.
If set to False, the Index-Mask pin must be True.

• scale - (Float, RW) Converts from count units to position units. A quadrature encoder will normally
have 4 counts per pulse so a 100 PPR encoder would be 400 counts per revolution. In .counter-mode
a 100 PPR encoder would have 100 counts per revolution as it only uses the rising edge of A and
direction is B.

• vel-timeout - (Float, RW) When the encoder is moving slower than one pulse for each time that the
driver reads the count from the FPGA (in the hm2_read() function), the velocity is harder to estimate.
The driver can wait several iterations for the next pulse to arrive, all the while reporting the upper
bound of the encoder velocity, which can be accurately guessed. This parameter specifies how long
to wait for the next pulse, before reporting the encoder stopped. This parameter is in seconds.

6.7.16 5I25 Configuration

6.7.16.1 Firmware

The 5I25 firmware comes preloaded for the daughter card it is purchased with. So the firmware=xxx.BIT
is not part of the hm2_pci configuration string when using a 5I25.

6.7.16.2 Configuration

Example configurations of the 5I25/7I76 and 5I25/7I77 cards are included in the Configuration Selec-
tor.
If you like to roll your own configuration the following examples show how to load the drivers in the
HAL file.
5I25 + 7I76 Card

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 359 / 1322

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2_pci config=”num_encoders=1 num_stepgens=5 sserial_port_0=0XXX”

5I25 + 7I77 Card
load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2_pci config=”num_encoders=6 num_pwmgens=6 sserial_port_0=0XXX”

6.7.16.3 SSERIAL Configuration

The sserial_port_0=0XXX configuration string sets some options for the smart serial daughter card.
These options are specific for each daughter card. See the Mesa manual for more information on the
exact usage (typically in the section called SOFTWARE PROCESS DATA MODES) or see the manual
page of SSERIAL(9).

6.7.16.4 7I77 Limits

The minlimit and maxlimit are bounds on the pin value (in this case the analog out value) fullscalemax
is the scale factor.
These are by default set to the analog in or analog range (most likely in Volts).
So for example on the 7I77 +-10 V analog outputs, the default values are:
minlimit: -10
maxlimit: +10
maxfullscale: 10

If you wanted to say scale the analog out of a channel to IPS for a velocity mode servo (say 24 IPS
max) you could set the limits like this:
minlimit: -24
maxlimit: +24
maxfullscale: 24

If you wanted to scale the analog out of a channel to RPM for a 0 to 6000 RPM spindle with 0-10 V
control you could set the limits like this:
minlimit: 0
maxlimit: 6000
maxfullscale: 6000
(this would prevent unwanted negative output voltages from being set)

6.7.17 Example Configurations

Several example configurations for Mesa hardware are included with LinuxCNC. The configurations
are located in the hm2-servo and hm2-stepper sections of the Configuration Selector. Typically you
will need the board installed for the configuration you pick to load. The examples are a good place to
start and will save you time. Just pick the proper example from the LinuxCNC Configuration Selector

../man/man9/sserial.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 360 / 1322

and save a copy to your computer so you can edit it. To see the exact pins and parameters that your
configuration gave you, open the Show HAL Configuration window from the Machine menu, or do
dmesg as outlined above.

6.8 MB2HAL

6.8.1 Introduction

MB2HAL is a generic non-realtime HAL component to communicate with one or more Modbus devices.
So far, there are two options to communicate with a Modbus device:

1. One option is to create a HAL component as a driver see VFD Modbus.

2. Another option is to use Classic Ladder which has Modbus built in, see ClassicLadder.

3. Now there is a third option that consists of a ”generic” driver configured by text file, this is called
MB2HAL.

Why MB2HAL? Consider using MB2HAL if:

• You have to write a new driver and you don’t know anything about programming.

• You need to use Classic Ladder ”only” to manage the Modbus connections.

• You have to discover and configure first time the Modbus transactions. MB2HAL have debug levels
to facilitate the low level protocol debug.

• You have more than one device to connect. MB2HAL is very efficiently managing multiple devices,
transactions and links. Currently I am monitoring two axis drivers using a Rs232 port, a VFD driver
using another Rs232 port, and a remote I/O using TCP/IP.

• You want a protocol to connect your Arduino to HAL. Look the included sample configuration file,
sketch and library for Arduino Modbus.

6.8.2 Usage

a. Create a config file from the example below

1. Set component name (optional)
Set HAL_MODULE_NAME=mymodule (default HAL_MODULE_NAME=mb2hal)

2. Load the modbus HAL non-realtime component

b. Default component name: loadusr -W mb2hal config=config_file.ini

c. Custom component name: loadusr -Wn mymodule mb2hal config=config_file.ini

6.8.3 Options

6.8.3.1 Init Section

[MB2HAL_INIT]

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?VFD_Modbus

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 361 / 1322

Value Type Required Description
INIT_DEBUG Integer No Debug level of init and INI file parsing.

0 = silent
1 = error messages (default)
2 = OK confirmation messages
3 = debugging messages
4 = maximum debugging messages (only in transactions)

VERSION String No Version number in the format N.N[NN]. Defaults to 1.0.
HAL_MODULE_NAMEString No HAL module (component) name. Defaults to ”mb2hal”.
SLOWDOWN Float No Insert a delay of ”FLOAT seconds” between transactions in

order to not to have a lot of logging and facilitate the
debugging. Useful when using DEBUG=3 (NOT
INIT_DEBUG=3). It affects ALL transactions. Use ”0.0” for
normal activity.

TOTAL_TRANSACTIONSInteger Yes The number of total Modbus transactions. There is no
maximum.

6.8.3.2 Transaction Sections

One transaction section is required per transaction, starting at [TRANSACTION_00] and counting up
sequentially. If there is a new link (not transaction), you must provide the REQUIRED parameters 1st
time. Warning: Any OPTIONAL parameter not specified are copied from the previous transaction.

Value Type Required Description
LINK_TYPE String Yes You must specify either a ”serial” or ”tcp” link for the first

transaction. Later transactions will use the previous
transaction link if not specified.

TCP_IP IP ad-
dress

If
LINK_TYPE=tcp

The Modbus slave device IP address. Ignored if
LINK_TYPE=serial.

TCP_PORT Integer No The Modbus slave device TCP port. Defaults to 502.
Ignored if LINK_TYPE=serial.

SERIAL_PORT String If
LINK_TYPE=serial

The serial port. For example ”/dev/ttyS0”. Ignored if
LINK_TYPE=tcp.

SERIAL_BAUD Integer If
LINK_TYPE=serial

The baud rate. Ignored if LINK_TYPE=tcp.

SERIAL_BITS Integer If
LINK_TYPE=serial

Data bits. One of 5, 6, 7, 8. Ignored if LINK_TYPE=tcp.

SERIAL_PARITYString If
LINK_TYPE=serial

Data parity. One of: even, odd, none. Ignored if
LINK_TYPE=tcp.

SERIAL_STOP Integer If
LINK_TYPE=serial

Stop bits. One of 1, 2. Ignored if LINK_TYPE=tcp.

SERIAL_DELAY_MSInteger If
LINK_TYPE=serial

Serial port delay between transactions of this section only.
In ms. Defaults to 0. Ignored if LINK_TYPE=tcp.

MB_SLAVE_ID Integer Yes Modbus slave number.
FIRST_ELEMENTInteger Yes The first element address.
NELEMENTS Integer Unless

PIN_NAMES
is
specified

The number of elements. It is an error to specify both
NELEMENTS and PIN_NAMES. The pin names will be
sequential numbers, e.g. mb2hal.plcin.01.

PIN_NAMES List Unless
NELEMENTS
is
specified

A list of element names. These names will be used for the
pin names, e.g. mb2hal.plcin.cycle_start.
NOTE: There must be no white space characters in the list.
Example: PIN_NAMES=cycle_start,stop,feed_hold

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 362 / 1322

Value Type Required Description
MB_TX_CODE String Yes Modbus transaction function code (see specifications):

• fnct_01_read_coils
• fnct_02_read_discrete_inputs
• fnct_03_read_holding_registers
• fnct_04_read_input_registers
• fnct_05_write_single_coil
• fnct_06_write_single_register
• fnct_15_write_multiple_coils
• fnct_16_write_multiple_registers

MB_RESPONSE_TIMEOUT_MSInteger No Response timeout for this transaction. In ms. Defaults to
500 ms. This is how much to wait for 1st byte before raise
an error.

MB_BYTE_TIMEOUT_MSInteger No Byte timeout for this transaction. In ms. Defaults to 500
ms. This is how much to wait from byte to byte before raise
an error.

HAL_TX_NAME String No Instead of giving the transaction number, use a name.
Example: mb2hal.00.01 could become mb2hal.plcin.01.
The name must not exceed 28 characters. NOTE: when
using names be careful that you don’t end up with two
transactions using the same name.

MAX_UPDATE_RATEFloat No Maximum update rate in Hz. Defaults to 0.0 (0.0 = as soon
as available = infinite). NOTE: This is a maximum rate and
the actual rate may be lower. If you want to calculate it in
ms use (1000 / required_ms). Example: 100 ms =
MAX_UPDATE_RATE=10.0, because 1000.0 ms / 100.0 ms =
10.0 Hz.

DEBUG String No Debug level for this transaction only. See INIT_DEBUG
parameter above.

6.8.3.3 Error codes

While debugging transactions, note the returned ”ret[]” value correspond to:
Modbus protocol exceptions:

• 0x01 - ILLEGAL_FUNCTION - the FUNCTION code received in the query is not allowed or invalid.

• 0x02 - ILLEGAL_DATA_ADDRESS - the DATA ADDRESS received in the query is not an allowable
address for the slave or is invalid.

• 0x03 - ILLEGAL_DATA_VALUE - a VALUE contained in the data query field is not an allowable value
or is invalid.

• 0x04 - SLAVE_DEVICE_FAILURE - SLAVE (or MASTER) device unrecoverable FAILURE while at-
tempting to perform the requested action.

• 0x04 - SERVER_FAILURE - (see above).

• 0x05 - ACKNOWLEDGE - This response is returned to PREVENT A TIMEOUT in the master. A long
duration of time is required to process the request in the slave.

• 0x06 - SLAVE_DEVICE_BUSY - The slave (or server) is BUSY. Retransmit the request later.

• 0x06 - SERVER_BUSY - (see above).

• 0x07 - NEGATIVE_ACKNOWLEDGE - Unsuccessful programming request using function code 13 or
14.

https://modbus.org/specs.php

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 363 / 1322

• 0x08 - MEMORY_PARITY_ERROR - SLAVE parity error in MEMORY.

• 0x0A (-10) - GATEWAY_PROBLEM_PATH - Gateway path(s) not available.

• 0x0B (-11) - GATEWAY_PROBLEM_TARGET - The target device failed to respond (generated by
master, not slave).

Program or connection:

• 0x0C (-12) - COMM_TIME_OUT

• 0x0D (-13) - PORT_SOCKET_FAILURE

• 0x0E (-14) - SELECT_FAILURE

• 0x0F (-15) - TOO_MANY_DATAS

• 0x10 (-16) - INVALID_CRC

• 0x11 (-17) - INVALID_EXCEPTION_CODE

6.8.4 Example config file

Click here to download.
#This .INI file is also the HELP, MANUAL and HOW-TO file for mb2hal.

#Load the Modbus HAL userspace module as the examples below,
#change to match your own HAL_MODULE_NAME and INI file name
#Using HAL_MODULE_NAME=mb2hal or nothing (default): loadusr -W mb2hal config=config_file. ←↩

ini
#Using HAL_MODULE_NAME=mymodule: loadusr -Wn mymodule mb2hal config=config_file.ini

++++++++++++++++++++++++
Common section
++++++++++++++++++++++++
[MB2HAL_INIT]

#OPTIONAL: Debug level of init and INI file parsing.
0 = silent.
1 = error messages (default).
2 = OK confirmation messages.
3 = debugging messages.
4 = maximum debugging messages (only in transactions).
INIT_DEBUG=3

#OPTIONAL: Set to 1.1 to enable the new functions:
- fnct_01_read_coils
- fnct_05_write_single_coil
- changed pin names (see https://linuxcnc.org/docs/2.9/html/drivers/mb2hal.html#_pins).
VERSION=1.1

#OPTIONAL: HAL module (component) name. Defaults to ”mb2hal”.
HAL_MODULE_NAME=mb2hal

#OPTIONAL: Insert a delay of ”FLOAT seconds” between transactions in order
#to not to have a lot of logging and facilitate the debugging.
#Useful when using DEBUG=3 (NOT INIT_DEBUG=3)
#It affects ALL transactions.
#Use ”0.0” for normal activity.
SLOWDOWN=0.0

mb2hal_HOWTO.ini

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 364 / 1322

#REQUIRED: The number of total Modbus transactions. There is no maximum.
TOTAL_TRANSACTIONS=9

++++++++++++++++++++++++
Transactions
++++++++++++++++++++++++
#One transaction section is required per transaction, starting at 00 and counting up ←↩

sequentially.
#If there is a new link (not transaction), you must provide the REQUIRED parameters 1st ←↩

time.
#Warning: Any OPTIONAL parameter not specified are copied from the previous transaction.
[TRANSACTION_00]

#REQUIRED: You must specify either a ”serial” or ”tcp” link for the first transaction.
#Later transaction will use the previous transaction link if not specified.
LINK_TYPE=tcp

#if LINK_TYPE=tcp then REQUIRED (only 1st time): The Modbus slave device ip address.
#if LINK_TYPE=serial then IGNORED
TCP_IP=192.168.2.10

#if LINK_TYPE=tcp then OPTIONAL.
#if LINK_TYPE=serial then IGNORED
#The Modbus slave device tcp port. Defaults to 502.
TCP_PORT=502

#if LINK_TYPE=serial then REQUIRED (only 1st time).
#if LINK_TYPE=tcp then IGNORED
#The serial port.
SERIAL_PORT=/dev/ttyS0

#if LINK_TYPE=serial then REQUIRED (only 1st time).
#if LINK_TYPE=tcp then IGNORED
#The baud rate.
SERIAL_BAUD=115200

#if LINK_TYPE=serial then REQUIRED (only 1st time).
#if LINK_TYPE=tcp then IGNORED
#Data bits. One of 5,6,7,8.
SERIAL_BITS=8

#if LINK_TYPE=serial then REQUIRED (only 1st time).
#if LINK_TYPE=tcp then IGNORED
#Data parity. One of: even, odd, none.
SERIAL_PARITY=none

#if LINK_TYPE=serial then REQUIRED (only 1st time).
#if LINK_TYPE=tcp then IGNORED
#Stop bits. One of 1, 2.
SERIAL_STOP=2

#if LINK_TYPE=serial then OPTIONAL:
#if LINK_TYPE=tcp then IGNORED
#Serial port delay between for this transaction only.
#In ms. Defaults to 0.
SERIAL_DELAY_MS=10

#REQUIRED (only 1st time).
#Modbus slave number.
MB_SLAVE_ID=1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 365 / 1322

#REQUIRED: The first element address (decimal integer).
FIRST_ELEMENT=0

#REQUIRED unless PIN_NAMES is specified: The number of elements.
#It is an error to specify both NELEMENTS and PIN_NAMES
#The pin names will be sequential numbers e.g mb2hal.plcin.01
#NELEMENTS=4

#REQUIRED unless NELEMENTS is specified: A list of element names.
#these names will be used for the pin names, e.g mb2hal.plcin.cycle_start
#NOTE: there must be no white space characters in the list
PIN_NAMES=cycle_start,stop,feed_hold

#REQUIRED: Modbus transaction function code (see www.modbus.org specifications).
fnct_01_read_coils (01 = 0x01) (new in 1.1)
fnct_02_read_discrete_inputs (02 = 0x02)
fnct_03_read_holding_registers (03 = 0x03)
fnct_04_read_input_registers (04 = 0x04)
fnct_05_write_single_coil (05 = 0x05) (new in 1.1)
fnct_06_write_single_register (06 = 0x06)
fnct_15_write_multiple_coils (15 = 0x0F)
fnct_16_write_multiple_registers (16 = 0x10)
#
Created pins:
fnct_01_read_coils:
fnct_02_read_discrete_inputs:
mb2hal.m.n.bit (output)
mb2hal.m.n.bit-inv (output)
fnct_03_read_holding_registers:
fnct_04_read_input_registers:
mb2hal.m.n.float (output)
mb2hal.m.n.int (output)
fnct_05_write_single_coil:
mb2hal.m.n.bit (input)
NELEMENTS needs to be 1 or PIN_NAMES must contain just one name.
fnct_06_write_single_register:
mb2hal.m.n.float (input)
mb2hal.m.n.int (input)
NELEMENTS needs to be 1 or PIN_NAMES must contain just one name.
Both pin values are added and limited to 65535 (UINT16_MAX). Normally use one and let ←↩

the other open (read as 0).
fnct_15_write_multiple_coils:
mb2hal.m.n.bit (input)
fnct_16_write_multiple_registers:
mb2hal.m.n.float (input)
mb2hal.m.n.int (input)
Both pin values are added and limited to 65535 (UINT16_MAX). Normally use one and let ←↩

the other open (read as 0).
#
m = HAL_TX_NAME or transaction number if not set, n = element number (NELEMENTS) or name ←↩

from PIN_NAMES
Example: mb2hal.00.01.<type> (transaction=00, second register=01 (00 is the first one))
mb2hal.TxName.01.<type> (HAL_TX_NAME=TxName, second register=01 (00 is the first ←↩

one))
MB_TX_CODE=fnct_03_read_holding_registers

#OPTIONAL: Response timeout for this transaction. In INTEGER ms. Defaults to 500 ms.
#This is how much to wait for 1st byte before raise an error.
MB_RESPONSE_TIMEOUT_MS=500

#OPTIONAL: Byte timeout for this transaction. In INTEGER ms. Defaults to 500 ms.
#This is how much to wait from byte to byte before raise an error.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 366 / 1322

MB_BYTE_TIMEOUT_MS=500

#OPTIONAL: Instead of giving the transaction number, use a name.
#Example: mb2hal.00.01 could become mb2hal.plcin.01
#The name must not exceed 28 characters.
#NOTE: when using names be careful that you dont end up with two transactions
#using the same name.
HAL_TX_NAME=remoteIOcfg

#OPTIONAL: Maximum update rate in HZ. Defaults to 0.0 (0.0 = as soon as available = ←↩
infinite).

#NOTE: This is a maximum rate and the actual rate may be lower.
#If you want to calculate it in ms use (1000 / required_ms).
#Example: 100 ms = MAX_UPDATE_RATE=10.0, because 1000.0 ms / 100.0 ms = 10.0 Hz
MAX_UPDATE_RATE=0.0

#OPTIONAL: Debug level for this transaction only.
#See INIT_DEBUG parameter above.
DEBUG=2

#While DEBUGGING transactions note the returned ”ret[]” value correspond to:
#/* Modbus protocol exceptions */
#ILLEGAL_FUNCTION -0x01 the FUNCTION code received in the query is not allowed or ←↩

invalid.
#ILLEGAL_DATA_ADDRESS -0x02 the DATA ADDRESS received in the query is not an allowable ←↩

address for the slave or is invalid.
#ILLEGAL_DATA_VALUE -0x03 a VALUE contained in the data query field is not an ←↩

allowable value or is invalid.
#SLAVE_DEVICE_FAILURE -0x04 SLAVE (or MASTER) device unrecoverable FAILURE while ←↩

attempting to perform the requested action.
#SERVER_FAILURE -0x04 (see above).
#ACKNOWLEDGE -0x05 This response is returned to PREVENT A TIMEOUT in the master ←↩

.
A long duration of time is required to process the request ←↩

in the slave.
#SLAVE_DEVICE_BUSY -0x06 The slave (or server) is BUSY. Retrasmit the request later.
#SERVER_BUSY -0x06 (see above).
#NEGATIVE_ACKNOWLEDGE -0x07 Unsuccessful programming request using function code 13 or ←↩

14.
#MEMORY_PARITY_ERROR -0x08 SLAVE parity error in MEMORY.
#GATEWAY_PROBLEM_PATH -0x0A (-10) Gateway path(s) not available.
#GATEWAY_PROBLEM_TARGET -0x0B (-11) The target device failed to respond (generated by ←↩

master, not slave).
#/* Program or connection */
#COMM_TIME_OUT -0x0C (-12)
#PORT_SOCKET_FAILURE -0x0D (-13)
#SELECT_FAILURE -0x0E (-14)
#TOO_MANY_DATAS -0x0F (-15)
#INVALID_CRC -0x10 (-16)
#INVALID_EXCEPTION_CODE -0x11 (-17)

[TRANSACTION_01]
MB_TX_CODE=fnct_01_read_coils
FIRST_ELEMENT=1024
NELEMENTS=24
HAL_TX_NAME=remoteIOin
MAX_UPDATE_RATE=0.0
DEBUG=1

[TRANSACTION_02]
MB_TX_CODE=fnct_02_read_discrete_inputs
FIRST_ELEMENT=1280

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 367 / 1322

NELEMENTS=8
HAL_TX_NAME=readStatus
MAX_UPDATE_RATE=0.0

[TRANSACTION_03]
MB_TX_CODE=fnct_05_write_single_coil
FIRST_ELEMENT=100
NELEMENTS=1
HAL_TX_NAME=setEnableout
MAX_UPDATE_RATE=0.0

[TRANSACTION_04]
MB_TX_CODE=fnct_15_write_multiple_coils
FIRST_ELEMENT=150
NELEMENTS=10
HAL_TX_NAME=remoteIOout
MAX_UPDATE_RATE=0.0

[TRANSACTION_05]
LINK_TYPE=serial
SERIAL_PORT=/dev/ttyS0
SERIAL_BAUD=115200
SERIAL_BITS=8
SERIAL_PARITY=none
SERIAL_STOP=2
SERIAL_DELAY_MS=50
MB_SLAVE_ID=1
MB_TX_CODE=fnct_03_read_holding_registers
FIRST_ELEMENT=1
NELEMENTS=2
HAL_TX_NAME=XDrive01
MAX_UPDATE_RATE=0.0
DEBUG=1

[TRANSACTION_06]
MB_TX_CODE=fnct_04_read_input_registers
FIRST_ELEMENT=12
NELEMENTS=3
HAL_TX_NAME=XDrive02
MAX_UPDATE_RATE=10.0
DEBUG=1

[TRANSACTION_07]
MB_TX_CODE=fnct_06_write_single_register
FIRST_ELEMENT=20
NELEMENTS=1
HAL_TX_NAME=XDrive03
MAX_UPDATE_RATE=0.0
DEBUG=1

[TRANSACTION_08]
MB_TX_CODE=fnct_16_write_multiple_registers
FIRST_ELEMENT=55
NELEMENTS=8
HAL_TX_NAME=XDrive04
MAX_UPDATE_RATE=10.0
DEBUG=1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 368 / 1322

6.8.5 Pins

Note
Yellow = New in MB2HAL 1.1 (LinuxCNC 2.9) To use these new features you have to set VERSION =
1.1.
m = Value of HAL_TX_NAME if set or transaction number
n = Element number (NELEMENTS) or name from PIN_NAMES
Example:

• mb2hal.00.01.int (TRANSACTION_00, second register)

• mb2hal.readStatus.01.bit (HAL_TX_NAME=readStatus, first bit)

6.8.5.1 fnct_01_read_coils

• mb2hal.m.n.bit bit out

• mb2hal.m.n.bit-inv bit out

6.8.5.2 fnct_02_read_discrete_inputs

• mb2hal.m.n.bit bit out

• mb2hal.m.n.bit-inv bit out

6.8.5.3 fnct_03_read_holding_registers

• mb2hal.m.n.float float out

• mb2hal.m.n.int s32 out

6.8.5.4 fnct_04_read_input_registers

• mb2hal.m.n.float float out

• mb2hal.m.n.int s32 out

6.8.5.5 fnct_05_write_single_coil

• mb2hal.m.n.bit bit in

NELEMENTS needs to be 1 or PIN_NAMES must contain just one name.

6.8.5.6 fnct_06_write_single_register

• mb2hal.m.n.float float in

• mb2hal.m.n.int s32 in

NELEMENTS needs to be 1 or PIN_NAMES must contain just one name. Both pin values are added and
limited to 65535 (UINT16_MAX). Use one and let the other open (read as 0).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 369 / 1322

6.8.5.7 fnct_15_write_multiple_coils

• mb2hal.m.n.bit bit in

6.8.5.8 fnct_16_write_multiple_registers

• mb2hal.m.n.float float in

• mb2hal.m.n.int s32 in

Both pin values are added and limited to 65535 (UINT16_MAX). Use one and let the other open (read
as 0).

6.9 Mitsub VFD Driver

This is a non-realtime HAL program, written in Python, to control VFDs from Mitsubishi.
Specifically the A500 F500 E500 A500 D700 E700 F700 series - others may work.
mitsub_vfd supports serial control using the RS485 protocol.
Conversion from USB or serial port to RS485 requires special hardware.

Note
Since this is a non-realtime program it can be affected by computer loading and latency. It is possible
to lose control of the VFDs. It is optional to set the VFD to stop if it loses communication if that
is desirable. One should always have an Estop circuit that kills the power to the unit in case of
emergency.

This component is loaded using the halcmd ”loadusr” command:
loadusr -Wn coolant mitsub_vfd spindle=02 coolant=01

The above command says:
loadusr, wait for coolant pins to be ready, component mitsub_vfd, with 2 slaves named spindle (slave
#2) and coolant (slave #1)

6.9.1 Command Line Options

The command line options are:

• -b or --baud <rate> : set the baud rate - all networked VFDs must be the same

• -p or --port <device path> : sets the port to use such as /dev/ttyUSB0

• <name>=<slave#> : sets the HAL component/pin name and slave number.

Debugging can be toggled by setting the debug pin true.

Note
Turning on debugging will result in a flood of text in the terminal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 370 / 1322

6.9.2 Pins

Where <n> is mitsub_vfd or the name given during loading.

• <n>.fwd (bit, in) True sets motion forward, False sets reverse.

• <n>.run (bit, in) True sets the VFD in motion based on the .fwd pin.

• <n>.debug (bit, in) Prints debug info to the terminal.

• <n>.alarm (bit, out) signals an alarm state of VFD.

• <n>.up-to-speed (bit, out) when drive is at commanded speed (speed-tolerance is set on vfd)

• <n>.monitor (bit, in) some models (eg E500) cannot monitor status - set the monitor pin to false in
this case pins such as up-to-speed, amps, alarm and status bits are not updated.

• <n>.motor-cmd (float, in) commanded speed to the VFD (scaled to hertz by default).

• <n>.motor-fb (float, out) feedback speed from the VFD (scaled to hertz by default).

• <n>.motor-amps (float, out) Current amperage output of motor.

• <n>.motor-power (float, out) Current power output of motor.

• <n>.scale-cmd (float, in) Scales the motor-cmd pin to arbitrary units. default 1 = Hertz.

• <n>.scale-fb (float, in) Scales the motor-fb pin to arbitrary units. default 1 = Hertz.

• <n>.scale-amps (float, in) Scales the motor-amps pin to arbitrary units. default 1 = amps.

• <n>.scale-power (float, in) Scales the motor-power pin to arbitrary units. default 1 = .

• <n>.estop (bit, in) puts the VFD into emergency-stopped status.

• <n>.status-bit-N (bit, out) N = 0 to 7, status bits are user configurable on the VFD. Bit 3 should be
set to at speed and bit 7 should be set to alarm. Others are free to be set as required.

6.9.3 HAL example

#
example usage of the Mitsubishi VFD driver
#
loadusr -Wn coolant mitsub_vfd spindle=02 coolant=01

**************** Spindle VFD setup slave 2 *********************
net spindle-vel-cmd spindle.motor-cmd
net spindle-cw spindle.fwd
net spindle-on spindle.run
net spindle-at-speed spindle.up-to-speed
net estop-out spindle.estop
cmd scaled to RPM
setp spindle.scale-cmd .135
feedback is in rpm
setp spindle.scale-fb 7.411
allows us to see status
setp spindle.monitor 1

net spindle-speed-indicator spindle.motor-fb gladevcp.spindle-speed

*************** Coolant vfd setup slave 3 ***********************
net coolant-flood coolant.run
net coolant-is-on coolant.up-to-speed gladevcp.coolant-on-led

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 371 / 1322

net estop-out coolant.estop
cmd and feedback scaled to hertz
setp coolant.scale-cmd 1
setp coolant.scale-fb 1
command full speed
setp coolant.motor-cmd 60
allows us to see status
setp coolant.monitor 1

6.9.4 Configuring the Mitsubishi VFD for serial usage

6.9.4.1 Connecting the Serial Port

The Mitsubishi VFDs have an RJ-45 jack for serial communication.
Since they use RS485 protocol, they can be networked together point to point.
This driver was tested using the Opto22 AC7A to convert from RS232 to RS485.

6.9.4.2 Modbus setup

Referenced manuals:
communication option reference manual and A500 technical manual for 500 series.
Fr-A700 F700 E700 D700 technical manual for the 700 series
The VFD must have PR settings adjusted manually for serial communication.
One must power cycle the VFD for some of these to register eg PR 79

• PR 77 set to 1 -to unlock other PR modification.

• PR 79 set to 1 or 0 -for communication thru serial.

• PR 117 set to 0-31 -slave number, driver must reference same number.

• PR 118 tested with 96 -baud rate (can be set to 48,96,192) if driver is also set.

• PR 119 set to 0 -stop bit/data length (8 bits, two stop)

• PR 120 set to 0 -no parity

• PR 121 set to 1-10 -if 10 (maximum) COM errors then VFD faults.

• PR 122 tested with 9999 -if communication is lost VFD will not error.

• PR 123 set to 9999 -no wait time is added to the serial data frame.

• PR 124 set to 0 -no carriage return at end of line.

6.10 Motenc Driver

Vital Systems Motenc-100 and Motenc-LITE
The Vital Systems Motenc-100 and Motenc-LITE are 8- and 4-channel servo control boards. The
Motenc-100 provides 8 quadrature encoder counters, 8 analog inputs, 8 analog outputs, 64 (68?)
digital inputs, and 32 digital outputs. The Motenc-LITE has only 4 encoder counters, 32 digital inputs
and 16 digital outputs, but it still has 8 analog inputs and 8 analog outputs. The driver automatically
identifies the installed board and exports the appropriate HAL objects.
Installing:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 372 / 1322

loadrt hal_motenc

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel
log, which can be viewed with dmesg.
Up to 4 boards may be used in one system.

6.10.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the board, so it may be non-zero even if there is only one board.

• (s32) motenc.<board>.enc-<channel>-count - Encoder position, in counts.

• (float) motenc.<board>.enc-<channel>-position - Encoder position, in user units.

• (bit) motenc.<board>.enc-<channel>-index - Current status of index pulse input.

• (bit) motenc.<board>.enc-<channel>-idx-latch - Driver sets this pin true when it latches an index
pulse (enabled by latch-index). Cleared by clearing latch-index.

• (bit) motenc.<board>.enc-<channel>-latch-index - If this pin is true, the driver will reset the counter
on the next index pulse.

• (bit) motenc.<board>.enc-<channel>-reset-count - If this pin is true, the counter will immediately
be reset to zero, and the pin will be cleared.

• (float) motenc.<board>.dac-<channel>-value - Analog output value for DAC (in user units, see -gain
and -offset)

• (float) motenc.<board>.adc-<channel>-value - Analog input value read by ADC (in user units, see
-gain and -offset)

• (bit) motenc.<board>.in-<channel> - State of digital input pin, see canonical digital input.

• (bit) motenc.<board>.in-<channel>-not - Inverted state of digital input pin, see canonical digital
input.

• (bit) motenc.<board>.out-<channel> - Value to be written to digital output, seen canonical digital
output.

• (bit) motenc.<board>.estop-in - Dedicated estop input, more details needed.

• (bit) motenc.<board>.estop-in-not - Inverted state of dedicated estop input.

• (bit) motenc.<board>.watchdog-reset - Bidirectional, - Set TRUE to reset watchdog once, is auto-
matically cleared.

6.10.2 Parameters

• (float) motenc.<board>.enc-<channel>-scale - The number of counts / user unit (to convert from
counts to units).

• (float) motenc.<board>.dac-<channel>-offset - Sets the DAC offset.

• (float) motenc.<board>.dac-<channel>-gain - Sets the DAC gain (scaling).

• (float) motenc.<board>.adc-<channel>-offset - Sets the ADC offset.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 373 / 1322

• (float) motenc.<board>.adc-<channel>-gain - Sets the ADC gain (scaling).

• (bit) motenc.<board>.out-<channel>-invert - Inverts a digital output, see canonical digital output.

• (u32) motenc.<board>.watchdog-control - Configures the watchdog.
The value may be a bitwise OR of the following values:

Bit # Value Meaning
0 1 Timeout is 16ms if set, 8ms if unset
1 2
2 4 Watchdog is enabled
3 8
4 16 Watchdog is automatically reset by DAC writes (the HAL

dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 20 (8ms watchdog enabled, cleared by dac-
write).

• (u32) motenc.<board>.led-view - Maps some of the I/O to onboard LEDs.

6.10.3 Functions

• (funct) motenc.<board>.encoder-read - Reads all encoder counters.

• (funct) motenc.<board>.adc-read - Reads the analog-to-digital converters.

• (funct) motenc.<board>.digital-in-read - Reads digital inputs.

• (funct) motenc.<board>.dac-write - Writes the voltages to the DACs.

• (funct) motenc.<board>.digital-out-write - Writes digital outputs.

• (funct) motenc.<board>.misc-update - Updates misc stuff.

6.11 Opto22 Driver

PCI AC5 ADAPTER CARD / HAL DRIVER

6.11.1 The Adapter Card

This is a card made by Opto22 for adapting the PCI port to solid state relay racks such as their standard
or G4 series. It has 2 ports that can control up to 24 points each and has 4 on board LEDs. The ports
use 50 pin connectors the same as Mesa boards. Any relay racks/breakout boards that work with
Mesa Cards should work with this card with the understanding any encoder counters, PWM, etc.,
would have to be done in software. The AC5 does not have any smart logic on board, it is just an
adapter.
See the manufacturer’s website for more info:
https://www.opto22.com/site/pr_details.aspx?cid=4&item=PCI-AC5
I would like to thank Opto22 for releasing info in their manual, easing the writing of this driver!

https://www.opto22.com/site/pr_details.aspx?cid=4&item=PCI-AC5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 374 / 1322

6.11.2 The Driver

This driver is for the PCI AC5 card and will not work with the ISA AC5 card. The HAL driver is a
realtime module. It will support 4 cards as is (more cards are possible with a change in the source
code). Load the basic driver like so:
loadrt opto_ac5

This will load the driver which will search for max 4 boards. It will set I/O of each board’s 2 ports to
a default setting. The default configuration is for 12 inputs then 12 outputs. The pin name numbers
correspond to the position on the relay rack. For example the pin names for the default I/O setting of
port 0 would be:

• opto_ac5.0.port0.in-00 - They would be numbered from 00 to 11

• opto_ac5.0.port0.out-12 - They would be numbered 12 to 23 port 1 would be the same.

6.11.3 Pins

• opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER] OUT bit -

• opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER]-not OUT bit - Connect a HAL
bit signal to this pin to read an I/O point from the card. The PINNUMBER represents the position in
the relay rack. Eg. PINNUMBER 0 is position 0 in a Opto22 relay rack and would be pin 47 on the
50 pin header connector. The -not pin is inverted so that LOW gives TRUE and HIGH gives FALSE.

• opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER] IN bit - Connect a HAL bit
signal to this pin to write to an I/O point of the card. The PINNUMBER represents the position in
the relay rack.Eg. PINNUMBER 23 is position 23 in a Opto22 relay rack and would be pin 1 on the
50 pin header connector.

• opto_ac5.[BOARDNUMBER].led[NUMBER] OUT bit - Turns one of the 4 onboard LEDs on/off. LEDs
are numbered 0 to 3.

BOARDNUMBER can be 0-3 PORTNUMBER can be 0 or 1. Port 0 is closest to the card bracket.

6.11.4 Parameters

• opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER]-invert W bit - When TRUE,
invert the meaning of the corresponding -out pin so that TRUE gives LOW and FALSE gives HIGH.

6.11.5 FUNCTIONS

• opto_ac5.0.digital-read - Add this to a thread to read all the input points.

• opto_ac5.0.digital-write - Add this to a thread to write all the output points and LEDs.

For example the pin names for the default I/O setting of port 0 would be:
opto_ac5.0.port0.in-00

They would be numbered from 00 to 11
opto_ac5.0.port0.out-12

They would be numbered 12 to 23 port 1 would be the same.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 375 / 1322

6.11.6 Configuring I/O Ports

To change the default setting load the driver something like so:
loadrt opto_ac5 portconfig0=0xffff portconfig1=0xff0000

Of course changing the numbers to match the I/O you would like. Each port can be set up different.
Here’s how to figure out the number: The configuration number represents a 32 bit long code to tell
the card which I/O points are output vrs input. The lower 24 bits are the I/O points of one port. The 2
highest bits are for 2 of the on board LEDs. A one in any bit position makes the I/O point an output.
The two highest bits must be output for the LEDs to work. The driver will automatically set the two
highest bits for you, we won’t talk about them.
The easiest way to do this is to fire up the calculator under APPLICATIONS/ACCESSORIES. Set it to
scientific (click view). Set it BINARY (radio button Bin). Press 1 for every output you want and/or zero
for every input. Remember that HAL pin 00 corresponds to the rightmost bit. 24 numbers represent
the 24 I/O points of one port. So for the default setting (12 inputs then 12 outputs) you would push 1
twelve times (that’s the outputs) then 0 twelve times (that’s the inputs). Notice the first I/O point is
the lowest (rightmost) bit. (that bit corresponds to HAL pin 00 .looks backwards) You should have 24
digits on the screen. Now push the Hex radio button. The displayed number (fff000) is the configport
number (put a 0x in front of it designating it as a HEX number).
Another example: To set the port for 8 outputs and 16 inputs (the same as a Mesa card). Here is the
24 bits represented in a BINARY number. Bit 1 is the rightmost number:
16 zeros for the 16 inputs and 8 ones for the 8 outputs
000000000000000011111111

This converts to FF on the calculator, so 0xff is the number to use for portconfig0 and/or portconfig1
when loading the driver.

6.11.7 Pin Numbering

HAL pin 00 corresponds to bit 1 (the rightmost) which represents position 0 on an Opto22 relay rack.
HAL pin 01 corresponds to bit 2 (one spot to the left of the rightmost) which represents position 1 on
an Opto22 relay rack. HAL pin 23 corresponds to bit 24 (the leftmost) which represents position 23
on an Opto22 relay rack.
HAL pin 00 connects to pin 47 on the 50 pin connector of each port. HAL pin 01 connects to pin 45
on the 50 pin connector of each port. HAL pin 23 connects to pin 1 on the 50 pin connector of each
port.
Note that Opto22 and Mesa use opposite numbering systems: Opto22 position 23 = connector pin
1, and the position goes down as the connector pin number goes up. Mesa Hostmot2 position 1 =
connector pin 1, and the position number goes up as the connector pin number goes up.

6.12 Pico Drivers

Pico Systems has a family of boards for doing analog servo, stepper, and PWM (digital) servo control.
The boards connect to the PC through a parallel port working in EPP mode. Although most users
connect one board to a parallel port, in theory any mix of up to 8 or 16 boards can be used on a
single parport. One driver serves all types of boards. The final mix of I/O depends on the connected
board(s). The driver doesn’t distinguish between boards, it simply numbers I/O channels (encoders,
etc) starting from 0 on the first board. The driver is named hal_ppmc.ko The analog servo interface is
also called the PPMC for Parallel Port Motion Control. There is also the Universal Stepper Controller,
abbreviated the USC. And the Universal PWM Controller, or UPC.
Installing:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 376 / 1322

loadrt hal_ppmc port_addr=<addr1>[,<addr2>[,<addr3>...]]

The port_addr parameter tells the driver what parallel port(s) to check. By default, <addr1> is
0x0378, and <addr2> and following are not used. The driver searches the entire address space
of the enhanced parallel port(s) at port_addr, looking for any board(s) in the PPMC family. It then
exports HAL pins for whatever it finds. During loading (or attempted loading) the driver prints some
useful debugging messages to the kernel log, which can be viewed with dmesg.
Up to 3 parport buses may be used, and each bus may have up to 8 (or possibly 16 PPMC) devices on
it.

6.12.1 Command Line Options

There are several options that can be specified on the loadrt command line. First, the USC and UPC
can have an 8-bit DAC added for spindle speed control and similar functions. This can be specified
with the extradac=0xnn[,0xmm] parameter. The part enclosed in [] allows you to specify this option
on more than one board of the system. The first hex digit tells which EPP bus is being referred to,
it corresponds to the order of the port addresses in the port_addr parameter, where <addr1> would
be zero here. So, for the first EPP bus, the first USC or UPC board would be described as 0x00,
the second USC or UPC on the same bus would be 0x02. (Note that each USC or UPC takes up two
addresses, so if one is at 00, the next would have to be 02.)
Alternatively, the 8 digital output pins can be used as additional digital outputs, it works the same
way as above with the syntax : extradout=0xnn’. The extradac and extradout options are mutually
exclusive on each board, you can only specify one.
The UPC and PPMC encoder boards can timestamp the arrival of encoder counts to refine the deriva-
tion of axis velocity. This derived velocity can be fed to the PID hal component to produce smoother D
term response. The syntax is : timestamp=0xnn[,0xmm], this works the same way as above to select
which board is being configured. Default is to not enable the timestamp option. If you put this option
on the command line, it enables the option. The first n selects the EPP bus, the second one matches
the address of the board having the option enabled. The driver checks the revision level of the board
to make sure it has firmware supporting the feature, and produces an error message if the board does
not support it.
The PPMC encoder board has an option to select the encoder digital filter frequeency. (The UPC has
the same ability via DIP switches on the board.) Since the PPMC encoder board doesn’t have these
extra DIP switches, it needs to be selected via a command-line option. By default, the filter runs at
1 MHz, allowing encoders to be counted up to about 900 kHz (depending on noise and quadrature
accuracy of the encoder.) The options are 1, 2.5, 5 and 10 MHz. These are set with a parameter of
1,2,5 and 10 (decimal) which is specified as the hex digit ”A”. These are specified in a manner similar
to the above options, but with the frequency setting to the left of the bus/address digits. So, to set 5
MHz on the encoder board at address 3 on the first EPP bus, you would write: enc_clock=’0x503’.
It was recently discovered that some parallel port chips would not work with the ppmc driver. Espe-
cially, the Oxford OXPCIe952 chip on the SIIG PCIe parallel port cards had this trouble. The ppmc
driver in all LinuxCNC versions starting from 2.7.8 have been corrected for this problem by default.
However, this possibly could cause problems with really old EPP parallel port hardware, so there is
a command line option to go back to the previous behavior. The new behavior is set by default, or
by adding the parameter epp_dir=0 on the command line. To get the old behavior, add epp_dir=1 to
the command line. All parallel ports I have here work with the new default behavior. As on the other
parameters, it is possible to give a list, like epp_dir=1,0,1 to set different settings for each of up to 3
parallel ports.

6.12.2 Pins

In the following pins, parameters, and functions, <port> is the parallel port ID. According to the
naming conventions the first port should always have an ID of zero. All the boards have some method

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 377 / 1322

of setting the address on the EPP bus. USC and UPC have simple provisions for only two addresses, but
jumper foil cuts allow up to 4 boards to be addressed. The PPMC boards have 16 possible addresses.
In all cases, the driver enumerates the boards by type and exports the appropriate HAL pins. For
instance, the encoders will be enumerated from zero up, in the same order as the address switches
on the board specify. So, the first board will have encoders 0 — 3, the second board would have
encoders 4 — 7. The first column after the bullet tells which boards will have this HAL pin or parameter
associated with it. All means that this pin is available on all three board types. Option means that
this pin will only be exported when that option is enabled by an optional parameter in the loadrt HAL
command. These options require the board to have a sufficient revision level to support the feature.

• (All s32 output) ppmc.<port>.encoder.<channel>.count - Encoder position, in counts.

• (All s32 output) ppmc.<port>.encoder.<channel>.delta - Change in counts since last read, in raw
encoder count units.

• (All float output) ’ppmc.<port>.encoder.<channel>.velocity - Velocity scaled in user units per sec-
ond. On PPMC and USC this is derived from raw encoder counts per servo period, and hence is
affected by encoder granularity. On UPC boards with the 8/21/09 and later firmware, velocity es-
timation by timestamping encoder counts can be used to improve the smoothness of this velocity
output. This can be fed to the PID HAL component to produce a more stable servo response. This
function has to be enabled in the HAL command line that starts the PPMC driver, with the times-
tamp=0x00 option.

• (All float output) ppmc.<port>.encoder.<channel>.position - Encoder position, in user units.

• (All bit bidir) ppmc.<port>.encoder.<channel>.index-enable - Connect to joint.#.index-enable for
home-to-index. This is a bidirectional HAL signal. Setting it to true causes the encoder hardware
to reset the count to zero on the next encoder index pulse. The driver will detect this and set the
signal back to false.

• (PPMC float output) ppmc.<port>.DAC.<channel>.value - sends a signed value to the 16-bit Digital
to Analog Converter on the PPMC DAC16 board commanding the analog output voltage of that DAC
channel.

• (UPC bit input) ppmc.<port>.pwm.<channel>.enable - Enables a PWM generator.

• (UPC float input) ppmc.<port>.pwm.<channel>.value - Value which determines the duty cycle of
the PWM waveforms. The value is divided by pwm.<channel>.scale, and if the result is 0.6 the duty
cycle will be 60%, and so on. Negative values result in the duty cycle being based on the absolute
value, and the direction pin is set to indicate negative.

• (USC bit input) ppmc.<port>.stepgen.<channel>.enable - Enables a step pulse generator.

• (USC float input) ppmc.<port>.stepgen.<channel>.velocity - Value which determines the step fre-
quency. The value is multiplied by stepgen.<channel>.scale , and the result is the frequency in
steps per second. Negative values result in the frequency being based on the absolute value, and
the direction pin is set to indicate negative.

• (All bit output) ppmc.<port>.din.<channel>.in - State of digital input pin, see canonical digital
input.

• (All bit output) ppmc.<port>.din.<channel>.in-not - Inverted state of digital input pin, see canonical
digital input.

• (All bit input) ppmc.<port>.dout.<channel>.out - Value to be written to digital output, see canonical
digital output.

• (Option float input) ppmc.<port>.DAC8-<channel>.value - Value to be written to analog output,
range from 0 to 255. This sends 8 output bits to J8, which should have a Spindle DAC board con-
nected to it. 0 corresponds to zero Volts, 255 corresponds to 10 Volts. The polarity of the output
can be set for always minus, always plus, or can be controlled by the state of SSR1 (plus when on)
and SSR2 (minus when on). You must specify extradac = 0x00 on the HAL command line that loads
the PPMC driver to enable this function on the first USC ur UPC board.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 378 / 1322

• (Option bit input) ppmc.<port>.dout.<channel>.out - Value to be written to one of the 8 extra digital
output pins on J8. You must specify extradout = 0x00 on the HAL command line that loads the ppmc
driver to enable this function on the first USC or UPC board. extradac and extradout are mutually
exclusive features as they use the same signal lines for different purposes. These output pins will
be enumerated after the standard digital outputs of the board.

6.12.3 Parameters

• (All float) ppmc.<port>.encoder.<channel>.scale - The number of counts / user unit (to convert
from counts to units).

• (UPC float) ppmc.<port>.pwm.<channel-range>.freq - The PWM carrier frequency, in Hz. Applies
to a group of four consecutive PWM generators, as indicated by <channel-range>. Minimum is 610
Hz, maximum is 500 kHz.

• (PPMC float) ppmc.<port>.DAC.<channel>.scale - Sets scale of DAC16 output channel such that
an output value equal to the 1/scale value will produce an output of + or - value Volts. So, if the
scale parameter is 0.1 and you send a value of 0.5, the output will be 5.0 Volts.

• (UPC float) ppmc.<port>.pwm.<channel>.scale - Scaling for PWM generator. If scale is X, then the
duty cycle will be 100% when the value pin is X (or -X).

• (UPC float) ppmc.<port>.pwm.<channel>.max-dc - Maximum duty cycle, from 0.0 to 1.0.

• (UPC float) ppmc.<port>.pwm.<channel>.min-dc - Minimum duty cycle, from 0.0 to 1.0.

• (UPC float) ppmc.<port>.pwm.<channel>.duty-cycle - Actual duty cycle (used mostly for trou-
bleshooting.)

• (UPC bit) ppmc.<port>.pwm.<channel>.bootstrap - If true, the PWM generator will generate a
short sequence of pulses of both polarities when E-stop goes false, to reset the shutdown latches
on some PWM servo drives.

• (USC u32) ppmc.<port>.stepgen.<channel-range>.setup-time - Sets minimum time between direc-
tion change and step pulse, in units of 100 ns. Applies to a group of four consecutive step generators,
as indicated by <channel-range>. Values between 200 ns and 25.5 µs can be specified.

• (USC u32) ppmc.<port>.stepgen.<channel-range>.pulse-width - Sets width of step pulses, in units
of 100 ns. Applies to a group of four consecutive step generators, as indicated by <channel-range>.
Values between 200 ns and 25.5 µs may be specified.

• (USC u32) ppmc.<port>.stepgen.<channel-range>.pulse-space-min - Sets minimum time between
pulses, in units of 100 ns. Applies to a group of four consecutive step generators, as indicated by
<channel-range>. Values between 200 ns and 25.5 µs can be specified. The maximum step rate is:

• (USC float) ppmc.<port>.stepgen.<channel>.scale - Scaling for step pulse generator. The step
frequency in Hz is the absolute value of velocity * scale.

• (USC float) ppmc.<port>.stepgen.<channel>.max-vel - The maximum value for velocity. Com-
mands greater than max-vel will be clamped. Also applies to negative values. (The absolute value
is clamped.)

• (USC float) ppmc.<port>.stepgen.<channel>.frequency - Actual step pulse frequency in Hz (used
mostly for troubleshooting.)

• (Option float) ppmc.<port>.DAC8.<channel>.scale - Sets scale of extra DAC output such that an
output value equal to scale gives a magnitude of 10.0 V output. (The sign of the output is set by
jumpers and/or other digital outputs.)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 379 / 1322

• (Option bit) ppmc.<port>.dout.<channel>.invert - Inverts a digital output, see canonical digital
output.

• (Option bit) ppmc.<port>.dout.<channel>.invert - Inverts a digital output pin of J8, see canonical
digital output.

6.12.4 Functions

• (All funct) ppmc.<port>.read - Reads all inputs (digital inputs and encoder counters) on one port.
These reads are organized into blocks of contiguous registers to be read in a block to minimize CPU
overhead.

• (All funct) ppmc.<port>.write - Writes all outputs (digital outputs, stepgens, PWMs) on one port.
These writes are organized into blocks of contiguous registers to be written in a block to minimize
CPU overhead.

6.13 Pluto P Driver

6.13.1 General Info

The Pluto-P is a FPGA board featuring the ACEX1K chip from Altera.

6.13.1.1 Requirements

1. A Pluto-P board

2. An EPP-compatible parallel port, configured for EPP mode in the system BIOS or a PCI EPP
compatible parallel port card.

Note
The Pluto P board requires EPP mode. Netmos98xx chips do not work in EPP mode. The Pluto P board
will work on some computers and not on others. There is no known pattern to which computers work
and which don’t work.

For more information on PCI EPP compatible parallel port cards see the LinuxCNC Supported Hard-
ware page on the wiki.

6.13.1.2 Connectors

• The Pluto-P board is shipped with the left connector presoldered, with the key in the indicated
position. The other connectors are unpopulated. There does not seem to be a standard 12-pin IDC
connector, but some of the pins of a 16P connector can hang off the board next to QA3/QZ3.

• The bottom and right connectors are on the same .1” grid, but the left connector is not. If OUT2…OUT9
are not required, a single IDC connector can span the bottom connector and the bottom two rows
of the right connector.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 380 / 1322

6.13.1.3 Physical Pins

• Read the ACEX1K datasheet for information about input and output voltage thresholds. The pins
are all configured in LVTTL/LVCMOS mode and are generally compatible with 5V TTL logic.

• Before configuration and after properly exiting LinuxCNC, all Pluto-P pins are tristated with weak
pull-ups (20 kΩ min, 50 kΩ max). If the watchdog timer is enabled (the default), these pins are also
tristated after an interruption of communication between LinuxCNC and the board. The watchdog
timer takes approximately 6.5 ms to activate. However, software bugs in the pluto_servo firmware
or LinuxCNC can leave the Pluto-P pins in an undefined state.

• In pwm+dir mode, by default dir is HIGH for negative values and LOW for positive values. To
select HIGH for positive values and LOW for negative values, set the corresponding dout-NN-invert
parameter TRUE to invert the signal.

• The index input is triggered on the rising edge. Initial testing has shown that the QZx inputs are
particularly noise sensitive, due to being polled every 25 ns. Digital filtering has been added to filter
pulses shorter than 175 ns (seven polling times). Additional external filtering on all input pins, such
as a Schmitt buffer or inverter, RC filter, or differential receiver (if applicable) is recommended.

• The IN1…IN7 pins have 22 Ω series resistors to their associated FPGA pins. No other pins have any
sort of protection for out-of-spec voltages or currents. It is up to the integrator to add appropriate
isolation and protection. Traditional parallel port optoisolator boards do not work with pluto_servo
due to the bidirectional nature of the EPP protocol.

6.13.1.4 LED

• When the device is unprogrammed, the LED glows faintly. When the device is programmed, the
LED glows according to the duty cycle of PWM0 (LED = UP0 xor DOWN0) or STEPGEN0 (LED =
STEP0 xor DIR0).

6.13.1.5 Power

• A small amount of current may be drawn from VCC. The available current depends on the unregu-
lated DC input to the board. Alternately, regulated +3.3VDC may be supplied to the FPGA through
these VCC pins. The required current is not yet known, but is probably around 50mA plus I/O
current.

• The regulator on the Pluto-P board is a low-dropout type. Supplying 5V at the power jack will allow
the regulator to work properly.

6.13.1.6 PC interface

• Only a single pluto_servo or pluto_step board is supported.

6.13.1.7 Rebuilding the FPGA firmware

The src/hal/drivers/pluto_servo_firmware/ and src/hal/drivers/pluto_step_firmware/ subdirectories con-
tain the Verilog source code plus additional files used by Quartus for the FPGA firmwares. Altera’s
Quartus II software is required to rebuild the FPGA firmware. To rebuild the firmware from the .hdl
and other source files, open the .qpf file and press CTRL-L. Then, recompile LinuxCNC.
Like the HAL hardware driver, the FPGA firmware is licensed under the terms of the GNU General
Public License.
The gratis version of Quartus II runs only on Microsoft Windows, although there is apparently a paid
version that runs on Linux.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 381 / 1322

6.13.1.8 For more information

Some additional information about it is available from KNJC LLC and from the developer’s blog.

6.13.2 Pluto Servo

The pluto_servo system is suitable for control of a 4-axis CNC mill with servo motors, a 3-axis mill
with PWM spindle control, a lathe with spindle encoder, etc. The large number of inputs allows a full
set of limit switches.
This driver features:

• 4 quadrature channels with 40 MHz sample rate. The counters operate in 4x mode. The maximum
useful quadrature rate is 8191 counts per LinuxCNC servo cycle, or about 8 MHz for LinuxCNC’s
default 1 ms servo rate.

• 4 PWM channels, up/down or pwm+dir style. 4095 duty cycles from -100% to +100%, including 0%.
The PWM period is approximately 19.5 kHz (40 MHz / 2047). A PDM-like mode is also available.

• 18 digital outputs: 10 dedicated, 8 shared with PWM functions. (Example: A lathe with unidirec-
tional PWM spindle control may use 13 total digital outputs)

• 20 digital inputs: 8 dedicated, 12 shared with Quadrature functions. (Example: A lathe with index
pulse only on the spindle may use 13 total digital inputs.)

• EPP communication with the PC. The EPP communication typically takes around 100 µs on machines
tested so far, enabling servo rates above 1 kHz.

6.13.2.1 Pinout

• UPx - The up (up/down mode) or pwm (pwm+direction mode) signal from PWM generator X. May be
used as a digital output if the corresponding PWM channel is unused, or the output on the channel
is always negative. The corresponding digital output invert may be set to TRUE to make UPx active
low rather than active high.

• DNx - The down (up/down mode) or direction (pwm+direction mode) signal from PWM generator
X. May be used as a digital output if the corresponding PWM channel is unused, or the output on
the channel is never negative. The corresponding digital output invert may be set to TRUE to make
DNx active low rather than active high.

• QAx, QBx - The A and B signals for Quadrature counter X. May be used as a digital input if the
corresponding quadrature channel is unused.

• QZx - The Z (index) signal for quadrature counter X. May be used as a digital input if the index
feature of the corresponding quadrature channel is unused.

• INx - Dedicated digital input #x

• OUTx - Dedicated digital output #x

• GND - Ground

• VCC - +3.3V regulated DC

.Pluto-Servo Pinout Pluto-Servo Pinout

https://www.knjn.com/FPGA-Parallel.html
http://emergent.unpy.net/01165081407

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 382 / 1322

Table 6.41: Pluto-Servo Alternate Pin Functions

Primary function Alternate Function Behavior if both
functions used

UP0 PWM0 When pwm-0-pwmdir is
TRUE, this pin is the PWM
output

OUT10 XOR’d with UP0 or PWM0
UP1 PWM1 When pwm-1-pwmdir is

TRUE, this pin is the PWM
output

OUT12 XOR’d with UP1 or PWM1
UP2 PWM2 When pwm-2-pwmdir is

TRUE, this pin is the PWM
output

OUT14 XOR’d with UP2 or PWM2
UP3 PWM3 When pwm-3-pwmdir is

TRUE, this pin is the PWM
output

OUT16 XOR’d with UP3 or PWM3
DN0 DIR0 When pwm-0-pwmdir is

TRUE, this pin is the DIR
output

OUT11 XOR’d with DN0 or DIR0
DN1 DIR1 When pwm-1-pwmdir is

TRUE, this pin is the DIR
output

OUT13 XOR’d with DN1 or DIR1
DN2 DIR2 When pwm-2-pwmdir is

TRUE, this pin is the DIR
output

OUT15 XOR’d with DN2 or DIR2
DN3 DIR3 When pwm-3-pwmdir is

TRUE, this pin is the DIR
output

OUT17 XOR’d with DN3 or DIR3
QZ0 IN8 Read same value
QZ1 IN9 Read same value
QZ2 IN10 Read same value
QZ3 IN11 Read same value
QA0 IN12 Read same value
QA1 IN13 Read same value
QA2 IN14 Read same value
QA3 IN15 Read same value
QB0 IN16 Read same value
QB1 IN17 Read same value
QB2 IN18 Read same value
QB3 IN19 Read same value

6.13.2.2 Input latching and output updating

• PWM duty cycles for each channel are updated at different times.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 383 / 1322

• Digital outputs OUT0 through OUT9 are all updated at the same time. Digital outputs OUT10
through OUT17 are updated at the same time as the pwm function they are shared with.

• Digital inputs IN0 through IN19 are all latched at the same time.

• Quadrature positions for each channel are latched at different times.

6.13.2.3 HAL Functions, Pins and Parameters

A list of all loadrt arguments, HAL function names, pin names and parameter names is in the manual
page, pluto_servo.9.

6.13.2.4 Compatible driver hardware

A schematic for a 2A, 2-axis PWM servo amplifier board is available from the (the software developer).
The L298 H-Bridge can be used for motors up to 4A (one motor per L298) or up to 2A (two motors per
L298) with the supply voltage up to 46V. However, the L298 does not have built-in current limiting,
a problem for motors with high stall currents. For higher currents and voltages, some users have
reported success with International Rectifier’s integrated high-side/low-side drivers.

6.13.3 Pluto Step

Pluto-step is suitable for control of a 3- or 4-axis CNC mill with stepper motors. The large number of
inputs allows for a full set of limit switches.
The board features:

• 4 step+direction channels with 312.5 kHz maximum step rate, programmable step length, space,
and direction change times

• 14 dedicated digital outputs

• 16 dedicated digital inputs

• EPP communication with the PC

6.13.3.1 Pinout

• STEPx - The step (clock) output of stepgen channel x

• DIRx - The direction output of stepgen channel x

• INx - Dedicated digital input #x

• OUTx - Dedicated digital output #x

• GND - Ground

• VCC - +3.3V regulated DC

While the extended main connector has a superset of signals usually found on a Step & Direction DB25
connector—4 step generators, 9 inputs, and 6 general-purpose outputs—the layout on this header is
different than the layout of a standard 26-pin ribbon cable to DB25 connector.

http://emergent.unpy.net/projects/01148303608

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 384 / 1322

Figure 6.10: Pluto-Step Pinout

6.13.3.2 Input latching and output updating

• Step frequencies for each channel are updated at different times.

• Digital outputs are all updated at the same time.

• Digital inputs are all latched at the same time.

• Feedback positions for each channel are latched at different times.

6.13.3.3 Step Waveform Timings

The firmware and driver enforce step length, space, and direction change times. Timings are rounded
up to the next multiple of 1.6μs, with a maximum of 49.6μs. The timings are the same as for the soft-
ware stepgen component, except that dirhold and dirsetup have been merged into a single parameter
dirtime which should be the maximum of the two, and that the same step timings are always applied
to all channels.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 385 / 1322

Figure 6.11: Pluto-Step Timings

6.13.3.4 HAL Functions, Pins and Parameters

A list of all loadrt arguments, HAL function names, pin names and parameter names is in the manual
page, pluto_step.9.

6.14 Powermax Modbus Driver

This is a non-realtime HAL program, written in python, to control Hypetherm Powermax plasma cut-
ters using the Modbus ASCII protocol over RS485.

Note
Since this is a non-realtime program it can be affected by computer loading and latency. It is possible
to lose communications which will be indicated by a change in the status output. One should always
have an Estop circuit that kills the power to the unit in case of emergency.

This component is loaded using the halcmd ”loadusr” command:
loadusr -Wn pmx485 pmx485 /dev/ttyUSB0

This will load the pmx485 component using the /dev/ttyUSB0 port and wait for it to become ready.
It is necessary to name the port to use for communications.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 386 / 1322

6.14.1 Pins

• pmx485.mode-set (bit, in) # set cutting mode

• pmx485.current-set (bit, in) # set cutting current

• pmx485.pressure-set (bit, in) # set gas pressure

• pmx485.enable (bit, in) # enable the component

• pmx485.mode (bit, out) # cut mode feedback

• pmx485.current (bit, out) # cutting current feedback

• pmx485.pressure (bit, out) # gas pressure feedback

• pmx485.fault (bit, out) # powermax fault code

• pmx485.status (bit, out) # connection status

• pmx485.current-min (bit, out) # minimum allowed current

• pmx485.current-max (bit, out) # maximum allowed current

• pmx485.pressure-min (bit, out) # minimum allowed gas pressure

• pmx485.pressure-max (bit, out) # maximum allowed gas pressure

6.14.2 Description

To communicate with a Powermax, the component must first be enabled via the enable pin and it may
then initiate a request to the Powermax by writing a valid string to the following pins:

• mode-set

• current-set

• pressure-set

Note
A pressure-set value of zero is valid, the Powermax will then calculate the required pressure inter-
nally.

Communications may be validated from the Powermax display or the status pin. While in remote
mode, the mode, current and pressure may be changed as needed.
To terminate the communications, do one of the following:

• Set all set pins to zero: mode-set, current-set, and pressure-set.

• Disconnect the Powermax power supply from its power source for approximately 30 seconds. When
you power the system back ON, it will no longer be in remote mode.

6.14.3 Reference:

• Hypertherm Application Note #807220
”Powermax45 XP/65/85/105/125® Serial Communication Protocol”

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 387 / 1322

6.15 Servo To Go Driver

The Servo-To-Go (STG) is one of the first PC motion control cards supported by LinuxCNC. It is an
ISA card and it exists in different flavors (all supported by this driver). The board includes up to 8
channels of quadrature encoder input, 8 channels of analog input and output, 32 bits digital I/O, an
interval timer with interrupt and a watchdog.

Note
We have had reports that the opamps on the Servo To Go card do not work with newer ATX power
supplies that use modern switch mode DC-DC converters. The failure mode is that STG card outputs
a constant voltage regardless of what the driver is commanding it to do. Older ATX power supplies
with linear voltage regulators do not have this problem, and work fine with the STG cards.

6.15.1 Installing

loadrt hal_stg [base=<address>] [num_chan=<nr>] [dio=”<dio-string>”] \
[model=<model>]

The base address field is optional; if it’s not provided the driver attempts to autodetect the board.
The num_chan field is used to specify the number of channels available on the card, if not used the
8 axis version is assumed. The digital inputs/outputs configuration is determined by a config string
passed to insmod when loading the module. The format consists of a four character string that sets
the direction of each group of pins. Each character of the direction string is either ”I” or ”O”. The
first character sets the direction of port A (Port A - DIO.0-7), the next sets port B (Port B - DIO.8-15),
the next sets port C (Port C - DIO.16-23), and the fourth sets port D (Port D - DIO.24-31). The model
field can be used in case the driver doesn’t autodetect the right card version.
HINT: after starting up the driver, dmesg can be consulted for messages relevant to the driver (e.g.
autodetected version number and base address). For example:
loadrt hal_stg base=0x300 num_chan=4 dio=”IOIO”

This example installs the STG driver for a card found at the base address of 0x300, 4 channels of
encoder feedback, DACs and ADCs, along with 32 bits of I/O configured like this: the first 8 (Port A)
configured as Input, the next 8 (Port B) configured as Output, the next 8 (Port C) configured as Input,
and the last 8 (Port D) configured as Output
loadrt hal_stg

This example installs the driver and attempts to autodetect the board address and board model, it
installs 8 axes by default along with a standard I/O setup: Port A & B configured as Input, Port C & D
configured as Output.

6.15.2 Pins

• stg.<channel>.counts - (s32) Tracks the counted encoder ticks.

• stg.<channel>.position - (float) Outputs a converted position.

• stg.<channel>.dac-value - (float) Drives the voltage for the corresponding DAC.

• stg.<channel>.adc-value - (float) Tracks the measured voltage from the corresponding ADC.

• stg.in-<pinnum> - (bit) Tracks a physical input pin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 388 / 1322

• stg.in-<pinnum>-not - (bit) Tracks a physical input pin, but inverted.

• stg.out-<pinnum> - (bit) Drives a physical output pin

For each pin, <channel> is the axis number, and <pinnum> is the logic pin number of the STG if
IIOO is defined, there are 16 input pins (in-00 .. in-15) and 16 output pins (out-00 .. out-15), and they
correspond to PORTs ABCD (in-00 is PORTA.0, out-15 is PORTD.7).
The in-<pinnum> HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low.
The in-<pinnum>-not HAL pin is inverted — it is FALSE if the physical pin is high. By connecting a
signal to one or the other, the user can determine the state of the input.

6.15.3 Parameters

• stg.<channel>.position-scale - (float) The number of counts / user unit (to convert from counts to
units).

• stg.<channel>.dac-offset - (float) Sets the offset for the corresponding DAC.

• stg.<channel>.dac-gain - (float) Sets the gain of the corresponding DAC.

• stg.<channel>.adc-offset - (float) Sets the offset of the corresponding ADC.

• stg.<channel>.adc-gain - (float) Sets the gain of the corresponding ADC.

• stg.out-<pinnum>-invert - (bit) Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is
FALSE, setting the HAL out- pin TRUE drives the physical pin high, and FALSE drives it low. If -invert
is TRUE, then setting the HAL out- pin TRUE will drive the physical pin low.

6.15.4 Functions

• stg.capture-position - Reads the encoder counters from the axis <channel>.

• stg.write-dacs - Writes the voltages to the DACs.

• stg.read-adcs - Reads the voltages from the ADCs.

• stg.di-read - Reads physical in- pins of all ports and updates all HAL in-<pinnum> and in-<pinnum>-
not pins.

• stg.do-write - Reads all HAL out-<pinnum> pins and updates all physical output pins.

6.16 Shuttle

6.16.1 Description

Shuttle is a non-realtime HAL component that interfaces Contour Design’s ShuttleXpress, ShuttlePRO,
and ShuttlePRO2 devices with LinuxCNC’s HAL.
If the driver is started without command-line arguments, it will probe all /dev/hidraw* device files for
Shuttle devices, and use all devices found. If it is started with command-line arguments, it will only
probe the devices specified.
The ShuttleXpress has five momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 389 / 1322

The ShuttlePRO has 13 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.
The ShuttlePRO2 has 15 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

Warning
The Shuttle devices have an internal 8-bit counter for the current jog-wheel position. The
shuttle driver can not know this value until the Shuttles device sends its first event. When the
first event comes into the driver, the driver uses the device’s reported jog-wheel position to
initialize counts to 0.
This means that if the first event is generated by a jog-wheel move, that first move will be lost.
Any user interaction with the Shuttle device will generate an event, informing the driver of the
jog-wheel position. So if you (for example) push one of the buttons at startup, the jog-wheel
will work fine and notice the first click.

6.16.2 Setup

The shuttle driver needs read permission to the /dev/hidraw* device files. This can be accomplished
by adding a file /etc/udev/rules.d/99-shuttle.rules, with the following contents:
SUBSYSTEM==”hidraw”, ATTRS{idVendor}==”0b33”, ATTRS{idProduct}==”0020”, MODE=”0444”
SUBSYSTEM==”hidraw”, ATTRS{idVendor}==”05f3”, ATTRS{idProduct}==”0240”, MODE=”0444”
SUBSYSTEM==”hidraw”, ATTRS{idVendor}==”0b33”, ATTRS{idProduct}==”0030”, MODE=”0444”

The LinuxCNC Debian package installs an appropriate udev file automatically, but if you are building
LinuxCNC from source and are not using the Debian packaging you’ll need to install this file by hand.
If you install the file by hand you’ll need to tell udev to reload its rules files by running udevadm
control --reload-rules.

6.16.3 Pins

All HAL pin names are prefixed with shuttle followed by the index of the device (the order in which
the driver found them), for example shuttle.0 or shuttle.2.

<Prefix>.button-<ButtonNumber> (bit out)
These pins are True (1) when the button is pressed.

<Prefix>.button-<ButtonNumber>-not (bit out)
These pins have the inverse of the button state, so they’re True (1) when the button is not pressed.

<Prefix>.counts (s32 out)
Accumulated counts from the jog wheel (the inner wheel).

<Prefix>.spring-wheel-s32 (s32 out)
The current deflection of the spring-wheel (the outer wheel). It’s 0 at rest, and ranges from -7 at
the counter-clockwise extreme to +7 at the clockwise extreme.

<Prefix>.spring-wheel-f (float out)
The current deflection of the spring-wheel (the outer wheel). It’s 0.0 at rest, -1.0 at the counter-
clockwise extreme, and +1.0 at the clockwise extreme. The Shuttle devices report the spring-
wheel position as an integer from -7 to +7, so this pin reports only 15 discrete values in it’s
range.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 390 / 1322

6.17 VFS11 VFD Driver

This is a non-realtime HAL program to control the S11 series of VFDs from Toshiba.
vfs11_vfd supports serial and TCP connections. Serial connections may be RS232 or RS485. RS485 is
supported in full- and half-duplex mode. TCP connections may be passive (wait for incoming connec-
tion), or active outgoing connections, which may be useful to connect to TCP-based devices or through
a terminal server.
Regardless of the connection type, vfs11_vfd operates as a Modbus master.
This component is loaded using the halcmd ”loadusr” command:
loadusr -Wn spindle-vfd vfs11_vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component vfs11_vfd, named spindle-vfd

6.17.1 Command Line Options

vfs11_vfd is mostly configured through INI file options. The command line options are:

• -n or --name <halname> : set the HAL component name

• -I or --ini <inifilename> : take configuration from this INI file. Defaults to environment variable
INI_FILE_NAME.

• -S or --section <section name> : take configuration from this section in the INI file. Defaults to
VFS11.

• -d or --debug enable debug messages on console output.

• -m or --modbus-debug enable modbus messages on console output

• -r or --report-device report device properties on console at startup

Debugging can be toggled by sending a USR1 signal to the vfs11_vfd process. Modbus debugging can
be toggled by sending a USR2 signal to vfs11_vfd process (example: kill -USR1 p̀idof vfs11_vfd)̀.

Note
That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

6.17.2 Pins

Where <n> is vfs11_vfd or the name given during loading with the -n option.

• <n>.acceleration-pattern (bit, in) when true, set acceleration and deceleration times as defined in
registers F500 and F501 respectively. Used in PID loops to choose shorter ramp times to avoid
oscillation.

• <n>.alarm-code (s32, out) non-zero if drive is in alarmed state. Bitmap describing alarm informa-
tion (see register FC91 description). Use err-reset (see below) to clear the alarm.

• <n>.at-speed (bit, out) when drive is at commanded speed (see speed-tolerance below)

• <n>.current-load-percentage (float, out) reported from the VFD

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 391 / 1322

• <n>.dc-brake (bit, in) engage the DC brake. Also turns off spindle-on.

• <n>.enable (bit, in) enable the VFD. If false, all operating parameters are still read but control is
released and panel control is enabled (subject to VFD setup).

• <n>.err-reset (bit, in) reset errors (alarms a.k.a Trip and e-stop status). Resetting the VFD may
cause a 2-second delay until it’s rebooted and Modbus is up again.

• <n>.estop (bit, in) put the VFD into emergency-stopped status. No operation possible until cleared
with err-reset or powercycling.

• <n>.frequency-command (float, out) current target frequency in Hz as set through speed-command
(which is in RPM), from the VFD

• <n>.frequency-out (float, out) current output frequency of the VFD

• <n>.inverter-load-percentage (float, out) current load report from VFD

• <n>.is-e-stopped (bit, out) the VFD is in emergency stop status (blinking ”E” on panel). Use err-
reset to reboot the VFD and clear the e- stop status.

• <n>.is-stopped (bit, out) true when the VFD reports 0 Hz output

• <n>.max-rpm (float, R) actual RPM limit based on maximum frequency the VFD may generate,
and the motors nameplate values. For instance, if nameplate-HZ is 50, and nameplate-RPM_ is
1410, but the VFD may generate up to 80 Hz, then max-rpm would read as 2256 (80*1410/50). The
frequency limit is read from the VFD at startup. To increase the upper frequency limit, the UL and
FH parameters must be changed on the panel. See the VF-S11 manual for instructions how to set
the maximum frequency.

• <n>.modbus-ok (bit, out) true when the Modbus session is successfully established and the last 10
transactions returned without error.

• <n>.motor-RPM (float, out) estimated current RPM value, from the VFD

• <n>.output-current-percentage (float, out) from the VFD

• <n>.output-voltage-percentage (float, out) from the VFD

• <n>.output-voltage (float, out) from the VFD

• <n>.speed-command (float, in) speed sent to VFD in RPM. It is an error to send a speed faster than
the Motor Max RPM as set in the VFD

• <n>.spindle-fwd (bit, in) 1 for FWD and 0 for REV, sent to VFD

• <n>.spindle-on (bit, in) 1 for ON and 0 for OFF sent to VFD, only on when running

• <n>.spindle-rev (bit, in) 1 for ON and 0 for OFF, only on when running

• <n>.jog-mode (bit, in) 1 for ON and 0 for OFF, enables the VF-S11 jog mode. Speed control is
disabled, and the output frequency is determined by register F262 (preset to 5 Hz). This might be
useful for spindle orientation. In normal mode, the VFD shuts off if the frequency drops below 12
Hz.

• <n>.status (s32, out) Drive Status of the VFD (see the TOSVERT VF-S11 Communications Function
Instruction Manual, register FD01). A bitmap.

• <n>.trip-code (s32, out) trip code if VF-S11 is in tripped state.

• <n>.error-count (s32, out) number of Modbus transactions which returned an error

• <n>.max-speed (bit, in) ignore the loop-time parameter and run Modbus at maximum speed, at the
expense of higher CPU usage. Suggested use during spindle positioning.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 392 / 1322

6.17.3 Parameters

Where <n> is vfs11_vfd or the name given during loading with the -n option.

• <n>.frequency-limit (float, RO) upper limit read from VFD setup.

• <n>.loop-time (float, RW) how often the Modbus is polled (default interval 0.1 seconds)

• <n>.nameplate-HZ (float, RW) Nameplate Hz of motor (default 50). Used to calculate target fre-
quency (together with nameplate-RPM) for a target RPM value as given by speed-command.

• <n>.nameplate-RPM (float, RW) Nameplate RPM of motor (default 1410)

• <n>.rpm-limit (float, RW) do-not-exceed soft limit for motor RPM (defaults to nameplate-RPM).

• <n>.tolerance (float, RW) speed tolerance (default 0.01) for determining whether spindle is at speed
(0.01 meaning: Output frequency is within 1% of target frequency)

6.17.4 INI file configuration

This lists all options understood by vfs11_vfd. Typical setups for RS-232, RS-485 and TCP can be
found in src/hal/user_comps/vfs11_vfd/*.ini.
[VFS11]
serial connection
TYPE=rtu

serial port
DEVICE=/dev/ttyS0

TCP server - wait for incoming connection
TYPE=tcpserver

tcp portnumber for TYPE=tcpserver or tcpclient
PORT=1502

TCP client - active outgoing connection
TYPE=tcpclient

destination to connect to if TYPE=tcpclient
TCPDEST=192.168.1.1

#---------- meaningful only if TYPE=rtu -------
serial device detail
5 6 7 8
BITS= 5

even odd none
PARITY=none

110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
BAUD=19200

1 2
STOPBITS=1

#rs232 rs485
SERIAL_MODE=rs485

up down none
this feature might not work with a stock Ubuntu

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 393 / 1322

libmodbus5/libmodbus-dev package, and generate a warning
execution will continue as if RTS_MODE=up were given.
RTS_MODE=up
#---------------------

modbus timers in seconds
inter-character timer
BYTE_TIMEOUT=0.5
packet timer
RESPONSE_TIMEOUT=0.5

target modbus ID
TARGET=1

on I/O failure, try to reconnect after sleeping
for RECONNECT_DELAY seconds
RECONNECT_DELAY=1

misc. parameters
DEBUG=10
MODBUS_DEBUG=0
POLLCYCLES=10

6.17.5 HAL example

#
example usage of the VF-S11 VFD driver
#
#
loadusr -Wn spindle-vfd vfs11_vfd -n spindle-vfd

connect the spindle direction pins to the VFD
net vfs11-fwd spindle-vfd.spindle-fwd <= spindle.0.forward
net vfs11-rev spindle-vfd.spindle-rev <= spindle.0.reverse

connect the spindle on pin to the VF-S11
net vfs11-run spindle-vfd.spindle-on <= spindle.0.on

connect the VF-S11 at speed to the motion at speed
net vfs11-at-speed spindle.0.at-speed <= spindle-vfd.at-speed

connect the spindle RPM to the VF-S11
net vfs11-RPM spindle-vfd.speed-command <= spindle.0.speed-out

connect the VF-S11 DC brake
since this draws power during spindle off, the dc-brake pin would
better be driven by a monoflop which triggers on spindle-on falling edge
#net vfs11-spindle-brake spindle.N.brake => spindle-vfd.dc-brake

to use the VFS11 jog mode for spindle orient
see orient.9 and motion.9
net spindle-orient spindle.0.orient spindle-vfd.max-speed spindle-vfd.jog-mode

take precedence over control panel
setp spindle-vfd.enable 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 394 / 1322

6.17.6 Panel operation

The vfs11_vfd driver takes precedence over panel control while it is enabled (see enable pin), effec-
tively disabling the panel. Clearing the enable pin re-enables the panel. Pins and parameters can still
be set, but will not be written to the VFD untile the enable pin is set. Operating parameters are still
read while bus control is disabled. Exiting the vfs11_vfd driver in a controlled way will release the
VFD from the bus and restore panel control.
See the LinuxCNC Integrators Manual for more information. For a detailed register description of the
Toshiba VFDs, see the ”TOSVERT VF-S11 Communications Function Instruction Manual” (Toshiba
document number E6581222) and the ”TOSVERT VF-S11 Instruction manual” (Toshiba document
number E6581158).

6.17.7 Error Recovery

vfs11_vfd recovers from I/O errors as follows: First, all HAL pins are set to default values, and the
driver will sleep for RECONNECT_DELAY seconds (default 1 second).

• Serial (TYPE=rtu) mode: on error, close and reopen the serial port.

• TCP server (TYPE=tcpserver) mode: on losing the TCP connection, the driver will go back to listen
for incoming connections.

• TCP client (TYPE=tcpclient) mode: on losing the TCP connection, the driver will reconnect to
TCPDEST:PORTNO.

6.17.8 Configuring the VFS11 VFD for Modbus usage

6.17.8.1 Connecting the Serial Port

The VF-S11 has an RJ-45 jack for serial communication. Unfortunately, it does not have a standard
RS-232 plug and logic levels. The Toshiba-recommended way is: connect the USB001Z USB-to-serial
conversion unit to the drive, and plug the USB port into the PC. A cheaper alternative is a homebrew
interface (hints from Toshiba support, circuit diagram).
Note: the 24V output from the VFD has no short-circuit protection.
Serial port factory defaults are 9600/8/1/even, the protocol defaults to the proprietary ”Toshiba In-
verter Protocol”.

6.17.8.2 Modbus setup

Several parameters need setting before the VF-S11 will talk to this module. This can either be done
manually with the control panel, or over the serial link - Toshiba supplies a Windows application called
PCM001Z which can read/set parameters in the VFD. Note - PCM001Z only talks the Toshiba inverter
protocol. So the last parameter which you’d want to change is the protocol - set from Toshiba Inverter
Protocol to Modbus; thereafter, the Windows app is useless.
To increase the upper frequency limit, the UL and FH parameters must be changed on the panel. I
increased them from 50 to 80.
See dump-params.mio for a description of non-standard VF-S11 parameters of my setup. This file is
for the modio Modbus interactive utility.

https://git.mah.priv.at/gitweb/vfs11-vfd.git/blob_plain/refs/heads/f12-prod:/VFS11-RJ45_e.pdf
https://git.mah.priv.at/gitweb/vfs11-vfd.git/blob_plain/refs/heads/f12-prod:/vfs11-rs232.pdf
https://git.mah.priv.at/gitweb/modio.git

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 395 / 1322

6.17.9 Programming Note

The vfs11_vfd driver uses the libmodbus version 3 library which is more recent than the version 2
code used in gs2_vfd.
The Ubuntu libmodbus5 and libmodbus-dev packages are only available starting from Ubuntu 12
(Precise Pengolin). Moreover, these packages lack support for the MODBUS_RTS_MODE_* flags.
Therefore, building vfs11_vfd using this library might generate a warning if RTS_MODE= is specified
in the INI file.
To use the full functionality on lucid and precise:

• remove the libmodbus packages: sudo apt-get remove libmodbus5 libmodbus-dev

• build and install libmodbus version 3 from source as outlined here.

Libmodbus does not build on Ubuntu Hardy, hence vfs11_vfd is not available on Hardy.

https://www.libmodbus.org
https://github.com/stephane/libmodbus/blob/master/README.rst

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 396 / 1322

Chapter 7

Hardware Examples

7.1 PCI Parallel Port

When you add a second parallel port to your PCI bus you have to find out the address before you can
use it with LinuxCNC.
To find the address of your parallel port card open a terminal window and type
lspci -v

You will see something similar to this as well as info on everything else on the PCI bus:
0000:00:10.0 Communication controller: \

NetMos Technology PCI 1 port parallel adapter (rev 01)
Subsystem: LSI Logic / Symbios Logic: Unknown device 0010
Flags: medium devsel, IRQ 11
I/O ports at a800 [size=8]
I/O ports at ac00 [size=8]
I/O ports at b000 [size=8]
I/O ports at b400 [size=8]
I/O ports at b800 [size=8]
I/O ports at bc00 [size=16]

In my case the address was the first one so I changed my .hal file from
loadrt hal_parport cfg=0x378

to
loadrt hal_parport cfg=”0x378 0xa800 in”

(Note the double quotes surrounding the addresses.)
and then added the following lines so the parport will be read and written:
addf parport.1.read base-thread
addf parport.1.write base-thread

After doing the above then run your config and verify that the parallel port got loaded in Machine/Show
HAL Configuration window.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 397 / 1322

7.2 Spindle Control

LinuxCNC can control up to 8 spindles. The number is set in the INI file. The examples below all
refer to a single-spindle config with spindle control pins with names like spindle.0... In the case of a
multiple spindle machine all that changes is that additional pins exist with names such as spindle.6...

7.2.1 0-10 Volt Spindle Speed

If your spindle speed is controlled by an analog signal, (for example, by a VFD with a 0 V to 10 V
signal) and you’re using a DAC card like the m5i20 to output the control signal:
First you need to figure the scale of spindle speed to control signal, i.e. the voltage. For this example
the spindle top speed of 5000 RPM is equal to 10 Volts.

We have to add a scale component to the HAL file to scale the spindle.N.speed-out to the 0 to 10
needed by the VFD if your DAC card does not do scaling.
loadrt scale count=1
addf scale.0 servo-thread
setp scale.0.gain 0.002
net spindle-speed-scale spindle.0.speed-out => scale.0.in
net spindle-speed-DAC scale.0.out => <your DAC pin name>

7.2.2 PWM Spindle Speed

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:
loadrt pwmgen output_type=0
addf pwmgen.update servo-thread
addf pwmgen.make-pulses base-thread
net spindle-speed-cmd spindle.0.speed-out => pwmgen.0.value
net spindle-on spindle.0.on => pwmgen.0.enable
net spindle-pwm pwmgen.0.pwm => parport.0.pin-09-out
Set the spindle’s top speed in RPM
setp pwmgen.0.scale 1800

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

7.2.3 Spindle Enable

If you need a spindle enable signal, link your output pin to spindle.0.on. To link these pins to a
parallel port pin put something like the following in your .hal file, making sure you pick the pin that
is connected to your control device.
net spindle-enable spindle.0.on => parport.0.pin-14-out

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 398 / 1322

7.2.4 Spindle Direction

If you have direction control of your spindle, then the HAL pins spindle.N.forward and spindle.N.reverse
are controlled by the G-codes M3 and M4. Spindle speed Sn must be set to a positive non-zero value
for M3/M4 to turn on spindle motion.
To link these pins to a parallel port pin, put something like the following in your .hal file making sure
you pick the pin that is connected to your control device.
net spindle-fwd spindle.0.forward => parport.0.pin-16-out
net spindle-rev spindle.0.reverse => parport.0.pin-17-out

7.2.5 Spindle Soft Start

If you need to ramp your spindle speed command and your control does not have that feature it can
be done in HAL. Basically you need to hijack the output of spindle.N.speed-out and run it through a
limit2 component with the scale set so it will ramp the rpm from spindle.N.speed-out to your device
that receives the rpm. The second part is to let LinuxCNC know when the spindle is at speed so motion
can begin.
In the 0-10 Volt example the line
net spindle-speed-scale spindle.0.speed-out => scale.0.in

is changed as shown in the following example:
Intro to HAL components limit2 and near In case you have not run across them before, here’s a
quick introduction to the two HAL components used in the following example.

• A limit2 is a HAL component (floating point) that accepts an input value and provides an output that
has been limited to a max/min range, and also limited to not exceed a specified rate of change.

• A near is a HAL component (floating point) with a binary output that says whether two inputs are
approximately equal.

More info is available in the documentation for HAL components, or from the man pages, just sayman
limit2 or man near in a terminal.
load the real time modules limit2 and near with names so it is easier to follow their ←↩

connections
loadrt limit2 names=spindle-ramp
loadrt near names=spindle-at-speed

add the functions to a thread
addf spindle-ramp servo-thread
addf spindle-at-speed servo-thread

set the parameter for max rate-of-change
(max spindle accel/decel in units per second)
setp spindle-ramp.maxv 60

hijack the spindle speed out and send it to spindle ramp in
net spindle-cmd <= spindle.0.speed-out => spindle-ramp.in

the output of spindle ramp is sent to the scale in
net spindle-ramped <= spindle-ramp.out => scale.0.in

to know when to start the motion we send the near component
(named spindle-at-speed) to the spindle commanded speed from

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 399 / 1322

the signal spindle-cmd and the actual spindle speed
provided your spindle can accelerate at the maxv setting.
net spindle-cmd => spindle-at-speed.in1
net spindle-ramped => spindle-at-speed.in2

the output from spindle-at-speed is sent to spindle.0.at-speed
and when this is true motion will start
net spindle-ready <= spindle-at-speed.out => spindle.0.at-speed

7.2.6 Spindle Feedback

7.2.6.1 Spindle Synchronized Motion

Spindle feedback is needed by LinuxCNC to perform any spindle coordinated motions like threading
and constant surface speed. LinuxCNC can perform synchronized motion and CSS with any of up to
8 spindles. Which spindles are used is controlled from G-code. CSS is possible with several spindles
simultaneously.
The StepConf Wizard can perform the connections for a single-spindle configuration for you if you
select Encoder Phase A and Encoder Index as inputs.
Hardware assumptions for this example:

• An encoder is connected to the spindle and puts out 100 pulses per revolution on phase A.

• The encoder A phase is connected to the parallel port pin 10.

• The encoder index pulse is connected to the parallel port pin 11.

Basic Steps to add the components and configure them: 1 2 3

Add the encoder to HAL and attach it to threads.
loadrt encoder num_chan=4
addf encoder.update-counters base-thread
addf encoder.capture-position servo-thread

Set the HAL encoder to 100 pulses per revolution.
setp encoder.3.position-scale 100

Set the HAL encoder to non-quadrature simple counting using A only.
setp encoder.3.counter-mode true

Connect the HAL encoder outputs to LinuxCNC.
net spindle-position encoder.3.position => spindle.0.revs
net spindle-velocity encoder.3.velocity => spindle.0.speed-in
net spindle-index-enable encoder.3.index-enable <=> spindle.0.index-enable

Connect the HAL encoder inputs to the real encoder.
net spindle-phase-a encoder.3.phase-A <= parport.0.pin-10-in
net spindle-phase-b encoder.3.phase-B
net spindle-index encoder.3.phase-Z <= parport.0.pin-11-in

1In this example, we will assume that some encoders have already been issued to axes/joints 0, 1, and 2. So the next encoder
available for us to attach to the spindle would be number 3. Your situation may differ.

2The HAL encoder index-enable is an exception to the rule in that it behaves as both an input and an output, see the Encoder
Section for details

3It is because we selected non-quadrature simple counting… above that we can get away with quadrature counting without
having any B quadrature input.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 400 / 1322

7.2.6.2 Spindle At Speed

To enable LinuxCNC to wait for the spindle to be at speed before executing a series of moves, the
spindle.N.at-speed needs to turn true at the moment the spindle is at the commanded speed. To
achieve this you need spindle feedback from an encoder. Since the feedback and the commanded
speed are not usually exactly the same you should to use the near component to determine that the
two numbers are close enough.
The connections needed are from the spindle velocity command signal to near.n.in1 and from the
spindle velocity from the encoder to near.n.in2. Then the near.n.out is connected to spindle.N.at-
speed. The near.n.scale needs to be set to say how close the two numbers must be before turning on
the output. Depending on your setup you may need to adjust the scale to work with your hardware.
The following is typical of the additions needed to your HAL file to enable Spindle At Speed. If you
already have near in your HAL file then increase the count and adjust code to suit. Check to make
sure the signal names are the same in your HAL file.
load a near component and attach it to a thread
loadrt near
addf near.0 servo-thread

connect one input to the commanded spindle speed
net spindle-cmd => near.0.in1

connect one input to the encoder-measured spindle speed
net spindle-velocity => near.0.in2

connect the output to the spindle-at-speed input
net spindle-at-speed spindle.0.at-speed <= near.0.out

set the spindle speed inputs to agree if within 1%
setp near.0.scale 1.01

7.3 MPG Pendant

This example is to explain how to hook up the common MPG pendants found on the market today.
This example uses an MPG3 pendant and a C22 pendant interface card from CNC4PC connected to a
second parallel port plugged into the PCI slot. This example gives you 3 axes with 3 step increments
of 0.1, 0.01, 0.001
In your custom.hal file or jog.hal file add the following, making sure you don’t have mux4 or an encoder
already in use. If you do just increase the counts and change the reference numbers. More information
about mux4 and encoder can be found in the HAL manual or the man page.
See the INI HAL Section of the documentation for more information on adding a HAL file. Jog manage-
ment pins are provided for each joint and all coordinate letters. This example uses the axis jog pins for
jogging in world mode. Machines with non-identity kinematics may need use additional connections
for jogging in joint mode.
jog.hal
Jog Pendant
loadrt encoder num_chan=1
loadrt mux4 count=1
addf encoder.capture-position servo-thread
addf encoder.update-counters base-thread
addf mux4.0 servo-thread

If your MPG outputs a quadrature signal per click set x4 to 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 401 / 1322

If your MPG puts out 1 pulse per click set x4 to 0
setp encoder.0.x4-mode 0

For velocity mode, set to 1
In velocity mode the axis stops when the dial is stopped
even if that means the commanded motion is not completed,
For position mode (the default), set to 0
In position mode the axis will move exactly jog-scale
units for each count, regardless of how long that might take,
setp axis.x.jog-vel-mode 0
setp axis.y.jog-vel-mode 0
setp axis.z.jog-vel-mode 0

This sets the scale that will be used based on the input to the mux4
setp mux4.0.in0 0.1
setp mux4.0.in1 0.01
setp mux4.0.in2 0.001

The inputs to the mux4 component
net scale1 mux4.0.sel0 <= parport.1.pin-09-in
net scale2 mux4.0.sel1 <= parport.1.pin-10-in

The output from the mux4 is sent to each axis jog scale
net mpg-scale <= mux4.0.out
net mpg-scale => axis.x.jog-scale
net mpg-scale => axis.y.jog-scale
net mpg-scale => axis.z.jog-scale

The MPG inputs
net mpg-a encoder.0.phase-A <= parport.1.pin-02-in
net mpg-b encoder.0.phase-B <= parport.1.pin-03-in

The Axis select inputs
net mpg-x axis.x.jog-enable <= parport.1.pin-04-in
net mpg-y axis.y.jog-enable <= parport.1.pin-05-in
net mpg-z axis.z.jog-enable <= parport.1.pin-06-in

The encoder output counts to the axis. Only the selected axis will move.
net encoder-counts <= encoder.0.counts
net encoder-counts => axis.x.jog-counts
net encoder-counts => axis.y.jog-counts
net encoder-counts => axis.z.jog-counts

If the machine is capable of high acceleration to smooth out the moves for each click of the MPG use
the ilowpass component to limit the acceleration.
jog.hal with ilowpass
loadrt encoder num_chan=1
loadrt mux4 count=1
addf encoder.capture-position servo-thread
addf encoder.update-counters base-thread
addf mux4.0 servo-thread

loadrt ilowpass
addf ilowpass.0 servo-thread

setp ilowpass.0.scale 1000
setp ilowpass.0.gain 0.01

If your MPG outputs a quadrature signal per click set x4 to 1
If your MPG puts out 1 pulse per click set x4 to 0

../man/man9/ilowpass.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 402 / 1322

setp encoder.0.x4-mode 0

For velocity mode, set to 1
In velocity mode the axis stops when the dial is stopped
even if that means the commanded motion is not completed,
For position mode (the default), set to 0
In position mode the axis will move exactly jog-scale
units for each count, regardless of how long that might take,
setp axis.x.jog-vel-mode 0
setp axis.y.jog-vel-mode 0
setp axis.z.jog-vel-mode 0

This sets the scale that will be used based on the input to the mux4
The scale used here has to be multiplied by the ilowpass scale
setp mux4.0.in0 0.0001
setp mux4.0.in1 0.00001
setp mux4.0.in2 0.000001

The inputs to the mux4 component
net scale1 mux4.0.sel0 <= parport.1.pin-09-in
net scale2 mux4.0.sel1 <= parport.1.pin-10-in

The output from encoder counts is sent to ilowpass
net mpg-out ilowpass.0.in <= encoder.0.counts

The output from the mux4 is sent to each axis jog scale
net mpg-scale <= mux4.0.out
net mpg-scale => axis.x.jog-scale
net mpg-scale => axis.y.jog-scale
net mpg-scale => axis.z.jog-scale

The MPG inputs
net mpg-a encoder.0.phase-A <= parport.1.pin-02-in
net mpg-b encoder.0.phase-B <= parport.1.pin-03-in

The Axis select inputs
net mpg-x axis.x.jog-enable <= parport.1.pin-04-in
net mpg-y axis.y.jog-enable <= parport.1.pin-05-in
net mpg-z axis.z.jog-enable <= parport.1.pin-06-in

The output from the ilowpass is sent to each axis jog count
Only the selected axis will move.
net encoder-counts <= ilowpass.0.out
net encoder-counts => axis.x.jog-counts
net encoder-counts => axis.y.jog-counts
net encoder-counts => axis.z.jog-counts

7.4 GS2 Spindle

7.4.1 Example

This example shows the connections needed to use an Automation Direct GS2 VFD to drive a spindle.
The spindle speed and direction is controlled by LinuxCNC.
Using the GS2 component involves very little to set up. We start with a StepConf Wizard generated
config. Make sure the pins with ”Spindle CW” and ”Spindle PWM” are set to unused in the parallel
port setup screen.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 403 / 1322

In the custom.hal file we place the following to connect LinuxCNC to the GS2 and have LinuxCNC
control the drive.
GS2 Example
load the non-realtime component for the Automation Direct GS2 VFDs
loadusr -Wn spindle-vfd gs2_vfd -r 9600 -p none -s 2 -n spindle-vfd

connect the spindle direction pin to the GS2
net gs2-fwd spindle-vfd.spindle-fwd <= spindle.N.forward

connect the spindle on pin to the GS2
net gs2-run spindle-vfd.spindle-on <= spindle.N.on

connect the GS2 at speed to the motion at speed
net gs2-at-speed spindle.N.at-speed <= spindle-vfd.at-speed

connect the spindle RPM to the GS2
net gs2-RPM spindle-vfd.speed-command <= spindle.N.speed-out

Note
The transmission speed might be able to be faster depending on the exact environment. Both the
drive and the command line options must match. To check for transmission errors add the -v com-
mand line option and run from a terminal.

On the GS2 drive itself you need to set a couple of things before the modbus communications will work.
Other parameters might need to be set based on your physical requirements but these are beyond the
scope of this manual. Refer to the GS2 manual that came with the drive for more information on the
drive parameters.

• The communications switches must be set to RS-232C.

• The motor parameters must be set to match the motor.

• P3.00 (Source of Operation Command) must be set to Operation determined by RS-485 interface,
03 or 04.

• P4.00 (Source of Frequency Command) must be set to Frequency determined by RS232C/RS485
communication interface, 05.

• P9.01 (Transmission Speed) must be set to 9600 baud, 01.

• P9.02 (Communication Protocol) must be set to ”Modbus RTU mode, 8 data bits, no parity, 2 stop
bits”, 03.

A PyVCP panel based on this example is here.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 404 / 1322

Chapter 8

ClassicLadder

8.1 ClassicLadder Introduction

8.1.1 History

ClassicLadder is a free implementation of a ladder interpreter, released under the LGPL. It was written
by Marc Le Douarain.
He describes the beginning of the project on his website:

I decided to program a ladder language only for test purposes at the start, in February 2001.
It was planned, that I would have to participate to a new product after leaving the enterprise
in which I was working at that time. And I was thinking that to have a ladder language in
those products could be a nice option to considerate. And so I started to code the first lines
for calculating a rung with minimal elements and displaying dynamically it under Gtk, to
see if my first idea to realize all this works.
And as quickly I’ve found that it advanced quite well, I’ve continued with more complex
elements: timer, multiples rungs, etc…
Voila, here is this work… and more: I’ve continued to add features since then.
— Marc Le Douarain, from ”Genesis” at the ClassicLadder website

ClassicLadder has been adapted to work with LinuxCNC’s HAL, and is currently being distributed
along with LinuxCNC. If there are issues/problems/bugs please report them to the LinuxCNC project.

8.1.2 Introduction

Ladder logic or the Ladder programming language is a method of drawing electrical logic schematics.
It is now a graphical language very popular for programming Programmable Logic Controllers (PLCs).
It was originally invented to describe logic made from relays. The name is based on the observation
that programs in this language resemble ladders, with two vertical rails and a series of horizontal
rungs between them. In Germany and elsewhere in Europe, the style is to draw the rails horizontally
along the top and bottom of the page while the rungs are drawn vertically from left to right.
A program in ladder logic, also called a ladder diagram, is similar to a schematic for a set of relay
circuits. Ladder logic is useful because a wide variety of engineers and technicians can understand
and use it without much additional training because of the resemblance.
Ladder logic is widely used to program PLCs, where sequential control of a process or manufacturing
operation is required. Ladder logic is useful for simple but critical control systems, or for reworking

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 405 / 1322

old hardwired relay circuits. As programmable logic controllers became more sophisticated it has
also been used in very complex automation systems.
Ladder logic can be thought of as a rule-based language, rather than a procedural language. A rung in
the ladder represents a rule. When implemented with relays and other electromechanical devices, the
various rules execute simultaneously and immediately. When implemented in a programmable logic
controller, the rules are typically executed sequentially by software, in a loop. By executing the loop
fast enough, typically many times per second, the effect of simultaneous and immediate execution is
obtained.
Ladder logic follows these general steps for operation.

• Read Inputs

• Solve Logic

• Update Outputs

8.1.3 Example

The most common components of ladder are contacts (inputs), these usually are either NC (normally
closed) or NO (normally open), and coils (outputs).

• the NO contact

• the NC contact

• the coil (output)

Of course there are many more components to a full ladder language, but understanding these will
help you grasp the overall concept.
The ladder consists of one or more rungs. These rungs are horizontal traces (representing wires),
with components on them (inputs, outputs and other), which get evaluated left to right.
This example is the simplest rung:

The input on the left, B0, a normally open contact, is connected to the coil (output) on the right, Q0.
Now imagine a voltage gets applied to the leftmost end, because the input B0 turns true (e.g. the
input is activated, or the user pushed the NO contact). The voltage has a direct path to reach the coil
(output) on the right, Q0. As a consequence, the Q0 coil (output) will turn from 0/off/false to 1/on/true.
If the user releases B0, the Q0 output quickly returns to 0/off/false.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 406 / 1322

8.1.4 Basic Latching On-Off Circuit

Building on the above example, suppose we add a switch that closes whenever the coil Q0 is active.
This would be the case in a relay, where the coil can activate the switch contacts; or in a contactor,
where there are often several small auxiliary contacts in addition to the large 3-phase contacts that
are the primary feature of the contactor.
Since this auxiliary switch is driven from coil Q0 in our earlier example, we will give it the same
number as the coil that drives it. This is the standard practice followed in all ladder programming,
although it may seem strange at first to see a switch labeled the same as a coil. So let’s call this
auxiliary contact Q0 and connect it across the B0 pushbutton contact from our earlier example.
Let’s take a look at it:

As before, when the user presses pushbutton B0, coil Q0 comes on. And when coil Q0 comes on, switch
Q0 comes on. Now the interesting part happens. When the user releases pushbutton B0, coil Q0 does
not stop as it did before. This is because switch Q0 of this circuit is effectively holding the user’s
pushbutton pressed. So we see that switch Q0 is still holding coil Q0 on after the start pushbutton
has been released.
This type of contact on a coil or relay, used in this way, is often called a holding contact, because it
holds on the coil that it is associated with. It is also occasionally called a seal contact, and when it is
active it is said that the circuit is sealed.
Unfortunately, our circuit so far has little practical use, because, although we have an on or start
button in the form of pushbutton B0, we have no way to shut this circuit off once it is started. But
that’s easy to fix. All we need is a way to interrupt the power to coil Q0. So let’s add a normally-closed
(NC) pushbutton just ahead of coil Q0.
Here’s how that would look:

Now we have added off or stop pushbutton B1. If the user pushes it, contact from the rung to the coil is
broken. When coil Q0 loses power, it drops to 0/off/false. When coil Q0 goes off, so does switch Q0, so
the holding contact is broken, or the circuit is unsealed. When the user releases the stop pushbutton,
contact is restored from the rung to coil Q0, but the rung has gone dead, so the coil doesn’t come
back on.
This circuit has been used for decades on virtually every machine that has a three-phase motor con-
trolled by a contactor, so it was inevitable that it would be adopted by ladder/PLC programmers. It is
also a very safe circuit, in that if start and stop are both pressed at the same time, the stop function
always wins.
This is the basic building block of much of ladder programming, so if you are new to it, you would do
well to make sure that you understand how this circuit operates.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 407 / 1322

8.2 ClassicLadder Programming

8.2.1 Ladder Concepts

ClassicLadder is a type of programming language originally implemented on industrial PLCs (it’s
called Ladder Programming). It is based on the concept of relay contacts and coils, and can be used
to construct logic checks and functions in a manner that is familiar to many systems integrators.
Ladder consists of rungs that may have branches and resembles an electrical circuit. It is important
to know how ladder programs are evaluated when running.
It seems natural that each line would be evaluated left to right, then the next line down, etc., but it
doesn’t work this way in ladder logic. Ladder logic scans the ladder rungs 3 times to change the state
of the outputs.

• the inputs are read and updated

• the logic is figured out

• the outputs are set

This can be confusing at first if the output of one line is read by the input of a another rung. There
will be one scan before the second input becomes true after the output is set.
Another gotcha with ladder programming is the ”Last One Wins” rule. If you have the same output in
different locations of your ladder the state of the last one will be what the output is set to.

8.2.2 Languages

The most common language used when working with ClassicLadder is ladder. ClassicLadder also
supports Sequential Function Chart (Grafcet).

8.2.3 Components

There are two components to ClassicLadder.

• The realtime module classicladder_rt

• The non-realtime module (including a GUI) classicladder

8.2.3.1 Files

Typically ClassicLadder components are placed in the custom.hal file if your working from a StepConf
generated configuration. These must not be placed in the custom_postgui.hal file or the Ladder Editor
menu will be grayed out.

Note
Ladder files (.clp) must not contain any blank spaces in the name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 408 / 1322

8.2.3.2 Realtime Module

Loading the ClassicLadder real time module (classicladder_rt) is possible from a HAL file, or directly
using a halcmd instruction. The first line loads real time the ClassicLadder module. The second line
adds the function classicladder.0.refresh to the servo thread. This line makes ClassicLadder update
at the servo thread rate.
loadrt classicladder_rt
addf classicladder.0.refresh servo-thread

The speed of the thread that ClassicLadder is running in directly affects the responsiveness to inputs
and outputs. If you can turn a switch on and off faster than ClassicLadder can notice it then you may
need to speed up the thread. The fastest that ClassicLadder can update the rungs is one millisecond.
You can put it in a faster thread but it will not update any faster. If you put it in a slower than one
millisecond thread then ClassicLadder will update the rungs slower. The current scan time will be
displayed on the section display, it is rounded to microseconds. If the scan time is longer than one
millisecond you may want to shorten the ladder or put it in a slower thread.

8.2.3.3 Variables

It is possible to configure the number of each type of ladder object while loading the ClassicLadder
real time module. If you do not configure the number of ladder objects ClassicLadder will use the
default values.

Table 8.1: Default Variable Count

Object Name Variable Name Default
Value

Number of rungs (numRungs) 100
Number of bits (numBits) 20
Number of word variables (numWords) 20
Number of timers (numTimers) 10
Number of timers IEC (numTimersIec) 10
Number of monostables (numMonostables) 10
Number of counters (numCounters) 10
Number of HAL inputs bit pins (numPhysInputs) 15
Number of HAL output bit pins (numPhysOutputs) 15
Number of arithmetic expressions (numArithmExpr) 50
Number of Sections (numSections) 10
Number of Symbols (numSymbols) Auto
Number of S32 inputs (numS32in) 10
Number of S32 outputs (numS32out) 10
Number of Float inputs (numFloatIn) 10
Number of Float outputs (numFloatOut) 10

Objects of most interest are numPhysInputs, numPhysOutputs, numS32in, and numS32out.
Changing these numbers will change the number of HAL bit pins available. numPhysInputs and
numPhysOutputs control how many HAL bit (on/off) pins are available. numS32in and numS32out
control how many HAL signed integers (+- integer range) pins are available.
For example (you don’t need all of these to change just a few):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 409 / 1322

loadrt classicladder_rt numRungs=12 numBits=100 numWords=10
numTimers=10 numMonostables=10 numCounters=10 numPhysInputs=10
numPhysOutputs=10 numArithmExpr=100 numSections=4 numSymbols=200
numS32in=5 numS32out=5

To load the default number of objects:
loadrt classicladder_rt

8.2.4 Loading the ClassicLadder non-realtime module

ClassicLadder HAL commands must executed before the GUI loads or the menu item Ladder Editor
will not function. If you used the Stepper Config Wizard place any ClassicLadder HAL commands in
the custom.hal file.
To load the non-realtime module:
loadusr classicladder

Note
Only one .clp file can be loaded. If you need to divide your ladder then use sections.

To load a ladder file:
loadusr classicladder myladder.clp

ClassicLadder Loading Options

• --nogui - (loads without the ladder editor) normally used after debugging is finished.

• --modbus_port=port - (loads the modbus port number)

• --modmaster - (initializes MODBUS master) should load the ladder program at the same time or the
TCP is default port.

• --modslave - (initializes MODBUS slave) only TCP

To use ClassicLadder with HAL without EMC:
loadusr -w classicladder

The -w tells HAL not to close down the HAL environment until ClassicLadder is finished.
If you first load ladder program with the --nogui option then load ClassicLadder again with no options
the GUI will display the last loaded ladder program.
In AXIS you can load the GUI from File/Ladder Editor…

8.2.5 ClassicLadder GUI

If you load ClassicLadder with the GUI it will display two windows: Section display, and section man-
ager.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 410 / 1322

8.2.5.1 Sections Manager

When you first start up ClassicLadder you get an empty Sections Manager window.

Figure 8.1: Sections Manager Default Window

This window allows you to name, create or delete sections and choose what language that section
uses. This is also how you name a subroutine for call coils.

8.2.5.2 Section Display

When you first start up ClassicLadder you get an empty Section Display window. Displayed is one
empty rung.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 411 / 1322

Figure 8.2: Section Display Default Window

Most of the buttons are self explanatory:
The Vars button is for looking at variables, toggle it to display one, the other, both, then none of the
windows.
The Config button is used for modbus and shows the max number of ladder elements that was loaded
with the real time module.
The Symbols button will display an editable list of symbols for the variables (hint you can name the
inputs, outputs, coils etc).
The Quit button will shut down the non-realtime program, i.e. Modbus and the display. The realtime
ladder program will still run in the background.
The check box at the top right allows you to select whether variable names or symbol names are
displayed
You might notice that there is a line under the ladder program display that reads ”Project failed to
load…”. That is the status bar that gives you info about elements of the ladder program that you
click on in the display window. This status line will now display HAL signal names for variables %I,
%Q and the first %W (in an equation). You might see some funny labels, such as (103) in the rungs.
This is displayed (on purpose) because of an old bug- when erasing elements older versions sometimes
didn’t erase the object with the right code. You might have noticed that the long horizontal connection
button sometimes did not work in the older versions. This was because it looked for the free code but
found something else. The number in the brackets is the unrecognized code. The ladder program will
still work properly, to fix it erase the codes with the editor and save the program.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 412 / 1322

8.2.5.3 The Variable Windows

This are two variable windows: the Bit Status Window (boolean) and the Watch Window (signed in-
teger). The Vars button is in the Section Display Window, toggle the Vars button to display one, the
other, both, then none of the variable windows.

Figure 8.3: Bit Status Window

The Bit Status Window displays some of the boolean (on/off) variable data. Notice all variables start
with the % sign. The %I variables represent HAL input bit pins. The %Q represents the relay coil
and HAL output bit pins. The %B represents an internal relay coil or internal contact. The three edit
areas at the top allow you to select what 15 variables will be displayed in each column. For instance,
if the %B Variable column were 15 entries high, and you entered 5 at the top of the column, variables
%B5 to %B19 would be displayed. The check boxes allow you to set and unset %B variables manually
as long as the ladder program isn’t setting them as outputs. Any Bits that are set as outputs by the
program when ClassicLadder is running can not be changed and will be displayed as checked if on
and unchecked if off.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 413 / 1322

Figure 8.4: Watch Window

The Watch Window displays variable status. The edit box beside it is the number stored in the variable
and the drop-down box beside that allow you to choose whether the number to be displayed in hex,
decimal or binary. If there are symbol names defined in the symbols window for the word variables
showing and the display symbols checkbox is checked in the section display window, symbol names
will be displayed. To change the variable displayed, type the variable number, e.g. %W2 (if the
display symbols check box is not checked) or type the symbol name (if the display symbols checkbox
is checked) over an existing variable number/name and press the Enter Key.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 414 / 1322

8.2.5.4 Symbol Window

Figure 8.5: Symbol Names window

This is a list of symbol names to use instead of variable names to be displayed in the section window
when the display symbols check box is checked. You add the variable name (remember the % symbol
and capital letters), symbol name. If the variable can have a HAL signal connected to it (%I, %Q, and
%W-if you have loaded s32 pin with the real time module) then the comment section will show the
current HAL signal name or lack thereof. Symbol names should be kept short to display better. Keep
in mind that you can display the longer HAL signal names of %I, %Q and %W variable by clicking on
them in the section window. Between the two, one should be able to keep track of what the ladder
program is connected to!

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 415 / 1322

8.2.5.5 The Editor window

Figure 8.6: Editor Window

• Add - adds a rung after the selected rung

• Insert - inserts a rung before the selected rung

• Delete - deletes the selected rung

• Modify - opens the selected rung for editing

Starting from the top left image:

• Object Selector, Eraser

• N.O. Input, N.C. Input, Rising Edge Input, Falling Edge Input

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 416 / 1322

• Horizontal Connection, Vertical Connection, Long Horizontal Connection

• Timer IEC Block, Counter Block, Compare Variable

• Old Timer Block, Old Monostable Block (These have been replaced by the IEC Timer)

• COILS - N.O. Output, N.C. Output, Set Output, Reset Output

• Jump Coil, Call Coil, Variable Assignment

A short description of each of the buttons:

• Selector - allows you to select existing objects and modify the information.

• Eraser - erases an object.

• N.O. Contact - creates a normally open contact. It can be an external HAL-pin (%I) input contact, an
internal-bit coil (%B) contact or a external coil (%Q) contact. The HAL-pin input contact is closed
when the HAL-pin is true. The coil contacts are closed when the corresponding coil is active (%Q2
contact closes when %Q2 coil is active).

• N.C. Contact - creates a normally closed contact. It is the same as the N.O. contact except that the
contact is open when the HAL-pin is true or the coil is active.

• Rising Edge Contact - creates a contact that is closed when the HAL-pin goes from False to true, or
the coil from not-active to active.

• Falling Edge Contact - creates a contact that is closed when the HAL-pin goes from true to false or
the coil from active to not.

• Horizontal Connection - creates a horizontal connection to objects.

• Vertical Connection - creates a vertical connection to horizontal lines.

• Horizontal Running Connection - creates a horizontal connection between two objects and is a quick
way to connect objects that are more than one block apart.

• IEC Timer - creates a timer and replaces the Timer.

• Timer - creates a Timer Module (depreciated use IEC Timer instead).

• Monostable - creates a one-shot monostable module

• Counter - creates a counter module.

• Compare - creates a compare block to compare variable to values or other variables, e.g. %W1<=5
or %W1=%W2. Compare cannot be placed in the right most side of the section display.

• Variable Assignment - creates an assignment block so you to assign values to variables, e.g. %W2=7
or %W1=%W2. ASSIGNMENT functions can only be placed at the right most side of the section display.

8.2.5.6 Config Window

The config window shows the current project status and has the Modbus setup tabs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 417 / 1322

Figure 8.7: Config Window

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 418 / 1322

8.2.6 Ladder objects

8.2.6.1 CONTACTS

Represent switches or relay contacts. They are controlled by the variable letter and number assigned
to them.
The variable letter can be B, I, or Q and the number can be up to a three digit number, e.g. %I2,
%Q3, or %B123. Variable I is controlled by a HAL input pin with a corresponding number. Variable
B is for internal contacts, controlled by a B coil with a corresponding number. Variable Q is con-
trolled by a Q coil with a corresponding number (like a relay with multiple contacts). E.g., if HAL pin
classicladder.0.in-00 is true then %I0 N.O. contact would be on (closed, true, whatever you like
to call it). If %B7 coil is energized (on, true, etc) then %B7 N.O. contact would be on. If %Q1 coil
is energized then %Q1 N.O. contact would be on (and HAL pin classicladder.0.out-01 would be
true).

• N.O. Contact - (Normally Open) When the variable is false the switch is off.

• N.C. Contact - (Normally Closed) When the variable is false the switch is on.

• Rising Edge Contact - When the variable changes from false to true, the switch is PULSED on.

• Falling Edge Contact - When the variable changes from true to false, the switch is PULSED on.

8.2.6.2 IEC TIMERS

Represent new count down timers. IEC Timers replace Timers and Monostables.
IEC Timers have 2 contacts.

• I - input contact

• Q - output contact

There are three modes - TON, TOF, TP.

• TON - When timer input is true countdown begins and continues as long as input remains true.
After countdown is done and as long as timer input is still true the output will be true.

• TOF - When timer input is true, sets output true. When the input is false the timer counts down
then sets output false.

• TP - When timer input is pulsed true or held true timer sets output true till timer counts down.
(one-shot)

The time intervals can be set in multiples of 100&8239;ms, seconds, or minutes.
There are also Variables for IEC timers that can be read and/or written to in compare or operate
blocks.

• %TMxxx.Q - timer done (Boolean, read write)

• %TMxxx.P - timer preset (read write)

• %TMxxx.V - timer value (read write)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 419 / 1322

8.2.6.3 TIMERS

Represent count down timers. This is deprecated and replaced by IEC Timers.
Timers have 4 contacts.

• E - enable (input) starts timer when true, resets when goes false

• C - control (input) must be on for the timer to run (usually connect to E)

• D - done (output) true when timer times out and as long as E remains true

• R - running (output) true when timer is running

The timer base can be multiples of milliseconds, seconds, or minutes.
There are also Variables for timers that can be read and/or written to in compare or operate blocks.

• %Txx.R - Timer xx running (Boolean, read only)

• %Txx.D - Timer xx done (Boolean, read only)

• %Txx.V - Timer xx current value (integer, read only)

• %Txx.P - Timer xx preset (integer, read or write)

8.2.6.4 MONOSTABLES

Represent the original one-shot timers. This is now deprecated and replaced by IEC Timers.
Monostables have 2 contacts, I and R.

• I - input (input) will start the mono timer running.

• R - running (output) will be true while timer is running.

The I contact is rising edge sensitive meaning it starts the timer only when changing from false to true
(or off to on). While the timer is running the I contact can change with no effect to the running timer.
R will be true and stay true till the timer finishes counting to zero. The timer base can be multiples
of milliseconds, seconds, or minutes.
There are also Variables for monostables that can be read and/or written to in compare or operate
blocks.

• %Mxx.R - Monostable xx running (Boolean, read only)

• %Mxx.V - Monostable xx current value (integer, read only)

• %Mxx.P - Monostable xx preset (integer, read or write)

8.2.6.5 COUNTERS

Represent up/down counters.
There are 7 contacts:

• R - reset (input) will reset the count to 0.

• P - preset (input) will set the count to the preset number assigned from the edit menu.

• U - up count (input) will add one to the count.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 420 / 1322

• D - down count (input) will subtract one from the count.

• E - under flow (output) will be true when the count rolls over from 0 to 9999.

• D - done (output) will be true when the count equals the preset.

• F - overflow (output) will be true when the count rolls over from 9999 to 0.

The up and down count contacts are edge sensitive meaning they only count when the contact changes
from false to true (or off to on if you prefer).
The range is 0 to 9999.
There are also Variables for counters that can be read and/or written to in compare or operate blocks.

• ’%C’xx.D - Counter xx done (Boolean, read only)

• ’%C’xx.E - Counter xx empty overflow (Boolean, read only_)

• ’%C’xx.F - Counter xx full overflow (Boolean, read only)

• ’%C’xx.V - Counter xx current value (integer, read or write)

• ’%C’xx.P - Counter xx preset (integer, read or write)

8.2.6.6 COMPARE

For arithmetic comparison. Is variable %XXX = to this number (or evaluated number)
The compare block will be true when comparison is true. You can use most math symbols:

• +, -, *, /, = (standard math symbols)

• < (less than), > (greater than), <= (less or equal), >= (greater or equal), <> (not equal)

• (,) separate into groups example %IF1=2,&%IF2<5 in pseudo code translates to if %IF1 is equal to
2 and %IF2 is less than 5 then the comparison is true. Note the comma separating the two groups
of comparisons.

• ^ (exponent), % (modulus), & (and), | (or),. -

• ABS (absolute), MOY (French for average), AVG (average)

For example ABS(%W2)=1, MOY(%W1,%W2)<3.
No spaces are allowed in the comparison equation. For example %C0.V>%C0.P is a valid comparison
expression while %C0.V > %CO.P is not a valid expression.
There is a list of Variables down the page that can be used for reading from and writing to ladder
objects. When a new compare block is opened be sure and delete the # symbol when you enter a
compare.
To find out if word variable #1 is less than 2 times the current value of counter #0 the syntax would
be:
%W1<2*%C0.V

To find out if S32in bit 2 is equal to 10 the syntax would be:
%IW2=10

Note: Compare uses the arithmetic equals not the double equals that programmers are used to.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 421 / 1322

8.2.6.7 VARIABLE ASSIGNMENT

For variable assignment, e.g. assign this number (or evaluated number) to this variable %xxx, there
are two math functions MINI and MAXI that check a variable for maximum (0x80000000) and mini-
mum values (0x07FFFFFFF) (think signed values) and keeps them from going beyond.
When a new variable assignment block is opened be sure to delete the # symbol when you enter an
assignment.
To assign a value of 10 to the timer preset of IEC Timer 0 the syntax would be:
%TM0.P=10

To assign the value of 12 to s32out bit 3 the syntax would be:
%QW3=12

Note
When you assign a value to a variable with the variable assignment block the value is retained until
you assign a new value using the variable assignment block. The last value assigned will be restored
when LinuxCNC is started.

The following figure shows an Assignment and a Comparison Example. %QW0 is a S32out bit and
%IW0 is a S32in bit. In this case the HAL pin classicladder.0.s32out-00 will be set to a value of
5 and when the HAL pin classicladder.0.s32in-00 is 0 the HAL pin classicladder.0.out-00 will
be set to True.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 422 / 1322

Figure 8.8: Assign/Compare Ladder Example

Figure 8.9: Assignment Expression Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 423 / 1322

Figure 8.10: Comparison Expression Example

8.2.6.8 COILS

Coils represent relay coils. They are controlled by the variable letter and number assigned to them.
The variable letter can be B or Q and the number can be up to a three digit number, e.g., %Q3, or
%B123. Q coils control HAL out pins, e.g. if %Q15 is energized then HAL pin classicladder.0.out-15
will be true. B coils are internal coils used to control program flow.

• N.O. COIL - A relay coil: When coil is energized, then its contact that is normally open (short: N.O.)
will be closed (turned on, true, etc.) and the current may pass.

• N.C. COIL - A relay coil that inverses its contacts: When coil is energized, then its contact that is
normally closed (short: N.C.) will be opened (turned off, false, etc) and the current flow is inter-
rupted.

• SET COIL - A relay coil with latching contacts: When coil is energized then its N.O. contact will be
latched closed.

• RESET COIL - A relay coil with latching contacts: When coil is energized then its N.O. contact will
be latched open.

• JUMP COIL - A goto coil: When coil is energized then the ladder program jumps to a rung (in the
CURRENT section) - jump points are designated by a rung label. (Add rung labels in the section
display, top left label box.)

• CALL COIL - A gosub coil: When coil is energized then the program jumps to a subroutine section
designated by a subroutine number - subroutines are designated SR0 to SR9 (designate them in the
section manager).

Warning
If you use a N.C. contact with a N.C. coil the logic will work (when the coil is energized the
contact will be closed) but that is really hard to follow!

A JUMP COIL is used to JUMP to another section, like a goto in BASIC programming language.
If you look at the top left of the sections display window you will see a small label box and a longer
comment box beside it. Now go to Editor→Modify then go back to the little box, type in a name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 424 / 1322

Go ahead and add a comment in the comment section. This label name is the name of this rung only
and is used by the JUMP COIL to identify where to go.
When placing a JUMP COIL, add it in the rightmost position and change the label to the rung you want
to JUMP to.
A CALL COIL is used to go to a subroutine section then return, like a gosub in BASIC programming
language.
If you go to the sections manager window hit the add section button. You can name this section, select
what language it will use (ladder or sequential), and select what type (main or subroutine).
Select a subroutine number (SR0 for example). An empty section will be displayed and you can build
your subroutine.
When you’ve done that, go back to the section manager and click on the your main section (default
name prog1).
Now you can add a CALL COIL to your program. CALL COILs are to be placed at the rightmost position
in the rung.
Remember to change the label to the subroutine number you chose before.

8.2.7 ClassicLadder Variables

These Variables are used in COMPARE or OPERATE to get information about, or change specs of,
ladder objects such as changing a counter preset, or seeing if a timer is done running.
List of variables :

• %Bxxx - Bit memory xxx (Boolean)

• %Wxxx - Word memory xxx (32 bits signed integer)

• %IWxxx - Word memory xxx (S32 in pin)

• %QWxxx - Word memory xxx (S32 out pin)

• %IFxx - Word memory xx (Float in pin) (converted to S32 in ClassicLadder)

• %QFxx - Word memory xx (Float out pin) (converted to S32 in ClassicLadder)

• %T _̀_xx__.R ̀ - Timer xx running (Boolean, user read only)

• %T _̀_xx__.D ̀ - Timer xx done (Boolean, user read only)

• %T _̀_xx__.V ̀ - Timer xx current value (integer, user read only)

• %T _̀_xx__.P ̀ - Timer xx preset (integer)

• %TM _̀_xxx__.Q ̀ - Timer xxx done (Boolean, read write)

• %TM _̀_xxx__.P ̀ - Timer xxx preset (integer, read write)

• %TM _̀_xxx__.V ̀ - Timer xxx value (integer, read write)

• %M _̀_xx__.R ̀ - Monostable xx running (Boolean)

• %M _̀_xx__.V ̀ - Monostable xx current value (integer, user read only)

• %M _̀_xx__.P ̀ - Monostable xx preset (integer)

• %C _̀_xx__.D ̀ - Counter xx done (Boolean, user read only)

• %C _̀_xx__.E ̀ - Counter xx empty overflow (Boolean, user read only)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 425 / 1322

• %C _̀_xx__.F ̀ - Counter xx full overflow (Boolean, user read only)

• %C _̀_xx__.V ̀ - Counter xx current value (integer)

• %C _̀_xx__.P ̀ - Counter xx preset (integer)

• %Ixxx - Physical input xxx (Boolean) (HAL input bit)

• %Qxxx - Physical output xxx (Boolean) (HAL output bit)

• %Xxxx - Activity of step xxx (sequential language)

• %X _̀_xxx__.V ̀ - Time of activity in seconds of step xxx (sequential language)

• %Exx - Errors (Boolean, read write(will be overwritten))

• Indexed or vectored variables - These are variables indexed by another variable. Some might call
this vectored variables. Example: %W0[%W4] => if %W4 equals 23 it corresponds to %W23

8.2.8 GRAFCET (State Machine) Programming

Warning
This is probably the least used andmost poorly understood feature of ClassicLadder. Sequential
programming is used to make sure a series of ladder events always happen in a prescribed
order. Sequential programs do not work alone. There is always a ladder program as well that
controls the variables. Here are the basic rules governing sequential programs:

• Rule 1 : Initial situation - The initial situation is characterized by the initial steps which are by
definition in the active state at the beginning of the operation. There shall be at least one initial
step.

• Rule 2 : R2, Clearing of a transition - A transition is either enabled or disabled. It is said to be
enabled when all immediately preceding steps linked to its corresponding transition symbol are
active, otherwise it is disabled. A transition cannot be cleared unless it is enabled, and its associated
transition condition is true.

• Rule 3 : R3, Evolution of active steps - The clearing of a transition simultaneously leads to the active
state of the immediately following step(s) and to the inactive state of the immediately preceding
step(s).

• Rule 4 : R4, Simultaneous clearing of transitions - All simultaneous cleared transitions are simulta-
neously cleared.

• Rule 5 : R5, Simultaneous activation and deactivation of a step - If during operation, a step is
simultaneously activated and deactivated, priority is given to the activation.

This is the SEQUENTIAL editor window. (Starting from the top left):
Selector arrow, Eraser
Ordinary step, Initial (Starting) step
Transition, Step and Transition
Transition Link-Downside, Transition Link-Upside
Pass-through Link-Downside, Pass-through Link-Upside Jump
Link, Comment Box

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 426 / 1322

Figure 8.11: Sequence Editor Window

• ORDINARY STEP - has a unique number for each one

• STARTING STEP - a sequential program must have one. This is where the program will start.

• TRANSITION - shows the variable that must be true for control to pass through to the next step.

• STEP AND TRANSITION - combined for convenience

• TRANSITION LINK-DOWNSIDE - splits the logic flow to one of two possible lines based on which
of the next steps is true first (Think OR logic)

• TRANSITION LINK=UPSIDE - combines two (OR) logic lines back in to one

• PASS-THROUGH LINK-DOWNSIDE - splits the logic flow to two lines that BOTH must be true to
continue (Think AND logic)

• PASS-THROUGH LINK-UPSIDE - combines two concurrent (AND logic) logic lines back together

• JUMP LINK - connects steps that are not underneath each other such as connecting the last step to
the first

• COMMENT BOX - used to add comments

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 427 / 1322

To use links, you must have steps already placed. Select the type of link, then select the two steps or
transactions one at a time. It takes practice!
With sequential programming: The variable %X _̀_xxx__ (e.g., %̀X5) is used to see if a step is
active. The variable %X _̀_xxx__.V ̀ (e.g., %X5.V) is used to see how long the step has been active.
The %X and %X.v variables are use in LADDER logic. The variables assigned to the transitions (e.g.,
%B) control whether the logic will pass to the next step. After a step has become active the transition
variable that caused it to become active has no control of it anymore. The last step has to JUMP LINK
back only to the beginning step.

8.2.9 Modbus

Things to consider:

• Modbus is a non-realtime program so it might have latency issues on a heavily laden computer.

• Modbus is not really suited to hard real time events such as position control of motors or to control
E-stop.

• The ClassicLadder GUI must be running for Modbus to be running.

• Modbus is not fully finished so it does not do all modbus functions.

To get MODBUS to initialize you must specify that when loading the ClassicLadder non-realtime pro-
gram.
Loading Modbus
loadusr -w classicladder --modmaster myprogram.clp

The -w makes HAL wait until you close ClassicLadder before closing realtime session. ClassicLadder
also loads a TCP modbus slave if you add --modserver on command line.
Modbus Functions

• 1 - read coils

• 2 - read inputs

• 3 - read holding registers

• 4 - read input registers

• 5 - write single coils

• 6 - write single register

• 8 - echo test

• 15 - write multiple coils

• 16 - write multiple registers

If you do not specify a --modmaster when loading the ClassicLadder non-realtime program this page
will not be displayed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 428 / 1322

Figure 8.12: Modbus I/O Config

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 429 / 1322

Figure 8.13: Modbus Communication Config

• SERIAL PORT - For IP blank. For serial the location/name of serial driver, e.g., /dev/ttyS0 (or
/dev/ttyUSB0 for a USB-to-serial converter).

• SERIAL SPEED - Should be set to speed the slave is set for - 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200 are supported.

• PAUSE AFTER TRANSMIT - Pause (milliseconds) after transmit and before receiving answer, some
devices need more time (e.g., USB-to-serial converters).

• PAUSE INTER-FRAME - Pause (milliseconds) after receiving answer from slave. This sets the duty
cycle of requests (it’s a pause for EACH request).

• REQUEST TIMEOUT LENGTH - Length (milliseconds) of time before we decide that the slave didn’t
answer.

• MODBUS ELEMENT OFFSET - used to offset the element numbers by 1 (for manufacturers num-
bering differences).

• DEBUG LEVEL - Set this to 0-3 (0 to stop printing debug info besides no-response errors).

• READ COILS/INPUTS MAP TO - Select what variables that read coils/inputs will update. (B or Q).

• WRITE COILS MAP TO - Select what variables that write coils will updated from (B,Q,or I).

• READ REGISTERS/HOLDING - Select what variables that read registers will update (W or QW).

• WRITE REGISTERS MAP TO - Select what variables that read registers will updated from (W, QW,
or IW).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 430 / 1322

• SLAVE ADDRESS - For serial the slaves ID number usually settable on the slave device (usually
1-256). For IP the slave IP address plus optionally the port number.

• TYPE ACCESS - This selects the MODBUS function code to send to the slave (eg what type of
request).

• COILS / INPUTS - Inputs and Coils (bits) are read from/written to I, B, or Q variables (user selects).
• REGISTERS (WORDS) - Registers (Words/Numbers) map to IW, W, or QW variables (user selects).
• 1st MODBUS ELEMENT - The address (or register number) of the first element in a group (remem-

ber to set MODBUS ELEMENT OFFSET properly).
• NUMBER OF ELEMENTS - The number of elements in this group.
• LOGIC - You can invert the logic here.
• 1st%I%Q IQ WQ MAPPED - This is the starting number of %B, %I, %Q, %W, %IW, or %QW vari-

ables that are mapped onto/from the modbus element group (starting at the first modbus element
number).

In the example above: Port number - for my computer /dev/ttyS0 was my serial port.
The serial speed is set to 9600 baud.
Slave address is set to 12 (on my VFD I can set this from 1-31, meaning I can talk to 31 VFDs maximum
on one system).
The first line is set up for 8 input bits starting at the first register number (register 1). So register
numbers 1-8 are mapped onto ClassicLadder’s %B variables starting at %B1 and ending at %B8.
The second line is set for 2 output bits starting at the ninth register number (register 9) so register
numbers 9-10 are mapped onto ClassicLadder’s %Q variables starting at %Q9 ending at %Q10.
The third line is set to write 2 registers (16 bits each) starting at the 0th register number (register 0),
so register numbers 0-1 are mapped onto ClassicLadder’s %W variables starting at %W0 ending at
%W1.
It’s easy to make an off-by-one error as sometimes the modbus elements are referenced starting at
one rather then 0 (actually by the standard that is the way it’s supposed to be!). You can use the
modbus element offset radio button to help with this.
The documents for your modbus slave device will tell you how the registers are set up- there is no
standard way.
The SERIAL PORT, PORT SPEED, PAUSE, and DEBUG level are editable for changes (when you close
the config window values are applied, though Radio buttons apply immediately).
To use the echo function select the echo function and add the slave number you wish to test. You don’t
need to specify any variables.
The number 257 will be sent to the slave number you specified and the slave should send it back. You
will need to have ClassicLadder running in a terminal to see the message.

8.2.10 MODBUS Settings

Serial:

• ClassicLadder uses RTU protocol (not ASCII).
• 8 data bits, No parity is used, and 1 stop bit is also known as 8-N-1.
• Baud rate must be the same for slave and master. ClassicLadder can only have one baud rate so all

the slaves must be set to the same rate.
• Pause inter frame is the time to pause after receiving an answer.
• MODBUS_TIME_AFTER_TRANSMIT is the length of pause after sending a request and before re-

ceiving an answer (this apparently helps with USB converters which are slow).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 431 / 1322

8.2.10.1 MODBUS Info

• ClassicLadder can use distributed inputs/outputs on modules using the Modbus protocol (”master”:
polling slaves).

• The slaves and theirs I/O can be configured in the config window.

• 2 exclusive modes are available : ethernet using Modbus/TCP and serial using Modbus/RTU.

• No parity is used.

• If no port name for serial is set, TCP/IP mode will be used…

• The slave address is the slave address (Modbus/RTU) or the IP address.

• The IP address can be followed per the port number to use (xx.xx.xx.xx:pppp) else the port 9502
will be used per default.

• 2 products have been used for tests: a Modbus/TCP one (Adam-6051, https://www.advantech.com)
and a serial Modbus/RTU one (https://www.ipac.ws).

• See examples: adam-6051 and modbus_rtu_serial.

• Web links: https://www.modbus.org and this interesting one: https://www.iatips.com/modbus.html

• MODBUS TCP SERVER INCLUDED

• ClassicLadder has a Modbus/TCP server integrated. Default port is 9502. (the previous standard
502 requires that the application must be launched with root privileges).

• List of Modbus functions code supported are: 1, 2, 3, 4, 5, 6, 15 and 16.

• Modbus bits and words correspondence table is actually not parametric and correspond directly to
the %B and %W variables.

More information on modbus protocol is available on the internet.
https://www.modbus.org/

8.2.10.2 Communication Errors

If there is a communication error, a warning window will pop up (if the GUI is running) and %E0 will
be true. Modbus will continue to try to communicate. The %E0 could be used to make a decision
based on the error. A timer could be used to stop the machine if timed out, etc.

8.2.11 Debugging modbus problems

A good reference for the protocol: https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf.
If you run linuxcnc/classicladder from a terminal, it will print the Modbus commands and slave re-
sponses.
Here we set ClassicLadder to request slave 1, to read holding registers (function code 3) starting
at address 8448 (0x2100). We ask for 1 (2 byte wide) data element to be returned. We map it to a
ClassicLadder variable starting at 2.

https://www.advantech.com
https://www.ipac.ws
https://www.modbus.org
https://www.iatips.com/modbus.html
https://www.modbus.org/
https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 432 / 1322

Figure 8.14: Modbus I/O Register Setup

Note in this image we have set the debug level to 1 so modbus messages are printed to the terminal. We
have mapped our read and written holding registers to ClassicLadder’s %W variables so our returned
data will be in %W2 as in the other image we mapped the data starting at the 2nd element.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 433 / 1322

Figure 8.15: Modbus Communication Setup

8.2.11.1 Request

Lets look at an example of reading one hold register at 8448 Decimal (0x2100 Hex).
Looking in the Modbus protocol reference:

Table 8.2: Read holding register request

Name number
of
bytes

Value (hex)

Function code (1
Byte)

3 (0x03)

Starting Address (2
Bytes)

0 - 65535
(0x0000 to
0xFFFF)

Number of
Registers

(2
Bytes)

1 to 125 (0x7D)

Checksum (2
bytes)

Calculated
automatically

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 434 / 1322

Here is an example sent command as printed in the terminal (all Hex):
INFO CLASSICLADDER- Modbus I/O module to send: Lgt=8 <- Slave address-1 Function code-3 ←↩

Data-21 0 0 1 8E 36

Meaning (Hex):

• Lgt = 8 = message is 8 bytes long including slave number and checksum number

• Slave number = 1 (0x1) = Slave address 1

• Function code = 3 (0x3) = read holding register

• Start at address = highbyte 33 (0x21) lowbyte 0 (0x00) = combined address = 8448 (0x2100)

• Number of Registers = 1 (0x1) = return 1 2-byte register (holding and reading registers are always
2 bytes wide)

• Checksum = high byte 0x8E lowbyte 0x36 = (0x8E36)

8.2.11.2 Error response

If there is an error response, it sends the function code plus 0x80, an error code, and a checksum.
Getting an error response means the slave is seeing the request command but can not give valid data.
Looking in the Modbus protocol reference:

Table 8.3: Error returned for function code 3 (read hold-
ing register)

Name Number
of
bytes

Value (hex)

Error code 1
Byte

131 (0x83)

Exception code 1
Byte

1-4 (0x01 to
0x04)

Checksum (2
bytes)

Calculated
automatically

Exception code meaning:

• 1 - illegal Function

• 2 - illegal data address

• 3 - illegal data value

• 4 - slave device failure

Here is an example received command as printed in the terminal (all Hex):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 435 / 1322

INFO CLASSICLADDER- Modbus I/O module received: Lgt=5 -> (Slave address-1 Function ←↩
code-83) 2 C0 F1

Meaning (Hex):

• Slave number = 1 (0x1) = Slave address 1

• Function code = 131 (0x83) = error while reading holding register

• Error code = 2 (0x2) = illegal data address requested

• Checksum = (0x8E36)

8.2.11.3 Data response

Looking in the Modbus protocol reference for Response:

Table 8.4: Data response for function code 3 (read holding
register)

Name number
of
bytes

Value (hex)

Function code 1
Byte

3 (0x03)

Byte count 1
Byte

2 x N*

Register value N* x
2
Bytes

returned value of
requested
address

Checksum (2
bytes)

calculated
automatically

*N = Number of registers
Here is an example received command as printed in the terminal (all Hex):
INFO CLASSICLADDER- Modbus I/O module received: Lgt=7 -> (Slave address-1 Function ←↩

code-3 2 0 0 B8 44)

meaning (Hex):

• Slave number = 1 (0x1) = Slave address 1

• Requested function code = 3 (0x3) = read holding register requested

• count of byte registers = 2 (0x1) = return 2 bytes (each register value is 2 bytes wide)

• value of highbyte = 0 (0x0) = high byte value of address 8448 (0x2100)

• value of lowbyte = 0 (0x0) = high byte value of address 8448 (0x2100)

• Checksum = (0xB844)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 436 / 1322

(high and low bytes are combined to create a 16 bit value and then transferred to ClassicLadder’s
variable.) Read Registers can be mapped to %W or %QW (internal memory or HAL out pins). Write
registers can be mapped from %W, %QW or %IW (internal memory, HAL out pins or HAL in pins). The
variable number will start at the number entered in the modbus I/O registry setup page’s column:
First variable mapped. If multiple registers are requested in one read/write then the variable number
are sequential after the first one.

8.2.11.4 MODBUS Bugs

• In compare blocks the function %W=ABS(%W1-%W2) is accepted but does not compute properly.
only %W0=ABS(%W1) is currently legal.

• When loading a ladder program it will load Modbus info but will not tell ClassicLadder to initialize
Modbus. You must initialize Modbus when you first load the GUI by adding --modmaster.

• If the section manager is placed on top of the section display, across the scroll bar and exit is clicked
the non-realtime program crashes.

• When using --modmaster you must load the ladder program at the same time or else only TCP will
work.

• reading/writing multiple registers in Modbus has checksum errors.

8.2.12 Setting up ClassicLadder

In this section we will cover the steps needed to add ClassicLadder to a StepConf Wizard generated
config. On the advanced Configuration Options page of StepConf Wizard check off ”Include Classi-
cLadder PLC”.

Figure 8.16: StepConf ClassicLadder

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 437 / 1322

8.2.12.1 Add the Modules

If you used the StepConf Wizard to add ClassicLadder you can skip this step.
To manually add ClassicLadder you must first add the modules. This is done by adding a couple of
lines to the custom.hal file.
This line loads the real time module:
loadrt classicladder_rt

This line adds the ClassicLadder function to the servo thread:
addf classicladder.0.refresh servo-thread

8.2.12.2 Adding Ladder Logic

Now start up your config and select ”File/Ladder Editor” to open up the ClassicLadder GUI. You should
see a blank Section Display and Sections Manager window as shown above. In the Section Display
window open the Editor. In the Editor window select Modify. Now a Properties window pops up and
the Section Display shows a grid. The grid is one rung of ladder. The rung can contain branches.
A simple rung has one input, a connector line and one output. A rung can have up to six horizontal
branches. While it is possible to have more than one circuit in a run the results are not predictable.

Figure 8.17: Section Display with Grid

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 438 / 1322

Now click on the N.O. input in the Editor Window.

Figure 8.18: Editor Window

Now click in the upper left grid to place the N.O. Input into the ladder.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 439 / 1322

Figure 8.19: Section Display with Input

Repeat the above steps to add a N.O. output to the upper right grid and use the Horizontal Connection
to connect the two. It should look like the following. If not, use the Eraser to remove unwanted
sections.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 440 / 1322

Figure 8.20: Section Display with Rung

Now click on the OK button in the Editor window. Now your Section Display should look like this:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 441 / 1322

Figure 8.21: Section Display Finished

To save the new file select Save As and give it a name. The .clp extension will be added automatically.
It should default to the running config directory as the place to save it.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 442 / 1322

Figure 8.22: Save As Dialog

Again if you used the StepConf Wizard to add ClassicLadder you can skip this step.
To manually add a ladder you need to add add a line to your custom.hal file that will load your ladder
file. Close your LinuxCNC session and add this line to your custom.hal file.
loadusr -w classicladder --nogui MyLadder.clp

Now if you start up your LinuxCNC config your ladder program will be running as well. If you select
”File/Ladder Editor”, the program you created will show up in the Section Display window.

8.3 ClassicLadder Examples

8.3.1 Wrapping Counter

To have a counter that wraps around you have to use the preset pin and the reset pin. When you
create the counter set the preset at the number you wish to reach before wrapping around to 0. The
logic is if the counter value is over the preset then reset the counter and if the underflow is on then

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 443 / 1322

set the counter value to the preset value. As you can see in the example when the counter value is
greater than the counter preset the counter reset is triggered and the value is now 0. The underflow
output %Q2 will set the counter value at the preset when counting backwards.

Figure 8.23: Wrapping Counter

8.3.2 Reject Extra Pulses

This example shows you how to reject extra pulses from an input. Suppose the input pulse %I0 has
an annoying habit of giving an extra pulse that spoils our logic. The TOF (Timer Off Delay) prevents
the extra pulse from reaching our cleaned up output %Q0. How this works is when the timer gets
an input the output of the timer is on for the duration of the time setting. Using a normally closed
contact %TM0.Q the output of the timer blocks any further inputs from reaching our output until it
times out.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 444 / 1322

Figure 8.24: Reject Extra Pulse

8.3.3 External E-Stop

The External E-Stop example is in the /config/classicladder/cl-estop folder. It uses a PyVCP panel to
simulate the external components.
To interface an external E-Stop to LinuxCNC and have the external E-Stop work together with the
internal E-Stop requires a couple of connections through ClassicLadder.
First we have to open the E-Stop loop in the main HAL file by commenting out by adding the pound
sign as shown or removing the following lines.
net estop-out <= iocontrol.0.user-enable-out
net estop-out => iocontrol.0.emc-enable-in

Next we add ClassicLadder to our custom.hal file by adding these two lines:
loadrt classicladder_rt
addf classicladder.0.refresh servo-thread

Next we run our config and build the ladder as shown here.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 445 / 1322

Figure 8.25: E-Stop Section Display

After building the ladder select Save As and save the ladder as estop.clp
Now add the following line to your custom.hal file.
Load the ladder
loadusr classicladder --nogui estop.clp

I/O assignments

• %I0 = Input from the PyVCP panel simulated E-Stop (the checkbox)

• %I1 = Input from LinuxCNC’s E-Stop

• %I2 = Input from LinuxCNC’s E-Stop Reset Pulse

• %I3 = Input from the PyVCP panel reset button

• %Q0 = Output to LinuxCNC to enable

• %Q1 = Output to external driver board enable pin (use a N/C output if your board had a disable pin)

Next we add the following lines to the custom_postgui.hal file

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 446 / 1322

E-Stop example using PyVCP buttons to simulate external components

The PyVCP checkbutton simulates a normally closed external E-Stop
net ext-estop classicladder.0.in-00 <= pyvcp.py-estop

Request E-Stop Enable from LinuxCNC
net estop-all-ok iocontrol.0.emc-enable-in <= classicladder.0.out-00

Request E-Stop Enable from PyVCP or external source
net ext-estop-reset classicladder.0.in-03 <= pyvcp.py-reset

This line resets the E-Stop from LinuxCNC
net emc-reset-estop iocontrol.0.user-request-enable => classicladder.0.in-02

This line enables LinuxCNC to unlatch the E-Stop in ClassicLadder
net emc-estop iocontrol.0.user-enable-out => classicladder.0.in-01

This line turns on the green indicator when out of E-Stop
net estop-all-ok => pyvcp.py-es-status

Next we add the following lines to the panel.xml file. Note you have to open it with the text editor not
the default html viewer.
<pyvcp>
<vbox>
<label><text>”E-Stop Demo”</text></label>
<led>
<halpin>”py-es-status”</halpin>
<size>50</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>
</led>
<checkbutton>
<halpin>”py-estop”</halpin>
<text>”E-Stop”</text>
</checkbutton>
</vbox>
<button>
<halpin>”py-reset”</halpin>
<text>”Reset”</text>
</button>
</pyvcp>

Now start up your config and it should look like this.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 447 / 1322

Figure 8.26: AXIS E-Stop

Note that in this example like in real life you must clear the remote E-Stop (simulated by the checkbox)
before the AXIS E-Stop or the external Reset will put you in OFF mode. If the E-Stop in the AXIS screen
was pressed, you must press it again to clear it. You cannot reset from the external after you do an
E-Stop in AXIS.

8.3.4 Timer/Operate Example

In this example we are using the Operate block to assign a value to the timer preset based on if an
input is on or off.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 448 / 1322

Figure 8.27: Timer/Operate Example

In this case %I0 is true so the timer preset value is 10. If %I0 was false the timer preset would be 5.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 449 / 1322

Chapter 9

Advanced Topics

9.1 Kinematics

9.1.1 Introduction

When we talk about CNC machines, we usually think about machines that are commanded to move to
certain locations and perform various tasks. In order to have an unified view of the machine space,
and to make it fit the human point of view over 3D space, most of the machines (if not all) use a
common coordinate system called the Cartesian Coordinate System.
The Cartesian Coordinate system is composed of three axes (X, Y, Z) each perpendicular to the other
two 1.
When we talk about a G-code program (RS274/NGC) we talk about a number of commands (G0, G1,
etc.) which have positions as parameters (X- Y- Z-). These positions refer exactly to Cartesian positions.
Part of the LinuxCNC motion controller is responsible for translating those positions into positions
which correspond to the machine kinematics 2.

9.1.1.1 Joints vs Axes

A joint of a CNC machine is a one of the physical degrees of freedom of the machine. This might be
linear (leadscrews) or rotary (rotary tables, robot arm joints). There can be any number of joints on a
given machine. For example, one popular robot has 6 joints, and a typical simple milling machine has
only 3.
There are certain machines where the joints are laid out to match kinematics axes (joint 0 along axis
X, joint 1 along axis Y, joint 2 along axis Z), and these machines are called Cartesian machines (or
machines with Trivial Kinematics). These are the most common machines used in milling, but are not
very common in other domains of machine control (e.g. welding: puma-typed robots).
LinuxCNC supports axes with names: X Y Z A B C U V W. The X Y Z axes typically refer to the usual
Cartesian coordinates. The A B C axes refer to rotational coordinates about the X Y Z axes respectively.
The U V W axes refer to additional coordinates that are commonly made colinear to the X Y Z axes
respectively.

1The word ”axes” is also commonly (and wrongly) used when talking about CNC machines, and referring to the moving
directions of the machine.

2Kinematics: a two way function to transform from Cartesian space to joint space.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 450 / 1322

9.1.2 Trivial Kinematics

The simplest machines are those in which which each joint is placed along one of the Cartesian axes.
On these machines the mapping from Cartesian space (the G-code program) to the joint space (the
actual actuators of the machine) is trivial. It is a simple 1:1 mapping:
pos->tran.x = joints[0];
pos->tran.y = joints[1];
pos->tran.z = joints[2];

In the above code snippet one can see how the mapping is done: the X position is identical with the
joint 0, the Y position with joint 1, etc. The above refers to the direct kinematics (one direction of the
transformation). The next code snippet refers to the inverse kinematics (or the inverse direction of
the transformation):
joints[0] = pos->tran.x;
joints[1] = pos->tran.y;
joints[2] = pos->tran.z;

In LinuxCNC, the identity kinematics are implemented with the trivkins kinematics module and ex-
tended to 9 axes. The default relationships between axis coordinates and joint numbers are: 3 4

pos->tran.x = joints[0];
pos->tran.y = joints[1];
pos->tran.z = joints[2];
pos->a = joints[3];
pos->b = joints[4];
pos->c = joints[5];
pos->u = joints[6];
pos->v = joints[7];
pos->w = joints[8];

Similarly, the default relationships for inverse kinematics for trivkins are:
joints[0] = pos->tran.x;
joints[1] = pos->tran.y;
joints[2] = pos->tran.z;
joints[3] = pos->a;
joints[4] = pos->b;
joints[5] = pos->c;
joints[6] = pos->u;
joints[7] = pos->v;
joints[8] = pos->w;

It is straightforward to do the transformation for a trivial ”kins” (trivkins kinematics) or Cartesian
machine provided that there are no omissions in the axis letters used.
It gets a bit more complicated if the machine is missing one or more of the axis letters. The problems of
omitted axis letters is addressed by using the coordinates= module parameter with the trivkins mod-
ule. Joint numbers are assigned consecutively to each coordinate specified. A lathe can be described
with coordinates=xz The joint assignments will then be:
joints[0] = pos->tran.x
joints[1] = pos->tran.z

3If the machine (for example a lathe) is mounted with only the X, Z and A axes and the INI file of LinuxCNC contains only
the definition of these 3 joints, then the previous assertion is false. Because we currently have (joint0=X, joint1=Z, joint2=A)
which assumes that joint1=Y. To make this work in LinuxCNC just define all the axes (XYZA), LinuxCNC will then use a simple
loop in HAL for unused Y axis.

4Another way to make it work is to change the corresponding code and recompile the software.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 451 / 1322

Use of the coordinates= parameter is recommended for configurations that omit axis letters. 5

The trivkins kinematics module also allows the same coordinate to be specified for more than one
joint. This feature can be useful on machines like a gantry having two independent motors for the y
coordinate. Such a machine could use coordinates=xyyz resulting in joint assignments:
joints[0] = pos->tran.x
joints[1] = pos->tran.y
joints[2] = pos->tran.y
joints[3] = pos->tran.z

See the trivkins man pages for more information.

9.1.3 Non-trivial kinematics

There can be quite a few types of machine setups (robots: puma, scara; hexapods etc.). Each of them is
set up using linear and rotary joints. These joints don’t usually match with the Cartesian coordinates,
therefore we need a kinematics function which does the conversion (actually 2 functions: forward and
inverse kinematics function).
To illustrate the above, we will analyze a simple kinematics called bipod (a simplified version of the
tripod, which is a simplified version of the hexapod).

Figure 9.1: Bipod setup
5Historically, the trivkins module did not support the coordinates= parameter so lathe configs were often configured as XYZ

machines. The unused Y axis was configured to 1) home immediately, 2) use a simple loopback to connect its position command
HAL pin to its position feedback HAL pin, and 3) hidden in gui displays. Numerous sim configs use these methods in order to
share common HAL files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 452 / 1322

The Bipod we are talking about is a device that consists of 2 motors placed on a wall, from which a
device is hung using some wire. The joints in this case are the distances from the motors to the device
(named AD and BD in the figure).
The position of the motors is fixed by convention. Motor A is in (0,0), which means that its X coordinate
is 0, and its Y coordinate is also 0. Motor B is placed in (Bx, 0), which means that its X coordinate is
Bx.
Our tooltip will be in point D which gets defined by the distances AD and BD, and by the Cartesian
coordinates Dx, Dy.
The job of the kinematics is to transform from joint lengths (AD, BD) to Cartesian coordinates (Dx,
Dy) and vice-versa.

9.1.3.1 Forward transformation

To transform from joint space into Cartesian space we will use some trigonometry rules (the right
triangles determined by the points (0,0), (Dx,0), (Dx,Dy) and the triangle (Dx,0), (Bx,0) and (Dx,Dy)).
We can easily see that:

likewise:

If we subtract one from the other we will get:

and therefore:

From there we calculate:

Note that the calculation for y involves the square root of a difference, which may not result in a real
number. If there is no single Cartesian coordinate for this joint position, then the position is said to
be a singularity. In this case, the forward kinematics return -1.
Translated to actual code:
double AD2 = joints[0] * joints[0];
double BD2 = joints[1] * joints[1];
double x = (AD2 - BD2 + Bx * Bx) / (2 * Bx);
double y2 = AD2 - x * x;
if(y2 < 0) return -1;
pos->tran.x = x;
pos->tran.y = sqrt(y2);
return 0;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 453 / 1322

9.1.3.2 Inverse transformation

The inverse kinematics is much easier in our example, as we can write it directly:

or translated to actual code:
double x2 = pos->tran.x * pos->tran.x;
double y2 = pos->tran.y * pos->tran.y;
joints[0] = sqrt(x2 + y2);
joints[1] = sqrt((Bx - pos->tran.x)*(Bx - pos->tran.x) + y2);
return 0;

9.1.4 Implementation details

A kinematics module is implemented as a HAL component, and is permitted to export pins and pa-
rameters. It consists of several ”C” functions (as opposed to HAL functions):
int kinematicsForward(const double *joint, EmcPose *world,
const KINEMATICS_FORWARD_FLAGS *fflags,
KINEMATICS_INVERSE_FLAGS *iflags)

Implements the forward kinematics function.
int kinematicsInverse(const EmcPose * world, double *joints,
const KINEMATICS_INVERSE_FLAGS *iflags,
KINEMATICS_FORWARD_FLAGS *fflags)

Implements the inverse kinematics function.
KINEMATICS_TYPE kinematicsType(void)

Returns the kinematics type identifier, típicamente KINEMATICS_BOTH:

1. KINEMATICS_IDENTITY (each joint number corresponds to an axis letter)

2. KINEMATICS_BOTH (forward and inverse kinematics functions are provided)

3. KINEMATICS_FORWARD_ONLY

4. KINEMATICS_INVERSE_ONLY

Note
GUIs may interpret KINEMATICS_IDENTITY to hide the distinctions between joint numbers and axis
letters when in joint mode (typically prior to homing).

int kinematicsSwitchable(void)
int kinematicsSwitch(int switchkins_type)
KINS_NOT_SWITCHABLE

The function kinematicsSwitchable() returns 1 if multiple kinematics types are supported. The func-
tion kinematicsSwitch() selects the kinematics type. See Switchable Kinematitcs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 454 / 1322

Note
The majority of provided kinematics modules support a single kinematics type and use the directive
”KINS_NOT_SWITCHABLE” to supply defaults for the required kinematicsSwitchable() and kinemat-
icsSwitch() functions.

int kinematicsHome(EmcPose *world, double *joint,
KINEMATICS_FORWARD_FLAGS *fflags,
KINEMATICS_INVERSE_FLAGS *iflags)

The home kinematics function sets all its arguments to their proper values at the known home position.
When called, these should be set, when known, to initial values, e.g., from an INI file. If the home
kinematics can accept arbitrary starting points, these initial values should be used.
int rtapi_app_main(void)
void rtapi_app_exit(void)

These are the standard setup and tear-down functions of RTAPI modules.
When they are contained in a single source file, kinematics modules may be compiled and installed
by halcompile. See the halcompile(1) manpage or the HAL manual for more information.

9.1.4.1 Kinematics module using the userkins.comp template

Another way to create a custom kinematics module is to adapt the HAL component userkins. This
template component can be modified locally by a user and can be built using halcompile.
See the userkins man pages for more information.
Note that to create switchable kinematic modules the required modifications are somewhat more
complicated.
Seemillturn.comp as an example of a switchable kinematic module that was created using the userkins.comp
template.

9.2 Setting up ”modified” Denavit-Hartenberg (DH) parame-
ters for genserkins

9.2.1 Prelude

LinuxCNC supports a number of kinematics modules including one that supports a generalized set of
serial kinematics commonly specified via Denavit-Hartenberg parameters.
This document illustrates a method to set up the DH-parameters for a Mitsubishi RV-6SDL in Linux-
CNC using genserkins kinematics.

Note
This document does not cover the creation of a vismach model which, while certainly very useful,
requires just asmuch careful modeling if it is to match the genserkinsmodel derived in this document.

Note
There may be errors and/or shortcomings — use at your own risk!

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 455 / 1322

9.2.2 General

With the proliferation of industrial robots comes an increased interest to control used robots with
LinuxCNC. A common type of robot used in industry and manufacturing is the ”serial manipulator”
designed as a series of motorized joints connected by rigid links. Serial robots often have six joints
as required for the six degrees of freedom needed to both position (XYZ) and orient (ABC or pitch,
roll, yaw) an object in space. Often these robots have an arm structure that extends from a base to
an end-effector.
Control of such a serial robot requires the calculation of the end-effector’s position and orientation in
relation to a reference coordinate system when the joint angles are known (forward kinematics) and
also the more complex reverse calculation of the required joint angles for a given end-effector position
and orientation in relation to the reference coordinate system (inverse kinematics). The standard
mathematical tools used for these calculations are matrices which are basically tables of parameters
and formulas that make it easier to handle the rotations and translations involved in forward and
inverse kinematics calculations.
Detailed familiarity with the math is not required for a serial robot since LinuxCNC provides a kine-
matics module that implements an algorithm called genserkins to calculate the forward and inverse
kinematics for a generic serial robot. In order to control a specific serial robot, genserkins must be
provided with data so that it can build a mathematical model of the robot’s mechanical structure and
thus do the math.
The required data needs to be in a standardized form that has been introduced by Jacques Denavit and
Richard Hartenberg back in the fifties and are called the DH-Parameters. Denavit and Hartenberg
used four parameters to describe how one joint is linked to the next. These parameters describe
basically two rotations (alpha and theta) and two translations (a and d).

9.2.3 Modified DH-Parameters

As is often the case, this ”standard” has been modified by other authors who have introduced ”modified
DH-parameters” and one must be very careful because genserkins uses ”modified DH-parameters” as
described in the publication ”Introduction to Robotics, Mechanics and Control” by John J. Craig. Be-
ware there is a lot of information to be found on DH-parameters but rarely does the author define
which convention is actually used. In addition, some people have found it necessary to change the pa-
rameter named a to r and have thus added to the confusion. This document adheres to the convention
in the above mentioned publication by Craig with the difference that joint and parameter enumeration
begins with the number 0 in order to be consistent with genserkins and its HAL pins.
Standard and Modified DH-Parameters consist of four numeric values for each joint (a, d, alpha and
theta) that describe how the coordinate system (CS) sitting in one joint has to be moved and rotated
to be aligned with the next joint. Aligned means that the Z-axis of our CS coincides with the axis
of rotation of the joint and points in the positive direction such that, using the right hand rule with
the thumb pointing in the positive direction of the Z-axis, the fingers point in the positive direction
of rotation of the joint. It becomes clear that in order to do this, one must decide on the positive
directions of all joints before starting to derive the parameters!
The difference between ”standard” and ”modified” notations is in how the parameters are allocated to
the links. Using the ”standard” DH-Parameters in genserkins will not give the correct mathematical
model.

9.2.4 Modified DH-Parameters as used in genserkins

Note that genserkins does not handle offsets to theta-values — theta is the joint variable that is con-
trolled by LinuxCNC. With the CS aligned with the joint, a rotation around its Z-Axis is identical to
the rotation commanded to that joint by LinuxCNC. This makes it impossible to define the 0° position
of our robots joints arbitrarily.
The three configurable parameters are:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 456 / 1322

1. alpha : positive or negative rotation (in radians) around the X-axis of the ”current coordinate
system”

2. a : positive distance, along X, between two joint axes specified in machine units (mm or inch)
defined in the system’s INI file.

3. d : positive or negative length along Z (also in machine units)

The parameter sets are always derived in the same order and a set is completed by setting the d-
parameter. This does not leave the Z-axis of our CS aligned with the next joint! This may seem
confusing but sticking to this rule will yield a working set of parameters. Once the d-parameter is set,
the X-axis of our-CS needs to point to the axis of the next joint.

9.2.5 Numbering of joints and parameters

The first joint in LinuxCNC is joint-0 (because in software counting starts with 0) while most publica-
tions start with the number 1. That goes for all the parameters as well. That is, numbering starts with
a-0, alpha-0, d-0 and ends with a-5, alpha-5 and d-5. Keep this in mind when following a publication
to set up genserkins parameters.

9.2.6 How to start

Convention is to start by placing the reference-CS in the base of the robot with it’s Z-axis coinciding
with the axis of the first joint and its X-axis pointing toward the next joint’s axis.
This will also result in the DRO values in LinuxCNC being referenced to that point. Having done so sets
a-0 and alpha-0 to 0. The above mentioned publication (Craig) also sets d-0 to 0, which is confusing
when a displacement offset is needed in order to have the reference-CS at the bottom of the base.
Setting d-0 = to the displacement gives correct results. In this manner, the first set of parameters are
alpha-0 = 0, a-0 = 0, d0 = displacement, and the X-axis of the CS points to the axis of the next joint
(joint-1).
Derivation of the net set (alpha-1, a-1, d-1) follows — always using the same sequence all the way to
the sixth set (alpha-5, a-5, d-5).
And thus, the TCP-CS of the end-effector is sitting in the center of the hand flange.

9.2.7 Special cases

If the next joint-axis is parallel to the last then one could arbitrarily choose a value for the d-parameter
but there is no point in setting it other than 0.

9.2.8 Detailed Example (RV-6SL)

Described below is a method to derive the required ”modified DH-parameters” for a Mitsubishi RV-
6SDL and how to set the parameters in the HAL file to be used with the genserkins kinematics in
LinuxCNC. The necessary dimensions are best taken from a dimensional drawing provided by the
manufacturer of the robot.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 457 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 458 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 459 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 460 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 461 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 462 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 463 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 464 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 465 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 466 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 467 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 468 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 469 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 470 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 471 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 472 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 473 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 474 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 475 / 1322

9.2.9 Credits

Thanks to user Aciera for all text and the graphics for the RV-6SL robot!

9.3 5-Axis Kinematics

9.3.1 Introduction

Coordinated multi-axis CNC machine tools controlled with LinuxCNC, require a special kinematics
component for each type of machine. This chapter describes some of the most popular 5-axis machine
configurations and then develops the forward (from work to joint coordinates) and inverse (from joint
to work) transformations in a general mathematical process for two types of machine.
The kinematics components are given as well as vismach simulation models to demonstrate their
behaviour on a computer screen. Examples of HAL file data are also given.
Note that with these kinematics, the rotational axes move in the opposite direction of what the conven-
tion is. See section [”rotational axes”](https://linuxcnc.org/docs/html/gcode/machining-center.html#_rotational_axes)
for details.

9.3.2 5-Axis Machine Tool Configurations

In this section we deal with the typical 5-axis milling or router machines with five joints or degrees-
of-freedom which are controlled in coordinated moves.
3-axis machine tools cannot change the tool orientation, so 5-axis machine tools use two extra axes to
set the cutting tool in an appropriate orientation for efficient machining of freeform surfaces.
Typical 5-axis machine tool configurations are shown in Figs. 3, 5, 7 and 9-11 [1,2] in section Figures.
The kinematics of 5-axes machine tools are much simpler than that of 6-axis serial arm robots, since
3 of the axes are normally linear axes and only two are rotational axes.

9.3.3 Tool Orientation and Location

CAD/CAM systems are typically used to generate the 3D CAD models of the workpiece as well as the
CAM data for input to the CNC 5-axis machine. The tool or cutter location (CL) data, is composed of
the cutter tip position and the cutter orientation relative to the workpiece coordinate system. Two
vectors, as generated by most CAM systems and shown in Fig. 1, contain this information:

The K vector is equivalent to the 3rd vector from the pose matrix E6 that was used in the 6-axis robot
kinematics [3] and the Q vector is equivalent to the 4th vector of E6. In MASTERCAM for example
this information is contained in the intermediate output ”.nci” file.

https://linuxcnc.org/docs/html/gcode/machining-center.html#_rotational_axes

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 476 / 1322

Figure 9.2: Cutter location data

9.3.4 Translation and Rotation Matrices

Homogeneous transformations provide a simple way to describe the mathematics of multi-axis ma-
chine kinematics. A transformation of the space H is a 4x4 matrix and can represent translation and
rotation transformations. Given a point x,y,x described by a vector u = {x,y,z,1}T, then its transfor-
mation v is represented by the matrix product

There are four fundamental transformation matrices on which 5-axis kinematics can be based:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 477 / 1322

The matrix T(a,b,c) implies a translation in the X, Y, Z coordinate directions by the amounts a, b, c
respectively. The R matrices imply rotations of the angle theta about the X, Y and Z coordinate axes
respectively. The C and S symbols refer to cosine and sine functions respectively.

9.3.5 Table Rotary/Tilting 5-Axis Configurations

In these machine tools the two rotational axes mount on the work table of the machine. Two forms
are typically used:

• A rotary table which rotates about the vertical Z-axes (C-rotation, secondary) mounted on a tilting
table which rotates about the X- or Y-axis (A- or B-rotation, primary). The workpiece is mounted on
the rotary table.

• A tilting table which rotates about the X- or Y-axis (A- or B-rotation, secondary) is mounted on a
rotary table which rotates about the Z-axis (C-rotation, primary), with the workpiece on the tilting
table.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 478 / 1322

Figure 9.3: General configuration and coordinate systems

A multi-axis machine can be considered to consist of a series of links connected by joints. By embed-
ding a coordinate frame in each link of the machine and using homogeneous transformations, we can
describe the relative position and orientation between these coordinate frames
We need to describe a relationship between the workpiece coordinate system and the tool coordi-
nate system. This can be defined by a transformation matrix wAt, which can be found by subsequent
transformations between the different structural elements or links of the machine, each with its own
defined coordinate system. In general such a transformation may look as follows:

where each matrix i-1Aj is a translation matrix T or a rotation matrix R of the form (2,3).
Matrix multiplication is a simple process in which the elements of each row of the lefthand matrix
A is multiplied by the elements of each column of the righthand matrix B and summed to obtain an
element in the result matrix C, ie.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 479 / 1322

In Fig. 2 a generic configuration with coordinate systems is shown [4]. It includes table rotary/tilting
axes as well as spindle rotary/tilting axes. Only two of the rotary axes are actually used in a machine
tool.
First we will develop the transformations for the first type of configuration mentioned above, ie. a table
tilting/rotary (trt) type with no rotating axis offsets. We may give it the name xyzac-trt configuration.
We also develop the transformations for the same type (xyzac-trt), but with rotating axis offsets.
Then we develop the transformations for a xyzbc-trt configuration with rotating axis offsets.

9.3.5.1 Transformations for a xyzac-trt machine tool with work offsets

Figure 9.4: vismach model of xyzac-trt with coincident rotation axes

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 480 / 1322

We deal here with a simplified configuration in which the tilting axis and rotary axis intersects at a
point called the pivot point as shown in Fig. 4. therefore the two coordinate systems Ows and Owp of
Fig. 2 are coincident.

Figure 9.5: Table tilting/rotary configuration

The transformation can be defined by the sequential multiplication of the matrices:

with the matrices built up as follows:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 481 / 1322

In these equations Lx, Ly, Lz defines the offsets of the pivot point of the two rotary axes A and C
relative to the workpiece coordinate system origin. Furthermore, Px, Py, Pz are the relative distances
of the pivot point to the cutter tip position, which can also be called the ”joint coordinates” of the pivot
point. The pivot point is at the intersection of the two rotary axes. The signs of the SA and SC terms
are different to those in [2,3] since there the table rotations are negative relative to the workpiece
coordinate axes (note that sin(-theta) = -sin(theta), cos(-theta) = cos(theta)).
When multiplied in accordance with (5), we obtain:

We can now equate the third column of this matrix with our given tool orientation vector K, ie.:

From these equations we can solve for the rotation angles thetaA, thetaC. From the third row we find:

and by dividing the first row by the second row we find:

These relationships are typically used in the CAM post-processor to convert the tool orientation vectors
to rotation angles.
Equating the last column of (8) with the tool position vector Q, we can write:

The vector on the right hand side can also be written as the product of a matrix and a vector resulting
in:

This can be expanded to give

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 482 / 1322

which is the forward transformation of the kinematics.
We can solve for P from equation (13) as P = (QAP)-1 * Q. Noting that the square matrix is a homoge-
neous 4x4 matrix containing a rotation matrix R and translation vector q, for which the inverse can
be written as:

where R^T is the transpose of R (rows and columns swappped). We therefore obtain:

The desired equations for the inverse transformation of the kinematics thus can be written as:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 483 / 1322

9.3.5.2 Transformations for a xyzac-trt machine with rotary axis offsets

Figure 9.6: vismach model of xyzac-trt with rotational axis offsets (positive)

We deal here with a extended configuration in which the tilting axis and rotary axis do not intersect
at a point but have an offset Dy. Furthermore, there is also an z-offset between the two coordinate
systems Ows and Owp of Fig. 2, called Dz. A vismach model is shown in Fig. 5 and the offsets are
shown in Fig. 6 (positive offsets in this example). To simplify the configuration, the offsets Lx, Ly, Lz
of the previous case are not included. They are probably not necessary if one uses the G54 offsets in
LinuxCNC by means of the ”touch of” facility.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 484 / 1322

Figure 9.7: Table tilting/rotary xyzac-trt configuration, with axis offsets

The transformation can be defined by the sequential multiplication of the matrices:

with the matrices built up as follows:

In these equations Dy, Dz defines the offsets of the pivot point of the rotary axes A relative to the
workpiece coordinate system origin. Furthermore, Px, Py, Pz are the relative distances of the pivot
point to the cutter tip position, which can also be called the ”joint coordinates” of the pivot point. The
pivot point is on the A rotary axis.
When multiplied in accordance with (18), we obtain:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 485 / 1322

We can now equate the third column of this matrix with our given tool orientation vector K, ie.:

From these equations we can solve for the rotation angles thetaA, thetaC. From the third row we find:

and by dividing the second row by the first row we find:

These relationships are typically used in the CAM post-processor to convert the tool orientation vectors
to rotation angles.
Equating the last column of (21) with the tool position vector Q, we can write:

The vector on the right hand side can also be written as the product of a matrix and a vector resulting
in:

which is the forward transformation of the kinematics.
We can solve for P from equation (25) as P = (QAP)-1 * Q using (15) as before. We thereby obtain:

The desired equations for the inverse transformation of the kinematics thus can be written as:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 486 / 1322

9.3.5.3 Transformations for a xyzbc-trt machine with rotary axis offsets

Figure 9.8: vismach model of xyzbc-trt with rotational axis offsets (negative)

We deal here again with a extended configuration in which the tilting axis (about the y-axis) and rotary
axis do not intersect at a point but have an offset Dx. Furthermore, there is also an z-offset between
the two coordinate systems Ows and Owp of Fig. 2, called Dz. A vismach model is shown in Fig. 7
(negative offsets in this example) and the positive offsets are shown in Fig. 8.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 487 / 1322

Figure 9.9: Table tilting/rotary xyzbc-trt configuration, with axis offsets

The transformation can be defined by the sequential multiplication of the matrices:

with the matrices built up as follows:

In these equations Dx, Dz defines the offsets of the pivot point of the rotary axes B relative to the
workpiece coordinate system origin. Furthermore, Px, Py, Pz are the relative distances of the pivot
point to the cutter tip position, which can also be called the ”joint coordinates” of the pivot point. The
pivot point is on the B rotary axis.
When multiplied in accordance with (29), we obtain:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 488 / 1322

We can now equate the third column of this matrix with our given tool orientation vector K, i.e.:

From these equations we can solve for the rotation angles thetaB, thetaC. From the third row we find:

and by dividing the second row by the first row we find:

These relationships are typically used in the CAM post-processor to convert the tool orientation vectors
to rotation angles.
Equating the last column of (32) with the tool position vector Q, we can write:

The vector on the right hand side can also be written as the product of a matrix and a vector resulting
in:

which is the forward transformation of the kinematics.
We can solve for P from equation (37) as P = (QAP)-1 * Q.
With the same approach as before, we obtain:

The desired equations for the inverse transformation of the kinematics thus can be written as:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 489 / 1322

9.3.6 Table Rotary/Tilting Examples

LinuxCNC includes kinematics modules for the xyzac-trt and xyzbc-trt topologies described in the
mathematics detailed above. For interested users, the source code is available in the git tree in the
src/emc/kinematics/ directory.
Example xyzac-trt and xyzbc-trt simulation configurations are located in the Sample Configurations
(configs/sim/axis/vismach/5axis/table-rotary-tilting/) directory.
The example configurations include the required INI files and an examples subdirectory with G-code
(NGC) files. These sim configurations invoke a realistic 3-dimensional model using the LinuxCNC
vismach facility.

9.3.6.1 Vismach Simulation Models

Vismach is a library of python routines to display a dynamic simulation of a CNC machine on the PC
screen. The python script for a particular machine is loaded in HAL and data passed by HAL pin
connections. The non-realtime vismach model is loaded by a HAL command like:
loadusr -W xyzac-trt-gui

and connections are made using HAL commands like:
net :table-x joint.0.pos-fb xyzac-trt-gui.table-x
net :saddle-y joint.1.pos-fb xyzac-trt-gui.saddle-y
...

See the simulation INI files for details of the HAL connections used for the vismach model.

9.3.6.2 Tool-Length Compensation

In order to use tools from a tool table sequentially with tool-length compensation applied automatically,
a further Z-offset is required. For a tool that is longer than the ”master” tool, which typically has a
tool length of zero, LinuxCNC has a variable called ”motion.tooloffset.z”. If this variable is passed on
to the kinematic component (and vismach python script), then the necessary additional Z-offset for a
new tool can be accounted for by adding the component statement, for example:

The required HAL connection (for xyzac-trt) is:
net :tool-offset motion.tooloffset.z xyzac-trt-kins.tool-offset

where:
:tool-offset ---------------- signal name
motion.tooloffset.z --------- output HAL pin from LinuxCNC motion module
xyzac-trt-kins.tool-offset -- input HAL pin to xyzac-trt-kins

9.3.7 Custom Kinematics Components

LinuxCNC implements kinematics using a HAL component that is loaded at startup of LinuxCNC. The
most common kinematics module, trivkins, implements identity (trivial) kinematics where there is a
one-to-one correspondence between an axis coordinate letter and a motor joint. Additional kinematics
modules for more complex systems (including xyzac-trt and xyzbc-trt described above) are available.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 490 / 1322

See the kins manpage (\$ man kins) for brief descriptions of the available kinematics modules.
The kinematics modules provided by LinuxCNC are typically written in the C-language. Since a stan-
dard structure is used, creation of a custom kinematics module is facilitated by copying an existing
source file to a user file with a new name, modifying it, and then installing.
Installation is done using halcompile:
sudo halcompile --install kinsname.c

where ”kinsname” is the name you give to your component. The sudo prefix is required to install it
and you will be asked for your root password. See the halcompile man page for more information (\$
man halcompile)
Once it is compiled and installed you can reference it in your config setup of your machine. This is
done in the INI file of your config directory. For example, the common INI specificaion:
[KINS]
KINEMATICS = trivkins

is replaced by
[KINS]
KINEMATICS = kinsname

where ”kinsname” is the name of your kins program. Additional HAL pins may be created by the mod-
ule for variable configuration items such as the Dx, Dy, Dz, tool-offset used in the xyzac-trt kinematics
module. These pins can be connected to a signal for dynamic control or set once with HAL connections
like:
set offset parameters
net :tool-offset motion.tooloffset.z xyzac-trt-kins.tool-offset
setp xyzac-trt-kins.y-offset 0
setp xyzac-trt-kins.z-offset 20

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 491 / 1322

9.3.8 Figures

Figure 9.10: Table tilting/rotating configuration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 492 / 1322

Figure 9.11: Spindle/table tilting configuration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 493 / 1322

Figure 9.12: Spindle tilting/rotary configuration

9.3.9 REFERENCES

1. AXIS MACHINE TOOLS: Kinematics and Vismach Implementation in LinuxCNC, RJ du Preez,
SA-CNC-CLUB, April 7, 2016.

2. A Postprocessor Based on the Kinematics Model for General Five-Axis machine Tools: C-H She,
R-S Lee, J Manufacturing Processes, V2 N2, 2000.

3. NC Post-processor for 5-axis milling of table-rotating/tilting type: YH Jung, DW Lee, JS Kim, HS
Mok, J Materials Processing Technology,130-131 (2002) 641-646.

4. 3D 6-DOF Serial Arm Robot Kinematics, RJ du Preez, SA-CNC-CLUB, Dec. 5, 2013.

5. Design of a generic five-axis postprocessor based on generalized kinematics model of machine
tool: C-H She, C-C Chang, Int. J Machine Tools & Manufacture, 47 (2007) 537-545.

9.4 Switchable Kinematics (switchkins)

9.4.1 Introduction

A number of kinematics modules support the switching of kinematics calculations. These modules
support a default kinematics method (type0), a second built-in method (type1), and (optionally) a user-
provided kinematics method (type2). Identity kinematics are typically used for the type1 method.
The switchkins functionality can be used for machines where post-homing joint control is needed dur-
ing setup or to avoid movement near singularities from G-code. Such machines use specific kinematics

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 494 / 1322

calculations for most operations but can be switched to identity kinematics for control of individual
joints after homing.
The kinematics type is selected by a motion module HAL pin that can be updated from a G-code
program or by interactive MDI commands. The halui provisions for activating MDI commands can be
used to allow buttons to select the kinematics type using hardware controls or a virtual panel (PyVCP,
GladeVCP, etc.).
When a kinematics type is changed, the G-code must also issue commands to force synchronization
of the interpreter and motion parts of LinuxCNC. Typically, a HAL pin read command (M66 E0 L0) is
used immediately after altering the controlling HAL pin to force synchronization.

9.4.2 Switchable Kinematic Modules

The following kinematics modules support switchable kinematics:

1. xyzac-trt-kins (type0:xyzac-trt-kins type1:identity)

2. xyzbc-trt-kins (type0:xyzbc-trt-kins type1:identity)

3. genhexkins (type0:genhexkins type1:identity)

4. genserkins (type0:genserkins type1:identity) (puma560 example)

5. pumakins (type0:pumakins type1:identity)

6. scarakins (type0:scarakins type1:identity)

7. 5axiskins (type0:5axiskins type1:identity) (bridgemill)

The xyz[ab]c-trt-kins modules by default use type0==xyz[ab]c-trt-kins for backwards compatibility.
The provided sim configs alter the type0/type1 convention by forcing type0==identity kinematics
using the module string parameter sparm with an INI file setting like:
[KINS]
KINEMATICS = xyzac-trt-kins sparm=identityfirst
...

9.4.2.1 Identity letter assignments

When using an identity kinematics type, the module parameter coordinates can be used to assign
letters to joints in arbitrary order from the set of allowed coordinate letters. Examples:
[KINS]
JOINTS = 6

conventional identity ordering: joint0==x, joint1==y, ...
KINEMATICS = genhexkins coordinates=xyzabc

custom identity ordering: joint0==c, joint1==b, ...
KINEMATICS = genhexkins coordinates=cbazyx

Note
If the coordinates= parameter is omitted, the default joint-letter identity assignments are
joint0==x,joint1=y,…

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 495 / 1322

The joint assignments provided for identity kinematics when using the coordinates parameter are
identical to those provided for the trivkins module. However, duplication of axis letters to assign
multiple joints for a coordinate letter is not generally applicable for serial or parallel kinematics (like
genserkins, pumakins, genhexkins, etc.) where there is no simple relationship between joints and
coordinates.
Duplication of axis coordinate letters is supported in the kinematics modules xyzac-trt-kins, xyzbc-trt-
kins, and 5axiskins (bridgemill). Typical applications for duplicate coordinates are gantry machines
where two motors (joints) are used for the transverse axis.

9.4.2.2 Backwards compatibility

Switchable kinematics initialize with motion.switchkins-type==0 implementing their eponymous kine-
matics method. If the the motion.switchkins-type pin is not connected — as in legacy configurations —
 only the default kinematics type is available.

9.4.3 HAL Pins

Kinematics switching is controlled by the motion module input HAL pin motion.switchkins-type.
The floating point pin value is truncated to integer and used to select one of the provided kinematics
types. The zero startup value selects the type0 default kinematics type.

Note
The motion.switchkins-type input pin is floating point in order to facilitate connections to motion
module output pins like motion.analog-out-0n that are controllable by standard M-codes (typically
M68EnL0).

Output HAL pins are provided to inform GUIs of the current kinematics type. These pins can also be
connected to digital inputs that are read by G-code programs to enable or disable program behavior
in accordance with the active kinematics type.

9.4.3.1 HAL Pin Summary

1. motion.switchkins-type Input (float)

2. kinstype.is-0 Output (bit)

3. kinstype.is-1 Output (bit)

4. kinstype.is-2 Output (bit)

9.4.4 Usage

9.4.4.1 HAL Connections

Switchkins functionality is enabled by the pinmotion.switchkins-type. Typically, this pin is sourced
by an analog output pin like motion.analog-out-03 so that it can be set by M68 commands. Example:
net :kinstype-select <= motion.analog-out-03
net :kinstype-select => motion.switchkins-type

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 496 / 1322

9.4.4.2 G-/M-code commands

Kinstype selection is managed using G-code sequences like:
...
M68 E3 Q1 ;update analog-out-03 to select kinstype 1
M66 E0 L0 ;sync interp-motion
...
... ;user G-code
...
M68 E3 Q0 ;update analog-out-03 to select kinstype 0
M66 E0 L0 ;sync interp-motion
...

Note
An M66 wait-on-input command updates the #5399 variable. If the current value of this variable is
needed for subsequent purposes, it should be copied to an additional variable before invoking M66.

These G-code command sequences are typically implemented in G-code subroutines as remapped
M-codes or with conventional M-code scripts.
Suggested codes (as used in sim configs) are:
Conventional User M-codes:

1. M128 Select kinstype 0 (startup default kinematics)

2. M129 Select kinstype 1 (typically identity kinematics)

3. M130 Select kinstype 2 (user-provided kinematics)

Remapped M-codes:

1. M428 Select kinstype 0 (startup default kinematics)

2. M429 Select kinstype 1 (typically identity kinematics)

3. M430 Select kinstype 2 (user-provided kinematics)

Note
Conventional user M-codes (in the range M100-M199) are in modal group 10. Remapped M-codes (in
the range M200 to M999) can specify a modalgroup. See the remap documentation for additional
information.

9.4.4.3 INI file limit settings

LinuxCNC trajectory planning uses limits for position (min,max), velocity, and acceleration for each
applicable coordinate letter specified in the configuration INI file. Example for letter L (in the set
XYZABCUVW):
[AXIS_L]
MIN_LIMIT =
MAX_LIMIT =
MAX_VELOCITY =
MIN_ACCELERATION =

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 497 / 1322

The INI file limits specified apply to the type 0 default kinematics type that is activated at startup.
These limits may not be applicable when switching to alternative kinematics. However, since an
interpreter-motion synchronization is required when switching kinematics, INI-HAL pins can be used
to setup limits for a pending kinematics type.

Note
INI-HAL pins are typically not recognized during a G-code program unless a synchronization (queue-
buster) command is issued. See the milltask manpage for more information ($ man milltask).

The relevant INI-HAL pins for a joint number (N) are:
ini.N.min_limit
ini.N.max_limit
ini.N.max_acceleration
ini.N.max_velocity

The relevant INI-HAL pins for an axis coordinate (L) are:
ini.L.min_limit
ini.L.max_limit
ini.L.max_velocity
ini.L.max_acceleration

Note
In general, there are no fixed mappings between joint numbers and axis coordinate letters. There
may be specific mappings for some kinematics modules especially those that implement identity
kinematics (trivkins). See the kins man page for more information ($ man kins).

A user-provided M-code can alter any or all of the axis coordinate limits prior to changing the motion.switchkins-
type pin and synchronizing the interpreter and motionparts of LinuxCNC. As an example, a bash script
invoking halcmd can be hardcoded to set any number of HAL pins:
#!/bin/bash
halcmd -f <<EOF
setp ini.x.min_limit -100
setp ini.x.max_limit 100
... repeat for other limit parameters
EOF

Scripts like this can be invoked as a user M-code and used prior to the kins switching M-code that
updates the motion.switchkins-type HAL pin and forces an interp-motion sync. Typically, separate
scripts would be used for each kinstype (0,1,2).
When identity kinematics are provided as a means to control individual joints, it may be convenient
to set or restore limits as specified in the system INI file. For example, a robot starts with a complex
(non-identity) kinematics (type0) after homing. The system is configured so that it can be switched to
identity kinematics (type1) in order to manipulate individual joints using the conventional letters from
the set XYZABCUVW. The INI file settings ([AXIS_L]) are not applicable when operating with identity
(type1) kinematics. To address this use case, the user M-code scripts can be designed as follows:
M129 (Switch to identity type1)

1. read and parse INI file

2. HAL: setp the INI-HAL limit pins for each axis letter ([AXIS_L]) according to the identity-referenced
joint number INI file setting ([JOINT_N])

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 498 / 1322

3. HAL: setp motion.switchkins-type 1

4. MDI: execute a syncing G-code (M66E0L0)

M128 (restore robot default kinematics type 0)

1. read and parse INI file

2. HAL: setp the INI-HAL limit pins for each axis letter ([AXIS_L]) according to the appropriate INI
file setting ([AXIS_L])

3. HAL: setp motion.switchkins-type 0

4. MDI: execute a syncing G-code (M66E0L0)

Note
The vismach simulation configurations for a puma robot demonstrate M-code scripts
(M128,M129,M130) for this example use case.

9.4.4.4 Coordinate system offset considerations

Like INI file limit settings, coordinate system offsets (G92, G10L2, G10L20, G43, etc) are generally
applicable only for the type 0 default startup kinematics type. When switching kinematics types, it may
be important to either reset all offsets prior to switching or update offsets based on system-specific
requirements.

9.4.4.5 External offset considerations

External offsets (set to an axis (L) via axis.L.eoffset-request) are preserved during kinematics switches.
When an offset is active on an axis before the switch (visible in axis.L.eoffset), the trajectory planner
maintains that same offset after the switch, similar to how it maintains the commanded position from
a G-code. This ensures consistent machine behavior regardless of the active kinematics.
If maintaining the offset will be an issue due to axis limit changes or other concerns, be sure to clear
and possibly disable the eoffset before making a kinematics switch.

9.4.5 Simulation configs

Simulation configs (requiring no hardware) are provided with illustrative vismach displays in subdi-
rectories of configs/sim/axis/vismach/ .

1. 5axis/table-rotary-tilting/xyzac-trt.ini (xyzac-trt-kins)

2. 5axis/table-rotary-tilting/xyzbc-trt.ini (xyzac-trt-kins)

3. 5axis/bridgemill/5axis.ini (5axiskins)

4. scara/scara.ini (scarakins)

5. puma/puma560.ini (genserkins)

6. puma/puma.ini (pumakins)

7. hexapod-sim/hexapod.ini (genhexkins)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 499 / 1322

9.4.6 User kinematics provisions

Custom kinematics can be coded and tested on Run-In-Place (RIP) builds. A template file src/em-
c/kinematics/userkfuncs.c is provided in the distribution. This file can be copied/renamed to a user
directory and edited to supply custom kinematics with kinstype==2.
The user custom kinematics file can be compiled from out-of-tree source locations for rt-preempt
implementations or by replacing the in-tree template file (src/emc/kinematics/userkfuncs.c) for rtai
systems.
Preempt-rt make example:
$ userkfuncs=/home/myname/kins/mykins.c make && sudo make setuid

9.4.7 Warnings

Unexpected behavior can result if a G-code program is inadvertently started with an incompatible
kinematics type. Unwanted behavior can be circumvented in G-code programs by:

1. Connecting appropriate kinstype.is.N HAL pins to digital input pins (like motion.digital-in-0m).

2. Reading the digital input pin (M66 E0 Pm) at the start of the G-code program

3. Aborting (M2) the G-code program with a message (DEBUG, problem_message) if the kinstype
is not suitable.

When using jogging facilities or MDI commands interactively, operator caution is required. Guis
should include indicators to display the current kinematics type.

Note
Switching kinematics can cause substantial operational changes requiring careful design, testing,
and training for deployment. The management of coordinate offsets, tool compensation, and INI file
limits may require complicated and non-standard operating protocols.

9.4.8 Code Notes

Kinematic modules providing switchkins functionality are linked to the switchkins.o object (switchkins.c)
that provides the module main program (rtapi_app_main()) and related functions. This main pro-
gram reads (optional) module command-line parameters (coordinates, sparm) and passes them to the
module-provided function switchkinsSetup().
The switchkinsSetup() function identifies kinstype-specific setup routines and the functions for for-
ward an inverse calculation for each kinstype (0,1,2) and sets a number of configuration settings.
After calling switchkinsSetup(), rtapi_app_main() checks the supplied parameters, creates a HAL com-
ponent, and then invokes the setup routine identified for each kinstype (0,1,2).
Each kinstype (0,1,2) setup routine can (optionally) create HAL pins and set them to default values.
When all setup routines finish, rtapi_app_main() issues hal_ready() for the component to complete
creation of the module.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 500 / 1322

9.5 PID Tuning

9.5.1 PID Controller

A proportional-integral-derivative controller (PID controller) is a common feedback loop component
in industrial control systems. 6

The Controller compares a measured value from a process (typically an industrial process) with a
reference set point value. The difference (or error signal) is then used to calculate a new value for a
manipulable input to the process that brings the process measured value back to its desired set point.
Unlike simpler control algorithms, the PID controller can adjust process outputs based on the history
and rate of change of the error signal, which gives more accurate and stable control. (It can be
shown mathematically that a PID loop will produce accurate, stable control in cases where a simple
proportional control would either have a steady-state error or would cause the process to oscillate).

9.5.1.1 Control loop basics

Intuitively, the PID loop tries to automate what an intelligent operator with a gauge and a control
knob would do. The operator would read a gauge showing the output measurement of a process, and
use the knob to adjust the input of the process (the action) until the process’s output measurement
stabilizes at the desired value on the gauge.
In older control literature this adjustment process is called a reset action. The position of the needle
on the gauge is a measurement, process value or process variable. The desired value on the gauge is
called a set point (also called set value). The difference between the gauge’s needle and the set point
is the error.
A control loop consists of three parts:

1. Measurement by a sensor connected to the process (e.g. encoder),

2. Decision in a controller element,

3. Action through an output device such as an motor.

As the controller reads a sensor, it subtracts this measurement from the set point to determine the
error. It then uses the error to calculate a correction to the process’s input variable (the action) so
that this correction will remove the error from the process’s output measurement.
In a PID loop, correction is calculated from the error in three ways: cancel out the current error
directly (Proportional), the amount of time the error has continued uncorrected (Integral), and antic-
ipate the future error from the rate of change of the error over time (Derivative).
A PID controller can be used to control any measurable variable which can be affected by manipulating
some other process variable. For example, it can be used to control temperature, pressure, flow rate,
chemical composition, speed, or other variables. Automobile cruise control is an example of a process
outside of industry which utilizes crude PID control.
Some control systems arrange PID controllers in cascades or networks. That is, a master control
produces signals used by slave controllers. One common situation is motor controls: one often wants
the motor to have a controlled speed, with the slave controller (often built into a variable frequency
drive) directly managing the speed based on a proportional input. This slave input is fed by themaster
controller’s output, which is controlling based upon a related variable.

6This Subsection is taken from an much more extensive article found at https://en.wikipedia.org/wiki/PID_controller

https://en.wikipedia.org/wiki/PID_controller

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 501 / 1322

9.5.1.2 Theory

PID is named after its three correcting calculations, which all add to and adjust the controlled quantity.
These additions are actually subtractions of error, because the proportions are usually negative:
Proportional To handle the present, the error is multiplied by a (negative) constant P (for propor-
tional), and added to (subtracting error from) the controlled quantity. P is only valid in the band over
which a controller’s output is proportional to the error of the system. Note that when the error is
zero, a proportional controller’s output is zero.
Integral To learn from the past, the error is integrated (added up) over a period of time, and then
multiplied by a (negative) constant I (making an average), and added to (subtracting error from) the
controlled quantity. I averages the measured error to find the process output’s average error from the
set point. A simple proportional system either oscillates, moving back and forth around the set point
because there’s nothing to remove the error when it overshoots, or oscillates and/or stabilizes at a
too low or too high value. By adding a negative proportion of (i.e. subtracting part of) the average
error from the process input, the average difference between the process output and the set point is
always being reduced. Therefore, eventually, a well-tuned PID loop’s process output will settle down
at the set point.
Derivative To handle the future, the first derivative (the slope of the error) over time is calculated,
and multiplied by another (negative) constant D, and also added to (subtracting error from) the con-
trolled quantity. The derivative term controls the response to a change in the system. The larger the
derivative term, the more rapidly the controller responds to changes in the process’s output.
More technically, a PID loop can be characterized as a filter applied to a complex frequency-domain
system. This is useful in order to calculate whether it will actually reach a stable value. If the values
are chosen incorrectly, the controlled process input can oscillate, and the process output may never
stay at the set point.

9.5.1.3 Loop Tuning

Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral
gain/reset, derivative gain/rate) to the optimum values for the desired control response. The optimum
behavior on a process change or set point change varies depending on the application. Some processes
must not allow an overshoot of the process variable from the set point. Other processes must minimize
the energy expended in reaching a new set point. Generally stability of response is required and the
process must not oscillate for any combination of process conditions and set points.
Tuning of loops is made more complicated by the response time of the process; it may take minutes or
hours for a set point change to produce a stable effect. Some processes have a degree of non-linearity
and so parameters that work well at full-load conditions don’t work when the process is starting up
from no-load. This section describes some traditional manual methods for loop tuning.
There are several methods for tuning a PID loop. The choice of method will depend largely on whether
or not the loop can be taken offline for tuning, and the response speed of the system. If the system
can be taken offline, the best tuning method often involves subjecting the system to a step change in
input, measuring the output as a function of time, and using this response to determine the control
parameters.
Simple method If the system must remain on line, one tuning method is to first set the I and D values
to zero. Increase the P until the output of the loop oscillates. Then increase I until oscillation stops.
Finally, increase D until the loop is acceptably quick to reach its reference. A fast PID loop tuning
usually overshoots slightly to reach the set point more quickly; however, some systems cannot accept
overshoot.

Parameter Rise Time Overshoot Settling Time Steady State
Error

P Decrease Increase Small Change Decrease

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 502 / 1322

Parameter Rise Time Overshoot Settling Time Steady State
Error

I Decrease Increase Increase Eliminate
D Small Change Decrease Decrease Small Change

Effects of increasing parameters
Ziegler-Nicholsmethod Another tuningmethod is formally known as the Ziegler-Nicholsmethod,
introduced by John G. Ziegler and Nathaniel B. Nichols in 1942 7. It starts in the same way as the
method described before: first set the I and D gains to zero and then increase the P gain and expose
the loop to external interference for example knocking the motor axis to cause it to move out of equi-
librium in order to determine critical gain and period of oscillation until the output of the loop starts
to oscillate. Write down the critical gain (Kc) and the oscillation period of the output (Pc). Then adjust
the P, I and D controls as the table shows:

Control type P I D
P .5Kc
PI .45Kc Pc/1.2

PID .6Kc Pc/2 Pc/8

Final Steps After tuning the axis check the following error with Halscope to make sure it is within
your machine requirements. More information on Halscope is in the HAL User manual.

9.5.1.4 Automatic PID tuning

Since LinuxCNC version 2.9, the pid component support automatic tuning using the Relay method 8.
This is a replacement for the now removed and obsolete at_pid component.
The pid component uses several constants to calculate the output value based on current and wanted
state, the most important among them being Pgain’, Igain, Dgain, bias, FF0, FF1, FF2 and FF3. All
of these need to have a sensible value for the controller to behave properly.
The current implementation of automatic tuning implement two different algorithms, selected using
the tune-type pin. When tune-type is zero, it affects Pgain, Igain and Dgain while setting FF0, FF1
and FF2 to zero. If tune-type is 1, it affects Pgain, Igain and FF1 while setting Dgain, FF0 and FF2 to
zero. Note type 1 require scaling be set so output is in user units per second.
When autotuning a motor with tune-type 0, the algorithm will produce a square wave pattern centered
around the bias value on the output pin of the PID controller, moving from the positive extreme to the
negative extreme of the output range. This can be seen using the HAL Scope provided by LinuxCNC.
For a motor controller taking +-10 V as its control signal, this might accelerate the motor full speed in
one direction for a short period before telling it to go full speed in the opposite direction. Make sure
to have a lot of room on either side of the starting position, and start with a low tune-effort value to
limit the speed used. The tune-effort value define the extreme output value used, so if tune-effort
is 1, the output value during tuning will move from 1 to -1. In other words, the extremes of the wave
pattern is controlled by the tune-effort pin. Using too high tune-effortmight overload the motor driver.
The number of cycles in the tune pattern is controlled by the tune-cycles pin. Of course, trying to
change the direction of a physical object instantly (as in going directly from a positive voltage to
the equivalent negative voltage in the motor controller case) do not change velocity instantly, and it
take some time for the object to slow down and move in the opposite direction. This result in a more
smooth wave form on the position pin, as the axis in question were vibrating back and forth. When the
axis reached the target speed in the opposing direction, the auto tuner change direction again. After

7Ziegler, J. G. and Nichols, N. B. (1942), Optimum Settings for Automatic Controllers, Transactions of the ASME, DOI
10.1115/1.2899060 and The Internet Archive.

8Åström, Karl Johan and Hägglund, Tore (1984), Automation paper Automatic Tuning of Simple Regulators with Specifica-
tions on Phase and Amplitude Margins, DOI 10.1016/0005-1098(84)90014-1

https://doi.org/10.1115/1.2899060
https://doi.org/10.1115/1.2899060
https://web.archive.org/web/20170918055307/http://staff.guilan.ac.ir/staff/users/chaibakhsh/fckeditor_repo/file/documents/Optimum%20Settings%20for%20Automatic%20Controllers%20(Ziegler%20and%20Nichols,%201942).pdf
https://doi.org/10.1016/0005-1098(84)90014-1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 503 / 1322

several of these changes, the average time delay between the ”peaks” and ”valleys” of this movement
graph is used to calculate proposed values for Pgain, Igain and Dgain, and insert them into the HAL
model to use by the pid controller. The auto tuned settings are not perfect, but might provide a good
starting point for further parameter tuning.
FIXME: The author of these instructions have not tested automatic tuning with tune-type set to 1, so
this approach remain to be documented.
Armed with this knowledge, it is time to look at how to do the tuning. Lets say the HAL configuration in
question load the PID component for X, Y and Z like this, using named pin names instead of count=3:

loadrt pid names=pid.x,pid.y,pid.z

If the component had used count=3 instead, all use of pid.x, pid,y and pid.z need to be changed to
pid.1, pid.2 and pid.3 respectively. To start tuning the X axis, move the axis to the middle of its range,
to make sure it do not hit anything when it start moving back and forth. You also want to extend
the axis ferror limit (following error) to make LinuxCNC accept the higher position deviation during
tuning. The sensible ferror limit depends on the machine and setup, but 1 inch or 20 mm might be
useful starting points. Next, set the initial tune-effort to a low number in the output range, for example
1/100 of the maximum output, and slowly increase it to get more accurate tuning values. Assign 1
to the tune-mode value. Note, this will disable the pid controlling part and feed the bias value to the
output pin, which can cause a lot of drift. It might be a good idea to tune the motor driver to ensure
zero input voltage do not cause any motor rotation, or adjust the bias value for the same effect. Finally,
after setting tune-mode, set tune-start to 1 to activate the auto tuning. If all go well, your axis will
vibrate and move back and forth for a few seconds and when it is done, new values for Pgain, Igain and
Dgain will be active. To test them, change tune-mode back to 0. Note that setting tune-mode back to
zero might cause the axis to suddenly jerk as it bring the axis back to its commanded position, which
it might have drifted away from during tuning. To summarize, these are the halcmd instructions you
need to issue to do automatic tuning:

setp pid.x.tune-effort 0.1
setp pid.x.tune-mode 1
setp pid.x.tune-start 1
wait for the tuning to complete
setp pid.x.tune-mode 0

A script to help doing the automatic tuning is provided in the LinuxCNC code repository as scripts/run-
auto-pid-tuner. This will ensure the machine is powered on and ready to run, home all axes if it is not
already done, check that the extra tuning pins are available, move the axis to its mid point, run the
auto tuning and re-enable the pid controller when it is done. It can be run several times.

9.6 Remap Extending G-code

9.6.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes

9.6.1.1 A Definition: Remapping Codes

By remapping codes we mean one of the following:

1. Define the semantics of new - that is, currently unallocated - M- or G-codes

2. Redefine the semantics of a - currently limited - set of existing codes.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 504 / 1322

9.6.1.2 Why would you want to extend the RS274NGC Interpreter?

The set of codes (M,G,T,S,F) currently understood by the RS274NGC interpreter is fixed and cannot
be extended by configuration options.
In particular, some of these codes implement a fixed sequence of steps to be executed. While some of
these, like M6, can be moderately configured by activating or skipping some of these steps through
INI file options, overall the behavior is fairly rigid. So - if your are happy with this situation, then this
manual section is not for you.
In many cases, this means that supporting a non out of the box configuration or machine is either
cumbersome or impossible, or requires resorting to changes at the C/C+\+ language level. The latter
is unpopular for good reasons - changing internals requires in-depth understanding of interpreter
internals, and moreover brings its own set of support issues. While it is conceivable that certain
patches might make their way into the main LinuxCNC distribution, the result of this approach is a
hodge-podge of special-case solutions.
A good example for this deficiency is tool change support in LinuxCNC. While random tool changers
are supported well, it is next to impossible to reasonably define a configuration for a manual-tool
change machine with, for example, an automatic tool length offset switch being visited after a tool
change, and offsets set accordingly. Also, while a patch for a very specific rack tool changer exists, it
has not found its way back into the main code base.
However, many of these things may be fixed by using an O-word procedure instead of built-in code.
Whenever the insufficient built-in code is to be executed, call the O-word procedure instead. While
possible, this approach is cumbersome - it requires source-editing of NGC programs, replacing all
calls to the deficient code by an O-word procedure call.
In its simplest form, a remapped code isn’t much more than a spontaneous call to an O-word proce-
dure. This happens behind the scenes - the procedure is visible at the configuration level, but not at
the NGC program level.
Generally, the behavior of a remapped code may be defined in the following ways:

• You define a O-word subroutine which implements the desired behavior

• Alternatively, you may employ a Python function which extends the interpreter’s behavior.

How to glue things together M- and G-codes, and O-words subroutine calls have some fairly differ-
ent syntax.
O-word procedures, for example, take positional parameters with a specific syntax like so:
o<test> call [1.234] [4.65]

whereas M- or G-codes typically take required or optionalword parameters. For instance, G76 (thread-
ing) requires the P,Z,I,J and K words, and optionally takes the R,Q,H, E and L words.
So it isn’t simply enough to say whenever you encounter code X, please call procedure Y - at least
some checking and conversion of parameters needs to happen. This calls for some glue code between
the new code, and its corresponding NGC procedure to execute before passing control to the NGC
procedure.
This glue code is impossible to write as an O-word procedure itself, since the RS274NGC language
lacks the introspective capabilities and access into interpreter internal data structures to achieve
the required effect. Doing the glue code in - again - C/C+\+ would be an inflexible and therefore
unsatisfactory solution.
How Embedded Python fits in To make a simple situation easy and a complex situation solvable,
the glue issue is addressed as follows:

• For simple situations, a built-in glue procedure (argspec) covers most common parameter passing
requirements.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 505 / 1322

• For remapping T,M6,M61,S,F there is some standard Python glue which should cover most situa-
tions, see Standard Glue.

• For more complex situations, one can write your own Python glue to implement new behavior.

Embedded Python functions in the Interpreter started out as glue code, but turned out very useful
well beyond that. Users familiar with Python will likely find it easier to write remapped codes, glue,
O-word procedures, etc. in pure Python, without resorting to the somewhat cumbersome RS274NGC
language at all.
A Word on Embedded Python Many people are familiar with extending the Python interpreter by
C/C++ modules, and this is heavily used in LinuxCNC to access Task, HAL and Interpreter internals
from Python scripts. Extending Python basically means: Your Python script executes as it is in the
driver seat, and may access non-Python code by importing and using extension modules written in
C/C+\+. Examples for this are the LinuxCNC hal, gcode and emc modules.
Embedded Python is a bit different and less commonly known: The main program is written in C/C++
and may use Python like a subroutine. This is powerful extension mechanism and the basis for the
scripting extensions found in many successful software packages. Embedded Python code may access
C/C+\+ variables and functions through a similar extension module method.

9.6.2 Getting started

Defining a code involves the following steps:

• Pick a code - either use an unallocated code, or redefine an existing code.

• Decide how parameters are handled.

• Decide if and how results are handled.

• Decide about the execution sequence.

9.6.2.1 Builtin Remaps

Please note that currently only some existing codes can be redefined, while there are many free codes
that may be available for remapping. When developing redefined existing code, it is a good idea to
start with an unassigned G- or M- code, so that you can use both an existing behavior as well as a new
one. When you’re done, redefine the existing code to use your remapping configuration.

• The current set of unused M-codes, available for user definition, can be found in the unallocated
M-codes section.

• For G-codes, see the unallocated G-codes list.

• Existing codes that can be reassigned are listed in the remappable codes section.

There are currently two complete Python-only remaps that are available in stdglue.py:

• ignore_m6

• index_lathe_tool_with_wear

These are meant for use with lathe. Lathes don’t use M6 to index the tools, they use the T command.
This remap also adds wear offsets to the tool offset, e.g. T201 would index to tool 2 (with tool 2’s tool
offset) and adds wear offset 1. In the tool table, tools numbers above 10000 are wear offsets, e.g. in
the tool table, tool 10001 would be wear offset 1.
Here is what you need in the INI to use them:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 506 / 1322

[RS274NGC]
REMAP=T python=index_lathe_tool_with_wear
REMAP=M6 python=ignore_m6

[PYTHON]
where to find the Python code:

code specific for this configuration
PATH_PREPEND=./

generic support code - make sure this actually points to Python-stdglue
PATH_APPEND=../../nc_files/remap_lib/python-stdglue/

import the following Python module
TOPLEVEL=toplevel.py

the higher the more verbose tracing of the Python plugin
LOG_LEVEL = 0

You must also add the required Python file in your configuration folder.
Upgrade an existing configuration

9.6.2.2 Picking a code

Note that currently only a few existing codes may be redefined, whereas there are many free codes
which might be made available by remapping. When developing a redefined existing code, it might
be a good idea to start with an unallocated G- or M-code, so both the existing and new behavior can
be exercised. When done, redefine the existing code to use your remapping setup.

• The current set of unused M-codes open to user definition can be found here.
• Unallocated G-codes are listed here.
• Existing codes which may be remapped are listed here.

9.6.2.3 Parameter handling

Let’s assume the new code will be defined by an NGC procedure, and needs some parameters, some
of which might be required, others might be optional. We have the following options to feed values to
the procedure:

1. Extracting words from the current block and pass them to the procedure as parameters (like
X22.34 or P47),

2. referring to INI file variables,
3. referring to global variables (like #2200 = 47.11 or #<_global_param> = 315.2).

The first method is preferred for parameters of dynamic nature, like positions. You need to define
which words on the current block have any meaning for your new code, and specify how that is passed
to the NGC procedure. Any easy way is to use the argspec statement. A custom prolog might provide
better error messages.
Using to INI file variables is most useful for referring to setup information for your machine, for
instance a fixed position like a tool-length sensor position. The advantage of this method is that the
parameters are fixed for your configuration, regardless which NGC file you’re currently executing.
Referring to global variables is always possible, but they are easily overlooked.
Note there’s a limited supply of words which may be used as parameters, so one might need to fall
back to the second and third methods if many parameters are needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 507 / 1322

9.6.2.4 Handling results

Your new code might succeed or fail, for instance if passed an invalid parameter combination. Or
you might choose to just execute the procedure and disregard results, in which case there isn’t much
work to do.
Epilog handlers help in processing results of remap procedures - see the reference section.

9.6.2.5 Execution sequencing

Executable G-code words are classified into modal groups, which also defines their relative execution
behavior.
If a G-code block contains several executable words on a line, these words are executed in a predefined
order of execution, not in the order they appear in block.
When you define a new executable code, the interpreter does not yet know where your code fits into
this scheme. For this reason, you need to choose an appropriate modal group for your code to execute
in.

9.6.2.6 An minimal example remapped code

To give you an idea how the pieces fit together, let’s explore a fairly minimal but complete remapped
code definition. We choose an unallocated M-code and add the following option to the INI file:
[RS274NGC]
REMAP=M400 modalgroup=10 argspec=Pq ngc=myprocedure

In a nutshell, this means:

• The M400 code takes a required parameter P and an optional parameter Q. Other words in the current
block are ignored with respect to the M400 code. If the P word is not present, fail execution with an
error.

• When an M400 code is encountered, execute myprocedure.ngc along the other modal group 10 M-
codes as per order of execution.

• The value of P, and Q are available in the procedure as local named parameters. The may be referred
to as #<P> and #<Q>. The procedure may test whether the Q word was present with the EXISTS built
in function.

The file myprocedure.ngc is expected to exists in the [DISPLAY]NC_FILES or [RS274NGC]SUBROUTINE_PATH
directory.
A detailed discussion of REMAP parameters is found in the reference section below.

9.6.3 Configuring Remapping

9.6.3.1 The REMAP statement

To remap a code, define it using the REMAP option in RS274NG section of your INI file. Use one REMAP
line per remapped code.
The syntax of the REMAP is:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 508 / 1322

REMAP=<code> <options>
where <code> may be one of T,M6,M61,S,F (existing codes) or any of the unallocated M-codes or
G-codes.

It is an error to omit the <code> parameter.
The options of the REMAP statement are separated by whitespace. The options are keyword-value
pairs and currently are:

modalgroup=<modal group>

G-codes
the only currently supported modal group is 1, which is also the default value if no group is
given. Group 1 means execute alongside other G-codes.

M-codes
Currently supported modal groups are: 5,6,7,8,9,10. If no modalgroup is give, it defaults to
10 (execute after all other words in the block).

T,S,F
for these the modal group is fixed and any modalgroup= option is ignored.

argspec=<argspec>
See description of the argspec parameter options. Optional.

ngc=<ngc_basename>
Basename of an O-word subroutine file name. Do not specify an .ngc extension. Searched
for in the directories specified in the directory specified in [DISPLAY]PROGRAM_PREFIX, then in
[RS274NGC]SUBROUTINE_PATH. Mutually exclusive with python=. It is an error to omit both ngc=
and python=.

python=<Python function name>
Instead of calling an ngc O-word procedure call a Python function. The function is expected to
be defined in the module_basename.oword module. Mutually exclusive with ngc=.

prolog=<Python function name>
Before executing an ngc procedure, call this Python function. The function is expected to be
defined in the module_basename.remap module. Optional.

epilog=<Python function name>
After executing an ngc procedure, call this Python function. The function is expected to be
defined in the module_basename.remap module. Optional.

The python, prolog and epilog options require the Python Interpreter plugin to be configured, and
appropriate Python functions to be defined there so they can be referred to with these options.
The syntax for defining a new code, and redefining an existing code is identical.

9.6.3.2 Useful REMAP option combinations

Note that while many combinations of argspec options are possible, not all of them make sense. The
following combinations are useful idioms:

argspec=<words> ngc=<procname> modalgroup=_<group>
The recommended way to call an NGC procedure with a standard argspec parameter conversion.
Used if argspec is good enough. Note, it is not good enough for remapping the Tx and M6/M61
tool change codes.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 509 / 1322

prolog=<pythonprolog> ngc=<procname> epilog=<pythonepilog> modalgroup=<group>
Call a Python prolog function to take any preliminary steps, then call the NGC procedure. When
done, call the Python epilog function to do any cleanup or result extraction work which cannot be
handled in G-code. The most flexible way of remapping a code to an NGC procedure, since almost
all of the Interpreter internal variables, and some internal functions may be accessed from the
prolog and epilog handlers. Also, a longer rope to hang yourselves.

python=<pythonfunction> modalgroup=<group>
Directly call to a Python function without any argument conversion. The most powerful way of
remapping a code and going straight to Python. Use this if you do not need an NGC procedure,
or NGC is just getting in your way.

argspec=<words> python=<pythonfunction> modalgroup=<group>
Convert the argspec words and pass them to a Python function as keyword argument dictionary.
Use it when you’re too lazy to investigate words passed on the block yourself.

Note that if all you want to achieve is to call some Python code from G-code, there is the somewhat
easier way of calling Python functions like O-word procedures.

9.6.3.3 The argspec parameter

The argument specification (keyword argspec) describes required and optional words to be passed
to an ngc procedure, as well as optional preconditions for that code to execute.
An argspec consists of 0 or more characters of the class [@A-KMNP-Za-kmnp-z^>]. It can by empty
(like argspec=).
An empty argspec, or no argspec argument at all implies the remapped code does not receive any
parameters from the block. It will ignore any extra parameters present.
Note that RS274NGC rules still apply - for instance you may use axis words (e.g., X, Y, Z) only in the
context of a G-code.
Axis words may also only be used if the axis is enabled. If only XYZ are enabled, ABCUVW will not be
available to be used in argspec.
Words F, S and T (short FST) will have the normal functions but will be available as variables in the
remapped function. F will set feedrate, S will set spindle RPM, T will trigger the tool prepare function.
Words FST should not be used if this behavior is not desired.
Words DEIJKPQR have no predefined function and are recommended for use as argspec parameters.

ABCDEFHIJKPQRSTUVWXYZ
Defines a required word parameter: an uppercase letter specifies that the corresponding word
must be present in the current block. The word ̀s value will be passed as a local named parameter
with a corresponding name. If the @ character is present in the argspec, it will be passed as
positional parameter, see below.

abcdefhijkpqrstuvwxyz
Defines an optional word parameter: a lowercase letter specifies that the corresponding word
may be present in the current block. If the word is present, the word’s value will be passed as a
local named parameter. If the @ character is present in the argspec, it will be passed as positional
parameter, see below.

@
The @ (at-sign) tells argspec to pass words as positional parameters, in the order defined following
the @ option. Note that when using positional parameter passing, a procedure cannot tell whether
a word was present or not, see example below.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 510 / 1322

Tip
this helps with packaging existing NGC procedures as remapped codes. Existing procedures do ex-
pect positional parameters. With the @ option, you can avoid rewriting them to refer to local named
parameters.

^
The ^ (caret) character specifies that the current spindle speed must be greater than zero (spindle
running), otherwise the code fails with an appropriate error message.

>
The > (greater-than) character specifies that the current feed must be greater than zero, other-
wise the code fails with an appropriate error message.

n
The n (greater-than) character specifies to pass the current line number in the ̀n ̀local named
parameter.

By default, parameters are passed as local named parameter to an NGC procedure. These local pa-
rameters appear as already set when the procedure starts executing, which is different from existing
semantics (local variables start out with value 0.0 and need to be explicitly assigned a value).
Optional word parameters may be tested for presence by the EXISTS(#<word>) idiom.
Example for named parameter passing to NGC procedures Assume the code is defined as
REMAP=M400 modalgroup=10 argspec=Pq ngc=m400

and m400.ngc looks as follows:
o<m400> sub
(P is required since it is uppercase in the argspec)
(debug, P word=#<P>)
(the q argspec is optional since its lowercase in the argspec. Use as follows:)
o100 if [EXISTS[#<q>]]

(debug, Q word set: #<q>)
o100 endif
o<m400> endsub
M2

• Executing M400 will fail with the message user-defined M400: missing: P.

• Executing M400 P123 will display P word=123.000000.

• Executing M400 P123 Q456 will display P word=123.000000 and Q word set: 456.000000.

Example for positional parameter passing to NGC procedures Assume the code is defined as
REMAP=M410 modalgroup=10 argspec=@PQr ngc=m410

and m410.ngc looks as follows:
o<m410> sub
(debug, [1]=#1 [2]=#2 [3]=#3)
o<m410> endsub
M2

• Executing M410 P10 will display m410.ngc: [1]=10.000000 [2]=0.000000.

• Executing M410 P10 Q20 will display m410.ngc: [1]=10.000000 [2]=20.000000.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 511 / 1322

Note
you lose the capability to distinguish more than one optional parameter word, and you cannot tell
whether an optional parameter was present but had the value 0, or was not present at all.

Simple example for named parameter passing to a Python function It’s possible to define new
codes without any NGC procedure. Here’s a simple first example, a more complex one can be found
in the next section.
Assume the code is defined as
REMAP=G88.6 modalgroup=1 argspec=XYZp python=g886

This instructs the interpreter to execute the Python function g886 in the module_basename.remap
module, which might look like so:
from interpreter import INTERP_OK
from emccanon import MESSAGE

def g886(self, **words):
for key in words:

MESSAGE(”word ’%s’ = %f” % (key, words[key]))
if words.has_key(’p’):

MESSAGE(”the P word was present”)
MESSAGE(”comment on this line: ’%s’” % (self.blocks[self.remap_level].comment))
return INTERP_OK

Try this with out with: g88.6 x1 y2 z3 g88.6 x1 y2 z3 p33 (a comment here)
You’ll notice the gradual introduction of the embedded Python environment - see here for details. Note
that with Python remapping functions, it make no sense to have Python prolog or epilog functions since
it is executing a Python function in the first place.
Advanced example: Remapped codes in pure Python The interpreter and emccanon modules
expose most of the Interpreter and some Canon internals, so many things which so far required coding
in C/C+\+ can be now be done in Python.
The following example is based on the nc_files/involute.py script - but canned as a G-code with
some parameter extraction and checking. It also demonstrates calling the interpreter recursively (see
self.execute()).
Assuming a definition like so (NB: this does not use argspec):
REMAP=G88.1 modalgroup=1 py=involute

The involute function in python/remap.py listed below does all word extraction from the current
block directly. Note that interpreter errors can be translated to Python exceptions. Remember this is
readahead time - execution time errors cannot be trapped this way.
import sys
import traceback
from math import sin,cos

from interpreter import *
from emccanon import MESSAGE
from util import lineno, call_pydevd
raises InterpreterException if execute() or read() fails
throw_exceptions = 1

def involute(self, **words):
””” remap function with raw access to Interpreter internals ”””

if self.debugmask & 0x20000000: call_pydevd() # USER2 debug flag

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 512 / 1322

if equal(self.feed_rate,0.0):
return ”feedrate > 0 required”

if equal(self.speed[0], 0.0):
return ”spindle speed > 0 required”

plunge = 0.1 # if Z word was given, plunge - with reduced feed

inspect controlling block for relevant words
c = self.blocks[self.remap_level]
x0 = c.x_number if c.x_flag else 0
y0 = c.y_number if c.y_flag else 0
a = c.p_number if c.p_flag else 10
old_z = self.current_z

if self.debugmask & 0x10000000:
print(”x0=%f y0=%f a=%f old_z=%f” % (x0,y0,a,old_z))

try:
#self.execute(”G3456”) # would raise InterpreterException
self.execute(”G21”,lineno())
self.execute(”G64 P0.001”,lineno())
self.execute(”G0 X%f Y%f” % (x0,y0),lineno())

if c.z_flag:
feed = self.feed_rate
self.execute(”F%f G1 Z%f” % (feed * plunge, c.z_number),lineno())
self.execute(”F%f” % (feed),lineno())

for i in range(100):
t = i/10.
x = x0 + a * (cos(t) + t * sin(t))
y = y0 + a * (sin(t) - t * cos(t))
self.execute(”G1 X%f Y%f” % (x,y),lineno())

if c.z_flag: # retract to starting height
self.execute(”G0 Z%f” % (old_z),lineno())

except InterpreterException,e:
msg = ”%d: ’%s’ - %s” % (e.line_number,e.line_text, e.error_message)

return msg

return INTERP_OK

The examples described so far can be found in configs/sim/axis/remap/getting-started with complete
working configurations.

9.6.4 Upgrading an existing configuration for remapping

The minimal prerequisites for using REMAP statements are as follows:

• The Python plug in must be activated by specifying a [PYTHON]TOPLEVEL=<path-to-toplevel-script>
in the INI file.

• The toplevel script needs to import the remap module, which can be initially empty, but the import
needs to be in place.

• The Python interpreter needs to find the remap.py module above, so the path to the directory where
your Python modules live needs to be added with [PYTHON]PATH_APPEND=<path-to-your-local-Python-directory>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 513 / 1322

• Recommended: import the stdglue handlers in the remap module. In this case Python also needs
to find stdglue.py - we just copy it from the distribution so you can make local changes as needed.
Depending on your installation the path to stdglue.py might vary.

Assuming your configuration lives under /home/user/xxx and the INI file is /home/user/xxx/xxx.ini,
execute the following commands.
$ cd /home/user/xxx
$ mkdir python
$ cd python
$ cp /usr/share/linuxcnc/ncfiles/remap_lib/python-stdglue/stdglue.py .
$ echo ’from stdglue import *’ >remap.py
$ echo ’import remap’ >toplevel.py

Now edit ̀ ̀/home/user/ ̀ x̀xx ̀ ̀/ ̀ x̀xx ̀ ̀.ini ̀ ̀ and add the following:
[PYTHON]
TOPLEVEL=/home/user/xxx/python/toplevel.py
PATH_APPEND=/home/user/xxx/python

Now verify that LinuxCNC comes up with no error messages - from a terminal window execute:
$ cd /home/user/xxx
$ linuxcnc xxx.ini

9.6.5 Remapping tool change-related codes: T, M6, M61

9.6.5.1 Overview

If you are unfamiliar with LinuxCNC internals, first read the How tool change currently works section
(dire but necessary).
Note than when remapping an existing code, we completely disable this codes’ built-in functionality
of the interpreter.
So our remapped code will need to do a bit more than just generating some commands to move the
machine as we like - it will also need to replicate those steps from this sequence which are needed to
keep the interpreter and task happy.
However, this does not affect the processing of tool change-related commands in task and iocontrol.
This means when we execute step 6b this will still cause iocontrol to do its thing.
Decisions, decisions:

• Do we want to use an O-word procedure or do it all in Python code?

• Is the iocontrol HAL sequence (tool-prepare/tool-prepared and tool-change/tool-changed pins)
good enough or do we need a different kind of HAL interaction for our tool changer (for example:
more HAL pins involved with a different interaction sequence)?

Depending on the answer, we have four different scenarios:

• When using an O-word procedure, we need prolog and epilog functions.

• If using all Python code and no O-word procedure, a Python function is enough.

• When using the iocontrol pins, our O-word procedure or Python code will contain mostly moves.

• When we need a more complex interaction than offered by iocontrol, we need to completely define
our own interaction, using motion.digital* and motion.analog* pins, and essentially ignore the
iocontrol pins by looping them.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 514 / 1322

Note
If you hate O-word procedures and love Python, you are free to do it all in Python, in which case you
would just have a python=<function> spec in the REMAP statement. But assuming most folks would
be interested in using O-word procedures because they are more familiar with that, we’ll do that as
the first example.

So the overall approach for our first example will be:

1. We’d like to do as much as possible with G-code in an O-word procedure for flexibility. That
includes all HAL interaction which would normally be handled by iocontrol - because we rather
would want to do clever things with moves, probes, HAL pin I/O and so forth.

2. We’ll try to minimize Python code to the extent needed to keep the interpreter happy, and cause
task to actually do anything. That will go into the prolog and epilog Python functions.

9.6.5.2 Understanding the role of iocontrol with remapped tool change codes

iocontrol provides two HAL interaction sequences we might or might not use:

• When the NML message queued by a SELECT_TOOL() canon command is executed, this triggers
the ”raise tool-prepare and wait for tool-prepared to become high” HAL sequence in iocontrol,
besides setting the XXXX pins

• When the NML message queued by the CHANGE_TOOL() canon command is executed, this triggers
the ”raise tool-change and wait for tool-changed to become high” HAL sequence in iocontrol,
besides setting the XXXX pins

What you need to decide is whether the existing iocontrol HAL sequences are sufficient to drive your
changer. Maybe you need a different interaction sequence - for instance more HAL pins, or maybe a
more complex interaction. Depending on the answer, we might continue to use the existing iocontrol
HAL sequences, or define our own ones.
For the sake of documentation, we’ll disable these iocontrol sequences, and roll our own - the result
will look and feel like the existing interaction, but now we have complete control over them because
they are executed in our own O-word procedure.
So what we’ll do is use some motion.digital-* and motion.analog-* pins, and the associated M62
.. M68 commands to do our own HAL interaction in our O-word procedure, and those will effectively
replace the iocontrol tool-prepare/tool-prepared and tool-change/tool-changed sequences. So we’ll
define our pins replacing existing iocontrol pins functionally, and go ahead and make the iocontrol
interactions a loop. We’ll use the following correspondence in our example:
iocontrol pin correspondence in the examples

iocontrol.0 pin motion pin
tool-prepare digital-out-00
tool-prepared digital-in-00
tool-change digital-out-01
tool-changed digital-in-01
tool-prep-number analog-out-00
tool-prep-pocket analog-out-01
tool-number analog-out-02

Let us assume you want to redefine the M6 command, and replace it by an O-word procedure, but
other than that things should continue to work.
So what our O-word procedure would do is to replace the steps outlined here. Looking through these
steps you’ll find that NGC code can be used for most of them, but not all. So the stuff NGC can’t
handle will be done in Python prolog and epilog functions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 515 / 1322

9.6.5.3 Specifying the M6 replacement

To convey the idea, we just replace the built in M6 semantics with our own. Once that works, you may
go ahead and place any actions you see fit into the O-word procedure.
Going through the steps, we find:

1. check for T command already executed - execute in Python prolog

2. check for cutter compensation being active - execute in Python prolog

3. stop the spindle if needed - can be done in NGC

4. quill up - can be done in NGC

5. if TOOL_CHANGE_AT_G30 was set:

a. move the A, B and C indexers if applicable - can be done in NGC
b. generate rapid move to the G30 position - can be done in NGC

6. send a CHANGE_TOOL Canon command to task - execute in Python epilog

7. set the numbered parameters 5400-5413 according to the new tool - execute in Python epilog

8. signal to task to stop calling the interpreter for readahead until tool change complete - execute
in Python epilog

So we need a prolog, and an epilog. Lets assume our INI file incantation of the M6 remap looks as
follows:
REMAP=M6 modalgroup=6 prolog=change_prolog ngc=change epilog=change_epilog

So the prolog covering steps 1 and 2 would look like so - we decide to pass a few variables to the
remap procedure which can be inspected and changed there, or used in a message. Those are:
tool_in_spindle, selected_tool (tool numbers) and their respective tooldata indices current_pocket
and selected_pocket:

Note
The legacy names selected_pocket and current_pocket actually reference a sequential tooldata
index for tool items loaded from a tool table ([EMCIO]TOOL_TABLE) or via a tooldata database ([EM-
CIO]DB_PROGRAM).

def change_prolog(self, **words):
try:

if self.selected_pocket < 0:
return ”M6: no tool prepared”

if self.cutter_comp_side:
return ”Cannot change tools with cutter radius compensation on”

self.params[”tool_in_spindle”] = self.current_tool
self.params[”selected_tool”] = self.selected_tool
self.params[”current_pocket”] = self.current_pocket
self.params[”selected_pocket”] = self.selected_pocket
return INTERP_OK

except Exception as e:
return ”M6/change_prolog: {}”.format(e)

You will find that most prolog functions look very similar:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 516 / 1322

1. First test that all preconditions for executing the code hold, then

2. prepare the environment - inject variables and/or do any preparatory processing steps which
cannot easily be done in NGC code;

3. then hand off to the NGC procedure by returning INTERP_OK.

Our first iteration of the O-word procedure is unexciting - just verify we got parameters right, and
signal success by returning a positive value; steps 3-5 would eventually be covered here (see here for
the variables referring to INI file settings):
O<change> sub
(debug, change: current_tool=#<current_tool>)
(debug, change: selected_pocket=#<selected_pocket>)
;
; insert any G-code which you see fit here, e.g.:
; G0 #<_ini[setup]tc_x> #<_ini[setup]tc_y> #<_ini[setup]tc_z>
;
O<change> endsub [1]
m2

Assuming success of change.ngc, we need to mop up steps 6-8:
def change_epilog(self, **words):

try:
if self.return_value > 0.0:

commit change
self.selected_pocket = int(self.params[”selected_pocket”])
emccanon.CHANGE_TOOL(self.selected_pocket)
cause a sync()
self.tool_change_flag = True
self.set_tool_parameters()
return INTERP_OK

else:
return ”M6 aborted (return code %.1f)” % (self.return_value)

except Exception, e:
return ”M6/change_epilog: %s” % (e)

This replacement M6 is compatible with the built in code, except steps 3-5 need to be filled in with
your NGC code.
Again, most epilogs have a common scheme:

1. First, determine whether things went right in the remap procedure,

2. then do any commit and cleanup actions which can’t be done in NGC code.

9.6.5.4 Configuring iocontrol with a remapped M6

Note that the sequence of operations has changed: we do everything required in the O-word pro-
cedure - including any HAL pin setting/reading to get a changer going, and to acknowledge a tool
change - likely with motion.digital-* and motion-analog-* IO pins. When we finally execute the
CHANGE_TOOL() command, all movements and HAL interactions are already completed.
Normally only now iocontrol would do its thing as outlined here. However, we don’t need the HAL
pin wiggling anymore - all iocontrol is left to do is to accept we’re done with prepare and change.
This means that the corresponding iocontrol pins have no function any more. Therefore, we config-
ure iocontrol to immediately acknowledge a change by configuring like so:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 517 / 1322

loop change signals when remapping M6
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

If you for some reason want to remap Tx (prepare), the corresponding iocontrol pins need to be
looped as well.

9.6.5.5 Writing the change and prepare O-word procedures

The standard prologs and epilogs found in ncfiles/remap_lib/python-stdglue/stdglue.py pass a
few exposed parameters to the remap procedure.
An exposed parameter is a named local variable visible in a remap procedure which corresponds to
interpreter-internal variable, which is relevant for the current remap. Exposed parameters are set up
in the respective prolog, and inspected in the epilog. They can be changed in the remap procedure
and the change will be picked up in the epilog. The exposed parameters for remappable built in codes
are:

• T (prepare_prolog): #<tool> , #<pocket>
• M6 (change_prolog): #<tool_in_spindle>, #<selected_tool>, #<current_pocket>, #<selected_pocket>
• M61 (settool_prolog): #<tool> , #<pocket>
• S (setspeed_prolog): #<speed>
• F (setfeed_prolog): #<feed>

If you have specific needs for extra parameters to be made visible, that can simply be added to the
prolog - practically all of the interpreter internals are visible to Python.

9.6.5.6 Making minimal changes to the built in codes, including M6

Remember that normally remapping a code completely disables all internal processing for that code.
However, in some situations it might be sufficient to add a few codes around the existing M6 built in
implementation, like a tool length probe, but other than that retain the behavior of the built in M6.
Since this might be a common scenario, the built in behavior of remapped codes has been made
available within the remap procedure. The interpreter detects that you are referring to a remapped
code within the procedure which is supposed to redefine its behavior. In this case, the built in behavior
is used - this currently is enabled for the set: M6, M61,T, S, F. Note that otherwise referring to a code
within its own remap procedure would be a error - a remapping recursion.
Slightly twisting a built in would look like so (in the case of M6):
REMAP=M6 modalgroup=6 ngc=mychange

o<mychange> sub
M6 (use built in M6 behavior)
(.. move to tool length switch, probe and set tool length..)
o<mychange> endsub
m2

Caution
When redefining a built-in code, do not specify any leading zeroes in G- or M-codes - for
example, say REMAP=M1 .., not REMAP=M01

See the configs/sim/axis/remap/extend-builtins directory for a complete configuration, which is
the recommended starting point for own work when extending built in codes.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 518 / 1322

9.6.5.7 Specifying the T (prepare) replacement

If you’re confident with the default implementation, you wouldn’t need to do this. But remapping is
also a way to work around deficiencies in the current implementation, for instance to not block until
the ”tool-prepared” pin is set.
What you could do, for instance, is: - In a remapped T, just set the equivalent of the tool-prepare pin,
butnotwait for tool-prepared here. - In the corresponding remapped M6, wait for the tool-prepared
at the very beginning of the O-word procedure.
Again, the iocontrol tool-prepare/tool-prepared pins would be unused and replaced by motion.*
pins, so those would pins must be looped:
loop prepare signals when remapping T
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared

So, here’s the setup for a remapped T:
REMAP=T prolog=prepare_prolog epilog=prepare_epilog ngc=prepare

def prepare_prolog(self,**words):
try:

cblock = self.blocks[self.remap_level]
if not cblock.t_flag:

return ”T requires a tool number”

tool = cblock.t_number
if tool:

(status, pocket) = self.find_tool_pocket(tool)
if status != INTERP_OK:

return ”T%d: pocket not found” % (tool)
else:

pocket = -1 # this is a T0 - tool unload

these variables will be visible in the ngc O-word sub
as #<tool> and #<pocket> local variables, and can be
modified there - the epilog will retrieve the changed
values
self.params[”tool”] = tool
self.params[”pocket”] = pocket

return INTERP_OK
except Exception, e:

return ”T%d/prepare_prolog: %s” % (int(words[’t’]), e)

The minimal ngc prepare procedure again looks like so:
o<prepare> sub
; returning a positive value to commit:
o<prepare> endsub [1]
m2

And the epilog:
def prepare_epilog(self, **words):

try:
if self.return_value > 0:

self.selected_tool = int(self.params[”tool”])
self.selected_pocket = int(self.params[”pocket”])
emccanon.SELECT_TOOL(self.selected_tool)
return INTERP_OK

else:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 519 / 1322

return ”T%d: aborted (return code %.1f)” % (int(self.params[”tool”]),self. ←↩
return_value)

except Exception, e:
return ”T%d/prepare_epilog: %s” % (tool,e)

The functions prepare_prolog and prepare_epilog are part of the standard glue provided by nc_files/remap_lib/python-
stdglue/stdglue.py. This module is intended to cover most standard remapping situations in a common
way.

9.6.5.8 Error handling: dealing with abort

The built in tool change procedure has some precautions for dealing with a program abort, e.g., by
hitting escape in AXIS during a change. Your remapped function has none of this, therefore some
explicit cleanup might be needed if a remapped code is aborted. In particular, a remap procedure
might establish modal settings which are undesirable to have active after an abort. For instance, if
your remap procedure has motion codes (G0,G1,G38..) and the remap is aborted, then the last modal
code will remain active. However, you very likely want to have any modal motion canceled when the
remap is aborted.
The way to do this is by using the [RS274NGC]ON_ABORT_COMMAND feature. This INI option specifies a
O-word procedure call which is executed if task for some reason aborts program execution. on_abort
receives a single parameter indicating the cause for calling the abort procedure, which might be used
for conditional cleanup.
The reasons are defined in nml_intf/emc.hh
EMC_ABORT_TASK_EXEC_ERROR = 1,
EMC_ABORT_AUX_ESTOP = 2,
EMC_ABORT_MOTION_OR_IO_RCS_ERROR = 3,
EMC_ABORT_TASK_STATE_OFF = 4,
EMC_ABORT_TASK_STATE_ESTOP_RESET = 5,
EMC_ABORT_TASK_STATE_ESTOP = 6,
EMC_ABORT_TASK_STATE_NOT_ON = 7,
EMC_ABORT_TASK_ABORT = 8,
EMC_ABORT_INTERPRETER_ERROR = 9, // interpreter failed during readahead
EMC_ABORT_INTERPRETER_ERROR_MDI = 10, // interpreter failed during MDI execution
EMC_ABORT_USER = 100 // user-defined abort codes start here

[RS274NGC]
ON_ABORT_COMMAND=O <on_abort> call

The suggested on_abort procedure would look like so (adapt to your needs):
o<on_abort> sub

G54 (origin offsets are set to the default)
G17 (select XY plane)
G90 (absolute)
G94 (feed mode: units/minute)
M48 (set feed and speed overrides)
G40 (cutter compensation off)
M5 (spindle off)
G80 (cancel modal motion)
M9 (mist and coolant off)

o100 if [#1 eq 5]
(machine on)

o100 elseif [#1 eq 6]
(machine off)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 520 / 1322

o100 elseif [#1 eq 7]
(estopped)

o100 elseif [#1 eq 8]
(msg, abort pressed)

o100 else
(DEBUG, error parameter is [#1])

o100 endif

o<on_abort> endsub
m2

Caution
Never use an M2 in a O-word subroutine, including this one. It will cause hard-to-find errors.
For instance, using an M2 in a subroutine will not end the subroutine properly and will leave the
subroutine NGC file open, not your main program.

Make sure on_abort.ngc is along the interpreter search path (recommended location: SUBROUTINE_PATH
so as not to clutter your NC_FILES directory with internal procedures).
Statements in that procedure typically would assure that post-abort any state has been cleaned up,
like HAL pins properly reset. For an example, see configs/sim/axis/remap/rack-toolchange.
Note that terminating a remapped code by returning INTERP_ERROR from the epilog (see previous
section) will also cause the on_abort procedure to be called.

9.6.5.9 Error handling: failing a remapped code NGC procedure

If you determine in your handler procedure that some error condition occurred, do not use M2 to end
your handler - see above:
If displaying an operator error message and stopping the current program is good enough, use the
(abort, _̀_<message>__) ̀ feature to terminate the handler with an error message. Note that you
can substitute numbered, named, INI and HAL parameters in the text like in this example (see also
tests/interp/abort-hot-comment/test.ngc):
o100 if [..] (some error condition)

(abort, Bad Things! p42=#42 q=#<q> INI=#<_ini[a]x> pin=#<_hal[component.pin])
o100 endif

Note
INI and HAL variable expansion is optional and can be disabled in the INI file

If more fine grained recovery action is needed, use the idiom laid out in the previous example:

• Define an epilog function, even if it is just to signal an error condition,

• pass a negative value from the handler to signal the error,

• inspect the return value in the epilog function,

• take any recovery action needed,

• return the error message string from the handler, which will set the interpreter error message and
abort the program (pretty much like abort, message=).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 521 / 1322

This error message will be displayed in the UI, and returning INTERP_ERROR will cause this error
handled like any other runtime error.
Note that both (abort,<msg>) and returning INTERP_ERROR from an epilog will cause any ON_ABORT
handler to be called as well if defined (see previous section).

9.6.6 Remapping other existing codes:

9.6.6.1 Automatic gear selection be remapping S (set spindle speed)

A potential use for a remapped S code would be automatic gear selection depending on speed. In the
remap procedure one would test for the desired speed attainable given the current gear setting, and
change gears appropriately if not.

9.6.6.2 Adjusting the behavior of M0, M1

A use case for remapping M0/M1 would be to customize the behavior of the existing code. For in-
stance, it could be desirable to turn off the spindle, mist and flood during an M0 or M1 program
pause, and turn these settings back on when the program is resumed.
For a complete example doing just that, see configs/sim/axis/remap/extend-builtins/, which
adapts M1 as laid out above.

9.6.6.3 Adjusting the behavior of M7, M8, M9

An example for remapping the built in behavior of M7/M8/M9 is the option to pass optional arguments
like a P word for more complex coolant control (eg through tool vs external coolant flow).
See configs/sim/axis/remap/extend-builtins/, for an example of such an extension of the built
in behavior for M7,M8 and M9.

9.6.7 Creating new G-code cycles

A G-code cycle as used here is meant to behave as follows:

• On first invocation, the associated words are collected and the G-code cycle is executed.

• If subsequent lines just continue parameter words applicable to this code, but no new G-code, the
previous G-code is re-executed with the parameters changed accordingly.

An example: Assume you have G84.3 defined as remapped G-code cycle with the following INI segment
(see here for a detailed description of cycle_prolog and cycle_epilog):
[RS274NGC]
A cycle with an O-word procedure: G84.3 <X- Y- Z- Q- P->
REMAP=G84.3 argspec=xyzabcuvwpr prolog=cycle_prolog ngc=g843 epilog=cycle_epilog modalgroup ←↩

=1

Executing the following lines:
g17
(1) g84.3 x1 y2 z3 r1
(2) x3 y4 p2
(3) x6 y7 z5
(4) G80

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 522 / 1322

causes the following (note R is sticky, and Z is sticky since the plane is XY):

1. g843.ngc is called with words x=1, y=2, z=3, r=1

2. g843.ngc is called with words x=3, y=4, z=3, p=2, r=1

3. g843.ngc is called with words x=6, y=7, z=3, r=1

4. The G84.3 cycle is canceled.

Besides creating new cycles, this provides an easy method for repackaging existing G-codes which do
not behave as cycles. For instance, the G33.1 Rigid Tapping code does not behave as a cycle. With
such a wrapper, a new code can be easily created which uses G33.1 but behaves as a cycle.
See configs/sim/axis/remap/cycle for a complete example of this feature. It contains two cycles, one
with an NGC procedure like above, and a cycle example using just Python.

9.6.8 Configuring Embedded Python

The Python plugin serves both the interpreter, and task if so configured, and hence has its own section
PYTHON in the INI file.

9.6.8.1 Python plugin : INI file configuration

[PYTHON]

TOPLEVEL = <filename>
Filename of the initial Python script to execute on startup. This script is responsible for
setting up the package name structure, see below.

PATH_PREPEND = <directory>
Prepend this directory to PYTHON_PATH. A repeating group.

PATH_APPEND = <directory>
Append this directory to PYTHON_PATH. A repeating group.

LOG_LEVEL = <integer>
Log level of plugin-related actions. Increase this if you suspect problems. Can be very
verbose.

RELOAD_ON_CHANGE = [0|1]
Reload the TOPLEVEL script if the file was changed. Handy for debugging but currently
incurs some runtime overhead. Turn this off for production configurations.

9.6.8.2 Executing Python statements from the interpreter

For ad-hoc execution of commands the Python hot comment has been added. Python output by default
goes to stdout, so you need to start LinuxCNC from a terminal window to see results. Example for the
MDI window:
;py,print(2*3)

Note that the interpreter instance is available here as this, so you could also run:
;py,print(this.tool_table[0].toolno)

Here is an approach to use an O-word subroutine to read a preference file entry and add it as a G-code
parameter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 523 / 1322

(filename myofile.ngc)
o<myofile> sub

;py,from interpreter import *
;py,import os
;py,from qtvcp.lib.preferences import Access

; find and print the preference file path
;py,CONFPATH = os.environ.get(’CONFIG_DIR’, ’/dev/null’)
; adjust for your preference file name
;py,PREFFILE = os.path.join(CONFPATH,’qtdragon.pref’)
;py,print(PREFFILE)

; get an preference instance
;py,Pref = Access(PREFFILE)

; load a preference and print it
;py,this.params[’toolToLoad’]=Pref.getpref(’Tool to load’, 0, int,’CUSTOM_FORM_ENTRIES’)
;py,print(’Tool to load->:’,this.params[’toolToLoad’])

; return the value
o<myofile> endsub [#<toolToLoad>]
M2

9.6.9 Programming Embedded Python in the RS274NGC Interpreter

9.6.9.1 The Python plugin namespace

The namespace is expected to be laid out as follows:

oword
Any callables in this module are candidates for Python O-word procedures. Note that the Python
oword module is checked before testing for a NGC procedure with the same name - in effect
names in oword will hide NGC files of the same basename.

remap
Python callables referenced in an argspec prolog,epilog or python option are expected to be
found here.

namedparams
Python functions in this module extend or redefine the namespace of predefined named param-
eters, see adding predefined parameters.

9.6.9.2 The Interpreter as seen from Python

The interpreter is an existing C++ class (Interp) defined in src/emc/rs274ngc. Conceptually all oword.<function>
and remap.<function> Python calls are methods of this Interp class, although there is no explicit
Python definition of this class (it is a Boost.Python wrapper instance) and hence receive the as the
first parameter self which can be used to access internals.

9.6.9.3 The Interpreter __init__ and __delete__ functions

If the TOPLEVEL module defines a function __init__, it will be called once the interpreter is fully
configured (INI file read, and state synchronized with the world model).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 524 / 1322

If the TOPLEVEL module defines a function __delete__, it will be called once before the interpreter is
shutdown and after the persistent parameters have been saved to the PARAMETER_FILE.
Note_ at this time, the __delete__ handler does not work for interpreter instances created by import-
ing the gcode module. If you need an equivalent functionality there (which is quite unlikely), please
consider the Python atexit module.
this would be defined in the TOPLEVEL module

def __init__(self):
add any one-time initialization here
if self.task:

this is the milltask instance of interp
pass
else:

this is a non-milltask instance of interp
pass

def __delete__(self):
add any cleanup/state saving actions here
if self.task: # as above

pass
else:

pass

This function may be used to initialize any Python-side attributes which might be needed later, for
instance in remap or O-word functions, and save or restore state beyond what PARAMETER_FILE pro-
vides.
If there are setup or cleanup actions which are to happen only in the milltask Interpreter instance (as
opposed to the interpreter instance which sits in the gcode Python module and serves preview/progress
display purposes but nothing else), this can be tested for by evaluating self.task.
An example use of __init__ and __delete__ can be found in configs/sim/axis/remap/cycle/python/toplevel.py
initialising attributes, needed to handle cycles in ncfiles/remap_lib/python-stdglue/stdglue.py
(and imported into configs/sim/axis/remap/cycle/python/remap.py).

9.6.9.4 Calling conventions: NGC to Python

Python code is called from NGC in the following situations:

• during normal program execution:

– when an O-word call like O<proc> call is executed and the name oword.proc is defined and
callable

– when a comment like ;py,<Python statement> is executed.
– during execution of a remapped code: any prolog=, python= and epilog= handlers.

Calling O-word Python subroutines
Arguments:

self
The interpreter instance.

*args
The list of actual positional parameters. Since the number of actual parameters may vary, it is
best to use this style of declaration:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 525 / 1322

this would be defined in the oword module
def mysub(self, *args):

print(”number of parameters passed:”, len(args))
for a in args:

print(a)

Return values of O-word Python subroutines Just as NGC procedures may return values, so do
O-word Python subroutines. They are expected to either return

• no value (no return statement or the value None),

• a float or int value,

• a string, this means this is an error message, abort the program. Works like (abort, msg).

Any other return value type will raise a Python exception.
In a calling NGC environment, the following predefined named parameters are available:

#<value>
Value returned by the last procedure called. Initialized to 0.0 on startup. Exposed in Interp as
self.return_value (float).

#<value_returned>
Indicates the last procedure called did return or endsub with an explicit value. 1.0 if true. Set
to 0.0 on each call. Exposed in Interp was self.value_returned (int).

See also tests/interp/value-returned for an example.
Calling conventions for prolog= and epilog= subroutines Arguments are:

self
The interpreter instance.

words
Keyword parameter dictionary. If an argspec was present, words are collected from the current
block accordingly and passed in the dictionary for convenience (the words could as well be re-
trieved directly from the calling block, but this requires more knowledge of interpreter internals).
If no argspec was passed, or only optional values were specified and none of these was present
in the calling block, this dict is empty. Word names are converted to lowercase.

Example call:
def minimal_prolog(self, **words): # in remap module

print(len(words),” words passed”)
for w in words:

print(”%s: %s” % (w, words[w]))
if words[’p’] < 78: # NB: could raise an exception if p were optional

return ”failing miserably”
return INTERP_OK

Return values:

INTERP_OK
Return this on success. You need to import this from interpreter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 526 / 1322

a message text
Returning a string from a handler means this is an error message, abort the program. Works like
(abort, <msg>).

Calling conventions for python= subroutines Arguments are:

self
The interpreter instance.

words
Keyword parameter dictionary. The same kwargs dictionary as prologs and epilogs (see above).

The minimum python= function example:
def useless(self, **words): # in remap module

return INTERP_OK

Return values:

INTERP_OK
Return this on success

a message text
Returning a string from a handler means this is an error message, abort the program. Works like
(abort, <msg>).

If the handler needs to execute a queuebuster operation (tool change, probe, HAL pin reading) then
it is supposed to suspend execution with the following statement:

yield INTERP_EXECUTE_FINISH
This signals task to stop read ahead, execute all queued operations, execute the queue-buster
operation, synchronize interpreter state with machine state, and then signal the interpreter to
continue. At this point the function is resumed at the statement following the yield .. state-
ment.

Dealing with queue-buster: Probe, Tool change and waiting for a HAL pin Queue busters
interrupt a procedure at the point where such an operation is called, hence the procedure needs
to be restarted after the interpreter synch(). When this happens the procedure needs to know if it
is restarted, and where to continue. The Python generator method is used to deal with procedure
restart.
This demonstrates call continuation with a single point-of-restart:
def read_pin(self,*args):

wait 5secs for digital-input 00 to go high
emccanon.WAIT(0,1,2,5.0)
cede control after executing the queue buster:
yield INTERP_EXECUTE_FINISH
post-sync() execution resumes here:
pin_status = emccanon.GET_EXTERNAL_DIGITAL_INPUT(0,0);
print(”pin status=”,pin_status)

Warning
The yield feature is fragile. The following restrictions apply to the usage of yield IN-
TERP_EXECUTE_FINISH:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 527 / 1322

• Python code executing a yield INTERP_EXECUTE_FINISHmust be part of a remap procedure. Yield
does not work in a Python oword procedure.

• A Python remap subroutine containing yield INTERP_EXECUTE_FINISH statement may not return
a value, as with normal Python yield statements.

• Code following a yield may not recursively call the interpreter, like with self.execute(”<mdi
command>”). This is an architectural restriction of the interpreter and is not fixable without a major
redesign.

9.6.9.5 Calling conventions: Python to NGC

NGC code is executed from Python when

• the method self.execute(<NGC code>[,<line number>]) is executed, or

• during execution of a remapped code, if a prolog= function is defined, the NGC procedure given in
ngc= is executed immediately thereafter.

The prolog handler does not call the handler, but it prepares its call environment, for instance by
setting up predefined local parameters.
Inserting parameters in a prolog, and retrieving them in an epilog Conceptually a prolog and
an epilog execute at the same call level like the O-word procedure, that is after the subroutine call is
set up, and before the subroutine endsub or return.
This means that any local variable created in a prolog will be a local variable in the O-word procedure,
and any local variables created in the O-word procedure are still accessible when the epilog executes.
The self.params array handles reading and setting numbered and named parameters. If a named
parameter begins with _ (underscore), it is assumed to be a global parameter; if not, it is local to the
calling procedure. Also, numbered parameters in the range 1..30 are treated like local variables; their
original values are restored on return/endsub from an O-word procedure.
Here is an example remapped code demonstrating insertion and extraction of parameters into/from
the O-word procedure:
REMAP=m300 prolog=insert_param ngc=testparam epilog=retrieve_param modalgroup=10

def insert_param(self, **words): # in the remap module
print(”insert_param call level=”,self.call_level)
self.params[”myname”] = 123
self.params[1] = 345
self.params[2] = 678
return INTERP_OK

def retrieve_param(self, **words):
print(”retrieve_param call level=”,self.call_level)
print(”#1=”, self.params[1])
print(”#2=”, self.params[2])
try:

print(”result=”, self.params[”result”])
except Exception,e:

return ”testparam forgot to assign #<result>”
return INTERP_OK

o<testparam> sub
(debug, call_level=#<_call_level> myname=#<myname>)
; try commenting out the next line and run again
#<result> = [#<myname> * 3]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 528 / 1322

#1 = [#1 * 5]
#2 = [#2 * 3]
o<testparam> endsub
m2

self.params() returns a list of all variable names currently defined. Since myname is local, it goes
away after the epilog finishes.
Calling the interpreter from Python You can recursively call the interpreter from Python code as
follows:
self.execute(<NGC code>[,<line number>])

Examples:
self.execute(”G1 X%f Y%f” % (x,y))
self.execute(”O <myprocedure> call”, currentline)

You might want to test for the return value being < INTERP_MIN_ERROR. If you are using lots of exe-
cute() statements, it is probably easier to trap InterpreterException as shown below.

Caution
The parameter insertion/retrieval method described in the previous section does not work in
this case. It is good enough for just

• executing simple NGC commands or a procedure call and

• advanced introspection into the procedure, and

• passing of local named parameters is not needed.

The recursive call feature is fragile.

Interpreter Exception during execute() if interpreter.throw_exceptions is nonzero (default 1),
and self.execute() returns an error, the exception InterpreterException is raised. InterpreterEx-
ception has the following attributes:

line_number
where the error occurred

line_text
the NGC statement causing the error

error_message
the interpreter’s error message

Errors can be trapped in the following Pythonic way:
import interpreter
interpreter.throw_exceptions = 1

...
try:

self.execute(”G3456”) # raise InterpreterException

except InterpreterException,e:
msg = ”%d: ’%s’ - %s” % (e.line_number,e.line_text, e.error_message)
return msg # replace builtin error message

Canon The canon layer is practically all free functions. Example:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 529 / 1322

import emccanon
def example(self,*args):

....
emccanon.STRAIGHT_TRAVERSE(line,x0,y0,z0,0,0,0,0,0,0)
emccanon.STRAIGHT_FEED(line,x1,y1,z1,0,0,0,0,0,0)
...
return INTERP_OK

The actual canon functions are declared in src/emc/nml_intf/canon.hh and implemented in src/emc/task/emccanon.cc.
The implementation of the Python functions can be found in src/emc/rs274ncg/canonmodule.cc.

9.6.9.6 Built in modules

The following modules are built in:

interpreter
Exposes internals of the Interp class. See src/emc/rs274ngc/interpmodule.cc, and the tests/remap/introspect
regression test.

emccanon
Exposes most calls of src/emc/task/emccanon.cc.

9.6.10 Adding Predefined Named Parameters

The interpreter comes with a set of predefined named parameters for accessing internal state from
the NGC language level. These parameters are read-only and global, and hence cannot be assigned
to.
Additional parameters may be added by defining a function in the namedparams module. The name of
the function defines the name of the new predefined named parameter, which now can be referenced
in arbitrary expressions.
To add or redefine a named parameter:

• Add a namedparams module so it can be found by the interpreter,
• define new parameters by functions (see below). These functions receive self (the interpreter

instance) as parameter and so can access arbitrary state. Arbitrary Python capabilities can be used
to return a value.

• Import that module from the TOPLEVEL script.

namedparams.py
trivial example
def _pi(self):

return 3.1415926535

#<circumference> = [2 * #<radius> * #<_pi>]

Functions in namedparams.py are expected to return a float or int value. If a string is returned, this
sets the interpreter error message and aborts execution.
Ònly functions with a leading underscore are added as parameters, since this is the RS274NGC con-
vention for globals.
It is possible to redefine an existing predefined parameter by adding a Python function of the same
name to the namedparams module. In this case, a warning is generated during startup.
While the above example isn’t terribly useful, note that pretty much all of the interpreter internal
state is accessible from Python, so arbitrary predicates may be defined this way. For a slightly more
advanced example, see tests/remap/predefined-named-params.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 530 / 1322

9.6.11 Standard Glue routines

Since many remapping tasks are very similar, I’ve started collecting working prolog and epilog rou-
tines in a single Python module. These can currently be found in ncfiles/remap_lib/python-stdglue/stdglue.py
and provide the following routines:

9.6.11.1 T: prepare_prolog and prepare_epilog

These wrap a NGC procedure for Tx Tool Prepare.
Actions of prepare_prolog The following parameters are made visible to the NGC procedure:

• #<tool> - the parameter of the T word

• #<pocket> - the corresponding pocket

If tool number zero is requested (meaning Tool unload), the corresponding pocket is passed as -1.
It is an error if:

• No tool number is given as T parameter,

• the tool cannot be found in the tool table.

Note that unless you set the [EMCIO] RANDOM_TOOLCHANGER=1 parameter, tool and pocket number are
identical, and the pocket number from the tool table is ignored. This is currently a restriction.
Actions of prepare_epilog

• The NGC procedure is expected to return a positive value, otherwise an error message containing
the return value is given and the interpreter aborts.

• In case the NGC procedure executed the T command (which then refers to the built in T behavior),
no further action is taken. This can be used for instance to minimally adjust the built in behavior
be preceding or following it with some other statements.

• Otherwise, the #<tool> and #<pocket> parameters are extracted from the subroutine’s parameter
space. This means that the NGC procedure could change these values, and the epilog takes the
changed values in account.

• Then, the Canon command SELECT_TOOL(#<tool>) is executed.

9.6.11.2 M6: change_prolog and change_epilog

These wrap a NGC procedure for M6 Tool Change.
Actions of change_prolog

• If there was no preceding T command which caused a pocket to be selected, the prolog aborts with
an error message.

• If cutter radius compensation is on, the prolog aborts with an error message.

Then, the following parameters are exported to the NGC procedure:

• #<tool_in_spindle> : the tool number of the currently loaded tool

• #<selected_tool> : the tool number selected

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 531 / 1322

• #<selected_pocket> : the selected tool’s tooldata index

Actions of +change_epilog

• The NGC procedure is expected to return a positive value, otherwise an error message containing
the return value is given and the interpreter aborts.

• In case the NGC procedure executed the M6 command (which then refers to the built in M6 be-
havior), no further action is taken. This can be used for instance to minimally adjust the built in
behavior be preceding or following it with some other statements.

• Otherwise, the #<selected_pocket> parameter is extracted from the subroutine’s parameter space,
and used to set the interpreter’s current_pocket variable. Again, the procedure could change this
value, and the epilog takes the changed value in account.

• Then, the Canon command CHANGE_TOOL(#<selected_pocket>) is executed.

• The new tool parameters (offsets, diameter etc) are set.

9.6.11.3 G-code Cycles: cycle_prolog and cycle_epilog

These wrap a NGC procedure so it can act as a cycle, meaning the motion code is retained after
finishing execution. If the next line just contains parameter words (e.g. new X,Y values), the code is
executed again with the new parameter words merged into the set of the parameters given in the first
invocation.
These routines are designed to work in conjunction with an argspec=<words> parameter. While this
is easy to use, in a realistic scenario you would avoid argspec and do a more thorough investigation
of the block manually in order to give better error messages.
The suggested argspec is as follows:
REMAP=G<somecode> argspec=xyzabcuvwqplr prolog=cycle_prolog ngc=<ngc procedure> epilog= ←↩

cycle_epilog modalgroup=1

This will permit cycle_prolog to determine the compatibility of any axis words give in the block, see
below.
Actions of cycle_prolog

• Determine whether the words passed in from the current block fulfill the conditions outlined under
Canned Cycle Errors.

– Export the axis words as <x>, #<y> etc; fail if axis words from different groups (XYZ) (UVW) are
used together, or any of (ABC) is given.

– Export L- as #<l>; default to 1 if not given.
– Export P- as #<p>; fail if p less than 0.
– Export R- as #<r>; fail if r not given, or less equal 0 if given.
– Fail if feed rate is zero, or inverse time feed or cutter compensation is on.

• Determine whether this is the first invocation of a cycle G-code, if so:

– Add the words passed in (as per argspec) into a set of sticky parameters, which is retained across
several invocations.

• If not (a continuation line with new parameters) then

– merge the words passed in into the existing set of sticky parameters.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 532 / 1322

• Export the set of sticky parameters to the NGC procedure.

Actions of cycle_epilog

• Determine if the current code was in fact a cycle, if so, then

– retain the current motion mode so a continuation line without a motion code will execute the same
motion code.

9.6.11.4 S (Set Speed) : setspeed_prolog and setspeed_epilog

TBD

9.6.11.5 F (Set Feed) : setfeed_prolog and setfeed_epilog

TBD

9.6.11.6 M61 Set tool number : settool_prolog and settool_epilog

TBD

9.6.12 Remapped code execution

9.6.12.1 NGC procedure call environment during remaps

Normally, an O-word procedure is called with positional parameters. This scheme is very limiting
in particular in the presence of optional parameters. Therefore, the calling convention has been
extended to use something remotely similar to the Python keyword arguments model.
See LINKTO G-code/main Subroutines: sub, endsub, return, call.

9.6.12.2 Nested remapped codes

Remapped codes may be nested just like procedure calls - that is, a remapped code whose NGC
procedure refers to some other remapped code will execute properly.
The maximum nesting level remaps is currently 10.

9.6.12.3 Sequence number during remaps

Sequence numbers are propagated and restored like with O-word calls. See tests/remap/nested-remaps/word
for the regression test, which shows sequence number tracking during nested remaps three levels
deep.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 533 / 1322

9.6.12.4 Debugging flags

The following flags are relevant for remapping and Python - related execution:

EMC_DEBUG_OWORD 0x00002000 traces execution of O-word
subroutines

EMC_DEBUG_REMAP 0x00004000 traces execution of
remap-related code

EMC_DEBUG_PYTHON 0x00008000 calls to the Python plug in
EMC_DEBUG_NAMEDPARAM 0x00010000 trace named parameter

access
EMC_DEBUG_USER1 0x10000000 user-defined - not interpreted

by LinuxCNC
EMC_DEBUG_USER2 0x20000000 user-defined - not interpreted

by LinuxCNC

or these flags into the [EMC]DEBUG variable as needed. For a current list of debug flags see src/em-
c/nml_intf/debugflags.h.

9.6.12.5 Debugging Embedded Python code

Debugging of embedded Python code is harder than debugging normal Python scripts, and only a
limited supply of debuggers exists. A working open-source based solution is to use the Eclipse IDE,
and the PydDev Eclipse plug in and its remote debugging feature.
To use this approach:

• Install Eclipse via the the Ubuntu Software Center (choose first selection).

• Install the PyDev plug in from the Pydev Update Site.

• Setup the LinuxCNC source tree as an Eclipse project.

• Start the Pydev Debug Server in Eclipse.

• Make sure the embedded Python code can find the pydevd.py module which comes with that plug
in - it is buried somewhere deep under the Eclipse install directory. Set the the pydevd variable in
util.py to reflect this directory location.

• Add import pydevd to your Python module - see example util.py and remap.py.

• Call pydevd.settrace() in your module at some point to connect to the Eclipse Python debug server
- here you can set breakpoints in your code, inspect variables, step etc. as usual.

Caution
pydevd.settrace() will block execution if Eclipse and the Pydev debug server have not been
started.

To cover the last two steps: the o<pydevd> procedure helps to get into the debugger from MDI mode.
See also the call_pydevd function in util.py and its usage in remap.involute to set a breakpoint.
Here’s a screen-shot of Eclipse/PyDevd debugging the involute procedure from above:

https://www.eclipse.org
https://www.pydev.org
https://pydev.org/manual_adv_remote_debugger.html
https://pydev.org/updates

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 534 / 1322

See the Python code in configs/sim/axis/remap/getting-started/python for details.

9.6.13 Axis Preview and Remapped code execution

For complete preview of a remapped code’s tool path some precautions need to be taken. To under-
stand what is going on, let’s review the preview and execution process (this covers the AXIS case, but
others are similar):
First, note that there are two independent interpreter instances involved:

• One instance in the milltask program, which executes a program when you hit the Start button, and
actually makes the machine move.

• A second instance in the user interface whose primary purpose is to generate the tool path preview.
This one executes a program once it is loaded, but it doesn’t actually cause machine movements.

Now assume that your remap procedure contains a G38 probe operation, for example as part of a tool
change with automatic tool length touch off. If the probe fails, that would clearly be an error, so you’d
display a message and abort the program.
Now, what about preview of this procedure? At preview time, of course it is not known whether the
probe succeeds or fails - but you would likely want to see what the maximum depth of the probe is, and
assume it succeeds and continues execution to preview further movements. Also, there is no point in
displaying a probe failed message and aborting during preview.
The way to address this issue is to test in your procedure whether it executes in preview or execution
mode. This can be checked for by testing the #<_task> predefined named parameter - it will be 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 535 / 1322

during actual execution and 0 during preview. See configs/sim/axis/remap/manual-toolchange-with-
tool-length-switch/nc_subroutines/manual_change.ngc for a complete usage example.
Within Embedded Python, the task instance can be checked for by testing self.task - this will be 1 in
the milltask instance, and 0 in the preview instance(s).

9.6.14 Remappable Codes

9.6.14.1 Existing codes which can be remapped

The current set of existing codes open to redefinition is:

• Tx (Prepare)

• M6 (Change tool)

• M61 (Set tool number)

• M0 (pause a running program temporarily)

• M1 (pause a running program temporarily if the optional stop switch is on)

• M7 (activate coolant mist)

• M8 (activate coolant flood)

• M9 (deactivate coolant mist and flood)

• M60 (exchange pallet shuttles and then pause a running program temporarily)

• M62 .. M65 (digital output control)

• M66 (wait on input)

• M67, M68 (analog output control)

• S (set spindle speed)

• F (set feed)

9.6.14.2 Currently unallocated G-codes:

Currently unallocated G-codes (for remapping) must be selected from the blank areas of the following
tables. All the listed G-codes are already defined in the current implementation of LinuxCNC and may
not be used to remap new G-codes. (Developers who add new G-codes to LinuxCNC are encouraged
to also add their new G-codes to these tables.)

Table 9.5: Table of Allocated G-codes 00-09

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
00 G00
01 G01
02 G02
03 G03
04 G04
05 G05 G05.1 G05.2 G05.3
06
07 G07

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 536 / 1322

Table 9.5: (continued)

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
08 G08
09

Table 9.6: Table of Allocated G-codes 10-19

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
10 G10
11
12
13
14
15
16
17 G17 G17.1
18 G18 G18.1
19 G19 G19.1

Table 9.7: Table of Allocated G-codes 20-29

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
20 G20
21 G21
22
23
24
25
26
27
28 G28 G28.1
29

Table 9.8: Table of Allocated G-codes 30-39

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
30 G30 G30.1
31
32
33 G30 G30.1
34
35
36
37
38
39

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 537 / 1322

Table 9.9: Table of Allocated G-codes 40-49

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
40 G40
41 G41 G41.1
42 G42 G42.1
43 G43 G43.1
44
45
46
47
48
49 G40

Table 9.10: Table of Allocated G-codes 50-59

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
50
51
52
53 G53
54 G54
55 G55
56 G56
57 G57
58 G58
59 G59 G59.1 G59.2 G59.3

Table 9.11: Table of Allocated G-codes 60-69

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
60 G60
61 G61 G61.1
62
63
64 G64
65
66
67
68
69

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 538 / 1322

Table 9.12: Table of Allocated G-codes 70-79

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
70 G70
71 G71 G71.1 G71.2
72 G72 G72.1 G72.2
73
74
75
76 G76
77
78
79

Table 9.13: Table of Allocated G-codes 80-89

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
80 G80
81 G81
82 G82
83 G83
84 G84
85 G85
86 G86
87 G87
88 G88
89 G89

Table 9.14: Table of Allocated G-codes 90-99

Gxx Gxx.1 Gxx.2 Gxx.3 Gxx.4 Gxx.5 Gxx.6 Gxx.7 Gxx.8 Gxx.9
90 G90 G90.1
91 G91 G91.1
92 G92 G92.1 G92.2 G92.3
93 G93
94 G94
95 G95
96 G96
97 G97
98 G98
99 G99

9.6.14.3 Currently unallocated M-codes:

These M-codes are currently undefined in the current implementation of LinuxCNC and may be used
to define new M-codes. (Developers who define new M-codes in LinuxCNC are encouraged to remove
them from this table.)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 539 / 1322

Table 9.15: Table of Unallocated M-codes 00-99

Mx0 Mx1 Mx2 Mx3 Mx4 Mx5 Mx6 Mx7 Mx8 Mx9
00-09
10-19 M10 M11 M12 M13 M14 M15 M16 M17 M18
20-29 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29
30-39 M31 M32 M33 M34 M35 M36 M37 M38 M39
40-49 M40 M41 M42 M43 M44 M45 M46 M47
50-59 M54 M55 M56 M57 M58 M59
60-69
70-79 M74 M75 M76 M77 M78 M79
80-89 M80 M81 M82 M83 M84 M85 M86 M87 M88 M89
90-99 M90 M91 M92 M93 M94 M95 M96 M97 M98 M99

All M-codes from M100 to M199 are user-defined M-codes already, and should not be remapped.
All M-codes from M200 to M999 are available for remapping.

9.6.15 A short survey of LinuxCNC program execution

To understand remapping of codes it might be helpful to survey the execution of task and interpreter
as far as it relates to remapping.

9.6.15.1 Interpreter state

Conceptually, the interpreter’s state consist of variables which fall into the following categories:

1. Configuration information (typically from INI file)

2. The ’World model’ - a representation of actual machine state

3. Modal state and settings - refers to state which is carried over between executing individual NGC
codes - for instance, once the spindle is turned on and the speed is set, it remains at this setting
until turned off. The same goes for many codes, like feed, units, motion modes (feed or rapid)
and so forth.

4. Interpreter execution state - Holds information about the block currently executed, whether we
are in a subroutine, interpreter variables, etc. . Most of this state is aggregated in a - fairly
unsystematic - structure _setup (see interp_internals.hh).

9.6.15.2 Task and Interpreter interaction, Queuing and Read-Ahead

The task part of LinuxCNC is responsible for coordinating actual machine commands - movement,
HAL interactions and so forth. It does not by itself handle the RS274NGC language. To do so, task
calls upon the interpreter to parse and execute the next command - either from MDI or the current
file.
The interpreter execution generates canonical machine operations, which actually move something.
These are, however, not immediately executed but put on a queue. The actual execution of these
codes happens in the task part of LinuxCNC: canon commands are pulled off that interpreter queue,
and executed resulting in actual machine movements.
This means that typically the interpreter is far ahead of the actual execution of commands - the parsing
of the program might well be finished before any noticeable movement starts. This behavior is called
read-ahead.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 540 / 1322

9.6.15.3 Predicting the machine position

To compute canonical machine operations in advance during read ahead, the interpreter must be able
to predict the machine position after each line of G-code, and that is not always possible.
Let’s look at a simple example program which does relative moves (G91), and assume the machine
starts at x=0,y=0,z=0. Relative moves imply that the outcome of the next move relies on the position
of the previous one:
N10 G91
N20 G0 X10 Y-5 Z20
N30 G1 Y20 Z-5
N40 G0 Z30
N50 M2

Here the interpreter can clearly predict machine positions for each line:
After N20: x=10 y=-5 z=20; after N30: x=10 y=15 z=15; after N40: x=10 y=15 z=45 and so can
parse the whole program and generate canonical operations well in advance.

9.6.15.4 Queue-busters break position prediction

However, complete read ahead is only possible when the interpreter can predict the position impact
for every line in the program in advance. Let’s look at a modified example:
N10 G91
N20 G0 X10 Y-5 Z20
N30 G38.3 Z-10
N40 O100 if [#5070 EQ 0]
N50 G1 Y20 Z-5
N60 O100 else
N70 G0 Z30
N80 O100 endif
N90 G1 Z10
N95 M2

To pre-compute the move in N90, the interpreter would need to know where the machine is after line
N80 - and that depends on whether the probe command succeeded or not, which is not known until it
is actually executed.
So, some operations are incompatible with further read-ahead. These are called queue busters, and
they are:

• Reading a HAL pin’s value with M66: value of HAL pin not predictable.

• Loading a new tool with M6: tool geometry not predictable.

• Executing a probe with G38.n: final position and success/failure not predictable.

9.6.15.5 How queue-busters are dealt with

Whenever the interpreter encounters a queue-buster, it needs to stop read ahead and wait until the
relevant result is available. The way this works is:

• When such a code is encountered, the interpreter returns a special return code to task (INTERP_EXECUTE_FINISH).

• This return code signals to task to stop read ahead for now, execute all queued canonical com-
mands built up so far (including the last one, which is the queue buster), and then synchronize
the interpreter state with the world model. Technically, this means updating internal variables to
reflect HAL pin values, reload tool geometries after an M6, and convey results of a probe.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 541 / 1322

• The interpreter’s synch() method is called by task and does just that - read all the world model
actual values which are relevant for further execution.

• At this point, task goes ahead and calls the interpreter for more read ahead - until either the pro-
gram ends or another queue-buster is encountered.

9.6.15.6 Word order and execution order

One or several words may be present on an NGC block if they are compatible (some are mutually
exclusive and must be on different lines). The execution model however prescribes a strict ordering
of execution of codes, regardless of their appearance on the source line (G-code Order of Execution).

9.6.15.7 Parsing

Once a line is read (in either MDI mode, or from the current NGC file), it is parsed and flags and
parameters are set in a struct block (struct _setup, member block1). This struct holds all information
about the current source line, but independent of different ordering of codes on the current line: As
long as several codes are compatible, any source ordering will result in the same variables set in the
struct block. Right after parsing, all codes on a block are checked for compatibility.

9.6.15.8 Execution

After successful parsing the block is executed by execute_block(), and here the different items are
handled according to execution order.
If a ”queue buster” is found, a corresponding flag is set in the interpreter state (toolchange_flag,
input_flag, probe_flag) and the interpreter returns an INTERP_EXECUTE_FINISH return value, sig-
naling stop readahead for now, and resynch to the caller (task). If no queue busters are found after
all items are executed, INTERP_OK is returned, signalling that read-ahead may continue.
When read ahead continues after the synch, task starts executing interpreter read() operations again.
During the next read operation, the above mentioned flags are checked and corresponding variables
are set (because the a synch() was just executed, the values are now current). This means that the
next command already executes in the properly set variable context.

9.6.15.9 Procedure execution

O-word procedures complicate handling of queue busters a bit. A queue buster might be found some-
where in a nested procedure, resulting in a semi-finished procedure call when INTERP_EXECUTE_FINISH
is returned. Task makes sure to synchronize the world model, and continue parsing and execution as
long as there is still a procedure executing (call_level > 0).

9.6.15.10 How tool change currently works

The actions happening in LinuxCNC are a bit involved, but it is necessary to get the overall idea what
currently happens, before you set out to adapt those workings to your own needs.
Note that remapping an existing code completely disables all internal processing for that code. That
means that beyond your desired behavior (probably described through an NGC O-word or Python
procedure), you need to replicate those internal actions of the interpreter, which together result in a
complete replacement of the existing code. The prolog and epilog code is the place to do this.
How tool information is communicated Several processes are interested in tool information: task
and its interpreter, as well as the user interface. Also, the halui process.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 542 / 1322

Tool information is held in the emcStatus structure, which is shared by all parties. One of its fields
is the toolTable array, which holds the description as loaded from the tool table file (tool number,
diameter, frontangle, backangle and orientation for lathe, tool offset information).
The authoritative source and only process actually setting tool information in this structure is the
iocontrol process. All others processes just consult this structure. The interpreter holds actually a
local copy of the tool table.
For the curious, the current emcStatus structure can be accessed by Python statements. The inter-
preter’s perception of the tool currently loaded for instance is accessed by:
;py,from interpreter import *
;py,print(this.tool_table[0])

You need to have LinuxCNC started from a terminal window to see the results.

9.6.15.11 How Tx (Prepare Tool) works

Interpreter action on a Tx command
All the interpreter does is evaluate the toolnumber parameter, looks up its corresponding tooldata
index, remembers it in the selected_pocket variable for later, and queues a canon command (SE-
LECT_TOOL). See Interp::convert_tool_select in src/emc/rs274/interp_execute.cc.
Task action on SELECT_TOOL When task gets around to handle a SELECT_TOOL, it sends a
EMC_TOOL_PREPARE message to the iocontrol process, which handles most tool-related actions
in LinuxCNC.
In the current implementation, task actually waits for iocontrol to complete the changer positioning
operation, which is not necessary IMO since it defeats the idea that changer preparation and code
execution can proceed in parallel.
Iocontrol action on EMC_TOOL_PREPARE When iocontrol sees the select pocket command, it
does the related HAL pin wiggling - it sets the ”tool-prep-number” pin to indicate which tool is next,
raises the ”tool-prepare” pin, and waits for the ”tool-prepared” pin to go high.
When the changer responds by asserting ”tool-prepared”, it considers the prepare phase to be com-
pleted and signals task to continue. Again, this wait is not strictly necessary IMO.
Building the prolog and epilog for Tx See the Python functions prepare_prolog and prepare_epilog
in nc_files/remap_lib/python-stdglue/stdglue.py.

9.6.15.12 How M6 (Change tool) works

You need to understand this fully before you can adapt it. It is very relevant to writing a prolog and
epilog handler for a remapped M6. Remapping an existing codes means you disable the internal steps
taken normally, and replicate them as far as needed for your own purposes.
Even if you are not familiar with C, I suggest you look at the Interp::convert_tool_change code in
src/emc/rs274/interp_convert.cc.
Interpreter action on a M6 command
When the interpreter sees an M6, it:

1. checks whether a T command has already been executed (test settings->selected_pocket to be
>= 0) and fail with Need tool prepared -Txx- for toolchange message if not.

2. check for cutter compensation being active, and fail with Cannot change tools with cutter radius
compensation on if so.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 543 / 1322

3. stop the spindle except if the ”TOOL_CHANGE_WITH_SPINDLE_ON” INI option is set.

4. generate a rapid Z up move if if the ”TOOL_CHANGE_QUILL_UP” INI option is set.

5. if TOOL_CHANGE_AT_G30 was set:

a. move the A, B and C indexers if applicable
b. generate rapid move to the G30 position

6. execute a CHANGE_TOOL canon command, with the selected pocket as a parameter. CHANGE_TOOL
will:

a. generate a rapid move to TOOL_CHANGE_POSITION if so set in INI
b. enqueue an EMC_TOOL_LOAD NML message to task.

7. set the numberer parameters 5400-5413 according to the new tool

8. signal to task to stop calling the interpreter for readahead by returning INTERP_EXECUTE_FINISH
since M6 is a queue buster.

What task does when it sees a CHANGE_TOOL command Again, not much more than passing
the buck to iocontrol by sending it an EMC_TOOL_LOAD message, and waiting until iocontrol has
done its thing.
Iocontrol action on EMC_TOOL_LOAD

1. it asserts the ”tool-change” pin

2. it waits for the ”tool-changed” pin to become active

3. when that has happened:

a. deassert ”tool-change”
b. set ”tool-prep-number” and ”tool-prep-pocket” pins to zero
c. execute the load_tool() function with the pocket as parameter.

The last step actually sets the tooltable entries in the emcStatus structure. The actual action taken
depends on whether the RANDOM_TOOLCHANGER INI option was set, but at the end of the process
toolTable[0] reflects the tool currently in the spindle.
When that has happened:

1. iocontrol signals task to go ahead.

2. task tells the interpreter to execute a synch() operation, to see what has changed.

3. The interpreter synch() pulls all information from the world model needed, among it the changed
tool table.

From there on, the interpreter has complete knowledge of the world model and continues with read
ahead.
Building the prolog and epilog forM6 See the Python functions change_prolog and change_epilog
in nc_files/remap_lib/python-stdglue/stdglue.py.

9.6.15.13 How M61 (Change tool number) works

M61 requires a non-negative ̀Q ̀parameter (tool number). If zero, this means unload tool, else set
current tool number to Q.
Building the replacement for M61 An example Python redefinition for M61 can be found in the
set_tool_number function in nc_files/remap_lib/python-stdglue/stdglue.py.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 544 / 1322

9.6.16 Status

1. The RELOAD_ON_CHANGE feature is fairly broken. Restart after changing a Python file.

9.6.17 Changes

• The method to return error messages and fail used to be self.set_errormsg(text) followed by return
INTERP_ERROR. This has been replaced by merely returning a string from a Python handler or
oword subroutine. This sets the error message and aborts the program. Previously there was no
clean way to abort a Python O-word subroutine.

9.6.18 Debugging

In the [EMC] section of the INI file the DEBUG parameter can be changed to get various levels of
debug messages when LinuxCNC is started from a terminal.
Debug level, 0 means no messages. See src/emc/nml_intf/debugflags.h for others
DEBUG = 0x00000002 # configuration
DEBUG = 0x7FFFDEFF # no interp,oword
DEBUG = 0x00008000 # py only
DEBUG = 0x0000E000 # py + remap + Oword
DEBUG = 0x0000C002 # py + remap + config
DEBUG = 0x0000C100 # py + remap + Interpreter
DEBUG = 0x0000C140 # py + remap + Interpreter + NML msgs
DEBUG = 0x0000C040 # py + remap + NML
DEBUG = 0x0003E100 # py + remap + Interpreter + oword + signals + namedparams
DEBUG = 0x10000000 # EMC_DEBUG_USER1 - trace statements
DEBUG = 0x20000000 # EMC_DEBUG_USER2 - trap into Python debugger
DEBUG = 0x10008000 # USER1, PYTHON
DEBUG = 0x30008000 # USER1,USER2, PYTHON # USER2 will cause involute to try to connect to ←↩

pydev
DEBUG = 0x7FFFFFFF # All debug messages

9.7 Moveoff Component

The moveoff HAL component is a HAL-only method for implementing offsets. See the manpage ($
man moveoff) for the IMPORTANT limitations and warnings.
The moveoff component is used to offset joint positions using custom HAL connections. Implement-
ing an offset-while-program-is-paused functionality is supported with appropriate connections for the
input pins. Nine joints are supported.
The axis offset pin values (offset-in-M) are continuously applied (respecting limits on value, velocity,
and acceleration) to the output pins (offset-current-M, pos-plusoffset-M, fb-minusoffset-M) when both
enabling input pins (apply-offsets and move-enable) are TRUE. The two enabling inputs are anded
internally. A warning pin is set and a message issued if the apply-offsets pin is deasserted while
offsets are applied. The warning pin remains TRUE until the offsets are removed or the apply-offsets
pin is set.
Typically, the move-enable pin is connected to external controls and the apply-offsets pin is connected
to halui.program.is-paused (for offsets only while paused) or set to TRUE (for continuously applied
offsets).
Applied offsets are automatically returned to zero (respecting limits) when either of the enabling
inputs is deactivated. The zero value tolerance is specified by the epsilon input pin value.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 545 / 1322

Waypoints are recorded when the moveoff component is enabled. Waypoints are managed with the
waypoint-sample-secs and waypoint-threshold pins. When the backtrack-enable pin is TRUE, the auto-
return path follows the recorded waypoints. When the memory available for waypoints is exhausted,
offsets are frozen and the waypoint-limit pin is asserted. This restriction applies regardless of the
state of the backtrack-enable pin. An enabling pin must be deasserted to allow a return to the original
(non-offset position).
Backtracking through waypoints results in slower movement rates as the moves are point-to-point
respecting velocity and acceleration settings. The velocity and acceleration limit pins can be managed
dynamically to control offsets at all times.
When backtrack-enable is FALSE, the auto-return move isNOT coordinated, each axis returns to zero
at its own rate. If a controlled path is wanted in this condition, each axis should be manually returned
to zero before deasserting an enabling pin.
The waypoint-sample-secs, waypoint-threshold, and epsilon pins are evaluated only when the compo-
nent is idle.
The offsets-applied output pin is provided to indicate the current state to a GUI so that program
resumption can be managed. If the offset(s) are non-zero when the apply-offsets pin is deasserted
(for example when resuming a program when offsetting during a pause), offsets are returned to zero
(respecting limits) and an Error message is issued.

Caution
If offsets are enabled and applied and the machine is turned off for any reason, any external
HAL logic that manages the enabling pins and the offset-in-M inputs is responsible for their
state when the machine is subsequently turned on again.

This HAL-only means of offsetting is typically not known to LinuxCNC nor available in GUI preview
displays. No protection is provided for offset moves that exceed soft limits managed by LinuxCNC.
Since soft limits are not honored, an offset move may encounter hard limits (or CRASH if there are
no limit switches). Use of the offset-min-M and offset-max-M inputs to limit travel is recommended.
Triggering a hard limit will turn off the machine — see Caution above.
The offset-in-M values may be set with INI file settings, controlled by a GUI, or managed by other HAL
components and connections. Fixed values may be appropriate in simple cases where the direction
and amount of offset is well-defined but a control method is required to deactivate an enabling pin in
order to return offsets to zero. GUIs may provide means for users to set, increment, decrement, and
accumulate offset values for each axis and may set offset-in-M values to zero before deasserting an
enabling pin.
The default values for accel, vel, min, max, epsilon, waypoint-sample-secs, and waypoint-threshold
may not be suitable for any particular application. This HAL component is unaware of limits enforced
elsewhere by LinuxCNC. Users should test usage in a simulator application and understand all hazards
before use on hardware.
Sim configurations that demonstrate the component and a GUI (moveoff_gui) are located in:

• configs/sim/axis/moveoff (axis-ui)

• configs/sim/touchy/ngcgui (touchy-ui)

9.7.1 Modifying an existing configuration

A system-provided HAL file (LIB:hookup_moveoff.tcl) can be used to adapt an existing configuration to
use the moveoff component. Additional INI file settings support the use of a simple GUI (moveoff_gui)
for controlling offsets.
When the system HAL file (LIB:hookup_moveoff.tcl) is properly specified in a configuration INI file, it
will:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 546 / 1322

1. Disconnect the original joint.N.motor-pos-cmd and joint.N.motor-pos-fb pin connections

2. Load (loadrt) the moveoff component (using the name mv) with a personality set to accommodate
all axes identified in the INI file

3. Add (addf) the moveoff component functions in the required sequence

4. Reconnect the joint.N.motor-pos-cmd and joint.N.motor-pos-fb pins to use the moveoff component

5. Set the moveoff component operating parameters and limits for each axis in accordance with
additional INI file settings

Note: The moveoff_gui application supports configurations that use known kinematics modules with
KINEMATICS_TYPE=KINEMATICS_IDENTITY. Supported modules include: trivkins. With identity
kins, moveoff_gui assigns each axis name specified with the command line parameter -axes axisnames
to the corresponding joint.
Modify an existing configuration as follows:
Make sure there is an INI file entry for [HAL]HALUI and create a new [HAL]HALFILE entry for LIB:hookup_moveoff.tcl.
The entry for LIB:hookup_moveoff.tcl should follow all HALFILE= entries for HAL files that connect the
pins for joint.N.motor-pos-cmd, joint.N.motor-pos-fb, and any components connected to these
pins (pid and encoder components in a servo system for instance).
[HAL]
HALUI = halui
HALFILE = existing_configuration_halfile_1
...
HALFILE = existing_configuration_halfile_n
HALFILE = LIB:hookup_moveoff.tcl

Add INI file entries for the per-axis settings for each axis in use (if an entry is not defined, the corre-
sponding entry from the [AXIS_n] section will be used, if no entry is found, then the moveoff component
default will be used).

Note
Using component defaults or [AXIS_n] section values for per-axis offset settings is NOT recommended.

[MOVEOFF_n]
MAX_LIMIT =
MIN_LIMIT =
MAX_VELOCITY =
MAX_ACCELERATION =

Add INI file entries for moveoff component settings (omit to use moveoff defaults):
[MOVEOFF]
EPSILON =
WAYPOINT_SAMPLE_SECS =
WAYPOINT_THRESHOLD =

The moveoff_gui is used to make additional required connections and provide a popup GUI to:

1. Provide a control togglebutton to Enable/Disable offsets

2. Provide a control togglebutton to Enable/Disable backtracking

3. Provide control pushbuttons to Increment/Decrement/Zero each axis offset

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 547 / 1322

4. Display each axis offset current value

5. Display current offset status (disabled, active, removing, etc)

The provided control buttons are optional depending upon the state of the moveoff component move-
enable pin. Both a display and controls for enabling offsetting are provided if the pin mv.move-enable is
NOT connected when the moveoff_gui is started. For this case, the moveoff_gui manages the moveoff
component move-enable pin (named mv.move-enable) as well as the offsets (mv.move-offset-in-M) and
the backtracking enable (mv.backtrack-enable)
If the mv.move-enable pin IS connected when the moveoff_gui is started, the moveoff_gui will provide
a display but NO controls. This mode supports configurations that use a jog wheel or other methods
of controlling the offset inputs and the enable pins (mv.offset-in-M, mv.move-enable, mv.backtrack-
enable).
The moveoff_gui makes the required connections for the moveoff component pins: mv.power_on and
mv.apply-offsets. The mv.power_on pin is connected to the motion.motion-enabled pin (a new signal
is automatically created if necessary). The mv.apply-offsets is connected to halui.program.is-paused
or set to 1 depending upon the command line option -mode [onpause | always]. A new signal is
automatically created if necessary.
To use the moveoff_gui, add an entry in the INI file [APPLICATIONS] section as follows:
[APPLICATIONS]
Note: a delay (specified in seconds) may be required if connections
are made using postgui HAL files ([HAL]POSTGUI_HALFILE=)
DELAY = 0
APP = moveoff_gui option1 option2 ...

When the HAL file LIB:hookup_moveoff.tcl is used to load and connect the moveoff component, the
mv.move-enable pin will not be connected and local controls provided by the moveoff_gui will be used.
This is the simplest method to test or demonstrate the moveoff component when modifying an existing
INI configuration.
To enable external controls while using the moveoff_gui display for offset values and status, HAL
files that follow LIB:hookup_moveoff.tcl must make additional connections. For example, the sup-
plied demonstration configs (configs/sim/axis/moveoff/*.ini) use a simple system HAL file (named
LIB:moveoff_external.hal) to connect the mv.move-enable, mv.offset-in-M, and mv.bactrack-enable pins
to signals:
[HAL]
HALUI = halui
...
HALFILE = LIB:hookup_moveoff.tcl
HALFILE = LIB:moveoff_external.hal

The connections made by LIB:moveoff_external.hal (for a three axis configuration) are:
net external_enable mv.move-enable

net external_offset_0 mv.offset-in-0
net external_offset_1 mv.offset-in-1
net external_offset_2 mv.offset-in-2

net external_backtrack_en mv.backtrack-enable

These signals (external_enable, external_offset_M, external_backtrack_en) may be managed by sub-
sequent HALFILES (including POSTGUI_HALFILEs) to provide customized control of the component
while using the moveoff_gui display for current offset values and offset status.
The moveoff_gui is configured with command line options. For details on the operation of moveoff_gui,
see the man page:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 548 / 1322

$ man moveoff_gui

For a brief listing of command line options for moveoff_gui, use the command line help option:
$ moveoff_gui --help

Usage:
moveoff_gui [Options]

Options:
[--help | -? | -- -h] (This text)

[-mode [onpause | always]] (default: onpause)
(onpause: show gui when program paused)
(always: show gui always)

[-axes axisnames] (default: xyz (no spaces))
(letters from set of: x y z a b c u v w)
(example: -axes z)
(example: -axes xz)
(example: -axes xyz)

[-inc incrementvalue] (default: 0.001 0.01 0.10 1.0)
(specify one per -inc (up to 4))
(example: -inc 0.001 -inc 0.01 -inc 0.1)

[-size integer] (default: 14)
(Overall gui popup size is based on font size)

[-loc center|+x+y] (default: center)
(example: -loc +10+200)

[-autoresume] (default: notused)
(resume program when move-enable deasserted)

[-delay delay_secs] (default: 5 (resume delay))

Options for special cases:
[-noentry] (default: notused)

(don’t create entry widgets)
[-no_resume_inhibit] (default: notused)

(do not use a resume-inhibit-pin)
[-no_pause_requirement] (default: notused)

(no check for halui.program.is-paused)
[-no_cancel_autoresume] (default: notused)

(useful for retraact offsets with simple)
(external control)

[-no_display] (default: notused)
(Use when both external controls and displays)
(are in use (see Note))

Note: If the moveoff move-enable pin (mv.move-enable) is connected when
moveoff_gui is started, external controls are required and only
displays are provided.

9.8 Stand Alone Interpreter

The rs274 stand alone interpreter is available for use via the command line.

9.8.1 Usage

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 549 / 1322

Usage: rs274 [-p interp.so] [-t tool.tbl] [-v var-file.var] [-n 0|1|2]
[-b] [-s] [-g] [input file [output file]]

-p: Specify the pluggable interpreter to use
-t: Specify the .tbl (tool table) file to use
-v: Specify the .var (parameter) file to use
-n: Specify the continue mode:

0: continue
1: enter MDI mode
2: stop (default)

-b: Toggle the ’block delete’ flag (default: OFF)
-s: Toggle the ’print stack’ flag (default: OFF)
-g: Toggle the ’go (batch mode)’ flag (default: OFF)
-i: specify the .ini file (default: no ini file)
-T: call task_init()
-l: specify the log_level (default: -1)

9.8.2 Example

To see the output of a loop for example we can run rs274 on the following file and see that the loop
never ends. To break out of the loop use Ctrl Z. The following two files are needed to run the example.
test.ngc
#<test> = 123.352

o101 while [[#<test> MOD 60] NE 0]
(debug,#<test>)

#<test> = [#<test> + 1]
o101 endwhile

M2

test.tbl
T1 P1 Z0.511 D0.125 ;1/8 end mill
T2 P2 Z0.1 D0.0625 ;1/16 end mill
T3 P3 Z1.273 D0.201 ;#7 tap drill

command
rs274 -g test.ngc -t test.tbl

9.9 External Axis Offsets

External axis offsets are supported during teleop (world) jogs and coordinated (G-code) motion. Ex-
ternal axis offsets are enabled on a per-axis basis by INI file settings and controlled dynamically by
INI input pins. The INI interface is similar to that used for wheel jogging. This type of interface is
typically implemented with a manual-pulse-generator (mpg) connected to an encoder INI component
that counts pulses.

9.9.1 INI File Settings

For each axis letter (L in xyzabcuvw):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 550 / 1322

[AXIS_L]OFFSET_AV_RATIO = value (controls accel/vel for external offsets)

1. Allowed values: 0 <= value <= 0.9

2. Disallowed values are replaced with 0.1 with message to stdout

3. Default value: 0 (disables external offset).
Consequence: omitted [AXIS_L]OFFSET_AV_RATIO disables external offset for the axis.

4. If nonzero, the OFFSET_AV_RATIO (r), adjusts the conventional (planning) max velocity and ac-
celeration to preserve [AXIS_L] constraints:

planning max velocity = (1-r) * MAX_VELOCITY
external offset velocity = (r) * MAX_VELOCITY

planning max acceleration = (1-r) * MAX_ACCELERATION
external offset acceleration = (r) * MAX_ACCELERATION

9.9.2 HAL Pins

9.9.2.1 Per-Axis Motion HAL Pins

For each axis letter (L in xyzabcuvw)

1. axis.L.eoffset-enable Input(bit): enable

2. axis.L.eoffset-scale Input(float): scale factor

3. axis.L.eoffset-counts Input(s32): input to counts register

4. axis.L.eoffset-clear Input(bit): clear requested offset

5. axis.L.eoffset Output(float): current external offset

6. axis.L.eoffset-request Output(float): requested external offset

9.9.2.2 Other Motion HAL Pins

1. motion.eoffset-active Output(bit): non-zero external offsets applied

2. motion.eoffset-limited Output(bit): motion inhibited due to soft limit

9.9.3 Usage

The axis input HAL pins (enable,scale,counts) are similar to the pins used for wheel jogging.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 551 / 1322

9.9.3.1 Offset Computation

At each servo period, the axis.L.eoffset-counts pin is compared to its value in the prior period. The
increase or decrease (positive or negative delta) of the axis.L.eoffset-counts pin is multiplied by the
current axis.L.eoffset-scale pin value. This product is accumulated in an internal register and exported
to the axis.L.eoffset-request HAL pin. The accumulation register is reset to zero at each machine-on.
The requested offset value is used to plan the movement for the offset that is applied to the L coordinate
and represented by the axis.L.eoffsetHAL pin. The planned motion respects the allocated velocity and
acceleration constraints and may be limited if the net motion (offset plus teleop jogging or coordinated
motion) reaches a soft limit for the L coordinate.
For many applications, the axis.L.eoffset-scale pin is constant and the net axis.L.eoffset-request re-
sponse to axis.L.eoffset-counts is equivalent to the product of the accumulated value of axis.L.eoffset-
counts and the (constant) axis.L.eoffset-scale pin values.

9.9.3.2 Machine-off/Machine-on

When the machine is turned off, the current position with external offsets is maintained so that
there is no unexpected motion at turn off or turn on.
At each startup (machine-on), the internal counts register for each HAL pin axis.L.eoffset-counts is
zeroed and the corresponding HAL output pin axis.L.eoffset is reset to zero.
In other words, external offsets are defined as ZERO at each startup (machine-on) regardless of the
value of the axis.L.eoffset-counts pins. To avoid confusion, it is recommended that all axis.L.eoffset-
counts pins are set to zero when the machine is off.

9.9.3.3 Soft Limits

External axis offset movements are independently planned with velocity and acceleration settings
specified by the [AXIS_L]OFFSET_AV_RATIO. The offsetting motion is not coordinated with teleop
jogs nor with coordinated (G-code) motion. During teleop jogging and coordinated (G-code) motion,
axis soft limits ([AXIS_L]MIN_LIMIT,MAX_LIMIT) restrict movement of the axis.
When external offsets are applied and motion reaches a soft limit (by external offset increases or
teleop jogging or coordinated motion), the HAL pin motion.eoffset-limited is asserted and the axis
value is held nominally to the soft limit. This HAL pin can be used by associated HAL logic to truncate
additional eoffset counts or to stop the machine (connect to halui.machine.off for instance). If the axis
is moved within the soft limit, the motion.eoffset-limited pin is reset.
When operating at a soft limit during coordinated motion that continues to change the planned axis
value, the HAL output pin axis.L.eoffset will indicate the current offset — the distance needed to reach
the limit instead of the computed offset request. This indicated value will change as the planned axis
value changes.
The HAL pin axis.L.eoffset-request indicates the current requested offset that is the product of the in-
ternal counts register and the eoffset-scale. In general, the axis.L.eoffset pin value lags the axis.L.eoffset-
request value since the external offset is subject to an acceleration limit. When operating at a soft
limit, additional updates to the axis.L.eoffset-counts will continue to affect the requested external
offset as reflected in the axis.L.eoffset-request HAL pin.
When teleop jogging with external offsets enabled and non-zero values applied, encountering a soft
limit will stop motion in the offending axis without a deacceleration interval. Similarly, during
coordinated motion with external offsets enabled, reaching a soft limit will stop motion with no deac-
celeration phase. For this case, it does not matter if the offsets are zero.
When motion is stopped with no deacceleration phase, system acceleration limits may be violated
and lead to: 1) a following error (and/or a thump) for a servo motor system, 2) a loss of steps for a
stepper motor system. In general, it is recommended that external offsets are applied in a manner to
avoid approaching soft limits.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 552 / 1322

9.9.3.4 Notes

External offsets apply to axis coordinate letters (xyzabcuvw). All joints must be homed before external
axis offsets are honored.
If an axis.L.eoffset-enable HAL pin is reset when its offset is non-zero, the offset is maintained. The
offset may be cleared by:

1. a Machine-off/Machine on toggle

2. reactivating the enable pin and incrementing/decrementing the axis.L.eoffset-counts HAL pin to
return the offset to zero.

3. pulsing the axis.L.eoffset-clear HAL pin

External-offsets are intended for use with small offsets that are applied within the soft-limit bounds.
Soft limits are respected for both teleop jogging and coordinated motion when external offsets are
applied. However, when a soft limit is reached during coordinated motion, reducing the offend-
ing external offset may not move away from the soft limit if planned motion continues in the
same direction. This circumstance can occur since the rate of correcting offset removal (as set by
[AXIS_L]OFFSET_AV_RATIO) may be less than the opposing planned rate of motion. In such cases,
pausing (or stopping) the planned, coordinated motion will allow movement away from the soft limit
when correcting changes are made in the offending external offset.

9.9.3.5 Warning

The use of external offsets can alter machine motion in a significant manner. The control of external
offsets with HAL components and connections and any associated user interfaces should be carefully
designed and tested before deployment.

9.9.4 Related HAL Components

9.9.4.1 eoffset_per_angle.comp

Component to compute an external offset from a function based on a measured angle (rotary coordi-
nate or spindle). See the man page for details ($ man eoffset_per_angle).

9.9.5 Testing

The external axis offset capability is enabled by adding an [AXIS_L] setting for each candidate axis.
For example:
[AXIS_Z]
OFFSET_AV_RATIO = 0.2

For testing, it is convenient to simulate a jog wheel interface using the sim_pin GUI. For example, in
a terminal:
$ sim_pin axis.z.eoffset-enable axis.z.eoffset-scale axis.z.eoffset-counts

The use of external offsets is aided by displaying information related to the current offsets: the cur-
rent eoffset value and the requested eoffset value, the axis pos-cmd, and (for an identity kinematics
machine) the corresponding joint motor pos-cmd and motor-offset. The provided sim configuration
(see below) demonstrates an example PyVCP panel for the AXIS GUI.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 553 / 1322

In the absence of a custom display, halshow can be started as an auxiliary application with a custom
watch list.
Example INI file settings to simulate the HAL pin eoffset connections and display eoffset information
for the z axis (for identity kinematics with z==joint2):
[APPLICATIONS]
APP = sim_pin \

axis.z.eoffset-enable \
axis.z.eoffset-scale \
axis.z.eoffset-counts \
axis.z.eoffset-clear

APP = halshow --fformat ”%0.5f” ./z.halshow

Where the file z.halshow (in the configuration directory) is:
pin+joint.2.motor-pos-cmd
pin+joint.2.motor-offset
pin+axis.z.pos-cmd
pin+axis.z.eoffset
pin+axis.z.eoffset-request
pin+motion.eoffset-limited

9.9.6 Examples

Provided simulation configurations demonstrate the use of external offsets in order to provide a start-
ing point for user customization for real hardware.
The sim configurations utilize the INI setting [HAL]HALFILE = LIB:basic_sim.tcl to configure all
routine HAL connections for the axes specified in the INI file [TRAJ]COORDINATES= setting. The
HAL logic needed to demonstrate external offset functionality and the GUI HAL pin connections for
a PyVCP panel are made in separate HAL files. A non-simulation configuration should replace the
LIB:basic_sim.tcl item HALFILEs appropriate to the machine. The provided PyVCP files (.hal and
.xml) could be a starting point for application-specific GUI interfaces.

9.9.6.1 eoffsets.ini

The sim config sim/configs/axis/external_offsets/eoffsets.ini demonstrates a cartesian XYZ machine
with controls to enable external offsets on any axis.
Displays are provided to show all important position and offset values.
A sim_pin GUI provides controls for the axis offset pins: eoffset-scale & eoffset-counts (via signal
e:<L>counts), eoffset-clear (via signal e:clearall)
A script (eoffsets_monitor.tcl) is used to set axis.L.counts pins to zero at Machine-off.

9.9.6.2 jwp_z.ini

The sim config sim/configs/axis/external_offsets/jwp_z.ini demonstrates a jog-while-pause capability
for a single (Z) coordinate:
Panel LEDs are provided to show important status items.
Controls are provided to set the eoffset scale factor and to increment/decrement/clear the eoffset
counts.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 554 / 1322

9.9.6.3 dynamic_offsets.ini

This sim config sim/configs/axis/external_offsets/dynamic_offsets.ini demonstrates dynamically applied
offsets by connecting a sinusoidal waveform to the z coordinate external offset inputs.
Panel LEDs are provided to show important status items.
Controls are provided to alter INI file settings for the Z axis max velocity and max acceleration.
Controls are provided to set the waveform generator parameters.
A halscope app is started to show the applied waveform, the offset response, and the motor cmd
response.

Note
changes to the z coordinate max-acceleration and max-velocity are not acknowledged while a pro-
gram is running.

9.9.6.4 opa.ini (eoffset_per_angle)

The opa.ini configuration uses the INI component eoffset_per_angle ($ man eoffset_per_angle) to
demonstrate an XZC machine with functional offsets computed from the C coordinate (angle) and
applied to the transverse (X) coordinate. Offset computations are based on a specified reference
radius typically set by a program (or MDI) M68 command to control a motion.analog-out-NN pin.
Panel LEDs are provided to show important status items.
Functions are provided for inside and outside polygons (nsides >= 3), sine waves and square waves.
The functions can be multiplied in frequency using the fmul pin and modified in amplitude using the
rfrac pin (fraction of reference radius).
Controls are provided to start/stop offset waveforms and to set the function type and its parameters.

9.10 Tool Database Interface

Tool data is conventionally described by a tool table file specified by an inifile setting: [EMCIO]TOOL_TABLE=tooltable_filename.
A tool table file consists of a text line for each available tool describing the tool’s parameters, see Tool
Table Format.
The tool database interface provides an alternative method for obtaining tool data via a separate
program that manages a database of tools.

9.10.1 Interface

9.10.1.1 INI file Settings

INI file settings enable the (optional) operation of a user-provided tool database program:
[EMCIO]
DB_PROGRAM = db_program [args]

When included, db_program specifies the path to a user-provided executable program that provides
tooldata. Up to 10 space-separated args may be included and passed to the db_program at startup.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 555 / 1322

Note
INI file settings for [EMCIO]TOOL_TABLE are ignored when a db_program is specified.

Note
The db_programmay be implemented in any language currently supported in LinuxCNC (e.g., BASH
scripts, Python or Tcl scripts, C/C++ programs) as long as it conforms to the interface messages re-
ceived on stdin and replied on stdout. A db_program could manage data from a flat file, a relational
database (SQLite for example), or other data sources.

9.10.1.2 db_program operation (v2.1)

When a db_progam is specified, operation is as follows:

1. At startup, LinuxCNC starts the db_program and connects to its stdin and stdout.

2. The db_programmust respond by writing a single line acknowledgement consisting of a version
string (e.g., ”v2.1”). No tools will be available if the version is not compatible with the LinuxCNC
database interface version.

3. Upon a successful acknowledgement, LinuxCNC issues a g (get) command to request all tools.
The db_program must respond with a sequence of replies to identify each available tool. The
textual reply format is identical to the text line format used in conventional tool table files. A
final response of ”FINI” terminates the reply.

4. The db_program then enters an event wait loop to receive commands that indicate that tool data
has been changed by LinuxCNC. Tool data changes include:

• a) spindle loading(Tn M6)/unloading(T0 M6)
• b) tool parameter changes (G10L1Pn for example)
• c) tool substitutions (M61Qn).

When a tool data change occurs, LinuxCNC sends a command to the db_program consisting of an
identifying command letter followed by a full or abbreviated tool data line. The db_program must
respond with a reply to confirm receipt. If the reply includes the text ”NAK”, a message is printed to
stdout but execution continues. The ”NAK” message signifies a lack of synchronization between the
db_program and LinuxCNC — accompanying text should give an indication for the cause of the fault.
The commands issued for tool data changes are:

• ”p” put data changes caused by G10L1, G10L10, G10L11 G-codes. The tool data line will include
all elements of a tool table text line.

• ”l” spindle_load (TnM6). The tool data line includes only the T and P items identifying the relevant
tool number and pocket number.

• ”u” spindle_unload (T0M6). The tool data line includes only the T and P items identifying the rele-
vant tool number and pocket number.

Note
When a NON_RANDOM tool changer is specified using [EMCIO]RANDOM_TOOL_CHANGER=0 (the de-
fault), the spindle_load command issued for TnM6 (or M61Qn) is: l Tn P0 (pocket 0 is the spindle).
The spindle_unload command issued for T0M6 is u T0 P0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 556 / 1322

Note
When a RANDOM tool changer is specified using [EMCIO]RANDOM_TOOL_CHANGER=1, a pair of spin-
dle_unload/spindle_load commands are issued at each tool exchange. The pair of commands issued
for TnM6 (or M61Qn) are u Tu Pm followed by l Tn P0, where u is the current tool to be sent to pocket
m and n is the new tool to load in the spindle (pocket 0). By convention, a tool number of 0 is used
to specify an empty tool,

9.10.1.3 Usage

Using a db_program does not change the way LinuxCNC operates but provides support for new
database functionality for tool management.
For example, a db_program database application can maintain the operating hours for all tools by
tracking each load/unload of a tool. A machine could then have three 6 mm endmills in pockets 111,
112, and 113 with the database application programmed to assign tool number 110 to the 6 mm
endmill with the fewest operating hours. Then, when a LinuxCNC program requests tool 110, the
database would specify the appropriate pocket based on tool usage history.
Tool data changes made within LinuxCNC (p,u,l commands) are pushed immediately to the db_program
which is expected to synchronize its source data. By default, LinuxCNC requests for tool data (g com-
mands) are made at startup only. A database program may update tool usage data on a continuous
basis so long-lived LinuxCNC applications may benefit by refreshing the tool data provided by the
db_program. The G-code command G10L0 can be used to request a tool data reload (g command)
from within G-code programs or by MDI. A reload operation is also typically provided by a Graphi-
cal User Interface (GUI) so that on-demand reloads can be requested. For example, a Python GUI
application can use:
#!/usr/bin/env python3
from linuxcnc import command
command().load_tool_table()

Alternatively, a db_program may push its local data changes to synchronize its data with Linux-
CNC by using the load_tool_table() interface command. Commands which push changes to LinuxCNC
may be rejected if the interpreter is running. The interpreter state can be checked before issuing a
load_tool_table() command. Example:
#! /usr/bin/env python3
import linuxcnc
s = linuxcnc.stat()
s.poll()
if s.interp_state == linuxcnc.INTERP_IDLE:

linuxcnc.command().load_tool_table()
else: # defer loading until interp is idle

...

If the database application adds or removes tools after initialization, a call to tooldb_tools() must
be issued with an updated user_tools list. The updated list of tools will be used on subsequent get
commands or load_tool_table() requests.

Note
Removal of a tool number should only be done if the tool number is not currently loaded in spindle.

Exporting the environmental variable DB_SHOW enables LinuxCNC prints (to stdout) that show tool
data retrieved from the db_program at startup and at subsequent reloading of tool data.
Exporting the environmental variable DB_DEBUG enables LinuxCNC prints (to stdout) for additional
debugging information about interface activity.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 557 / 1322

9.10.1.4 Example program

An example db_program (implemented as a Python script) is provided with the simulation examples.
The program demonsrates the required operations to:

1. acknowledge startup version

2. receive tool data requests: g (get command)

3. receive tool data updates: p (put command)

4. receive tool load updates: l (load_spindle command)

5. receive tool unload updates: u (unload_spindle command)

9.10.1.5 Python tooldb module

The example program uses a LinuxCNC provided Python module (tooldb) that manages the low-level
details for communication and version verification. This module uses callback functions specified by
the db_program to respond to the g (get) command and the commands that indicate tool data changes
(p, l, u).
The db_program uses the tooldb module by implementing the following Python code:
user_tools = list(...) # list of available tool numbers

def user_get_tool(toolno):
function to respond to ’g’ (get) commands
called once for each toolno in user_tools
...

def user_put_tool(toolno,params):
function to respond to ’p’ (put) commands
...

def user_load_spindle(toolno,params):
function to respond to ’l’ (put) commands
...

def user_unload_spindle(toolno,params):
function to respond to ’u’ (put) commands
...

#--
Begin:
from tooldb import tooldb_tools # identify known tools
from tooldb import tooldb_callbacks # identify functions
from tooldb import tooldb_loop # main loop

tooldb_tools(user_tools)
tooldb_callbacks(user_get_tool,

user_put_tool,
user_load_spindle,
user_unload_spindle,
)

tooldb_loop()

Note
Use of tooldb is not required — it is provided as a demonstration of the required interface and as a
convenience for implementing Python-based applications that interface with an external database.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 558 / 1322

9.10.2 Simulation configs

Simulation configs using the AXIS gui:

1. configs/sim/axis/db_demo/db_ran.ini (random_toolchanger)

2. configs/sim/axis/db_demo/db_nonran.ini (nonrandom_toolchanger)

Each sim config simulates a db_program implementing a database with 10 tools numbered 10—19.
The db_program is provided by a single script (db.py) and symbolic links to it for alternative uses:
db_ran.py and db_nonran.py. By default, the script implements random_toolchanger functionality.
Nonrandom toolchanger functions are substituted if the link name includes the text ”nonran”.
The sim configs demonstrate the use of the Python tooldb interface module and implement a basic
flat-file database that tracks tool time usage for multiple tools having equal diameters. The database
rules support selection of the tool having the lowest operating time.
The sim configs use a primary task to monitor and respond to tool updates initiated from within Lin-
uxCNC. A periodic task updates tool time usage at reguar intervals. Separate, concurrent tasks
are implemented as threads to demonstrate the code required when changes are initiated by the
db_program and demonstrate methods for synchronizing LinuxCNC internal tooldata. Examples in-
clude:

1. updates of tool parameters

2. addition and removal of tool numbers

A mutual exclusion lock is used to protect data from inconsistencies due to race conditions between
LinuxCNC tooldata updates and the database application updates.

9.10.2.1 Notes

When a db_program is used in conjunction with a random tool changer ([EMCIO]RANDOM_TOOLCHANGER),
LinuxCNC maintains a file (db_spindle.tbl in the configuration directory) that consists of a single tool
table line identifying the current tool in the spindle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 559 / 1322

Part II

Usage

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 560 / 1322

Chapter 10

User Interfaces

10.1 AXIS GUI

10.1.1 Introduction

AXIS is a graphical front-end for LinuxCNC which features a live preview and backplot. It is written
in Python and uses Tk and OpenGL to display its user interface.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 561 / 1322

Figure 10.1: The AXIS Window

10.1.2 Getting Started

If your configuration is not currently set up to use AXIS, you can change it by editing the .ini file (INI
file). In the section [DISPLAY] change the [DISPLAY] line to read DISPLAY = axis.
The sample configuration sim/axis.ini is already configured to use AXIS as its front-end.
When AXIS starts, a window like the one in the figure Figure 10.1 above opens.

10.1.2.1 INI settings

For more information on INI file settings that can change how AXIS works see the Display Section
and the Axis Section of the INI Configuration Chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 562 / 1322

• CYCLE_TIME - Adjust the response rate of the GUI in milliseconds. Typical 100, useable range 50
- 200
(will accept time in seconds (.05 -.2) for legacy reasons - milliseconds preferred to match other
screens).

[DISPLAY]
CYCLE_TIME = 100

• PREVIEW_TIMEOUT - Set timeout in seconds for loading G-code preview. If parsing the G-code
lasts longer than this, a notice is shown and only the initial part of the program is drawn in the
graphical display. Specifying 0 or leaving the setting out results in no timeout.

[DISPLAY]
PREVIEW_TIMEOUT = 5

10.1.2.2 A Typical Session

1. Launch LinuxCNC and select a configuration file.

2. Release the E-STOP button (F1) and turn the Machine Power on (F2).

3. Home all axes.

4. Load the G-code file.

5. Use the preview plot to verify that the program is correct.

6. Load the material.

7. Set the proper offset for each axis by jogging and using the Touch Off button as needed.

8. Run the program.

9. To machine the same file again, return to step 6. To machine a different file, return to step 4.

10. When the job is complete, exit AXIS.

Note
To run the same program again depends on your setup and requirements. You might need to load
more material and set offsets or move over and set an offset then run the program again. If your
material is fixtured then you might need to only run the program again. See the Machine Menu for
more information on the run command.

10.1.3 AXIS Window

The AXIS window contains the following elements:

• A display area that shows one of the following:

– A preview of the loaded file (in this case, axis.ngc), as well as the current location of the CNC
machine’s controlled point. Later, this area will display the path the CNC machine has moved
through, called the backplot.

– A large readout showing the current position and all offsets.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 563 / 1322

• A menu bar and toolbar that allow you to perform various actions

• Manual Control Tab - which allows you to make the machine move, turn the spindle on or off, and
turn the coolant on or off if included in the INI file.

• MDI Tab - where G-code programs can be entered manually, one line at a time. This also shows the
Active G-codes which shows which modal G-codes are in effect.

• Feed Override - which allows you to scale the speed of programmed motions. The default maximum
is 120% and can be set to a different value in the INI file. See the Display Section of the INI file for
more information.

• Spindle Override - which allows you to scale the spindle speed up or down.

• Jog Speed - which allows you to set the jog speed within the limits set in the INI file. See the Display
Section of the INI file for more information.

• Max Velocity - which allows you to restrict the maximum velocity of all programmed motions (except
spindle synchronized motion).

• A text display area that shows the loaded G-code.

• A status bar which shows the state of the machine. In this screen shot, the machine is turned on,
does not have a tool inserted, and the displayed position is Relative (showing all offsets), and Actual
(showing feedback position).

10.1.3.1 Menu Items

Some menu items might be grayed out depending on how you have your INI file configured. For more
information on configuration see the INI Chapter.

• Open… - Opens a standard dialog box to open a G-code file to load in AXIS. If you have configured
LinuxCNC to use a filter program you can also open it up. See the FILTER Section of the INI
configuration for more information.

• Recent Files - Displays a list of recently opened files.

• Edit… - Open the current G-code file for editing if you have an editor configured in your INI file.
See the DISPLAY Section for more information on specifying an editor to use.

• Reload - Reload the current G-code file. If you edited it you must reload it for the changes to take
affect. If you stop a file and want to start from the beginning then reload the file. The toolbar reload
is the same as the menu.

• Save G-code as… - Save the current file with a new name.

• Properties - The sum of the rapid and feed moves. Does not factor in acceleration, blending or path
mode so time reported will never be less than the actual run time.

• Edit tool table… - Same as Edit if you have defined an editor you can open the tool table and edit it.

• Reload tool table - After editing the tool table you must reload it.

• Ladder editor - If you have loaded ClassicLadder you can edit it from here. See the ClassicLadder
chapter for more information.

• Quit - Terminates the current LinuxCNC session.

• Toggle Emergency Stop F1 - Change the state of the Emergency Stop.

• Toggle Machine Power F2 - Change the state of the Machine Power if the Emergency Stop is not on.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 564 / 1322

• Run Program - Run the currently loaded program from the beginning.

• Run From Selected Line - Select the line you want to start from first. Use with caution as this will
move the tool to the expected position before the line first then it will execute the rest of the code.

Warning
Do not use Run From Selected Line if your G-code program contains subroutines.

• Step - Single step through a program.

• Pause - Pause a program.

• Resume - Resume running from a pause.

• Stop - Stop a running program. When run is selected after a stop the program will start from the
beginning.

• Stop at M1 - If an M1 is reached, and this is checked, program execution will stop on the M1 line.
Press Resume to continue.

• Skip lines with ”/” - If a line begins with / and this is checked, the line will be skipped.

• Clear MDI history - Clears the MDI history window.

• Copy from MDI history - Copies the MDI history to the clipboard

• Paste to MDI history - Paste from the clipboard to the MDI history window

• Calibration - Starts the Calibration assistant (emccalib.tcl). Calibration reads the HAL file and for
every setp that uses a variable from the INI file that is in an [AXIS_L],[JOINT_N],[SPINDLE_S], or
[TUNE] section it creates an entry that can be edited and tested.

• Show HAL Configuration - Opens the HAL Configuration window where you can monitor HAL Com-
ponents, Pins, Parameters, Signals, Functions, and Threads.

• HAL Meter - Opens a window where you can monitor a single HAL Pin, Signal, or Parameter.

• HAL Scope - Opens a virtual oscilloscope that allows plotting HAL values vs. time.

• Show LinuxCNC Status - Opens a window showing LinuxCNC’s status.

• Set Debug Level - Opens a window where debug levels can be viewed and some can be set.

• Homing - Home one or all axes.

• Unhoming - Unhome one or all axes.

• Zero Coordinate System - Set all offsets to zero in the coordinate system chosen.

• Tool Touch Off

– Tool touch off to workpiece - When performing Touch Off, the value entered is relative to the
current workpiece (G5x) coordinate system, as modified by the axis offset (G92). When the Touch
Off is complete, the Relative coordinate for the chosen axis will become the value entered. See
G10 L10 in the G-code chapter.

– Tool touch off to fixture - When performing Touch Off, the value entered is relative to the ninth
(G59.3) coordinate system, with the axis offset (G92) ignored. This is useful when there is a tool
touch-off fixture at a fixed location on the machine, with the ninth (G59.3) coordinate system set
such that the tip of a zero-length tool is at the fixture’s origin when the Relative coordinates are
0. See G10 L11 in the G-code chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 565 / 1322

• Top View - The Top View (or Z view) displays the G-code looking along the Z axis from positive to
negative. This view is best for looking at X & Y.

• Rotated Top View - The Rotated Top View (or rotated Z view) also displays the G-code looking along
the Z axis from positive to negative. But sometimes it’s convenient to display the X & Y axes rotated
90 degrees to fit the display better. This view is also best for looking at X & Y.

• Side View - The Side View (or X view) displays the G-code looking along the X axis from positive to
negative. This view is best for looking at Y & Z.

• Front View - The Front View (or Y view) displays the G-code looking along the Y axis from negative
to positive. This view is best for looking at X & Z.

• Perspective View - The Perspective View (or P view) displays the G-code looking at the part from an
adjustable point of view, defaulting to X+, Y-, Z+. The position is adjustable using the mouse and
the drag/rotate selector. This view is a compromise view, and while it does do a good job of trying
to show three (to nine!) axes on a two-dimensional display, there will often be some feature that is
hard to see, requiring a change in viewpoint. This view is best when you would like to see all three
(to nine) axes at once.

Point of View
The AXIS display pick menu View refers to Top, Front, and Side views. These terms are correct
if the CNC machine has its Z axis vertical, with positive Z up. This is true for vertical mills, which
is probably the most popular application, and also true for almost all EDM machines, and even
vertical turret lathes, where the part is turning below the tool.
The terms Top, Front, and Side might be confusing in other CNC machines, such as a standard
lathe, where the Z axis is horizontal, or a horizontal mill, again where the Z axis is horizontal,
or even an inverted vertical turret lathe, where the part is turning above the tool, and the Z axis
positive direction is down!
Just remember that positive Z axis is (almost) always away from the part. So be familiar with
your machine’s design and interpret the display as needed.

• Display Inches - Set the AXIS display scaling for inches.

• Display MM - Set the AXIS display scaling for millimeters.

• Show Program - The preview display of the loaded G-code program can be entirely disabled if de-
sired.

• Show Program Rapids - The preview display of the loaded G-code program will always show the
feed rate moves (G1,G2,G3) in white. But the display of rapid moves (G0) in cyan can be disabled if
desired.

• Alpha-blend Program - This option makes the preview of complex programs easier to see, but may
cause the preview to display more slowly.

• Show Live Plot - The highlighting of the feedrate paths (G1,G2,G3) as the tool moves can be disabled
if desired.

• Show Tool - The display of the tool cone/cylinder can be disabled if desired.

• Show Extents - The display of the extents (maximum travel in each axis direction) of the loaded
G-code program can be disabled if desired.

• Show Offsets - The selected fixture offset (G54-G59.3) origin location can be shown as a set of three
orthogonal lines, one each of red, blue, and green. This offset origin (or fixture zero) display can be
disabled if desired.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 566 / 1322

• Show Machine Limits - The machine’s maximum travel limits for each axis, as set in the INI file,
are shown as a rectangular box drawn in red dashed lines. This is useful when loading a new G-
code program, or when checking for how much fixture offset would be needed to bring the G-code
program within the travel limits of your machine. It can be shut off if not needed.

• Show Velocity - A display of velocity is sometimes useful to see how close your machine is running
to its design velocities. It can be disabled if desired.

• Show Distance to Go - Distance to go is a very handy item to know when running an unknown G-code
program for the first time. In combination with the rapid override and feedrate override controls,
unwanted tool and machine damage can be avoided. Once the G-code program has been debugged
and is running smoothly, the Distance to Go display can be disabled if desired.

• Coordinates in large font… - The coordinates of the axes and the speed in advance, will display in
large font in the toolpath view.

• Clear Live Plot - As the tool travels in the AXIS display, the G-code path is highlighted. To repeat
the program, or to better see an area of interest, the previously highlighted paths can be cleared.

• Show Commanded Position - This is the position that LinuxCNC will try to go to. Once motion has
stopped, this is the position LinuxCNC will try to hold.

• Show Actual Position - Actual Position is the measured position as read back from the system’s
encoders or simulated by step generators. This may differ slightly from the Commanded Position
for many reasons including PID tuning, physical constraints, or position quantization.

• Show Machine Position - This is the position in unoffset coordinates, as established by Homing.

• Show Relative Position - This is the Machine Position modified by G5x, G92, and G43 offsets.

• About AXIS - We all know what this is.

• Quick Reference - Shows the keyboard shortcut keys.

10.1.3.2 Toolbar buttons

From left to right in the AXIS display, the toolbar buttons (keyboard shortcuts shown [in brackets])
are:

• Toggle Emergency Stop [F1] (also called E-Stop)

• Toggle Machine Power [F2]

• Open G Code file [O]

• Reload current file [Ctrl-R]

• Begin executing the current file [R]

• Execute next line [T]

• Pause Execution [P] Resume Execution [S]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 567 / 1322

• Stop Program Execution [ESC]

• Toggle Skip lines with ”/” [Alt-M-/]

• Toggle Optional Pause [Alt-M-1]

• Zoom In

• Zoom Out

• Top view

• Rotated Top view

• Side view

• Front view

• Perspective view

• Toggle between Drag and Rotate Mode [D]

• Clear live backplot [Ctrl-K]

10.1.3.3 Graphical Display Area

Coordinate Display In the upper-left corner of the program display is the coordinate position display
for each axis. To the right of the number an origin symbol is shown if the axis has been homed.

A limit symbol is shown on the right side of the coordinate position number if the axis is on one of
its limit switches.
To properly interpret the coordinate position numbers, refer to the Position: indicator in the status bar.
If the position isMachine Actual, then the displayed number is in the machine coordinate system. If it
is Relative Actual, then the displayed number is in the offset coordinate system. When the coordinates

displayed are relative and an offset has been set, the display will include a cyan machine origin
marker.
If the position is Commanded, then the exact coordinate given in a G-code command is displayed. If
it is Actual, then it is the position the machine has actually moved to. These values can be different
from commanded position due to following error, dead band, encoder resolution, or step size. For
instance, if you command a movement to X 0.0033 on your mill, but one step of your stepper motor or
one encoder count is 0.00125, then the Commanded position might be 0.0033, but the Actual position
will be 0.0025 (2 steps) or 0.00375 (3 steps).
Preview Plot When a file is loaded, a preview of it is shown in the display area. Fast moves (such as
those produced by the G0 command) are shown as cyan lines. Moves at a feed rate (such as those

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 568 / 1322

produced by the G1 command) are shown as solid white lines. Dwells (such as those produced by the
G4 command) are shown as small pink X marks.
G0 (Rapid) moves prior to a feed move will not show on the preview plot. Rapid moves after a T<n>
(Tool Change) will not show on the preview until after the first feed move. To turn either of these
features off program a G1 without any moves prior to the G0 moves.
Program Extents The extents of the program in each axis are shown. At the ends, the least and
greatest coordinate values are indicated. In the middle, the difference between the coordinates is
shown.
When some coordinates exceed the soft limits in the INI file, the relevant dimension is shown in a
different color and enclosed by a box. In figure below the maximum soft limit is exceeded on the X
axis as indicated by the box surrounding the coordinate value. The minimum X travel of the program
is -1.95, the maximum X travel is 1.88, and the program requires 3.83 inches of X travel. To move the
program so it’s within the machine’s travel in this case, jog to the left and Touch Off X again.

Figure 10.2: Soft Limits

Tool Cone When no tool is loaded, the location of the tip of the tool is indicated by the tool cone. The
tool cone does not provide guidance on the form, length, or radius of the tool.
When a tool is loaded (for instance, with the MDI command T1 M6), the cone changes to a cylinder
which shows the diameter of the tool given in the tool table file.
BackplotWhen the machine moves, it leaves a trail called the backplot. The color of the line indicates
the type of motion: Yellow for jogs, faint green for rapid movements, red for straight moves at a feed
rate, and magenta for circular moves at a feed rate.
Grid AXIS can optionally display a grid when in orthogonal views. Enable or disable the grid using
the Grid menu under View. When enabled, the grid is shown in the top and rotated top views; when
coordinate system is not rotated, the grid is shown in the front and side views as well. The presets in
the Grid menu are controlled by the INI file item [DISPLAY]GRIDS. If unspecified, the default is 10mm
20mm 50mm 100mm 1in 2in 5in 10in.
Specifying a very small grid may decrease performance.
Interacting By left-clicking on a portion of the preview plot, the line will be highlighted in both the
graphical and text displays. By left-clicking on an empty area, the highlighting will be removed.
By dragging with the left mouse button pressed, the preview plot will be shifted (panned).
By dragging with shift and the left mouse button pressed, or by dragging with the mouse wheel
pressed, the preview plot will be rotated. When a line is highlighted, the center of rotation is the
center of the line. Otherwise, the center of rotation is the center of the entire program.
By rotating the mouse wheel, or by dragging with the right mouse button pressed, or by dragging
with control and the left mouse button pressed, the preview plot will be zoomed in or out.
By clicking one of the Preset View icons, or by pressing V, several preset views may be selected.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 569 / 1322

10.1.3.4 Text Display Area

By left-clicking a line of the program, the line will be highlighted in both the graphical and text dis-
plays.
When the program is running, the line currently being executed is highlighted in red. If no line has
been selected by the user, the text display will automatically scroll to show the current line.

Figure 10.3: Current and Selected Lines

10.1.3.5 Manual Control

While the machine is turned on but not running a program, the items in the Manual Control tab can
be used to move the machine or control its spindle and coolant.
When the machine is not turned on, or when a program is running, the manual controls are unavail-
able.
Many of the items described below are not useful on all machines. When AXIS detects that a particular
pin is not connected in HAL, the corresponding item in the Manual Control tab is removed. For
instance, if the HAL pin spindle.0.brake is not connected, then the Brake button will not appear on
the screen. If the environment variable AXIS_NO_AUTOCONFIGURE is set, this behavior is disabled
and all the items will appear.
The Axis group AXIS allows you to manually move the machine. This action is known as jogging.
First, select the axis to be moved by clicking it. Then, click and hold the + or - button depending on
the desired direction of motion. The first four axes can also be moved by the arrow keys (X and Y),
PAGE UP and PAGE DOWN keys (Z), and the [and] keys (A).
If Continuous is selected, the motion will continue as long as the button or key is pressed. If another
value is selected, the machine will move exactly the displayed distance each time the button is clicked
or the key is pressed. By default, the available values are 0.1000, 0.0100, 0.0010, 0.0001.
See the DISPLAY Section for more information on setting the increments.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 570 / 1322

Homing (Identity Kinematics) The INI file setting [KINS]JOINTS defines the total number of joints
for the system. A joint may be configured with a home switch or for immediate homing. Joints may
specify a home sequence that organizes the order for homing groups of joints.
If all joints are configured for homing and have valid home sequences, the homing button will show
Home All. Pressing the Home All button (or the Ctrl-HOME key) will initiate homing for all joints
using their defined home sequences. Pressing the HOME key will home the joint corresponding to
the currently selected axis even if no homing sequence is defined.
If not all axes have valid home sequences, the homing button will show Home Axis and will home the
joint for the currently selected axis only. Each axis must be selected and homed separately.
The dropdown menu Machine/Homing provides an alternate method to home axes. The dropdown
menu Machine/Unhoming provides means to unhome axes.
If your machine does not have home switches defined in the configuration, theHome button will set the
current position of the selected axis as the absolute position 0 for that axis and will set the is-homed
bit for that axis.
See the Homing Configuration Chapter for more information.
Homing (Non-Identity Kinematics) Operation is similar to that for Identity Kinematics but, prior
to homing, the selection radio buttons select joints by number. The homing button will show Home All
if all joints are configured for homing and have valid home sequences. Otherwise, the homing button
will show Home Joint.
See the Homing Configuration Chapter for more information.
Touch Off
By pressing Touch Off or the END key, the G5x offset for the current axis is changed so that the
current axis value will be the specified value. Expressions may be entered using the rules for rs274ngc
programs, except that variables may not be referred to. The resulting value is shown as a number.

Figure 10.4: Touch Off Window

See also the Machine menu options: Touch part and Touch part holder.
Actual Position Touch Off An axis may be configured in the .INI file to incorporate the actual position
value for an axis into the touch off calculation, either adding or subtracting this value. This is primarily
useful for machines which have a non-motorized axis such as a quill with an encoder. When this feature
is enabled for an axis, the title bar of the touch off window will indicate (system ACTUAL).
See Section 10.1.12.11 for more information.
Tool Touch Off By pressing the Tool Touch Off button the tool length and offsets of the currently
loaded tool will be changed so that the current tool tip position matches the entered coordinate.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 571 / 1322

Figure 10.5: Tool Touch Off Window

See also the Tool touch off to workpiece and Tool touch off to fixture options in the Machine menu.
Override Limits By pressing Override Limits, the machine will temporarily be allowed to jog off of
a physical limit switch. This check box is only available when a limit switch is tripped. The override
is reset after one jog. If the axis is configured with separate positive and negative limit switches,
LinuxCNC will allow the jog only in the correct direction. Override Limits will not allow a jog past a
soft limit. The only way to disable a soft limit on an axis is to Unhome it.
The Spindle group The buttons on the first row select the direction for the spindle to rotate: Coun-
terclockwise, Stopped, Clockwise. Counterclockwise will only show up if the pin spindle.0.reverse is
in the HAL file (it can be net trick-axis spindle.0.reverse). The buttons on the next row increase or
decrease the rotation speed. The checkbox on the third row allows the spindle brake to be engaged
or released. Depending on your machine configuration, not all the items in this group may appear.
Pressing the spindle start button sets the S speed to 1.
The Coolant group The two buttons allow the Mist and Flood coolants to be turned on and off.
Depending on your machine configuration, not all the items in this group may appear.

10.1.3.6 MDI

MDI allows G-code commands to be entered manually. When the machine is not turned on, or when
a program is running, the MDI controls are unavailable.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 572 / 1322

Figure 10.6: The MDI tab

• History - This shows MDI commands that have been typed earlier in this session.

• MDI Command - This allows you to enter a G-code command to be executed. Execute the command
by pressing Enter or by clicking Go.

• Active G-codes - This shows the modal codes that are active in the interpreter. For instance, G54
indicates that the G54 offset is applied to all coordinates that are entered. When in Auto the Active
G-codes represent the codes after any read ahead by the interpreter.

10.1.3.7 Feed Override

By moving this slider, the programmed feed rate can be modified. For instance, if a program requests
F60 and the slider is set to 120%, then the resulting feed rate will be 72.

10.1.3.8 Spindle Speed Override

By moving this slider, the programmed spindle speed can be modified. For instance, if a program
requests S8000 and the slider is set to 80%, then the resulting spindle speed will be 6400. This item
only appears when the HAL pin spindle.0.speed-out is connected.

10.1.3.9 Jog Speed

By moving this slider, the speed of jogs can be modified. For instance, if the slider is set to 1 in/min,
then a .01 inch jog will complete in about .6 seconds, or 1/100 of a minute. Near the left side (slow

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 573 / 1322

jogs) the values are spaced closely together, while near the right side (fast jogs) they are spaced much
further apart, allowing a wide range of jog speeds with fine control when it is most important.
On machines with a rotary axis, a second jog speed slider is shown. This slider sets the jog rate for
the rotary axes (A, B and C).

10.1.3.10 Max Velocity

By moving this slider, the maximum velocity can be set. This caps the maximum velocity for all pro-
grammed moves except spindle-synchronized moves.

10.1.4 Keyboard Controls

Almost all actions in AXIS can be accomplished with the keyboard. A full list of keyboard shortcuts can
be found in the AXIS Quick Reference, which can be displayed by choosing Help > Quick Reference.
Many of the shortcuts are unavailable when in MDI mode.

10.1.4.1 Feed Override Keys

Note
For details on the Spanish keyboard layout please inspect the translated documentation.

The Feed Override keys behave differently when in Manual Mode. The keys ’12345678 will select an
axis if it is programmed. If you have 3 axis then ’ will select axis 0, 1 will select axis 1, and 2 will select
axis 2. The remainder of the number keys will still set the Feed Override. When running a program
’1234567890 will set the Feed Override to 0% - 100%.
The most frequently used keyboard shortcuts are shown in the following table:

Table 10.1: Most Common Keyboard Shortcuts

Keystroke Action Taken Mode
F1 Toggle Emergency Stop Any
F2 Turn machine on/off Any

 ̀, 1 .. 9, 0 Set feed override from
0% to 100%

Varies

X, ̀ Activate first axis Manual
Y, 1 Activate second axis Manual
Z, 2 Activate third axis Manual
A, 3 Activate fourth axis Manual

I Select jog increment Manual
C Continuous jog Manual

Control-Home Perform homing
sequence

Manual

End Touch off: Set G5x
offset for active axis

Manual

Left, Right Jog first axis Manual
Up, Down Jog second axis Manual

Pg Up, Pg Dn Jog third axis Manual
[,] Jog fourth axis Manual
O Open File Manual

Control-R Reload File Manual

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 574 / 1322

Table 10.1: (continued)

Keystroke Action Taken Mode
R Run file Manual
P Pause execution Auto
S Resume Execution Auto

ESC Stop execution Auto
Control-K Clear backplot Auto/Manual

V Cycle among preset
views

Auto/Manual

Shift-Left,Right Rapid X Axis Manual
Shift-Up,Down Rapid Y Axis Manual

Shift-PgUp, PgDn Rapid Z Axis Manual
@ Toggle

Actual/Commanded
Any

Toggle
Relative/Machine

Any

10.1.5 Show LinuxCNC Status (linuxcnctop)

AXIS includes a program called linuxcnctop which shows some of the details of LinuxCNC’s state. You
can run this program by invoking Machine > Show LinuxCNC Status

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 575 / 1322

Figure 10.7: LinuxCNC Status Window

The name of each item is shown in the left column. The current value is shown in the right column. If
the value has recently changed, it is shown on a red background.

10.1.6 MDI interface

AXIS includes a program called mdi, short for manual data input, which allows text-mode entry of
MDI commands to a running LinuxCNC session. You can run this program directly from the UNIX
command line by opening a terminal and typing:
mdi

Once it is running, it displays the prompt MDI>. When a blank line is entered, the machine’s current
position is shown. When a command is entered, it is sent to LinuxCNC to be executed.
This is a sample session of mdi:
$ mdi
MDI>
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
MDI> G1 F5 X1
MDI>
(0.5928500000000374, 0.0, 0.0, 0.0, 0.0, 0.0)
MDI>
(1.0000000000000639, 0.0, 0.0, 0.0, 0.0, 0.0)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 576 / 1322

10.1.7 axis-remote

AXIS includes a program called axis-remote which can send certain commands to a running AXIS.
The available commands are shown by running axis-remote --help and include checking whether AXIS
is running (--ping), loading a file by name, reloading the currently loaded file (--reload), and making
AXIS exit (--quit).

10.1.8 Manual Tool Change

LinuxCNC includes a non-realtime HAL component called hal_manualtoolchange, which shows a win-
dow prompt telling you what tool is expected when a M6 command is issued. After the OK button is
pressed, execution of the program will continue.
The hal_manualtoolchange component includes a HAL pin for a button that can be connected to a phys-
ical button to complete the tool change and remove the window prompt (hal_manualtoolchange.change_button).
The HAL configuration file lib/hallib/axis_manualtoolchange.hal shows the HAL commands necessary
to use this component.
hal_manualtoolchange can be used even when AXIS is not used as the GUI. This component is most
useful if you have presettable tools and you use the tool table.

Note
Important Note: Rapids will not show on the preview after a T<n> is issued until the next feed move
after the M6. This can be very confusing to most users. To turn this feature off for the current tool
change program a G1 with no move after the T<n>.

Figure 10.8: Manual Toolchange Window

10.1.9 Python modules

AXIS includes several Python modules which may be useful to others. For more information on one of
these modules, use pydoc <module name> or read the source code. These modules include:

• emc provides access to the LinuxCNC command, status, and error channels

• gcode provides access to the rs274ngc interpreter

• rs274 provides additional tools for working with rs274ngc files

• hal allows the creation of non-realtime HAL components written in Python

• _togl provides an OpenGL widget that can be used in Tkinter applications

To use these modules in your own scripts, you must ensure that the directory where they reside
is on Python’s module path. When running an installed version of LinuxCNC, this should happen
automatically. When running in-place, this can be done by using scripts/rip-environment.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 577 / 1322

10.1.10 Using AXIS in Lathe Mode

By including the line LATHE = 1 in the [DISPLAY] section of the INI file, AXIS selects lathe mode. The
Y axis is not shown in coordinate readouts, the view is changed to show the Z axis extending to the
right and the X axis extending towards the bottom of the screen, and several controls (such as those
for preset views) are removed. The coordinate readouts for X are replaced with diameter and radius.

Figure 10.9: AXIS Lathe Mode

Pressing V zooms out to show the entire file, if one is loaded.
When in lathe mode, the shape of the loaded tool (if any) is shown.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 578 / 1322

Figure 10.10: Lathe Tool Shape

To change the display to a back tool lathe you need to have both LATHE = 1 and BACK_TOOL_LATHE
= 1 in the [DISPLAY] section. This will invert the view and put the tool on the back side of the Z axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 579 / 1322

Figure 10.11: Lathe Back Tool Shape

10.1.11 Using AXIS in Foam Cutting mode

By including the line FOAM = 1 in the [DISPLAY] section of the INI file, AXIS selects foam-cutting
mode. In the program preview, XY motions are displayed in one plane, and UV motions in another. In
the live plot, lines are drawn between corresponding points on the XY plane and the UV plane. The
special comments (XY_Z_POS) and (UV_Z_POS) set the Z coordinates of these planes, which default
to 0 and 1.5 machine units.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 580 / 1322

Figure 10.12: Foam Cutting Mode

10.1.12 Advanced Configuration

When AXIS is started it creates the HAL pins for the GUI then it executes the HAL file named in the INI
file: [HAL]POSTGUI_HALFILE=<filename>. Typically <filename> would be the configs base name
+ _postgui + .hal eg. lathe_postgui.hal, but can be any legal filename. These commands are executed
after the screen is built, guaranteeing the widget’s HAL pins are available. You can have multiple line
of POSTGUI_HALFILE=<filename> in the INI. Each will be run one after the other in the order they
appear.
For more information on the INI file settings that can change the way AXIS works, see the Display
Section of the INI configuration chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 581 / 1322

10.1.12.1 Program Filters

AXIS has the ability to send loaded files through a filter program. This filter can do any desired task:
Something as simple as making sure the file ends withM2, or something as complicated as generating
G-code from an image.
The [FILTER] section of the INI file controls how filters work. First, for each type of file, write a
PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write rs274ngc code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by LinuxCNC when Run. The following lines add support for the image-to-gcode converter
included with LinuxCNC:
[FILTER]
PROGRAM_EXTENSION = .png,.gif Greyscale Depth Image
png = image-to-gcode
gif = image-to-gcode

It is also possible to specify an interpreter:
PROGRAM_EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc_files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle.

Figure 10.13: Circular Holes

If the environment variable AXIS_PROGRESS_BAR is set, then lines written to stderr of the form

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 582 / 1322

FILTER_PROGRESS=%d

will set the AXIS progress bar to the given percentage. This feature should be used by any filter that
runs for a long time.

10.1.12.2 The X Resource Database

The colors of most elements of the AXIS user interface can be customized through the X Resource
Database. The sample file axis_light_background changes the colors of the backplot window to a dark
lines on white background scheme, and also serves as a reference for the configurable items in the
display area. The sample file axis_big_dro changes the position readout to a larger size font. To use
these files:
xrdb -merge /usr/share/doc/emc2/axis_light_background

xrdb -merge /usr/share/doc/emc2/axis_big_dro

For information about the other items which can be configured in Tk applications, see the Tk man
pages.
Because modern desktop environments automatically make some settings in the X Resource Database
that adversely affect AXIS, by default these settings are ignored. To make the X Resource Database
items override AXIS defaults, include the following line in your X Resources:
*AXIS*optionLevel: widgetDefault

this causes the built-in options to be created at the option level widgetDefault, so that X Resources
(which are level userDefault) can override them.

10.1.12.3 Jogwheel

To improve the interaction of AXIS with a physical jogwheel, the current active axis selected in the
GUI is also reported on a HAL pin with a name like axisui.jog.x. Except for a short time after the
current axis has changed, only one of these pins at a time is TRUE, the others remain FALSE.
After AXIS has created these HAL pins, it runs the HAL file declared with: [HAL]POSTGUI_HALFILE.
What differs from [HAL]HALFILE, which can only be used once.

10.1.12.4 ~/.axisrc

If it exists, the contents of ~/.axisrc are executed as Python source code just before the AXIS GUI
is displayed. The details of what may be written in the ~/.axisrc are subject to change during the
development cycle.
The following adds Control-Q as a keyboard shortcut for Quit.
Example of .axisrc file
root_window.bind(”<Control-q>”, ”destroy .”)
help2.append((”Control-Q”, ”Quit”))

The following stops the ”Do you really want to quit” dialog.
root_window.tk.call(”wm”,”protocol”,”.”,”WM_DELETE_WINDOW”,”destroy .”)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 583 / 1322

10.1.12.5 USER_COMMAND_FILE

A configuration-specific Python file may be specified with an INI file setting [DISPLAY]USER_COMMAND_FILE=filename.py.
Like a ~/.axisrc file, this file is sourced just before the AXIS GUI is displayed. This file is specific to
an INI file configuration not the user’s home directory.

10.1.12.6 user_live_update()

The AXIS GUI includes a no-op (placeholder) function named user_live_update() that is executed at the
conclusion of the update() function of its LivePlotter class. This function may be implemented within
a ~/.axisrc Python script or a [DISPLAY]USER_COMMAND_FILE Python script to make custom,
periodic actions. The details of what may be accomplished in this function are dependent on the AXIS
GUI implementation and subject to change during the development cycle.

10.1.12.7 user_hal_pins()

The AXIS GUI includes a no-op (placeholder) function named user_hal_pins().
It is executed just after the .axisrc file is called and just before any GladeVCP panels / embedded tabs
are initialized.
This function may be implemented within a ~/.axisrc Python script or a [DISPLAY]USER_COMMAND_FILE
Python script to make custom HAL pins that use the axisui. prefix.
Use comp as the HAL component instance reference.
HAL comp.ready() is called just after this function returns.

10.1.12.8 External Editor

The menu options File > Edit… and File > Edit Tool Table… become available after defining the editor
in the INI section [DISPLAY]. Useful values include EDITOR=gedit and EDITOR=gnome-terminal -e
vim. For more information, see the Display Section of the INI Configuration Chapter.

10.1.12.9 Virtual Control Panel

AXIS can display a custom virtual control panel in either the right side column or the bottom row.
Additionally one or more panels may be displayed as embedded tabs. You can program buttons,
indicators, data displays and more. For more information, see the PyVCP and the GladeVCP chapters.

10.1.12.10 Preview Control

Special comments can be inserted into the G-code file to control how the preview of AXIS behaves. In
the case where you want to limit the drawing of the preview use these special comments. Anything
between the (AXIS,hide) and (AXIS,show) will not be drawn during the preview. The (AXIS,hide) and
(AXIS,show) must be used in pairs with the (AXIS,hide) being first. Anything after a (AXIS,stop) will
not be drawn during the preview.
These comments are useful to unclutter the preview display (for instance while debugging a larger
G-code file, one can disable the preview on certain parts that are already working OK).

• (AXIS,hide) Stops the preview (must be first)

• (AXIS,show) Resumes the preview (must follow a hide)

• (AXIS,stop) Stops the preview from here to the end of the file.

• (AXIS,notify,the_text) Displays the_text as an info display

This display can be useful in the AXIS preview when (debug,message) comments are not displayed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 584 / 1322

10.1.12.11 Touch Off using Actual Position

The Touch Off feature can optionally incorporate the actual axis position value into the calculation for
the offset. This is primarily used in cases where a non-motorized axis such as the quill in a milling
machine provides feedback to LinuxCNC via an encoder, but there is no motor to control movement.
This allows AXIS to provide a DRO display for such an axis with working touch off capability.
This feature is enabled on an axis by altering the appropriate [AXIS_x] section of the .INI file. Add
an option named TOUCHOFF_ACTUAL and set the value to PLUS or MINUS depending on how you
want to apply the actual position to the offset.
Example:
[AXIS_Z]
TOUCHOFF_ACTUAL = MINUS

Ordinarily, only the commanded position of an axis is used to set this offset, meaning it does not
work properly because non-motorized axes are never commanded to move and thus their commanded
position is always 0.
Touch off sends a G10 L20 command to the MDI to set the new offset value. The value applied is
normally just the value entered into the dialog box. When this feature is enabled, it will either add
or subtract the current position value from the value entered in the dialog, depending on how it is
configured.

10.1.13 Axisui

To improve the interaction of AXIS with physical jog wheels, the axis currently selected in the GUI is
also reported on a pin with a name like axisui.jog.x. One of these pins is TRUE at one time, and the
rest are FALSE. These are meant to control motion’s jog-enable pins.
Axisui Pins AXIS has HAL pins to indicate which jog radio button is selected in the Manual Control
tab.
Type Dir Name
bit OUT axisui.jog.x
bit OUT axisui.jog.y
bit OUT axisui.jog.z
bit OUT axisui.jog.a
bit OUT axisui.jog.b
bit OUT axisui.jog.c
bit OUT axisui.jog.u
bit OUT axisui.jog.v
bit OUT axisui.jog.w

AXIS has a HAL pin to indicate the jog increment selected on the Manual Tab.
Type Dir Name
float OUT axisui.jog.increment

AXIS has a HAL output pin that indicates when an abort has occurred. The axisui.abort pin will be
TRUE and come back to FALSE after 0.3ms.
Type Dir Name
bit OUT axisui.abort

AXIS has a HAL output pin that indicates when an error has occurred. The axisui.error pin will remain
TRUE until all error notifications have been dismissed.
Type Dir Name
bit OUT axisui.error

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 585 / 1322

AXIS has HAL input pins to clear the pop up notifications for errors and information.
Type Dir Name
bit IN axisui.notifications-clear
bit IN axisui.notifications-clear-error
bit IN axisui.notifications-clear-info

AXIS has a HAL input pin that disables/enables the Pause/Resume function.
Type Dir Name
bit IN axisui.resume-inhibit

10.1.14 AXIS Customization Hints

AXIS is a fairly large and difficult-to-penetrate code base, this is helpful To keep the code stable but
makes it difficult to customize.
Here we will show code snippets to modify behaviours or visuals of the screen. Keep in mind the
internal code of AXIS can change from time to time.
these snippets are not guaranteed to continue to work - they may need adjustment.

10.1.14.1 The update function

There is a function in AXIS named user_live_update that is called every time AXIS updates itself. You
can use this to update your own functions.
continuous update function
def user_live_update():

print(’i am printed every update...’)

10.1.14.2 Disable the Close Dialog

disable the do you want to close dialog
root_window.tk.call(”wm”,”protocol”,”.”,”WM_DELETE_WINDOW”,”destroy .”)

10.1.14.3 Change the Text Font

change the font

font = ’sans 11’
fname,fsize = font.split()
root_window.tk.call(’font’,’configure’,’TkDefaultFont’,’-family’,fname,’-size’,fsize)

redo the text in tabs so they resize for the new default font

root_window.tk.call(’.pane.top.tabs’,’itemconfigure’,’manual’,’-text’,’ Manual - F3 ’)
root_window.tk.call(’.pane.top.tabs’,’itemconfigure’,’mdi’,’-text’,’ MDI - F5 ’)
root_window.tk.call(’.pane.top.right’,’itemconfigure’,’preview’,’-text’,’ Preview ’)
root_window.tk.call(’.pane.top.right’,’itemconfigure’,’numbers’,’-text’,’ DRO ’)

G-code font is independent

root_window.tk.call(’.pane.bottom.t.text’,’configure’,’-foreground’,’blue’)
#root_window.tk.call(’.pane.bottom.t.text’,’configure’,’-foreground’,’blue’,’-font’,font)
#root_window.tk.call(’.pane.bottom.t.text’,’configure’,’-foreground’,’blue’,’-font’,font,’- ←↩

height’,’12’)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 586 / 1322

10.1.14.4 Modify Rapid Rate with Keyboard Shortcuts

use control + ‘ or 1-0 as keyboard shortcuts for rapidrate and keep ‘ or 1-0 for feedrate
also adds text to quick reference in help

help1.insert(10,(”Control+ ‘,1..9,0”, _(”Set Rapid Override from 0% to 100%”)),)

root_window.bind(’<Control-Key-quoteleft>’,lambda event: set_rapidrate(0))
root_window.bind(’<Control-Key-1>’,lambda event: set_rapidrate(10))
root_window.bind(’<Control-Key-2>’,lambda event: set_rapidrate(20))
root_window.bind(’<Control-Key-3>’,lambda event: set_rapidrate(30))
root_window.bind(’<Control-Key-4>’,lambda event: set_rapidrate(40))
root_window.bind(’<Control-Key-5>’,lambda event: set_rapidrate(50))
root_window.bind(’<Control-Key-6>’,lambda event: set_rapidrate(60))
root_window.bind(’<Control-Key-7>’,lambda event: set_rapidrate(70))
root_window.bind(’<Control-Key-8>’,lambda event: set_rapidrate(80))
root_window.bind(’<Control-Key-9>’,lambda event: set_rapidrate(90))
root_window.bind(’<Control-Key-0>’,lambda event: set_rapidrate(100))
root_window.bind(’<Key-quoteleft>’,lambda event: set_feedrate(0))
root_window.bind(’<Key-1>’,lambda event: set_feedrate(10))
root_window.bind(’<Key-2>’,lambda event: set_feedrate(20))
root_window.bind(’<Key-3>’,lambda event: set_feedrate(30))
root_window.bind(’<Key-4>’,lambda event: set_feedrate(40))
root_window.bind(’<Key-5>’,lambda event: set_feedrate(50))
root_window.bind(’<Key-6>’,lambda event: set_feedrate(60))
root_window.bind(’<Key-7>’,lambda event: set_feedrate(70))
root_window.bind(’<Key-8>’,lambda event: set_feedrate(80))
root_window.bind(’<Key-9>’,lambda event: set_feedrate(90))
root_window.bind(’<Key-0>’,lambda event: set_feedrate(100))

10.1.14.5 Read the INI file

read an INI file item
machine = inifile.find(’EMC’,’MACHINE’)
print(’machine name =’,machine)

10.1.14.6 Read LinuxCNC Status

LinuxCNC status can be read from s.
print(s.actual_position)
print(s.paused)

10.1.14.7 Change the current view

set the view of the preview
valid views are view_x view_y view_y2 view_z view_z2 view_p
commands.set_view_z()

10.1.14.8 Creating new AXISUI HAL Pins

def user_hal_pins():
comp.newpin(’my-new-in-pin’, hal.HAL_BIT, hal.HAL_IN)
comp.ready()

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 587 / 1322

10.1.14.9 Creating new HAL Component and Pins

create a component

mycomp = hal.component(’my_component’)
mycomp.newpin(’idle-led’,hal.HAL_BIT,hal.HAL_IN)
mycomp.newpin(’pause-led’,hal.HAL_BIT,hal.HAL_IN)
mycomp.ready()

connect pins

hal.new_sig(’idle-led’,hal.HAL_BIT)
hal.connect(’halui.program.is-idle’,’idle-led’)
hal.connect(’my_component.idle-led’,’idle-led’)

set a pin

hal.set_p(’my_component.pause-led’,’1’)

get a pin 2,8+ branch

value = hal.get_value(’halui.program.is-idle’)
print(’value is a’,type(value),’value of’,value)

10.1.14.10 Switch Tabs with HAL Pins

HAL pins from a GladeVCP panel will not be ready when user_live_update is run
to read them you need to put them in a try/except block

the following example assumes 5 HAL buttons in a GladeVCP panel used to switch
the tabs in the AXIS screen.
button names are ’manual-tab’, ’mdi-tab’, ’preview-tab’, ’dro-tab’, ’user0-tab’
the user_0 tab if it exists would be the first GladeVCP embedded tab

for LinuxCNC 2.8+ branch

def user_live_update():
try:

if hal.get_value(’gladevcp.manual-tab’):
root_window.tk.call(’.pane.top.tabs’,’raise’,’manual’)

elif hal.get_value(’gladevcp.mdi-tab’):
root_window.tk.call(’.pane.top.tabs’,’raise’,’mdi’)

elif hal.get_value(’gladevcp.preview-tab’):
root_window.tk.call(’.pane.top.right’,’raise’,’preview’)

elif hal.get_value(’gladevcp.numbers-tab’):
root_window.tk.call(’.pane.top.right’,’raise’,’numbers’)

elif hal.get_value(’gladevcp.user0-tab’):
root_window.tk.call(’.pane.top.right’,’raise’,’user_0’)

except:
pass

10.1.14.11 Add a GOTO Home button

def goto_home(axis):
if s.interp_state == linuxcnc.INTERP_IDLE:

home = inifile.find(’JOINT_’ + str(inifile.find(’TRAJ’, ’COORDINATES’).upper(). ←↩
index(axis)), ’HOME’)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 588 / 1322

mode = s.task_mode
if s.task_mode != linuxcnc.MODE_MDI:

c.mode(linuxcnc.MODE_MDI)
c.mdi(’G53 G0 ’ + axis + home)

make a button to home y axis
root_window.tk.call(’button’,’.pane.top.tabs.fmanual.homey’,’-text’,’Home Y’,’-command’,’ ←↩

goto_home Y’,’-height’,’2’)

place the button
root_window.tk.call(’grid’,’.pane.top.tabs.fmanual.homey’,’-column’,’1’,’-row’,’7’,’- ←↩

columnspan’,’2’,’-padx’,’4’,’-sticky’,’w’)

any function called from Tcl needs to be added to TclCommands
TclCommands.goto_home = goto_home
commands = TclCommands(root_window)

10.1.14.12 Add Button to manual frame

make a new button and put it in the manual frame

root_window.tk.call(’button’,’.pane.top.tabs.fmanual.mybutton’,’-text’,’My Button’,’- ←↩
command’,’mybutton_clicked’,’-height’,’2’)

root_window.tk.call(’grid’,’.pane.top.tabs.fmanual.mybutton’,’-column’,’1’,’-row’,’6’,’- ←↩
columnspan’,’2’,’-padx’,’4’,’-sticky’,’w’)

the above send the ”mybutton_clicked” command when clicked
other options are to bind a press or release (or both) commands to the button
these can be in addition to or instead of the clicked command
if instead of then delete ’-command’,’mybutton_clicked’, from the first line

Button-1 = left mouse button, 2 = right or 3 = middle

root_window.tk.call(’bind’,’.pane.top.tabs.fmanual.mybutton’,’<Button-1>’,’mybutton_pressed ←↩
’)

root_window.tk.call(’bind’,’.pane.top.tabs.fmanual.mybutton’,’<ButtonRelease-1>’,’ ←↩
mybutton_released’)

functions called from the buttons

def mybutton_clicked():
print(’mybutton was clicked’)

def mybutton_pressed():
print(’mybutton was pressed’)

def mybutton_released():
print(’mybutton was released’)

any function called from Tcl needs to be added to TclCommands

TclCommands.mybutton_clicked = mybutton_clicked
TclCommands.mybutton_pressed = mybutton_pressed
TclCommands.mybutton_released = mybutton_released
commands = TclCommands(root_window)

10.1.14.13 Reading Internal Variables

the following variables may be read from the vars instance

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 589 / 1322

print(vars.machine.get())
print(vars.emcini.get())

active_codes = StringVar
block_delete = BooleanVar
brake = BooleanVar
coord_type = IntVar
display_type = IntVar
dro_large_font = IntVar
emcini = StringVar
exec_state = IntVar
feedrate = IntVar
flood = BooleanVar
grid_size = DoubleVar
has_editor = IntVar
has_ladder = IntVar
highlight_line = IntVar
interp_pause = IntVar
interp_state = IntVar
ja_rbutton = StringVar
jog_aspeed = DoubleVar
jog_speed = DoubleVar
kinematics_type = IntVar
linuxcnctop_command = StringVar
machine = StringVar
max_aspeed = DoubleVar
max_maxvel = DoubleVar
max_queued_mdi_commands = IntVar
max_speed = DoubleVar
maxvel_speed = DoubleVar
mdi_command = StringVar
metric = IntVar
mist = BooleanVar
motion_mode = IntVar
on_any_limit = BooleanVar
optional_stop = BooleanVar
override_limits = BooleanVar
program_alpha = IntVar
queued_mdi_commands = IntVar
rapidrate = IntVar
rotate_mode = BooleanVar
running_line = IntVar
show_distance_to_go = IntVar
show_extents = IntVar
show_live_plot = IntVar
show_machine_limits = IntVar
show_machine_speed = IntVar
show_program = IntVar
show_pyvcppanel = IntVar
show_rapids = IntVar
show_tool = IntVar
show_offsets = IntVar
spindledir = IntVar
spindlerate = IntVar
task_mode = IntVar
task_paused = IntVar
task_state = IntVar
taskfile = StringVar
teleop_mode = IntVar
tool = StringVar
touch_off_system = StringVar

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 590 / 1322

trajcoordinates = StringVar
tto_g11 = BooleanVar
view_type = IntVar

10.1.14.14 Hide Widgets

hide a widget
use ’grid’ or ’pack’ depending on how it was originally placed
root_window.tk.call(’grid’,’forget’,’.pane.top.tabs.fmanual.jogf.zerohome.tooltouch’)

10.1.14.15 Change a label

change label of a widget
root_window.tk.call(’setup_widget_accel’,’.pane.top.tabs.fmanual.mist’,’Downdraft’)

make sure it appears (only needed in this case if the mist button was hidden)
root_window.tk.call(’grid’,’.pane.top.tabs.fmanual.mist’,’-column’,’1’,’-row’,’5’,’- ←↩

columnspan’,’2’,’-padx’,’4’,’-sticky’,’w’)

10.1.14.16 Redirect an existing command

hijack an existing command
originally the mist button calls the mist function
root_window.tk.call(’.pane.top.tabs.fmanual.mist’,’configure’,’-command’,’hijacked_command’ ←↩

)

The new function
def hijacked_command():

print(’hijacked mist command’)

add the function to TclCommands
TclCommands.hijacked_command = hijacked_command
commands = TclCommands(root_window)

10.1.14.17 Change the DRO color

change dro screen
root_window.tk.call(’.pane.top.right.fnumbers.text’,’configure’,’-foreground’,’green’,’- ←↩

background’,’black’)

10.1.14.18 Change the Toolbar Buttons

change the toolbar buttons

buW = ’3’
buH = ’2’
boW = ’3’

root_window.tk.call(’.toolbar.machine_estop’,’configure’,’-image’,’’,’-text’,’ESTOP’,’- ←↩
width’,buW,’-height’,buH,’-borderwidth’,boW)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 591 / 1322

root_window.tk.call(’.toolbar.machine_power’,’configure’,’-image’,’’,’-text’,’POWER’,’- ←↩
width’,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.file_open’,’configure’,’-image’,’’,’-text’,’OPEN’,’-width’, ←↩
buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.reload’,’configure’,’-image’,’’,’-text’,’RELOAD’,’-width’,buW ←↩
,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.program_run’,’configure’,’-image’,’’,’-text’,’RUN’,’-width’, ←↩
buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.program_step’,’configure’,’-image’,’’,’-text’,’STEP’,’-width’ ←↩
,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.program_pause’,’configure’,’-image’,’’,’-text’,’PAUSE’,’- ←↩
width’,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.program_stop’,’configure’,’-image’,’’,’-text’,’STOP’,’-width’ ←↩
,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.program_blockdelete’,’configure’,’-image’,’’,’-text’,’Skip /’ ←↩
,’-width’,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.program_optpause’,’configure’,’-image’,’’,’-text’,’M1’,’- ←↩
width’,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_zoomin’,’configure’,’-image’,’’,’-text’,’Zoom+’,’-width’ ←↩
,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_zoomout’,’configure’,’-image’,’’,’-text’,’Zoom-’,’-width ←↩
’,buW,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_z’,’configure’,’-image’,’’,’-text’,’Top X’,’-width’,buW, ←↩
’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_z2’,’configure’,’-image’,’’,’-text’,’Top Y’,’-width’,buW ←↩
,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_x’,’configure’,’-image’,’’,’-text’,’Right’,’-width’,buW, ←↩
’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_y’,’configure’,’-image’,’’,’-text’,’Front’,’-width’,buW, ←↩
’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.view_p’,’configure’,’-image’,’’,’-text’,’3D’,’-width’,buW,’- ←↩
height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.rotate’,’configure’,’-image’,’’,’-text’,’Rotate’,’-width’,buW ←↩
,’-height’,buH,’-borderwidth’,boW)

root_window.tk.call(’.toolbar.clear_plot’,’configure’,’-image’,’’,’-text’,’Clear’,’-width’, ←↩
buW,’-height’,buH,’-borderwidth’,boW)

10.1.14.19 Change Plotter Colors

In RGBA format, in this order: jog, rapid, feed, arc, toolchange, probe
change plotter colors
try:

live_plotter.logger.set_colors((255,0,0,255),
(0,255,0,255),
(0,0,255,255),
(255,255,0,255),
(255,255,255,255),
(0,255,255,255))

except Exception as e:
print(e)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 592 / 1322

10.2 GMOCCAPY

10.2.1 Introduction

GMOCCAPY is a GUI for LinuxCNC, designed to be used with a touch screen, but can also be used on
normal screens with a mouse or hardware buttons and MPG wheels, as it presents HAL Pins for the
most common needs. Please find more information in the following.
It offers the possibility to display up to 9 axes, support a lathe mode for normal and back tool lathe and
can be adapted to nearly every need, because GMOCCAPY supports embedded tabs and side panels.
As a good example for that see gmoccapy_plasma.
GMOCCAPY 3 does support up to 9 axes and 9 joints. As GMOCCAPY 3 has been changed in code to
support the joint / axis changes in LinuxCNC it does not work on 2.7 or 2.6 branch!
It has support for integrated virtual keyboard (onboard or matchbox-keyboard), so there is no need
for a hardware keyboard or mouse, but it can also be used with that hardware. GMOCCAPY offers a
separate settings page to configure most settings of the GUI without editing files.
GMOCCAPY can be localized very easy, because the corresponding files are separated from the lin-
uxcnc.po files, so there is no need to translate unneeded stuff. If you want to contribute a translation,
please use the web based translation editor Weblate. For more information see the section Transla-
tions

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Gmoccapy_plasma
https://hosted.weblate.org/projects/linuxcnc/gmocappy/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 593 / 1322

10.2.2 Requirements

GMOCCAPY 3 has been tested on Debian Jessie, Debian Stretch and MINT 18 with LinuxCNC master
and 2.8 release. It fully support joint / axis changes of LinuxCNC, making it suitable as GUI for Scara,
Robots or any other config with more joints than axes. So it supports also gantry configs. If you use
other versions, please inform about problems and / or solutions on the LinuxCNC forum or the German
CNC Ecke Forum or LinuxCNC users mailing list.
The minimum screen resolution for GMOCCAPY for the normal layout (without side panels) is 980 x
750 Pixel, so it should fit to every standard screen. It is recommended to use screens with minimum
resolution of 1024x768. There is also a configuration which fits for 800x600 screens (introduced in
GMOCCAPY 3.4.8).

10.2.3 How to get GMOCCAPY

GMOCCAPY 3 is included in the standard distribution of LinuxCNC since release 2.7. So the easiest
way to get GMOCCAPY on your controlling PC is just to download the ISO and install it from the
CD/DVD/USB-stick. This allows you to receive updates with the regular Debian packages.
In the release notes aka changelist you can track the latest bugfixes and features.
You will get a similar screen to the following (the design may vary depending on your config):

https://linuxcnc.org/index.php/english/forum/41-guis/26314-gmoccapy-a-new-screen-for-linuxcnc
http://www.cncecke.de/forum/showthread.php?t=78549
http://www.cncecke.de/forum/showthread.php?t=78549
https://lists.sourceforge.net/lists/listinfo/emc-users
https://linuxcnc.org/downloads/
gmoccapy_release_notes.txt

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 594 / 1322

10.2.4 Basic Configuration

GMOCCAPY 3 supports the following command line options:

• -user_mode: If set, the setup button will be disabled, so normal machine operators are not able to
edit the settings of the machine.

• -logo <path to logo file>: If given, the logo will hide the jog button tab in manual mode, this is only
useful for machines with hardware buttons for jogging and increment selection.

There is really not to much to configure just to run GMOCCAPY, but there are some points you should
take care off if you want to use all the features of the GUI.
You will find a lot of simulation configurations (INI files) included, just to show the basics:

• gmoccapy.ini

• gmoccapy_4_axis.ini

• lathe_configs/gmoccapy_lathe.ini

• lathe_configs/gmoccapy_lathe_imperial.ini

• gmoccapy_left_panel.ini

• gmoccapy_right_panel.ini

• gmoccapy_messages.ini

• gmoccapy_pendant.ini

• gmoccapy_sim_hardware_button.ini

• gmoccapy_tool_sensor.ini

• gmoccapy_with_user_tabs.ini

• gmoccapy_XYZAB.ini

• gmoccapy_XYZAC.ini

• gmoccapy_XYZCW.ini

• gmoccapy-JA/Gantry/gantry_mm.ini

• gmoccapy-JA/scara/scara.ini

• gmoccapy-JA/table-rotary-tilting/xyzac-trt.ini

• and a lot more …

The names should explain the main intention of the different INI files.
If you use an existing configuration of your machine, just edit your INI according to this document.
So let us take a closer look at the INI file and what you need to include to use GMOCCAPY on your
machine:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 595 / 1322

10.2.4.1 The DISPLAY Section

[DISPLAY]
DISPLAY = gmoccapy
PREFERENCE_FILE_PATH = gmoccapy_preferences
MAX_FEED_OVERRIDE = 1.5
MAX_SPINDLE_OVERRIDE = 1.2
MIN_SPINDLE_OVERRIDE = 0.5
DEFAULT_SPINDLE_SPEED = 500
LATHE = 1
BACK_TOOL_LATHE = 1
PROGRAM_PREFIX = ../../nc_files/

• DISPLAY = gmoccapy - This tells LinuxCNC to use GMOCCAPY.

• PREFERENCE_FILE_PATH - Gives the location and name of the preferences file to be used. In most
cases this line will not be needed, it is used by GMOCCAPY to store your settings of the GUI, like
themes, DRO units, colors, and keyboard settings, etc., see settings page for more details.

Note
If no path or file is given, GMOCCAPY will use as default <your_machinename>.pref, if no machine
name is given in your INI File it will use gmoccapy.pref. The file will be stored in your config directory,
so the settings will not be mixed if you use several configs. If you only want to use one file for
several machines, you need to include PREFERENCE_FILE_PATH in your INI.

• MAX_FEED_OVERRIDE = 1.5 - Sets the maximum feed override, in the example given, you will be
allowed to override the feed by 150%.

Note
If no value is given, it will be set to 1.0.

• MIN_SPINDLE_OVERRIDE = 0.5 and MAX_SPINDLE_OVERRIDE = 1.2 - Will allow you to change
the spindle override within a limit from 50% to 120%.

Note
If no values are given, MIN will be set to 0.1 and MAX to 1.0.

• LATHE = 1 - Set the screen layout to control a lathe.

• BACK_TOOL_LATHE = 1 - Is optional and will switch the X axis in a way you need for a back tool
lathe. Also the keyboard shortcuts will react in a different way. It is allowed with GMOCCAPY to
configure a lathe also with additional axes, so you may use also a XZCW config for a lathe.

Tip
See also the Lathe Specific Section.

• PROGRAM_PREFIX = ../../nc_files/ - Is the entry to tell LinuxCNC/GMOCCAPY where to look for the
NGC files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 596 / 1322

Note
If not specified, GMOCCAPY will look in the following order for NGC files: First linuxcnc/nc_files
and then the users home directory.

• DEFAULT_SPINDLE_SPEED - Start value for ”Starting RPM” if value not present in preferences file
or file is not present. Will have no effect with valid preferences file.

• MIN_ANGULAR_VELOCITY - Sets the minimal jog velocity of the machine for rotary axes.

• MAX_ANGULAR_VELOCITY - Sets the maximal jog velocity of the machine for rotary axes.

• DEFAULT_ANGULAR_VELOCITY - Sets the default jog velocity of the machine for rotary axes.

10.2.4.2 The TRAJ Section

• DEFAULT_LINEAR_VELOCITY = 85.0 - Sets the default jog velocity of the machine.

Note
If not set, half of MAX_LINEAR_VELOCITY will be used. If that value is also not given, it will default
to 180.

• MAX_LINEAR_VELOCITY = 230.0 - Sets the maximal velocity of the machine. This value will also
be the maximum linear jog velocity.

Note
Defaults to 600 if not set.

10.2.4.3 Macro Buttons

You can add macros to GMOCCAPY, similar to Touchy’s way. A macro is nothing else than a NGC file.
You are able to execute complete CNC programs in MDI mode by just pushing one button. To do so,
you first have to specify the search path for macros:
[RS274NGC]
SUBROUTINE_PATH = macros

This sets the path to search for macros and other subroutines. Several subroutine paths can be
separated ”:”.
Then you just have to add a section like this:
Configuration of Five Macros to be Shown in the MDI Button List
[MACROS]
MACRO = i_am_lost
MACRO = hello_world
MACRO = jog_around
MACRO = increment xinc yinc
MACRO = go_to_position X-pos Y-pos Z-pos

Then you have to provide the corresponding NGC files which have to follow these rules:

• The name of the file need to be exactly the same as the name mentioned in the macro line, just with
the ”.ngc” extension (case sensitive).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 597 / 1322

• The file must contain a subroutine like O<i_am_lost> sub, the name of the sub must match exactly
(case sensitive) the name of the macro.

• The file must end with an endsub O<i_am_lost> endsub followed by an M2 command.

• The files need to be placed in a folder specified in your INI file by SUBROUTINE_PATH in the
RS274NGC section

The code between sub and endsub will be executed by pushing the corresponding macro button.

Note
A maximum of 16 macros will be shown in the GUI. Due to space reasons you may need to click on
an arrow to switch the page and display hidden macro buttons. The macro buttons will be displayed
in the order of the INI entries. It is no error placing more than 16 macros in your INI file, they will just
not be shown.

Note
You will find the sample macros in a folder namedmacros placed in the GMOCCAPY sim folder. If you
have given several subroutine paths, they will be searched in the order of the given paths. The first
file found will be used.

GMOCCAPY will also accept macros asking for parameters like:
[MACROS]
MACRO = go_to_position X-pos Y-pos Z-pos

The parameters must be separated by spaces. This example calls a file go_to_position.ngc with the
following content:
; Test file ”go to position”
; will jog the machine to a given position

O<go_to_position> sub

G17
G21
G54
G61
G40
G49
G80
G90

;#1 = <X-Pos>
;#2 = <Y-Pos>
;#3 = <Z-Pos>

(DEBUG, Will now move machine to X = #1 , Y = #2 , Z = #3)
G0 X #1 Y #2 Z #3

O<go_to_position> endsub
M2

After pushing the execute macro button, you will be asked to enter the values for X-pos Y-pos Z-pos
and the macro will only run if all values have been given.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 598 / 1322

Note
If you would like to use a macro without any movement, see also the notes in known problems.

Macro example using the ”go to position”-macro

10.2.4.4 Embedded Tabs and Panels

You can add embedded programs to GMOCCAPY like you can do in AXIS, Touchy and Gscreen. All is
done by GMOCCAPY automatically if you include a few lines in your INI file in the DISPLAY section.
If you have never used a Glade panel, I recommend to read the excellent documentation on Glade
VCP.
Embedded Tab Example
EMBED_TAB_NAME = DRO
EMBED_TAB_LOCATION = ntb_user_tabs
EMBED_TAB_COMMAND = gladevcp -x {XID} dro.glade

EMBED_TAB_NAME = Second user tab
EMBED_TAB_LOCATION = ntb_preview
EMBED_TAB_COMMAND = gladevcp -x {XID} vcp_box.glade

All you have to take care of, is that you include for every tab or side panel the mentioned three lines:

https://linuxcnc.org/docs/2.9/html/gui/gladevcp.html
https://linuxcnc.org/docs/2.9/html/gui/gladevcp.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 599 / 1322

• EMBED_TAB_NAME = Represents the name of the tab or side panel, it is up to you what name you
use, but it must be present!

• EMBED_TAB_LOCATION = The place where your program will be placed in the GUI, see figure
Embedded tab locations. Valid values are:

– ntb_user_tabs (as main tab, covering the complete screen (7))
– ntb_preview (as tab on the preview side (1))
– hbox_jog (will hide the jog buttons and introduce your glade file here (2))
– box_left (on the left, complete height of the screen (10))
– box_right (on the right, in between the normal screen and the button list (11))
– box_tool_and_code_info (will hide the Tool information and G-code frames and introduce your

glade file here (3))
– box_tool_info (will hide the Tool information frame and introduce your glade file here (3a))
– box_code_info (will hide the G-code information frame and introduce your glade file here (3b))
– box_vel_info (will hide the velocity frames and introduce your glade file (4))
– box_coolant_and_spindle (will hide the coolant and spindle frames and introduce your glade file

here (5)+(6))
– box_cooling (will hide the cooling frame and introduce your glade file (5))
– box_spindle (will hide the spindle frame and introduce your glade file (6))
– box_custom_1 (will introduce your glade file left of vel_frame)
– box_custom_2 (will introduce your glade file left of cooling_frame)
– box_custom_3 (will introduce your glade file left of spindle_frame)
– box_custom_4 (will introduce your glade file right of spindle_frame)
– box_dro_side (will introduce your glade file right of the DRO (8))
– ntb_setup (as tab on the setup page (9))

Note
See also the included sample INI files to see the differences.

• EMBED_TAB_COMMAND = The command to execute, i.e.
gladevcp -x {XID} dro.glade

includes a custom glade file called dro.glade in the mentioned location. The file must be placed in
the config folder of your machine.
gladevcp h_buttonlist.glade

will just open a new user window called h_buttonlist.glade note the difference. This one is stand
alone, and can be moved around independent from GMOCCAPY window.
gladevcp -c gladevcp -u hitcounter.py -H manual-example.hal manual-example.ui

will add a the panel manual-example.ui, include a custom Python handler, hitcounter.py and make
all connections after realizing the panel according to manual-example.hal.
hide

will hide the chosen box.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 600 / 1322

Figure 10.14: Embedded tab locations

Note
If you make any HAL connections to your custom glade panel, you need to do that in the HAL file
specified in the EMBED_TAB_COMMAND line, otherwise you may get an error that the HAL pin does
not exist — this is because of race conditions loading the HAL files. Connections to GMOCCAPY HAL
pins need to be made in the postgui HAL file specified in your INI file, because these pins do not exist
prior of realizing the GUI.

Here are some examples:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 601 / 1322

ntb_preview box_right - and GMOCCAPY in MDI mode

10.2.4.5 User Created Messages

GMOCCAPY has the ability to create HAL driven user messages. To use them you need to introduce
some lines in the [DISPLAY] section of the INI file.
These three lines are needed to define a user pop up message dialog:
MESSAGE_TEXT = The text to be displayed, may be pango markup formatted
MESSAGE_TYPE = ”status” , ”okdialog” , ”yesnodialog”
MESSAGE_PINNAME = is the name of the HAL pin group to be created

The messages support pango markup language. Detailed information about the markup language can
be found at Pango Markup.
The following three dialog types are available:

• status - Will just display a message as pop up window, using the messaging system of GMOCCAPY.

• okdialog - Will hold focus on the message dialog and will activate a -waiting HAL pin.

• yesnodialog - Will hold focus on the message dialog and will activate a -waiting HAL pin and
provide a -response HAL pin.

For more detailed information of the pins see User Created Message HAL Pins.
Example of User Message Configuration
MESSAGE_TEXT = This is a info-message</span ←↩

> test
MESSAGE_TYPE = status
MESSAGE_PINNAME = statustest

https://developer.gnome.org/pango/stable/PangoMarkupFormat.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 602 / 1322

MESSAGE_TEXT = This is a yes no dialog test
MESSAGE_TYPE = yesnodialog
MESSAGE_PINNAME = yesnodialog

MESSAGE_TEXT = Text can be <small>small</small>, <big>big</big>, bold</b <i>italic</i>, ←↩
and even be colored.

MESSAGE_TYPE = okdialog
MESSAGE_PINNAME = okdialog

Note
Currently the formatting doesn’t work.

10.2.4.6 Preview Control

Magic comments can be used to control the G-code preview. On very large programs the preview can
take a long time to load. You can control what is shown and what is hidden on the graphics screen by
adding the appropriate comments from this list into your G-code:
(PREVIEW,hide)
<G-code to be hidden>
(PREVIEW,show)

10.2.4.7 User Command File

If a file ~/.gmoccapyrc exists, its contents are executed as Python source code just after the GUI is
displayed. The details of what may be written in the ~/.gmoccapyrc are subject to change during the
development cycle.
A configuration-specific Python file may be specified with an INI file setting
[DISPLAY]
USER_COMMAND_FILE=filename.py

If this file is specified, this file is sourced just after the GMOCCAPY GUI is displayed instead of
~/.gmoccapyrc.
The following example changes the size of the vertical buttons: .Example of .gmoccapyrc file
self.widgets.vbtb_main.set_size_request(85,-1)
BB_SIZE = (70, 70) # default = (90, 56)
self.widgets.tbtn_estop.set_size_request(*BB_SIZE)
self.widgets.tbtn_on.set_size_request(*BB_SIZE)
self.widgets.rbt_manual.set_size_request(*BB_SIZE)
self.widgets.rbt_mdi.set_size_request(*BB_SIZE)
self.widgets.rbt_auto.set_size_request(*BB_SIZE)
self.widgets.tbtn_setup.set_size_request(*BB_SIZE)
self.widgets.tbtn_user_tabs.set_size_request(*BB_SIZE)
self.widgets.btn_exit.set_size_request(*BB_SIZE)

The widget names can the looked up in the /usr/share/gmoccapy.glade file

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 603 / 1322

10.2.4.8 User CSS File

Similar to the User command file it’s possible to influence the appearance by cascading style sheets
(CSS). If a file ~/.gmoccapy_css exists, its contents are loaded into the stylesheet provider and are
so being applied to the GUI.
A configuration-specific CSS file may be specified with an INI file setting
[DISPLAY]
USER_CSS_FILE=filename.css

If this file is specified, this file is used instead of ~/.gmoccapy_css.
Information what can be controlled by CSS can be found here: Overview of CSS in GTK
Here an example how the color of checked buttons can be set to yellow: .Example Yellow color for
checked buttons
button:checked {

background: rgba(250,230,0,0.8);
}

10.2.4.9 Logging

GMOCCAPY supports specifying the level of information (log level) that will be printed to the console
and to the log file.
The order is VERBOSE, DEBUG, INFO, WARNING, ERROR, CRITICAL. Default is WARNING, that
means WARNING, ERROR and CRITICAL are printed.
You can specify the log level in the INI file like this:
[DISPLAY]
DISPLAY = gmoccapy <log_level_param>

using these parameters:
Log level <log_level_param>
DEBUG -d
INFO -i
VERBOSE -v
ERROR -q

Example: Configure logging to print only errors
[DISPLAY]
DISPLAY = gmoccapy -q

You can specify where to save the log file:
[DISPLAY]
LOG_FILE = gmoccapy.log

If LOG_FILE is not set, logging happens to $HOME/<base_log_name>.log.

https://docs.gtk.org/gtk3/css-overview.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 604 / 1322

10.2.5 HAL Pins

GMOCCAPY exports several HAL pins to be able to react to hardware devices. The goal is to get a
GUI that may be operated in a tool shop, completely/mostly without mouse or keyboard.

Note
You will have to do all connections to GMOCCAPY pins in your postgui.hal file. When GMOCCAPY is
started, it creates the HAL pins for the GUI then it executes the post-GUI HAL file named in the INI
file:
[HAL]
POSTGUI_HALFILE=<filename>

Typically <filename> would be the configs base name + _postgui.hal, e.g. lathe_postgui.hal,
but can be any legal filename.
These commands are executed after the screen is built, guaranteeing the widget’s HAL pins are
available.
You can have multiple line of POSTGUI_HALFILE=<filename> in the INI file. Each will be run one after
the other in the order they appear.

10.2.5.1 Right and Bottom Button Lists

The screen has two main button lists, one on the right side an one on the bottom. The right handed
buttons will not change during operation, but the bottom button list will change very often. The
buttons are count from up to down and from left to right beginning with 0.

Note
The pin names have changed in GMOCCAPY 2 to order them in a better way.

The pins for the right (vertical) buttons are:

• gmoccapy.v-button.button-0 (bit IN)

• gmoccapy.v-button.button-1 (bit IN)

• gmoccapy.v-button.button-2 (bit IN)

• gmoccapy.v-button.button-3 (bit IN)

• gmoccapy.v-button.button-4 (bit IN)

• gmoccapy.v-button.button-5 (bit IN)

• gmoccapy.v-button.button-6 (bit IN)

For the bottom (horizontal) buttons they are:

• gmoccapy.h-button.button-0 (bit IN)

• gmoccapy.h-button.button-1 (bit IN)

• gmoccapy.h-button.button-2 (bit IN)

• gmoccapy.h-button.button-3 (bit IN)

• gmoccapy.h-button.button-4 (bit IN)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 605 / 1322

• gmoccapy.h-button.button-5 (bit IN)

• gmoccapy.h-button.button-6 (bit IN)

• gmoccapy.h-button.button-7 (bit IN)

• gmoccapy.h-button.button-8 (bit IN)

• gmoccapy.h-button.button-9 (bit IN)

As the buttons in the bottom list will change according to the mode and other influences, the hardware
buttons will activate the displayed functions. So you don’t have to take care about switching functions
around in HAL, because that is done completely by GMOCCAPY!
For a three axes XYZ machine the HAL pins will react as shown in the following three tables:

Table 10.3: Functional assignment of horizontal buttons
(1)

Pin Manual Mode MDI Mode Auto Mode
gmoccapy.h-button.button-0open homing button macro 1 (if defined) open file
gmoccapy.h-button.button-1open touch off stuff macro 2 (if defined) reload program
gmoccapy.h-button.button-2 macro 3 (if defined) run
gmoccapy.h-button.button-3open tool dialogs macro 4 (if defined) stop
gmoccapy.h-button.button-4 macro 5 (if defined) pause
gmoccapy.h-button.button-5 macro 6 (if defined) step by step
gmoccapy.h-button.button-6 macro 7 (if defined) run from line if

enabled in settings,
otherwise nothing

gmoccapy.h-button.button-7 macro 8 (if defined) optional blocks
gmoccapy.h-button.button-8full-size preview macro 9 or button to

show additional
macros

full-size preview

gmoccapy.h-button.button-9exit if machine is off,
otherwise nothing

open keyboard or
abort if macro is
running

edit code

Table 10.4: Functional assignment of horizontal buttons
(2)

Pin Settings Mode Homing Mode Touch off Mode
gmoccapy.h-button.button-0delete MDI history edit offsets
gmoccapy.h-button.button-1 home all touch X
gmoccapy.h-button.button-2 touch Y
gmoccapy.h-button.button-3 home x touch Z
gmoccapy.h-button.button-4open classic ladder home y
gmoccapy.h-button.button-5open HAL scope home z
gmoccapy.h-button.button-6open HAL status zero G92
gmoccapy.h-button.button-7open HAL meter
gmoccapy.h-button.button-8open HAL calibration unhome all set selected
gmoccapy.h-button.button-9open HAL show back back

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 606 / 1322

Table 10.5: Functional assignment of horizontal buttons
(3)

Pin Tool Mode Edit Mode Select File
gmoccapy.h-button.button-0delete tool(s) go to home directory
gmoccapy.h-button.button-1new tool reload file one directory level up
gmoccapy.h-button.button-2reload tool table save
gmoccapy.h-button.button-3apply changes save as move selection left
gmoccapy.h-button.button-4change tool by

number T? M6
move selection right

gmoccapy.h-button.button-5set tool by number
without change M61
Q?

jump to directory as
set in settings

gmoccapy.h-button.button-6change tool to the
selected one

new file

gmoccapy.h-button.button-7 select / ENTER
gmoccapy.h-button.button-8touch of tool in Z show keyboard
gmoccapy.h-button.button-9back back back

So we have 67 reactions with only 10 HAL pins!
These pins are made available to be able to use the screen without a touch panel, or protect it from
excessive use by placing hardware buttons around the panel. They are available in a sample configu-
ration like shown in the image below.
Sample configuration ”gmoccapy_sim_hardware_button” showing the side buttons

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 607 / 1322

10.2.5.2 Velocities and Overrides

All sliders from GMOCCAPY can be connected to hardware encoders or hardware potentiometers.

Note
For GMOCCAPY 3 some HAL pin names have changed when new controls have been implemented.
Max velocity does not exist any more, it was replaced by rapid override due to the demand of many
users.

To connect encoders, the following pins are exported:

• gmoccapy.jog.jog-velocity.counts (s32 IN) - Jog velocity

• gmoccapy.jog.jog-velocity.count-enable (bit IN) - Must be True, to enable counts

• gmoccapy.feed.feed-override.counts (s32 IN) - feed override

• gmoccapy.feed.feed-override.count-enable (bit IN) - Must be True, to enable counts

• gmoccapy.feed.reset-feed-override (bit IN) - reset the feed override to 0%

• gmoccapy.spindle.spindle-override.counts (s32 IN) - spindle override

• gmoccapy.spindle.spindle-override.count-enable (bit IN) - Must be True, to enable counts

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 608 / 1322

• gmoccapy.spindle.reset-spindle-override (bit IN) - reset the spindle override to 0%

• gmoccapy.rapid.rapid-override.counts (s32 IN) - Maximal velocity of the machine

• gmoccapy.rapid.rapid-override.count-enable (bit IN) - Must be True, to enable counts

To connect potentiometers, use the following pins:

• gmoccapy.jog.jog-velocity.direct-value (float IN) - To adjust the jog velocity slider

• gmoccapy.jog.jog-velocity.analog-enable (bit IN) - Must be True, to allow analog inputs

• gmoccapy.feed.feed-override.direct-value (float IN) - To adjust the feed override slider

• gmoccapy.feed.feed-override.analog-enable (bit IN) - Must be True, to allow analog inputs

• gmoccapy.spindle.spindle-override.direct-value (float IN) - To adjust the spindle override slider

• gmoccapy.spindle.spindle-override.analog-enable (bit IN) - Must be True, to allow analog in-
puts

• gmoccapy.rapid.rapid-override.direct-value (float) - To adjust the max velocity slider

• gmoccapy.rapid.rapid-override.analog-enable (bit IN) - Must be True, to allow analog inputs

In addition, GMOCCAPY 3 offers additional HAL pins to control the new slider widgets with momentary
switches. The values how fast the increase or decrease will be, must be set in the glade file. In a future
release it will be integrated in the settings page.
SPEED

• gmoccapy.spc_jog_vel.increase (bit IN) - As long as True the value of the slider will increase

• gmoccapy.spc_jog_vel.decrease (bit IN) - As long as True the value of the slider will decrease

• gmoccapy.spc_jog_vel.scale (float IN) - A value to scale the output value (handy to change unit-
s/min to units/sec)

• gmoccapy.spc_jog_vel.value (float OUT) - Value of the widget

• gmoccapy.spc_jog_vel.scaled-value (float OUT) - Scaled value of the widget

FEED

• gmoccapy.spc_feed.increase (bit IN) - As long as True the value of the slider will increase

• gmoccapy.spc_feed.decrease (bit IN) - As long as True the value of the slider will decrease

• gmoccapy.spc_feed.scale (float IN) - A value to scale the output value (handy to change units/min
to units/sec)

• gmoccapy.spc_feed.value (float OUT) - Value of the widget

• gmoccapy.spc_feed.scaled-value (float OUT) - Scaled value of the widget

SPINDLE

• gmoccapy.spc_spindle.increase (bit IN) - As long as True the value of the slider will increase

• gmoccapy.spc_spindle.decrease (bit IN) - As long as True the value of the slider will decrease

• gmoccapy.spc_spindle.scale (float IN) - A value to scale the output value (handy to change unit-
s/min to units/sec)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 609 / 1322

• gmoccapy.spc_spindle.value (float OUT) - Value of the widget

• gmoccapy.spc_spindle.scaled-value (float OUT) - Scaled value of the widget

RAPIDS

• gmoccapy.spc_rapid.increase (bit IN) - As long as True the value of the slider will increase

• gmoccapy.spc_rapid.decrease (bit IN) - As long as True the value of the slider will decrease

• gmoccapy.spc_rapid.scale (float IN) - A value to scale the output value (handy to change units/min
to units/sec)

• gmoccapy.spc_rapid.value (float OUT) - Value of the widget

• gmoccapy.spc_rapid.scaled-value (float OUT) - Scaled value of the widget

The float pins do accept values from 0.0 to 1.0, being the percentage value you want to set the slider
value.

Warning
If you use both connection types, do not connect the same slider to both pin as the influences
between the two has not been tested! Different sliders may be connected to the one or other
HAL connection type.

Important
Please be aware that the jog velocity depends on the turtle button state. It will lead to different
slider scales depending on the mode (turtle or rabbit). Please take also a look at jog velocities
and turtle-jog HAL pin for more details.

Example 10.1 Setting a slider value
Spindle Override Min Value = 20 %
Spindle Override Max Value = 120 %
gmoccapy.analog-enable = 1
gmoccapy.spindle-override-value = 0.25

value to set = Min Value + (Max Value - Min Value) * gmoccapy.spindle-override-value
value to set = 20 + (120 - 20) * 0.25
value to set = 45 %

10.2.5.3 Jog HAL Pins

All axes given in the INI file have a jog-plus and a jog-minus pin, so hardware momentary switches
can be used to jog the axes.

Note
Naming of these HAL pins have changed in GMOCCAPY 2.

For the standard XYZ config following HAL pins will be available:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 610 / 1322

• gmoccapy.jog.axis.jog-x-plus (bit IN)

• gmoccapy.jog.axis.jog-x-minus (bit IN)

• gmoccapy.jog.axis.jog-y-plus (bit IN)

• gmoccapy.jog.axis.jog-y-minus (bit IN)

• gmoccapy.jog.axis.jog-z-plus (bit IN)

• gmoccapy.jog.axis.jog-z-minus (bit IN)

If you use a 4 axes configuration, there will be two additional pins:

• gmoccapy.jog.jog-<your fourth axis letter >-plus (bit IN)

• gmoccapy.jog.jog-<your fourth axis letter >-minus (bit IN)

For a C-axis you will see:

• gmoccapy.jog.axis.jog-c-plus (bit IN)

• gmoccapy.jog.axis.jog-c-minus (bit IN)

10.2.5.4 Jog Velocities and Turtle-Jog HAL Pin

The jog velocity can be selected with the corresponding slider. The scale of the slider will be modified
if the turtle button (the one showing a rabbit or a turtle) has been toggled. If the button is not visible,
it might have been disabled on the settings page. If the button shows the rabbit-icon, the scale is from
min to max machine velocity. If it shows the turtle, the scale will reach only 1/20 of max velocity by
default. The used divider can be set on the settings page.
So using a touch screen it is much easier to select smaller velocities.
GMOCCAPY offers this HAL pin to toggle between turtle and rabbit jogging:

• gmoccapy.jog.turtle-jog (bit IN)

10.2.5.5 Jog Increment HAL Pins

The jog increments given in the INI file like
[DISPLAY]
INCREMENTS = 5mm 1mm .5mm .1mm .05mm .01mm

are selectable through HAL pins, so a selection hardware switch can be used to select the increment
to use. There will be a maximum of 10 HAL pins for the increments given in the INI file. If you give
more increments in your INI file, they will be not reachable from the GUI as they will not be displayed.
If you have 6 increments in your INI file like in the example above, you will get 7 pins:

• gmoccapy.jog.jog-inc-0 (bit IN) - This one is fixed and will represent continuous jogging.

• gmoccapy.jog.jog-inc-1 (bit IN) - First increment given in the INI file.

• gmoccapy.jog.jog-inc-2 (bit IN)

• gmoccapy.jog.jog-inc-3 (bit IN)

• gmoccapy.jog.jog-inc-4 (bit IN)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 611 / 1322

• gmoccapy.jog.jog-inc-5 (bit IN)

• gmoccapy.jog.jog-inc-6 (bit IN)

GMOCCAPY offers also a HAL pin to output the selected jog increment:

• gmoccapy.jog.jog-increment (float OUT)

10.2.5.6 Hardware Unlock Pin

To be able to use a key switch to unlock the settings page, the following pin is exported:

• gmoccapy.unlock-settings (bit IN) - The settings page is unlocked if the pin is high. To use this
pin, you need to activate it on the settings page.

10.2.5.7 Error/Warning Pins

• gmoccapy.error (bit OUT) - Indicates an error, so a light can lit or even the machine may be stopped.
It will be reset with the pin gmoccapy.delete-message.

• gmoccapy.delete-message (bit IN) - Will delete the first error and reset the gmoccapy.error pin
to false after the last error has been cleared.

• gmoccapy.warning-confirm (bit IN) - Confirms warning dialog like click on OK

Note
Messages or user infos will not affect the gmoccapy.error pin, but the gmoccapy.delete-message
pin will delete the last message if no error is shown!

10.2.5.8 User Created Message HAL Pins

GMOCCAPY may be configured to react to external errors, using 3 different user messages:
status

• gmoccapy.messages.status (bit IN) - Triggers the dialog.

okdialog

• gmoccapy.messages.okdialog (bit IN) - Triggers the dialog.

• gmoccapy.messages.okdialog-waiting (bit OUT) - Will be 1 as long as the dialog is open. Closing
the message will reset the this pin.

yesnodialog

• gmoccapy.messages.yesnodialog (bit IN) - Triggers the dialog.

• gmoccapy.messages.yesnodialog-waiting (bit OUT) - Will be 1 as long as the dialog is open.
Closing the message will reset the this pin.

• gmoccapy.messages.yesnodialog-response (bit OUT) - This pin will change to 1 if the user clicks
OK and in all other cases it will be 0. This pin will remain 1 until the dialog is called again.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 612 / 1322

To add a user created message you need to add the message to the INI file in the DISPLAY section.
See Configuration of User Created Messages.
User Message Example (INI file)
MESSAGE_TEXT = LUBE FAULT
MESSAGE_TYPE = okdialog
MESSAGE_PINNAME = lube-fault

MESSAGE_TEXT = X SHEAR PIN BROKEN
MESSAGE_TYPE = status
MESSAGE_PINNAME = pin

To connect these new pins you need to do this in the postgui HAL file. Here are some example con-
nections which connect the message signals to some place else in the HAL file.
Example Connection of User Messages (HAL file)
net gmoccapy-lube-fault gmoccapy.messages.lube-fault
net gmoccapy-lube-fault-waiting gmoccapy.messages.lube-fault-waiting
net gmoccapy-pin gmoccapy.messages.pin

For more information about HAL files and the net command see the HAL Basics.

10.2.5.9 Spindle Feedback Pins

There are two pins for spindle feedback:

• gmoccapy.spindle_feedback_bar (float IN) - Pin to show the spindle speed on the spindle bar.

• gmoccapy.spindle_at_speed_led (bit IN) - Pin to lit the is-at-speed-led.

10.2.5.10 Pins to Indicate Program Progress Information

There are three pins giving information about the program progress:

• gmoccapy.program.length (s32 OUT) - Shows the total number of lines of the program.

• gmoccapy.program.current-line (s32 OUT) - Indicates the current working line of the program.

• gmoccapy.program.progress (float OUT) - Gives the program progress in percentage.

The values may not be very accurate if you are working with subroutines or large remap procedures.
Also loops will cause different values.

10.2.5.11 Tool Related Pins

Tool Change Pins These pins are provided to use GMOCCAPY’s internal tool change dialog, similar
to the one known from AXIS, but with several modifications. So you will not only get the message
to change to tool number 3, but also the description of that tool like 7.5 mm 3 flute cutter. The
information is taken from the tool table, so it is up to you what to display.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 613 / 1322

Figure 10.15: GMOCCAPY tool change dialog

• gmoccapy.toolchange-number (s32 IN) - The number of the tool to be changed

• gmoccapy.toolchange-change (bit IN) - Indicates that a tool has to be changed

• gmoccapy.toolchange-changed (bit OUT) - Indicates tool has been changed

• gmoccapy.toolchange-confirm (bit IN) - Confirms tool change

Usually they are connected like this for a manual tool change:
net tool-change gmoccapy.toolchange-change <= iocontrol.0.tool-change
net tool-changed gmoccapy.toolchange-changed <= iocontrol.0.tool-changed
net tool-prep-number gmoccapy.toolchange-number <= iocontrol.0.tool-prep-number
net tool-prep-loop iocontrol.0.tool-prepare <= iocontrol.0.tool-prepared

Note
Please take care, that this connections have to be done in the postgui HAL file.

Tool Offset Pins These pins allow you to show the active tool offset values for X and Z in the tool
information frame. You should know that they are only active after G43 has been sent.

Figure 10.16: Tool information area

• gmoccapy.tooloffset-x (float IN)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 614 / 1322

• gmoccapy.tooloffset-z (float IN)

Note
The tooloffset-x line is not needed on a mill, and will not be displayed on a mill with trivial kinematics.

To display the current offsets, the pins have to be connected like this in the postgui HAL file:
net tooloffset-x gmoccapy.tooloffset-x <= motion.tooloffset.x
net tooloffset-z gmoccapy.tooloffset-z <= motion.tooloffset.z

Important
Please note, that GMOCCAPY takes care of its own to update the offsets, sending an G43 after
any tool change, but not in auto mode!
So writing a program makes you responsible to include an G43 after each tool change!

10.2.6 Auto Tool Measurement

GMOCCAPY offers an integrated auto tool measurement. To use this feature, you will need to do some
additional settings and you may want to use the offered HAL pin to get values in your own NGC remap
procedure.

Important
Before starting the first test, do not forget to enter the probe height and probe velocities on
the settings page! See Settings Page Tool Measurement.

It might be also a good idea to take a look at the tool measurement video, see tool measurement
related videos.
Tool Measurement in GMOCCAPY is done a little bit different to many other GUIs. You should follow
these steps:

1. Touch off your workpiece in X and Y.

2. Measure the height of your block from the base where your tool switch is located, to the upper
face of the block (including chuck etc.).

3. Push the button block height and enter the measured value.

4. Go to auto mode and start your program.

Here is a small sketch:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 615 / 1322

Figure 10.17: Tool measurement data

With the first given tool change the tool will be measured and the offset will be set automatically to
fit the block height. The advantage of the GMOCCAPY way is, that you do not need a reference tool.

Note
Your program must contain a tool change at the beginning! The tool will be measured, even it has
been used before, so there is no danger, if the block height has changed. There are several videos
showing the way to do that on YouTube.

10.2.6.1 Provided Pins

GMOCCAPY offers five pins for tool measurement purposes. These pins are mostly used to be read
from a G-code subroutine, so the code can react to different values.

• gmoccapy.toolmeasurement (bit OUT) - Enable or not tool measurement

• gmoccapy.blockheight (float OUT) - The measured value of the top face of the workpiece

• gmoccapy.probeheight (float OUT) - The probe switch height

• gmoccapy.searchvel (float OUT) - The velocity to search for the tool probe switch

• gmoccapy.probevel (float OUT) - The velocity to probe tool length

10.2.6.2 INI File Modifications

Modify your INI file to include the following sections.
The RS274NGC Section

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 616 / 1322

[RS274NGC]
is the sub, with is called when a error during tool change happens, not needed on every ←↩

machine configuration
ON_ABORT_COMMAND=O <on_abort> call

The remap code
REMAP=M6 modalgroup=6 prolog=change_prolog ngc=change epilog=change_epilog

Note
Make sure INI_VARS and HAL_PIN_VARS are not set to 0. They are set to 1 by default.

The Tool Sensor Section The position of the tool sensor and the start position of the probing move-
ment, all values are absolute coordinates, except MAXPROBE, which must be given in relative move-
ment.
[TOOLSENSOR]
X = 10
Y = 10
Z = -20
MAXPROBE = -20

The Change Position Section This is not named TOOL_CHANGE_POSITION on purpose - canon
uses that name and will interfere otherwise. The position to move the machine before giving the
change tool command. All values are in absolute coordinates.
[CHANGE_POSITION]
X = 10
Y = 10
Z = -2

The Python Section The Python plug ins serves interpreter and task.
[PYTHON]
The path to start a search for user modules
PATH_PREPEND = python
The start point for all.
TOPLEVEL = python/toplevel.py

10.2.6.3 Needed Files

First make a directory ”python” in your config folder. From <your_linuxcnc-dev_directory>/configs/sim/gmoccapy/python
copy the following files into the just created config_dir/python folder:

• toplevel.py

• remap.py

• stdglue.py

From <your_linuxcnc-dev_directory>/configs/sim/gmoccapy/macros copy

• on_abort.ngc

• change.ngc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 617 / 1322

to the directory specified as SUBROUTINE_PATH, see RS274NGC Section.
Open change.ngc with a editor and uncomment the following lines (49 and 50):
F #<_hal[gmoccapy.probevel]>
G38.2 Z-4

You may want to modify this file to fit more your needs.

10.2.6.4 Needed HAL Connections

Connect the tool probe in your HAL file like so:
net probe motion.probe-input <= <your_input_pin>

The line might look like this:
net probe motion.probe-input <= parport.0.pin-15-in

In your postgui.hal file add the following lines:
The next lines are only needed if the pins had been connected before
unlinkp iocontrol.0.tool-change
unlinkp iocontrol.0.tool-changed
unlinkp iocontrol.0.tool-prep-number
unlinkp iocontrol.0.tool-prepared

link to GMOCCAPY toolchange, so you get the advantage of tool description on change ←↩
dialog

net tool-change gmoccapy.toolchange-change <= iocontrol.0.tool-change
net tool-changed gmoccapy.toolchange-changed => iocontrol.0.tool-changed
net tool-prep-number gmoccapy.toolchange-number <= iocontrol.0.tool-prep-number
net tool-prep-loop iocontrol.0.tool-prepare <= iocontrol.0.tool-prepared

10.2.7 The Settings Page

To enter the page you will have to click on and give an unlock code, which is 123 by
default. If you want to change it at this time you will have to edit the hidden preference file, see the
display section for details.
The page is separated in three main tabs:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 618 / 1322

10.2.7.1 Appearance

Figure 10.18: GMOCCAPY settings page Appearance

On this tab you will find the following options:
Main Window Here you can select how you wish the GUI to start. The main reason for this was the
wish to get an easy way for the user to set the starting options without the need to touch code. You
have three options:

• Start as full screen

• Start maximized

• Start as window - If you select start as window the spinboxes to set the position and size will get
active. One time set, the GUI will start every time on the place and with the size selected. Neverthe-
less the user can change the size and position using the mouse, but that will not have any influence
on the settings.

• hide title bar - Allows the title bar to be hidden. (default: title bar visible).

• hide cursor - Does allow to hide the cursor, what is very useful if you use a touch screen.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 619 / 1322

• hide tooltips - Hides the tool tips.

Virtual Keyboard The checkboxes allow the user to select if he wants the on board keyboard to be
shown immediately when entering the MDI Mode, the offset page, the tooledit widget or when open
a program in the EDIT mode. The keyboard button on the bottom button list will not be affected by
these settings, so you are able to show or hide the keyboard by pressing the button.
The default setting is:

• Show keyboard on offset = False

• Show keyboard on tooledit = False

• Show keyboard on MDI = True

• Show keyboard on EDIT = True

• Show keyboard on load file = False

Note
If this section is not sensitive, you have not installed a virtual keyboard, supported ones are onboard
and matchbox-keyboard.

Note
If the keyboard layout is not correct, i.e. clicking Y gives Z, than the layout has not been set properly,
related to your locale settings. For onboard it can be solved with a small batch file with the following
content:
#!/bin/bash
setxkbmap -model pc105 -layout de -variant basic

The letters ”de” are for German, you will have to set them according to your locale settings. Just
execute this file before starting LinuxCNC, it can be done also adding a starter to your local folder.
./config/autostart

So that the layout is set automatically on starting.
For matchbox-keyboard you will have to make your own layout, for a German layout ask in the forum.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 620 / 1322

GMOCCAPYwith Onboard keyboard in editmode
On Touch Off This gives the option whether to show the preview tab or the offset page tab when you
enter the touch off mode by clicking the corresponding bottom button.

• show preview

• show offsets

DRO Options You have the option to select the background colors of the different DRO states. So
users suffering from protanopia (red/green weakness) are able to select proper colors.
By default, the background colors are:

• Relative Color = black

• Absolute Color = blue

• DTG Color = yellow

The foreground color of the DRO can be selected with:

• Homed Color = green

• Unhomed Color = red

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 621 / 1322

Note
You can change through the DRO modes (absolute, relative, distance to go) by clicking the number
on the DRO! If you click on the left side letter of the DRO a popup window will allow you to set the
value of the axes, making it easier to set the value, as you will not need to go over the touch off
bottom button.

• size - Allows to set the size of the DRO font, default is 28, if you use a bigger screen you may want to
increase the size up to 56. If you do use 4 axes, the DRO font size will be 3/4 of the value, because
of space reason.

• digits - Sets the number of digits of the DRO from 1 to 5.

Note
Imperial will show one digit more that metric. So if you are in imperial machine units and set the
digit value to 1, you will get no digit at all in metric.

• toggle DRO mode - If not active, a mouse click on the DRO will not take any action.
By default this checkbox is active, so every click on any DRO will toggle the DRO readout from
actual to relative to DTG (distance to go).
Neverthereless a click on the axis letter will open the popup dialog to set the axis value.

Preview

• Grid Size - Sets the grid size of the preview window. Unfortunately the size has to be set in inches,
even if your machine units are metric. We do hope to fix that in a future release.

Note
The grid will not be shown in perspective view.

• Show DRO - Will show the a DRO also in the preview pane, it will be always shown in fullsize preview.

• Show DTG - Will show the DTG (direct distance to end point) in the preview pane if Show DRO is
active. Otherwise only in full size preview.

• Show Offsets - Will show the offsets in the preview pane when Show DRO is active. Otherwise only
in full size preview.

• Mouse Button Mode - This combobox allows you to select the button behavior of the mouse to rotate,
move or zoom within the preview:

– left rotate, middle move, right zoom
– left zoom, middle move, right rotate
– left move, middle rotate, right zoom
– left zoom, middle rotate, right move
– left move, middle zoom, right rotate
– left rotate, middle zoom, right move

Default is left move, middle zoom, right rotate.
The mouse wheel will still zoom the preview in every mode.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 622 / 1322

Tip
If you select an element in the preview, the selected element will be taken as rotation center point
and in auto mode the corresponding code line will be highlighted.

Gmoccapy Messages
This will display small pop up windows displaying a message or error text, similar to the ones known
from AXIS. You can delete a specific message by clicking on its close button. If you want to delete the
last one, just hit the WINDOWS key on your keyboard, or delete all messages at once with Control +
Space.
You are able to set some options:

• X Pos - The position of the top left corner of the message in X counted in pixel from the top left
corner of the screen.

• Y Pos - The position of the top left corner of the message in Y counted in pixel from the top left
corner of the screen.

• Width - The width of the message box.

• Max. messages - The maximum number of messages you want to see at once. If you set this to 10,
the 11th message will delete the first one, so you will only see the last 10.

• Font - The font and size you want to use to display the messages.

• Use frames - If you activate the checkbox, each message will be displayed in a frame, so it is much
easier to distinguish the messages. But you will need a little bit more space.

• Launch test message-button - It will show a message, so you can see the changes of your settings
without the need to generate an error.

Themes and Sounds This lets the user select what desktop theme to apply and what error and
messages sounds should be played.
By default ”Follow System Theme” is set.
It further allows to change the icon theme. Currently there are three themes available:

• classic

• material

• material light

To create custom icon themes, see section Icon Theme for details.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 623 / 1322

10.2.7.2 Hardware

HardwareMPG Scale For the different HAL pins to connect MPG wheels to, you may select individual
scales to be applied. The main reason for this was my own test to solve this through HAL connections,
resulting in a very complex HAL file. Imagine a user having an MPG Wheel with 100 ppr and he wants
to slow down the max. vel. from 14000 to 2000 mm/min, that needs 12000 pulses, resulting in 120
turns of the wheel! Or an other user having a MPG Wheel with 500 ipr and he wants to set the spindle
override which has limits from 50 to 120 % so he goes from min to max within 70 pulses, meaning not
even 1/4 turn.
By default all scales are set using the calculation:
(MAX - MIN)/100

Spindle

• Starting RPM - Sets the rpm to be used if the spindle is started and no S value has been set.

Note
This value will be presetted according to your settings in [DISPLAY] DEFAULT_SPINDLE_SPEED of
your INI file. If you change the settings on the settings page, that value will be default from that
moment, your INI file will not be modified.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 624 / 1322

• Spindle bar min and Spindle bar max - Sets the limits of the spindle bar shown in the INFO frame
on the main screen.
Default values are:
MIN = 0
MAX = 6000

Note
It is no error giving wrong values. If you give a maximum of 2000 and your spindle makes 4000
RPM, only the bar level will be wrong on higher speeds than 2000 RPM.

Unlock options There are three options to unlock the settings page:

• Use unlock code - The user must give a code to get in.

• Do not use unlock code - There will be no security check.

• Use HAL pin to unlock - Hardware pin must be high to unlock the settings, see hardware unlock
pin.

Default is use unlock code (default code is 123).
Turtle Jog
This settings will have influence on the jog velocities.

• Hide turtle jog button - Will hide the button right of the jog velocity slider. If you hide this button,
please take care that the ”rabbit mode” is activated, otherwise you will not be able to jog faster
than the turtle jog velocity, which is calculated using the turtle jog factor.

• Turtle jog factor - Sets the scale to apply for turtle jog mode (button pressed, showing the turtle). If
you set a factor of 20, the turtle max. jog velocity will be 1/20 of the max. velocity of the machine.

Note
This button can be controlled using the Turtle-Jog HAL Pin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 625 / 1322

10.2.7.3 Advanced Settings

Tool Measurement
Please check Auto Tool Measurement

Note
If this part is not sensitive, you do not have a valid INI file configuration to use tool measurement.

• Use auto tool measurement - If checked, after each tool change, a tool measurement will be done,
the result will be stored in the tool table and a G43 will be executed after the change.

Probe Information
The following information are taken from your INI file and must be given in absolute coordi-
nates:
– X Pos. - The X position of the tool switch.
– Y Pos. - The Y position of the tool switch.
– Z Pos. - The Z position of the tool switch, we will go as rapid move to this coordinate.
– Max. Probe - The distance to search for contact, an error will be launched, if no contact is

given in this range. The distance has to be given in relative coordinates, beginning the move
from Z Pos., so you have to give a negative value to go down!

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 626 / 1322

– Probe Height - The height of your probe switch, you can measure it. Just touch off the base
where the probe switch is located and set that to zero. Then make a tool change and watch
the tool_offset_z value, that is the height you must enter here.

Probe velocities
– Search Vel. - The velocity to search for the tool switch. After contact the tool will go up again

and then goes towards the probe again with probe vel, so you will get better results.
– Probe Vel. - The velocity for the second movement to the switch. It should be slower to

get better touch results. In simulation mode, this is commented out in macros/change.ngc,
otherwise the user would have to click twice on the probe button.

Reload Tool::

• Reload Tool on Start - Loads the last tool on start after homing.

If checked, the tool in spindle will be saved on each change in the preference file, making it possible
to reload the last mounted tool on start up. The tool will be loaded after all axes are homed, because
before it is not allowed to execute MDI commands. If you use NO_FORCE_HOMING you can not use
this feature, because the needed all_homed_signal will never be emitted.
File to load on start up Select the file you want to be loaded on start up. If a file is loaded, it can
be set by pressing the current button. To avoid that any program is loaded at start up, just press the
None button.
The file selection screen will use the filters you have set in the INI file, if there aren’t any filters
given, you will only see NGC files. The path will be set according to the INI settings in [DISPLAY]
PROGRAM_PREFIX.
Jump to dir You can set here the directory to jump to if you press the corresponding button in the
file selection dialog.
Run from Line You can allow or disallow the run from line. This will set the corresponding button
insensitive (grayed out), so the user will not be able to use this option. The default is disable run from
line.

Warning
It is not recommend to use run from line, as LinuxCNC will not take care of any previous lines
in the code before the starting line. So errors or crashes are fairly likely.

Keyboard shortcuts Some users want to jog their machine using the keyboard buttons and there are
others that will never allow this. So everybody can select whether to use them or not.
Keyboard shortcuts are disabled by default. They can be activated by the checkbox

• Use keyboard shortcuts

Warning
It is not recommended to use keyboard jogging, as it represents a serious risk for operator and
machine.

Please take care if you use a lathe, then the shortcuts will be different, see the Lathe Specific Section.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 627 / 1322

General

• F1 - Trigger Estop (will work even if keyboard shortcuts are disabled)
• F2 - Toggle machine on/off
• F3 - Manual mode
• F5 - MDI mode
• ESC - Abort

In Manual Mode

• Arrow_Left or NumPad_Left - Jog X minus
• Arrow_Right or NumPad_Right - Jog X plus
• Arrow_up or NumPad_Up - Jog Y plus
• Arrow_Down or NumPad_Down - Jog Y minus
• Page_Up or NumPad_Page_Up - Jog Z plus
• Page_Down or NumPad_Page_Down - Jog Z minus

In Auto Mode

• R or r - Run program
• P or p - Pause program
• S or s - Resume program
• Control + R or Control + r - Reload the loaded file

Message handling (see Message behavior and appearance)

• WINDOWS - Delete last message
• Control + Space - Delete all messages

10.2.8 Icon Theme

Icon themes are used to customize the look and feel of GMOCCAPY’s icons.
GMOCCAPY ships with three different icon themes:

• classic - The classic GMOCCAPY icons.

• material - A modern icon theme inspired by Google’s Material Icons that automatically adopts its
coloring from the selected desktop theme.

• material-light - Derived from material but optimized for light desktop themes.

The icon theme used in GMOCCAPY is a regular GTK icon theme that follows the freedestktop icon
theme specification. Thus every valid GTK icon theme can be used as GMOCCAPY icon theme as long
as it contains the required icons.
GMOCCAPY scans the following directories for icon themes:

• linuxcnc/share/gmoccapy/icons

• ~/.icons

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 628 / 1322

10.2.8.1 Custom Icon Theme

Creating a custom icon theme is pretty easy. All you need is a text editor and of course the desired
icons as pixel or vector graphics. Details about how exactly an icon theme is built can be found at the
Freedesktop Icon Theme Specification.
Start by creating an empty directory with the name of the icon theme. Place the directory in one of
GMOCCAPY’s icon theme directories. Then we need a file called index.theme in the root folder of our
icon theme which contains the required metadata for the theme. That’s a simple text file with at least
the following sections:

• [Icon Theme]
[Icon Theme]
Name=YOUR_THEME_NAME
Comment=A DESCRIPTION OF YOUR THEME
Inherits=hicolor
Directories=16x16/actions,24x24/actions,32x32/actions,48x48/actions,scalable/actions

– Name: The name of your icon theme.
– Comment: A description of your icon theme.
– Inherits: A icon theme can derive from another icon theme, the default is hicolor.
– Directories: A comma separated list of all the directories of your icon theme.

Each directory usually contains all the icons of the theme in a specific size, for example 16x16/actions
should contain all icons with the category ”actions” in the size 16x16 pixels as pixel-graphics (e.g.
png files). A special case is the directory called ”scalable/actions”, this contains scalable icons
not tied to a specific size (e.g. svg files).
By supplying different sized versions of the icons, we can guarantee a nice looking icon if different
sizes and we also have the ability to change the icon according to its size, for example a 64x64 px
sized icon may contain more details than its 16x16 px version.

• For each directory we also have to write a section in the index.theme file:
[16x16/actions]
Size=16
Type=Fixed
Context=Actions

[scalable/actions]
Size=48
Type=Scalable
Context=Actions

– Size: Nominal icon size in this directory
– Type: Fixed, Threshold or Scalable
– Context: Intended ”category” of icons

Basically that’s everything needed to create a custom icon theme.

10.2.8.2 Symbolic Icons

Symbolic icons are a special type of icon, usually a monochrome image. The special feature of symbolic
icons is that the icons are automatically colored at runtime to match the desktop theme. That way,
icon themes can be created that work well with dark and also light desktop themes (in fact, that’s not
always the best option, that’s why a dedicated ”material-light” theme exists).

https://specifications.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 629 / 1322

To make use of the symbolic feature, a icon file has to have the suffix .symbolic.$ext (where $ext is
the regular file extension like png) for example ”power_on.symbolic.png”.
With that name, GTK treats this image as symbolic icon and applies some recoloring when loading the
icon. There are only four colors allowed to use:

Color Hex Code Description
black #000000 Primary color, gets changed to match the desktop themes

primary color.
red #ff0000 Success: this color indicates ”success” (usually something

green’ish).
green #00ff00 Warning: this color indicates ”warning” (usually something

yellow/orange’ish).
blue #0000ff Error: this color indicates ”error” (usually something

red’ish).

Tip
Examples of symbolic icons can be found at linuxcnc/share/gmoccapy/icons/material.

10.2.9 Lathe Specific Section

If in the INI file LATHE = 1 is given, the GUI will change its appearance to the special needs for a
lathe. Mainly the Y axis will be hidden and the jog buttons will be arranged in a different order.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 630 / 1322

Figure 10.19: Normal Lathe

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 631 / 1322

Figure 10.20: Back Tool Lathe

As you see the R DRO has a black background and the D DRO is gray. This will change according
to the active G-code G7 or G8. The active mode is visible by the black background, meaning in the
shown images G8 is active.
The next difference to the standard screen is the location of the jog buttons. X and Z have changed
places and Y is gone. You will note that the X+ and X- buttons changes there places according to
normal or back tool lathe.
Also the keyboard behavior will change:
Normal Lathe:

• Arrow_Left or NumPad_Left - Jog Z minus

• Arrow_Right or NumPad_Right - Jog Z plus

• Arrow_up or NumPad_Up - Jog X minus

• Arrow_Down or NumPad_Down - Jog X plus

Back Tool Lathe:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 632 / 1322

• Arrow_Left or NumPad_Left - Jog Z minus

• Arrow_Right or NumPad_Right - Jog Z plus

• Arrow_up or NumPad_Up - Jog X plus

• Arrow_Down or NumPad_Down - Jog X minus

The tool information frame will show not only the Z offset, but also the X offset and the tool table is
showing all lathe relevant information.

10.2.10 Plasma Specific Section

There is a very good WIKI, which is actually growing, maintained by Marius, see Plasma wiki page.

10.2.11 Videos on YouTube

Below is a series of videos that show GMOCCAPY in action. Unfortunately, these videos don’t show
the latest version of GMOCCAPY, but the way to use it will still be the same as in the current version.
I will update the videos as soon as possible.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Gmoccapy_plasma

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 633 / 1322

10.2.11.1 Basic Usage

https://youtu.be/O5B-s3uiI6g

10.2.11.2 Simulated Jog Wheels

https://youtu.be/ag34SGxt97o

10.2.11.3 Settings Page

https://youtu.be/AuwhSHRJoiI

10.2.11.4 Simulated Hardware Button

German: https://youtu.be/DTqhY-MfzDE
English: https://youtu.be/ItVWJBK9WFA

10.2.11.5 User Tabs

https://youtu.be/rG1zmeqXyZI

10.2.11.6 Tool Measurement Videos

Auto Tool Measurement Simulation: https://youtu.be/rrkMw6rUFdk
Auto Tool Measurement Screen: https://youtu.be/Z2ULDj9dzvk
Auto Tool Measurement Machine: https://youtu.be/1arucCaDdX4

10.2.12 Known Problems

10.2.12.1 Strange numbers in the info area

If you get strange numbers in the info area of GMOCCAPY like:

You have made your config file using an older version of StepConfWizard. It has made a wrong en-
try in the INI file under the [TRAJ] named MAX_LINEAR_VELOCITY = xxx. Change that entry to
MAX_VELOCITY = xxx.

https://youtu.be/O5B-s3uiI6g
https://youtu.be/ag34SGxt97o
https://youtu.be/AuwhSHRJoiI
https://youtu.be/DTqhY-MfzDE
https://youtu.be/ItVWJBK9WFA
https://youtu.be/rG1zmeqXyZI
https://youtu.be/rrkMw6rUFdk
https://youtu.be/Z2ULDj9dzvk
https://youtu.be/1arucCaDdX4

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 634 / 1322

10.2.12.2 Not ending macro

If you use a macro without movement, like this one:
o<zeroxy> sub

G92.1
G92.2
G40

G10 L20 P0 X0 Y0

o<zeroxy> endsub
m2

GMOCCAPY will not see the end of the macro, because the interpreter needs to change its state to
IDLE, but the macro does not even set the interpreter to a new state. To avoid that just add a G4 P0.1
line to get the needed signal. The correct macro would be:
o<zeroxy> sub

G92.1
G92.2
G40

G10 L20 P0 X0 Y0

G4 P0.1

o<zeroxy> endsub
m2

10.3 The Touchy Graphical User Interface

Touchy is a user interface for LinuxCNC meant for use on machine control panels, and therefore does
not require keyboard or mouse.
It is meant to be used with a touch screen, and works in combination with a wheel/MPG and a few
buttons and switches.
The Handwheel tab has radio buttons to select between Feed Override, Spindle Override, Maximum
Velocity and Jogging functions for the wheel/MPG input. Radio buttons for axis selection and incre-
ment for jogging are also provided.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 635 / 1322

10.3.1 Panel Configuration

10.3.1.1 HAL connections

Touchy looks in the INI file, under the heading [HAL] for entries of POSTGUI_HALFILE=<filename>.
Typically <filename> would be touchy_postgui.hal, but can be any legal filename. These commands
are executed after the screen is built, guaranteeing the widget HAL pins are available. You can have
multiple line of POSTGUI_HALFILE=<filename> in the INI. Each will be run one after the other in
the order they appear in the INI file.

Note
Touchy used to require that you create a file named touchy.hal in your configuration directory (the
directory your INI file is in). For legacy reasons this will continue to work, but INI based postgui files
are preferred.

For more information on HAL files and the net command see the HAL Basics.
Touchy has several output pins that are meant to be connected to the motion controller to control
wheel jogging:

• touchy.jog.wheel.increment, which is to be connected to the axis.N.jog-scale pin of each axis N.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 636 / 1322

• touchy.jog.wheel.N, which is to be connected to axis.N.jog-enable for each axis N.

Note
N represents the axis number 0-8.

• In addition to being connected to touchy.wheel-counts, the wheel counts should also be connected
to axis.N.jog-counts for each axis N. If you use HAL component ilowpass to smooth wheel jogging,
be sure to smooth only axis.N.jog-counts and not touchy.wheel-counts.

Required controls

• Abort button (momentary contact) connected to the HAL pin touchy.abort.

• Cycle start button (momentary contact) connected to touchy.cycle-start.

• Wheel/MPG, connected to touchy.wheel-counts and motion pins as described above.

• Single block (toggle switch) connected to touchy.single-block.

Optional controls

• For continuous jog, one center-off bidirectional momentary toggle (or two momentary buttons) for
each axis, hooked to touchy.jog.continuous.x.negative, touchy.jog.continuous.x.positive, etc.

• If a quill up button is wanted (to jog Z to the top of travel at top speed), a momentary button
connected to touchy.quill-up.

Optional panel lamps

• touchy.jog.active shows when the panel jogging controls are live.

• touchy.status-indicator is on when the machine is executing G-code, and flashes when the machine
is executing but is in pause/feedhold.

10.3.1.2 Recommended for any setup

• Estop button hardwired in the estop chain

10.3.2 Setup

10.3.2.1 Enabling Touchy

To use Touchy, in the [DISPLAY] section of your INI file change the display selector line to DISPLAY
= touchy.

10.3.2.2 Preferences

When you start Touchy the first time, check the Preferences tab. If using a touchscreen, choose the
option to hide the pointer for best results.
The Status Window is a fixed height, set by the size of a fixed font. This can be affected by the Gnome
DPI, configured in System / Preferences / Appearance / Fonts / Details. If the bottom of the screen is
cut off, reduce the DPI setting.
All other font sizes can be changed on the Preferences tab.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 637 / 1322

10.3.2.3 Macros

Touchy can invoke O-word macros using the MDI interface. To configure this, in the [MACROS] section
of the INI file, add one or more MACRO lines. Each should be of the following format:
MACRO=increment xinc yinc

In this example, increment is the name of the macro, and it accepts two parameters, named xinc and
yinc.
Now, place the macro in a file named increment.ngc, in the PROGRAM_PREFIX directory or any di-
rectory in the SUBROUTINE_PATH.
It should look like:
O<increment> sub
G91 G0 X#1 Y#2
G90
O<increment> endsub

Notice the name of the sub matches the file name and macro name exactly, including case.
When you invoke the macro by pressing the Macro button on the MDI tab in Touchy, you can enter
values for xinc and yinc. These are passed to the macro as #1 and #2 respectively. Parameters you
leave empty are passed as value 0.
If there are several different macros, press the Macro button repeatedly to cycle through them.
In this simple example, if you enter -1 for xinc and press cycle start, a rapid G0 move will be invoked,
moving one unit to the left.
This macro capability is useful for edge/hole probing and other setup tasks, as well as perhaps hole
milling or other simple operations that can be done from the panel without requiring specially-written
G-code programs.

10.4 Gscreen

10.4.1 Introduction

Gscreen is an infrastructure to display a custom screen to control LinuxCNC. Gscreen borrows heavily
from GladeVCP. GladeVCP uses the GTK widget editor GLADE to build virtual control panels (VCP) by
point and click. Gscreen combines this with Python programming to create a GUI screen for running
a CNC machine.
Gscreen is customizable if you want different buttons and status LEDs. Gscreen supports GladeVCP
which is used to add controls and indicators. To customize Gscreen you use the Glade editor. Gscreen
is not restricted to adding a custom panel on the right or a custom tab it is fully editable.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 638 / 1322

Figure 10.21: Gscreen Default Screen

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 639 / 1322

Figure 10.22: Gscreen Silverdragon Screen

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 640 / 1322

Figure 10.23: Gscreen Spartan Screen

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 641 / 1322

Figure 10.24: Gscreen Gaxis Screen

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 642 / 1322

Figure 10.25: Gscreen Industrial Screen

Gscreen is based on Glade (the editor), PyGTK (the widget toolkit), and GladeVCP (LinuxCNC’s con-
nection to Glade and PyGTK). GladeVCP has some special widgets and actions added just for LinuxCNC
A widget is just the generic name used for the buttons, sliders, labels etc of the PyGTK toolkit.

10.4.1.1 Glade File

A Glade file is a text file organized in the XML standard that describes the layout and the widgets
of the screen. PyGTK uses this file to actually display and react to those widgets. The Glade editor
makes it relatively easy to build and edit this file You must use the Glade 3.38.2 editor that uses the
GTK3 widgets.

10.4.1.2 PyGTK

PyGTK is the Python binding to GTK. GTK is the toolkit of visual widgets, it is programmed in C. PyGTK
uses Python to bind with GTK.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 643 / 1322

10.4.2 GladeVCP

GladeVCP binds LinuxCNC, HAL, PyGTK and Glade all together. LinuxCNC requires some special wid-
gets so GladeVCP supplies them. Many are just HAL extensions to existing PyGTK widgets. GladeVCP
creates the HAL pins for the special widgets described in the Glade file. GladeVCP also allows one
to add Python commands to interact with the widgets, to make them do things not available in their
default form. If you can build a GladeVCP panel you can customize Gscreen!

10.4.2.1 Overview

There are two files that can be used, individually or in combination to add customizations. Local Glade
files and handler files. Normally Gscreen uses the stock Glade file and possibly a handler file (if using
a sample skin). You can specify Gscreen to use local Glade and handler files. Gscreen looks in the
folder that holds all the configuration files for the configuration you selected.
Local Glade Files If present, local Glade files in the configuration folder will be loaded instead of the
stock Glade files. Local Glade files allow you to use your customized designs rather then the default
screens. There is a switch in the INI file to set set the base name: -c name so Gscreen looks for
MYNAME.glade and MYNAME_handler.py.
You can tell Gscreen to just load the Glade file and not connect its internal signals to it. This allows
gscreen to load any GTK builder saved Glade file. This means you can display a completely custom
screen, but also requires you to use a handler file. Gscreen uses the Glade file to define the widgets,
so it can show and interact with them. Many of them have specific names, others have Glade given
generic names. If the widget will be displayed but never changed then a generic name is fine. If
one needs to control or interact with the widget then a hopefully purposeful name is given (all names
must be unique). Widgets can also have signals defined for them in the GLADE editor. It defines what
signal is given and what method to call.
Modifying Stock Skins If you change the name of a widget, Gscreen might not be able to find it.
If this widget is referenced to from Python code, at best this makes the widget not work anymore at
worst it will cause an error when loading Gscreen’s default screens don’t use many signals defined in
the editor, it defines them in the Python code. If you move (cut and paste) a widget with signals, the
signals will not be copied. You must add them again manually.
Handler Files A handler file is a file containing Python code, which Gscreen adds to its default rou-
tines. A handler file allows one to modify defaults, or add logic to a Gscreen skin without having to
modify Gscreen proper. You can combine new functions with Gscreen’s function to modify behavior as
you like. You can completely bypass all of Gscreen’s functions and make if work completely differently.
If present a handler file named gscreen_handler.py (or MYNAME_handler.py if using the INI switch)
will be loaded and registered only one file is allowed Gscreen looks for the handler file, if found it
will look for specific function names and call them instead of the default ones. If adding widgets you
can set up signal calls from the Glade editor to call routines you have written in the handler file. In
this way you can have custom behavior. Handler routines can call Gscreen’s default routines, either
before or after running its own code. In this way you can tack on extra behavior such as adding a
sound. Please see the GladeVCP Chapter for the basics to GladeVCP handler files. Gscreen uses a
very similar technique.
Themes Gscreen uses the PyGTK toolkit to display the screen. PyGTK is the Python language binding
to GTK. GTK supports themes. Themes are a way to modify the look and feel of the widgets on the
screen. For instance the color or size of buttons and sliders can be changed using themes. There are
many GTK themes available on the web. Themes can also be customized to modify visuals of particular
named widgets. This ties the theme file to the Glade file more tightly. Some of the sample screen skins
allow the user to select any of the themes on the system. The sample gscreen is an example. Some
will load the theme that is the same name in the config file. The sample gscreen-gaxis is an example.
This is done by putting the theme folder in the config folder that has the INI and HAL files and naming
it: SCREENNAME_theme (SCREENNAME being the base name of the files eg. gaxis_theme). Inside
this folder is another folder call gtk-2.0, inside that is the theme files. If you add this file, Gscreen

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 644 / 1322

will default to this theme on start up. gscreen-gaxis has a sample custom theme that looks for certain
named widgets and changes the visual behavior of those specific widgets. The Estop and machine-on
buttons use different colors then the rest of the buttons so that they stand out. This is done in the
handler file by giving them specific names an by adding specific commands in the theme’s gtkrc file.
For some info on GTK theming (the sample theme uses the pixmap theme engine), see: GTK Themes,
Pixmap Theme Engine.

10.4.2.2 Build a GladeVCP Panel

Gscreen is just a big complicated GladeVCP panel, with Python code to control it. To customize it we
need the Glade file loaded in the Glade editor.
Installed LinuxCNC If you have LinuxCNC 2.6+ installed on Ubuntu 10.04 just start the Glade editor
from the applications menu or from the terminal. Newer versions of Linux will require you to install
Glade 3.8.0 - 3.8.6 (you may need to compile it yourself).
RIP compiled commands Using a compiled from source version of LinuxCNC open a terminal and
cd to the top of the LinuxCNC folder. Set up the environment by entering . ./scripts/rip-environment
now enter glade, you see a bunch of warnings in the terminal that you can ignore and the edi-
tor should open. The stock Gscreen Glade file is in: src/emc/usr_intf/gscreen/ sample skins are in
/share/gscreen/skins/. This should be copied to a configuration folder. Or you can make a clean-sheet
Glade file by saving it in a configuration folder.
Ok you have loaded the stock Glade file and now can edit it. The first thing you notice is it does not
look in the editor like what it is displayed like Gscreen uses some tricks, such as hiding all boxes of
buttons except one and changing that one depending on the mode. The same goes for notebooks,
some screens use notebooks with the tabs not shown. To change pages in the editor you need to
temporarily show those tabs.
When making changes it is far easier to add widgets then subtract widgets and still have the screen
work properly making objects not visible is one way to change the display without getting errors. This
won’t always work some widgets will be set visible again. Changing the names of Gscreen’s regular
widgets is probably not gonna work well without changing the Python code, but moving a widget while
keeping the name is usually workable.
Gscreen leverages GladeVCP widgets as much as possible, to avoid adding Python code. Learning
about GladeVCP widgets is a prerequisite. If the existing widgets give you the function you want or
need then no Python code needs be added, just save the Glade file in your configuration folder. If you
need something more custom then you must do some Python programming. The name of the parent
window needs to be window1. Gscreen assumes this name.
Remember, if you use a custom screen option YOU are responsible for fixing it (if required) when
updating LinuxCNC.

https://wiki.gnome.org/Attic/GnomeArt/Tutorials/GtkThemes
https://wiki.gnome.org/Attic/GnomeArt/Tutorials/GtkEngines/PixmapEngine
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Installing_LinuxCNC

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 645 / 1322

10.4.3 Building a simple clean-sheet custom screen

Lets build a simple usable screen. Build this in the Glade editor (if using a RIP package run it from a
terminal after using . scripts/rip-environment).
Things to note:

• The top level window must be called the default name, window1 - Gscreen relies on this.

• Add actions by right clicking, and selecting add as toplevel widget they don’t add anything visual
to the window but are added to the right most action list. Add all the ones you see on the top right.

• After adding the actions we must link the buttons to the actions for them to work (see below).

• The gremlin widget doesn’t have a default size so setting a requested size is helpful (see below).

• The sourceview widget will try to use the whole window so adding it to a scrolled window will cover
this. (This is already done in the example.)

• The buttons will expand as the window is made larger which is ugly so we will set the box they are
in, to not expand (see below).

• The button types to use depend on the VCP_action used -eg vcp_toggle_action usually require toggle
buttons (Follow the example for now).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 646 / 1322

• The buttons in this example are regular buttons not HAL buttons. We don’t need the HAL pins.

In this screen we are using VCP_actions to communicate to LinuxCNC the actions we want. This
allows us standard functions without adding Python code in the handler file. Let’s link the estop
toggle button to the estop action Select the estop toggle button and under the general tab look for
Related Action and click the button beside it. Now select the toggle estop action. Now the button will
toggle estop on and off when clicked. Under the general tab you can change the text of the button’s
label to describe its function. Do this for all the buttons.
Select the gremlin widget click the common tab and set the requested height to 100 and click the
checkbox beside it.
Click the horizontal box that holds the buttons. Click the packing tab and click expand to No.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 647 / 1322

Save it as tester.glade and save it in sim/gscreen/gscreen_custom/ folder. Now launch LinuxCNC and
click to sim/gscreen/gscreen_custom/tester and start it. If all goes well our screen will pop up and the
buttons will do their job. This works because the tester.ini tells gscreen to look for and load tester.glade
and tester_handler.py. The tester_handler.py file is included in that folder and is coded just show the
screen and not much else. Since the special widgets directly communicate with LinuxCNC you can
still do useful things. If your screen needs are covered by the available special widgets then this is
as far as you need to go to build a screen. If you want something more there are still many tricks
available from just adding function calls to get canned behaviour. To coding your own Python code to
customize exactly what you want. But that means learning about handler files.

10.4.4 Handler file example

There are special functions Gscreen checks the handler file for. If you add these in you handler file
Gscreen will call them instead of gscreen’s internal same-named functions.

• initialize_preferences(self): You can install new preference routines.

• initialize_keybindings(self) You can install new keybinding routines. In most cases you won’t want to
do this, you will want to override the individual keybinding calls. You can also add more keybindings
that will call an arbitrary function.

• initialize_pins(self): makes / initializes HAL pins

• connect_signals(self,handlers): If you are using a completely different screen the default Gscreen
you must add this or gscreen will try to connect signals to widgets that are not there. Gscreen’s
default function is called with self.gscreen.connect_signals(handlers). If you wish to just add extra
signals to your screen but still want the default ones call this first then add more signals. If you
signals are simple (no user data passed) then you can also use the Glade signal selection in the
Glade editor.

• initialize_widgets(self): You can use this to set up any widgets. Gscreen usually calls self.gscreen.initialize_widgets()
which actually calls many separate functions. If you wish to incorporate some of those widgets
then just call those functions directly. Or add self.gscreen.init_show_windows() so widgets are just
shown. Then if desired, initialize/adjust your new widgets.

• initialize_manual_toolchange(self): allows a complete revamp of the manual toolchange system.

• set_restart_line(self.line):

• timer_interrupt(self): allows one to complete redefine the interrupt routine. This is used for calling
periodic() and checking for errors from linuxcnc.status.

• check_mode(self): used to check what mode the screen is in. Returns a list[] 0 -manual 1- mdi 2-
auto 3- jog.

• on_tool_change(self,widget): You can use this to override the manual tool change dialog -this is
called when gscreen.tool-change changes state.

• dialog_return(self,dialog_widget,displaytype,pinname): Use this to override any user message or
manual tool change dialog. Called when the dialog is closed.

• periodic(self): This is called every (default 100) milliseconds. Use it to update your widgets/HAL
pins. You can call Gscreen regular periodic afterwards too, self.gscreen.update_position() or just
add pass to not update anything. Gscreen’s update_position() actually calls many separate func-
tions. If you wish to incorporate some of those widgets then just call those functions directly.

You can also add you own functions to be called in this file. Usually you would add a signal to a widget
to call your function.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 648 / 1322

10.4.4.1 Adding Keybindings Functions

Our tester example would be more useful if it responded to keyboard commands. There is a function
called keybindings() that tries to set this up. While you can override it completely, we didn’t - but it
assumes some things:

• It assumes the estop toggle button is call button_estop and that F1 key controls it.

• It assumes the power button is called button_machine_on and the F2 key controls it.

These are easily fixed by renaming the buttons in the Glade editor to match. But instead we are going
to override the standard calls and add our own.
Add these command to the handler file:
override Gscreen Functions
keybinding calls
def on_keycall_ESTOP(self,state,SHIFT,CNTRL,ALT):
if state: # only if pressed, not released
self.widgets.togglebutton1.emit(’activate’)
self.gscreen.audio.set_sound(self.data.alert_sound)
self.gscreen.audio.run()
return True # stop progression of signal to other widgets

def on_keycall_POWER(self,state,SHIFT,CNTRL,ALT):
if state:
self.widgets.togglebutton2.emit(’activate’)
return True

def on_keycall_ABORT(self,state,SHIFT,CNTRL,ALT):
if state:
self.widgets.button3.emit(’activate’)
return True

So now we have overridden Gscreen’s function calls of the same name and deal with them in our
handler file We now reference the widgets by the name we used in the Glade editor. We also added a
built in gscreen function to make a sound when Estop changes. Note that we we call Gscreen’s built
in functions we must use self.gscreen.[FUNCTION NAME]() If we used self.[FUNCTION NAME]() it
would call the function in our handler file.
Lets add another key binding that loads halmeter when F4 is pressed.
In the handler file under def initialize_widgets(self): change to:
def initialize_widgets(self):
self.gscreen.init_show_windows()
self.gscreen.keylookup.add_conversion(’F4’,’TEST’,’on_keycall_HALMETER’)

Then add these functions under the HandlerClass class:
def on_keycall_HALMETER(self,state,SHIFT,CNTRL,ALT):
if state:
self.gscreen.on_halmeter()
return True

This adds a keybinding conversion that directs gscreen to call on_keycall_HALMETER when F4 is
pressed. Then we add the function to the handle file to call a Gscreen builtin function to start halmeter.

10.4.4.2 Linuxcnc State Status

The module Gstat polls LinuxCNC’s state every 100ms and sends callback messages to user functions
when state changes. You can register messages to act on specific state changes. As an example we
will register to get file-loaded messages when LinuxCNC loads a new file. First we must import the
module and instantiate it: In the import section of the handler file add:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 649 / 1322

from hal_glib import GStat
GSTAT = GStat()

In the handler file under def __init__(self): add:
GSTAT.connect(’file-loaded’, self.update_filepath)

Then in the HandlerClass, add the function:
self.update_filepath(self, obj, path):

self.widgets.my_path_label.set_text(path)

When LinuxCNC loads a new file, Gstat will send a callback message to the function update_filepath.
In this example we update a label with that path name (assuming there is a label namedmy_path_label)
in the GLADE file.

10.4.4.3 Jogging Keys

There are no special widgets to do screen-button jogging, so we must do it with Python code. Under
the connect_signals function add this code:

for i in(’x’,’y’,’z’):
self.widgets[i+’neg’].connect(”pressed”, self[’jog_’+i],0,True)
self.widgets[i+’neg’].connect(”released”, self[’jog_’+i],0,False)
self.widgets[i+’pos’].connect(”pressed”, self[’jog_’+i],1,True)
self.widgets[i+’pos’].connect(”released”, self[’jog_’+i],1,False)

self.widgets.jog_speed.connect(”value_changed”,self.jog_speed_changed)

Add these functions under the HandlerClass class:
def jog_x(self,widget,direction,state):

self.gscreen.do_key_jog(_X,direction,state)
def jog_y(self,widget,direction,state):

self.gscreen.do_key_jog(_Y,direction,state)
def jog_z(self,widget,direction,state):

self.gscreen.do_key_jog(_Z,direction,state)
def jog_speed_changed(self,widget,value):

self.gscreen.set_jog_rate(absolute = value)

Finally add two buttons to the GLADE file for each axis - one for positive, one for negative direction
jogging. Name these buttons xneg, xpos, yneg, ypos zneg, zpos respectively. add a SpeedControl
widget to the GLADE file and name it jog_speed.

10.4.5 Gscreen Start Up

Gscreen is really just infrastructure to load a custom GladeVCP file and interact with it.

1. Gscreen reads the options it was started with.

2. Gscreen sets the debug mode and set the optional skin name.

3. Gscreen checks to see if there are local XML, handler and/or locale files in the configuration
folder. It will use them instead of the default ones (in share/gscreen/skins/) (There can be two
separate screens displayed).

4. The main screen is loaded and translations set up. If present the second screen will be loaded
and translations set up.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 650 / 1322

5. Optional Audio is initialized if available.

6. It reads some of the INI file to initialize the units, and the number/type of axes.

7. Initializes Python’s binding to HAL to build a non-realtime component with the Gscreen name.

8. GladeVCP’s makepins is called to parse the XML file to build HAL pins for the HAL widgets and
register the LinuxCNC connected widgets.

9. Checks for a local handler file in the configuration folder or else uses the stock one from the skin
folder.

10. If there is a handler file gscreen parses it, and registers the function calls into Gscreen’s names-
pace.

11. Glade matches/registers all signal calls to functions in gscreen and the handler file.

12. Gscreen checks the INI file for an option preference file name otherwise it uses .gscreen_preferences
=.

13. Gscreen checks to see if there is a preference function call (initialize_preferences(self)) in the
handler file otherwise it uses the stock Gscreen one.

14. Gscreen checks for ClassicLadder realtime component.

15. Gscreen checks for the system wide GTK theme.

16. Gscreen collects the jogging increments from the INI file.

17. Gscreen collects the angular jogging increments from the INI file.

18. Gscreen collects the default and max jog rate from the INI.

19. Gscreen collects the max velocity of any axes from the INI’s TRAJ section.

20. Gscreen checks to see if there is angular axes then collects the default and max velocity from the
INI file.

21. Gscreen collect all the override setting from the INI.

22. Gscreen checks if its a lathe configuration from the INI file.

23. Gscreen finds the name of the tool_table,tool editor and param file from the INI.

24. Gscreen checks the handler file for keybindings function (initialize_keybindings(self)) or else use
Gscreen stock one.

25. Gscreen checks the handler file for pins function (initialize_pins(self)) or else use Gscreen stock
one.

26. Gscreen checks the handler file for manual_toolchange function (initialize_manual_toolchange(self))
or else use Gscreen stock one.

27. Gscreen checks the handler file for connect_signals function (initialize_connect_signals(self)) or
else use Gscreen stock one.

28. Gscreen checka the handler file for widgets function (initialize_widgets(self)) or else use Gscreen
stock one.

29. Gscreen set up messages specified in the INI file.

30. Gscreen tells HAL the Gscreen HAL component is finished making pins and is ready. If there is
a terminal widget in the screen it will print all the Gscreen pins to it.

31. Gscreen sets the display cycle time based on the INI file.

32. Gscreen checks the handler file for timer_interupt(self) function call otherwise use Gscreen’s
default function call.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 651 / 1322

10.4.6 INI Settings

Under the [DISPLAY] heading:
DISPLAY = gscreen -c tester
options:
-d debugging on
-v verbose debugging on

The -c switch allows one to select a skin. Gscreen assumes the Glade file and the handler file use
this same name. The optional second screen will be the same name with a 2 (e.g., tester2.glade).
There is no second handler file allowed. It will only be loaded if it is present. Gscreen will search the
LinuxCNC configuration file that was launched first for the files, then in the system skin folder.

10.4.7 User Dialog Messages

This function is used to display pop up dialog messages on the screen. These are defined in the INI
file and controlled by HAL pins:

MESSAGE_BOLDTEXT
is generally a title.

MESSAGE_TEXT
is below that and usually longer.

MESSAGE_DETAILS
is hidden unless clicked on.

MESSAGE_PINNAME
is the basename of the HAL pins.

MESSAGE_TYPE
specifies whether its a yes/no, ok, or status message

• Status messages
– will be shown in the status bar and the notify dialog,
– require no user intervention.

• ok messages
– require the user to click ok to close the dialog.
– have one HAL pin to launch the dialog and one to signify it is waiting for response.

• yes/no messages
– require the user to select yes or no buttons to close the dialog.
– have three HAL pins:

1. one to show the dialog,
2. one for waiting, and
3. one for the answer.

Here is a sample INI code. It would be under the [DISPLAY] heading.
This just shows in the status bar and desktop notify popup.
MESSAGE_BOLDTEXT = NONE
MESSAGE_TEXT = This is a statusbar test
MESSAGE_DETAILS = STATUS DETAILS
MESSAGE_TYPE = status
MESSAGE_PINNAME = statustest

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 652 / 1322

This will pop up a dialog that asks a yes no question
MESSAGE_BOLDTEXT = NONE
MESSAGE_TEXT = This is a yes no dialog test
MESSAGE_DETAILS = Y/N DETAILS
MESSAGE_TYPE = yesnodialog
MESSAGE_PINNAME = yndialogtest

This pops up a dialog that requires an ok response and it shows in the status bar and
the desktop notify popup.
MESSAGE_BOLDTEXT = This is the short text
MESSAGE_TEXT = This is the longer text of the both type test. It can be longer then the ←↩

status bar text
MESSAGE_DETAILS = BOTH DETAILS
MESSAGE_TYPE = okdialog status
MESSAGE_PINNAME = bothtest

10.4.7.1 Copy the Stock Handler/Glade File For Modification

If you wish to use a stock screen but modify its handler file, you need to copy the stock file to your
config file folder. Gscreen will see this and use the copied file. But where is the original file? If using
a RIP LinuxCNC the sample skins are in /share/gscreen/skins/SCREENNAME Installed versions of
LinuxCNC have them in slightly different places depending on the distribution used. An easy way to
find the location is to open a terminal and start the sim screen you wish to use. In the terminal the
file locations will be printed. It may help to add the -d switch to the gscreen load line in the INI.
Here is a sample:
chris@chris-ThinkPad-T500 ~/emc-dev/src $ linuxcnc
LINUXCNC - 2.7.14
Machine configuration directory is ’/home/chris/emc-dev/configs/sim/gscreen/gscreen_custom’
Machine configuration file is ’industrial_lathe.ini’
Starting LinuxCNC...
Found file(lib): /home/chris/emc-dev/lib/hallib/core_sim.hal
Note: Using POSIX non-realtime
Found file(lib): /home/chris/emc-dev/lib/hallib/sim_spindle_encoder.hal
Found file(lib): /home/chris/emc-dev/lib/hallib/axis_manualtoolchange.hal
Found file(lib): /home/chris/emc-dev/lib/hallib/simulated_home.hal
**** GSCREEN WARNING: no audio alerts available - Is python-gst0.10 library installed?
**** GSCREEN INFO ini: /home/chris/emc-dev/configs/sim/gscreen/gscreen_custom/ ←↩

industrial_lathe.ini
**** GSCREEN INFO: Skin name = industrial

**** GSCREEN INFO: Using SKIN glade file from /home/chris/emc-dev/share/gscreen/skins/ ←↩
industrial/industrial.glade ****

**** GSCREEN INFO: No Screen 2 glade file present
**** GSCREEN INFO: handler file path: [’/home/chris/emc-dev/share/gscreen/skins/industrial/ ←↩

industrial_handler.py’]

The line:
**** GSCREEN INFO: handler file path: [’/home/chris/emc-dev/share/gscreen/skins/industrial/ ←↩

industrial_handler.py’]

shows where the stock file lives. Copy this file to your config folder. This works the same for the Glade
file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 653 / 1322

10.5 QtDragon GUI

10.5.1 Introduction

QtDragon and QtDragon_hd are built with the QtVCP framework. It is the creative vision of forum
personality Persei8. Much of it is based on the excellent work of others in the LinuxCNC community.
LinuxCNC’s version is adapted from Persei8’s Github versions. It is primarily meant for 3-5 axes
machines such as mills or routers. It works well with a touchscreen and/or mouse. QtDragon supports
multiple ways to touch off tools and probing work pieces. You can use LinuxCNC’s external offsets
capability to automatically raise the spindle during a pause. If you the VersaProbe option and remap
code you can add auto tool length probing at tool changes.

Note
QtDragon and QtVCP are relatively new programs added into LinuxCNC. Bugs and oddities are pos-
sible. Please test carefully when using a dangerous machine. Please forward reports to the forum or
maillist.

10.5.1.1 QtDragon

Figure 10.26: QtDragon - 3 to 5 axis sample (1440x860) in silver theme

QtDragon is resizable from a resolution of 1280x768 to 1680x1200. It will work in window mode on
any monitor with higher resolution but not on monitors with lower resolution.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 654 / 1322

10.5.1.2 QtDragon_lathe

QtDragon_lathe is a modified version of QtDragon more suitable for lathes.
It is resizable from a resolution of 1280x768 to 1680x1200.
It will work in window mode on any monitor with higher resolution but not on monitors with lower
resolution.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 655 / 1322

10.5.1.3 QtDragon_hd

Figure 10.27: QtDragon_hd - 3 to 5 axis sample for larger monitors (1920x1056) in dark theme

QtDragon_hd is a similar design as QtDragon but modified to utilize the extra space of modern larger
monitors. There are some small differences in layout and utility.
QtDragon_hd has a resolution of 1920x1056 and is not resizeable. It will work in window mode on
any monitor with higher resolution but not on monitors with lower resolution.

10.5.1.4 QtDragon_hd_vertical

QtDragon_hd_vertical is a vertical orientated version. It is not resizable.

10.5.2 Getting Started - The INI File

If your configuration is not currently set up to use QtDragon, you can change it by editing the INI file
sections. For an exhaustive list of options, see the display section of the INI file documentation.

Note
You can only have one of each section (e.g., [HAL]) in the INI file. If you see in these docs multiple
section options, place them all under the one appropriate section name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 656 / 1322

10.5.2.1 Display

In the section [DISPLAY] change the DISPLAY = assignment to read:

• qtdragon for a small version

• qtdradon_hd for the large version.

You can add -v, -d, -i, or -q for (respectably) verbose, debug, info or quiet output to the terminal.
[DISPLAY]
DISPLAY = qtvcp qtdragon

10.5.2.2 Preferences

To keep track of preferences, QtDragon looks for a preference text file. Add the following entry under
the [DISPLAY] heading.
It can use ~ for home directory or WORKINGFOLDER or CONFIGFOLDER to represent QtVCP’s idea of those
directories:
This example will save the file in the config folder of the launch screen. (Other options are possible
see the QtVCP’s screenoption widget docs.)
[DISPLAY]
PREFERENCE_FILE_PATH = WORKINGFOLDER/qtdragon.pref

10.5.2.3 Logging

You can specify where to save history/logs.
These file names can be user selected.
In the section [DISPLAY] add:
[DISPLAY]
MDI_HISTORY_FILE = mdi_history.dat
MACHINE_LOG_PATH = machine_log.dat
LOG_FILE = qtdragon.log

10.5.2.4 Override controls

These set qtdragon’s override controls (1.0 = 100 percent):
[DISPLAY]
MAX_SPINDLE_0_OVERRIDE = 1.5
MIN_SPINDLE_0_OVERRIDE = .5
MAX_FEED_OVERRIDE = 1.2

10.5.2.5 Spindle controls

Spindle control settings (in rpm and watts):
[DISPLAY]
DEFAULT_SPINDLE_0_SPEED = 500
SPINDLE_INCREMENT = 200
MIN_SPINDLE_0_SPEED = 100
MAX_SPINDLE_0_SPEED = 2500
MAX_SPINDLE_POWER = 1500

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 657 / 1322

10.5.2.6 Jogging increments

Set selectable jogging increments.
These increments can be user changed.
[DISPLAY]
INCREMENTS = Continuous, .001 mm, .01 mm, .1 mm, 1 mm, 1.0 inch, 0.1 inch, 0.01 inch
ANGULAR_INCREMENTS = 1, 5, 10, 30, 45, 90, 180, 360

10.5.2.7 Grid Increments

Set the available optional grid sizes for graphics display.
This will override the default sizes.
mm and in are used to specify units.
The grid selection box is shown when clicking the OPTN button on the graphics display.
[DISPLAY]
GRIDS = 0, .1 mm, 1 mm, 2 mm, 5 mm, 10 mm, .25 in, .5 in

10.5.2.8 Jog speed

Set jog speed controls (in units per second)
[DISPLAY]
MIN_LINEAR_VELOCITY = 0
MAX_LINEAR_VELOCITY = 60.00
DEFAULT_LINEAR_VELOCITY = 50.0
DEFAULT_ANGULAR_VELOCITY = 10
MIN_ANGULAR_VELOCITY = 1
MAX_ANGULAR_VELOCITY = 360

10.5.2.9 User message dialog system

Optional popup custom message dialogs, controlled by HAL pins.
MESSAGE_TYPE can be okdialog or yesnodialog. See qtvcp/library/messages for more information.
This example shows how to make a dialog that requires the user to select ok to acknowledge and hide.
These dialogs could be used for such things as low lube oil warnings, etc.
[DISPLAY]
MESSAGE_BOLDTEXT = This is the short text
MESSAGE_TEXT = This is the longer text of the both type test. It can be longer than the ←↩

status bar text
MESSAGE_DETAILS = BOTH DETAILS
MESSAGE_TYPE = okdialog
MESSAGE_PINNAME = oktest

Multimessages use an s32 HAL pin to pop multiple defined messages.
[DISPLAY]
MULTIMESSAGE_ID = VFD

MULTIMESSAGE_VFD_NUMBER = 1
MULTIMESSAGE_VFD_TYPE = okdialog status
MULTIMESSAGE_VFD_TITLE = VFD Error: 1
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR MESSAGE NUMBER 1
MULTIMESSAGE_VFD_DETAILS = DETAILS for VFD error 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 658 / 1322

MULTIMESSAGE_VFD_ICON = WARNING

MULTIMESSAGE_VFD_NUMBER = 2
MULTIMESSAGE_VFD_TYPE = nonedialog status
MULTIMESSAGE_VFD_TITLE = VFD Error: 2
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR MESSAGE NUMBER 2
MULTIMESSAGE_VFD_DETAILS = DETAILS for VFD error 2
MULTIMESSAGE_VFD_ICON = INFO

10.5.2.10 Embed Custom VCP Panels

You can optionally embed QtVCP Virtual Control Panels into the QtDragon or QtDragon_hd screen.
These panels can be either user built or builtin QtVCP Panels.
See QtVCP/VCP panels for other available builtin panels.
The EMBED_TAB_NAME entry will used as the title for the new tab.(must be unique)
Tab EMBED_TAB_LOCATION options include: tabWidget_utilities, tabWidget_setup and stackedWidget_mainTab.
Tab EMBED_TAB_COMMAND specifies what embed-able program to run, including any of its command line
options.
If using the tabWidget_utilities or tabWidget_setup locations, an extra tab will appear with the
panel.
If using stackedWidget_mainTab, a button labelled User will appear.
Pressing this button will cycle through displaying all available panels (specified for this location) on
the main tab area.
Sample adding a builtin panel to the utilities tab, i.e., a graphical animated machine using
the vismach library.
[DISPLAY]
EMBED_TAB_NAME = Vismach demo
EMBED_TAB_COMMAND = qtvcp vismach_mill_xyz
EMBED_TAB_LOCATION = tabWidget_utilities

This example panel is designed to display additional RS485 VFD data and also to configure a 4 sheave,
2 belt spindle drive via a series of buttons.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 659 / 1322

[DISPLAY]
EMBED_TAB_NAME = Spindle Belts
EMBED_TAB_COMMAND = qtvcp spindle_belts
EMBED_TAB_LOCATION = tabWidget_utilities

10.5.2.11 Subroutine Paths

If using NGCGUI, remap or custom M codes routines, LinuxCNC needs to know where to look for the
files.
This sample is typical of what is needed for NgcGui, Basic Probe. and Versa Probe remap code.
These paths will need to be adjusted to point to the actual files on your system. RS274NZGC Section
Details
[RS274NGC]
SUBROUTINE_PATH = :~/linuxcnc/nc_files/examples/ngcgui_lib:~/linuxcnc/nc_files/examples/ ←↩

ngcgui_lib/utilitysubs: \
~/linuxcnc/nc_files/examples/probe/basic_probe/macros:~/linuxcnc/nc_files/examples/remap- ←↩

subroutines: \
~/linuxcnc/nc_files/examples/ngcgui_lib/remap_lib

QtVCP’s NGCGUI program also need to know where to open for subroutine selection and pre-selection.
NGCGUI_SUBFILE_PATH must point to an actual path on your system and also a path described in
SUBROUTINE_PATHS.
[DISPLAY]
NGCGUI subroutine path.
Thr path must also be in [RS274NGC] SUBROUTINE_PATH
NGCGUI_SUBFILE_PATH = ~/linuxcnc/nc_files/examples/ngcgui_lib
pre selected programs tabs
specify filenames only, files must be in the NGCGUI_SUBFILE_PATH
NGCGUI_SUBFILE = slot.ngc
NGCGUI_SUBFILE = qpocket.ngc

10.5.2.12 Preview Control

Magic comments can be used to control the G-code preview.
On very large programs the preview can take a long time to load. You can control what is shown and
what is hidden the the graphics screen by adding the appropriate comments from this list into your
G-code:
(PREVIEW,stop)
(PREVIEW,hide)
(PREVIEW,show)

10.5.2.13 Program Extensions/Filters

You can control what programs are displayed in the filemanager window with program extensions.
Create a line with the . endings you wish to use separated by commas, then a space and the descrip-
tion.
You can add multiple lines for different selections in the combo box.
[FILTER]
PROGRAM_EXTENSION = .ngc,.nc,.tap G-Code file (*.ngc,*.nc,*.tap)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 660 / 1322

QtDragon has the ability to send loaded files through a filter program. This filter can do any desired
task: Something as simple as making sure the file ends with M2, or something as complicated as
generating G-code from an image. See Filter Programs for more information.
The [FILTER] section of the INI file controls how filters work. First, for each type of file, write a
PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write rs274ngc code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by LinuxCNC when Run.
The following lines add support for the image-to-gcode converter included with LinuxCNC and run-
ning Python based filter programs:
[FILTER]
PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image
PROGRAM_EXTENSION = .py Python Script
png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode
py = python

10.5.2.14 Probe/Touchplate/Laser Settings

QtDragon has INI entries for two optional probing tab screens available. Comment/uncomment which
ever you prefer.

• Versa probe is a QtVCP ported version of a popular GladeVCP probing panel.

• Basic Probe is a QtVCP ported version based on the third party basic probe screen.

Both perform similar probing routines, though Versa probe optionally handles auto tool measurement.
[PROBE]
#USE_PROBE = versaprobe
USE_PROBE = basicprobe

10.5.2.15 Abort detection

When using qtdragon’s probing routines, it is important to detect a user abort request.
By default, LinuxCNC does not report an abort in a useful way for the probe routines.
You need to add a ngc file to print out an error that can be detected. Remap Abort Details
[RS274NGC]
on abort, this ngc file is called. required for basic/versa probe routines. +
ON_ABORT_COMMAND=O <on_abort> call

This example code will send a message on abort. The probe routines can detect this sample.
According to the setting above, it would need to be saved as on_abort.ngcwithin LinuxCNC’s [RS274NGC]
SUBROUTINE_PATHS and [DISPLAY] PROGRAM_PREFIX search paths.
o<on_abort> sub

o100 if [#1 eq 5]
(machine on)

o100 elseif [#1 eq 6]
(machine off)

o100 elseif [#1 eq 7]
(estopped)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 661 / 1322

o100 elseif [#1 eq 8]
(msg,Process Aborted)

o100 else
(DEBUG,Abort Parameter is %d[#1])

o100 endif

o<on_abort> endsub
m2

10.5.2.16 Startup codes

You should set default M/G code for start up. These will be overridden by running a NGC file.
These are only sample codes, integrator should choose appropriate codes.
[RS274NGC]
start up G/M codes when first loaded
RS274NGC_STARTUP_CODE = G17 G20 G40 G43H0 G54 G64P0.0005 G80 G90 G94 G97 M5 M9

10.5.2.17 Macro Buttons

QtDragon has up to ten convenience buttons for calling macro actions.
These are under the heading [MDI_COMMAND_LIST] asMDI_COMMAND_MACRO0= toMDI_COMMAND_MACRO9
=
These could also call OWord routines if desired.
In the sample configurations they are labelled for moving between current user system origin (zero
point) and Machine system origin.
User origin is the first MDI command in the INI list, machine origin is the second.
This example shows how to move Z axis up first. Commands separated by the ; are run one after
another.
The button label text can be set with any text after a comma, the \n symbol adds a line break.
[MDI_COMMAND_LIST]
for macro buttons
MDI_COMMAND_MACRO0 = G0 Z25;X0 Y0;Z0, Goto\nUser\nZero
MDI_COMMAND_MACRO1 = G53 G0 Z0;G53 G0 X0 Y0,Goto\nMachn\nZero

10.5.2.18 Post GUI HAL File

These optional HAL files will be called after QtDragon has loaded everything else.
You can add multiple line for multiple file. Each one will be called in the order they appear.
Calling HAL files after QtDragon is already loaded assures that QtDragon’s HAL pins are available.
Sample with typical entries for the specificion of HAL files to be read after the QtDragon was
started. Adjust these lines to match actual requirements.
[HAL]
POSTGUI_HALFILE = qtdragon_hd_postgui.hal
POSTGUI_HALFILE = qtdragon_hd_debugging.hal

10.5.2.19 Post GUI HAL Command

These optional HAL commands will be run after QtDragon has loaded everything else.
You can add multiple line. Each one will be called in the order they appear.
Any HAL command can be used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 662 / 1322

Sample with typical files in INI file to load modules after the GUI is available. Adjust these
to match your actual requirements.
[HAL]
POSTGUI_HALCMD = loadusr qtvcp test_probe
POSTGUI_HALCMD = loadusr qtvcp test_led
POSTGUI_HALCMD = loadusr halmeter

10.5.2.20 HAL Bridge

Hal Bridge is similar to HALUI - it has HAL pins that communicate with QtDragon.
These pins could be used with HALUI to built a more friendly control panel.

• It can report/change the current selected Axis button.

• The jog rate/increments will be reported.

• There is a cycle start and pause pin - these call the code in QtDragon rather then the motion con-
troller.

• If there are macros defined in the INI, there will be pins available to initiate them.

Sample entry. Remove -d to quiet debugging messages.
[HAL]
HALBRIDGE= hal_bridge -d

Typical HAL pins avaialble:
Component Pins:
Owner Type Dir Value Name

38 s32 OUT 0 base-thread.time
29 bit OUT FALSE bridge.axis-x-is-selected
29 bit IN FALSE bridge.axis-x-select
29 bit OUT FALSE bridge.axis-y-is-selected
29 bit IN FALSE bridge.axis-y-select
29 bit OUT FALSE bridge.axis-z-is-selected
29 bit IN FALSE bridge.axis-z-select
29 bit IN FALSE bridge.cycle-pause-in
29 bit IN FALSE bridge.cycle-start-in
29 float OUT 0 bridge.jog-increment
29 float OUT 0 bridge.jog-increment-angular
29 float OUT 15 bridge.jog-rate
29 float OUT 360 bridge.jog-rate-angular
29 s32 OUT -1 bridge.joint-selected
29 bit IN FALSE bridge.macro-cmd-MACRO0
29 bit IN FALSE bridge.macro-cmd-MACRO1

10.5.2.21 Builtin Sample Configurations

The sample configurations sim/qtdragon/ or sim/qtdragon_hd are already configured to use Qt-
Dragon as the screen. There are several examples that demonstrate various machine configurations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 663 / 1322

10.5.3 Key Bindings

QtDragon is not intended to primarily use a keyboard for machine control.
It lacks many keyboard short cuts that for instance AXIS has - but you can use a mouse or touchscreen.
There are several key presses that will control the machine for convenience.
F1 - Estop on/off
F2 - Machine on/off
F12 - Style Editor
Home - Home All Joint of the Machine
Escape - Abort Movement
Pause - Pause Machine Movement

10.5.4 Buttons

Buttons that are checkable will change their text colour when checked. This is controlled by the
stylesheet/theme

10.5.5 Virtual Keyboard

QtDragon includes a virtual keyboard for use with touchscreens. To enable the keyboard, check
the Use Virtual Keyboard checkbox in the Settings page. Clicking on any input field, such as probe
parameters or tool table entries, will show the keyboard. To hide the keyboard, do one of the following:

• press the HIDE button on the virtual keyboard.

• click the MAIN page button

• go into AUTO mode

It should be noted that keyboard jogging is disabled when using the virtual keyboard.

10.5.6 HAL Pins

These pins are specific to the QtDragon screen.
There are of course are many more HAL pins that must be connected for LinuxCNC to function.
If you need a manual tool change prompt, add these lines in your postgui file.
QtDragon emulates the hal_manualtoolchange HAL pins - don’t load the separate HAL component
hal_manualtoolchange.
net tool-change hal_manualtoolchange.change <= iocontrol.0.tool-change
net tool-changed hal_manualtoolchange.changed <= iocontrol.0.tool-changed
net tool-prep-number hal_manualtoolchange.number <= iocontrol.0.tool-prep-number

Also if you don’t have an automatic tool changer make sure these pins are connected in one of the
HAL files:
net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

This input pin should be connected to indicate probe state.
qtdragon.led-probe

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 664 / 1322

These pins are inputs related to spindle VFD indicating.
The volt and amp pins are used to calculate spindle power. You must also set the MAX_SPINDLE_POWER
in the INI.
qtdragon.spindle-modbus-connection
qtdragon.spindle-modbus-errors
qtdragon.spindle-amps
qtdragon.spindle-fault
qtdragon.spindle-volts

This bit pin is an output to the spindle control to pause it.
You would connect it to spindle.0.inhibit.
qtdragon.spindle-inhibit

QtDragon spindle speed display and spindle-at-speed LED require that spindle.0.speed-in be con-
nected to spindle speed feedback.
Encoder or VFD feedback could be used, as long as the feedback is in revolutions per second (RPS).
If no feedback is available you can have the display show the requested speed by connecting pins like
so:
net spindle-speed-feedback spindle.0.speed-out-rps => spindle.0.speed-in

This bit output pin can be connected to turn on a laser:
qtdragon.btn-laser-on

This float output pin indicates the camera rotation in degrees:
qtdragon.cam-rotation

These bit/s32/float pins are related to external offsets if they are used:
qtdragon.eoffset-clear
qtdragon.eoffset-enable
qtdragon.eoffset-value
qtdragon.eoffset-spindle-count
qtdragon.eoffset-zlevel-count
qtdragon.eoffset-is-active

These float output pins reflect the current slider jograte (in machine units):
qtdragon.slider-jogspeed-linear
qtdragon.slider-jogspeed-angular

These float output pins reflect the current slider override rates:
qtdragon.slider-override-feed
qtdragon.slider-override-maxv
qtdragon.slider-override-rapid
qtdragon.slider-override-spindle

These output pins are available when setting the Versa Probe INI option. They can be used for auto-
tool-length-probe at tool change - with added remap code.
qtversaprobe.enable
qtversaprobe.blockheight
qtversaprobe.probeheight
qtversaprobe.probevel
qtversaprobe.searchvel
qtversaprobe.backoffdist

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 665 / 1322

This pin will be true when the loaded tool equals the number set in the Versa Probe tool number in
the preference file.
It can be used (for example) to inhibit the spindle when the probe is loaded by connecting it to
spindle.0.inhibit.
qtversaprobe.probe-loaded

This output pin is available when setting the Basic Probe INI option.
This pin will be true when the loaded tool equals the number set in the Basic Probe tool number edit
box.
It can be used (for example) to inhibit the spindle when the probe is loaded by connecting it to
spindle.0.inhibit.
qtbasicprobe.probe-loaded

This input pin is available to toggle pause/resume of a running program.
qtdragon.external-pause

You can externally operate dialog responses on most qtdragon dialogs.
qtdragon.dialog-ok
qtdragon.dialog-no
qtdragon.dialog-cancel

10.5.7 HAL files

The HAL files supplied are for simulation only. A real machine needs its own custom HAL files. The
QtDragon screen works with 3 or 4 axes with one joint per axis or 3 or 4 axes in a gantry configuration
(2 joints on 1 axis).

10.5.8 Manual Tool Changes

If your machine requires manual tool changes, QtDragon can pop a message box to direct you. Qt-
Dragon emulates the hal_manualtoolchange HAL pins - don’t load the separate HAL component hal_manualtoolchange.
Hereto you must connect the proper HAL pin in the postgui HAL file, for example:
net tool-change hal_manualtoolchange.change <= iocontrol.0.tool-change
net tool-changed hal_manualtoolchange.changed <= iocontrol.0.tool-changed
net tool-prep-number hal_manualtoolchange.number <= iocontrol.0.tool-prep-number

10.5.9 Spindle

The screen is intended to interface to a VFD, but will still work without it.
There are a number of VFD drivers included in the LinuxCNC distribution.
It is up to the end user to supply the appropriate driver and HAL file connections according to his own
machine setup.

10.5.10 Auto Raise Z Axis on Program Pause

QtDragon can be set up to automatically raise and lower the Z axis and stop the spindle, when the
program is paused.
You toggle the SPINDLE LIFT or NO LIFT button to select the option to raise the spindle in Z when

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 666 / 1322

paused.
Then when you press the PAUSE button the spindle will lift the amount set on the Settings tab and
the spindle will stop.
Pressing RESUME will start the spindle and lower the spindle.
If you have the HAL pin spindle.0.at-speed connected to a driving pin, the spindle will not lower
until the pin is true
You typically connect this to a timer or logic that detects the speed of the spindle.
If that pin is not connected to a driving pin, a dialog will pop up to warn you to wait for the spindle
speed.
The spindle will lower when you close that dialog.
The amount to raise is set in the Settings tab under the heading SPINDLE RAISE.
This line edit box can only be directly set when not in Auto mode.
The up/down buttons can be used to adjust the raise amount at any time, including when the spindle
is already raised.
The button increments are 1 inch or 5 mm (depending on the units the machine is based on).

Note
If using the Spindle lift option, HALUI can not be used to pause/resume the program. There is a pin,
QtDragon.external-pause available to pause/resume from an external source. You must also enable
external offsets. In the setting tab check use external offsets If you wish to inhibit the spindle when a
probe tool is loaded, you will need to use an logical or-component to combine the two spindle inhibit
signals to connect to spindle.0.inhibit.

This optional behaviour requires additions to the INI and the QtDragon_postgui HAL file.
In the INI, under the AXIS_Z heading.
[AXIS_Z]
OFFSET_AV_RATIO = 0.2

This reserves 20% of max velocity and max acceleration for the external offsets.
This will limit max velocity of the machine by 20%

In the qtdragon_postgui.hal file add:
Set up Z axis external offsets
net eoffset_clear qtdragon.eoffset-clear => axis.z.eoffset-clear
net eoffset_count qtdragon.eoffset-spindle-count => axis.z.eoffset-counts
net eoffset qtdragon.eoffset-value <= axis.z.eoffset
net eoffset-state qtdragon.eoffset-is-active <= motion.eoffset-active

Inhibit spindle when paused
net spindle-pause qtdragon.spindle-inhibit => spindle.0.inhibit

uncomment for dragon_hd
#net limited qtdragon.led-limits-tripped <= motion.eoffset-limited

setp axis.z.eoffset-enable 1
setp axis.z.eoffset-scale 1.0

10.5.11 Z level compensation

QtDragon_hd can be set up to probe and compensate for Z level height changes by utilizing the ex-
ternal program G-code Ripper.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 667 / 1322

Note
This is only available in the QtDragon_hd version.

Z level compensation is a bed levelling/distortion correction function typically used in 3D printing
or engraving. It uses a HAL non-realtime component which utilizes the external offsets feature of
LinuxCNC. The component has a HAL pin that specifies an interpolation type, which must be one of
cubic, linear or nearest (0, 1, 2 respectively). If none is specified or if an invalid number is specified,
the default is assumed to be cubic.
When Z LEVEL COMP is enabled, the compensation component reads a probe data file, which must
be called probe_points.txt. The file can be modified or updated at any time while compensation is
disabled. When next enabled, the file will be reread and the compensation map is recalculated. This
file is expected to be in the configuration directory.
The probe data file is generated by a probing program, which itself is generated by an external python
program called gcode_ripper, which can be launched from the file manager tab using the G-code
Ripper button.

10.5.11.1 Using G-code Ripper for Z level Compensation

Figure 10.28: QtDragon_hd showing G-code Ripper

Note
G-code Ripper offers many functions that we will not go in to here. This is only available in the
QtDragon_hd version.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 668 / 1322

• In qtdragon_hd, switch to the file tab and press the load G-code Ripper button.

• Set origin to match the origin of the G-code file to be probed.

• Under G-Code Operations, check Auto Probe.

• File -> Open G-Code File (The file you will run after compensation)

• If necessary, make adjustments and press Recalculate.

• Press Save G-Code File - Probe Only.

• Save the generated file to the nc_files folder.

• Exit gcode_ripper.

•

• Without changing the offsets, run this program. Make sure the probe tool is installed. When com-
plete, there will be a file in the config directory called probe_points.txt.

• In qtdragon_hd, press the Enable Z Comp button to enable compensation. Look at the status line
for indication of success or failure. Active compensation will be displayed beside the label: Z Level
Comp While jogging that display should change based on the compensation component.

Note
If you use auto raise Z to lift the spindle on pause, you must combine the two with a HAL component
and feed that to LinuxCNC’s motion component.

Sample postgui HAL file for combined spindle raise and Z Level compensation
load components
##

loadrt logic names=logic-and personality=0x102
addf logic-and servo-thread

load a summing component for adding spindle lift and Z compensation
loadrt scaled_s32_sums
addf scaled-s32-sums.0 servo-thread

loadusr -Wn z_level_compensation z_level_compensation
method parameter must be one of nearest(2), linear(1), cubic (0)
setp z_level_compensation.fade-height 0.0
setp z_level_compensation.method 1

connect signals to LinuxCNC’s motion component
##

net eoffset-clear axis.z.eoffset-clear
net eoffset-counts axis.z.eoffset-counts
setp axis.z.eoffset-scale .001
net eoffset-total axis.z.eoffset
setp axis.z.eoffset-enable True

external offsets for spindle pause function
##
net eoffset-clear qtdragon.eoffset-clear
net eoffset-spindle-count <= qtdragon.eoffset-spindle-count
net spindle-pause qtdragon.spindle-inhibit => spindle.0.inhibit
net eoffset-state qtdragon.eoffset-is-active <= motion.eoffset-active

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 669 / 1322

Z level compensation
##
net eoffset-clr2 z_level_compensation.clear => logic-and.in-01
net xpos-cmd z_level_compensation.x-pos <= axis.x.pos-cmd
net ypos-cmd z_level_compensation.y-pos <= axis.y.pos-cmd
net zpos-cmd z_level_compensation.z-pos <= axis.z.pos-cmd
net z_compensation_on z_level_compensation.enable-in <= qtdragon.comp-on
net eoffset-zlevel-count z_level_compensation.counts => qtdragon.eoffset-zlevel- ←↩

count

add Z level and scaled spindle raise level values together
net eoffset-spindle-count scaled-s32-sums.0.in0
net eoffset-zlevel-count scaled-s32-sums.0.in1
setp scaled-s32-sums.0.scale0 1000
net eoffset-counts scaled-s32-sums.0.out-s

10.5.12 Probing

The probe screen has been through basic testing but there could still be some minor bugs. When
running probing routines, use extreme caution until you are familiar with how everything works.
Probe routines run without blocking the main GUI. This gives the operator the opportunity to watch
the DROs and stop the routine at any time.

Note
Probing is very unforgiving to mistakes; be sure to check settings before using.

QtDragon has 2 methods for setting Z0. The first is a touchplate, where a metal plate of known thick-
ness is placed on top of the workpiece, then the tool is lowered until it touches the plate, triggering the
probe signal. The current user system’s (G5x) Z0 is set to probe height - the entered plate thickness.
The second method uses a tool setter in a fixed position and a known height above the table where
the probe signal will be triggered. In order to set Z0 to the top of the workpiece, it has to know

1. how far above the table the probe trigger point is (tool setter height) and

2. how far above the table the top of the workpiece is.

This operation has to be done every time the tool is changed as the tool length is not saved.
For touching off with a touch probe, whether you use the touchplate operation with thickness set to 0
or use a probing routine, the height from table to top of workpiece parameter is not taken into account
and can be ignored. It is only for the tool setter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 670 / 1322

10.5.12.1 Versa Probe

Figure 10.29: QtDragon - Versa Probe Option

Versa probe is used to semi-automatically probe work pieces to find edges, centers and angles.
It can also be sued to auto probe tool length at tool changes with added remap code.
You must carefully set the Probing Parameters:

DIAMETER
This is the diameter of the probe tip. The accuracy of probe measurements is directly affected
by the accuracy of the probe tip diameter.

TRAVEL
The distance that the probe will travel during the initial search. If the search distance is too short,
you will receive a message like ”G38 finished without making contact”. For safety reasons, it is
recommended to set this parameter to 3-4 mm more than probe stylus diameter.

LATCH RTN
The distance the probe is retracted after making initial contact with the workpiece. This should
be a short distance because the second approach will be at a slow speed, but large enough for the
probe to break contact and bring it to the search ready state. If the Latch Rtn distance too large,
you will end up spending a lot of time waiting for the search to complete. Recommendation: 1-2
mm

SEARCH
This is the feed rate at which the probe searches for the target workpiece in machine units per
minute. The search speed should be slow enough to give an acceptable initial accuracy, but fast
enough to not waste time waiting for movement. Recommendation: 200-500 mm/min.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 671 / 1322

PROBE
Once initial contact has been made and the probe is retracted, it will wait for 0.5 seconds before
performing the search again at a lower speed, the probe velocity. This lower speed ensures the
machine can stop movement as quickly as possible on contact with the workpiece.

RAPID
Axis movements not associated with searching are done at the speed defined by RAPID in machine
units per minute.

SIDE/EDGE LENGTH
This is the distance the probe will move at the rapid rate to the position where it will begin
a search. If measuring a corner, it will move EDGE LENGTH units away from the corner, then
move away from the workpiece by XY CLEARANCE, lower by Z CLEARANCE and begin the initial
search. If measuring an inner circle, then EDGE LENGTH should be set to the approximate radius
of the circle. Note: NOT the diameter.

PROBE HT
The height of the tool sensor from the machine table surface. This value is used to calculate the
Z zero height for the current work coordinate system when using the probe with a tool setter
sensor.

BLOCK HT
The height of the top of the workpiece from the machine table surface. This value is used to
calculate the Z zero height for the current work coordinate system when using the probe with a
tool setter sensor.

XY CLEARANCE
The distance that the probe will move away from an edge or corner before performing a search.
It should be large enough to ensure that the probe will not contact the workpiece or any other
fixtures before moving down. It should be small enough to avoid excessive waiting for movement
while searching.

Z CLEARANCE
The distance that the probe will move down before performing a search. If measuring an inside
hole, the probe could be manually jogged to the starting Z height and then set Z CLEARANCE to
0.

There are three toggle buttons:

Auto Zero
This selects if after probing the relevant axis is set to zero in the current user system.

Auto Skew
This selects if after probing, the system will be rotated or just display the calculated rotation.

Tool Measure
This (if integrated) turns auto tool probing on and off.

Versaprobe offers 5 output pins for tool measurement purpose and one that can be used to inhibit the
spindle when the probe is loaded.
The 5 pins are used to be read from a remap G-code subroutine, so the code can react to different
values.
Currently the probe tool number is only editable in the preference file:

[VERSA_PROBE_OPTIONS]
ps_probe_tool = 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 672 / 1322

qtversaprobe.enable (HAL_BIT)
Measurement enabled or not tool. Reflects screen button state.

qtversaprobe.blockheight (HAL_FLOAT)
The measured height of the top face of the workpiece. Reflects screen entry.

qtversaprobe.probeheight (HAL_FLOAT)
The toolsetter probe switch height. Reflects screen entry.

qtversaprobe.searchvel (HAL_FLOAT)
The velocity to search for the tool probe switch

qtversaprobe.probevel (HAL_FLOAT)
The velocity to probe tool length. Reflects screen entry.

qtversaprobe.backoffdist (HAL_FLOAT)
The distance the probe backs off after triggering. Reflects screen entry.

qtversaprobe.probe-loaded (HAL_BIT)
Reflect if the current tool is equal to the preference file probe number.

10.5.12.2 Basic probe

Figure 10.30: QtDragon - Basic Probe Option

Basic probe is used to semi-automatically probe work pieces to find edges, centers and angles. The
combo box allows selecting the basic type of probing buttons shown:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 673 / 1322

• Outside Corners

• Inside Corners

• Edge Angles

• Boss and Pockets

• Ridge and Valleys

• Calibration

You must carefully set the Probing Parameters:

Probe Tool
Will only allow probing if this tool number is in the spindle

Probe Diameter
The size of the probe tip

Probe Rapid
The speed of rapid moves in machine units

Probe Search
The speed of the first rough search in machine units

Probe Feed
The speed of the second fine search in machine units

Step Off
Back off and re-probe distance

Max XY Distance
The maximum distance the probe will search for in X and Y before failing with error

Max Z Distance
The maximum distance the probe will search for in Z before failing with error

XY Clearance
Clearance distance from probe to wall edge before rapid traversing down in Z and rough probing

Z Clearance
Clearance distance from probed to top of material

Extra Depth
Distance from top of material to desired probe depth

There are also hint parameters depending on selected probing type:

Edge Width
Desired distance from the probe start position, along wall edge before starting to probe

Diameter Hint
Used by Round Boss or Round Pocket probing (start move: 1/2 diameter plus XY clearance)

X Hint
Used by Rectangular Boss/Pocket probing (start move: 1/2 X length plus XY clearance)

Y Hint
Used by Rectangular Boss/Pocket probing (start move: 1/2 Y length plus XY clearance)

After setting the parameters and hints:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 674 / 1322

• Manually move the probe to the approximate position represented by the green target on the button.

• Confirm the parameters are reasonable.

• Press the desired probing button.

The probing routine will start immediately.

Note
Pressing the stop button or the keyboard escape key, will abort the probing.

This can be used to inhibit the spindle when the probe is loaded.
You would connect it to spindle.0.inhibit
qtbasicprobe.probe-loaded

Lets discuss inside corner probing using the top right button in Basic Probe (back_right_inside). While
all probe entries must be correct, the most important settings to change for each each probe:

XY CLEARANCE
Distance away from edge before rough probing,

Z CLEARANCE
Distance from probe to top of material,

EXTRA DEPTH
Distance to lower probe from top of material,

EDGE WIDTH
Distance along edge wall (away from corner) to start probing.

Note
These distance are always to be set in machine units (mm for metric machine, inch for imperial
machine).

Preset:

• manual set probe at the intersection of the edges (ie corner) of material as described by the green
bullseye on the button. Set it Z CLEARANCE above the top of material. These can be done by eye.

• set EXTRA CLEARANCE to a value that you want the probe to go below the top of material. (So the
probe will move from its start position down Z Clearance + Extra Clearance distance.)

• set XY CLEARANCE to a value that definitely gives clearance from the wall so when the probe goes
down it does not hit anything.

• set EDGE WIDTH to a value that describes the distance measured from the corner, along the wall
to where you wish to probe. this edge distance will be used along the X wall and then the Y wall.

Sequence after pressing the probe button:

1. Rapid EDGE WIDTH distance away from corner at the same time moving XY CLEARANCE away
from edge. So this is a slightly diagonal move.

2. Move probe down by Z CLEARANCE + EXTRA DEPTH,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 675 / 1322

3. probe wall twice (rough and fine),

4. move diagonally to the other wall as set by EDGE WIDTH and XY CLEARANCE,

5. probe wall twice,

6. raise probe up by Z CLEARANCE + EXTRA DEPTH (returns to starting height),

7. rapid back to starting corner (now calculated using the probed walls),

8. if auto zero button is enabled, set X and Y of the current user system to zero.

10.5.12.3 Customizing Probe Screen Widget

It is possible to load a customized version of the probe widget.

There should be a folder in the config folder; for screens: named <CONFIG FOLDER>/qtvcp/.
There may be (or can be added) a folder lib/ and widgets/
In the widgets folder you can copy basic_probe.py (or versa_probe.py) and probe_subprog.py
In the lib folder copy touchoff_subprogram.py
If these files are found they will be used instead of the originals.
You can modify the files to change behaviour.

10.5.13 Touch plate

Figure 10.31: QtDragon - Touch Plate

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 676 / 1322

You can use a conductive touch plate or equivalent to auto touch off (zero the user coordinate) for the
Z position of a tool. There must be a tool loaded prior to probing. In the tool tab or settings tab, set
the touch plate height, search and probe velocity and max. probing distance.

Note
When using a conductive plate the search and probe velocity should be the same and slow. If using
a tool setter that has spring loaded travel then you can set search velocity faster. LinuxCNC ramps
speed down at the maximum acceleration rate, so there can be travel after the probe trip if the speed
is set to high.

Place the plate on top of the surface you wish to zero Z on. Connect the probe input wire to the tool (if
using a conductive plate). There is a LED to confirm the probe connection is reliable prior to probing.
Move the tool manually within the max probe distance. Press the Touch Plate button. The machine
will probe down twice and the current user offset (G5X) will be zeroed at the bottom of the plate by
calculation from the touchplate height setting.

10.5.14 Auto Tool Measurement

10.5.14.1 Overview

QtDragon can be setup to do integrated auto tool measurement using the Versa Probe widget and
remap code.
This feature assumes the use of two probes in concert:

1. A tool switch sensor, fixed somewhere on the machine (sometimes called a tool-setter), and

2. a spindle probe that is installed temporarily at the beginning of the job (sometimes called an xyz
probe or a Renishaw probe).

These techniques are useful for machines that do not have repeatable tool holders and do not have
automatic tool changing devices. (For machines with repeatable tool holders, see the section on
measuring tool length. For machines with automatic tool changing devices, consult work done under
the LinuxCNC repository at configs/sim/axis/remap/rack-toolchange.)
To use this feature, you will need to do some additional settings and you may want to use the offered
HAL pins to get values in your own ngc remap procedure. Those settings are covered later in the
section.
First, this document covers how to use this technique. Second, this document covers how to set up
for this technique at the beginning of a production run.

10.5.14.2 Workflow Overview

A detailed workflow walkthrough follows this overview.
Setup steps include:

• Entering the probe velocities on the versa probe settings page.

• Enabling ”Use Tool Measurement” on the Versa Probe tab.

• Enabling ”Use Tool Sensor” under Settings.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 677 / 1322

Important
When fist setting up auto tool measurement, please use caution until you confirm tool change
and probe locations - it is easy to break a tool/probe. Abort will be honoured while the probe
is in motion.

Tool Measurement in QtDragon is organized into the following steps which will be explained in more
detail in the following section:

1. Zero the probe tool by measuring the tool setter with the spindle probe installed

2. Touch off your workpiece in X and Y.

3. Measure the height of your block from the base, where your tool switch is located, to the upper
face of the block (including chuck etc.).

4. In the Versa probe tab, enter the measured value for block height.

5. Go to auto mode and start your program.

Figure 10.32: Auto tool measurement

With the first given tool change the tool will be measured and the offset will be set automatically to
fit the block height. The advantage of this way is, that you do not need a reference tool.

Note
Your program must contain a tool change at the beginning. The tool will be measured, even it has
been used before, so there is no danger if the block height has changed. There are several videos
on you tube that demonstrate the technique using GMOCCAPY. The GMOCCAPY screen pioneered the
technique.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 678 / 1322

The sequence of events (using the default files in the default setting):

1. Rapid move in Z to position defined in the INI’s [TOOL_CHANGE] Z.

2. Rapid move in X and Y to number defined in INI’s [TOOL_CHANGE] X and Y.

3. Perform normal M6 tool change, i.e., stop spindle, send message to user to change the tool.

4. Rapid move in X and Y to position defined in the INI’s [VERSA_TOOLSETTER] X and Y.

5. Rapid move down in Z to position defined in the INI’s [VERSA_TOOLSETTER] Z.

6. Probe down in Z to maximum defined in the INI’s [VERSA_TOOLSETTER] MAXPROBE.

7. Changes the offset of the current work coordinate system to match the difference between the
previous tool and the currently measured tool.

8. Rapid move up in Z to position defined in the INI’s [VERSA_TOOLSETTER] Z_MAX_CLEAR.

9. Rapid move to the X Y position when the tool change was called.

10. Rapid move down to the Z position when the tool change was called.

Note
The [TOOL_CHANGE] Z position should be high enough so the tool will not hit the tool probe when
moving to the [VERSA_TOOLSETTER] X and Y position.

MAXPROBE distance needs to be high enough for the tool to touch the probe.

10.5.14.3 Detailed Workflow Example

The following setups need only be done once as long as they remain in effect:

1. Under Probe Tool Screens: Ensure reasonable values for ”Rapid” and ”Search,” these are the
speeds at which the probing will be performed and are in machine units per minute.

2. Under Probe Tool Screens: Ensure that ”Tool Measure” is enabled (this is a button that must be
highlighted)

3. Under Settings: Ensure that ”Use Tool Sensor” is enabled (this is a tick-box that must be checked)

4. In the Tool Table: Set up a tool for the spindle probe and ensure that its Z offset is set to zero.

Note
It is possible to use a non-zero tool length for the tool probe, but this requires extra steps and is easy
to make mistakes. The following procedure assumes a zero tool probe length.

The following setup is done before beginning a program that has M6 tool change commands inside it.

1. Physically load the spindle probe into the spindle.

2. Logically load the spindle probe into the spindle with the M61 Qx command where x is the number
in the tool table for the spindle probe (there is a button inside the tool table tab that can also be
used)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 679 / 1322

3. Position to the Toolsetter: Use the button under the Probe Screens for ”Go To Toolsetter” to
position the spindle above the Toolsetter.

4. Toolsetter Measure: Use the button under the Probe Screens for ”Probe Tool Setter Z Height.”
Note that this will set and display on the Probe Settings screen the ”Probe HT” value in ABS
coordinates

5. Jog to your workpiece.

6. Workpiece Measure: Use the button under the Probe Screens for ”Probe Z Height of Material:”
this will set and display on the Probe Settings screen the ”Block Ht” value in ABS coordinates.
(Typically, this will now also be the zero Z for your Work Coordinate System)

7. Set Work Coordinate System (ie, G54, or other): Use the Probe Tool and whatever probe screen
or other method is appropriate to set the X, Y, and Z coordinate system needed for your job.

8. If your program begins with a TnM6 command before spinning the spindle, you may leave the
spindle probe installed. You may also issue a TnM6 command to change out the spindle probe,
and if the program issues the same one, it will skip the tool change.

Caution
Take care not to leave the spindle probe in the spindle if a program may start the spindle.

Once those steps are complete, a program with multiple TnM6 toolchanges can be started and will
operate with automatic pauses for manual tool change followed by automated tool measurement.

Note
After probing the new tool length using the tool-setter, this remap code uses a G43 which applies
the offset to the Work Coordinate system which was in effect when the M6 command was issued.
Because remapping has adjusted the Work Coordinate system by the offset between the previous
and the current tool, the tool tip will end up at the same point in space as the tip of the previous tool
was when the tool change was called.

10.5.14.4 Work Piece Height Probing in QtDragon_hd

The [TOOL_CHANGE] Z position should be high enough so the tool will not hit the tool probe when
moving to the [VERSA_TOOLSETTER] X and Y position. MAXPROBE distance needs to be high enough
for the tool to touch the probe.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 680 / 1322

10.5.14.5 Work Piece Height Probing

Figure 10.33: QtDragon_hd - Work piece Height probing

This program probes 2 user specified locations in the Z axis and calculates the difference in heights.

Note
This is only available in the QtDragon_hd version.

Enable Probe Position Set Buttons

• When checked, the SET buttons are enabled.

• This allows the user to automatically fill in the X, Y and Z parameters with the current position as
displayed on the DROs.

Autofill Workpiece Height on Main Screen

• When checked, the calculated height is automatically transferred to the Workpiece Height field in
the main screen.

• Otherwise, the main screen is not affected.

Workpiece Probe At

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 681 / 1322

• the X, Y and Z coordinates specify where the first probing routine should start, in current WCS

Machine Probe At

• the X, Y and Z coordinates specify where the second probing routine should start, in current WCS

Z Safe Travel Height

• The machine is raised to the Z safe travel height before jogging to the X and Y coordinates.

• The spindle then lowers to the specified Z coordinate.

• It should be selected so that the tool clears all obstructions while jogging.

START button

• The machine will jog to the first location and then probe down.

• The machine then jogs to the second location and probes down again.

• The difference in probed values is reported as Calculated Workpiece Height.

• The parameters for search velocity, probe velocity, maximum probe distance and return distance
are read from the main GUI Settings page.

ABORT button

• causes all jog and probe routines currently executing to stop.

HELP button

• displays this help file.

• Any 2 points within the machine operating volume can be specified.

• If the first point is higher than the second, the calculated height will be a positive number.

• If the first point is lower than the second, the calculated height will be a negative number.

• Units are irrelevant in this program. The probed values are not saved and only the difference is
reported.

Caution
Setting incorrect values can lead to crashes into fixtures on the machine work surface. Initial
testing with no tool and safe heights is recommended.

10.5.14.6 Tool Measurement Pins

Versaprobe offers 5 output pins for tool measurement purpose. The pins are used to be read from a
remap G-code subroutine, so the code can react to different values.

qtversaprobe.enable (HAL_BIT)
Measurement enabled or not tool. Reflects screen button state.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 682 / 1322

qtversaprobe.blockheight (HAL_FLOAT)
The measured height of the top face of the workpiece. Reflects screen entry.

qtversaprobe.probeheight (HAL_FLOAT)
The toolsetter probe switch height. Reflects screen entry.

qtversaprobe.searchvel (HAL_FLOAT)
The velocity to search for the tool probe switch

qtversaprobe.probevel (HAL_FLOAT)
The velocity to probe tool length. Reflects screen entry.

qtversaprobe.backoffdist (HAL_FLOAT)
The distance the probe backs off after triggering. Reflects screen entry.

10.5.14.7 Tool Measurement INI File Modifications

Modify your INI file to include the following:
QtDragon allows you to select one of two styles of touch probe routines. Versa probe works with a M6
remap to add auto tool probing.
[PROBE]
#USE_PROBE = versaprobe
USE_PROBE = basicprobe

RS274NGC Section Details
Remap Statement Details
Remap Abort Details

Note
These default entries should work fine in most situations. Some systems may need to use linuxc-
nc/nc_files/examples/ instead of linuxcnc/nc_files/. please check that paths are valid. Custom entries
pointing to modified file are possible.

[RS274NGC]

Adjust this paths to point to folders with stdglue.py, qt_auto_tool_probe.ngc and ←↩
on_abort.ngc

or similarly coded custom remap files.
SUBROUTINE_PATH = ~/linuxcnc/nc_files/remap-subroutines:\
~/linuxcnc/nc_files/remap_lib

is the sub, with is called when a error during tool change happens.
ON_ABORT_COMMAND=O <on_abort> call

The remap code for QtVCP’s versaprobe’s automatic tool probe of Z
REMAP=M6 modalgroup=6 prolog=change_prolog ngc=qt_auto_probe_tool epilog=change_epilog

The position of the tool sensor and the start position of the probing movement.
All values are absolute (G53) coordinates, except MAXPROBE, which is expressed as an absolute
length of movement.
All values are in machine native units.
X, Y, & Z set the tool setter probe location.

Auto probe action sequence in the default qt_auto_probe_tool example remap defined above (this be-
havior can be changed by modifying either the remap statement in the RS274NGC section, or by
modifying the qt_auto_probe_tool.ngc code.):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 683 / 1322

1. rapid move to the INI’s [CHANGE_POSITION] Z position (this is a relative move, it adds this Z
value to the current Z coordinate)

2. rapid move to the INI’s [CHANGE_POSITION] X & Y position.

3. wait for manual tool change acknowledgement

4. rapid move to the INI’s [VERSA_TOOLSETTER] X & Y position

5. rapid move to the INI’s [VERSA_TOOLSETTER] Z_MAX_CLEAR Z position

6. fast probe

7. slow probe

8. rapid move to the INI’s [VERSA_TOOLSETTER] Z_MAX_CLEAR Z position

Z_MAX_CLEAR is the Z position to go to before moving to the tool setter when using the Travel to
Toolsetter button.
Travel to Toolsetter Action sequence:

1. rapid move to [VERSA_TOOLSETTER] Z_MAX_CLEAR Z position

2. rapid move to [VERSA_TOOLSETTER] XY position

3. rapid move to [VERSA_TOOLSETTER] Z position.

Example settings:
[VERSA_TOOLSETTER]
X = 10
Y = 10
Z = -20
Z_MAX_CLEAR = -2
MAXPROBE = -20

This is not named TOOL_CHANGE_POSITION on purpose - canon uses that name and will interfere
otherwise. The position to which to move the machine before giving the change tool command. All
values are in absolute coordinates. All values are in machine native units.
[CHANGE_POSITION]
X = 10
Y = 10
Z = -2

The Python section sets up what files LinuxCNC’s Python interpreter looks for, e.g., toplevel.py file
in the python folder in the configuration directory: These default entries should work fine in most
situations. Some systems may need to use linuxcnc/nc_files/examples/ instead of linuxcnc/nc_files/.
Custom entries pointing to modified file are possible.
The path start point for all remap searches, i.e. Python’s sys.path.append()
PATH_APPEND = ~/linuxcnc/nc_files/remap_lib/python-stdglue/python
path to the tremap’s ’toplevel file
TOPLEVEL = ~/linuxcnc/nc_files/remap_lib/python-stdglue/python/toplevel.py

10.5.14.8 Required HAL Connections

Make sure to connect the tool probe input in your HAL file: If connected properly, you should be able
to toggle the probe LED in QtDragon if you press the probe stylus.
net probe motion.probe-input <= <your_input_pin>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 684 / 1322

10.5.15 Run from Line

A G-code program can be started at any line by clicking on the desired line in the G-code display while
in AUTO mode. It is the operator’s responsibility to ensure the machine is in the desired operational
mode. A dialog will be shown allowing the spindle direction and speed to be preset. The start line is
indicated in the box labelled LINE, next to the CYCLE START button. The run from line feature can
be disabled in the settings page.

Note
LinuxCNC’s run-from-line is not very user friendly. E.g., it does not start the spindle or confirm the
proper tool. Also, it does not handle subroutines well. If used it is best to start on a rapid move.

10.5.16 Laser buttons

The LASER ON/OFF button in intended to turn an output on or off which is connected to a small laser
crosshair projector. When the crosshair is positioned over a desired reference point on the workpiece,
the REF LASER button can be pushed, which then sets the X and Y offsets to the values indicated by
the LASER OFFSET fields in the Settings page.

10.5.17 Tabs Description

Tabs allow the user to select the most appropriate info/control on the top three panels. If the on
screen keyboard is showing and the user wishes to hide it but keep the current tab, they can do that
by pressing the HIDE button on the virtual keyboard. In QtDragon, there is a splitter handle between
the G-code text display and the G-code graphical display. One can use this to split the size between the
two areas. This can be set differently in each tab and in each mode. The positions will be remembered.

10.5.17.1 Main tab

This tab displays the graphical representation of the current program. The side buttons will control
the display.

• User View: Select/restore a user set view of the current program.

• P,X,Y,Z: Set standard views.

• D: Toggle display of dimensions.

• +, -: Zoom controls.

• C: Clear graphics of tool movement lines.

In qtdragon_hd there are also macro buttons available on the right side. Up to tens buttons can be
defined in the INI.

10.5.17.2 File Tab

You can use this tab to load or transfer programs. Editing of G-code programs can be selected from
this tab. With qtdragon_hd, this is where you can load the G-code Ripper.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 685 / 1322

10.5.17.3 Offsets Tab

You can monitor/modify system offsets from this tab. There are convenience buttons for zeroing the
rotation.G92 and current G5x user offset.

10.5.17.4 Tool Tab

You can monitor/modify tool offsets from this tab. Adding and deleting tools from the tool file can also
be done from this tab. When this tab is selected the individual home buttons in the DRO area will
change to tool offset setting buttons. They will return to home buttons when you select another tab.
Pressing this tool button will drop down a when menu of options:

• Set Current Tool Position

• Adjust Current Tool Position

• Zero Current Tool Position

• Set Tool Offset Directly

• Reset To Last

10.5.17.5 Status Tab

A time-stamped log of important machine or system events will be shown here. Machine events would
be more suited to an operator, where the system events may help in debugging problems.

10.5.17.6 Probe Tab

Probing routines options are displayed on this tab. Depending on INI options, this could be VersaProbe
or BasicProbe style. They are functionally similar. QtDragon_hd will also show a smaller graphics
display window.

10.5.17.7 Camview Tab

If the recognized webcam is connected, this tab will display the video image overlaid with a cross-hair,
circle and degree readout. This can be adjusted to suit a part feature for such things as touchoff. The
underlying library uses openCV Python module to connect to the webcam.
To adjust the X or Y size aspect ratio (in percent), camera port number, API backend, or requested
resolution look in the preference file for:

[CUSTOM_FORM_ENTRIES]
Camview xscale = 100
Camview yscale = 100
Camview cam number = 0
Camview cam api = V4L2
Camview cam resolution = 1280,720

Scales are in percent, usually the range will be 100 - 200 in one axis.
Negating these scales can be used to flip the image in X, Y or both axes.
API comes from openCV, the available backends will be listed if -V debugging is used. Set to ANY for
opencv to choose.
Set resolution to DEFAULT for opencv to choose. Available resolutions will be listed if -V debugging
is used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 686 / 1322

Note
The preference file can only be edited when QtDragon is not running.

10.5.17.8 G-codes Tab

This tab will display a list of LinuxCNC’s G-code. if you click on a line, a description of the code will
be displayed.

10.5.17.9 Setup Tab

It’s possible to load HTML or PDF file (.html / .pdf ending) with setup notes, and will be displayed in
the setup tab.
If you load a G-code program and there is an HTML/PDF file of the same name, it will load automati-
cally.
Some program, such as Fusion 360 and Aspire will create these files for you. You can also write your
own HTML docs with the included SetUp Writer button.
There are three sub tabs:

• HTML - any loaded HTML pages are displayed here. The navigation buttons work on this page.

• PDF - any loaded PDF setup pages are displayed here.

• PROPERTIES - when a program is loaded its G-code properties are displayed here.

There are navigation buttons for HTML page:

• The up arrow returns you to the default HTML page.

• The left arrow moves backward one HTML page.

• The right arrow moves forward one HTML page.

If you wish to include a custom default HTML page, name it default_setup.html and place it in your
configuration folder.
Custom QtVCP panels can be displayed in this tab by setting the EMBED_TAB_LOCATION option to
tabWidget_setup.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 687 / 1322

Figure 10.34: QtDragon - Setup Tab Sample

10.5.17.10 Settings Tab

The settings tab is used to set running options, probing/touchplate/laser/camera offsets and load de-
bugging external programs.

10.5.17.11 Utilities Tab

This tabs will display another stab election of G-code utility programs:

• Facing: allows quick face milling of a definable area at angles of 0,45 and 90 degrees.

• Hole Circle: allows quick setting of a program to drill a bolt circle of definable diameter and number
of holes.

• NGCGUI: is a QtVCP version of the popular G-code subroutine builder/selector, see Widgets-NGCGUI.

Custom QtVCP panels can be displayed here by setting the EMBED_TAB_LOCATION option to tabWidget_utilities

10.5.17.12 User Tab

This tab will only be displayed if an embedded panel has been designated for the location stackedWidget_mainTab.
If more then one embedded tab has been designated, then pressing the user tab will cycle through
them.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 688 / 1322

10.5.18 Styles

Nearly all aspects of the GUI appearance are configurable via the QtDragon.qss stylesheet file. The
file can be edited manually or through the stylesheet dialog widget in the GUI. To call up the dialog,
press F12 on the main window. New styles can be applied temporarily and then saved to a new qss
file, or overwrite the current qss file.

Figure 10.35: QtDragon - Two Style Examples

10.5.19 Internationalisation

It is possible to create translation files for QtDragon to display in the language of the current locale.
To create and or edit a translation file requires that LinuxCNC has been installed as run in place.
The following assumes that the LinuxCNC git directory is ~/linuxcnc-dev.

Note
If using QtDragon_hd substitute qtdragon_hd for qtdragon

All language files are kept in ~/linuxcnc-dev/share/screens/qtdragon/languages.
The qtdragon.py file is a Python version of the GUI file used for translation purposes.
The .ts files are the translation source files for the translations. These are the files that require
creating/editing for each language.
The .qm files are the compiled translation files used by pyqt.
The language is determined by an underscore plus the first two letters of the locale, for example if an
Italian translation was being done then it would be _it. It will be referred to as _xx in this document,
so qtdragon_xx.ts in this document would actually be qtdragon_it.ts for an Italian translation.
The default locale for QtDragon is _enwhich means that any translation files created as qtdragon_en.*
will not be used for translations.
If any of the required utilities (pyuic5, pylupdate5, linguist) are not installed then the user will need
to install the required development tools:
sudo apt install qttools5-dev-tools pyqt5-dev-tools

Change to the languages directory:
cd ~/linuxcnc-dev/share/qtvcp/screens/qtdragon/languages

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 689 / 1322

If any text changes have been made to the GUI then run the following to update the GUI Python file:
pyuic5 ../qtdragon.ui > qtdragon.py

The user can either create a new translation source file for a non-existing language translation or
modify an existing translation source file due to changes being made to some text in a QtDragon
source file. If modifying an existing translation that has had no source file changes then this step is
not required.
Create or edit a .ts file:
./langfile xx

Note
this command is a script which runs the following: $ pylupdate5 .py ../.py
../../../../../lib/python/qtvcp/lib/qtdragon/*.py -ts qtdragon_xx.ts

The editing of the translation is done with the linguist application:
linguist

1. Open the TS file and translate the strings

It is not necessary to provide a translation for every text string, if no translation is specified for a
string then the original string will be used in the application. The user needs to be careful with the
length of strings that appear on widgets as space is limited. If possible try to make the translation no
longer than the original.
When editing is complete save the file:
File -> Save

Then create the .qm file:
File -> Release

QtDragon will be translated to the language of the current locale on the next start so long as a .qm
file exists in that language.
Users are welcome to submit translation files for inclusion into QtDragon. The preferred method is
to submit a pull request from the users GitHub account as described in the contributing to LinuxCNC
documentation. The only files required to be committed are qtdragon_xx.ts and qtdragon_xx.qm.

10.5.20 Customization

A general overview of Customizing Stock Screens.

10.5.20.1 Stylesheets

Stylesheets can be leveraged to do a fair amount of customization, but you usually need to know a
bit about the widget names. Pressing F12 will display a stylesheet editor dialog to load/test/save
modification.
The View Sheet tab will allow you to select and apply what stylesheet QtDragon will use when it’s first
loaded.
Press the button Copy to Edit Tab to copy the current stylesheet to the edit tab.
The Edit Sheet tab allows editing, applying and saving of changes od the displayed stylesheet.

https://www.linuxcnc.org/docs/html/code/contributing-to-linuxcnc.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 690 / 1322

Sometimes these lines will be present and you can change them, otherwise you will need to add them.

For instance, to change the DRO font (look for this entry and change the font name):
DROLabel,
StatusLabel#status_rpm {

border: 1px solid black;
border-radius: 4px;
font: 20pt ”Noto Mono”;

}

To change the DRO display font and display format:
DROLabel {

font: 25pt ”Lato Heavy”;
qproperty-imperial_template: ’%9.5f’;
qproperty-metric_template: ’%10.4f’;
qproperty-angular_template: ’%11.2f’;

/*Adjust the menu options */
qproperty-showLast: true;
qproperty-showDivide : false;
qproperty-showGotoOrigin: false;
qproperty-showZeroOrigin: false;
qproperty-showSetOrigin: true;
qproperty-dialogName: CALCULATOR;

}

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 691 / 1322

Change the axis select button’s click menu items:
AxisToolButton {

/* Adjust all the menu options */
qproperty-showLast: false;
qproperty-showDivide : true;
qproperty-showGotoOrigin: true;
qproperty-showZeroOrigin: true;
qproperty-showSetOrigin: false;
qproperty-dialog_code_string: CALCULATOR;

}

To change the text of the mist button to air (add these lines)
#action_mist{

qproperty-true_state_string: ”Air\\nOn”;
qproperty-false_state_string: ”Air\\nOff”;

}

To change the Offsets display font and format:
ToolOffsetView {

font: 20pt ”Lato Heavy”;
qproperty-imperial_template: ’%9.1f’;
qproperty-metric_template: ’%10.1f’;

}

OriginOffsetView {
font: 12pt ”Lato Heavy”;
qproperty-imperial_template: ’%9.1f’;
qproperty-metric_template: ’%10.1f’;

}

To stop the blur effect with dialogs:
#screen_options {

qproperty-focusBlur_option: false;
}

To change status highlight/selection colors:
#screen_options {

qproperty-user1Color: white; /* default status */
qproperty-user2Color: #ff9000; /* warning status */
qproperty-user3Color: #ff8a96; /* critical status */
qproperty-user4Color: #ffaa00; /* MPG select */
qproperty-user5Color: #ff0000; /* Cycle Start select */

}

Change the G-code text display colors/fonts:
EditorBase{
background:black;
qproperty-styleColorCursor:white;
qproperty-styleColorBackground:grey;
qproperty-styleColor0: black;
qproperty-styleColor1: darkblue;
qproperty-styleColor2: blue;
qproperty-styleColor3: red;
qproperty-styleColor4: lightblue;
qproperty-styleColor5: white;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 692 / 1322

qproperty-styleColor6: lightGreen;
qproperty-styleColor7: yellow ;
qproperty-styleColorSelectionText: white;
qproperty-styleColorSelectionBackground: blue;
qproperty-styleFont0: ”Times,15,-1,5,90,0,0,1,1,0”;
qproperty-styleFont1: ”Times,15,-1,5,90,1,0,1,0,0”;
qproperty-styleFont2: ”Times,15,-1,5,90,0,0,1,1,0”;
qproperty-styleFont3: ”Times,15,-1,5,90,0,0,1,1,0”;
qproperty-styleFont4: ”Times,15,-1,5,90,0,0,1,1,0”;
qproperty-styleFont5: ”Times,15,-1,5,90,0,0,1,1,0”;
qproperty-styleFont6: ”Times,15,-1,5,90,0,0,1,1,0”;
qproperty-styleFont7: ”Times,15,-1,5,90,0,0,1,1,0”;
}

To have the manual spindle buttons also incrementally increase/decrease speed:
#action_spindle_fwd{

qproperty-spindle_up_action: true;
}
#action_spindle_rev{

qproperty-spindle_down_action: true;
}

10.5.20.2 Qt Designer and Python code

All aspects of the GUI are fully customization through Qt Designer and/or Python code.
This capability is included with the QtVCP development environment.
The extensive use of QtVCP widgets keeps the amount of required Python code to a minimum, allowing
relatively easy modifications.
The LinuxCNC website has extensive documentation on the installation and use of QtVCP libraries.
See QtVCP for more information about QtVCP in general.
Custom modifications can be added by subclassing the handler file. This adds code on top of the
original.
QtDragon can also utilize QtVCP’s rc file to do minor python code modifications without using a custom
handler file.
See Modifying Screens for more information about customization.
Some widget customization is available for basic probe and versa probe.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 693 / 1322

Figure 10.36: QtDragon - Customized QtDragon

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 694 / 1322

10.6 NGCGUI

Figure 10.37: NGCGUI embedded into AXIS

10.6.1 Overview

* NGCGUI is a Tcl application to work with subroutines. It allows you to have a conversational in-
terface with LinuxCNC. You can organize the subroutines in the order you need them to run and
concatenate the subroutines into one file for a complete part program. * NGCGUI can run as a stan-
dalone application or can be embedded in multiple tab pages in the AXIS GUI. * PyNGCGUI is an
alternate, Python implementation of NGCGUI. * PyNGCGUI can run as a standalone application or
can be embedded as a tab page (with its own set of multiple subroutine tabs) in any GUI that supports
embedding of GladeVCP applications AXIS, Touchy, Gscreen and GMOCCAPY.
Using NGCGUI or PyNGCGUI:

• Tab pages are provided for each subroutine specified in the INI file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 695 / 1322

• New subroutines tab pages can be added on the fly using the custom tab.

• Each subroutine tab page provides entry boxes for all subroutine parameters.

• The entry boxes can have a default value and an label that are identified by special comments in
the subroutine file.

• Subroutine invocations can be concatenated together to form a multiple step program.

• Any single-file G-code subroutine that conforms to NGCGUI conventions can be used.

• Any gcmc (G-code-meta-compiler) program that conforms to NGCGUI conventions for tagging vari-
ables can be used. (The gcmc executable must be installed separately, see: https://www.vagrearg.org/-
content/gcmc)

Note
NGCGUI and PyNGCGUI implement the same functions and both process .ngc and .gcmc files that
conform to a few NGCGUI-specific conventions. In this document, the term NGCGUI generally refers
to either application.

10.6.2 Demonstration Configurations

A number of demonstration configurations are located in the sim directory of the Sample Configura-
tions offered by the LinuxCNC configuration picker. The configuration picker is on the system’s main
menu: Applications > CNC > LinuxCNC
Examples are included for the AXIS, Touchy, gscreen, and GMOCCAPY. These examples demonstrate
both 3-axis (XYZ) cartesian configurations (like mills) and lathe (XZ) setups. Some examples show the
use of a pop up keyboard for touch screen systems and other examples demonstrate the use of files
created for the gcmc (G-code Meta Compiler) application. The touchy examples also demonstrate
incorporation of a GladeVCP back plot viewer (gremlin_view).
The simplest application is found as:

Sample Configurations/sim/axis/ngcgui/ngcgui_simple

A comprehensive example showing gcmc compatibility is at:
Sample Configurations/sim/axis/ngcgui/ngcgui_gcmc

A comprehensive example embedded as a GladeVCP app and using gcmc is at:
Sample Configurations/sim/gscreen/ngcgui/pyngcgui_gcmc

The example sim configurations make use of library files that provide example G-code subroutine
(.ngc) files and G-code-meta-compiler (.gcmc) files:

• nc_files/ngcgui_lib

– ngcgui.ngc - An easy to understand example using subroutines
– arc1.ngc - basic arc using cutter radius compensation
– arc2.ngc - arc speced by center, offset, width, angle (calls arc1)
– backlash.ngc - routine to measure an axis backlash with dial indicator
– db25.ngc - creates a DB25 plug cutout
– gosper.ngc - a recursion demo (flowsnake)
– helix.ngc - helix or D-hole cutting

https://www.vagrearg.org/content/gcmc
https://www.vagrearg.org/content/gcmc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 696 / 1322

– helix_rtheta.ngc - helix or D-hole positioned by radius and angle
– hole_circle.ngc - equally spaced holes on a circle
– ihex.ngc - internal hexagon
– iquad.ngc - internal quadrilateral
– ohex.ngc - outside hexagon
– oquad.ngc - outside quadrilateral
– qpex_mm.ngc - demo of qpockets (mm based)
– qpex.ngc - demo of qpockets (inch based)
– qpocket.ngc - quadrilateral pocket
– rectangle_probe.ngc - probe a rectangular area
– simp.ngc - a simple subroutine example that creates two circles
– slot.ngc - slot from connecting two endpoints
– xyz.ngc - machine exerciser constrained to a box shape
– Custom - Creates custom tabs
– ttt - True Type Tracer, to create texts to be engraved

• nc_files/ngcgui_lib/lathe
– ngcgui-lathe - Example lathe subroutine
– g76base.ngc - GUI for G76 threading
– g76diam.ngc - threading speced by major, minor diameters
– id.ngc - bores the inside diameter
– od.ngc - turns the outside diameter
– taper-od.ngc - turns a taper on the outside diameter
– Custom - Creates custom tabs

• nc_files/gcmc_lib
– drill.gcmc - drill holes in rectangle pattern
– square.gcmc - simple demo of variable tags for gcmc files
– star.gcmc - gcmc demo illustrating functions and arrays
– wheels.gcmc - gcmc demo of complex patterns

To try a demonstration, select a sim configuration and start the LinuxCNC program.

If using the AXIS GUI, press the E-Stop thenMachine Power thenHome All. Pick a NGCGUI
tab, fill in any empty blanks with sensible values and press Create Feature then Finalize. Finally press

the Run button to watch it run. Experiment by creating multiple features and features from
different tab pages.
To create several subroutines concatenated into a single file, go to each tab fill in the blanks, press
Create Feature then using the arrow keys move any tabs needed to put them in order. Now press
Finalize and answer the prompt to create
Other GUIs will have similar functionality but the buttons and names may be different.

Note
The demonstration configs create tab pages for just a few of the provided examples. Any GUI with a
custom tab can open any of the library example subroutines or any user file if it is in the LinuxCNC
subroutine path.
To see special key bindings, click inside an NGCGUI tab page to get focus and then press Control-k.
The demonstration subroutines should run on the simulated machine configurations included in the
distribution. A user should always understand the behavior and purpose of a program before running
on a real machine.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 697 / 1322

10.6.3 Library Locations

In LinuxCNC installations installed from deb packages, the simulation configs for NGCGUI use sym-
bolic links to non-user-writable LinuxCNC libraries for:

• nc_files/ngcgui_lib NGCGUI-compatible subfiles

• nc_files/ngcgui_lib/lathe NGCGUI-compatible lathe subfiles

• nc_files/gcmc_lib NGCGUI-gcmc-compatible programs

• nc_files/ngcgui_lib/utilitysubs Helper subroutines

• nc_files/ngcgui_lib/mfiles User M files

These libraries are located by INI file items that specify the search paths used by LinuxCNC (and
NGCGUI):
[RS274NGC]
SUBROUTINE_PATH = ../../nc_files/ngcgui_lib:../../nc_files/gcmc_lib:../../nc_files/ ←↩

ngcgui_lib/utilitysubs
USER_M_PATH = ../../nc_files/ngcgui_lib/mfiles

Note
These are long lines (not continued on multiple lines) that specify the directories used in a search
patch. The directory names are separated by colons (:). No spaces should occur between directory
names.

A user can create new directories for their own subroutines and M-files and add them to the search
path(s).
For example, a user could create directories from the terminal with the commands:
mkdir /home/myusername/mysubs
mkdir /home/myusername/mymfiles

And then create or copy system-provided files to these user-writable directories. For instance, a user
might create a NGCGUI-compatible subfile named:
/home/myusername/mysubs/example.ngc

To use files in new directories, the INI file must be edited to include the new subfiles and to augment
the search path(s). For this example:
[RS274NGC]
...
SUBROUTINE_PATH = /home/myusername/mysubs:../../nc_files/ngcgui_lib:../../nc_files/gcmc_lib ←↩

:../../nc_files/ngcgui_lib/utilitysubs
USER_M_PATH = /home/myusername/mymfiles:../../nc_files/ngcgui_lib/mfiles

[DISPLAY]
...
NGCGUI_SUBFILE = example.ngc
...

LinuxCNC (and NGCGUI) use the first file found when searching directories in the search path. With
this behavior, you can supersede an ngcgui_lib subfile by placing a subfile with an identical name in
a directory that is found earlier in the path search. More information can be found in the INI chapter
of the Integrators Manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 698 / 1322

10.6.4 Standalone Usage

10.6.4.1 Standalone NGCGUI

For usage, type in a terminal:
ngcgui --help
Usage:
ngcgui --help | -?
ngcgui [Options] -D <nc files directory name>
ngcgui [Options] -i <LinuxCNC INI file name>
ngcgui [Options]

Options:
[-S subroutine_file]
[-p preamble_file]
[-P postamble_file]
[-o output_file]
[-a autosend_file] (autosend to AXIS default:auto.ngc)
[--noauto] (no autosend to AXIS)
[-N | --nom2] (no m2 terminator (use %))
[--font [big|small|fontspec]] (default: ”Helvetica -10 normal”)
[--horiz|--vert] (default: --horiz)
[--cwidth comment_width] (width of comment field)
[--vwidth varname_width] (width of varname field)
[--quiet] (fewer comments in outfile)
[--noiframe] (default: frame displays image)

Note
As a standalone application, NGCGUI handles a single subroutine file which can be invoked multiple
times. Multiple standalone NGCGUI applications can be started independently.

10.6.4.2 Standalone PyNGCGUI

For usage, type in a terminal:
pyngcgui --help
Usage:
pyngcgui [Options] [<sub_filename>]
Options requiring values:

[-d | --demo] [0|1|2] (0: DEMO standalone toplevel)
(1: DEMO embed new notebook)
(2: DEMO embed within existing notebook)

[-S | --subfile <sub file name>]
[-p | --preamble <preamble file name>]
[-P | --postamble <postamble file name>]
[-i | --ini <INI file name>]
[-a | --autofile <auto file name>]
[-t | --test <testno>]
[-K | --keyboardfile <glade_file>] (use custom popupkeyboard glade file)

Solo Options:
[-v | --verbose]
[-D | --debug]
[-N | --nom2] (no m2 terminator (use %))
[-n | --noauto] (save but do not automatically send result)
[-k | --keyboard] (use default popupkeybaord)
[-s | --sendtoaxis] (send generated NGC file to AXIS GUI)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 699 / 1322

Notes:
A set of files is comprised of a preamble, subfile, postamble.
The preamble and postamble are optional.
One set of files can be specified from cmdline.
Multiple sets of files can be specified from an INI file.
If --ini is NOT specified:

search for a running LinuxCNC and use its INI file.

Note
As a standalone application, PyNGCGUI can read an INI file (or a running LinuxCNC application) to
create tab pages for multiple subfiles.

10.6.5 Embedding NGCGUI

10.6.5.1 Embedding NGCGUI in AXIS

The following INI file items go in the [DISPLAY] section. (See additional sections below for additional
items needed)

• TKPKG = Ngcgui 1.0 - the NGCGUI package

• TKPKG = Ngcguittt 1.0 - the True Type Tracer package for generating text for engraving (optional,
must follow TKPKG = Ngcgui).

• NGCGUI_FONT = Helvetica -12 normal - Sets the font used

• NGCGUI_PREAMBLE = in_std.ngc - The preamble file to be added at the beginning of the subrou-
tine. When several subroutines are concatenated, it is only added once.

• NGCGUI_SUBFILE = simp.ngc - Creates a tab from the named subroutine.

• NGCGUI_SUBFILE = ”” - Creates a custom tab

• #NGCGUI_OPTIONS = opt1 opt2 … - NGCGUI options:

– nonew  — Prohibits creation of new custom tab
– noremove — Prohibits deleting a tab page
– noauto  — Do not run automatically (makeFile, then manual run)
– noiframe — No internal image, image on separate top level

• TTT = truetype-tracer - name of the truetype tracer program (it must be in user PATH)

• TTT_PREAMBLE = in_std.ngc - Optional, specifies filename for preamble used for ttt created sub-
files. (alternate: mm_std.ngc)

Note
The optional truetype tracer items are used to specify an NGCGUI-compatible tab page that uses
the application truetype-tracer. The truetype-tracer application must be installed independently and
located in the user PATH.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 700 / 1322

10.6.5.2 Embedding PyNGCGUI as a GladeVCP tab page in a GUI

The following INI file items go in the [DISPLAY] section for use with the AXIS, Gscreen, or Touchy
GUIs. (See additional sections below for additional items needed)
EMBED_ Items

• EMBED_TAB_NAME = PyNGCGUI - name to appear on embedded tab

• EMBED_TAB_COMMAND = gladevcp -x {XID} pyngcgui_axis.ui - invokes GladeVCP

• EMBED_TAB_LOCATION = name_of_location - where the embedded page is located

Note
The EMBED_TAB_LOCATION specifier is not used for the AXIS GUI. While PyNGCGUI can be embedded
in AXIS, integration is more complete when using NGCGUI (using TKPKG = Ngcgui 1.0). To specify
the EMBED_TAB_LOCATION for other GUIs, see the DISPLAY Section of the INI Configuration Chapter.

Note
The truetype tracer GUI front-end is not currently available for GladeVCP applications.

10.6.5.3 Additional INI File items required for NCGUI or PyNGCGUI

The following INI file items go in the [DISPLAY] section for any GUI that embeds either NGCGUI or
PyNGCGUI.

• NGCGUI_FONT = Helvetica -12 normal - specifies the font name,size, normal|bold

• NGCGUI_PREAMBLE = in_std.ngc - the preamble file to be added in front of the subroutines. When
concatenating several common subroutine invocations, this preamble is only added once. For mm-
based machines, use mm_std.ngc

• NGCGUI_SUBFILE = filename1.ngc - creates a tab from the filename1 subroutine

• NGCGUI_SUBFILE = filename2.ngc - creates a tab from the filename2 subroutine

• … etc.

• NGCGUI_SUBFILE = gcmcname1.gcmc - creates a tab from the gcmcname1 file

• NGCGUI_SUBFILE = gcmcname2.gcmc - creates a tab from the gcmcname2 file

• … etc.

• NGCGUI_SUBFILE = ”” - creates a custom tab that can open any subroutine in the search path

• NGCGUI_OPTIONS = opt1 opt2 … - NGCGUI options

– nonew - disallow making a new custom tab
– noremove - disallow removing any tab page
– noauto - no autosend (use makeFile, then save or manually send)
– noiframe - no internal image, display images on separate top level widget
– nom2 - do not terminate with m2, use % terminator. This option eliminates all the side effects of

m2 termination

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 701 / 1322

• GCMC_INCLUDE_PATH = dirname1:dirname2 - search directories for gcmc include files

This is an example of embedding NGCGUI into AXIS. The subroutines need to be in a directory spec-
ified by the [RS274NGC]SUBROUTINE_PATH. Some example subroutines use other subroutines so
check to be sure you have the dependences, if any, in a SUBROUTINE_PATH directory. Some subrou-
tines may use custom M-files which must be in a directory specified by the [RS274NGC]USER_M_PATH.
The G-code-meta-compiler (gcmc) can include statements like:
include(”filename.inc.gcmc”);

By default, gcmc includes the current directory which, for LinuxCNC, will be the directory containing
the LinuxCNC INI file. Additional directories can be prepended to the gcmc search order with the
GCMC_INCLUDE_PATH item.
Sample AXIS-GUI-based INI
[RS274NGC]
...
SUBROUTINE_PATH = ../../nc_files/ngcgui_lib:../../ngcgui_lib/utilitysubs
USER_M_PATH = ../../nc_files/ngcgui_lib/mfiles

[DISPLAY]
TKPKG = Ngcgui 1.0
TKPKG = Ngcguittt 1.0
Ngcgui must precede Ngcguittt

NGCGUI_FONT = Helvetica -12 normal
specify filenames only, files must be in [RS274NGC]SUBROUTINE_PATH
NGCGUI_PREAMBLE = in_std.ngc
NGCGUI_SUBFILE = simp.ngc
NGCGUI_SUBFILE = xyz.ngc
NGCGUI_SUBFILE = iquad.ngc
NGCGUI_SUBFILE = db25.ngc
NGCGUI_SUBFILE = ihex.ngc
NGCGUI_SUBFILE = gosper.ngc
specify ”” for a custom tab page
NGCGUI_SUBFILE = ””
#NGCGUI_SUBFILE = ”” use when image frame is specified if
opening other files is required
images will be put in a top level window
NGCGUI_OPTIONS =
#NGCGUI_OPTIONS = opt1 opt2 ...
opt items:
nonew -- disallow making a new custom tab
noremove -- disallow removing any tab page
noauto -- no auto send (makeFile, then manually send)
noiframe -- no internal image, image on separate top level
GCMC_INCLUDE_PATH = /home/myname/gcmc_includes

TTT = truetype-tracer
TTT_PREAMBLE = in_std.ngc

PROGRAM_PREFIX = ../../nc_files

Note
The above is not a complete AXIS GUI INI — the items show are those used by NGCGUI. Many addi-
tional items are required by LinuxCNC to have a complete INI file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 702 / 1322

10.6.5.4 Truetype Tracer

Ngcgui_ttt provides support for truetype-tracer (v4). It creates an AXIS tab page which allows a user
to create a new NGCGUI tab page after entering text and selecting a font and other parameters.
(Truetype-tracer must be installed independently).
To embed ngcgui_ttt in AXIS, specify the following items in addition to NGCGUI items:
Item: [DISPLAY]TKPKG = Ngcgui_ttt version_number
Example: [DISPLAY]TKPKG = Ngcgui_ttt 1.0
Note: Mandatory, specifies loading of ngcgui_ttt in an AXIS tab page named ttt.

Must follow the TKPKG = Ngcgui item.

Item: [DISPLAY]TTT = path_to_truetype-tracer
Example: [DISPLAY]TTT = truetype-tracer
Note: Optional, if not specified, attempt to use /usr/local/bin/truetype-tracer.

Specify with absolute pathname or as a simple executable name,
in which case the user PATH environment will used to find the program.

Item: [DISPLAY]TTT_PREAMBLE = preamble_filename
Example: [DISPLAY]TTT_PREAMBLE = in_std.ngc
Note: Optional, specifies filename for preamble used for ttt created subfiles.

10.6.5.5 INI File Path Specifications

NGCGUI uses the LinuxCNC search path to find files. The search path begins with the standard
directory specified by:
[DISPLAY]PROGRAM_PREFIX = directory_name

followed by multiple directories specified by:
[RS274NGC]SUBROUTINE_PATH = directory1_name:directory1_name:directory3_name ...

Directories Directories may be specified as absolute paths or relative paths.

• Example: [DISPLAY]PROGRAM_PREFIX = /home/myname/linuxcnc/nc_files

• Example: [DISPLAY]PROGRAM_PREFIX = ~/linuxcnc/nc_files

• Example: [DISPLAY]PROGRAM_PREFIX = ../../nc_files

Absolute Paths An absolute path beginning with a ”/” specifies a complete filesystem location. A
path beginning with a ”~/” specifies a path starting from the user’s home directory. A path beginning
with ”~username/” specifies a path starting in username’s home directory.
Relative Paths Relative paths are based on the startup directory which is the directory containing
the INI file. Using relative paths can facilitate relocation of configurations but requires a good under-
standing of Linux path specifiers.

• ./d0 is the same as d0, e.g., a directory named d0 in the startup directory

• ../d1 refers to a directory d1 in the parent directory

• ../../d2 refers to a directory d2 in the parent of the parent directory

• ../../../d3 etc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 703 / 1322

Multiple directories can be specified with [RS274NGC]SUBROUTINE_PATH by separating them with
colons. The following example illustrates the format for multiple directories and shows the use of
relative and absolute paths.
Multiple Directories Example:
[RS274NGC]SUBROUTINE_PATH = ../../nc_files/ngcgui_lib:../../nc_files/ngcgui_lib/utilitysubs ←↩

:/tmp/tmpngc

This is one long line, do not continue on multiple lines. When LinuxCNC and/or NGCGUI searches for
files, the first file found in the search is used.
LinuxCNC (and NGCGUI) must be able to find all subroutines including helper routines that are called
from within NGCGUI subfiles. It is convenient to place utility subs in a separate directory as indicated
in the example above.
The distribution includes the ngcgui_lib directory and demo files for preambles, subfiles, postambles
and helper files. To modify the behavior of the files, you can copy any file and place it in an earlier
part of the search path. The first directory searched is [DISPLAY]PROGRAM_PREFIX. You can use
this directory but it is better practice to create dedicated directory(ies) and put them at the beginning
of the [RS274NGC]SUBROUTINE_PATH.
In the following example, files in /home/myname/linuxcnc/mysubs will be found before files in ../../nc_files/ngcgui_lib.
Adding User Directory Example:
[RS274NGC]SUBROUTINE_PATH = /home/myname/linuxcnc/mysubs:../../nc_files/ngcgui_lib:../../ ←↩

nc_files/ngcgui_lib/utilitysubs‘

New users may inadvertently try to use files that are not structured to be compatible with NGCGUI
requirements. NGCGUI will likely report numerous errors if the files are not coded per its conventions.
Good practice suggests that NGCGUI-compatible subfiles should be placed in a directory dedicated
to that,purpose and that preamble, postamble, and helper files should be in separate directory(ies)
to discourage attempts to use them as subfiles. Files not intended for use as subfiles can include
a special comment: ”(not_a_subfile)” so that NGCGUI will reject them automatically with a relevant
message.

10.6.5.6 Summary of INI File item details for NGCGUI usage

[RS274NGC]SUBROUTINE_PATH = dirname1:dirname2:dirname3 …
Example: [RS274NGC]SUBROUTINE_PATH = ../../nc_files/ngcgui_lib:../../nc_files/ngcgui_lib/utilitysubs
Note: Optional, but very useful to organize subfiles and utility files.

[RS274NGC]USER_M_PATH = dirname1:dirname2:dirname3 …
Example: [RS274NGC]USER_M_PATH = ../../nc_files/ngcgui_lib/mfiles
Note: Optional, needed to locate custom user M-files.

[DISPLAY]EMBED_TAB_NAME = name to display on embedded tab page
Example: [DISPLAY]EMBED_TAB_NAME = Pyngcgui
Note: The entries: EMBED_TAB_NAME, EMBED_TAB_COMMAND, EMBED_TAB_LOCATION define an em-
bedded application for several LinuxCNC GUIs.

[DISPLAY]EMBED_TAB_COMMAND = programname followed by arguments
Example: [DISPLAY]EMBED_TAB_COMMAND = gladevcp -x {XID} pyngcgui_axis.ui
Note: For GladeVCP applications, see the GladeVCP Chapter.

[DISPLAY]EMBED_TAB_LOCATION = name_of_location
Example: [DISPLAY]EMBED_TAB_LOCATION = notebook_main
Note: See example INI files for possible locations.
Not required for the AXIS GUI.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 704 / 1322

[DISPLAY]PROGRAM_PREFIX = dirname
Example: [DISPLAY]PROGRAM_PREFIX = ../../nc_files
Note: Mandatory and needed for numerous LinuxCNC functions.
It is the first directory used in the search for files.

[DISPLAY]TKPKG = NGCGUI version_number
Example: [DISPLAY]TKPKG = Ngcgui 1.0
Note: Required only for AXIS GUI embedding.
Specifies loading of NGCGUI AXIS tab pages.

[DISPLAY]NGCGUI_FONT = font_descriptor
Example: [DISPLAY]NGCGUI_FONT = Helvetica -12 normal
Note: Optional, font_descriptor is a tcl-compatible font specifier with items for fonttype -fontsize
fontweight.
Default is: Helvetica -10 normal.
Smaller font sizes may be useful for small screens.
Larger font sizes may be helpful for touch screen applications .

[DISPLAY]NGCGUI_SUBFILE = subfile_filename
Example: [DISPLAY]NGCGUI_SUBFILE = simp.ngc
Example: [DISPLAY]NGCGUI_SUBFILE = square.gcmc
Example: [DISPLAY]NGCGUI_SUBFILE = ””
Note: Use one or more items to specify NGCGUI-compatible subfiles or gcmc programs that
require a tab page on startup.
A ”Custom” tab will be created when the filename is ””.
A user can use a ”Custom” tab to browse the file system and identify preamble, subfile, and
postamble files.

[DISPLAY]NGCGUI_PREAMBLE = preamble_filename
Example: [DISPLAY]NGCGUI_PREAMBLE = in_std.ngc
Note: Optional, when specified, the file is prepended to a subfile.
Files created with ”Custom” tab pages use the preamble specified with the page.

[DISPLAY]NGCGUI_POSTAMBLE = postamble_filename
Example: [DISPLAY]NGCGUI_POSTAMBLE = bye.ngc
Note: Optional, when specified, the file is appended to a subfiles.
Files created with ”Custom” tab pages use the postamble specified with the page.

[DISPLAY]NGCGUI_OPTIONS = opt1 opt2 …
Example: [DISPLAY]NGCGUI_OPTIONS = nonew noremove
Note: Multiple options are separated by blanks.
By default, NGCGUI configures tab pages so that:
1) a user can make new tabs;
2) a user can remove tabs (except for the last remaining one);
3) finalized files are automatically sent to LinuxCNC;
4) an image frame (iframe) is made available to display an image for the subfile (if an image is
provided);
5) the NGCGUI result file sent to LinuxCNC is terminated with an M2 (and incurs M2 side-effects).

The options nonew, noremove, noauto, noiframe, nom2 respectively disable these default behav-
iors.
By default, if an image (.png,.gif,jpg,pgm) file is found in the same directory as the subfile, the
image is displayed in the iframe. Specifying the noiframe option makes available additional but-
tons for selecting a preamble, subfile, and postamble and additional checkboxes. Selections of
the checkboxes are always available with special keys:
Ctrl-R Toggle ”Retain values on Subfile read”,
Ctrl-E Toggle ”Expand subroutine”,
Ctrl-a Toggle ”Autosend”,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 705 / 1322

Ctrl-k lists all keys and functions.

If noiframe is specified and an image file is found, the image is displayed in a separate window
and all functions are available on the tab page. The NGCGUI_OPTIONS apply to all NGCGUI tabs
except that the nonew, noremove, and noiframe options are not applicable for ”Custom” tabs. Do
not use ”Custom” tabs if you want to limit the user’s ability to select subfiles or create additional
tab pages.

[DISPLAY]GCMC_INCLUDE_PATH = dirname1:dirname2:…
Example: [DISPLAY]GCMC_INCLUDE_PATH = /home/myname/gcmc_includes:/home/myname/gcmc_includes2
Note: Optional, each directory will be included when gcmc is invoked using the option: --include
dirname.

10.6.6 File Requirements for NGCGUI Compatibility

10.6.6.1 Single-File Gcode (.ngc) Subroutine Requirements

An NGCGUI-compatible subfile contains a single subroutine definition. The name of the subroutine
must be the same as the filename (not including the .ngc suffix). LinuxCNC supports named or num-
bered subroutines, but only named subroutines are compatible with NGCGUI. For more information
see the O-Codes chapter.
The first non-comment line should be a sub statement.
The last non-comment line should be a endsub statement.
examp.ngc:
(info: info_text_to_appear_at_top_of_tab_page)
; comment line beginning with semicolon
(comment line using parentheses)
o<examp> sub
BODY_OF_SUBROUTINE

o<examp> endsub
; comment line beginning with semicolon
(comment line using parentheses)

The body of the subroutine should begin with a set of statements that define local named parameters
for each positional parameter expected for the subroutine call. These definitions must be consecutive
beginning with #1 and ending with the last used parameter number. Definitions must be provided for
each of these parameters (no omissions).
Parameter Numbering
#<xparm> = #1
#<yparm> = #2
#<zparm> = #3

LinuxCNC considers all numbered parameters in the range #1 thru #30 to be calling parameters,
so NGCGUI provides entry boxes for any occurrence of parameters in this range. It is good practice
to avoid use of numbered parameters #1 through #30 anywhere else in the subroutine. Using local,
named parameters is recommended for all internal variables.
Each defining statement may optionally include a special comment and a default value for the param-
eter.
Statement Prototype
#<vname> = #n (=default_value)
or
#<vname> = #n (comment_text)
or
#<vname> = #n (=default_value comment_text)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 706 / 1322

Parameter Examples
#<xparm> = #1 (=0.0)
#<yparm> = #2 (Ystart)
#<zparm> = #3 (=0.0 Z start setting)

If a default_value is provided, it will be entered in the entry box for the parameter on startup. If
comment_text is included, it will be used to identify the input instead of the parameter name.
Global Named Parameters Notes on global named parameters and NGCGUI:
(global named parameters have a leading underscore in the name, like #<_someglobalname>)
As in many programming languages, use of globals is powerful but can often lead to unexpected
consequences. In LinuxCNC, existing global named parameters will be valid at subroutine execution
and subroutines can modify or create global named parameters.
Passing information to subroutines using global named parameters is discouraged since such usage
requires the establishment and maintenance of a well-defined global context that is difficult to main-
tain. Using numbered parameters #1 thru #30 as subroutine inputs should be sufficient to satisfy a
wide range of design requirements. NGCGUI supports some input global named parameter but their
usage is obsolete and not documented here.
While input global named parameters are discouraged, LinuxCNC subroutines must use global named
parameters for returning results. Since NGCGUI-compatible subfiles are aimed at GUI usage, return
values are not a common requirement. However, NGCGUI is useful as a testing tool for subroutines
which do return global named parameters and it is common for NGCGUI-compatible subfiles to call
utility subroutine files that return results with global named parameters.
To support these usages, NGCGUI ignores global named parameters that include a colon (:) character
in their name. Use of the colon (:) in the name prevents NGCGUI from making entryboxes for these
parameters.
Global Named Parameters Example
o<examp> sub
...
#<_examp:result> = #5410 (return the current tool diameter)
...
o<helper> call [#<x1>] [#<x2>] (call a subroutine)
#<xresult> = #<_helper:answer> (immediately localize the helper global result)
#<_helper:answer> = 0.0 (nullify global named parameter used by subroutine)
...
o<examp> endsub

In the above example, the utility subroutine will be found in a separate file named helper.ngc. The
helper routine returns a result in a global named parameter named #<_helper:answer.
For good practice, the calling subfile immediately localizes the result for use elsewhere in the subfile
and the global named parameter used for returning the result is nullified in an attempt to mitigate its
inadvertent use elsewhere in the global context. A nullification value of 0.0 may not always be a good
choice.
NGCGUI supports the creation and concatenation of multiple features for a subfile and for multiple
subfiles. It is sometimes useful for subfiles to determine their order at runtime, so NGCGUI inserts
a special global parameter that can be tested within subroutines. The parameter is named #<_fea-
ture:>. Its value begins with a value of 0 and is incremented for each added feature.
Additional Features A special info comment can be included anywhere in an NGCGUI-compatible
subfile. The format is:
(info: info_text)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 707 / 1322

The info_text is displayed near the top of the NGCGUI tab page in AXIS.
Files not intended for use as subfiles can include a special comment so that NGCGUI will reject them
automatically with a relevant message.
(not_a_subfile)

An optional image file (.png,.gif,.jpg,.pgm) can accompany a subfile. The image file can help clarify the
parameters used by the subfile. The image file should be in the same directory as the subfile and have
the same name with an appropriate image suffix, e.g. the subfile example.ngc could be accompanied
by an image file examp.png. NGCGUI attempts to resize large images by subsampling to a size with
maximum width of 320 and maximum height of 240 pixels.
None of the conventions required for making an NGCGUI-compatible subfile preclude its use as gen-
eral purpose subroutine file for LinuxCNC.
The LinuxCNC distribution includes a library (ngcgui_lib directory) that includes both example NGCGUI-
compatible subfiles and utility files to illustrate the features of LinuxCNC subroutines and NGCGUI
usage. Another library (gcmc_lib) provides examples for subroutine files for the G-code meta compiler
(gcmc).
Additional user sumitted subroutines can be found on the Forum in the Subroutines Section.

10.6.6.2 Gcode-meta-compiler (.gcmc) file requirements

Files for the Gcode-meta-compiler (gcmc) are read by NGCGUI and it creates entry boxes for variables
tagged in the file. When a feature for the file is finalized, NGCGUI passes the file as input to the gcmc
compiler and, if the compile is successful, the resulting G-code file is sent to LinuxCNC for execution.
The resulting file is formatted as single-file subroutine; .gcmc files and .ngc files can be intermixed by
NGCGUI.
The variables identified for inclusion in NGCGUI are tagged with lines that will appear as comments
to the gcmc compiler.
Variable Tags Formats
//ngcgui: varname1 =
//ngcgui: varname2 = value2
//ngcgui: varname3 = value3, label3;

Variable Tags Examples
//ngcgui: zsafe =
//ngcgui: feedrate = 10
//ngcgui: xl = 0, x limit

For these examples, the entry box for varname1 will have no default, the entry box for varname2 will
have a default of value2, and the entry box for varname 3 will have a default of value 3 and a label
label3 (instead of varname3). The default values must be numbers.
To make it easier to modify valid lines in a gcmc file, alternate tag line formats accepted. The alternate
formats ignore trailing semicolons (;) and trailing comment markers (//). With this provision, it is often
makes it possible to just add the //ngcgui: tag to existing lines in a .gcmc file.
Alternate Variable Tags Formats
//ngcgui: varname2 = value2;
//ngcgui: varname3 = value3; //, label3;

Alternate Variable Tags Examples
//ngcgui: feedrate = 10;
//ngcgui: xl = 0; //, x limit

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 708 / 1322

An info line that will appear at the top of a tab page may be optionally included with a line tagged as:
Info tag
//ngcgui: info: text_to_appear_at_top_of_tab_page

When required, options can be passed to the gcmc compiler with a line tagged:
Option line tag format
//ngcgui: -option_name [[=] option_value]

Option line tag Examples
//ngcgui: -I
//ngcgui: --imperial
//ngcgui: --precision 5
//ngcgui: --precision=6

Options for gcmc are available with the terminal command:
gcmc --help

A gcmc program by default uses metric mode. The mode can be set to inches with the option setting:
//ngcgui: --imperial

A preamble file, if used, can set a mode (g20 or g21) that conflicts with the mode used by a gcmc file.
To ensure that the gcmc program mode is in effect, include the following statement in the .gcmc file:
include(”ensure_mode.gcmc”)

and provide a proper path for gcmc include_files in the INI file, for example:
[DISPLAY]
GCMC_INCLUDE_PATH = ../../nc_files/gcmc_lib

10.6.7 DB25 Example

The following shows the DB25 subroutine. In the first photo you see where you fill in the blanks for
each variable.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 709 / 1322

This photo shows the backplot of the DB25 subroutine.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 710 / 1322

This photo shows the use of the new button and the custom tab to create three DB25 cutouts in one
program.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 711 / 1322

10.6.8 Creating a subroutine

• For creating a subroutine for use with NGCGUI, the filename and the subroutine name must be the
same.

• The file must be placed in the subdirectory pointed to in the INI file.

• On the first line there may be a comment of type info:

• The subroutine must be surrounded by the sub and endsub tags.

• The variables used must be numbered variables and must not skip number.

• Comments and presets may be included.

Subroutine Skeleton Example
(info: simp -- simple exemple de sous-programme -- Ctrl-U pour éditer)
o<simp> sub
#<ra> = #1 (=.6 Rayon A) ;Example de paramètre avec un commentaire
#<radius_b> = #2 (=0.4) ;Example de paramètre sans commentaire
#<feedrate> = #3 (Feedrate) ;Example de paramètre sans preset
g0x0y0z1
g3 i#<ra> f#<feedrate>
g3 i[0-#<radius_b>]

o<simp> endsub

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 712 / 1322

10.7 TkLinuxCNC GUI

10.7.1 Introduction

TkLinuxCNC is one of the first graphical front-ends for LinuxCNC. It is written in Tcl and uses the Tk
toolkit for the display. Being written in Tcl makes it very portable (it runs on a multitude of platforms).
A separate backplot window can be displayed as shown.

Figure 10.38: TkLinuxCNC Window

10.7.2 Getting Started

To select TkLinuxCNC as the front-end for LinuxCNC, edit the INI file. In the section [DISPLAY]
change the DISPLAY line to read
DISPLAY = tklinuxcnc

Then, start LinuxCNC and select that INI file. The sample configuration sim/tklinuxcnc/tklinuxcnc.ini
is already configured to use TkLinuxCNC as its front-end.
When LinuxCNC is launched the TKLinuxCNC window is opened.

10.7.2.1 A typical session with TkLinuxCNC

1. Start LinuxCNC and select a configuration file.

2. Clear the E-STOP condition and turn the machine on (by pressing F1 then F2).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 713 / 1322

3. Home each axis.

4. Load the file to be milled.

5. Put the stock to be milled on the table.

6. Set the proper offsets for each axis by jogging and either homing again or right-clicking an axis
name and entering an offset value. 1

7. Run the program.

8. To mill the same file again, return to step 6. To mill a different file, return to step 4. When you’re
done, exit LinuxCNC.

10.7.3 Elements of the TkLinuxCNC window

The TkLinuxCNC window contains the following elements:

• A menubar that allows you to perform various actions

• A set of buttons that allow you to change the current working mode, start/stop spindle and other
relevant I/O

• Status bar for various offset related displays

• Coordinate display area

• A set of sliders which control Jogging speed, Feed Override, and Spindle speed Overridewhich allow
you to increase or decrease those settings

• Manual data input text box MDI

• Status bar display with active G-codes, M-codes, F- and S-words

• Interpreter related buttons

• A text display area that shows the G-code source of the loaded file

10.7.3.1 Main buttons

From left to right, the buttons are:

• Machine enable: ESTOP > ESTOP RESET > ON

• Toggle mist coolant

• Decrease spindle speed

• Set spindle direction SPINDLE OFF > SPINDLE FORWARD . SPINDLE REVERSE

• Increase spindle speed

• Abort

then on the second line:

• Operation mode: MANUAL > MDI > AUTO

• Toggle flood coolant

• Toggle spindle brake control
1For some of these actions it might be necessary to change the mode LinuxCNC is currently running in.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 714 / 1322

10.7.3.2 Offset display status bar

The Offset display status bar displays the currently selected tool (selected with Txx M6), the tool
length offset (if active), and the work offsets (set by right-clicking the coordinates).

10.7.3.3 Coordinate Display Area

The main part of the display shows the current position of the tool. The color of the position readout
depends on the state of the axis. If the axis is unhomed the axis will be displayed in yellow letters.
Once homed it will be displayed in green letters. If there is an error with the current axis TkLinuxCNC
will use red letter to show that. (for example if an hardware limit switch is tripped).
To properly interpret these numbers, refer to the radio boxes on the right. If the position is Machine,
then the displayed number is in the machine coordinate system. If it is Relative, then the displayed
number is in the offset coordinate system. Further down the choices can be actual or commanded.
Actual refers to the feedback coming from encoders (if you have a servo machine), and the commanded
refers to the position command send out to the motors. These values can differ for several reasons:
Following error, deadband, encoder resolution, or step size. For instance, if you command a movement
to X 0.0033 on your mill, but one step of your stepper motor is 0.00125, then the Commanded position
will be 0.0033 but the Actual position will be 0.0025 (2 steps) or 0.00375 (3 steps).
Another set of radio buttons allows you to choose between joint and world view. These make little
sense on a normal type of machine (e.g. trivial kinematics), but help on machines with non-trivial
kinematics like robots or stewart platforms. (you can read more about kinematics in the Integrator
Manual).
Backplot When the machine moves, it leaves a trail called the backplot. You can start the backplot
window by selecting View→Backplot.

10.7.3.4 TkLinuxCNC Interpreter / Automatic Program Control

TkLinuxCNC Interpreter / program control
Control Buttons The buttons in the lower part of TkLinuxCNC are used to control the execution of
a program:
+ * Open to load a program, * Verify to check it for errors, * Run to start the actual cutting, * Pause to
stop it while running, * Resume to resume an already paused program, * Step to advance one line in
the program and * Optional Stop to toggle the optional stop switch (if the button is green the program
execution will be stopped on any M1 encountered).
Text Program Display Area When the program is running, the line currently being executed is
highlighted in white. The text display will automatically scroll to show the current line.

10.7.3.5 Manual Control

Implicit keys TkLinuxCNC allows you to manually move the machine. This action is known as jogging.
First, select the axis to be moved by clicking it. Then, click and hold the + or - button depending on
the desired direction of motion. The first four axes can also be moved by the keyboard arrow keys (X
and Y), the PAGE UP and PAGE DOWN keys (Z) and the [and] keys (A/4th).
+ If Continuous is selected, the motion will continue as long as the button or key is pressed. If another
value is selected, the machine will move exactly the displayed distance each time the button is clicked
or the key is pressed. The available values are:
+
1.0000, 0.1000, 0.0100, 0.0010, 0.0001

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 715 / 1322

+ By pressing Home or the HOME key, the selected axis will be homed. Depending on your config-
uration, this may just set the axis value to be the absolute position 0.0, or it may make the machine
move to a specific home location through use of home switches. See the Homing Chapter for more
information.
+ By pressing Override Limits, the machine will temporarily be permitted to jog outside the limits
defined in the INI file. (Note: if Override Limits is active the button will be displayed using a red
color).

Figure 10.39: TkLinuxCNC Override Limits & Jogging increments example

The Spindle group The button on the first row selects the direction for the spindle to rotate: Coun-
terclockwise, Stopped, Clockwise. The buttons next to it allow the user to increase or decrease the
rotation speed. The button on the second row allows the spindle brake to be engaged or released.
Depending on your machine configuration, not all the items in this group may have an effect.
The Coolant group The two buttons allow the Mist and Flood coolants to be turned on and off.
Depending on your machine configuration, not all the items in this group may appear.

10.7.3.6 Code Entry

Manual Data Input (also called MDI), allows G-code programs to be entered manually, one line at
a time. When the machine is not turned on, and not set to MDI mode, the code entry controls are
unavailable.

This allows you to enter a G-code command to be executed. Execute the command by pressing Enter.
Active G-Codes This shows the modal codes that are active in the interpreter. For instance, G54
indicates that the G54 offset is applied to all coordinates that are entered.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 716 / 1322

10.7.3.7 Jog Speed

By moving this slider, the speed of jogs can be modified. The numbers above refer to axis units / second.
The text box with the number is clickable. Once clicked a popup window will appear, allowing for a
number to be entered.

10.7.3.8 Feed Override

By moving this slider, the programmed feed rate can be modified. For instance, if a program requests
F60 and the slider is set to 120%, then the resulting feed rate will be 72. The text box with the number
is clickable. Once clicked a popup window will appear, allowing for a number to be entered.

10.7.3.9 Spindle speed Override

The spindle speed override slider works exactly like the feed override slider, but it controls to the
spindle speed. If a program requested S500 (spindle speed 500 RPM), and the slider is set to 80%,
then the resulting spindle speed will be 400 RPM. This slider has a minimum and maximum value
defined in the INI file. If those are missing the slider is stuck at 100%. The text box with the number
is clickable. Once clicked a popup window will appear, allowing for a number to be entered.

10.7.4 Keyboard Controls

Almost all actions in TkLinuxCNC can be accomplished with the keyboard. Many of the shortcuts are
unavailable when in MDI mode.
The most frequently used keyboard shortcuts are shown in the following table.

Table 10.7: Most Common Keyboard Shortcuts

Keystroke Action Taken
F1 Toggle Emergency Stop
F2 Turn machine on/off

 ̀, 1 .. 9, 0 Set feed override from 0% to 100%
X, ̀ Activate first axis
Y, 1 Activate second axis
Z, 2 Activate third axis
A, 3 Activate fourth axis

Home Send active axis Home
Left, Right Jog first axis
Up, Down Jog second axis

Pg Up, Pg Dn Jog third axis
[,] Jog fourth axis

ESC Stop execution

10.8 QtPlasmaC

10.8.1 Preamble

Except where noted, this guide assumes the user is using the latest version of QtPlasmaC. Version
history can be seen by visiting this link which will show the latest available version. The installed

https://htmlpreview.github.io/?https://github.com/LinuxCNC/linuxcnc/blob/master/share/qtvcp/screens/qtplasmac/versions.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 717 / 1322

QtPlasmaC version is displayed in the title bar. See Update QtPlasmaC for information on updating
QtPlasmaC.

10.8.2 License

QtPlasmaC and all of its related software are released under GPLv2.

10.8.3 Introduction

The development branch version of QtPlasmaC is a GUI for plasma cutting which utilises the plasmac
component for controlling a plasma table using the master branch (development) version of LinuxCNC
(v2.10) using the Debian Bullseye or later distribution.
The QtPlasmaC GUI supports up to five axes and uses the QtVCP infrastructure provided with Linux-
CNC.
The standard theme is based on a design by user ”pinder” on the LinuxCNC Forum and the colors are
able to be changed by the user.
The development branch version of the QtPlasmaC GUI will run on any hardware that is supported by
the master branch version of LinuxCNC (v2.10) provided there are enough hardware I/O pins to fulfill
the requirements of a plasma configuration.
There are three available formats:

• 16:9 with a minimum resolution of 1366 x 768

• 9:16 with a minimum resolution of 768 x 1366

• 4:3 with a minimum resolution of 1024 x 768

Screenshot examples of QtPlasmaC are below:

https://linuxcnc.org/docs/devel/html/man/man9/plasmac.9.html
https://linuxcnc.org/docs/devel/html/man/man9/plasmac.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 718 / 1322

Figure 10.40: 16:9

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 719 / 1322

Figure 10.41: 9:16

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 720 / 1322

Figure 10.42: 4:3

10.8.4 Installing LinuxCNC

The preferred method for installing LinuxCNC is via an ISO image as described below.

Note
It is possible to install and run LinuxCNC on a variety of Linux distributions however that is beyond
the scope of this User Guide. If the user wishes to install a Linux distribution other than those recom-
mended, they will first need to install their preferred Linux distribution and then install the master
branch version of LinuxCNC (v2.10) along with any required dependencies. It should also be noted
that Bullseye is the earliest Debian distribution that is supported by the master branch of LinuxCNC
(v2.10). Buster is no longer supported.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 721 / 1322

10.8.4.1 If The User Does Not Have Linux Installed

Installation instructions are available from here.
Following these instructions will yield a machine with the current stable branch of LinuxCNC (v2.9)
on Debian 12 (Bookworm). The user will then have to follow the appropriate instructions to upgrade
to the master branch version of LinuxCNC (v2.10).

10.8.4.2 Package Installation (Buildbot) If The User Has Linux on Debian 12 (Bookworm)

Follow the instructions from the Updating LinuxCNC on Debian Bookworm section from here.

10.8.4.3 Package Installation (Buildbot) If The User Has Linux on Debian 12 (Bookworm)
or Debian 11 (Bullseye)

A package installation (Buildbot) uses prebuilt packages from the LinuxCNC Buildbot.
Add the GPG keys and add the repository to the sources list to suit the Debian version.
The below stanza would add the master branch (v2.10) Bookworm repository.
deb http://buildbot2.highlab.com/ bookworm master-uspace

10.8.4.4 Run In Place Installation If The User Has Linux Installed

A run in place installation runs LinuxCNC from a locally compiled version usually located at ~/linuxcnc-
dev, instructions for building a run in place installation are available from here.

10.8.5 Creating A QtPlasmaC Configuration

Prior to creating a QtPlasmaC configuration, it is important that the user has a firm understanding of
the operating modes available, as well as the I/O’s that are required for successful plasma operation.

10.8.5.1 Modes

QtPlasmaC requires the selection of one of following three operating modes:

Mode Description
0 Uses an external arc voltage input to calculate both Arc Voltage (for Torch

Height Control) and Arc OK.
1 Uses an external arc voltage input to calculate Arc Voltage (for Torch

Height Control).
Uses an external Arc OK input for Arc OK.

2 Uses an external Arc OK input for Arc OK.
Use external up/down signals for Torch Height Control.

Important
If the plasma power source has an Arc OK (Transfer) output then it is recommended to use that
for Arc OK rather than the soft (calculated) Arc OK provided by mode 0. It may also be possible
to use a reed relay as an alternative method to establish an Arc OK signal when the power
source does not provide one.

../getting-started/getting-linuxcnc.html
../getting-started/getting-linuxcnc.html
http://buildbot2.highlab.com
../code/building-linuxcnc.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 722 / 1322

Note
For fine tuning of Mode 0 Ark OK see Tuning Mode 0 Arc OK in the Advanced Topics section of the
manual.

10.8.5.2 Available I/Os

Note
This section only touches on the hardware I/O’s required for QtPlasmaC. Base machine requirements
such as limit switches, home switches, etc. are in addition to these.

Name Modes Description
Arc Voltage 0, 1 Analog input; optional.

HAL pin name plasmac.arc-voltage-in
Connected to the velocity output of an encoder equipped
breakout board. This signal is used to read the arc voltage to
determine the necessary corrections to maintain the torch
distance from the work piece during cutting.

Arc OK 1, 2 Digital input; optional.
HAL pin name plasmac.arc-ok-in
Connected from the Arc OK output of the plasma power source
to an input on the breakout board. This signal is used to
determine if the cutting arc has been established and it is ok for
the machine to move (sometimes called arc transfer).

Float Switch 0, 1, 2 Digital input; optional, see info below table:
HAL pin name plasmac.float-switch
Connected from a breakout board input to a switch on the
floating head. This signal is used to mechanically probe the
work piece with the torch and set Z zero at the top of the work
piece.
If used and no ohmic probe is configured, this is the probing
method.
If used and an ohmic probe is configured, this is the fallback
probing method.

Ohmic Probe 0, 1, 2 Digital input; optional, see info below table:
HAL pin name plasmac.ohmic-probe
Connected from to the ohmic probe’s output to a breakout
board input. This signal is used to probe electronically by
completing a circuit using the work piece and the torch
consumables and set Z zero at the top of the work piece.
If used, this is the primary probing method. If an ohmic probe
fails to locate the work piece, and there is no float switch is
present, probing will continue until the torch breaks away or
the minimum Z limit is reached.

Ohmic Probe
Enable

0, 1, 2 Digital output; optional, see info below table:
HAL pin name plasmac.ohmic-enable
Connected from a breakout board output to an input to control
the ohmic probe’s power.

Breakaway
Switch

0, 1, 2 Digital input; optional, see info below table:
HAL pin name plasmac.breakaway
Connected from a breakout board input to a torch breakaway
detection switch.
This signal senses if the torch has broken away from its cradle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 723 / 1322

Name Modes Description
Torch On 0, 1, 2 Digital output; required.

HAL pin name plasmac.torch-on
Connected from a breakout board output to the torch-on input
of the plasma power supply. This signal is used to control the
plasma power supply and start the arc.

Move Up 2 Digital input; optional.
HAL pin name plasmac.move-up
Connected from the up output of the external THC control to a
break out board input. This signal is used to control the Z axis
in an upward motion and make necessary corrections to
maintain the torch distance from the work piece during cutting.

Move Down 2 Digital input; optional.
HAL pin name plasmac.move-down
Connected from the down output of the external THC control to
a break out board input. This signal is used to control the Z axis
in a downward motion and make necessary corrections to
maintain the torch distance from the work piece during cutting.

Scribe Arming 0, 1, 2 Digital output; optional.
HAL pin name plasmac.scribe-arm
Connected from a breakout board output to the scribe arming
circuit. This signal is used to place the scribe into position on
the work piece .

Scribe On 0, 1, 2 Digital output; optional.
HAL pin name plasmac.scribe-on
Connected from a breakout board output to the scribe-on
circuit. This signal is used to turn the scribing device on.

Laser On 0, 1, 2 Digital output; optional.
HAL pin name qtplasmac.laser_on
This signal is used to turn the alignment laser on.

Only one of either Float Switch or Ohmic Probe is required. If both are used, then Float Switch
will be a fallback if Ohmic Probe is not sensed.
If Ohmic Probe is used, then Ohmic Probe Enable is required to be checked on the QtPlasmaC
GUI.
Breakaway Switch is not mandatory because the Float Switch is treated the same as a breakaway
when not probing. If they are two separate switches, and there are not enough inputs on the breakout
board, they could be combined and connected as a Float Switch.

Note
The minimum I/O requirement for a QtPlasmaC configuration to function are: Arc Voltage input OR
Arc OK input, Float Switch input, and Torch On output. To reiterate, in this case QtPlasmaC will
treat the float switch as a breakaway switch when it is not probing.

10.8.5.3 Recommended Settings:

Refer to the Heights Diagrams for a visual representation of the terms below.

• [AXIS_Z] MIN_LIMIT should be just below top of the slats with allowances for float_switch_travel
and over travel tolerance. For example, if the user’s float switch takes 4 mm (0.157”) to activate
then set the Z minimum to 5 mm (0.2”) plus an allowance for overrun (either calculated using the
equation below or allow 5 mm (0.2”) below the lowest slat).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 724 / 1322

• [AXIS_Z] MAX_LIMIT should be the highest the user wants the Z axis to travel (it must not be
lower than Z HOME_OFFSET).

• [AXIS_Z] HOME should be set to be approximately 5 mm-10 mm (0.2”-0.4”) below the maximum
limit.

• Floating Head - it is recommended that a floating head be used and that it has enough movement
to allow for overrun during probing. Overrun can be calculated using the following formula:

o = 0.5 * a * (v / a)^2

where: o = overrun, a = acceleration in units/s2 and v = velocity in units/s.
Metric example: given a Z axis MAX_ACCELERATION of 600 mm/s2 and MAX_VELOCITY of 60 mm/s,
the overrun would be 3 mm.
Imperial example: given a Z axis MAX_ACCELERATION of 24 in/s2 and MAX_VELOCITY of 2.4 in/s,
the overrun would be 0.12 in.
On machines that will utilize an ohmic probe as the primary method of probing, it is highly recom-
mended to install a switch on the floating head as a backup means of stopping Z motion in the event
of ohmic probe failure due to dirty surfaces.

10.8.5.4 Configuring

LinuxCNC provides two configuration wizards which can be used to build a machine configuration.
The choice of these wizards is dependent on the hardware used to control the machine.
If the user wishes to use a Run In Place installation then prior to running one of the following com-
mands they will need to run the following command from a terminal:
source ~/linuxcnc-dev/scripts/rip-environment

If using a Package installation, then no additional action is required.
If using a parallel port, use the StepConf wizard by running the stepconf command in a terminal
window or launching it using the Application -> CNC -> StepConf Wizard desktop menu entry.
If using a Mesa Electronics board, use the PnCconf wizard by running the pncconf command in a
terminal window or launching it using the Application -> CNC -> PnCConf Wizard desktop menu
entry.
If using a Pico Systems board, this LinuxCNC forum thread may be helpful.
The machine specific settings are not described here, refer to the documentation for the particular
configuration wizard that is being used.
There are LinuxCNC forum sections available for these wizards:
StepConf Wizard
PnCconf Wizard
Fill in the required entries to suit the machine wiring/breakout board configuration.
QtPlasmaC adds two pages to the LinuxCNC configuration wizards for QtPlasmaC specific parameters,
the two pages are QtPlasmaC options and User Buttons. Complete each of the wizards QtPlasmaC
page to suit the machine that is being configured and the user button requirements.
Note that PnCConf options allow user selection of Feed Override, Linear Velocity, and Jog Increments,
whereas in StepConf these are automatically calculated and set.

https://forum.linuxcnc.org/27-driver-boards/14977-pico-systems-faq
https://forum.linuxcnc.org/16-stepconf-wizard()
https://forum.linuxcnc.org/39-pncconf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 725 / 1322

Figure 10.43: PnCConf QtPlasmaC Options

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 726 / 1322

Figure 10.44: StepConf QtPlasmaC Options

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 727 / 1322

Figure 10.45: QtPlasmaC User Buttons

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 728 / 1322

Figure 10.46: QtPlasmaC THCAD

The THCAD screen will only appear if a Plasma Encoder is selected in the card screen. The the
dedicated section on Mesa THCAD for more information.
When the configuration is complete, the wizard will save a copy of the configuration that may be
loaded and edited at a later time, a working QtPlasmaC configuration will be created in the following
directory: ~/linuxcnc/configs/<machine_name>.
The way the newly created QtPlasmaC configuration can be run from the terminal command line
slightly differs depending on the way LinuxCNC was installed:
For a package installation (Buildbot):
linuxcnc ~/linuxcnc/configs/_<machine_name>_/_<machine_name>_.ini

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 729 / 1322

For a run in place installation:

~/linuxcnc-dev/scripts/linuxcnc ~/linuxcnc/configs/_<machine_name>_/_<machine_name>_.ini

After running the above command LinuxCNC should be running with the QtPlasmaC GUI visible.

Important
BEFORE PROCEEDING, THE USER SHOULD BE ABLE TO HOME THE MACHINE, ZERO EACH AXIS,
JOG ALL AXES TO SOFT LIMITS WITHOUT CRASHING, AND RUN TEST G-CODE PROGRAMS WITH-
OUT ANY ERRORS.

ONLY WHEN this criteria is met should the user proceed with the QtPlasmaC initial setup.

Note
It is possible to create a sim configuration using StepConf but it is not possible to have tandem joints
in the sim configuration.

10.8.5.5 Qt Dependency Errors

If any Qt dependency errors are encountered while attempting to run the QtPlasmaC configuration,
the user may need to run the QtVCP installation script to resolve these issues.
For a package installation (Buildbot) enter the following command in a terminal window:
/usr/lib/python3/dist-packages/qtvcp/designer/install_script

For a run in place installation enter the following command in a terminal window:
~/linuxcnc-dev/lib/python/qtvcp/designer/install_script

10.8.5.6 Initial Setup

The following heights diagrams will help the user visualize the different heights involved in plasma
cutting and how they are measured. There are two different scenarios based on if the user chooses
to use Probe Height only, or if the user chooses to user Slat Height AND Material Thickness.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 730 / 1322

Figure 10.47: Probe Height Only

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 731 / 1322

Figure 10.48: Slat Height and Material Thickness

Click on the Parameters Tab to view the CONFIGURATION section which shows the user settable
parameters. It is necessary to ensure every one of these settings is tailored to the machine.
To set the Z axis DRO relative to the Z axis MINIMUM_LIMIT, the user should perform the following
steps. It is important to understand that in QtPlasmaC, touching off the Z axis DRO has no effect on
the Z axis position while running a G-code program. These steps simply allow the user to more easily
set the probe height as after performing the steps, the displayed Z axis DRO value will be relative to
Z axis MINIMUM_LIMIT.

Note
The user should be familiar with the recommended Z Axis Settings.

1. Home the Z axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 732 / 1322

2. Ensure there is nothing below the torch then jog the Z axis down until it stops at the Z axis
MINIMUM_LIMIT then click the 0 next to the Z axis DRO to Touch Off with the Z axis selected
to set the Z axis at zero offset. This step only serves to allow the user to more easily visualize
and adjust Probe Height this value is measured from the Z axis MINIMUM_LIMIT up.

3. Home the Z axis again.

Probe Test
If the machine is equipped with a float switch, then the user will need to set the offset in the CON-
FIGURATION section of the PARAMETERS tab. This will be done by running a ”Probe Test” cycle.

1. Check that the Probe Speed and the Probe Height in the CONFIGURATION section of the PA-
RAMETERS tab are correct. QtPlasmaC can probe at the full Z axis velocity so long as the
machine has enough movement in the float switch to absorb any overrun. If the machine is suit-
able, the user could set the Probe Height to a value near the Z axis minimum and do all probing
at full speed.

2. If the machine is not already homed and in the home position, home the machine.

3. Place some material on the slats under the torch.

4. Press the PROBE TEST button.

5. The Z axis will probe down, find the material then move up to the specified Pierce Height as
set by the currently selected material. The torch will wait in this position for the time set in the
<machine_name>.prefs file. The default probe test hold time is 10 seconds, this value may be
edited in the <machine_name>.prefs file. After this the torch will return to the starting height.

6. Measure the distance between the material and the tip of the torch while the torch is waiting at
Pierce Height.

7. If the measurement is greater than the Pierce Height of the currently selected material, then
reduce the ”Float Travel” in the CONFIGURATION section of the PARAMETERS tab by the
difference between the measured value and the specified value. If the measurement is less than
Pierce Height of the currently selected material, then increase the ”Float Travel” in the CON-
FIGURATION section of the PARAMETERS tab by the difference between the specified value
and the measured value.

8. After the adjustments to the ”Float Travel” have been made, repeat the process from #4 above
until the measured distance between the material and the torch tip matches the Pierce Height
of the currently selected material.

9. If the table has a laser or camera for sheet alignment, a scribe, or uses offset probing then the
required offsets need to be applied by following the procedure described in Peripheral Offsets.
The LASER and/or CAMERA buttons will not be visible until the user has set the appropriate
offset(s) and they are recorded in the <machine_name>.prefs file.

10. CONGRATULATIONS! The user should now have a working QtPlasmaC Configuration.

Note
If the amount of time between the torch contacting the material and when the torch moves up and
comes to rest at the Pierce Height seems excessive, see the probing section for a possible solution.

Important
IF USING AMesa Electronics THCAD THEN THE Voltage Scale VALUE WAS OBTAINED MATH-
EMATICALLY. IF THE USER INTENDS TO USE CUT VOLTAGES FROM A MANUFACTURE’S CUT
CHART THEN IT WOULD BE ADVISABLE TO DO MEASUREMENTS OF ACTUAL VOLTAGES AND
FINE TUNE THE Voltage Scale AND Voltage Offset.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 733 / 1322

Warning
PLASMA CUTTING VOLTAGES CAN BE LETHAL, IF THE USER IS NOT EXPERIENCED IN DOING
THESE MEASUREMENTS GET SOME QUALIFIED HELP.

10.8.6 Migrating to QtPlasmaC From PlasmaC (AXIS or GMOCCAPY)

Automated migration to QtPlasmaC from PlasmaC is no longer supported. The user will either need
to convert the PlasmaC configuration manually, or create a new configuration using the configuration
wizard.

10.8.7 Other QtPlasmaC Setup Considerations

10.8.7.1 Low-pass Filter

The plasmac HAL component has a built in low-pass filter that if used is applied to the plasmac.arc-
voltage-in input pin to filter any noise that could cause erroneous voltage readings. The low-pass
filter should only be used after using Halscope to determine the required frequency and whether the
amplitude of the noise is large enough to cause any issues. For most plasma machines low-pass is not
required and should not be used unless it is required.
The HAL pin assigned to this filter is plasmac.lowpass-frequency and is set to 0 (disabled) by default.
To apply a low-pass filter to the arc-voltage, the user would edit the following entry in the custom.hal
file in the machine’s configuration directory to add the appropriate cutoff frequency as measured in
Hertz (Hz).
For example:
setp plasmac.lowpass-frequency 100

The above example would give a cutoff frequency of 100 Hz.

10.8.7.2 Contact Bounce

Contact bounce from mechanical relays, switches, or external interference may cause some inconsis-
tent behavior of the following switches:

• Float Switch

• Ohmic Probe

• Breakaway Switch

• Arc OK (for modes 1 & 2)

Due to the fact that the software is capable of sampling rates faster than the contact bounce period,
it is possible that the software may see contact bounce as several changes in input states occurring
in a very small time period, and incorrectly interpret this as a very quick on-off of the input. One
method of mitigating contact bounce is to ”debounce” the input. To summarize debounce, it requires
the input state to be stable at the opposite state of the output state for consecutive delay periods
before changing the state of the output.
Debounce delay periods can be changed by editing the appropriate debounce value in the custom.hal
file in the <machine_name> config directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 734 / 1322

Each increment of delay adds one servo thread cycle to the debounce time. For example: given a
servo thread period of 1000000 (measured in nano seconds), a debounce delay of 5 would equate to
5000000 ns, or 5 ms.
For the Float and Ohmic switches this equates to a 0.001 mm (0.00004”) increase in the probed height
result.
It is recommended to keep the debounce values as low as possible while still achieving consistent
results. Using Halscope to plot the inputs is a good way to establish the correct value.
For QtPlasmaC installations, debounce is achieved by using the HAL dbounce component which is a
later alternative to the original debounce component. This new version allows for the loading and
naming of individual debounce instances and is compatible with Twopass HAL file processing.
All four signals above have an individual debounce component so the debounce periods can be catered
individually to each input. Any changes made to these values in the custom.hal file will not be over-
written by later updates of QtPlasmaC.
The default delay for all four inputs is five servo thread periods. In most cases this value will work
quite well. If any of the inputs do not use mechanical switches, it may be possible to either reduce or
remove the delay for those inputs.
If debounce is required for other equipment like home or limit switches etc. then more dbounce
components may added in any of the HAL files without any regard to the signals listed here.

10.8.7.3 Contact Load

Mechanical relays and switches usually require a minimum current passing through the contacts for
reliable operation. This current varies with the material that the contacts in the device are made from.
Depending on the specified minimum contact current and the current drawn by the input device there
may be a need to provide a method to increase the current through the contacts.
Most relays using gold contacts will not require any additional current for reliable operation.
There are two different methods available to provide this minimum current if it is required:

1. A 0.1 μF film capacitor placed across the contacts.

2. A 1200 Ω 1 W resistor across the load (see calculations below).

Schematics are shown at contact load schematics.
More information on contact switching load can be seen on page VI of the finder General Technical
Information document.
Calculations:
If using a Mesa card, the input resistance of a 7I96 is 4700 Ω (symbol R)(always consult the product
manual associated with the revision being used as these values sometimes vary between revisions),
giving a contact current of 5.1 mA (symbol I) assuming a supply voltage (symbol U) of 24 V (I = U/R)2.
As an example, the typical relay used in a Hypertherm Powermax 65 plasma cutter (TE T77S1D10-24)
requires a minimum contact load of 100 mA @ 5 VDC which will dissipate 0.5 W (P = I * V). If using a
24 VDC power supply this would then equate to a minimum current of 20.8 mA. Because there is less
current drawn by the Mesa input than is required by the relay there needs to be an increase in the
current.
The resistance can be calculated using R = Us / (Im - Ii) where:

• R = calculated resistance
2In the US, the letter V is commonly used as a symbol (Voltage) and as a unit (Volt).

../hal/tutorial.html#sec:tutorial-halscope
../man/man9/dbounce.9.html
https://cdn.findernet.com/app/uploads/TecEN.pdf
https://cdn.findernet.com/app/uploads/TecEN.pdf
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7F1308242_T77%7F1011%7Fpdf%7FEnglish%7FENG_DS_1308242_T77_1011.pdf%7F1-1393194-0

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 735 / 1322

• Us = supply voltage

• Im = minimum current required

• Ii = input current

Using a 7I96 with an input current of 5.1 mA gives a calculated value of 1529 Ω (= 24 V / (.0208 -
.0051) A). This could then be rounded down to a commonly available 1500 Ω resistor, giving a small
safety margin.
The power dissipation can by calculated using P = Us

2 / Rs where:

• P = power

• Us = supply voltage

• Rs = selected resistance

This gives a value of 0.38 W. This could then be rounded up to 1 W, giving a good safety margin. The
final selection would be a 1500 Ω 1 W resistor.

10.8.7.4 Desktop Launcher

If a link to the launch the configuration was not created when creating the config, the user could create
a desktop launcher to the config by right clicking on the desktop and selecting Create Launcher or
similar. This will bring up a dialog box to create a launcher. Give the icon a nice short name, enter
anything for the command and click OK.
After the launcher appears on the desktop, right click on it and then edit it with the user’s editor of
choice. Edit the file so it looks similar to:
[Desktop Entry]
Comment=
Terminal=false
Name=LinuxCNC
Exec=sh -c ”linuxcnc $HOME/linuxcnc/configs/<machine_name>/<machine_name>.ini”
Type=Application
Icon=/usr/share/pixmaps/linuxcncicon.png

If the user would like a terminal window to open behind the GUI window, then change the Terminal
line to:
Terminal=true

Displaying a terminal can be handy for error and information messages.

10.8.7.5 QtPlasmaC Files

After a successful QtPlasmaC installation, the following files are created in the configuration direc-
tory:

Filename Function
<machine_name>.ini Configuration file for the machine.
<machine_name>.hal HAL for the machine.
<machine_name>.prefs Configuration file for QtPlasmaC specific parameters and preferences.
custom.hal HAL file for user customization.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 736 / 1322

Filename Function
custom_postgui.hal HAL file for user customization which is run after the GUI has

initialized.
shutdown.hal HAL file which is run during the shutdown sequence.
tool.tbl Tool table used to store offset information for additional tools (scribe,

etc.) used by the QtPlasmaC configuration.
qtplasmac Link to the directory containing common QtPlasmaC support files.
backup Directory for backups of config files.

Note
<machine_name> is whatever name the user entered into the ”Machine Name” field of the config-
uration wizard program.

Note
Custom commands are allowed in custom.hal and the custom_postgui.hal files as they are not over-
written during updates.

After running a new configuration for the first time the following files will be created in the configu-
ration directory:

Filename Function
<machine_name>_material.cfg File for storing the material settings from the MATERIAL

section of the PARAMETERS Tab.
update_log.txt File for storing log of major updates.

Major updates are those that make any modification to a
user’s configuration.

qtvcp.prefs File containing the QtVCP preferences.
qtplasmac.qss File storing the style sheet for the currently loaded session of

QtPlasmaC.

Note
The configuration files (<machine_name>.ini and <machine_name>.hal) that are created by con-
figuration wizard are notated to explain the requirements to aid in manual manipulation of these
configurations. They may be edited with any text editor.

Note
The <machine_name>.prefs file is plain text and may be edited with any text editor.

10.8.7.6 INI File

QtPlasmaC has some specific <machine_name>.ini file variables as follows:
[FILTER] Section
These variables are mandatory.
PROGRAM_EXTENSION = .ngc,.nc,.tap G-code File (*.ngc, *.nc, *.tap)
ngc = qtplasmac_gcode
nc = qtplasmac_gcode
tap = qtplasmac_gcode

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 737 / 1322

[RS274NGC] Section
These variables are mandatory.
RS274NGC_STARTUP_CODE = G21 G40 G49 G80 G90 G92.1 G94 G97 M52P1
SUBROUTINE_PATH = ./:../../nc_files
USER_M_PATH = ./:../../nc_files

Note
for a imperial config replace G21 above with G20.

Note
both the above paths show the minimum requirements.

Important
SEE PATH TOLERANCE FOR RS274NGC_STARTUP_CODE INFORMATION RELATED TO G64.

[HAL] Section
These variables are mandatory.
HALUI = halui (required)
HALFILE = _<machine_name>_.hal (the machine HAL file)
HALFILE = plasmac.tcl (the standard QtPlasmaC HAL file)
HALFILE = custom.hal (Users custom HAL commands)
POSTGUI_HALFILE = postgui_call_list.hal (required)
SHUTDOWN = shutdown.hal (shutdown HAL commands)

Note
The user could place custom HAL commands in the custom.hal file as this file is not overwritten by
QtPlasmaC updates.

[DISPLAY] Section
This variable is mandatory.
DISPLAY = qtvcp qtplasmac (use 16:9 resolution)

= qtvcp qtplasmac_9x16 (use 9:16 resolution)
= qtvcp qtplasmac_4x3 (use 4:3 resolution)

There are multiple QtVCP options that are described here: QtVCP INI Settings
For example, the following would start a 16:9 resolution QtPlasmaC screen in full screen mode:
DISPLAY = qtvcp -f qtplasmac

[TRAJ] Section
This variable is mandatory.
SPINDLES = 3

../gui/qtvcp.html#_ini_settings

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 738 / 1322

[AXIS_X] Section
These variables are mandatory.
MAX_VELOCITY = double the value in the corresponding joint
MAX_ACCELERATION = double the value in the corresponding joint
OFFSET_AV_RATIO = 0.5

[AXIS_Y] Section
These variables are mandatory.
MAX_VELOCITY = double the value in the corresponding joint
MAX_ACCELERATION = double the value in the corresponding joint
OFFSET_AV_RATIO = 0.5

[AXIS_Z] Section
These variables are mandatory.
MIN_LIMIT = just below the top of the table’s slats
MAX_VELOCITY = double the value in the corresponding joint
MAX_ACCELERATION = double the value in the corresponding joint
OFFSET_AV_RATIO = 0.5

Note
With the exception of tube cutting with an angular A, B, or C axis, QtPlasmaC uses the LinuxCNC
External Offsets feature for all Z axis motion, and for moving the X and/or Y axis for a consumable
change or a cut recovery while paused. For more information on this feature, please read External
Axis Offsets in the LinuxCNC documentation.

10.8.8 QtPlasmaC GUI Overview

The following sections will give a general overview of the QtPlasmaC layout.

10.8.8.1 Exiting QtPlasmaC

Exiting or shutting down QtPlasmaC is done by either:

1. Click the window shutdown button on the window title bar

2. Long press the POWER button on the MAIN Tab.

A shutdown warning can be displayed on every shutdown by checking the Exit Warning checkbox on
the SETTINGS Tab.

10.8.8.2 MAIN Tab

Screenshot example of the QtPlasmaC MAIN Tab in 16:9 aspect ratio:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 739 / 1322

Some functions/features are only used for particular modes and are not displayed if they are not
required by the chosen QtPlasmaC mode.

Table 10.12: Features of the PREVIEW WINDOW

Name Description
Material The top header is clickable in this area to reveal a drop-down menu. It is

used to manually select the current material cut parameters. If there are
no materials in the material file, then only the default material will be
displayed.

VEL: Displays the current feed rate of the table, including both rapid and
cutting moves. While cutting, if a Velocity Reduction is active, this label
updates to reflect the percentage of the original feed rate being used. For
example, ”VEL@20%:” means the table is cutting at 20% of the
programmed feed rate - an 80% reduction.

FR: If ”View Material” is selected on the SETTINGS Tab, this displays the
currently selected material’s Feed Rate.

PH: If ”View Material” is selected on the SETTINGS Tab, this displays the
currently selected material’s Pierce Height.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 740 / 1322

Table 10.12: (continued)

Name Description
PD: If ”View Material” is selected on the SETTINGS Tab, this displays the

currently selected material’s Pierce Delay.
CH: If ”View Material” is selected on the SETTINGS Tab, this displays the

currently selected material’s Cut Height.
CA: If ”View Material” is selected on the SETTINGS Tab, and RS485

communications are enabled, this displays the currently selected
material’s Cut Amperage.

T This button changes the preview to a top down full table view.
P This button changes the preview to an isometric view.
Z This button changes the preview to a top down view.
→ This button pans the preview right.
← This button pans the preview left.
↑ This button pans the preview up.
↓ This button pans the preview down.
+ This button zooms the preview.
- This button zooms the preview.
C This button clears the live plot.

Table 10.13: MACHINE representation

Name Description
ESTOP Setting Estop type = 0 in the [GUI_OPTIONS] section of the

<machine_name>.prefs file, will change this button to an indicator of the
hardware E-stop’s status only. This is the default behavior.
Setting the option Estop type = 1 in the [GUI_OPTIONS] section of the
<machine_name>.prefs file, will hide this button.
Setting the option Estop type = 2 in the [GUI_OPTIONS] section of the
<machine_name>.prefs file, will enable this button to act as a GUI E-stop.

POWER This button turns the GUI on and allows QtPlasmaC/LinuxCNC to control
the hardware.
Pressing and holding the POWER button for longer than two seconds will
bring up a dialog to exit the QtPlasmaC application.

CYCLE START This button starts the cycle for any loaded G-code file.
CYCLE PAUSE This button pauses the cycle for any loaded G-code file.

If a cycle is paused, this button will display CYCLE RESUME and flash.
Pressing CYCLE RESUME will resume the cycle.

CYCLE STOP This button stops any actively running or paused cycle.
This includes:
- G-code Programs
- Torch pulse if the pulse was started during CYCLE PAUSE (this will
cancel the paused G-code program execution as well)
- Probe Test
- Framing
- Manual Cut

FEED This slider overrides the feed rate for all feed moves.
Any value other than 100% will cause the label to flash.
Clicking the label will return the slider to 100%.

RAPID This slider overrides the rapid rate for all rapid moves.
Any value other than 100% will cause the label to flash.
Clicking the label will return the slider to 100%.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 741 / 1322

Table 10.13: (continued)

Name Description
JOG This slider sets the jog rate.

Clicking the label will return the slider to the default linear velocity as set
in the <machine_name>.ini file.

BUTTONS The Button Panel contains buttons useful for the operation of the machine.
The EDIT and MDI buttons are permanent, all other buttons are user programmable in the <ma-
chine_name>.prefs file.
See custom user buttons for detailed information on custom user buttons.

Name Description
EDIT This button opens a G-code editor for the currently loaded program.
MDI This button places QtPlasmaC into Manual Data Input (MDI) mode which

will display the MDI HISTORY and an entry box over top of the G-code
window.
Once pressed, this button will display ”MDI CLOSE”.
Pressing MDI CLOSE will close the MDI.
Please see the MDI section for additional MDI information.

OHMIC TEST This button will enable the Ohmic Probe Enable output signal and if the
Ohmic Probe input is sensed, the LED indicator in the SENSOR Panel will
light.
The main purpose of this is to allow a quick test for a shorted torch tip.

PROBE TEST This button will initiate a Probe Test.
SINGLE CUT This button will show the dialog box to start an automatic Single Cut.
NORMAL CUT This button will toggle between Cut Types (NORMAL CUT and PIERCE

ONLY).
TORCH PULSE This button will initiate a Torch Pulse.

Table 10.15: ARC

Name Modes Description
Arc Voltage 0, 1 Displays the actual arc voltage.
OK 0, 1, 2 Indicates the status of the Arc OK signal.
+ 0, 1 Each press of this button will raise the target voltage by

the THC Threshold voltage (The distance changed will be
Height Per Volt * THC Threshold voltage).

- 0, 1 Each press of this button will lower the target voltage by
the THC Threshold voltage (The distance changed will be
Height Per Volt * THC Threshold voltage).

OVERRIDE 0, 1 Clicking this label will return any voltage override to 0.00.

Table 10.16: CONTROL

Name Modes Description
TORCH ON 0, 1, 2 Indicates the status of the Torch On output signal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 742 / 1322

Table 10.16: (continued)

Name Modes Description
TORCH ON ENABLE 0, 1, 2 This box toggles between Enabling and Disabling the

torch.
This box defaults to unfilled (disabled) when QtPlasmaC is
first run.
This box must be filled to change it to ”Torch Enabled”
before material cutting can commence.
If this box is not filled, then running a loaded program
will cause the machine to run the cycle without firing the
torch. This is sometimes referred to as a ”dry run”. If the
user has a laser installed, then it is also possible to dry
run with the laser. See the LASER section for detailed
instructions.

VELOCITY ANTI DIVE 0, 1, 2 Indicates that the THC is locked at the current height due
to the cut velocity falling below the Velocity Anti Dive
(VAD) Threshold percentage set on the PARAMETERS
Tab.

VELOCITY ANTI DIVE
ENABLE

0, 1, 2 This box toggles between Enabling and Disabling
VELOCITY ANTI DIVE.

VOID ANTI DIVE 0, 1 Indicates that the THC is locked due to a void being
sensed.

VOID ANTI DIVE
ENABLE

0, 1 This box toggles between Enabling and Disabling VOID
ANTI DIVE.

MESH MODE 0, 1, 2 This box will enable or disable Mesh Mode for the cutting
of expanded metal. This check box may be enabled or
disabled at any time during normal cutting.
Mesh mode:
- Will require an Arc OK signal to start machine motion.
- Will disable the THC.
- Will not stop machine motion if the Arc OK signal is lost.
- Will automatically select CPA mode if PowerMax
communications are being used.
For more information see Mesh Mode (expanded metal).

AUTO VOLTS 0, 1 This box will enable or disable Auto Volts.
IGNORE OK 0, 1, 2 This box will determine if QtPlasmaC ignores the Arc OK

signal. This check box may be enabled or disabled at any
time during normal cutting. Additionally, this mode may
be enabled or disabled via proper M codes in a running
program.
Ignore Arc OK mode:
- Will not require an Arc OK signal be received before
starting machine motion after the ”Torch On” signal is
given.
- Will disable the THC.
- Will not stop machine motion if the Arc OK signal is lost.
For more information see Ignore Arc Ok.

OHMIC PROBE 0, 1, 2 This box enables or disables the ohmic probe input.
If the Ohmic Probe input is disabled, the Ohmic Probe
LED will still show the status of the probe input, but the
Ohmic Probe results will be ignored.

RS485 0, 1, 2 This box will enable or disable the communications to a
PowerMax. This button is only visible if a PM_PORT
option is configured in the [POWERMAX] section of the
<machine_name>.prefs file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 743 / 1322

Table 10.16: (continued)

Name Modes Description
Status 0, 1, 2 When PowerMax communications are enabled, this will

display one of the following:
CONNECTING, CONNECTED, COMMS ERROR, or a
Fault Code.
For more information, see the PowerMax
Communications section.

Table 10.17: SENSOR

Name Description
FLOAT Indicates that the float switch is activated.
OHMIC Indicates that the probe has sensed the material.
BREAK Indicates that the torch breakaway sensor is activated.

Table 10.18: THC

Name Description
ENABLE This box determines whether the THC will be enabled or disabled during a

cut.
ENABLED This LED indicates whether the THC is enabled or disabled.
ACTIVE This LED indicates that the THC is actively controlling the Z axis.
UP This LED indicates that the THC is commanding the Z axis to raise.
DOWN This LED indicates that the THC is commanding the Z axis to lower.

Note
During Paused Motion, this section will become CUT RECOVERY

Name Description
CONTINUOUS This drop-down button will change the jog increment. Options are

determined by the values in the [DISPLAY] section of the
<machine_name>.ini file and begin with the label ”INCREMENTS =”.

FAST This button will toggle between FAST which is the default linear velocity in
the <machine_name>.ini file or SLOW which is 10% of the default value.

Y+ This button moves the Y axis in the positive direction.
Y- This button moves the Y axis in the negative direction.
X+ This button moves the X axis in the positive direction.
X- This button moves the X axis in the negative direction.
Z+ This button moves the Z axis in the positive direction.
Z- This button moves the Z axis in the negative direction.

Note
During Paused Motion, this section will be shown on top of the JOGGING panel. The following section
will cover each button encountered in this panel. Please see CUT RECOVERY for a detailed description
of the cut recovery functionality.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 744 / 1322

Name Description
PAUSED MOTION
FEED SLIDER

In the event of a paused program, this interface allows X/Y motion to
follow the programmed path in the reverse or forward direction.
This slider’s range is from 1%-100% of the Cut Feed Rate for the currently
selected material.

FEED This displays the paused motion feed rate.
REV In the event of a paused program, this button will move the machine in

reverse along the programmed path until it reaches the last M3 command
that was either executed or that QtPlasmaC was attempting to execute
before the program became paused.

FWD In the event of a paused program, this button will move the machine
forward along the programmed path indefinitely until the program’s end,
skipping over M3 commands.

CANCEL MOVE This button will cancel any Cut Recovery movement that was made and
return the torch to the position the Cut Recovery movement was initiated.
Note that if FWD or REV were used to move the torch, CANCEL will not
return to the position of the torch when the pause occurred.

MOVE x.xxx This displays the amount of travel that will be incurred with each press of
an arrow key, in the direction the arrow key was pressed.
This value displayed below MOVE represents the Kerf Width of the
currently selected material.

DIRECTIONAL
ARROWS

These buttons will move the torch in the direction indicated by a distance
of one Kerf Width (of the currently selected material) per press.

Table 10.21: G-CODE WINDOW

Name Description
CLEAR This button will clear the currently opened program.

If a file is open, the default material will be selected.
If no file is open, the preview will be reset to a top down full table view.
The torch (T0) will be selected if it was not the active tool.
Previous error messages, and the error status will be cleared.
Cut type will be set to NORMAL CUT.

OPEN This button will open a FILE OPEN panel over the PREVIEW WINDOW.
RELOAD This button will reload the currently loaded G-code File.

Table 10.22: DRO

Name Description
HOME ALL This button will home all of the axes in the order set by

HOME_SEQUENCE in the <machine_name>.ini file.
WCS G54 This drop-down button will change the current work offset.
CAMERA This button will display a CAMVIEW panel on top of the PREVIEW

WINDOW and will allow the user to set an origin with or without rotation.
See the CAMERA section for detailed instructions. This button will not be
visible until a CAMERA offset is set in the <machine_name>.prefs file.

LASER This button will allow the user to use a laser to set an origin with or
without rotation. See the LASER section for detailed instructions. This
button will not be visible until a LASER offset is set in the
<machine_name>.prefs file.

X0 Y0 This button will set the current position to X0 Y0.
HOME [AXIS] This button will home the corresponding axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 745 / 1322

Table 10.22: (continued)

Name Description
0 [AXIS] This drop-down button will display the following options:

Zero - zeros the axis.
Set - launches a dialog box to manually input the axis’ coordinate.
Divide By 2 - divides the currently displayed coordinate in the DRO by
two.
Set To Last - sets the axis to the previously set coordinate.

10.8.8.3 Preview Views

The QtPlasmaC preview screen has the ability to be switched between different views and displays,
as well as zooming in and out, and panning horizontally and vertically.
When QtPlasmaC is first started, the Z (top down) view will be selected as the default view for a loaded
G-code file, but the full table view will be displayed.
When a G-code file is loaded, the display will change to the selected view.
Whenever there is no G-code file loaded, the full table will automatically be displayed irrespective of
which view is currently selected (the highlighted button representing the currently selected view will
not change).
If a full table is displayed due to no G-code file being loaded and the user wishes to change the view
orientation, then pressing either Z or P will change the display to the newly selected view. If the user
then wishes to display the full table while maintaining the currently selected view as the default view
for a loaded G-code file, then pressing CLEAR will achieve this and allow the selected view orientation
to prevail the next time a G-code file is loaded.

10.8.8.4 CONVERSATIONAL Tab

Screenshot example of the QtPlasmaC CONVERSATIONAL Tab in 16:9 aspect ratio:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 746 / 1322

The CONVERSATIONAL Tab enables the user to quickly program various simple shapes for quick
cutting without the need for CAM software.
See Conversational Shape Library for detailed information on the Conversational feature.
It is possible to hide this tab so the conversational feature cannot be used by an operator. This may
be achieved either by wiring the pin to a physical key-switch or similar or it may also be set in a HAL
file using the following command:
setp qtplasmac.conv_disable 1

10.8.8.5 PARAMETERS Tab

Screenshot example of the QtPlasmaC PARAMETERS Tab in 16:9 aspect ratio:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 747 / 1322

Some functions/features are only used for particular modes and are not displayed if they are not
required by the chosen QtPlasmaC mode.
This tab is used to display configuration parameters that are modified infrequently.
It is possible to hide this tab so machine settings cannot be modified by unauthorized personnel. This
may be achieved either by wiring the pin to a physical key-switch or similar or it may also be set in a
HAL file using the following command:
setp qtplasmac.param_disable 1

Table 10.23: CONFIGURATION - ARC

Name Modes Description
Start Fail Timer 0, 1, 2 This sets the amount of time (in seconds) QtPlasmaC will wait

between commanding a ”Torch On” and receiving an Arc OK
signal before timing out and displaying an error message.

Max Starts 0, 1, 2 This sets the number of times QtPlasmaC will attempt to start
the arc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 748 / 1322

Table 10.23: (continued)

Name Modes Description
Retry Delay 0, 1, 2 This sets the time (in seconds) between an arc failure and

another arc start attempt.
Voltage Scale 0, 1 This sets the arc voltage input scale and is used to display the

correct arc voltage.
For initial setup, see Calibration Values.

Voltage Offset 0, 1 This sets the arc voltage offset and is used to display zero volts
when there is zero arc voltage input.
For initial setup, see Calibration Values.

Height Per Volt 0, 1, 2 This sets the distance the torch would need to move to change
the arc voltage by one volt.
Used for manual height manipulation only.

OK High Volts 0 This sets the voltage threshold below which Arc OK signal is
valid.

OK Low Volts 0 This sets the voltage threshold above which the Arc OK signal
is valid.

Note
When setting the OK Low Volts and OK High Volts in Mode 0, the cut voltage of a stable arc must be
greater than the OK Low Volts value but lower than the OK High Volts value for QtPlasmaC to receive
a valid Arc OK signal. To further clarify, to have a valid Arc OK, the arc voltage must fall between the
two limits.

Table 10.24: CONFIGURATION - PROBING

Name Description
Float Travel This sets the amount of travel the float switch moves before completing

the float switch circuit. This distance can be measured by using the Probe
Test button, and the method described in Initial Setup.

Probe Speed This sets the speed at which the torch will probe to find the material after
it moves to the Probe Height.

Probe Height This sets the height above the Z axis minimum limit that Probe Speed
begins. If set to zero, then the torch will move at Probe Speed from the
current position. This may be adventageous when using Slat Height and
Material Thickness as the machine will default to Probe Height if either
Slat Height or Material Thickness are zero. Refer to the Heights Diagrams
for a visual representation.

Slat Height This sets the height of the slats, measured up from Z axis minimum limit.
This must be used in conjunction with Material Thickness. If either Slat
Height or Material Thickness are zero then the machine will default to
Probe Height. Refer to the Heights Diagrams for a visual representation.

Ohmic Offset This sets the distance above the material the torch will should go after a
successful ohmic probe. It is mainly used to compensate for high probing
speeds.

Ohmic Retries This sets the number of times QtPlasmaC will retry a failed ohmic probe
before falling back to the float switch for material detection.

Skip IHS This sets the distance threshold used to determine if an Initial Height
Sense (probe) can be skipped for the current cut, see IHS Skip.

Offset Speed This sets the speed at which the probe will move to the offset position in
the X axis and Y axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 749 / 1322

Note
If the amount of time between the torch contacting the material and when the torch moves up and
comes to rest at the Pierce Height seems excessive, see the probing section for a possible solution.

Table 10.25: CONFIGURATION - SAFETY

Name Description
Safe Height This sets the height above the material that the torch will retract to before

executing rapid moves.
If set to zero, then Max Offset (plasmac.max-offset) will be used for the
safe height. This defaults to 5mm (0.197”). Refer to the Heights Diagrams
for a visual representation.

Table 10.26: CONFIGURATION - SCRIBING

Name Description
Arm Delay This sets the delay (in seconds) from the time the scribe command is

received to the activation of the scribe. This allows the scribe to reach
surface of the material before activating the scribe.

On Delay This sets the delay (in seconds) to allow the scribe mechanism to start
before beginning motion.

Table 10.27: CONFIGURATION - SPOTTING

Name Description
Threshold This sets the arc voltage at which the delay timer will begin.

0 V starts the delay when the torch on signal is activated.
Time On This sets the length of time (in milliseconds) the torch is on after threshold

voltage is reached.

Table 10.28: CONFIGURATION - PIERCE ONLY

Name Description
X Offset Moves the pierce point this distance along the X axis when piercing in

Pierce Only mode.
Y Offset Moves the pierce point this distance along the Y axis when piercing in

Pierce Only mode.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 750 / 1322

Table 10.29: CONFIGURATION - MOTION

Name Description
Setup Speed The Z axis velocity for setup moves (movements to Probe Height, Pierce

Height, Cut Height, etc.).

Note
Setup Speed has no effect on THC speed which is capable of the velocity displayed in the Max. Speed
field.

Table 10.30: CONFIGURATION - THC

Name Modes Description
Delay 0, 1, 2 This sets the delay (in seconds) measured from the time the Arc

OK signal is received until Torch Height Controller (THC)
activates. This is only available when Auto THC is not enabled.

Sample Counts 0, 1 This sets the number of consecutive arc voltage readings within
THC Sample Threshold required to activate the Torch Height
Controller (THC). This is only available when Auto THC is
enabled.

Sample Threshold 0, 1 This sets the maximum voltage deviation allowed for THC
Sample Counts. This is only available when Auto THC is
enabled.

Threshold 0, 1 This sets the voltage variation allowed from the target voltage
before for THC makes movements to correct the torch height.

Speed (PID-P) 0, 1, 2 This sets the Proportional gain for the THC PID loop. This
roughly equates to how quickly the THC attempts to correct
changes in height.

VAD Threshold 0, 1, 2 (Velocity Anti Dive) This sets the percentage of the current cut
feed rate the machine can slow to before locking the THC to
prevent torch dive.

Void Slope 0, 1 (Void Anti Dive) This sets the size of the change in cut voltage
per seconds necessary to lock the THC to prevent torch dive
(higher values need greater voltage change to lock THC).

PID-I 0, 1 This sets the Integral gain for the THC PID loop. Integral gain
is associated with the sum of errors in the system over time and
is not always needed.

PID-D 0, 1 This sets the Derivative gain for the THC PID loop. Derivative
gain works to dampen the system and reduce over correction
oscillations and is not always needed.

Two methods of THC activation are available and are selected with the Auto Activation check-button.
Both methods begin their calculations when the current velocity of the torch matches the cut feed rate
specified for the selected material:

1. Delay Activation (the default) is selected when Auto Activation is unchecked. This method uses
a time delay set with the Delay parameter.

2. Auto Activation is selected when Auto Activation is checked. This method determines that the
arc voltage is stable by using the Sample Counts and Sample Threshold parameters.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 751 / 1322

Note
PID loop tuning is a complicated process and is outside the scope of this User Guide. There are many
sources of information available to assist with understanding and tuning PID loops. If the THC is not
making corrections fast enough, it is recommended to increase the P gain in small increments until the
system operates favorably. Large P gain adjustments can result in over correction and oscillations.

SAVE & RELOAD Buttons The SAVE button will save the currently displayed parameters to the
<machine_name>.prefs file.
The RELOAD button will reload all the parameters from the <machine_name>.prefs file.

Table 10.31: MATERIAL - The parameters which are ac-
tive for the current cut.

Name Description
Material The top drop-down menu is used to manually select the current material

cut parameters. If there are no materials in the material file, then only the
default material will be displayed.

Thickness This sets the thickness for the currently selected material. This must be
used in conjunction with Slat Height. If either Slat Height or Material
Thickness are zero then the machine will default to Probe Height. Refer to
the Heights Diagrams for a visual representation.

Kerf Width This sets the kerf width for the currently selected material. Refer to the
Heights Diagrams for a visual representation.

Pierce Height This sets the pierce height for the currently selected material. Refer to the
Heights Diagrams for a visual representation.

Pierce Delay This sets the pierce delay (in seconds) for the currently selected material.
Cut Height This sets the cut height for the currently selected material. Refer to the

Heights Diagrams for a visual representation.
Cut Feed Rate This sets the cut feed rate for the currently selected material.
Cut Amps This sets the cut amperage for the currently selected material.

This is a visual indicator to the operator only, unless PowerMax
communications are being used.

Cut Volts This sets the cut voltage for the currently selected material.
Puddle Height Expressed as a percentage of Pierce Height, this sets the Puddle Jump

height for the currently selected material.
Typically used for thicker materials, Puddle Jump allows the torch to have
an intermediate step between Pierce Height and Cut Height.
If set, the torch will proceed from Pierce Height to P-Jump Height for a
period of time (P-Jump Delay) before proceeding to Cut Height to
effectively ”jump” over the molten puddle. Refer to the Heights Diagrams
for a visual representation.

Puddle Delay This sets the amount of time (in seconds) the torch will stay at the P-Jump
Height before proceeding to Cut Height.

Pause At End This sets the amount of time (in seconds) the torch will stay on at the end
of the cut before proceeding with the M5 command to turn off and raise
the torch. For more information see Pause At End Of Cut.

Gas Pressure This sets the gas pressure for the currently selected material.
This setting is only valid if PowerMax communications are being used.
0 = Use the PowerMax’s automatic pressure mode.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 752 / 1322

Table 10.31: (continued)

Name Description
Cut Mode This sets the cut mode for the currently selected material.

This setting is only valid if PowerMax communications are being used.
1 = Normal
2 = CPA (Constant Pilot Arc)
3 = Gouge/Mark

Note
See the thick materials section for more information on puddle jump.

SAVE, RELOAD, NEW, & DELETE Buttons The SAVE button will save the current material set to
the <machine_name>_material.cfg file.
The RELOAD button will reload the material set from the <machine_name>_material.cfg file.
The NEW button will allow a new material to be added to the material file. The user will be prompted
for a material number and a material name, all other parameters will be read from the currently
selected material. Once entered, QtPlasmaC will reload the material file and display the new material.
The Cut Parameters for the new material will then need to be adjusted and saved.
The DELETE this button is used to delete a material. After pressing it, the user will be prompted for
a material number to be deleted, and prompted again to ensure the user is sure. After deletion, the
material file will be reloaded and the drop-down list will display the default material.

10.8.8.6 SETTINGS Tab

Screenshot example of the QtPlasmaC SETTINGS Tab in 16:9 aspect ratio:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 753 / 1322

This tab is used to display GUI configuration parameters, button text, and shutdown text that are
modified infrequently as well as some utility buttons.
It is possible to hide this tab so machine settings cannot be modified by unauthorized personnel. This
may be achieved either by wiring the pin to a physical key-switch or similar or it may also be set in a
HAL file using the following command:
setp qtplasmac.settings_disable 1

GUI SETTINGS This section shows parameters that effect the GUI appearance and GUI behaviors.
To return any of the color changes to their default values, see the Returning To The Default Styling
section.

Table 10.32: GUI SETTINGS Parameters that effect the
GUI appearance and GUI behaviors.

Name Description
Foreground This button allows the user to change the color of the GUI Foreground.
Highlight This button allows the user to change the color of the GUI Highlight.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 754 / 1322

Table 10.32: (continued)

Name Description
LED This button allows the user to change the color of the GUI LED.
Background This button allows the user to change the color of the GUI Background.
Alt Background This button allows the user to change the color of the GUI Alternate

Background.
Frames This button allows the user to change the color of the GUI Frames.
Estop This button allows the user to change the color of the GUI Estop.
Disabled This button allows the user to change the color of the GUI’s Disabled

features.
Preview This button allows the user to change the color of the GUI Preview

Window Background.
Soft Keyboard This radio button allows the user to enable or disable the soft touchscreen

keyboard.
If the ”onboard” virtual keyboard is installed then the custom layouts will
be enabled.

KB Shortcuts This radio button allows the user to enable or disable Keyboard Shortcuts
within the GUI (such as keyboard jogging).
In addition to the standard jog keys, a list of the additional shortcuts is
available in the keyboard shortcuts section.

View Material This radio button allows the user to enable or disable the addition of a
visual reference showing key material cut settings to the Preview Windows
of the MAIN and CONVERSATIONAL tabs.
Examples are: Feed Rate, Pierce Height, Pierce Delay, and Cut Height.
Cut Amps will be shown if PowerMax communications are enabled.

Exit Warning This radio button allows the user to enable or disable whether a warning
will always be displayed during shutdown.
It is possible to add a custom message to the warning by editing the EXIT
WARNING MESSAGE option in the [GUI_OPTIONS] section of the
<machine_name>.prefs file.
The custom message can be made multi-line by adding a ”\” between lines.

Optional Stop This radio button allows the user to enable or disable whether or not a
running program will pause at an M1 command.

Run From Line This radio button allows the user to enable or disable Run From Line. If
enabled, the user can click on a line of G-code and have the program start
from that line.

Override Limits This radio button allows the user to temporarily Override the input from a
Limit Switch in the event the limit switch becomes tripped during
operation. This button can only be clicked when a limit switch is tripped.

Override Jog This radio button will also allow jogging while jogging is inhibited due to a
float switch, breakaway switch, or ohmic probe activation. This button can
only be clicked when a jog is inhibited.

Optional Block This radio button allows the user to enable or disable whether or not lines
starting with ”/” will be skipped if present in a running program.

Grid Size This allows a user to change the size of the grid in the Preview Window on
the MAIN Tab. Grid size of 0.0 will disable the grid.

Cone Size This allows a user to change the size of the cone (which represents the
current tool) in the Preview Window on the MAIN Tab.

Table Zoom This allows a user to change the default zoom level for the top down full
table view in the Preview Window on the MAIN Tab.

USER BUTTON ENTRIES USERBUTTON
This section shows the text that appears on the Custom User Buttons as well as the code associated

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 755 / 1322

with the user button. User buttons may be changed, and the new settings used without restarting
LinuxCNC.
The text and/or code may be edited at any time and will be loaded ready for use if the SAVE button is
clicked.
Deleting the Name and Code text will cause that user button to be hidden if the SAVE button is
clicked.
To return all the Name and Code text to their last saved values press the RELOAD button.

Name Code
The text that is displayed on the button The code that is run when the button is

pressed.

Note
There are 20 user buttons available but not all may be displayed depending on the window size.

EXIT WARNING MESSAGE
This section shows the text that appears on the shutdown dialog if the Exit Warning is enabled.
The text may be edited at any time and will be loaded ready for use if the SAVE button is clicked.
To return the EXIT WARNING MESSAGE text to the last saved value press the RELOAD button.
UTILITIES Some standard LinuxCNC utilities are provided as an aid in the diagnosis of issues that
may arise:

• Halshow

• Halscope

• Halmeter

• Calibration

• Status

In addition the following two QtPlasmaC specific utilities are provided:
The SET OFFSETS button is used if the table has a laser or camera for sheet alignment, a scribe,
or uses offset probing. The required offsets for these peripherals need to be applied by following the
procedure described in Peripheral Offsets.
The BACKUP CONFIG button will create a complete machine configuration backup for archiving or
to aid in fault diagnosis. A compressed backup of the machine configuration will be saved in the user’s
Linux home directory. The file name will be<machine_name><version><date>_<time>.tar.gz, where
<machine_name> is the machine name entered in the configuration wizard, <version> is the current
QtPlasmaC version the user is on, <date> is the current date (YY-MM-DD), and <time> is the current
time (HH-MM-SS).
Prior to the backup being made, the machine log will be saved to a file in the configuration direc-
tory named machine_log_<date>_<time>.txt where <date> and <time> are formatted as described
above. This file along with up to five previous machine logs will also be included in the backup.
These files are not required by QtPlasmaC and are safe to delete at any time.

../hal/halshow.html#cha:halshow
../hal/tutorial.html#sec:tutorial-halscope
../hal/tutorial.html#sec:tutorial-halmeter
../man/man1/emccalib.1.html
../man/man1/linuxcnctop.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 756 / 1322

10.8.8.7 STATISTICS Tab

The STATISTICS Tab provides statistics to allow for the tracking of consumable wear and job run times.
These statistics are shown for the current job as well as the running total. Previous job statistics are
reset once the next program is run. The total values may be reset either individually by clicking the
corresponding ”RESET” button, or they may all be reset together by clicking ”RESET ALL”.
The RS485 PMX STATISTICS panel will only be displayed if the user has Hypertherm PowerMax
communications and a valid RS485 connection to the PowerMax is established. This panel will show
the ARC ON TIME for the PowerMax in hh:mm:ss format.
The MACHINE LOG is also displayed on the STATISTICS Tab, this log will display any errors and/or
important information that occurs during the current LinuxCNC session. If the user makes a backup
of the configuration from the SETTINGS Tab then the machine log is also included in the backup.

10.8.9 Using QtPlasmaC

Once QtPlasmaC is successfully installed, no Z axis motion is required to be part of the G-code cut
program. In fact, if any Z axis references are present in the cut program, the standard QtPlasmaC
configuration will remove them during the program loading process.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 757 / 1322

For reliable use of QtPlasmaC the user should NOT use any Z axis offsets other than the coordinate
system offsets (G54-G59.3). For this reason, G92 offsets have been disabled across the GUI.
QtPlasmaC will automatically add a line of G-code to move the Z axis to the correct height at the
beginning of every G-code program.

Note
It is possible to keep Z motion for use with different tools by adding the magic comment #<keep-z-
motion>=1. If using an angular A, B, or C axis for tube cutting then Z axis motion is required in the
G-code file.

Version Information - QtPlasmaC will display versioning information in the title of the main win-
dow. The information will be displayed as followed ”QtPlasmaC vN.XXX.YYY - powered by QtVCP on
LinuxCNC vZ.Z.Z” where N is the version of QtPlasmaC, XXX is the version of the HAL component
(PlasmaC.comp), YYY is the GUI version, and Z.Z.Z is the version of LinuxCNC.

10.8.9.1 Units Systems

All settings and parameters in QtPlasmaC are required to be in the same units as specified in the
<machine_name>.ini file, being either metric or imperial.
If the user is attempting to run a G-code file that is in the ”other” unit’s system then all parameters
including the material file parameters are still required to be in the native machines units. Any fur-
ther conversions necessary to run the G-code file will be handled automatically by the G-code filter
program.
For example: If a user had a metric machine and wished to run a G-code file that was set up to cut
1/4” thick material using imperial units (inch - G20) then the user with the metric machine would
need to ensure that either the material number in the G-code file was set to the corresponding metric
material to be cut, or that a new material is created with the correct metric parameters for the metric
material to be cut. If the metric user wanted to cut the G-code file using imperial material, then the
new material parameters would need to be converted from imperial units to metric when they are
entered.

10.8.9.2 Preamble and Postamble Codes

The following stanzas are the minimum recommended codes to include in the preamble and postamble
of any G-code file to be run by QtPlasmaC:
Metric:
G21 G40 G49 G64p0.1 G80 G90 G92.1 G94 G97

Imperial:
G20 G40 G49 G64p0.004 G80 G90 G92.1 G94 G97

A detailed explanation of each G-code can be found in the docs here.
Note that throughout this user guide there are several additional recommendations for codes that
are prudent to add to both the preamble and postamble depending on the features the user wishes to
utilize.

../gcode/g-code.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 758 / 1322

10.8.9.3 Mandatory Codes

Aside from the preamble code, postamble code, and X/Y motion code, the only mandatory G-code
syntax for QtPlasmaC to run a G-code program using a torch for cutting is M3 $0 S1 to begin a cut
and M5 $0 to end a cut.
For backwards compatibility it is permissible to use M3 S1 in lieu of M3 $0 S1 to begin a cutting job
and M5 in lieu of M5 $0 to end a cutting job. Note, that this applies to cutting jobs only, for scribe and
spotting jobs the $n tool identifier is mandatory.

10.8.9.4 Coordinates

See recommended Z axis settings.
Each time LinuxCNC (QtPlasmaC) is started Joint homing is required. This allows LinuxCNC (QtPlas-
maC) to establish the known coordinates of each axis and set the soft limits to the values specified in
the <machine_name>.ini file in order to prevent the machine from crashing into a hard stop during
normal use.
If the machine does not have home switches, then the user needs to ensure that all axes are at the
home coordinates specified in the <machine_name>.ini file before homing.
If the machine has home switches, then it will move to the specified home coordinates when the Joints
are homed.
Depending on the machine’s configuration there will either be a Home All button or each axis will
need to be homed individually. Use the appropriate button/buttons to home the machine.
As mentioned in the Initial Setup section, it is recommended that the first time QtPlasmaC is used
that the user ensure there is nothing below the torch then jog the Z axis down until it stops at the Z
axis MINIMUM_LIMIT then click the 0 next to the Z axis DRO to Touch Off with the Z axis selected
to set the Z axis at zero offset. This should not need to be done again.
If the user intends to place the material in the exact same place on the table every time, the user could
jog the X and Y axes to the machine to the corresponding X0 Y0 position as established by the CAM
software and then Touch Off both axes with a zero offset.
If the user intends to place the material randomly on the table, then the user must Touch Off the X
and Y axes at the appropriate position before starting the program.

10.8.9.5 Cut Feed Rate

QtPlasmaC is able to read a material file to load all the required cut parameters. To enable to G-code
file to use the cut feed rate setting from the cut parameters use the following code in the G-code file:
F#<_hal[plasmac.cut-feed-rate]>

It is possible to use the standard G-code F word to set the cut feed rate as follows:
F 1000

If the F word is used, and the F word value does not match the cut feed rate of the selected material
then a warning dialog will indicate this during loading of the G-code file.

10.8.9.6 Material File

Material handling uses a material file that was created for the machine configuration when the con-
figuration wizard was ran and allows the user to conveniently store known material settings for

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 759 / 1322

easy recall either manually or automatically via G-code. The resulting material file is named <ma-
chine_name>_material.cfg.
QtPlasmaC does not require the use of a material file. Instead, the user could change the cut param-
eters manually from the MATERIAL section of the PARAMETERS Tab. It is also not required to use
the automatic material changes. If the user does not wish to use this feature, they can simply omit
the material change codes from the G-code file.
It is also possible to not use the material file and automatically load materials from within the G-code
file.
Material numbers in the materials file do not need to be consecutive nor do they need to be in numer-
ical order.
The following variables are mandatory, and an error message will appear if any are not found when
the material file is loaded.

• PIERCE_HEIGHT

• PIERCE_DELAY

• CUT_HEIGHT

• CUT_SPEED

Note
If doing tube cutting using the #<tube_cut>=1 magic comment then the only mandatory variable is
PIERCE_DELAY, all other variables are optional.

The following variables are optional. If they are not detected or have no value assigned, they will be
assigned a value of 0 and no error message will appear.

• NAME

• KERF_WIDTH

• THC

• PUDDLE_JUMP_HEIGHT

• PUDDLE_JUMP_DELAY

• CUT_AMPS

• CUT_VOLTS

• PAUSE_AT_END

• GAS_PRESSURE

• CUT_MODE

Note
Material numbers 1000000 and above are reserved for temporary materials.

Warning
It is the responsibility of the operator to ensure that the variables are included if they are a
requirement for the G-code to be run.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 760 / 1322

The material file uses the following format:
[MATERIAL_NUMBER_1]
NAME = name
KERF_WIDTH = value
THC = value (0 = off, 1 = on)
PIERCE_HEIGHT = value
PIERCE_DELAY = value
PUDDLE_JUMP_HEIGHT = value
PUDDLE_JUMP_DELAY = value
CUT_HEIGHT = value
CUT_SPEED = value
CUT_AMPS = value (for info only unless PowerMax communications is enabled)
CUT_VOLTS = value (modes 0 & 1 only, if not using auto voltage sampling)
PAUSE_AT_END = value
GAS_PRESSURE = value (only used for PowerMax communications)
CUT_MODE = value (only used for PowerMax communications)

It is possible to add new material, delete material, or edit existing material from the PARAMETERS
tab.. It is also possible to achieve this by using magic comments in a G-code file.
The material file may be edited with a text editor while LinuxCNC is running. After any changes have
been saved, press Reload in the MATERIAL section of the PARAMETERS Tab to reload the material
file.

10.8.9.7 Manual Material Handling

For manual material handling, the user would manually select the material from the materials list in
the MATERIAL section of the PARAMETERS Tab before starting the G-code program. In addition to
selecting materials with materials list in the MATERIAL section of the PARAMETERS Tab, the user
could use the MDI to change materials with the following command:
M190 Pn

The following code is the minimum code necessary to have a successful cut using the manual material
selection method:
F#<_hal[plasmac.cut-feed-rate]>
M3 $0 S1
.
.
M5 $0

Note
Manual material handling will restrict the user to only one material for the entire job.

10.8.9.8 Automatic Material Handling

For automatic material handling, the user would add commands to their G-code file which will enable
QtPlasmaC to change the material automatically.
The following codes may be used to allow QtPlasmaC to automatically change materials:

• M190 Pn - Changes the currently displayed material to material number n.

• M66 P3 L3 Q1 - Adds a small delay (1 second in this example) to wait for QtPlasmaC to confirm
that it successfully changed materials.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 761 / 1322

• F#<_hal[plasmac.cut-feed-rate]> - Sets the cut feed rate to the feed rate shown in the MATERIAL
section of the PARAMETERS Tab.

For automatic material handling, the codes MUST be applied in the order shown. If a G-code pro-
gram is loaded which contains one or more material change commands then the first material will be
displayed in the top header of the PREVIEW WINDOW on the MAIN Tab as the program is loading.
Minimum code necessary to have a successful cut using the automatic material selection
method:
M190 Pn
M66 P3 L3 Q1
F#<_hal[plasmac.cut-feed-rate]>
M3 $0 S1
.
.
M5 $0

Note
Returning to the default material prior to the end of the program is possible with the codeM190 P-1.

10.8.9.9 Material Addition Via Magic Comments In G-code

By using ”magic comments” in a G-code file it is possible to do the following:

• Add new materials to the <machine_name>_material.cfg file.

• Edit existing materials in the <machine_name>_material.cfg file.

• Use one or more temporary materials.

Temporary materials are numbered automatically by QtPlasmaC and the material change will also
be done by QtPlasmaC and should not be added to the G-code file by CAM software or otherwise.
The material numbers begin at 1000000 and are incremented for each temporary material. It is not
possible to save a temporary material, however the user could create a new material while a temporary
material is displayed, and it will use the settings from the temporary material as the defaults.

Tip
It is possible to use temporary materials only and have an empty <machine_name>_material.cfg
file. This negates the need to keep the QtPlasmaC materials file updated with the CAM tool file.

• The entire comment must be in parentheses.

• The beginning of the magic comment must be: (o=

• The equals sign must immediately follow each parameter with no space.

• The mandatory parameters must be in the magic comment (for option 0, na is optional and nu is
not used).

• There can be any number and type of magic comments in a G-code file.

• If option 0 is to be used in addition to option 1 and/or option 2 then all option 0 must appear after
all option 1 or all option 2 in the G-code file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 762 / 1322

The options are:

Option Description
0 Creates a temporary default material.

Material information added with this option will be discarded by a
LinuxCNC restart or materials reload. They may also be overwritten by a
new G-code file that has temporary materials.

1 Adds a new material if the number specified does not exist.
2 Overwrites an existing material if the number specified exists.

Adds a new material if the number specified does not exist.

Mandatory parameters are:

Name Description
o Selects the option to be used.
nu Sets the material number (not used for option 0).
na Sets the material name (optional for option 0).
ph Sets the pierce height.
pd Sets the pierce delay.
ch Sets the cut height.
fr Sets the feed rate.

Optional parameters are:

Name Description
mt Sets the material thickness.
kw Sets the kerf width.
th Sets the THC status (0=disabled, 1=enabled).
ca Sets the cut amps.
cv Sets the cut voltage.
pe Sets the pause at end delay.
gp Sets the gas pressure (PowerMax).
cm Sets the cut mode (PowerMax).
jh Sets the puddle jump height.
jd Sets the puddle jump delay.

A complete example (metric):
(o=0, nu=2, na=5mm Mild Steel 40A, ph=3.1, pd=0.1, ch=0.75, fr=3000, mt=5, kw=0.5, th=1, ca ←↩

=40, cv=110, pe=0.1, gp=5, cm=1, jh=0, jd=0)

A complete example (imperial):
(o=0, nu=2, na=0.197” Mild Steel 40A, ph=0.122, pd=0.1, ch=0.029, fr=118, mt=0.197, kw ←↩

=0.020, th=1, ca=40, cv=110, pe=0.1, gp=72, cm=1, jh=0, jd=0)

If a temporary material has been specified in a G-code file then the material change line (M190…) and
wait for change line (M66…) will be added by the G-code filter and are not required in the G-code file.

10.8.9.10 Material Converter

This application is used to convert existing tool tables into QtPlasmaC material files. It can also create
a material file from manual user input to entry fields.
At this stage the only conversions available are for tool tables exported from either SheetCam or
Fusion 360.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 763 / 1322

SheetCam tool tables are complete, and the conversion is fully automatic. The SheetCam tool file
must be in the SheetCam .tools format.
Fusion 360 tool tables do not have all of the required fields so the user will be prompted for missing
parameters. The Fusion 360 tool file must be in the JSON format of Fusion 360.
If the user has a format from a different CAM software they would like converted, create aNew Topic
in the PlasmaC forum section of the LinuxCNC forum to request this addition.
Material Converter may be run from a terminal using one of the two following methods.
For a package installation (Buildbot) enter the following command in a terminal window:
qtplasmac-materials

For a run in place installation enter the following two commands in a terminal window:
source ~/linuxcnc-dev/scripts/rip-environment
qtplasmac-materials

This will bring up the Material Converter Main dialog box with Manual selected as the default.
Select one of:

• Manual - to manually create a new material file.

• SheetCam - to convert a SheetCam tool file.

https://forum.linuxcnc.org/plasmac
https://forum.linuxcnc.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 764 / 1322

For SheetCam only, select whether the user requires a metric or imperial output file.

• Fusion 360 - to convert a Fusion 360 tool file.

To convert:

1. Select the Input File to be converted, press INPUT to bring up a file selector or directly enter
the file in the entry box.

2. Select the Output File to write to, press OUTPUT to bring up a file selector or directly enter the
file in the entry box. This would normally be ~/linuxcnc/configs/<machine_name>_material.cfg.
If necessary, the user could select a different file and hand edit the<machine_name>_material.cfg
file.

3. Click CREATE/CONVERT and the new material file will be created.

For both a Manual creation or a Fusion 360 conversion, a dialog box will show with all available
parameters displayed for input. Any entry marked with *** is mandatory and all other entries are
optional depending on the user’s configuration needs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 765 / 1322

Note
If the user selects ~/linuxcnc/configs/<machine_name>_material.cfg and the file already exists, it
will be overwritten.

10.8.9.11 LASER

QtPlasmaC has the ability to use a laser to set the origin with or without rotation compensation.
Rotation compensation can be used to align the work offset to a sheet of material with edge(s) that

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 766 / 1322

are not parallel to the machine’s X/Y axes. The LASER button will be enabled after the machine is
homed. This button will not be visible until a LASER offset is set in the <machine_name>.prefs file.
To use this feature, the user must set the laser’s offset from the torch center by following the procedure
described in Peripheral Offsets.
To modify the offsets manually, the user could edit either or both the following options in the [LASER_OFFSET]
section of the <machine_name>.prefs file:
X axis = n.n
Y axis = n.n

where n.n is distance from the center line of the torch to the laser’s cross hairs.
Additionally, the laser can be tied to any available output to turn the laser on and off via a HAL pin
with the following name:
qtplasmac.laser_on

To set the origin with zero rotation:

1. Click the LASER button.

2. LASER button label will change to MARK EDGE and the HAL pin named qtplasmac.laser_on
will be turned on.

3. Jog until the laser cross hairs are on top of the desired origin point.

4. Press MARK EDGE. The MARK EDGE button label will change to SET ORIGIN.

5. Press SET ORIGIN. The SET ORIGIN button label will change to MARK EDGE and the HAL
pin named qtplasmac.laser_on will be turned off.

6. The torch will now move to the X0 Y0 position.

7. The offset is now successful set.

To set the origin with rotation:

1. Click the LASER button.

2. LASER button label will change to MARK EDGE and the HAL pin named qtplasmac.laser_on
will be turned on.

3. Jog until the laser cross hairs are at the edge of the material a suitable distance away from the
desired origin point.

4. Press MARK EDGE. The MARK EDGE button label will change to SET ORIGIN.

5. Jog until the laser cross hairs are at the origin point of the material.

6. Press SET ORIGIN. The SET ORIGIN button label will change to MARK EDGE and the HAL
pin named qtplasmac.laser_on will be turned off.

7. The torch will now move to the X0 Y0 position.

8. The offset is now successfully set.

To turn the laser off and cancel an alignment:

1. Press the LASER button and hold for longer than 750 ms.

2. LASER button label will change to LASER and the HAL pin named qtplasmac.laser_on will be
turned off.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 767 / 1322

3. Release the LASER button.

If an alignment laser has been set up then it is possible to use the laser during CUT RECOVERY for
accurate positioning of the new start coordinates.
To dry run the G-code file with the laser: . Ensure there are no bounds errors and CYCLE START
is enabled. . Press the LASER button and hold for longer than 750 ms, the laser will turn on and the
dry run will start. . Release the LASER button.

10.8.9.12 CAMERA

QtPlasmaC has the ability to use a USB camera to set the origin with or without rotation compensation.
Rotation compensation can be used to align the work offset to a sheet of material with edge(s) that
are not parallel to the machine’s X/Y axes. The CAMERA button will be enabled after the machine is
homed. This button will not be visible until a CAMERA offset is set in the <machine_name>.prefs file.
To use this feature, the user must set the camera’s offset from the torch center by following the
procedure described in Peripheral Offsets.
To modify the offsets manually, the user could edit either or both the following axes options in the
[CAMERA_OFFSET] section of the <machine_name>.prefs file:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 768 / 1322

X axis = n.n
Y axis = n.n
Camera port = 0

where n.n is distance from the center line of the torch to the camera’s cross hairs.
To set the origin with zero rotation:

1. Jog until the cross hairs are on top of the desired origin point.

2. PressMARK EDGE. TheMARK EDGE button label will change to SET ORIGIN and the GOTO
ORIGIN button will be disabled.

3. Press SET ORIGIN. The SET ORIGIN button label will change to MARK EDGE and the GOTO
ORIGIN button will be enabled.

4. The torch will now move to the X0 Y0 position.

5. The offset is now successful set.

To set the origin with rotation:

1. Jog until the cross hairs are at the edge of the material a suitable distance away from the desired
origin point.

2. PressMARK EDGE. TheMARK EDGE button label will change to SET ORIGIN and the GOTO
ORIGIN button will be disabled.

3. Jog until the cross hairs are at the origin point of the material.

4. Press SET ORIGIN. The SET ORIGIN button label will change to MARK EDGE and the GOTO
ORIGIN button will be enabled.

5. The torch will now move to the X0 Y0 position.

6. The offset is now successfully set.

In the CAMVIEW panel, the mouse can affect the cross hairs, and the zoom level as follows:

• Mouse Wheel Scroll - Change cross hair diameter.

• Mouse Wheel Button Double Click - Restores cross hair diameter to default.

• Mouse Left Button Clicked + Wheel Scroll - Changes camera zoom level.

• Mouse Left Button Clicked + Wheel Button Double Click - Restores default camera zoom level.

10.8.9.13 Path Tolerance

Path tolerance is set with a G64 command and a following P value. The P value corresponds to the
amount that the actual cut path followed by the machine may deviate from the programmed cut path.
The default LinuxCNC path tolerance is set for maximum speed which will severely round corners
when used with normal plasma cutting speeds.
It is recommended that the path tolerance is set by placing the appropriate G64 command and P value
in the header of each G-code file.
The provided G-code filter program will test for the existence of a G64 P__n__ command prior to the
first motion command. If no G64 command is found it will insert a G64 P0.1 command which sets the
path tolerance to 0.1 mm. For a imperial config the command will be G64 P0.004.
For Metric:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 769 / 1322

G64 P0.1

For Imperial:
G64 P0.004

10.8.9.14 Paused Motion

QtPlasmaC has the ability to allow the repositioning of the X and Y axes along the current cut path
while the G-code program is paused, aiding in Cut Recovery.
In order to use this feature, LinuxCNC’s Adaptive Feed Control (M52) must be turned on (P1). This is
also a requirement for Hole Cutting Velocity Reduction.
To enable Paused Motion The preamble of the G-code must contain the following line:
M52 P1

To turn off Paused Motion at any point, use the following command:
M52 P0

10.8.9.15 Pause At End Of Cut

This feature can be used to allow the arc to ”catch up” to the torch position to fully finish the cut. It
is usually required for thicker materials and is especially useful when cutting stainless steel.
Using this feature will cause all motion to pause at the end of the cut while the torch is still on.
After the dwell time (in seconds) set by the Pause At End parameter in the MATERIAL section of the
PARAMETERS Tab has expired, QtPlasmaC will proceed with the M5 command to turn off and raise
the torch.

10.8.9.16 Multiple Tools

QtPlasmaC has the ability to allow the use of more than one type of plasma tool by utilizing LinuxCNC
spindles as a plasma tool when running a G-code program.
Valid plasma tools for use are:

Name TOOL # Description
Plasma Torch 0 Used for normal Plasma cutting.
Scribe 1 Used for material engraving.
Plasma Torch 2 Used for spotting (creating dimples to aid in drilling).

A LinuxCNC spindle number (designated by $n) is required to be in the starting command and also
the end command to be able to start and stop the correct plasma tool. Examples:

• M3 $0 S1 will select and start the plasma cutting tool.

• M3 $1 S1 will select and start the scribe.

• M3 $2 S1 will select and start the plasma spotting tool.

• M5 $0 will stop the plasma cutting tool.

• M5 $1 will stop the scribe.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 770 / 1322

• M5 $2 will stop the plasma spotting tool.

It is permissible to use M5 $-1 in lieu of the M5 $n codes above to stop all tools.
In order to use a scribe, it is necessary for the user to add the X and Y axis offsets to the LinuxCNC tool
table. Tool 0 is assigned to the Plasma Torch and Tool 1 is assigned to the scribe. Tools are selected
with a TnM6 command, and then a G43 H0 command is required to apply the offsets for the selected
tool. It is important to note that the LinuxCNC tool table and tool commands only come into play if
the user is using a scribe in addition to a plasma torch. For more information, see scribe.

10.8.9.17 Velocity Reduction

There is a HAL pin available named motion.analog-out-03 that can be changed in G-code with the
M67 (Synchronized with Motion)/M68 (Immediate) commands. This pin will reduce the velocity
of the original feed rate to the percentage specified in the command.
The ”VEL:” label at the top right of the preview window will update to reflect the percentage of the
original feed rate being used. For example, ”VEL@20%:” means the table is cutting at 20% of the
programmed feed rate - an 80% reduction.

Note
Because of differences between the GUI and the PlasmaC component polling intervals, velocity label
updates may lag (typically by up to 100 ms).

It is important to thoroughly understand the difference between Synchronized with Motion and
Immediate:

• M67 (Synchronized with Motion) - The actual change of the specified output (P2 (THC) for example)
will happen at the beginning of the next motion command. If there is no subsequent motion com-
mand, the output changes will not occur. It is best practice to program a motion code (G0 or G1 for
example) right after a M67.

• M68 (Immediate) - These commands happen immediately as they are received by the motion con-
troller. Since these are not synchronized with motion, they will break blending. This means if
these codes are used in the middle of active motion codes, the motion will pause to activate these
commands.

Examples:

• M67 E3 Q0 would set the velocity to 100% of CutFeedRate.

• M67 E3 Q40 would set the velocity to 40% of CutFeedRate.

• M67 E3 Q60 would set the velocity to 60% of CutFeedRate.

• M67 E3 Q100 would set the velocity to 100% of CutFeedRate.

Q values that are less than or equal to 0 or greater than or equal to 100 will be set to 100.
If the user intends to use this feature it would be prudent to add M68 E3 Q0 to both the preamble and
postamble of the G-code program so the machine starts and ends in a known state.

Important
G-CODE THC AND VELOCITY BASED THC ARE NOT ABLE TO BE USED IF CUTTER COMPEN-
SATION IS IN EFFECT; AN ERROR MESSAGE WILL BE DISPLAYED.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 771 / 1322

Warning
If Cut Feed Rate in the MATERIAL section of the PARAMETERS Tab is set to zero, then QtPlasmaC
will use motion.requested-velocity (as set by a standard feed rate call in the G-code) for
the THC calculations. This is not recommended as it is not a reliable way of implementing
velocity-based THC.

Note
All references to CutFeedRate refer to the Cut Feed Rate value displayed in the MATERIAL section
of the PARAMETERS Tab.

10.8.9.18 THC (Torch Height Controller)

The THC can be enabled or disabled from the THC frame of the MAIN Tab.
The THC can also be enabled or disabled directly from the G-code program.
The THC does not become active until the velocity reaches 99.9% of the CutFeedRate and then the
THC Delay time if any in the THC section of the PARAMETERS Tab has timed out. This is to allow the
arc voltage to stabilize.
QtPlasmaC uses a control voltage which is dependent on the state of the AUTO VOLTS checkbox on
the MAIN Tab:

1. If Use Auto Volts is checked, then the actual cut voltage is sampled at the end of the THC Delay
time and this is used as the target voltage to adjust the height of the torch.

2. If Use Auto Volts is not checked then the voltage displayed as Cut Volts in the MATERIAL section
of the PARAMETERS Tab is used as the target voltage to adjust the height of the torch.

G-code THC THC may be disabled and enabled directly from G-code, provided the THC is not disabled
in the THC Section of the MAIN Tab, by setting or resetting the motion.digital-out-02 pin with the
M-Codes M62-M65:

• M62 P2 will disable THC (Synchronized with Motion)

• M63 P2 will enable THC (Synchronized with Motion)

• M64 P2 will disable THC (Immediately)

• M65 P2 will enable THC (Immediately)

It is important to thoroughly understand the difference between Synchronized with Motion and
Immediate:

• M62 and M63 (Synchronized with Motion) - The actual change of the specified output (P2 (THC) for
example) will happen at the beginning of the next motion command. If there is no subsequent
motion command, the output changes will not occur. It is best practice to program a motion code
(G0 or G1 for example) right after a M62 or M63.

• M64 and M65 (Immediate) - These commands happen immediately as they are received by the motion
controller. Since these are not synchronized with motion, they will break blending. This means if
these codes are used in the middle of active motion codes, the motion will pause to activate these
commands.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 772 / 1322

Velocity Based THC
If the cut velocity falls below a percentage of CutFeedRate (as defined by the VAD Threshold % value
in the THC frame of the CONFIGURATION section of the PARAMETERS Tab) the THC will be locked
until the cut velocity returns to at least 99.9% of CutFeedRate. This will be made apparent by the
VELOCITY ANTI DIVE indicator illuminating in the CONTROL Panel on the MAIN Tab.
Velocity based THC prevents the torch height being changed when velocity is reduced for a sharp
corner or a small hole.
It is important to note that Velocity Reduction affects the Velocity Based THC in the following ways:

1. If Velocity Reduction is invoked in the middle of the cut, the THC will be locked.

2. The THC will remain locked until the velocity reduction is canceled by returning it to a value that
is above the VAD Threshold, and the torch actually reaches 99.9% of the CutFeedRate.

10.8.9.19 Cutter Compensation

LinuxCNC (QtPlasmaC) has the ability to automatically adjust the cut path of the current program by
the amount specified in Kerf Width of the selected material’s Cut Parameters. This is helpful if the
G-code is programmed to the nominal cut path and the user will be running the program on different
thickness materials to help ensure consistently sized parts.
To use cutter compensation the user will need to use G41.1, G42.1 and G40 with the kerf width HAL
pin:

• G41.1 D#<_hal[plasmac.kerf-width]> : offsets torch to the left of the programmed path

• G42.1 D#<_hal[plasmac.kerf-width]> : offsets torch to the right of the programmed path

• G40 turns the cutter compensation off

Important
IF CUTTER COMPENSATION IS IN EFFECT G-CODE THC, VELOCITY BASED THC AND OVER
CUT ARE NOT ABLE TO BE USED; AN ERROR MESSAGE WILL BE DISPLAYED.

10.8.9.20 Initial Height Sense (IHS) Skip

Initial Height Sense may be skipped in one of two different ways:

1. If the THC is disabled, or the THC is enabled but not active, then the IHS skip will occur if the
start of the cut is less than Skip IHS distance from the last successful probe.

2. If the THC is enabled and active, then the IHS skip will occur if the start of the cut is less than
Skip IHS distance from the end of the last cut.

A value of zero for Skip IHS will disable all IHS skipping.
Any errors encountered during a cut will disable IHS skipping for the next cut if Skip IHS is enabled.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 773 / 1322

10.8.9.21 Probing

Probing may be done with either ohmic sensing or a float switch. It is also possible to combine the
two methods, in which case the float switch will provide a fallback to ohmic probing. An alternative
to ohmic probing is Offset Probing
If the machine’s torch does not support ohmic probing, the user could have a separate probe next to
the torch. In this case the user would extend the probe below the torch. The probe must NOT extend
more than the minimum Cut Height below the torch and the Z axis offset distance needs to be entered
as the Ohmic Offset in the PROBING frame of the CONFIGURATION section of the PARAMETERS
Tab.
Probing setup is done in the PROBING frame of the CONFIGURATION section of the PARAMETERS
Tab.
QtPlasmaC can probe at the full Z axis velocity so long as the machine has enough movement in the
float switch to absorb any overrun. If the machine’s float switch travel is suitable, the user could set
the Probe Height to near the Z axis MINIMUM_LIMIT and do all probing at full speed.
Some float switches can exhibit a large switching hysteresis which shows up in the probing sequence
as an excessive time to complete the final probe up.

• This time may be decreased by changing the speed of the final probe up.

• This speed defaults to 0.001 mm (0.000039”) per servo cycle.

• It is possible to increase this speed by up to a factor of 10 by adding the following line to the
custom.hal file:

setp plasmac.probe-final-speed n

where n is a value from 1-10. It is recommended to keep this value as low as possible.
Using this feature will change the final height slightly and will require thorough probe testing to
confirm the final height.
This speed value affects ALL probing so if the user uses ohmic probing and the user changes this
speed value then the user will need to probe test to set the require offset to compensate for this speed
change as well as the float travel.
The reliability of this feature will only be as good as the repeatability of the float switch.

Note
Probe Height refers to the height above the Z axis MINIMUM_LIMIT.

10.8.9.22 Offset Probing

Offset Probing is the use of a probe that is offset from the torch. This method is an alternative to
Ohmic Probing and uses the plasmac.ohmic-enable output pin to operate a solenoid for extending
and retracting the probe. The plasmac.ohmic-probe input pin is used to detect the material and the
Ohmic Offset in the PROBING frame of the CONFIGURATION section of the PARAMETERS Tab is
used to set the correct measured height.
The probe could be a mechanically deployed probe, a permanently mounted proximity sensor or even
simply a stiff piece of wire extending about 0.5 mm (0.2”) below the torch tip. If the probe is mechan-
ically deployed, then it needs to extend/retract rather quickly to avoid excessive probing times and
would commonly be pneumatically operated.
To use this feature, the user must set the probe’s offset from the torch center by following the proce-
dure described in Peripheral Offsets.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 774 / 1322

To modify the offsets manually, the user could edit either or both the following options in the [OFF-
SET_PROBING] section of the <machine_name>.prefs file:
X axis = n.n
Y axis = n.n
Delay = t.t

where n.n is the offset of the probe from the torch center in machine units for the X and Y axes and
t.t is the time in seconds to allow for any mechanical deployment of the probe if required.
Each of these parameters is optional and also may appear in any order. If a parameter is not detected,
then the default is 0.0. There can be no space after the X or Z, lower case is permissible.
When this variable appears in the <machine_name>.prefs file with either X or Y not equal to zero,
then QtPlasmaC will do all Ohmic Probing as Offset Probing. If Offset Probing is valid then the feed
rate at which the X and Y axes move to the offset position may be adjusted by the use of the Offset
Speed parameter in the PROBING frame of the PARAMETERS Tab.
When a probe sequence has begun, the plasmac.ohmic-enable pin will be set True causing the probe
to extend. When the material is detected the plasmac.ohmic-enable pin will be reset to false causing
the probe to retract.
The probe will begin moving to the offset position simultaneously with the Z axis moving down to the
Probe Height, probing will not commence unless the deployment timer has completed. It is required
that the Probe Height in the PROBING frame of the CONFIGURATION section of the PARAMETERS
Tab is above the top of the material to ensure that the probe is fully offset to the correct X/Y position
before the final vertical probe down movement.

Important
PROBE HEIGHT NEEDS TO BE SET ABOVE THE TOP OF THE MATERIAL FOR OFFSET PROBING.

10.8.9.23 Cut Types

QtPlasmaC allows two different cut modes:

1. NORMAL CUT - runs the loaded G-code program to pierce then cut.

2. PIERCE ONLY - only pierces the material at each cut start position, useful prior to a NORMAL
CUT on thick materials

There are two ways of enabling this feature:

1. Utilize the default custom user button to toggle between the cut types.

2. Adding the following line to the G-code program before the first cut to enable Pierce Only mode
for the current file:

#<pierce-only> = 1

If using a custom user button is utilized then QtPlasmaC will automatically reload the file when the
cut type is toggled.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 775 / 1322

10.8.9.24 Hole Cutting - Intro

It is recommended that any holes to be cut have a diameter no less than one and a half times the
thickness of the material to be cut.
It is also recommended that holes with a diameter of less than 32 mm (1.26”) are cut at 60% of the
feed rate used for profile cuts. This should also lock out THC due to velocity constraints.
QtPlasmaC can utilize G-code commands usually set by a CAM Post Processor (PP) to aid in hole cutting
or if the user does not have a PP or the user’s PP does not support these methods then QtPlasmaC
can automatically adapt the G-code to suit. This automatic mode is disabled by default.
There are three methods available for improving the quality of small holes:

1. Velocity Reduction - Reducing the velocity to approximately 60% of the CutFeedRate.

2. Arc Dwell (Pause At End) - Keeping the torch on for a short time at the end of the hole while
motion is stopped to allow the arc to catch up.

3. Over cut - Turning the torch off at the end of the hole then continue along the path.

Note
If both Arc Dwell and Over cut are active at the same time, then Over cut will take precedence.

Important
OVER CUT IS NOT ABLE TO BE USED IF CUTTER COMPENSATION IS IN EFFECT; AN ERROR
MESSAGE WILL BE DISPLAYED.

10.8.9.25 Hole Cutting

G-code commands can be set up by either by a CAM Post Processor (PP) or by hand coding.
Hole Cutting Velocity Reduction
If cutting a hole requires a reduced velocity, then the user would use the following command to set
the velocity: M67 E3 Qnn where nn is the percentage of the velocity desired. For example, M67 E3
Q60 would set the velocity to 60% of the current material’s CutFeedRate.
In order to use this feature, LinuxCNC’s Adaptive Feed Control (M52) must be turned on (P1). This is
also a requirement for Paused Motion during Cut Recovery.
To enable Hole Cutting Velocity Reduction The preamble of the G-code must contain the following
line:
M52 P1

To turn off Hole Cutting Velocity Reduction at any point, use the following command:
M52 P0

See the Velocity Based THC section.
Sample code for hole cutting with reduced velocity.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 776 / 1322

G21 (metric)
G64 P0.005
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]> (feed rate from cut parameters)
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
M67 E3 Q60 (reduce feed rate to 60%)
G3 I10 (the hole)
M67 E3 Q0 (restore feed rate to 100%)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

Arc Dwell (Pause At End) This method can be invoked by setting the Pause At End parameter in the
MATERIAL frame of the PARAMETERS Tab.
Over cut
The torch can be turned off at the end of the hole by setting the motion.digital-out-03 pin with
the M-Codes M62 (Synchronized with Motion)* or M64 (Immediate). After turning the torch off it is
necessary to allow the torch to be turned on again before beginning the next cut by resetting the
motion.digital-out-03 pin with the M-Codes M63 or M65, this will be done automatically by the
QtPlasmaC G-code parser if it reaches an M5 command without seeing a M63 P3 or M65 P3.
After the torch is turned off the hole path will be followed for a default length of 4 mm (0.157”). This
distance may be specified by adding #<oclength> = n to the G-code file.

• M62 P3 will turn the torch off (Synchronized with Motion)

• M63 P3 will allow the torch to be turned on (Synchronized with Motion)

• M64 P3 will turn the torch off (Immediately)

• M65 P3 will allow the torch to be turned on (Immediately)

It is important to thoroughly understand the difference between Synchronized with motion and
Immediate:

• M62 and M63 (Synchronized with Motion) - The actual change of the specified output (P2 (THC)
for example) will happen at the beginning of the next motion command. If there is no subsequent
motion command, the output changes will not occur. It is best practice to program a motion code
(G0 or G1 for example) right after a M62 or M63.

• M64 and M65 (Immediate) - These commands happen immediately as they are received by the motion
controller. Since these are not synchronized with motion, they will break blending. This means if
these codes are used in the middle of active motion codes, the motion will pause to activate these
commands.

Sample code:
G21 (metric)
G64 P0.005
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]> (feed rate from cut parameters)
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
M67 E3 Q60 (reduce feed rate to 60%)
G3 I10 (the hole)
M62 P3 (turn torch off)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 777 / 1322

G3 X0.8 Y6.081 I10 (continue motion for 4 mm)
M63 P3 (allow torch to be turned on)
M67 E3 Q0 (restore feed rate to 100%)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

10.8.9.26 Hole Cutting - Automatic

QtPlasmaC has the ability to automatically modify the G-code to reduce the velocity and/or applyOver
cut which can be useful when cutting holes.
For valid hole sensing it is required that all values in the G2 or G3 G-code line are explicit, an error
dialog will be displayed if any values are mathematically calculated.
QtPlasmaC Hole Sensing is disabled by default. It can be enabled/disabled by using the following
G-code parameters to select the desired hole sensing mode:

• #<holes> = 0 - Causes QtPlasmaC to disable hole sensing if it was previously enabled.

• #<holes> = 1 - Causes QtPlasmaC to reduce the speed of holes less than 32 mm (1.26”) to 60% of
CutFeedRate.

• #<holes> = 2 - Causes QtPlasmaC to Over cut the hole in addition to the velocity changes in setting
1.

• #<holes> = 3 - Causes QtPlasmaC to reduce the speed of holes less than 32 mm (1.26”) and arcs
less than 16 mm (0.63”) to 60% of CutFeedRate.

• #<holes> = 4 - Causes QtPlasmaC to Over cut the hole in addition to the velocity change in setting
3.

The default hole size for QtPlasmaC hole sensing is 32 mm (1.26”). It is possible to change this value
with the following command in a G-code file:

• #<h_diameter> = nn - To set a diameter (nn) in the same units system as the rest of the G-code file.

The default velocity for QtPlasmaC small holes is 60% of the current feed rate. It is possible to change
this value with the following command in a G-code file:

• #<h_velocity> = nn - to set the percentage (nn) of the current feed rate required.

Over cut If Hole Sensing modes 2 or 4 are active, QtPlasmaC will over cut the hole in addition to the
velocity changes associated with modes 1 and 3.
The default over cut length for QtPlasmaC hole sensing is 4 mm (0.157”). It is possible to change this
value with the following command in a G-code file:

• #<oclength> = nn to specify an over cut length (nn) in the same units system as the rest of the
G-code file.

Arc Dwell (Pause At End) This feature can be used in addition to setting the desired hole sensing
mode via the appropriate G-code parameter by setting the Pause At End parameter in the MATERIAL
frame of the PARAMETERS Tab.
Sample code:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 778 / 1322

G21 (metric)
G64 P0.005
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]> (feed rate from cut parameters)
#<holes> = 2 (over cut for holes)
#<oclength> = 6.5 (optional, 6.5 mm over cut length)
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
G3 I10 (the hole)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

Note
It is OK to have multiple and mixed hole commands in a single G-code file.

10.8.9.27 Single Cut

A single cut is a single unidirectional cutting move often used to cut a sheet into smaller pieces prior
to running a G-code program.
The machine needs to be homed before commencing a single cut.
A single cut will commence from the machine’s current X/Y position.
Automatic Single Cut
This is the preferred method. The parameters for this method are entered in the following dialog box
that is displayed after pressing a user button which has been coded to run single cut:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 779 / 1322

1. Jog to the required X/Y start position.

2. Set required appropriate material, or edit the Feed Rate for the default material in the PARAM-
ETERS Tab.

3. Press the assigned single cut user button.

4. Enter the length of the cut along the X and/or Y axes.

5. Press the CUT button and the cut will commence.

Pendant Single Cut If the machine is equipped with a pendant that can start and stop the spindle
plus jog the X and Y axes, the user can manually perform a single cut.

1. Jog to the required X/Y start position.

2. Set the required feed rate with the Jog Speed slider.

3. Start the cut process by starting the spindle.

4. After probing the torch will fire.

5. When the Arc OK is received the machine can be jogged along the cut line using the jog buttons.

6. When the cut is complete stop the spindle.

7. The torch will turn off and the Z axis will return to the starting position.

Manual Single Cut
Manual single cut requires that either keyboard shortcuts are enabled in the GUI SETTINGS section
of the SETTINGS Tab, or a custom user button is specified as a manual cut button.
If the user is using a custom user button then, substitute F9 with User Button in the following
description.

1. Jog to the required X/Y start position.

2. Start the procedure by pressing F9. The jog speed will be automatically set to the feed rate of the
currently selected material. The jog label will blink to indicate that the jog speed is temporarily
being overridden (jog speed manipulation will be disabled while a manual cut is active). CYCLE
START will change to MANUAL CUT and blink.

3. After probing the torch will fire.

4. When the Arc OK is received the machine can be jogged along the cut line using the jog keys.

5. The Z height will remain locked at the cut height for the duration of the manual cut, regardless
of the Torch Height Controller ENABLE status.

6. When the cut is complete press F9 or Esc or the CYCLE STOP button.

7. The torch will turn off and the Z axis will return to the starting position.

8. The jog speed will automatically be returned to the value it was prior to initiating the manual cut
process, the label will stop blinking and the jog speed manipulation will be enabled. MANUAL
CUT will stop blinking and revert to CYCLE START.

Note
If the torch flames out during cutting, the user must still press F9 or Esc or the CYCLE STOP button
to end the cut. This clears the Z offsets and returns the torch to the starting position.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 780 / 1322

10.8.9.28 Thick Materials

Cutting thick materials can be problematic in that the large amount of molten metal caused by piercing
can shorten the life of consumables and also may cause a puddle high enough that the torch may hit
the puddle while moving to cut height.
There are several functions built into QtPlasmaC to help alleviate these issues, Pierce Only and Puddle
Jump described in this section as well as Wiggle Pierce and Ramp Pierce described in the Moving
Pierce section.
Pierce Only
Pierce Only mode converts the loaded G-code program and then runs the program to pierce the
material at the start position of each cut. Scribe and Spotting commands will be ignored, and no
pierce will take place in those locations.
This mode is useful for thick materials which may produce enough dross on the material surface from
piercing to interfere with the torch while cutting. The entire sheet can pierced, and then cleaned off
prior to cutting.
It is possible to use near-end-of-life consumables for piercing and then they can be swapped out for
good consumables to be used while cutting.
The pierce location during Pierce Only mode may be offset in the X and/or Y axes to ensure that
the arc is able to transfer correctly when piercing after returning to the Normal Cut mode. The
parameters for the X and Y Offsets are in the PIERCE ONLY frame of the CONFIGURATION section
of the PARAMETERS Tab
Pierce Only is one of two different cut types
Puddle JumpPuddle Jump is the height that the torch will move to after piercing and prior to moving
to Cut Height and is expressed as a percentage of Pierce Height. This allows the torch to clear any
puddle of molten material that may be caused by piercing. The maximum allowable height is 200% of
the Pierce Height
Setting for Puddle Jump are described in cut parameters
The recommended option is to use Pierce Only due to it being able to utilise near end-of-life consum-
ables.

Important
PUDDLE JUMP IS DISABLED DURING CUT RECOVERY

10.8.9.29 Mesh Mode (Expanded Metal Cutting)

QtPlasmaC is capable of cutting of expand (mesh) metal provided the machine has a pilot arc torch
and it is capable of Constant Pilot Arc (CPA) mode.
Mesh Mode disables the THC and also ignores a lost Arc OK signal during a cut. It can be selected
by checking the Mesh Mode check button in the CONTROL section of the MAIN Tab.
If the machine has RS485 communications enabled with a Hypertherm PowerMax plasma cutter, se-
lectingMesh Mode will automatically override the Cut Mode for the currently selected material and
set it to cut mode 2 (CPA). When Mesh Mode is disabled, the Cut Mode will be return to the default
cut mode for the currently selected material.
It is also possible to start a Mesh Mode cut without receiving an Arc OK signal by checking the
Ignore Arc OK check button in the CONTROL section of the MAIN Tab.
Both Mesh Mode and Ignore Arc OK can be enabled/disabled at any time during a job.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 781 / 1322

10.8.9.30 Ignore Arc OK

Ignore Arc OK mode disables the THC, will begin a cut without requiring an Arc OK signal, and will
ignore a lost Arc OK signal during a cut.
This mode can be selected by:

1. Checking the Ignore Arc OK check button in the CONTROL section of the MAIN Tab.

2. Setting HAL pin motion.digital-out-01 to 1 via G-code.

• M62 P1 will enable Ignore Arc OK (Synchronized with Motion)
• M63 P1 will disable Ignore Arc OK (Synchronized with Motion)
• M64 P1 will enable Ignore Arc OK (Immediately)
• M65 P1 will disable Ignore Arc OK (Immediately)

It is important to thoroughly understand the difference between Synchronized with motion and
Immediate:

• M62 and M63 (Synchronized with Motion) - The actual change of the specified output (P2 (THC) for
example) will happen at the beginning of the next motion command. If there is no subsequent
motion command, the output changes will not occur. It is best practice to program a motion code
(G0 or G1 for example) right after a M62 or M63.

• M64 and M65 (Immediate) - These commands happen immediately as they are received by the motion
controller. Since these are not synchronized with motion, they will break blending. This means if
these codes are used in the middle of active motion codes, the motion will pause to activate these
commands.

This mode may also be used in conjunction with Mesh Mode if the user doesn’t require an Arc OK
signal to begin the cut.
Both Mesh Mode and Ignore Arc OK can be enabled/disabled at any time during a job.

10.8.9.31 Cut Recovery

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 782 / 1322

This feature will produce a CUT RECOVERY panel that will allow the torch to be moved away from
the cut path during a paused motion event in order to position the torch over a scrap portion of the
material being cut so that the cut restarts with a minimized arc-divot. The CUT RECOVERY panel will
display automatically over top of the JOGGING panel when motion is paused.
It is preferable to make torch position adjustments from the point at which paused motion occurred,
however if moving along the cut path is necessary prior to setting the new start point, the user may use
the paused motion controls (REV, FWD, and a JOG-SPEED slider) at the top of the CUT RECOVERY
panel. Once the user is satisfied with the positioning of the torch along the cut path, moving off the
cut path is achieved by pressing the DIRECTION buttons. Each press of the DIRECTION button will
move the torch a distance equivalent to the Kerf Width parameter of the currently selected material.
The moment the torch has been moved off the cut path, the paused motion controls (REV, FWD, and
a JOG-SPEED slider) at the top of the CUT RECOVERY panel will become disabled.
Once the torch position is satisfactory, press CYCLE RESUME and the cut will resume from the new
position and travel the shortest distance to the original paused motion location. The CUT RECOVERY
panel will close, and the JOGGING panel will display when the torch returns to the original paused
motion location.
Pressing CANCEL MOVE will cause the torch to move back to where it was positioned before the
direction keys were used to offset the torch. It will not reset any REV or FWD motion.
Pressing CYCLE STOP will cause the torch to move back to where it was positioned before the di-
rection keys were used to offset the torch and the CUT RECOVERY panel overlay will return to the
JOGGING panel. It will not reset any REV or FWD motion.
If an alignment laser has been set up then it is possible to use the laser during cut recovery for very
accurate positioning of the new start coordinates. If either the X axis offset or Y axis offset for the
laser would cause the machine to move out of bounds, then an error message will be displayed.
To use a laser for cut recovery when paused during a cut:

1. Click the LASER button.

2. LASER button will change to disabled, the HAL pin named qtplasmac.laser_on will be turned on
and the X and Y axis will offset so that the laser cross hairs will indicate the starting coordinates
of the cut when it is resumed.

3. Continue the cut recovery as described above.

If a laser offset is in effect when CANCEL MOVE is pressed, then this offset will also be cleared.

Note
Cut recovery movements will be limited to a radius of 10 mm (0.4”) from either the point the program
was paused, or from the last point on the cut path if paused motion was used.

Important
PUDDLE JUMP IS DISABLED DURING CUT RECOVERY

10.8.9.32 Run From Line

If the user has the Run From Line option enabled in the GUI SETTINGS section of the SETTINGS Tab
then they will have the ability to start from any line in a G-code program via the following methods:

1. Clicking any line in the Preview Window

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 783 / 1322

2. Clicking any line in the G-code Window

It is important to note that G-code programs can be run from any selected line using this method,
however a lead-in may not be possible depending on the line selected. In this case, an error message
will be displayed to let the user know the lead-in calculation was not possible.
Once the user has selected the starting place, the CYCLE START button will blink ”SELECTED nn”
where nn is the corresponding line number selected. Clicking this button will bring up the following
Run From Line dialog box:
It is not possible to use Run From Line from within a subroutine. If the user selects a line within
a subroutine and clicks ”SELECTED nn” then an error message will be displayed that includes the
O-code name of the subroutine.
It is not possible to use Run From Line if previous G-code has set cutter compensation active. If the
user selects a line while cutter compensation is active and clicks ”SELECTED nn” then an error
message will be displayed.
It is possible to select a new line while Run From Line is active.

HERE TO END will run from the beginning of the selected line to the end of the G-code file. The
user will be presented with the option of adding a lead-in if the selected line falls within an ”active”
cutting operation (between an M3 and M5).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 784 / 1322

Name Description
USE LEADIN This radio button will allow the user to start the selected line with a

lead-in.
LEADIN LENGTH If USE LEADIN is selected, this will set the length of the lead in the

machine units.
LEADIN ANGLE If USE LEADIN is selected, this will set the angle of approach for the

lead-in.
The angle is measured such that positive increases in value move the
lead-in counterclockwise:
0 Degrees = 3 o’clock position
90 Degrees = 12 o’clock position
180 Degrees = 9 o’clock position
270 Degrees = 6 o’clock position

CANCEL This button will cancel the Run From Line dialog box and any selections.
LOAD This button will load a temporary ”rfl.ngc” program with any selected

lead-in parameters applied.
If the lead-in cannot be calculated for the selected line, the following error
message will be displayed:
”Unable to calculate a lead-in for this cut
Program will run from selected line with no lead-in applied”

After pressing LOAD, the blinking ”SELECTED nn” button will change to RUN FROM LINE CYCLE
START button. Click this button to start the program from the beginning of the selected line.
THIS CUTPATH will run only the cutpath that the selected segment is a part of.
The blinking ”SELECTED nn” button will change to RUN FROM LINE CYCLE START button. Click
this button to run the selected cutpath.
Run From Line selections may be canceled in the following ways:

1. Click the background of the preview window - this method will cancel a selection of either a cut
line in the preview window, or a G-code line in the G-code window.

2. Click the text of the first line of the G-code program in the G-code display - this method will cancel
a selection of either a cut line in the preview window, or a G-code line in the G-code window.

3. Clicking RELOAD in the G-code window header - this method will cancel the Run From Line
process if LOAD was clicked on the Run From Line dialog box and ”rfl.ngc” is displayed as the
loaded file name in the G-code window header. This will return the user to the originally loaded
file.

Note
Although Run From Line allows the user to begin execution at any line, not every possible scenario
can be fully tested. Most testing has focused on recovering typical cutting operations. Therefore
when recovering outside of cutting operations, users should select a starting line that provides the
GUI with the most context about the operation. For example, when restarting a spotting operation,
choose the G0 line before the M3 command rather than the M3 itself or the G1 X0.000001 move in
the middle of the spotting operation.

10.8.9.33 Scribe

A scribe may be operated by QtPlasmaC in addition to the plasma torch.
Using a scribe requires the use of the LinuxCNC tool table. Tool 0 is assigned to the plasma torch
and Tool 1 is assigned to the scribe. The scribe X and Y axes offsets from the plasma torch need to be

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 785 / 1322

entered into the LinuxCNC tool table. This is done by editing the tool table via the main GUI, or by
editing the tool.tbl file in the <machine_name> configuration directory. This will be done after the
scribe can move to the work piece to help determine the appropriate offset.
The plasma torch offsets for X and Y will always be zero. The tools are selected by the TnM6 command
followed by a G43 H0 command which is required to apply the offsets. The tool is then started with
a M3 $n S1 command. For n, use 0 for torch cutting or 1 for scribing.
To stop the scribe, use the G-code command M5 $1.
If the user has not yet assigned the HAL pins for the scribe in the configuration wizard then they may
do so by using the appropriate configuration wizard or by manually editing the HAL file, see modifying
QtPlasmaC.
There are two HAL output pins used to operate the scribe; the first pin is used to arm the scribe which
moves the scribe to the surface of the material. After the Arm Delay has elapsed, the second pin is
used to start the scribe. After the On Delay has elapsed, motion will begin.
Using QtPlasmaC after enabling the scribe requires the selection of either the torch or the scribe in
each G-code file as a LinuxCNC tool.
The first step is to set the offsets for the scribe by following the procedure described in Peripheral
Offsets.
The final step is to set the scribe delays required:

1. Arm Delay - allows time for the scribe to descend to the surface of the material.

2. On Delay - allows time for the scribe to start before motion begins.

Save the parameters in the Config tab.
After the above directions are completed, the scribe may be tested manually by issuing a M3 $1 S1
command in the MDI input. The user may find it helpful to use this method to scribe a small divot and
then try to pulse the torch in the same location to align the offsets between the scribe and the torch.
To use the scribe from G-code:
...
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]>
T1 M6 (select scribe)
G43 H0 (apply offsets for current tool)
M3 $1 S1 (start the scribe)
.
M5 $1 (stop the scribe)
.
T0 M6 (select torch)
G43 H0 (apply offsets for current tool)
G0 X0 Y0 (parking position)
M5 $-1 (end all)

It is a good idea to switch back to the torch at the end of the program before the final rapid parking
move, so the machine is always in the same state at idle.
The user can switch between the torch and the scribe any number of times during a program by using
the appropriate G-codes.
Issuing M3 S1 (without $n) will cause the machine to behave as if an M3 $0 S1 had been issued
and issuing M5 (without $n) will cause the machine to behave as if an M5 $0 had been issued. This
will control the torch firing by default in order to provide backward compatibility for previous G-code
files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 786 / 1322

Warning
If there is an existing manual tool change parameter set in the <machine_name>.hal file then
QtPlasmaC will convert it to an automatic tool change.

10.8.9.34 Spotting

To achieve spotting to mark the material prior to drilling etc., QtPlasmaC can pulse the torch for a
short duration to mark the spot to drill.
Spotting can be configured by following these steps:

1. Set the arc voltage Threshold in the Spotting section of the PARAMETERS Tab. Setting the
voltage threshold to zero will cause the delay timer to begin immediately upon starting the torch.
Setting the voltage threshold above zero will cause the delay timer to begin when the arc voltage
reaches the threshold voltage.

2. Set the Time On in the Spotting section of the PARAMETERS Tab. When the Time On timer has
elapsed, the torch will turn off. Times are adjustable from 0 to 9999 milliseconds.

The torch is then turned on in G-code with the M3 $2 S1 command which selects the plasma torch
as a spotting tool.
To turn the torch off, use the G-code command M5 $2.
For more information on multiple tools, see multiple tools.
LinuxCNC (QtPlasmaC) requires some motion between any M3 and M5 commands. For this reason,
a minimal movement at a high speed is required to be programmed.
An example G-code is:
G21 (metric)
F99999 (high feed rate)
.
.
G0 X10 Y10
M3 $2 S1 (spotting on)
G91 (relative distance mode)
G1 X0.000001
G90 (absolute distance mode)
M5 $2 (spotting off)
.
.
G0 X0 Y0
G90
M2

Note
The high feed rate of 99999 is to ensure that the motion is at the machine’s highest feed rate.

Important
SOME PLASMA CUTTERS WILL NOT BE SUITABLE FOR THIS FEATURE.
IT IS RECOMMENDED THAT THE USER CARRY OUT SOME TEST SPOTTING TO ENSURE THAT THE
PLASMA CUTTER IS CAPABLE OF UTILIZING THIS FEATURE.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 787 / 1322

10.8.9.35 Tube Cutting

Tube cutting with an angular A, B, or C axis is achieved with the following in the G-code file:

• #<tube_cut>=1 magic comment before any motion command.

• All material probing must be done using the G38 straight probe codes.

• All Z axis motion is required, PlasmaC does no internal Z axis motion during tube cutting.

• PIERCE_DELAY is the only required material parameter

• Start a cut with M3 $0 S1.

• End a cut with M5 $0

10.8.9.36 Virtual Keyboard Custom Layouts

Virtual keyboard support is available for only the ”onboard” onscreen keyboard. If it is not already on
the system, it may be installed by typing the following in a terminal:
sudo apt install onboard

The following two custom layouts are used for soft key support:

Figure 10.49: Number keypad - used for the CONVERSATIONAL Tab and the PARAMETERS Tab

../gcode/g-code.html#gcode:g38

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 788 / 1322

Figure 10.50: Alphanumeric keypad - used for G-code editing and file management.

If the virtual keyboard has been repositioned and on the next opening of a virtual keyboard it is not
visible, then clicking twice on the onboard icon in the system tray will reposition the virtual keyboard
so the move handle is visible.

10.8.9.37 Keyboard Shortcuts

Below is a list of all available keyboard shortcuts in QtPlasmaC.

Note
All keyboard shortcuts are disabled by default.

In order to utilize them, KB Shortcuts must be enabled in the GUI SETTINGS section of the SET-
TINGS Tab.

Keyboard
Shortcut

Action

ESC Aborts current automated motion (example: a running program, a probe
test, etc.) as well as an active torch pulse (behaves the same as clicking
CYCLE STOP).

F1 Toggles the GUI E-STOP button (if the GUI E-STOP button is enabled).
F2 Toggles the GUI power button.
F9 Toggles the ”Cutting” command, used to begin or end a manual cut.
F12 Show style sheet editor.
ALT+RETURN Places QtPlasmaC into Manual Data Input (MDI) mode.

Note that ALT + ENTER will achieve the same result.
In addition, pressing RETURN (or ENTER) with no entry in the MDI will
close the MDI window.

 ̀, 1-9, 0 Changes jog speed to 0%, 10%-90%, 100% of the value present in the
DEFAULT_LINEAR_VELOCITY variable in the [DISPLAY] section of the
<machine_name>.ini file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 789 / 1322

Keyboard
Shortcut

Action

SHIFT+ ̀, 1-9, 0 Changes rapid speed to 0%, 10%-90%, 100%.
CTRL+1-9, 0 Changes feed rate to 10%-90%, 100%.
CTRL+HOME Homes all axes if they are not yet homed and have a homing sequence set

in the <machine_name>.ini file. If they are already homed, they will no
longer be homed.

CTRL+R Cycle Start if the program is not already running. Cycle Resume if the
program is paused.

END Touches off X and Y to 0.
DEL Allows the user to use a laser to set an origin with or without rotation. See

the LASER section for detailed instructions.
SPACE BAR Pauses motion.
CTRL+SPACE
BAR

Clears notifications.

O Opens a new program.
L Loads the previously opened program if no program is loaded. Reloads the

current program if there is a program loaded.
→ Jogs the X axis positive.
← Jogs the X axis negative.
↑ Jogs the Y axis positive.
↓ Jogs the Y axis negative.
PAGE UP Jogs the Z axis positive.
PAGE DOWN Jogs the Z axis negative.
[Jogs the A axis positive.
] Jogs the A axis negative.
. Jogs the B axis positive.
, Jogs the B axis negative.
SHIFT (+ Jog Key) The shift key is used with any jog key to invoke a rapid jog.
+ (+Jog Key) The plus key can be used with any jog key to invoke a rapid jog (behaves

the same as SHIFT).
- (+Jog Key) The minus key can be used with any jog key to invoke a slow jog (10% of

the displayed jog speed)
If SLOW jogging is already active, the axis will jog at the displayed jog
speed.

10.8.9.38 MDI

In addition to the typical G and M codes that are allowed by LinuxCNC in MDI mode, the MDI in
QtPlasmaC can be used to access several other handy features. The following link outlines the features
and their use: Section 12.7.2.15[MDILine Widget]

Note
M3, M4, and M5 are not allowed in the QtPlasmaC MDI.

In addition, pressing RETURN (or ENTER) with no entry in the MDI will close the MDI
window.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 790 / 1322

10.8.10 Conversational Shape Library

The Conversational Shape Library consists of several basic shapes and functions to assist the user
with generating quick G-code at the machine to cut simple shapes quickly. This feature is found on
the CONVERSATIONAL Tab.

Note
The Conversational Library is not meant to be a CAD/CAM replacement as there are limitations to
what can be achieved.

Blank entries in the shape input boxes will use the current setting at the time the G-code was gener-
ated. For example, if X start was left blank then the current X axis position would be used.
All lead-ins and lead-outs are arcs except for Circles and Stars:
Circles:

• If the circle is external then any lead-in or lead-out will be an arc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 791 / 1322

• If the circle is internal and a small hole then any lead-in will be perpendicular and there will be no
lead out.

• If the circle is internal and not a small hole then any lead-in and let-out will be an arc. If the lead-in
has a length greater than half the radius then the lead-in will revert to perpendicular and there will
be no let-out. If the lead-out has a length greater than half the radius then there will be no leadout.

Stars:

• The lead-in is at the same angle as the first cut and the leadout is at the same angle as the last cut.

Note
A small hole is a circle that is smaller than the SMALL HOLE DIAMETER specified in the CONVERSA-
TIONAL SETTINGS page.

Note
The holes in a BOLT CIRCLE shape will also abide by the above rules.

The cut order will occur in the same order as the shape was built.
Pressing Return on the keyboard while editing parameters will automatically show the preview of
the shape if there are enough parameters entered to create the shape. Clicking any of the available
check boxes will do the same.
The general functions are as follows:

Name Description
Material
Drop-Down

Allows the user to select the desired material for cutting.
If ”VIEW MATERIAL” is selected on the SETTINGS Tab, a visual reference
showing key material cut settings will be displayed on the Conversational
Preview Window.
Examples are: Feed Rate, Pierce Height, Pierce Delay, Cut Height, and
Kerf Width (for Conversational only). Cut Amps will be shown if PowerMax
communications are enabled.

NEW Removes the current G-code file and load a blank G-code file.
SAVE Opens a dialog box allowing the current shape to be saved as a G-code file.
SETTINGS Allows the changing of the global settings.
SEND Loads the current shape into LinuxCNC (QtPlasmaC). If the last edit was

not added, then it will be discarded.
PREVIEW Displays a preview of the current shape provided the required information

is present.
CONTINUE This button is used for lines and arcs only. Allows another segment to be

added to the current segment/segments.
ADD Stores the current shape into the current job.
UNDO Reverts to the previously stored state.

RELOAD Reloads the original G-code file or a blank file if none was loaded.

If there is a G-code file loaded in LinuxCNC (QtPlasmaC) when the CONVERSATIONAL Tab is selected,
that code will be imported into the conversational as the first shape of the job. If this code is not
required, then it can be removed by pressing the NEW button.
If there is an added shape that is unsaved or unsent then it is not possible to switch tabs in the GUI.
To re-enable switching tabs, it is necessary to either SAVE the shape, SEND the shape, or pressNEW
to remove the shape.
If NEW is pressed to remove an added shape that is unsaved or unsent then a warning dialog will be
displayed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 792 / 1322

Note
All distances are in machine units relative to the current User Coordinate System and all angles are
in degrees.

10.8.10.1 Conversational Settings

Global settings for the shape library can be set by pressing the SETTINGS button in the CONVER-
SATIONAL Tab. This will display all of the available settings parameters that are used for G-code
program creation. These include:

• Preamble

• Postamble

• Origin (Center or Bottom Left)

• Lead-in length

• Leadout length

• Small hole diameter

• Small hole speed

• Preview Window Grid Size

Any internal circle that has a diameter less than Small hole diameter is classified as a small hole
and will have a straight lead-in with a length that is the lesser of either the radius of the hole or the
specified lead-in length. It will also have its feed rate set to Small hole speed.
Preamble and Postamble may be entered as a string of G-Codes and M-Codes separate by spaces. If
the user wishes for the generated G-code to have each code on an individual line, then this is made
possible by separating the codes with \n.
This will place all codes on the same line:
G21 G40 G49 G64p0.1 G80 G90 G92.1 G94 G97

This will place each code on its own line:
G21\nG40\nG49\nM52P1\nG64p0.1\nG80\nG90\nG92.1\nG94\nG97

Note that LinuxCNC does not allow multiple P words on the same line.
Pressing the RELOAD button will discard any changed but unsaved settings.
Pressing the SAVE button will save all the settings as displayed.
Pressing the EXIT button will close the setting panel and return to the previous shape.

10.8.10.2 Conversational Lines And Arcs

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 793 / 1322

Lines and arcs have an additional option in that they may be strung together to create a complex
shape.
There are two line types and three arc types available:

1. Line given a start point and an end point.

2. Line given a start point, length, and angle.

3. Arc given a start point, way point, and end point.

4. Arc given a start point, end point, and radius.

5. Arc given a start point, length, angle, and radius.

To use lines and arcs:

1. Select the Lines and Arcs icon.

2. Select the type of line or arc to create.

3. Choose the material from the MATERIAL drop-down. If no material is chosen, the default material
(00000) will be used.

4. Enter the desired parameters.

5. Press PREVIEW to see the shape.

6. If satisfied with the shape press CONTINUE.

7. Change the line or arc type if needed and continue this procedure until the shape is complete.

8. Press SEND to send the G-code file to LinuxCNC (QtPlasmaC) for cutting.

If the user wishes to create a closed shape, they will need to create any required leadin as the first
segment of the shape. If a leadout is required, it will need to be the last segment of the shape.

Note
At this stage there is no automatic option for a lead-in/leadout creation if the shape is closed.

10.8.10.3 Conversational Single Shape

The following shapes are available for creation:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 794 / 1322

To create a shape:

1. Select the corresponding icon for the shape to create. The available parameters will be displayed.

2. Choose the material from the MATERIAL drop-down. If no material is chosen, the default material
(00000) will be used.

3. Enter the appropriate values and press PREVIEW to display the shape.

4. If the shape is not correct, edit the values and press PREVIEW and the new shape will be dis-
played. Repeat until satisfied with the shape.

5. Press ADD to add the shape to the G-code file.

6. Press SEND to send the G-code file to LinuxCNC (QtPlasmaC) for cutting.

For CIRCLE, the OVER CUT button will become valid when a CUT TYPE of INTERNAL is selected
and the value entered in the DIAMETER field is less than the Small Hole Diameter parameter in the
Conversational SETTINGS section.
For BOLT CIRCLE the OVER CUT button will become valid if the value entered in the HOLE DIA
field is less than the SMALL HOLES DIAMETER parameter in the Conversational SETTINGS section.
For the following shapes, KERF OFFSET will become active once a LEAD IN is specified:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 795 / 1322

1. TRIANGLE

2. RECTANGLE

3. POLYGON

4. SLOT

5. STAR

6. GUSSET

10.8.10.4 Conversational Group Of Shapes

Multiple shapes can be added together to create a complex group.
The cut order of the group is determined by the order in which the individual shapes are added to the
group.
Once a shape is added to the group it cannot be edited or removed.
Groups cannot have shapes removed, only added to.
To create a group of shapes:

1. Create the first shape as in Single Shape.

2. Press ADD and the shape will be added to the group.

3. If the user wishes to add another version of the same shape, then edit the required parameters
and press ADD when satisfied with the shape.

4. If the user wishes to add a different shape, select that shape and create it as in Single Shape.

5. Repeat until all the required shapes to complete the group have been added.

6. Press SEND to send the G-code file to LinuxCNC (QtPlasmaC) for cutting.

10.8.10.5 Conversational Block

The Conversational Block feature allows block operations to be performed on the current shape or
group of shapes displayed in the CONVERSATIONAL Tab. This can include a G-code file not created
using the Conversational Shape Library that has been previously loaded from the MAIN Tab.
A previously saved Block G-code file may also be loaded from the MAIN Tab and then have any of its
operations edited using the Conversational Block feature.
All block operations are done in the machines native units. If a file of a different units system has
been opened then the copy loaded into the CONVERSATIONAL Tab will be converted to the machines
native units when the CONVERSATIONAL Tab becomes active.
Block operations:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 796 / 1322

• Rotate

• Scale

• Array

• Mirror

• Flip

To create a block:

1. Create a shape, a group, or use a previously loaded G-code file.

2. Click the Block icon to open the Block tab.

3. Enter the appropriate values in the Block tab and press PREVIEW to display the resulting
changes.

4. If the result is not correct, edit the values and press PREVIEW and the new result will be shown.
Repeat until satisfied with the result.

5. Press ADD to complete the procedure.

6. Press SEND to send the G-code file to LinuxCNC (QtPlasmaC) for cutting, or SAVE to save the
G-code file.

COLUMNS & ROWS
specifies the number of duplicates of the original shape arranged in columns and rows as
well as the spacing between each shape’s origin.

ORIGIN
offset the result from the origin coordinates.

ANGLE
rotate the result.

SCALE
scale the result.

ROTATION
rotate the shape within the result.

MIRROR
mirror the shape about its X coordinates within the result.

FLIP
flip the shape about its Y coordinates within the result.

If the result is an array of shapes, then the cut order of the result is from the left column to the right
column, starting at the bottom row and ending at the top row.

10.8.10.6 Conversational Saving A Job

The current job displayed in the Preview Panel may be saved at any time by using the bottom SAVE
button. If the G-code has been sent to LinuxCNC (QtPlasmaC) and the user has left the CONVERSA-
TIONAL Tab, the user may still save the G-code file from the GUI. Alternatively, the user could click
the CONVERSATIONAL Tab which will reload the job, at which time they can press the SAVE button.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 797 / 1322

10.8.11 Error Messages

10.8.11.1 Error Logging

All errors are logged into the machine log which is able to be viewed in the STATISTICS Tab. The log
file is saved into the configuration directory when QtPlasmaC is shutdown. The five last logfiles are
kept, after which the oldest logfile is deleted each time a new log file is created. These saved log files
may be viewed with any text editor.

10.8.11.2 Error Message Display

By default, QtPlasmaC will display error messages via a Operator Error popup window. In addition,
QtPlasmaC will alert the user that an error has been sent to the machine log by displaying the message
”ERROR SENT TO MACHINE LOG” in the lower left portion of the status bar.
The user may opt to disable the Operator Error popup window, and view the error messages by going
to the STATISTICS Tab by changing the following option to False in the [SCREEN_OPTIONS] of the
<machine_name>.prefs file in the <machine_name> directory:
desktop_notify

Note
<machine_name>.prefs must be edited with QtPlasmaC closed or any changes will be overwritten
on exit.

Additionally, it is possible for ERROR SENT TOMACHINE LOG to flash to get the user’s attention by
adding or editing the following option in the [GUI_OPTIONS] section of the <machine_name>.prefs
file:
Flash error = True

10.8.11.3 Critical Errors

There are a number of error messages printed by QtPlasmaC to inform the user of faults as they occur.
The messages can be split into two groups, Critical and Warning.
Critical Errors will cause the running program to pause, and the operator will need to clear the cause
of the error before proceeding.
If the error was received during cutting, then forward or reverse motion is allowed while the machine
is paused to enable the user to reposition the machine prior to resuming the cut.
When the error is cleared the program may be resumed.
These errors indicate the corresponding sensor was activated during cutting:

• breakaway switch activated, program is paused

• float switch activated, program is paused

• ohmic probe activated, program is paused

These errors indicate the corresponding sensor was activated before probing commenced:

• ohmic probe detected before probing program is paused

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 798 / 1322

• float switch detected before probing program is paused

• breakaway switch detected before probing program is paused

The Arc OK signal was lost during cutting motion, before the M5 command was reached:

• valid arc lost program is paused

The Z axis reached the bottom limit before the work piece was detected:

• bottom limit reached while probing down program is paused

The work piece is too high for any safe rapid removes:

• material too high for safe traverse, program is paused

One of these values in MATERIAL section of the PARAMETERS Tab is invalid (For example: if they
are set to zero):

• invalid pierce height or invalid cut height or invalid cut volts, program is paused

No arc has been detected after attempting to start the number of times indicated by Max Starts in
the ARC frame of the CONFIGURATION section of the PARAMETERS Tab:

• no arc detected after <n>d start attempts program is paused

• no arc detected after <n>d start attempts manual cut is stopped

THC has caused the bottom limit to be reached while cutting:

• bottom limit reached while THC moving down program is paused

THC has caused the top limit to be reached while cutting:

• top limit reached while THC moving up program is paused

These errors indicate move to pierce height would exceed the Z Axis MAX_LIMIT for the corresponding
probe method:

• pierce height would exceed Z axis maximum limit condition found while moving to probe
height during float switch probing

• pierce height would exceed Z axis maximum limit condition found while moving to probe
height during ohmic probing

These errors indicate the move to pierce height would exceed the Z axis maximum safe height for the
corresponding probe method:

• pierce height would exceed Z axis maximum safe height condition found while float switch
probing

• pierce height would exceed Z axis maximum safe height condition found while ohmic prob-
ing

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 799 / 1322

10.8.11.4 Warning Messages

Warning messages will not pause a running program and are informational only.
These messages indicate the corresponding sensor was activated before a probe test commenced:

• ohmic probe detected before probing probe test aborted

• float switch detected before probing probe test aborted

• breakaway switch detected before probing probe test aborted

This indicates that the corresponding sensor was activated during a consumable change:

• breakaway, float, or ohmic activated during consumable change, motion is paused
WARNING: MOTIONWILL RESUME IMMEDIATELY UPON RESOLVING THIS CONDITION!

Warning
CONSUMABLE CHANGE MOTION WILL RESUME IMMEDIATELY UPON RESOLVING THE CORRE-
SPONDING SENSOR ACTIVATION.

This indicates that the corresponding sensor was activated during probe testing:

• breakaway switch detected during probe test

This indicates that probe contact was lost before probing up to find the zero point:

• probe trip error while probing

This indicates that the bottom limit was reached during a probe test:

• bottom limit reached while probe testing

This indicates that the move to pierce height would exceed the Z Axis MAX_LIMIT during the corre-
sponding probe method:

• pierce height would exceed Z axis maximum limit condition found while moving to probe
height during float switch probe testing

• pierce height would exceed Z axis maximum limit condition found while moving to probe
height during ohmic probe testing

This indicates that the safe height has been reduced due to THC raising the Z axis during cutting:

• safe traverse height has been reduced

This indicates that the value for the Arc Voltage was invalid (NAN or INF) when QtPlasmaC launched.

• invalid arc-voltage-in

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 800 / 1322

10.8.12 Updating QtPlasmaC

10.8.12.1 Standard Update

QtPlasmaC update notices are posted at https://forum.linuxcnc.org/plasmac/37233-plasmac-updates
.
Users are strongly encouraged to create a Username and subscribe to the above thread to
receive update notices.
For a standard ISO installation, LinuxCNC will only be updated when a new minor release has been
released. QtPlasmaC will then automatically update its configuration the first time it is run after a
LinuxCNC update.
LinuxCNC is normally updated by entering the following commands into a terminal window (one at a
time):
sudo apt update
sudo apt dist-upgrade

10.8.12.2 Continuous Update

Enhancements and bug fixes will not be available on a standard installation until a new minor release
of LinuxCNC has been released. If the user wishes to update whenever a new QtPlasmaC version has
been pushed, they could use the LinuxCNC Buildbot repository rather than the standard LinuxCNC
repository by following the instructions at http://buildbot.linuxcnc.org/ .

10.8.13 Modify An Existing QtPlasmaC Configuration

There are two ways to modify an existing QtPlasmaC configuration:

1. Running the appropriate configuration wizard and loading the .conf file saved by the wizard.

2. Manually edit the INI and/or the HAL file of the configuration.

Important
Any manual modification to the <machine_name>.ini and <machine_name>.hal files will not
be registered in PnCConf or StepConf.

Note
If unsure of the HAL pin’s full name, the user may start LinuxCNC and run HalShow for a full listing
of all HAL pins.

10.8.14 Customizing QtPlasmaC GUI

Styling of the QtPlasmaC GUI is done with Qt style sheets and some customization may be achieved by
the use of a custom style sheet. This allows the user to change some GUI items such as color, border,
size, etc. It cannot change the layout of the GUI.
Information on Qt style sheets is available here.
There are two methods available to apply custom styles:

1. Add A Custom Style: use this for minor style changes.

2. Create A New Style use this for a complete style change.

https://forum.linuxcnc.org/plasmac/37233-plasmac-updates
http://buildbot.linuxcnc.org/
https://doc.qt.io/archives/qt-5.11/stylesheet.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 801 / 1322

10.8.14.1 Add A Custom Style

Adding style changes to the default style sheet is achieved by creating a file in the <machine_name>
configuration directory. This file MUST be named qtplasmac_custom.qss. Any required style changes
are then added to this file.
For example, the user may want the arc voltage display in red, a green Torch On LED of a larger size
and a larger Torch Enable button. This would be done with the following code in qtplasmac_custom.qss:
#arc_voltage {

color: #ff0000 }

#led_torch_on {
qproperty-diameter: 30;
qproperty-color: green }

#torch_enable::indicator {
width: 30;
height: 30}

10.8.14.2 Create A New Style

Custom style sheets are enabled by setting the following option in the [GUI_OPTIONS] section of
the <machine_name>.prefs file. This option must be set to the filename of the style sheet as shown
below.
Custom style = the_cool_style.qss

The filename may be any valid filename. The standard extension name is .qss but this is not mandatory.
There are some constraints on the custom style sheet for QtPlasmaC, e.g., the jog buttons, cut-recovery
buttons, and the conversational shape buttons are image files and are not able to be custom styled.
The custom style file requires a header in the following format:
/*****************************
Custom Style-sheet Header

color1 = #000000
#QtPlasmaC default = #ffee06

color2 = #e0e0e0
#QtPlasmaC default = #16160e

color3 = #c0c0c0
#QtPlasmaC default = #ffee06

color4 = #e0e0e0
#QtPlasmaC default = #26261e

color5 = #808080
#QtPlasmaC default = #b0b0b0

*****************************/

The colors may be expressed in any valid stylesheet format.
The above colors are used for the following widgets. So any custom styling will need to take these
into account. The colors shown below are the defaults used in QtPlasmaC along with the color name
from the SETTINGS Tab.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 802 / 1322

Color Parameter Affects
color1 (#ffee06) Foreground foreground of jog buttons

foreground of latching user buttons
foreground of camera/laser buttons
foreground of conversational shape buttons
background of active conversational shape
buttons

color2 (#16160e) Background background of latching user buttons
background of camera/laser buttons
background of G-code editor active line
background of conversational shape buttons

color3 (#ffee06) Highlight background of active latching user buttons
background of active camera/laser buttons
foreground of G-code editor cursor

color4 (#36362e) Alt Background background of G-code display’s active line

10.8.14.3 Returning To The Default Styling

The user may return to the default styling at any time by following the following steps:

1. Close QtPlasmaC if open.

2. Delete qtplasmac.qss from the machine config directory.

3. Delete qtplasmac_custom.qss from the machine config directory (if it exists).

4. Open <machine_name>.prefs file.

5. Delete the [COLOR_OPTIONS] section.

6. Delete the Custom style option from the [GUI_OPTIONS] section.

7. Save the file.

The next time QtPlasmaC is loaded all custom styling will be removed and the default styling will
return.
Below is an example of the section and options to be deleted from <machine_name>.prefs:
[COLOR_OPTIONS]
Foreground = #ffee06
Highlight = #ffee06
LED = #ffee06
Background = #16160e
Background Alt = #36362e
Frames = #ffee06
Estop = #ff0000
Disabled = #b0b0b0
Preview = #000000

10.8.14.4 Custom Python Code

It is possible to add custom Python code to change some existing functions or to add new ones. Custom
code can be added in two different ways: a user command file or a user periodic file.
A user command file is specified in the DISPLAY section of the <machine_name>.ini file and contains
Python code that is processed only once during startup.
USER_COMMAND_FILE = my_custom_code.py

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 803 / 1322

A user periodic file must be named user_periodic.py and must be loaded in the machine’s config
directory. This file is processed every cycle (usually 100 ms) and is used for functions that require
regular updating.

10.8.14.5 Custom G-code Filter

All incoming G-code is parsed by a G-code filter to ensure it is suitable for QtPlasmaC. It is possible
to extend this filter with custom python code executed from a file in the configuration directory to aid
in converting different flavours of G-code to a format suitable for QtPlasmaC.
The name of this file is custom_filter.py and it will be automatically used if it exists.
There are three preset methods available for use:

Name Function
custom_pre_process This does basic processing of each line before any processing is done in

the filter.
custom_pre_parse This parses any G-code from a line before any parsing done in the filter.
custom_post_parse This parses any G-code from a line after any parsing done in the filter.

These methods are applied by the following procedure:

• Define the method with an argument for the incoming data.

• Add any required code to manipulate the data.

• Return the resultant data.

• Attach the new method.

For example, to remove any code beginning with G71 and change M2 to M5 $0 and M2:
def custom_pre_parse(data):

if data[:3] == ’G71’:
return(None)

if data == ’M2’:
return(f’M5 $0\n\n{data}’)

return(data)
self.custom_pre_parse = custom_pre_parse

In addition to these it is also possible to override any existing method in the filter the same way.
This requires defining the same number of arguments as the existing method, noting that self in the
original does not constitute an argument.
def new_method_name(data):

if data[:3] == ’G71’:
return(None)

return(data)
self.old_method_name = new_method_name

Note
The existing filter code may be observed in the file /bin/qtplasmac_gcode.
The file sim/qtplasmac/custom_filter.py has example skeleton code for custom filtering.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 804 / 1322

10.8.15 QtPlasmaC Advanced Topics

10.8.15.1 Custom User Buttons

The QtPlasmaC GUI offers user buttons that can be customized by adding commands in the USER
BUTTON ENTRIES section of the SETTINGS Tab in the <machine_name>.prefs file.
The number of user buttons varies by display type and resolution as follows:

• 16:9 and 4:3 - Minimum 8, Maximum 20

• 9:16 - Minimum 15, Maximum 20

The user will need to run QtPlasmaC at the desired screen size to determine how many user buttons
are available for use.
All <machine_name>.prefs file settings for the buttons are found in the [BUTTONS] section.
Button Names The text that appears on the button is set the following way:
n Name = HAL Show

Where n is the button number and HAL Show is the text.
For text on multiple lines, split the text with a \ (backslash):
n Name = HAL\Show

If an ampersand is required to be displayed as text then two consecutive ampersands are required:
n Name = PIERCE&&CUT

Button Code Buttons can run the following:

1. External commands

2. External python scripts

3. G-code commands

4. Dual code

5. Toggle a HAL pin

6. Toggle the alignment laser HAL pin

7. Pulse a HAL pin

8. Probe test

9. Ohmic Test

10. Cut Type

11. Change consumables

12. Load a G-code program

13. Pulse the torch on

14. Single unidirectional cut

15. Framing a job

16. Begin/End a manual cut

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 805 / 1322

17. Display/Hide an offsets viewer

18. Load the latest modified NGC file found in a directory

19. Display/Hide the online HTML user manual

20. Toggle between joint and teleop modes

External Commands
To run an external command, the command is preceded by a % character.
n Code = %halshow

External Python Scripts
To run an external Python script, the script name is preceded by a % character and it also requires a
.py extension. It is valid to use the ~ character as a shortcut for the user’s home directory.
n Code = %~/user_script.py

G-code
To run G-code, just enter the code to be run.
n Code = G0 X100

To run an existing subroutine.
n Code = o<the_subroutine> call

<machine_name>.ini file variables can be entered by using the standard LinuxCNC G-code format. If
expressions are included, then they need to be surrounded by brackets.
n Code = G0 X#<_ini[joint_0]home> Y1
n Code = G53 G0 Z[#<_ini[axis_z]max_limit> - 1.001]

<machine_name>.prefs file variables and also <machine_name>.ini variables can be entered by en-
closing each option in {} . You must put a space after each } if there are any following characters. If
expressions are included, then they need to be surrounded by brackets.
BUTTON_n_CODE = G0 X{LASER_OFFSET X axis} Y{LASER_OFFSET Y axis}
BUTTON_n_CODE = G0 X{JOINT_0 HOME} Y1
BUTTON_n_CODE = G53 G0 Z[{AXIS_Z MAX_LIMIT} - 1.001]

Multiple codes can be run by separating the codes with a ”\” (backslash) character. The exception is
the special commands which are required to be a single command per button.
n Code = G0 X0 Y0 \ G1 X5 \ G1 Y5

External commands and G-code may be mixed on the same button.
n Code = %halshow \ g0x.5y.5 \ %halmeter

Dual Code
Dual Code allows the running of two code snippets alternately with each button press. The button
text will alternate with each button press and the indicator light may be optionally enabled.
It is mandatory to specify the button code in the following order: ”dual-code”, the first code, the
alternate button text, and the second code separated by double semicolons. If an indicator is required
then optionally add ”;; true” at the end.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 806 / 1322

n Code = dual-code ;; code1 ;; name1 ;; code2 ;; true

On the first button press, code1 will be run, the button text will change to name1, and if ”true” is
specified the indicator will light.
On the second button press, code2 will be run, the button text will change to n Name, and the indicator
will extinguish if lit.
code1 and code2 both follow the rule of the preceding code explanations, External commands, Python
code, and G-code. Multiple codes as well as mixing codes are allowed.
The following code will allow the user to use a single button to run two code snippets alternately each
button press:
n Name = X+10
n Code = dual-code ;; G91\G0X10\G90 ;; X-10 ;; G91\G0X-10\G90

The original label will be X+10, when pressed the torch will move positive 10 in the X axis and the
label will change to X-10. When pressed again the torch will move negative 10 in the X axis and the
label will change to X+10.
Special Commands The following commands must be a single command per user button, and the
button code must start with the special command. The exception is toggle-laser which may be appear
anywhere in the code as demonstrated below.
Toggle HAL Pin
The following code will allow the user to use a button to invert the current state of a HAL bit pin:
n Code = toggle-halpin the-hal-pin-name

This code is required to be used as a single command and may only control one HAL bit pin per button.
The button colors will follow the state of the HAL pin.
After setting the code, upon clicking, the button will invert colors, and the HAL pin will invert pin
state. The button will stay ”latched” until the button is clicked again, which will return the button to
the original colors and the HAL pin to the original pin state.
It is also possible for the user to specify alternate text which will display on the button while ever it
is in the latched-on condition. To specify the alternate text, use a double semicolon followed by the
required text. This must be the last item in the button code.
n Code = toggle-halpin the-hal-pin-name ;; PIN\TOGGLED

There are three External HAL Pins that are available to toggle as an output, the pin names are
qtplasmac.ext_out_0, qtplasmac.ext_out_1, and qtplasmac.ext_out_2. HAL connections to these
HAL pins need to be specified in a postgui HAL file as the HAL pins are not available until the QtPlas-
maC GUI has loaded.
For toggle-halpin buttons, it is possible for the user to mark the associated HAL pin as being required
to be turned ”ON” before starting a cut sequence by adding ”cutcritical” after the HAL pin in the but-
ton code. If TORCH ENABLE is checked and CYCLE START, MANUAL CUT, or SINGLE CUT are
initiated while the ”cutcritical” button is not ”ON” then the user will receive a dialog warning them
as such and asking to CONTINUE or CANCEL. The dialog will list all untoggled buttons with a corre-
sponding checkbox and allow the user to choose which of the buttons should be toggled automatically
upon clicking CONTINUE.
n Code = toggle-halpin the-hal-pin-name cutcritical

Toggle Alignment Laser HAL Pin
The following code will allow the user to use a button to invert the current state of the alignment laser
HAL bit pin:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 807 / 1322

n Code = toggle-laser

This code is also able to be used as a multiple command with G-code or external commands but may
control only the alignment laser HAL bit pin.
The button colors will follow the state of the alignment laser HAL pin.
After setting the code, upon clicking, the button will invert colors, and the alignment laser HAL pin
will invert pin state. The button will stay ”latched” until the button is clicked again, which will return
the button to the original colors and the alignment laser HAL pin to the original pin state.
The following code would allow the user to use a button to invert the current state of the alignment
laser HAL bit pin and then move the X and Y axes to the offset for the alignment laser as specified in
the <machine_name>.prefs file:
n Code = G0 X{LASER_OFFSET X axis} Y{LASER_OFFSET Y axis} \ toggle-laser

The position of the ”toggle-laser” command is not important as it is always the first command actioned
regardless of position.
Pulse HAL Pin
The following code will allow the user to use a button to pulse a HAL bit pin for a duration of 0.5
seconds:
n Code = pulse-halpin the-hal-pin-name 0.5

This code is required to be used as a single command and may only control one HAL bit pin per button.
The pulse duration is specified in seconds, if the pulse duration is not specified then it will default to
one second.
The button colors will follow the state of the HAL pin.
After setting the code, upon clicking the button, the button will invert colors, the HAL pin will invert
pin state, and the time remaining will be displayed on the button. The button color and the pin state
will stay inverted until the pulse duration timer has completed, which will return the button to the
original colors, the HAL pin to the original pin state, and the original button name.
An active pulse can be canceled by clicking the button again.
There are three External HAL Pins that are available to pulse as an output, the pin names are qtplas-
mac.ext_out_0, qtplasmac.ext_out_1, and qtplasmac.ext_out_2. HAL connections to these HAL pins
need to be specified in a postgui HAL file as the HAL pins are not available until the QtPlasmaC GUI
has loaded.
Probe Test
QtPlasmaC will begin a probe and when the material is detected, the Z axis will rise to the Pierce
Height currently displayed in the MATERIAL section of the PARAMETERS Tab. If the user has ”View
Material” selected in the GUI SETTINGS section of the SETTINGS Tab, this value will be displayed in
the top left corner of the PREVIEW Window next to PH:.
QtPlasmaC will then wait in this state for the time specified (rounded to no decimal places) before
returning the Z axis to the starting position. An example of a 6 second delay is below. If there is no
time specified, then the probe time will default to 10 seconds.
n Code = probe-test 6

Note
Enabling a user button as a Probe Test button will add an external HAL pin that may be connected
from a pendant etc. HAL connections to this HAL pin needs to be specified in a postgui HAL file as
the HAL pin is not available until the QtPlasmaC GUI has loaded.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 808 / 1322

Ohmic Test
QtPlasmaC will enable the Ohmic Probe Enable output signal and if the Ohmic Probe input is sensed,
the LED indicator in the SENSOR Panel will light. The main purpose of this is to allow a quick test for
a shorted torch tip.
n Code = ohmic-test

Note
Enabling a user button as an Ohmic Test button will add an external HAL pin that may be connected
from a pendant etc. HAL connections to this HAL pin needs to be specified in a postgui HAL file as
the HAL pin is not available until the QtPlasmaC GUI has loaded.

Cut Type
This button if selected will toggle between the two cut types, Pierce and Cut (default cutting mode)
or Pierce Only.
n Code = cut-type

Change Consumables
Pressing this button moves the torch to the specified coordinates when the machine is paused to allow
the user easy access to change the torch consumables.
Valid entries are Xnnn Ynnn Fnnn. At least one of the X or Y coordinates are required, Feed Rate (F)
is optional.
The X and Y coordinates are in absolute machine coordinates. If X or Y are missing, then the current
coordinate for that axis will be used.
Feed Rate (F) is optional, if it is missing or invalid then the feed rate of the current material will be
used.
There are three methods to return to the previous coordinates:

1. Press the Change Consumables button again - the torch will return to the original coordinates
and the machine will wait in this position for the user to resume the program.

2. Press CYCLE RESUME - the torch will return to the original coordinates and the program will
resume.

3. Press CYCLE STOP - the torch will return to the original coordinates and the program will abort.

n Code = change-consumables X10 Y10 F1000

Note
Enabling a user button as a Change Consumables button will add an external HAL pin that may be
connected from a pendant etc. HAL connections to this HAL pin needs to be specified in a postgui
HAL file as the HAL pin is not available until the QtPlasmaC GUI has loaded.

Load
Loading a G-code program from the directory specified by the PROGRAM_PREFIX variable in the
<machine_name>.ini file (usually ~/linuxcnc/nc_files) is possible by using the following format:
n Code = load G-code.ngc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 809 / 1322

If the user’s G-code file is located in a sub-directory of the PROGRAM_PREFIX directory, it would be
accessed by adding the sub-directory name to the beginning of the G-code file name. Example for a
sub-directory named plasma:
n Code = load plasma/G-code.ngc

Note that the first ”/” is not necessary as it will be added automatically.
Torch Pulse
Pulse the torch on for a predetermined time. The time must be specified in seconds using up to one
decimal place. The maximum allowable time is 3 seconds, anything specified above that value will be
limited to 3 seconds. An example of a 0.5 second pulse is below. It there is no time specified then it
will default to 1 second. Pulse times with more than one decimal place will be rounded to one decimal
place.
Pressing the button again during the countdown will cause the torch to be turned off, as will pressing
Esc if keyboard shortcuts are enabled in the SETTINGS Tab.
If the button is released before the countdown is complete then the torch will turn off at countdown
completion, holding the button on until after the countdown has completed will cause the torch to
remain on until the button has been released.
n Code = torch-pulse 0.5

Note
Enabling a user button as a Torch Pulse button will add an external HAL pin that may be connected
from a pendant etc. HAL connections to this HAL pin needs to be specified in a postgui HAL file as
the HAL pin is not available until the QtPlasmaC GUI has loaded.

Single Cut
Run a single unidirectional cut. This utilises the automatic Single Cut feature.
n Code = single-cut

Framing
Framing is the ability to move the torch around the perimeter of a rectangle that encompasses the
bounds of the current job.
The laser enable HAL pin (qtplasmac.laser_on) will be turned on during the framing moves and any X/Y
offsets for the laser pointer in the <machine_name>.prefs file will also be applied to the X/Y motion.
After the framing motion is completed, the torch will move to the X0 Y0 position to clear any applied
laser offsets and qtplasmac.laser_on will be turned off.
Upon starting a Framing cycle, it is important to note that by default the Z axis will be moved to a
height of [AXIS_Z]MAX_LIMIT - 5 mm (0.2”) before X/Y motion begins.
The velocity for the XY movements of the Framing motion can be specified so that Framing motion
always occurs at a set velocity. This can be achieved by adding the feed rate (F) as the as the last
portion of the button code. If the feed rate is omitted from the button code, framing motion velocity
will default to the feed rate for the currently selected material.
The following GUI buttons and Keyboard Shortcuts (if enabled in the SETTINGS Tab) are valid during
Framing motion:

1. Pressing CYCLE STOP or the ESC keyboard shortcut - Stops Framing motion.

2. Pressing CYCLE PAUSE or the SPACE BAR keyboard shortcut- Pauses Framing motion.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 810 / 1322

3. Pressing CYCLE RESUME or the CTRL+r keyboard shortcut- Resumes paused Framing motion.

4. Changing the FEED SLIDER or any of the CTRL+0-9 keyboard shortcuts - Slows the feed rate.

Note
IF THE FEED RATE IS CHANGED FOR THE FRAMING MOTION, IT WILL BE NECESSARY TO RETURN THE
FEED SLIDER TO 100% BEFORE PRESSING CYCLE START AND CUTTING THE LOADED JOB.

n Code = framing

It is possible for the user to omit the initial default Z movement and run the framing sequence at the
current Z height by adding ”usecurrentzheight” after ”framing”.
n Code = framing usecurrentzheight

To specify a feed rate:
n Code = framing F100

or:
n Code = framing usecurrentzheight F100

Enabling a user button as a framing button will add an external HAL pin that may be connected from
a pendant etc. HAL connections to this HAL pin needs to be specified in a postgui HAL file as the HAL
pin is not available until the QtPlasmaC GUI has loaded.
Manual Cut
Manual Cut functions identically to the F9 button to begin or end a manual cut.
n Code = manual-cut

Offset Viewer
This allows the showing/hiding of an offset viewing screen that displays all machine offsets. All relative
offsets can be edited and the G54 ~ G59.3 work system coordinates are able to be given custom names.
n Code = offsets-view

Load Latest File
This allows the loading of the last modified file in a directory. The directory name is optional and if
omitted will default to the last directory a file was loaded from.
n Code = latest-file /home/me/linuxcnc/nc_files/qtplasmac-test

User Manual
This allows the showing/hiding of the online HTML user manual specific to the version of LinuxCNC
currently running. Note that internet access is required for this functionality.
n Code = user-manual

Toggle Joint Mode
This allows the toggling between joint mode and teleop mode. The machine must be on and homed
for this button to be active.
n Code = toggle-joint

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 811 / 1322

10.8.15.2 Peripheral Offsets (Laser, Camera, Scribe, Offset Probe)

Use the following sequence to set the offsets for a laser, camera, scribe, or offset probe:

1. Place a piece of scrap material under the torch.

2. The machine must be homed and idle before proceeding.

3. Open the SETTINGS tab.

4. Click the SET OFFSETS button which opens the Set Peripheral Offsets dialog.

5. Click the X0Y0 button to set the torch position to zero.

6. Make a mark on the material by one of:

a. Jog the torch down to pierce height then pulse the torch on to make a dimple in the material.
b. Place marking dye on the torch shield then jog the torch down to mark the material.

7. Click the appropriate button to activate the peripheral.

8. The Get Peripheral Offsets dialog will now be showing.

9. Raise the Z axis so the torch and peripheral are clear of the material.

10. Jog the X/Y axes so that the peripheral is centered in the mark from the torch.

11. Click the GET OFFSETS button to get the offsets and a confirmation dialog will open.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 812 / 1322

12. Click SET OFFSETS and the offsets will now be saved.

Canceling may be done at any stage by pressing the CANCEL button which will close the dialog, and
no changes will be saved.
If CAMERA was selected at item 7 above and more than one camera exists, then a camera selection
dialog will show. The appropriate camera needs to be selected before the Get Peripheral Offsets dialog
will appear.

If PROBE was selected at item 7 above, then a delay dialog will show prior to the confirmation dialog
at item 11. This is for the delay required for the probe to deploy to its working position.

Note
It may be necessary to click the preview window to enable jogging. By following the above procedure,
the offsets are available for use immediately and no restart of LinuxCNC is required.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 813 / 1322

10.8.15.3 Keep Z Motion

By default, QtPlasmaC will remove all Z motion from a loaded G-code file and add an initial Z movement
to bring the torch near the top of travel at the beginning of the file. If the user wishes to use their
table with a marker, drag knife, diamond scribe, etc. mounted in the torch holder, QtPlasmaC has the
ability to retain the Z movements when executing a program by adding the following command in a
G-code file:
#<keep-z-motion> = 1

This can be used two different ways: . In a G-code file with no M3 (cutting, scribing, or spotting)
commands. In this case, #<keep-z-motion> = 1 can be placed anywhere before the first Z movement
and all subsequent Z motion will be retained. The G-code filter will not add any initial Z movements.
. In a G-code file that also contains subsequent spotting and/or cutting operations. In this case,
the marking portion of the file that contains Z movements needs to preceed the spotting and/or cut-
ting operations, and the marking section needs to have #<keep-z-motion> = 1 at the beginning and
#<keep-z-motion> = 0 at the end. In this case, the G-code filter will automatically add an initial Z
movement for the first M3 command after #<keep-z-motion> = 0.
In either case, M3 commands are not supported while #<keep-z-motion> is active.
Omitting #<keep-z-motion>, or setting #<keep-z-motion> to anything but 1 will cause QtPlasmaC the
default behavior of stripping all Z motion from a loaded G-code file and adding an initial Z movement
to bring the torch near the top of travel before the first M3 command.

10.8.15.4 External HAL Pins

QtPlasmaC creates some HAL pins that may be used to connect a momentary external button or
pendant etc.
HAL connections to these HAL pins need to be specified in a postgui HAL file as the HAL pins are not
available until the QtPlasmaC GUI has loaded.
The following HAL bit pins are always created. The HAL pin has the identical behaviour of the related
QtPlasmaC GUI button.

User Button Function HAL Pin GUI Function
Toggle machine power qtplasmac.ext_power POWER
Run the loaded G-code program qtplasmac.ext_run CYCLE START
Pause/Resume the loaded G-code
program

qtplasmac.ext_pause CYCLE PAUSE/CYCLE RESUME

Pause the loaded G-code program qtplasmac.ext_pause_onlyCYCLE PAUSE
Resume the loaded G-code
program

qtplasmac.ext_resume CYCLE RESUME

Abort the loaded G-code program qtplasmac.ext_abort CYCLE STOP
Touchoff X & Y axes to zero qtplasmac.ext_touchoffX0Y0
Use a laser to set an origin with
or without rotation

qtplasmac.ext_laser_touchoffLASER

Toggle qtplasmac.laser_on pin qtplasmac.ext_laser_toggleN/A
Run/Pause/Resume the loaded
G-code program

qtplasmac.ext_run_pauseCYCLE START, CYCLE PAUSE,
CYCLE RESUME in sequence

Torch height override plus qtplasmac.ext_height_ovr_plusOVERRIDE

Torch height override minus qtplasmac.ext_height_ovr_minusOVERRIDE -
Torch height override reset qtplasmac.ext_height_ovr_resetOVERRIDE RESET TO 0.00
Torch height override scale qtplasmac.ext_height_ovr_scaleN/A
Toggle jogging speed between
fast and slow

qtplasmac.ext_jog_slowJOGGING FAST/SLOW

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 814 / 1322

User Button Function HAL Pin GUI Function
Toggle THC enable qtplasmac.ext_thc_enableTHC ENABLE
Toggle torch enable qtplasmac.ext_torch_enableTORCH ENABLE
Toggle corner Lock enable qtplasmac.ext_cornerlock_enableVELOCITY ANTI DIVE ENABLE
Toggle voidlock enable qtplasmac.ext_voidlock_enableVOID ANTI DIVE ENABLE
Toggle use auto volts qtplasmac.ext_auto_volts_enableAUTO VOLTS
Toggle ohmic probe enable qtplasmac.ext_ohmic_probe_enableOHMIC ENABLE
Toggle mesh mode qtplasmac.ext_mesh_modeMESH MODE
Toggle arc ignore OK qtplasmac.ext_ignore_arc_okIGNORE OK
Forward along the programmed
path

qtplasmac.ext_cutrec_fwdCUT RECOVERY FWD

Reverse along the programmed
path

qtplasmac.ext_cutrec_revCUT RECOVERY REV

Cancel any Cut Recovery
movement

qtplasmac.ext_cutrec_cancelCUT RECOVERY CANCEL MOVE

Move up qtplasmac.ext_cutrec_nCUT RECOVERY arrow up
Move down qtplasmac.ext_cutrec_sCUT RECOVERY arrow down
Move right qtplasmac.ext_cutrec_eCUT RECOVERY arrow right
Move left qtplasmac.ext_cutrec_wCUT RECOVERY arrow left
Move up-right qtplasmac.ext_cutrec_neCUT RECOVERY arrow up-right
Move up-left qtplasmac.ext_cutrec_nwCUT RECOVERY arrow up-left
Move down-right qtplasmac.ext_cutrec_seCUT RECOVERY arrow

down-right
Move down-left qtplasmac.ext_cutrec_swCUT RECOVERY arrow down-left

The following HAL pins which allow the use of an MPG to control height override are always created.

Function HAL Pin
Enable MPG height control qtplasmac.ext_height_ovr_count_enable
MPG height change qtplasmac.ext_height_ovr_counts

The following HAL bit pins are only created if the function is specified in a custom user button. The
HAL pin has the identical behaviour of the related custom user button.

User Button Function HAL Pin
Probe Test qtplasmac.ext_probe
Torch Pulse qtplasmac.ext_pulse
Ohmic Test qtplasmac.ext_ohmic
Change Consumables qtplasmac.ext_consumables
Framing qtplasmac.ext_frame_job

The following HAL bit output pins are always created and can be used by either the Toggle HAL Pin
or Pulse HAL Pin custom user buttons to change the state of an output.

HAL Pin
qtplasmac.ext_out_0
qtplasmac.ext_out_1
qtplasmac.ext_out_2

10.8.15.5 Hide Program Buttons

If the user has external buttons and/or a pendant that emulates any of the program buttons, CYCLE
START, CYCLE PAUSE, or CYCLE STOP then it is possible to hide any or all of these GUI program
buttons by adding the following options to the [GUI_OPTIONS] section of the<machine_name>.prefs
file:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 815 / 1322

Hide run = True
Hide pause = True
Hide abort = True

For the 16:9 or 4:3 GUIs, the hiding of each of these GUI buttons will expose two more custom user
buttons in the GUI.

10.8.15.6 Tuning Mode 0 Arc OK

Mode 0 Arc OK relies on the arc voltage to set the Arc OK signal. This is accomplished by sampling the
arc voltage every servo thread cycle. There needs to be a specified number of consecutive samples,
all within a specified threshold for the Arc OK signal to be set. These voltages are also required to be
within a specified range.
There are two settings in the PARAMETERS Tab for setting the range, these are:

• OK High Volts which is the upper value of the voltage range. The default is 250 V.

• OK Low Volts which is the lower value of the voltage range. The default is 60 V.

Both of these values may be changed by direct entry or by the use of the increment/decrement buttons.
There are also two HAL pins that have been provided to allow the user to tune the set point. These
HAL pins are:

• plasmac.arc-ok-counts which is the number of consecutive readings within the threshold that are
required to set the Arc OK signal. The default is 10.

• plasmac.arc-ok-threshold which is the maximum voltage deviation that is allowed for a valid
voltage to set the Arc OK signal. The default is 10.

The following example would set the number of valid consecutive readings required to 6:
setp plasmac.arc-ok-counts 6

These settings if used should be in the custom.hal file of the configuration.

10.8.15.7 Lost Arc Delay

Some plasma power sources/machine configurations may lose the Arc OK signal either momentarily
during a cut, or permanently near the end of a cut causing QtPlasmaC to pause the program and
report a ”valid arc lost” error.
There is a HAL pin named plasmac.arc-lost-delay that may be used to set a delay (in seconds)
that will prevent a paused program/error if the lost Arc OK signal is regained, or the M5 command is
reached before the set delay period expires.
It is important to note that the THC will be disabled and locked at the cutting height at the time the
Arc OK signal was lost.
The following code would set a delay of 0.1 seconds:
setp plasmac.arc-lost-delay 0.1

It is recommended that the user set this pin in the custom.hal file.
This setting should only be used if the user experiences the above symptoms. It should also be noted
that the user could use the appropriate Ignore Arc OK G-code commands to achieve a similar result.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 816 / 1322

10.8.15.8 Zero Window

Small fluctuations in the arc voltage displayed while the machine is at idle are possible depending on
many different variables (electrical noise, incorrect THCAD tuning, etc.).
After all contributing factors have been mitigated, if a small fluctuation still exists it is possible to
eliminate it by widening the voltage window for which QtPlasmaC will display 0 V.
The pin for adjusting this value is named plasmac.zero-window and the default value is set to 0.1. To
change this value, add the pin and the required value to the custom.hal file.
The following example would set the voltage window to be displayed as 0 V from -5 V to +5 V:
setp plasmac.zero-window 5

10.8.15.9 Tuning Void Sensing

In addition to the Void Slope setting in the PARAMETERS Tab there are two HAL pins to aid in the
fine tuning of void anti-dive. These HAL pins are:

• plasmac.void-on-cycles which is the number of times the slope rate needs to be exceeded to acti-
vate void anti-dive. The default is 2.

• plasmac.void-off-cycles which is the number of cycles without the slope rate being exceeded to
deactivate void anti-dive. The default is 10.

The following example would set the number of on cycles required to 3:
setp plasmac.void-on-cycles 3

The objective is to have as low a value of Void Slope as possible without any false triggering then
adjust on and off cycles to ensure clean activation and deactivation of void anti-dive. In most cases it
should not be necessary to change on and off cycles from the default value.
These settings if used should be in the custom.hal file of the configuration.

10.8.15.10 Max Offset

Max Offset is the distance (in millimeters) away from the Z MAX_LIMIT that QtPlasmaC will allow the
Z axis to travel while under machine control.
The pin for adjusting this value is named plasmac.max-offset and the default value (in millimeters)
is set to 5. To change this value, add the pin and the required value to the custom.hal file. It is not
recommended to use values less than 5 mm as offset overrun may cause unforeseen issues.
The following example would set the distance from Z MAX_LIMIT to 10 mm:
setp plasmac.max-offset 10

10.8.15.11 Enable Tabs During Automated Motion

By default, all tabs except the MAIN Tab are disabled during automated motion. It is possible for every
tab but the CONVERSATIONAL Tab to be enabled during automated motion by setting the following
HAL pin True:
setp qtplasmac.tabs_always_enabled 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 817 / 1322

Warning
It is the responsibility of the operator to ensure that the machine is equipped with a suitable,
working hardware E-stop. If using only a touchscreen to navigate the QtPlasmaC GUI, there is
no way to stop automated machine motion on any tab but the MAIN tab.

10.8.15.12 Override Jog Inhibit Via Z+ Jog

It is possible to override the jog inhibit by using the GUI or keyboard to jog in the Z+ direction rather
than checking the Override Jog box on the SETTINGS Tab.
This is done by changing the following option toTrue in the [GUI_OPTIONS] of the<machine_name>.prefs
file in the <machine_name> folder:
Override jog inhibit via Z+

10.8.15.13 QtPlasmaC State Outputs

The plasmac HAL component has a HAL pin named plasmac.state-outwhich can be used to interface
with user-coded components to provide the current state of the component.

Table 10.47: Different states QtPlasmaC could encounter

State Name Description
0 IDLE idle and waiting for a start command
1 PROBE_HEIGHT move down to probe height
2 PROBE_DOWN probe down until material sensed
3 PROBE_UP probe up until material not sensed, this sets the zero height
4 ZERO_HEIGHT not used at present
5 PIERCE_HEIGHT move up to pierce height
6 TORCH_ON turn the torch on
7 ARC_OK wait until arc OK detected
8 PIERCE_DELAY wait for pierce delay time
9 PUDDLE_JUMP xy motion begins, move to puddle jump height
10 CUT_HEIGHT move to cut height
11 CUT_MODE_01 cutting in either mode 0 or mode 1
12 CUT_MODE_2 cutting in mode 2
13 PAUSE_AT_END pause motion at end of cut
14 SAFE_HEIGHT move to safe height
15 MAX_HEIGHT move to maximum height
16 END_CUT end the current cut
17 END_JOB end the current job
18 TORCHPULSE a torch pulse is active
19 PAUSED_MOTION cut recovery motion is active while paused
20 OHMIC_TEST an ohmic test is active
21 PROBE_TEST a probe test is active
22 SCRIBING a scribing job is active
23 CONSUMABLE_CHANGE_ONmove to consumable change coordinates
24 CONSUMABLE_CHANGE_OFFreturn from consumable change coordinates
25 CUT_RECOVERY_ON cut recovery is active
26 CUT_RECOVERY_OFF cut recovery is deactivated

The DEBUG state is for testing purposes only and will not normally be encountered.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 818 / 1322

10.8.15.14 QtPlasmaC Debug Print

The plasmac HAL component has a HAL pin named plasmac.debug-print which if set to 1 (true) will
print to terminal every state change as a debug aid.

10.8.15.15 Hypertherm PowerMax Communications

Communications can be established with a Hypertherm PowerMax plasma cutter that has a RS485
port. This feature enables the setting of Cut Mode, Cutting Amperage and Gas Pressure auto-
matically from the Cut Parameters of the material file. In addition, the user will be able to view the
PowerMax’s Arc On Time in hh:mm:ss format on the STATISTICS Tab.
If Gas Pressure is set to zero, then the PowerMax will automatically calculate the required pressure
from the Cut Mode, Cut Current, torch type, and torch length.
Changing the cutting mode will set the gas pressure to zero causing the machine to use its automatic
gas pressure mode.
The maximum and minimum values of these parameters are read from the plasma cutter and the
related spin-buttons in the Cut Parameters are then limited by these values. Gas pressure cannot be
changed from zero until communications have been established.
This feature is enabled by setting the correct port name for the PM_PORT option in the [POWER-
MAX] section of the <machine_name>.prefs file. If the PM_PORT option is not set in the <ma-
chine_name>.prefs file then the widgets associated with this feature will not be visible.
Example showing enabling the Hypertherm PowerMax Communications on USB0:
[POWERMAX]
Port = /dev/ttyusb0

If the user is unsure of the name of the port, there is a Python script in the configuration directory
that will show all available ports and can also be used to test communications with the plasma unit
prior to enabling this feature in the QtPlasmaC GUI.
To use the test script, follow these instructions:
For a package installation (Buildbot) enter the following command in a terminal window:
pmx485-test

For a run in place installation enter the following two commands in a terminal window:
source ~/linuxcnc-dev/scripts/rip-environment
pmx485-test

The gas pressure units display (psi or bar) is determined by the data received during initial setup of
the communication link and is then shown next to the Gas Pressure setting in the MATERIAL section
of the PARAMETERS Tab.
The PowerMax machine will go into remote mode after communications have been established and
may only be controlled remotely (via the QtPlasmaC GUI) at this point. The connection can be vali-
dated by observing the PowerMax display.
To switch the PowerMax back to local mode the user can either:

1. Disable PowerMax Comms from the MAIN Tab

2. Close LinuxCNC which will put the PowerMax into local mode during shutdown.

3. Turn the PowerMax off for 30 seconds and then power it back on.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 819 / 1322

Tip
If PowerMax communications is active then selecting Mesh Mode will automatically select CPA mode
on the PowerMax unit.

Note
To use the PowerMax communications feature it is necessary to have the Python pyserial module
installed.
If pyserial is not installed an error message will be displayed.

To install pyserial, enter the following command into a terminal window:
sudo apt install python3-serial

A typical connection diagram is shown in the appendix of this document as well as confirmed working
interfaces.

10.8.15.16 Moving Pierce

A moving pierce allows the torch to move during the pierce delay period. This has an advantage in
that it allows for thicker materials to be pierced than can be achieved with a stationary pierce. It may
also support longer consumable life by allowing a style of motion that helps prevent molten material
being sprayed up into the torch nozzle.
Through the use of M159 a moving pierce can be configured.
The syntax for the M159 command is as follows:

M159 Pn Qn

Action
Code (P)

Action Description Value (Q)

601 Pierce
Type

0=Normal, 1=Wiggle, 2=Ramp 0,1,2

602 Pierce
Motion
Delay

Delay before Z motion starts to Pierce End Height.
Expressed as a % of Pierce Delay.

Integer 0
to 100

603 Pierce End
Height

Target pierce height at end of Pierce Delay. Normally
lower than Pierce Height.
Expressed in machine units.

Float

604 Cut Height
Delay

Delay at the end of transition to Pierce End Height
before transition to Cut Height.
Expressed in seconds.

Float

605 Gouge
Speed

Velocity of gouge.
Expressed in machine units/min.

Float

606 Gouge
Distance

Length of gouge.
Expressed in machine units.

Float

607 Creep
Speed

Velocity of creep which takes effect after gouge has
finished.
Expressed in machine units.

Float

608 Creep
Distance

Length of creep.
Expressed in machine units.

Float

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 820 / 1322

Action
Code (P)

Action Description Value (Q)

609 Reset Resets the values for action codes 601-608 back to 0,
returning to default behaviour.

Not
Required

The available moving pierce models are as follows:
The model supported is the same as that created by Sheetcam’s wiggle pierce. Given a straight lead-
in to the main cut the wiggle pierce is expected to move back and forth for some distance along the
lead-in. Strictly speaking this straight movement is arbitrary. Technically any X/Y motion is available
during the pierce delay, and it is up the CAM tooling or the user to program.
The constraint is that this motion is expected to be completed during the pierce delay value. If not
then the torch will transition to normal cut height on completion of pierce delay and potentially before
the wiggle motion is completed.
Therefore, the length of the wiggle and the feed rate need to be considered in calculating the pierce
delay, or the size of the wiggle constrained based on feed rate and pierce delay.
For example:

• A feed rate of 1080 mm/min (18 mm/s).

• A wiggle movement of 4 mm for 3 oscillations.

This means that the length of the wiggle is 4 x 3 = 12 mm. At the 18 mm/s feed rate, the pierce delay
needs to be approx 0.7 seconds to support the wiggle distance at pierce height.
The G-code needed invoke this behaviour is:

M159 P601 Q1

The G-code needed to reset to standard behaviour is:

M159 P609

A ramping pierce combines a range of parameters so as to generate a sloped trough that causes
the molten material to be evacuated. The resulting evacuation of material is sometimes likened to
a ”rooster tail” as it is very directional. Careful consideration of the lead-in can allow evacuation of
material in a safe direction for workers and machine components.
As the elements combine to drive the shape of the ramping pierce it is key that all of these elements
are carefully considered when designing the ramp pierce and the parameters that set it. Inevitably
there will need to be experimentation to build recipes that work with the plasma power source being
used in conjunction with the material to be cut.
Items to consider:

1. The gouge and creep speeds and distances in relation to the sum of Pierce Delay from the material
and the Cut Height Delay action.

2. Pierce height from the material and the End Pierce Height action in relation to Pierce Delay from
the material and the speeds in effect over the various distances during the Pierce Delay time.

3. The plasma source manufacturer’s cut charts for the material type and thickness.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 821 / 1322

As with wiggle pierce it is up the CAM tooling or the user to program a ramping pierce.
Below is a sample of code to setup a ramp pierce:

(o=0,kw=2, ph=4, pd=1, ch=1.5, fr=490, th=1, cv=99, pe=0.3, jh=0, jd=0)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 822 / 1322

M159 P601 Q2
M159 P602 Q50
M159 P603 Q2.5
M159 P604 Q1
M159 P605 Q980
M159 P606 Q5
M159 P607 Q245
M159 P608 Q3

This code shows us the following information in order:

1. Material magic comment.

• Pierce Height is 4 mm.
• Pierce Delay is 1 second.
• Cut Height is 1.5 mm.
• Cut Feed Rate is 490 mm/min.

2. Mode is set to 2 which is ramp pierce.

3. Pierce Motion Delay is 50% of Pierce Delay (0.5 seconds).

4. Pierce End Height is 2.5 mm

5. Cut Height Delay is 1 second.

6. Gouge Speed is 980 mm/min.

7. Gouge Distance is 5 mm

8. Creep Speed is 245 mm/min.

9. Creep Distance is 3 mm.

With this information the following behavior can be described:
It is important to note that accelerations and decelerations are omitted from the following calculations.
The torch will start at Pierce Height (4 mm from the material) and start traveling at a Gouge Speed
of 980 mm/min (16.3 mm/s) for a Gouge Distance of 5 mm which will consume 0.3 seconds (5 mm /
16.3 mm/s = 0.3 s) of the 0.5 s Pierce Motion Delay.
When the Gouge Distance is reached, the torch speed is set to a Creep Speed of 245 mm/min (4 mm/s)
for a Creep Distance of 3 mm. The Creep Distance will take roughly 0.7 seconds to complete (3 mm /
4 mm/s = 0.7 s).
The torch height will remain at 4 mm for another 0.2 seconds (0.5 s (Pierce Motion Delay) - 0.3 s
(Gouge Distance at Gouge Speed) = 0.2 s) after which the torch will begin descending to a Pierce
End Height of 2.5 mm over the remaining 0.5 seconds of the material’s Pierce Delay. Since there are
0.5 seconds of the material’s Pierce Delay remaining, as well as 0.5 seconds left at Creep Speed, the
Creep Distance will be covered at the same time the Pierce End Height is reached.
When the Creep Distance has been reached, the torch speed will be set to the material’s Cut Feed Rate
of 490 mm/min. Since there is a 1 second Cut Height Delay that started at the end of the material’s
Pierce Delay the transition to a Cut Height of 1.5 mm will occur after the remaining 1 second Cut
Height Delay has expired.
The above text should demonstrate that there is quite a bit of configuration and subtlety can be
achieved through experimentation and the careful use of different parameter combinations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 823 / 1322

10.8.16 Internationalisation

It is possible to create translation files for QtPlasmaC to display in the language of the current locale.
To create and or edit a translation file requires that LinuxCNC has been installed as run in place.
The following assumes that the LinuxCNC git directory is ~/linuxcnc-dev.
All language files are kept in ~/linuxcnc-dev/share/screens/qtplasmac/languages.
The qtplasmac.py file is a Python version of the GUI file used for translation purposes.
The .ts files are the translation source files for the translations. These are the files that require
creating/editing for each language.
The .qm files are the compiled translation files used by PyQt.
The directories qtplasmac_4x3/languages and qtplasmac_9x16/languages are only for links to the .qm
files in qtplasmac/languages.
The language is determined by an underscore plus the first two letters of the locale. For example, if an
Italian translation was being done then it would be _it. It will be referred to as _xx in this document,
so qtplasmac_xx.ts in this document would actually be qtplasmac_it.ts for an Italian translation.
The default locale for QtPlasmaC is _enwhich means that any translation files created as qtplasmac_en.*
will not be used for translations.
If any of the required utilities (pyuic5, pylupdate5, linguist) are not installed then the user will need
to install the required development tools:
sudo apt install qttools5-dev-tools pyqt5-dev-tools

Change to the languages directory:
cd ~/linuxcnc-dev/share/qtvcp/screens/qtplasmac/languages

If any text changes have been made to the GUI then run the following to update the GUI Python file:
pyuic5 ../qtplasmac.ui > qtplasmac.py

The user can either create a new translation source file for a non-existing language translation or
modify an existing translation source file due to changes being made to some text in a QtPlasmaC
source file. If modifying an existing translation that has had no source file changes then this step is
not required.
Create or edit a .ts file:
./langfile xx

Note
this command is a script which runs the following: $ pylupdate5 .py ../.py
../../../../../lib/python/qtvcp/lib/qtplasmac/*.py -ts qtplasmac_xx.ts

The editing of the translation is done with the linguist application:
linguist

1. Open the TS file and translate the strings

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 824 / 1322

It is not necessary to provide a translation for every text string, if no translation is specified for a
string, then the original string will be used in the application. The user needs to be careful with the
length of strings that appear on widgets as space is limited. If possible try, to make the translation no
longer than the original.
When editing is complete save the file:
File -> Save
Then create the .qm file:
File -> Release
Close linguist.
Then create links to the compiled .qm file for the other QtPlasmaC GUIs.
$./langlink xx

Note
This command is a script which creates a link in both qtplasmac_4x3/languages and qtplas-
mac_9x16/languages to the above .qm file and then renames the link to match the GUI name.

QtPlasmaC will be translated to the language of the current locale on the next start so long as a .qm
file exists in that language.
Users are welcome to submit translation files for inclusion into QtPlasmaC. An easy method is to post
the up to date qtplasmac_xx.ts file on the forum and the maintainers will install the translations.
The preferred method is to submit a pull request from the users GitHub account as described in the
contributing to LinuxCNC documentation. The files required to be committed are qtplasmac_xx.ts and
qtplasmac_xx.qm in the qtplasmc/languages directory plus the links in both the qtplasmac_4x3/languages
and qtplasmac_9x16/languages directories.

10.8.17 Appendix

10.8.17.1 Example Configurations

There are example configuration files which use the QtPlasmaC GUI to simulate plasma cutting ma-
chines.
They can be found in the LinuxCNC chooser under: Sample Configurations -> sim -> qtplasmac
Three versions are available in both metric and imperial units:

1. qtplasmac_l - 16:9 format, minimum resolution 1366x768

2. qtplasmac_p - 9:16 format, minimum resolution 786x1366

3. qtplasmac_s - 4:3 format, minimum resolution 1024x768

Each sample configuration includes a popup control panel to simulate various inputs to the GUI such
as:

1. ARC VOLTAGE

2. OHMIC SENSE

3. FLOAT SWITCH

4. BREAKAWAY SWITCH

5. ESTOP

https://www.linuxcnc.org/docs/html/code/contributing-to-linuxcnc.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 825 / 1322

10.8.17.2 NGC Samples

There are some sample G-code files in the ~/linuxcnc/nc_files/examples/plasmac directory.

10.8.17.3 QtPlasmaC Specific G-codes

Description Code
Begin cut M3 $0 S1
End cut M5 $0
Begin scribe M3 $1 S1
End scribe M5 $1
Begin center spot M3 $2 S1
End center spot M5 $2
End all the above. M5 $-1
Select a material. M190 Pn

n denotes the material number.
Wait for material change
confirmation.

M66 PG L3 Qn + n is delay time (in seconds). This value may
need to be increased for very large material files.

Set feed rate from material. F#<_hal[plasmac.cut-feed-rate]>
Enable Ignore Arc OK M62 P1 (synchronized with motion)

M64 P1 (immediate)
Disable Ignore Arc OK M63 P1 (synchronized with motion)

M65 P1 (immediate)
Disable THC M62 P2 (synchronized with motion)

M64 P2 (immediate)
Enable THC M63 P2 (synchronized with motion)

M65 P2 (immediate)
Disable Torch M62 P3 (synchronized with motion)

M64 P3 (immediate)
Enable Torch M63 P3 (synchronized with motion)

M65 P3 (immediate)
Set velocity to a percentage of
feed rate.

M67 E3 Qn (synchronized with motion)
M68 E3 Qn (immediate)
n is the percentage to set
10 is the minimum, below this will be set to 100%
100 is the maximum, above this will be set to 100%
It is recommended to have M68 E3 Q0 in both the
preamble and postamble.

Cutter compensation - left of
path

G41.1 D#<_hal[plasmac.kerf-width]>

Cutter compensation - right of
path

G42.1 D#<_hal[plasmac.kerf-width]>

Cutter compensation off G40
Note that M62 through M68 are invalid while cutter
compensation is on.

Cut holes at 60% feed rate #<holes> = 1
for holes less than 32 mm (1.26”) diameter

Cut holes at 60% feed rate,
turn torch off at hole end,
continue hole path for over cut.

#<holes> = 2
for holes less than 32 mm (1.26”) diameter
over cut length = 4 mm (0.157”)

Cut holes and arcs at 60% feed
rate.

#<holes> = 3
for holes less than 32 mm (1.26”) diameter
for arcs less than 16 mm (0.63”) radius

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 826 / 1322

Description Code
Cut holes and arcs at 60% feed
rate, turn torch off at hole end,
continue hole path for over cut.

#<holes> = 4
for holes less than 32 mm (1.26”) diameter
for arcs less than 16 mm (0.63”) radius
over cut length = 4 mm (0.157”)

Specify hole diameter for
#<holes> = 1-4.

#<h_diameter> = n
(n is the diameter, use the same units system as the rest of the
G-code file)

Specify hole velocity for
#<holes> = 1-4.

#<h_velocity> = n
(n is the percentage, set the percentage of the current feed
rate)

Specify over cut length. #<oclength> = n
(n is the length, use the same units system as the rest of the
G-code file)

Specify pierce-only mode. #<pierce-only> = n
(n is the mode, 0=normal cut mode, 1=pierce only mode)

Create or edit materials.
Options:
0 - Create temporary default
1 - Add if not existing
2 - Overwrite if existing else
add new

mandatory parameters:
(o=<option>, nu=<nn>, na=<ll>, ph=<nn>, pd=<nn>,
ch=<nn>, fr=<nn>)
optional parameters:
(kw=<nn>, th=<nn>, ca=<nn>, cv=<nn>, pe=<nn>,
gp=<nn>, cm=<nn>, jh=<nn>, jd=<nn>)

Keep Z Motion #<keep-z-motion> = 1

10.8.17.4 QtPlasmaC G-code Examples

Description Example
Select material and do a
normal cut

M190 P3
M66 P3 L3 Q1
F#<_hal[plasmac.cut-feed-rate]>
M3 $0 S1
.
.
M5 $0

Set velocity to 100% of
CutFeedRate

M67 E3 Q0 or M67 E3 Q100

Set velocity to 60% of
CutFeedRate

M67 E3 Q60

Set velocity to 40% of
CutFeedRate

M67 E3 Q40

Cut a hole with 60% reduced
speed using velocity setting

G21 (metric)
G64 P0.05
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]>
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
M67 E3 Q60 (reduce feed rate to 60%)
G3 I10 (the hole)
M67 E3 Q100 (restore feed rate to 100%)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 827 / 1322

Description Example
Cut a hole with 60% reduced
speed using the #<holes>
command

G21 (metric)
G64 P0.05
M52 P1 (enable adaptive feed)
#<holes> = 1 (velocity reduction for holes)
F#<_hal[plasmac.cut-feed-rate]>
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
G3 I10 (the hole)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

Cut a hole with over cut using
torch disable

G21 (metric)
G64 P0.05
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]>
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
M67 E3 Q60 (reduce feed rate to 60%)
G3 I10 (the hole)
M62 P3 (turn torch off)
G3 X0.8 Y6.081 I10 (continue motion for 4 mm)
M63 P3 (allow torch to be turned on)
M67 E3 Q0 (restore feed rate to 100%)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

Cut a hole with over cut using
the #<holes> command

G21 (metric)
G64 P0.05
M52 P1 (enable adaptive feed)
#<holes> = 2 (over cut for holes)
F#<_hal[plasmac.cut-feed-rate]>
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
G3 I10 (the hole)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

Cut a hole with 6.5 mm over
cut using the #<holes>
command

G21 (metric)
G64 P0.05
M52 P1 (enable adaptive feed)
#<holes> = 2 (over cut for holes)
<oclength> = 6.5 (6.5 mm over cut length)
F<_hal[plasmac.cut-feed-rate]>
G0 X10 Y10
M3 $0 S1 (start cut)
G1 X0
G3 I10 (the hole)
M5 $0 (end cut)
G0 X0 Y0
M2 (end job)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 828 / 1322

Description Example
Select scribe and select torch
at end of scribing

.

.
M52 P1 (enable adaptive feed)
F#<_hal[plasmac.cut-feed-rate]>
T1 M6 (select scribe)
G43 H0 (apply offsets)
M3 $1 S1 (start plasmac with scribe)
.
.
T0 M6 (select torch)
G43 H0 (apply offsets)
G0 X0 Y0 (parking position)
M5 $1 (end)

Hole center spotting. (Requires a small motion command or nothing happens)
G21 (metric)
F99999 (high feed rate)
G0 X10 Y10
M3 $2 S1 (spotting on)
G91 (relative distance mode)
G1 X0.000001
G90 (absolute distance mode)
M5 $2 (spotting off)
G0 X0 Y0
G90
M2

Create temporary default
material

(o=0, nu=2, na=5mm Mild Steel 40A, ph=3.1, pd=0.1,
ch=0.75, fr=3000)

Edit material, if not existing
create a new one

(o=2, nu=2, na=5mm Mild Steel 40A, ph=3.1, pd=0.1,
ch=0.75, fr=3000, kw=1.0)

10.8.17.5 Mesa THCAD

The Mesa THCAD is a common way of obtaining the arc voltage from a plasma cutter and is also
useful for ohmic sensing of the material during probing. The THCAD may be used for parallel port
configurations as well as configurations using Mesa Electronics hardware. The THCAD is available in
three different models, THCAD-5, THCAD-10, and THCAD-300.
There is a mode jumper on each THCAD card which should be set to UNIPOLAR
There is a frequency divider jumper on each THCAD card which should be set according to the hard-
ware type:

Input Device Recommended Setting
Parallel Port with very low latency F/32
Parallel Port recommended starting point F/64
Parallel Port with higher latency, or when
cutting thick material

F/128

Mesa Card F/32

This value is required to be entered into PnCConf during installation.

Note
If using a parallel port it may be necessary for the user to adjust the jumper setting and the sub-
sequent scaling values on the Parameters Tab to achieve optimal results. Symptoms may include
random torch raises or dives during otherwise stable cutting. Halscope plots may be useful in diag-
nosing these issues.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 829 / 1322

Located on the rear of the THCAD is a calibration sticker showing:
THCAD-nnn

0V 121.1 kHz
5V 925.3 kHz

or similar values, these values are required to be entered into PnCConf during installation.
PnCConf has entries for all required THCAD parameters and will calculate and configure any required
settings. The calculations used are as follows:
Voltage Scale
vs = r / ((f - z) / d / v)

Voltage Offset
vo = z / d

r = divider ratio (see below).
f = full scale value from calibration sticker.
z = 0 V value from calibration sticker.
d = value from jumper above.
v = full scale voltage of THCAD
Divider Ratio THCAD-5 or THCAD-10
If connecting to a plasma CNC port, then the divider ratio is selected from the plasma machine. A
common ratio used is 20:1.
If connecting to the plasma machines full arc voltage, then a common setup for a THCAD-10 is to use
a 1 MΩ resistor from arc negative to THCAD negative and a 1 MΩ resistor from arc positive to THCAD
positive. The divider ratio is obtained by:
r = (total_resistance + 100000) / 100000

THCAD-300
r = 1

Important
IF THE USER IS USING A HF START PLASMA POWER SUPPLY, THEN EACH OF THESE RESISTANCES
SHOULD BE MADE UP OF SEVERAL HIGH VOLTAGE RESISTORS.

Caution
IF THE USER IS USING A HF START PLASMA POWER SUPPLY, THEN OHMIC SENSING IS NOT
RECOMMENDED.

Note
These values can be calculated by using this online calculator.

Note
There is a lowpass filter available which may be useful if using a THCAD and there is a lot of noise on
the returned arc voltage.

https://jscalc.io/calc/NTr5QDX6WgMThBVb

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 830 / 1322

10.8.17.6 RS485 Connections

Hypertherm RS485 Wiring Diagram (wire colors inside the Hypertherm in parentheses):

Connection at Machine Pin # Connection at Breakout Board
1 - Tx+ (Red) ->RXD+
2 - Tx- (Black) ->RXD-
3 - Rx+ (Brown) ->T/R+
4 - Rx- (White) ->T/R-
5 - GND (Green) ->GND

RS485 interfaces that are known to work:
DTECH DT-5019 USB to RS-485 converter adapter:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 831 / 1322

The following is necessary to convert a motherboard Serial connection or Serial card (RS232) to
RS485:
DTECH RS-232 to RS-485 converter:

Serial card example (Sunnix SER5037A PCI Card shown with Breakout Board):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 832 / 1322

10.8.17.7 Arc OK With A Reed Relay

An effective and very reliable method of obtaining an Arc OK signal from a plasma power supply
without a CNC port is to mount a reed relay inside a non-conductive tube and wrap and secure three
turns of the work lead around the tube.
This assembly will now act as a relay that will switch on when current is flowing through the work
lead which only occurs when a cutting arc has been established.
This will require that QtPlasmaC be operated in Mode 1 rather than Mode 0. See the QtPlasmaC
Modes sections for more information.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 833 / 1322

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 834 / 1322

10.8.17.8 Contact Load Schematics

A full description is at Contact Load.

10.8.18 Known Issues

10.8.18.1 Keyboard Jogging

There is a known issue with some combinations of hardware and keyboards that may affect the au-
torepeat feature of the keyboard and will then affect keyboard jogging by intermittent stopping and
starting during jogging. This issue can be prevented by disabling the Operating System’s autorepeat
feature for all keys. QtPlasmaC uses this disabling feature by default for all keys only when the MAIN

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 835 / 1322

Tab is visible, with the following exceptions when autorepeat is allowed with the MAIN Tab visible: G-
code editor is active, MDI is active. When QtPlasmaC is shut down, the Operating System’s autorepeat
feature will be enabled for all keys.
If the user wishes to prevent QtPlasmaC from changing the Operating System’s autorepeat settings,
enter the following option in the [GUI_OPTIONS] section of the <machine_name>.prefs file:
Autorepeat all == True

This issue does not affect any jogging using the GUI jog buttons.

Note
Disconnecting and reconnecting a keyboard during an active QtPlasmaC session will cause the au-
torepeat feature to re-enable itself automatically which may cause intermittent stopping and starting
during jogging. The user must restart QtPlasmaC to disable the autorepeat feature again.

10.8.18.2 NO_FORCE_HOMING

QtPlasmaC does not currently adhere to the following stanza in the <machine_name>.ini file:
NO_FORCE_HOMING = 1

Regardless of this setting, QtPlasmaC requires that the machine must be homed before executing
MDI commands or running programs.

10.8.19 Contributing Code To QtPlasmaC

Bugfixes and enhancements to QtPlasmaC are always welcome. The preferred method to contribute
code is to submit a pull request (PR) comprised of a single commit to the LinuxCNC GitHub repository.
For more information on creating a PR, see the LinuxCNC documentation, the only pre-requisite is that
you sign up for a GitHub account. All PR’s are verified and then committed by one of the developers.
If you are uncomfortable with submitting a PR then attaching the code changes on a LinuxCNC Forum
thread is an acceptable method.
Bugfixes are accepted for both the latest released branch and master branch. If a bugfix applies to
both branches, then it is only necessary to submit a PR for the latest released branch as it will be
merged into master branch by a developer.
Enhancements are accepted for master branch only.
Every PR, except for changes to the QtPlasmaC documentation only, requires that the appropriate
version number is incremented and also that the version history is updated. Version numbers are
located in the following locations:

Location Format Incremented when
src/hal/components/plasmac.comp nnn component code

changes
share/qtvcp/screens/qtplasmac/qtplasmac_handler.py nnn.nnn component code

changes
GUI code changes

The version history is located at share/qtvcp/screens/qtplasmac/versions.html.

http://linuxcnc.org/docs/html/code/contributing-to-linuxcnc.html
https://github.com/
https://forum.linuxcnc.org/plasmac

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 836 / 1322

10.8.20 Support

Online help and support is available from the PlasmaC section of the LinuxCNC Forum.
The user can create a compressed file containing the complete machine configuration to aid in fault
diagnosis by pressing following the directions in the backup section. The resulting file is suitable for
attaching to a post on the LinuxCNC Forum to help the community diagnose specific issues.

10.9 MDRO GUI

10.9.1 Introduction

MDRO is a simple graphical front-end for LinuxCNC providing a display of data from Digital Read
Out (DRO) scales. It provides functionality similar to a normal machinist’s DRO display, allowing the
user to use the DRO scales on the machine when operating in a manual-only (hand-cranked) mode.
It is most useful for manual machines such as DRO equipped Bridgeport style mills that have been
converted to CNC but still have the manual controls.
MDRO is mouse and touch screen friendly.

https://forum.linuxcnc.org/plasmac
https://forum.linuxcnc.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 837 / 1322

Figure 10.51: MDRO Window

10.9.2 Getting Started

If your configuration is not currently set up to use MDRO, you can change it by editing the INI file. In
the [DISPLAY] section, change the DISPLAY = line to read DISPLAY = mdro. MDRO defaults to XYZ
for the axes but that can be changed. Set [DISPLAY] section GEOMETRY = XYZ for a 3 axis mill. A lathe
with with DRO scales on the X and Z axes might use GEOMETRY = XZ.
When MDRO starts, a window like the one in the figure Figure 10.51 above opens.

10.9.2.1 INI File Options

Other options that can be included on the [DISPLAY] section include:

• MDRO_VAR_FILE = <file.var> - preload G54 - G57 coordinate system data.

– Preload a .var file. This is typically the .var file used by the operational code.

• POINT_SIZE = <n> - Set text point size.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 838 / 1322

– This option sets the size of the font used which sets the overall size of the window. The default
point size is 20, Typical sizes are 20 to 30.

• MM = 1 Set this if the DRO scales provide data scaled in millimeters.

10.9.2.2 Command Line Options

MDRO can be started by a loadusr command in a HAL file. Options equivalent to those in the INI file
can be set on the command line:

• -l <file.var> - preload G54 - G57 coordinate system data.

• -p <n> - Set text point size.

• -m - Set this if the DRO scales provide data scaled in millimeters.

• <axes> - axes to display. See GEOMETRY above.

10.9.2.3 Pins

Using an example of ”XYZA” for an AXES argument, these pins will be created when MDRO starts:
mdro.axis.0
mdro.axis.1
mdro.axis.2
mdro.axis.3
mdro.index-enable.0
mdro.index-enable.1
mdro.index-enable.2
mdro.index-enable.3

In this example, the first row of the display will be labeled X and will show the data from the DRO scale
connected to pin mdro.axis.0. The mdro.index-enable.n pins should be connected to the index pins
of the DRO if the DRO supports them.
The pins must be connected in the file specified in the POSTGUI_HALFILE entry of the INI file when
the program is started from an INI file. They can be set directly after the loadusr command if the
program is started in a HAL file.

10.9.3 MDRO Window

The MDRO window contains the following elements:

• A row for each axis. Each row includes:

– the name of the axis,
– the current value,
– a ”z” button that zeros the value,
– a ”1/2” button that halves the value,
– a entry field that can be used to set a user-defined value. This field can be set from the keyboard

or from the on-screen keypad.
– A ”I” button that starts an index operation (see below),

• a keypad used to set values in the entry field via a mouse or touchscreen,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 839 / 1322

• coordinate system selection buttons:

– The ”mcs” button selects the machine coordinate system. These are the raw values from the
encoders connected to the mdro.axis.n pins.

– The ”cs1” - ”cs4” buttons allow the user to select among one of four user-defined coordinate
systems. If the program is started with the MDRO_VAR_FILE = option, the labels will be changed
to ”g54” - ”g57” and the values from the specified .var file will be preloaded. Note that any
changes to the values are not persistent: the .var file is never changed.

• Inch/Millimeter selection buttons.

10.9.4 Index operations

MDRO supports DRO scales with index marks. Hit the ”I” button on the axis row then crank the axis to
the index position. The machine coordinate will be zeroed. This is easiest to see at startup or when
the ”mcs” coordinate system has been selected.

10.9.5 Simulation

The easiest way to see how MDRO works is to try it in a simulation environment. Add this section to the
end of your simulation HAL file, usually ”hallib/core_sim.hal”:
loadusr -W mdro -l sim.var XYZ
net x-pos-fb => mdro.axis.0
net y-pos-fb => mdro.axis.1
net z-pos-fb => mdro.axis.2

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 840 / 1322

Chapter 11

G-code Programming

11.1 Coordinate Systems

11.1.1 Introduction

In this chapter, we will try to demystify coordinate systems. It is a very important concept to under-
stand the operation of a CNC machine, its configuration and its use.
We will also show that it is very interesting to use a reference point on the blank or the part and to
make the program work from this point, without having to take into account where the part is placed
on the table.
This chapter introduces you to offsets as they are used by the LinuxCNC. These include:

• Machine Coordinates (G53)

• Nine Coordinate System Offsets (G54-G59.3)

• Global Offsets (G92) and Local Offsets (G52)

11.1.2 Machine Coordinate System

When LinuxCNC is started the positions of each axis is the machine origin. Once an axis is homed, the
machine origin for that axis is set to the homed position. The machine origin is the machine coordinate
system on which all other coordinate systems are based. The G53 G-code can be used to move in the
machine coordinate system.

11.1.2.1 Machine coordinates moves: G53

Regardless of any offset that may be active, a G53 in a line of code tells the interpreter to move to the
actual axes positions (absolute positions) specified. For example:
G53 G0 X0 Y0 Z0

will move from the current position to the position where the machine coordinates of the three axes
will be at zero. You can use this command if you have a fixed position for the tool change or if your
machine has an automatic tool changer. You can also use this command to clear the work area and
access the workpiece in the vise.
G53 is a non modal command. It must be used in every block where a move in machine coordinate
system is desired.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 841 / 1322

11.1.3 Coordinate Systems

Figure 11.1: Coordinate Systems Example

Coordinate System Offsets

• G54 - use coordinate system 1

• G55 - use coordinate system 2

• G56 - use coordinate system 3

• G57 - use coordinate system 4

• G58 - use coordinate system 5

• G59 - use coordinate system 6

• G59.1 - use coordinate system 7

• G59.2 - use coordinate system 8

• G59.3 - use coordinate system 9

Coordinate system offsets are used to shift the coordinate system from the machine coordinate system.
This allows the G-code to be programmed for the part without regard to the part location on the
machine. Using coordinate system offsets would allow you to machine parts in multiple locations with
the same G-code.
The values for offsets are stored in the VAR file that is requested by the INI file during the startup of
an LinuxCNC. In the example below, which uses G55, the position of each axis for G55 origin is stored
in a numbered variable.
In the VAR file scheme, the first variable number stores the X offset, the second the Y offset and so on
for all nine axes. There are numbered sets like this for each of the coordinate system offsets.
Each of the graphical interfaces has a way to set values for these offsets. You can also set these values
by editing the VAR file itself and then restart LinuxCNC so that the LinuxCNC reads the new values
however this is not the recommended way. Using G10, G52, G92, G28.1, etc are better ways to set
the variables. For our example, we will directly edit the file so that G55 will take the following values:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 842 / 1322

Table 11.1: Example of G55 parameters

Axis Variable Value
X 5241 2.000000
Y 5242 1.000000
Z 5243 -2.000000
A 5244 0.000000
B 5245 0.000000
C 5246 0.000000
U 5247 0.000000
V 5248 0.000000
W 5249 0.000000

You should read this as moving the zero positions of G55 to X = 2 units, Y= 1 unit, and Z = -2 units
away from the absolute zero position.
Once there are values assigned, a call to G55 in a program block would shift the zero reference by the
values stored. The following line would then move each axis to the new zero position. Unlike G53,
G54 through G59.3 are modal commands. They will act on all blocks of code after one of them has
been set. The program that might be run using fixture offsets would require only a single coordinate
reference for each of the locations and all of the work to be done there. The following code is offered
as an example of making a square using the G55 offsets that we set above.
G55 ; use coordinate system 2
G0 X0 Y0 Z0
G1 F2 Z-0.2000
X1
Y1
X0
Y0
G0 Z0
G54 ; use coordinate system 1
G0 X0 Y0 Z0
M2

In this example the G54 near the end leaves the G54 coordinate system with all zero offsets so that
there is a modal code for the absolute machine based axis positions. This program assumes that we
have done that and use the ending command as a command to machine zero. It would have been
possible to use G53 and arrive at the same place but that command would not have been modal and
any commands issued after it would have returned to using the G55 offsets because that coordinate
system would still be in effect.
[source,”]
G54 uses parameters of coordinate system 1
G55 uses parameters of coordinate system 2
G56 uses parameters of coordinate system 3
G57 uses parameters of coordinate system 4
G58 uses parameters of coordinate system 5
G59 uses parameters of coordinate system 6
G59.1 uses parameters of coordinate system 7
G59.2 uses parameters of coordinate system 8
G59.3 uses parameters of coordinate system 9

11.1.3.1 Default Coordinate System

One other variable in the VAR file becomes important when we think about offset systems. This
variable is named 5220. In the default files its value is set to 1.00000. This means that when the

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 843 / 1322

LinuxCNC starts up it should use the first coordinate system as its default. If you set this to 9.00000 it
would use the ninth offset system as its default for start up and reset. Any value other than an integer
(decimal really) between 1 and 9, or a missing 5220 variable will cause the LinuxCNC to revert to the
default value of 1.00000 on start up.

11.1.3.2 Setting Coordinate System Offsets

The G10 L2x command can be used to set coordinate system offsets:

• G10 L2 P(1-9) - Set offset(s) to a value. Current position irrelevant (see G10 L2 for details).

• G10 L20 P(1-9) - Set offset(s) so current position becomes a value (see G10 L20 for details).

Note
We only give a brief overview here, refer to the G-code sections for a full description.

11.1.4 Local and Global Offsets

11.1.4.1 The G52 command

G52 is used in a part program as a temporary ”local coordinate system offset” within the workpiece
coordinate system. An example use case is when machining several identical features at different loca-
tions on a part. For each feature, G52 programs a local reference point within workpiece coordinates,
and a subprogram is called to machine the feature relative to that point.
G52 axis offsets are programmed relative to workpiece coordinate offsets G54 through G59.3. As a
local offset, G52 is applied after the workpiece offset, including rotation. Thus, a part feature will be
machined identically on each part regardless of the part’s orientation on the pallet.

Caution
As a temporary offset, set and unset within the localized scope of a part program, in other
G-code interpreters G52 does not persist after machine reset, M02 or M30. In LinuxCNC, G52
shares parameters with G92, which, for historical reasons, does persist these parameters. See
G92 Persistence Cautions below.

Caution
G52 and G92 share the same offset registers. Therefore, setting G52 will override any earlier
G92 setting, and G52will persist across machine reset when G92 persistence is enabled. These
interactions may result in unexpected offsets. See G92 and G52 Interaction Cautions below.

Programming G52 X1 Y2 offsets the current workpiece coordinate system X axis by 1 and Y axis by 2.
Accordingly, on the DRO, the current tool position’s X and Y coordinates will be reduced by 1 and 2,
respectively. Axes unset in the command, such as Z in the previous example, will be unaffected: any
previous G52 Z offset will remain in effect, and otherwise the Z offset will be zero.
The temporary local offset may be canceled with G52 X0 Y0. Any axes not explicitly zeroed will retain
the previous offset.
G52 shares the same offset registers as G92, and thus G52 is visible on the DRO and preview labeled
with G92.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 844 / 1322

11.1.5 G92 Axes Offsets

G92 is the most misunderstood and cleverest command programmable with LinuxCNC. The way it
works has changed a bit between the first versions and the current one. These changes have doubt
baffled many users. They should be seen as a command producing a temporary offset, which applies
to all the other offsets.

11.1.5.1 The G92 commands

G92 is typically used in two conceptually different ways: as a ”global coordinate system offset” or as
a ”local coordinate system offset”.
The G92 set of commands includes:

• G92 - This command, when used with axis names, sets values to offset variables.

• G92.1 - This command sets zero values to the G92 variables.

• G92.2 - This command suspends but does not zero out the G92 variables.

• G92.3 - This command applies offset values that have been suspended.

As a global offset, G92 is used to shift all workpiece coordinate systems G54 through G59.3. An
example use case is when machining several identical parts in fixtures with known locations on a
pallet, but the pallet location may change between runs or between machines. Each fixture location
offset, relative to a reference point on the pallet, is preset in one of the workpiece coordinate systems,
G54 through G59.3, and G92 is used to ”touch off” on the pallet reference point. Then, for each part,
the corresponding workpiece coordinate system is selected and the part program is executed.

Note
G10 R- workpiece coordinate system rotation is specific to the rs274ngc interpreter, and the G92
offset is applied after rotation. When using G92 as a global offset, workpiece coordinate system
rotations may have unexpected results.

As a local coordinate system, G92 is used as a temporary offset within the workpiece coordinate
system. An example use case is when machining a part with several identical features at different
locations. For each feature, G92 is used to set a local reference point, and a subprogram is called to
machine the feature starting at that point.

Note
The use of G92 is discouraged for programming with local coordinate systems in a part program.
Instead, see G52, a local coordinate system offset more intuitive when desired offset relative to the
workpiece is known but current tool location may not be known.

Programming G92 X0 Y0 Z0 sets the current tool location to the coordinates X0, Y0, and Z0, without
motion. G92 does not work from absolute machine coordinates. It works from current location.
G92 also works from current location as modified by any other offsets that are in effect when the
G92 command is invoked. While testing for differences between work offsets and actual offsets it was
found that a G54 offset could cancel out a G92 and thus give the appearance that no offsets were in
effect. However, the G92 was still in effect for all coordinates and did produce expected work offsets
for the other coordinate systems.
By default, G92 offsets are restored after the machine is started. Programmers that wish for Fanuc
behavior, whereG92 offsets are cleared at machine start and after a reset or program end, may disable
G92 persistence by setting DISABLE_G92_PERSISTENCE = 1 in the [RS274NGC] section of the INI
file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 845 / 1322

Note
It is good practice to clear the G92 offsets at the end of their use with G92.1 or G92.2. When starting
up LinuxCNC with G92 persistence enabled (the default), any offsets in the G92 variables will be
applied when an axis is homed. See G92 Persistence Cautions below.

11.1.5.2 Setting G92 Values

There are at least two ways to set G92 values:

• With a right click on the position displays in tklinuxcnc, a window opens where it is possible to enter
a value.

• With the G92 command

Both work from the current position of the axis that should be moved.
Programming G92 X Y Z A B C U V W sets the values of the G92 variables so that each axis takes the
value associated with its name. Those values are assigned to the current position of the axes. These
results satisfy to paragraphs one and two of the NIST document.
G92 commands work from current axis location and add and subtract correctly to give the current
axis position the value assigned by the G92 command. The effects work even though previous offsets
are in.
So if the X axis is currently showing 2.0000 as its position a G92 X0 will set an offset of -2.0000 so
that the current location of X becomes zero. A G92 X2 will set an offset of 0.0000 and the displayed
position will not change. A G92 X5.0000 will set an offset of 3.0000 so that the current displayed
position becomes 5.0000.

11.1.5.3 G92 Persistence Cautions

By default, the values of a G92 offset will be saved in the VAR file and be restored after a machine
reset or startup.
The G92 parameters are:

• 5210 - Enable/disable flag (1.0/0.0)

• 5211 - X Axis Offset

• 5212 - Y Axis Offset

• 5213 - Z Axis Offset

• 5214 - A Axis Offset

• 5215 - B Axis Offset

• 5216 - C Axis Offset

• 5217 - U Axis Offset

• 5218 - V Axis Offset

• 5219 - W Axis Offset

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 846 / 1322

where 5210 is the G92 enable flag (1 for enabled, 0 for disabled) and 5211 to 5219 are the axis offsets.
If you are seeing unexpected positions as the result of a commanded move, as a result of storing an
offset in a previous program and not clearing them at the end then issue a G92.1 in the MDI window
to clear the stored offsets.
If G92 values exist in the VAR file when LinuxCNC starts up, the G92 values in the var file will be
applied to the values of the current location of each axis. If this is home position and home position is
set as machine zero everything will be correct. Once home has been established using real machine
switches, or by moving each axis to a known home position and issuing an axis home command, any
G92 offsets will be applied. If you have a G92 X1 in effect when you home the X axis the DRO will
read X: 1.000 instead of the expected X: 0.000 because the G92 was applied to the machine origin. If
you issue a G92.1 and the DRO now reads all zeros then you had a G92 offset in effect when you last
ran LinuxCNC.
Unless your intention is to use the same G92 offsets in the next program, the best practice is to issue
a G92.1 at the end of any G code files where you use G92 offsets.
When a program is aborted during processing that has G92 offsets in effect a startup will cause them
to become active again. As a safeguard, always have your preamble to set the environment as you
expect it. Additionally, G92 persistence may be disabled by setting DISABLE_G92_PERSISTENCE =
1 in the [RS274NGC] section of the INI file.

11.1.5.4 G92 and G52 Interaction Cautions

G52 and G92 share the same offset registers. Unless G92 persistence is disabled in the INI file (see
G92 Commands), G52 offsets will also persist after machine reset, M02 or M30. Beware that a G52
offset in effect during a program abort may result in unintended offsets when the next program is run.
See G92 Persistence Cautions above.

11.1.6 Sample Programs Using Offsets

11.1.6.1 Sample Program Using Workpiece Coordinate Offsets

This sample engraving project mills a set of four .1 radius circles in roughly a star shape around a
center circle. We can setup the individual circle pattern like this.
G10 L2 P1 X0 Y0 Z0 (ensure that G54 is set to machine zero)
G0 X-0.1 Y0 Z0
G1 F1 Z-0.25
G3 X-0.1 Y0 I0.1 J0
G0 Z0
M2

We can issue a set of commands to create offsets for the four other circles like this.
G10 L2 P2 X0.5 (offsets G55 X value by 0.5 inch)
G10 L2 P3 X-0.5 (offsets G56 X value by -0.5 inch)
G10 L2 P4 Y0.5 (offsets G57 Y value by 0.5 inch)
G10 L2 P5 Y-0.5 (offsets G58 Y value by -0.5 inch)

We put these together in the following program:
(a program for milling five small circles in a diamond shape)

G10 L2 P1 X0 Y0 Z0 (ensure that G54 is machine zero)
G10 L2 P2 X0.5 (offsets G55 X value by 0.5 inch)
G10 L2 P3 X-0.5 (offsets G56 X value by -0.5 inch)
G10 L2 P4 Y0.5 (offsets G57 Y value by 0.5 inch)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 847 / 1322

G10 L2 P5 Y-0.5 (offsets G58 Y value by -0.5 inch)

G54 G0 X-0.1 Y0 Z0 (center circle)
G1 F1 Z-0.25
G3 X-0.1 Y0 I0.1 J0
G0 Z0

G55 G0 X-0.1 Y0 Z0 (first offset circle)
G1 F1 Z-0.25
G3 X-0.1 Y0 I0.1 J0
G0 Z0

G56 G0 X-0.1 Y0 Z0 (second offset circle)
G1 F1 Z-0.25
G3 X-0.1 Y0 I0.1 J0
G0 Z0

G57 G0 X-0.1 Y0 Z0 (third offset circle)
G1 F1 Z-0.25
G3 X-0.1 Y0 I0.1 J0
G0 Z0

G58 G0 X-0.1 Y0 Z0 (fourth offset circle)
G1 F1 Z-0.25
G3 X-0.1 Y0 I0.1 J0
G54 G0 X0 Y0 Z0

M2

Now comes the time when we might apply a set of G92 offsets to this program. You’ll see that it is
running in each case at Z0. If the mill were at the zero position, a G92 Z1.0000 issued at the head
of the program would shift everything an inch. You might also shift the whole pattern around in the
XY plane by adding some X and Y offsets with G92. If you do this you should add a G92.1 command
just before the M2 that ends the program. If you do not, other programs that you might run after this
one will also use that G92 offset. Furthermore it would save the G92 values when you shut down the
LinuxCNC and they will be recalled when you start up again.

11.1.6.2 Sample Program Using G52 Offsets

(To be written)

11.2 Tool Compensation

11.2.1 Touch Off

Using the Touch Off Screen in the AXIS interface you can update the tool table automatically.
Typical steps for updating the tool table:

• After homing load a tool with Tn M6 where n is the tool number.

• Move tool to an established point using a gauge or take a test cut and measure.

• Click the Touch Off button in the Manual Control tab (or hit the End button on your keyboard).

• Select Tool Table in the Coordinate System drop down box.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 848 / 1322

• Enter the gauge or measured dimension and select OK.

The Tool Table will be changed with the correct Z length to make the DRO display the correct Z
position and a G43 command will be issued so the new tool Z length will be in effect. Tool table touch
off is only available when a tool is loaded with Tn M6.

Figure 11.2: Touch Off Tool Table

11.2.1.1 Using G10 L1/L10/L11

The G10 L1/L10/L11 commands can be used to set tool table offsets:

• G10 L1 P__n__ - Set offset(s) to a value. Current position irrelevant (see G10 L1 for details).

• G10 L10 P__n__ - Set offset(s) so current position w/ fixture 1-8 becomes a value (see G10 L10 for
details).

• G10 L11 P__n__ - Set offset(s) so current position w/ fixture 9 becomes a value (see G10 L11 for
details).

Note
This is only a brief presentation, refer to the reference guide of the G-code for more detailed expla-
nations.

11.2.2 Tool Table

The Tool Table is a text file that contains information about each tool. The file is located in the same
directory as your configuration and is called tool.tbl by default. A file name may be specified with the
INI file [EMCIO]TOOL_TABLE setting. The tools might be in a tool changer or just changed manually.
The file can be edited with a text editor or be updated using G10 L1. See the Lathe Tool Table section
for an example of the lathe tool table format. The maximum pocket number is 1000.
The Tool Editor or a text editor can be used to edit the tool table. If you use a text editor make sure
you reload the tool table in the GUI.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 849 / 1322

11.2.2.1 Tool Table Format

.Tool Table Format

T# P# X Y Z A B C U V W Dia FA BA Ori Rem
; (no data after opening semicolon)
T1 P17 X0 Y0 Z0 A0 B0 C0 U0 V0 W0 D0 I0 J0 Q0 ;rem
T2 P5 X0 Y0 Z0 A0 B0 C0 U0 V0 W0 D0 I0 J0 Q0 ;rem
T3 P12 X0 Y0 Z0 A0 B0 C0 U0 V0 W0 D0 I0 J0 Q0 ;rem

In general, the tool table line format is:

• T - tool number (tool numbers must be unique)

• P - pocket number, 1-1000 (pocket numbers must be unique, Pocket 0 represents the spindle)

• X..W - tool offset on specified axis - floating-point

• D - tool diameter - floating-point, absolute value

• I - front angle (lathe only) - floating-point

• J - back angle (lathe only) - floating-point

• Q - tool orientation (lathe only) - integer, 0-9

• ; - beginning of comment or remark - text

Tool numbers should be unique. Lines beginning with a semicolon are ignored.
The units used for the length, diameter, etc., are in machine units.
You will probably want to keep the tool entries in ascending order, especially if you are going to be
using a randomizing tool changer. Although the tool table does allow for tool numbers in any order.
One line may contain as many as 16 entries, but will likely contain much fewer. The entries for T (tool
number) and P (pocket number) are required. The last entry (a remark or comment, preceded by a
semicolon) is optional. It makes reading easier if the entries are arranged in columns, as shown in
the table, but the only format requirement is that there be at least one space or tab after each of the
entries on a line and a newline character at the end of each entry.
The meanings of the entries and the type of data to be put in each are as follows.

Tool Number (required)
The T column contains the number (unsigned integer) which represents a code number for the
tool. The user may use any code for any tool, as long as the codes are unsigned integers.

Pocket Number (required)
The P column contains the number (unsigned integer) which represents the pocket number (slot
number) of the tool changer slot where the tool can be found. The entries in this column must
all be different.

The pocket numbers will typically start at 1 and go up to the highest available pocket on your tool
changer. But not all tool changers follow this pattern. Your pocket numbers will be determined by
the numbers that your tool changer uses to refer to the pockets. So all this is to say that the pocket
numbers you use will be determined by the numbering scheme used in your tool changer, and the
pocket numbers you use must make sense on your machine.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 850 / 1322

Data Offset Numbers (optional)
The Data Offset columns (XYZABCUVW) contain real numbers which represent tool offsets in
each axis. This number will be used if tool length offsets are being used and this tool is selected.
These numbers can be positive, zero, or negative, and are in fact completely optional. Although
you will probably want to make at least one entry here, otherwise there would be little point in
making an entry in the tool table to begin with.

In a typical mill, you probably want an entry for Z (tool length offset). In a typical lathe, you probably
want an entry for X (X tool offset) and Z (Z tool offset). In a typical mill using cutter diameter com-
pensation (cutter comp), you probably also want to add an entry for D (cutter diameter). In a typical
lathe using tool nose diameter compensation (tool comp), you probably also want to add an entry for
D (tool nose diameter).
A lathe also requires some additional information to describe the shape and orientation of the tool.
So you probably want to have entries for I (tool front angle) and J (tool back angle). You probably also
want an entry for Q (tool orientation).
See the Lathe User Information chapter for more detail.
The Diameter column contains a real number. This number is used only if cutter compensation is
turned on using this tool. If the programmed path during compensation is the edge of the material
being cut, this should be a positive real number representing the measured diameter of the tool. If the
programmed path during compensation is the path of a tool whose diameter is nominal, this should
be a small number (positive or negative, but near zero) representing only the difference between the
measured diameter of the tool and the nominal diameter. If cutter compensation is not used with a
tool, it does not matter what number is in this column.
The Comment column may optionally be used to describe the tool. Any type of description is OK. This
column is for the benefit of human readers only. The comment must be preceded by a semicolon.

Note
Earlier versions of LinuxCNC had two different tool table formats for mills and lathes, but since the
2.4.x release, one tool table format is used for all machines.

11.2.2.2 Tool IO

The non-realtime program iocontrol is conventionally used for tool changer management (and other
io functions for enabling LinuxCNC and the control of coolant hardware). The HAL pins used for tool
management are prefixed with iocontrol.0..
A G-code T command asserts the HAL output pin iocontrol.0.tool-prepare. The HAL input pin,
iocontrol.0.tool-prepared, must be set by external HAL logic to complete tool preparation leading
to a subsequent reset of the tool-prepare pin.
A G-code M6 command asserts the HAL output pin iocontrol.0.tool-change. The related HAL
input pin, iocontrol.0.tool-prepared, must be set by external HAL logic to indicate completion of
the tool change leading to a subsequent reset of the tool-change pin.
Tooldata is accessed by an ordered index (idx) that depends on the type of toolchanger specified by
[EMCIO]RANDOM_TOOLCHANGER=type.

1. For RANDOM_TOOLCHANGER = 0, (0 is default and specifies a non-random toolchanger) idx is a
number indicating the sequence in which tooldata was loaded.

2. For RANDOM_TOOLCHANGER = 1, idx is the current pocket number for the tool number specified
by the G-code select tool command Tn.

The io program provides HAL output pins to facilitate toolchanger management:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 851 / 1322

1. iocontrol.0.tool-prep-number

2. iocontrol.0.tool-prep-index

3. iocontrol.0.tool-prep-pocket

4. iocontrol.0.tool-from-pocket

1. Tool number n==0 indicates no tool.

2. The pocket number for a tool is set when tooldata is loaded/reloaded from its data source ([EM-
CIO]TOOL_TABLE or [EMCIO]DB_PROGRAM).

3. At G-code Tn (n != 0) command:

a. iocontrol.0.tool-prep-index = idx (index based on tooldata load sequence)
b. iocontrol.0.tool-prep-number = n
c. iocontrol.0.tool-prep-pocket = the pocket number for n

4. At G-code T0 (n == 0 remove) command:

a. iocontrol.0.tool-prep-index = 0
b. iocontrol.0.tool-prep-number = 0
c. iocontrol.0.tool-prep-pocket = 0

5. At M-code M6 (following iocontrol.0.tool-changed pin 0-->1):

a. iocontrol.0.tool-from-pocket = pocket number used to retrieve tool

1. Tool number n==0 is not special.

2. Pocket number 0 is special as it indicates the spindle.

3. The current pocket number for tool n is the tooldata index (idx) for tool n.

4. At G-code command Tn:

a. iocontrol.0.tool-prep-index = tooldata index (idx) for tool n
b. iocontrol.0.tool-prep-number = n
c. iocontrol.0.tool-prep-pocket = pocket number for tool n

5. At M-code M6 (following iocontrol.0.tool-changed pin 0-->1):

a. iocontrol.0.tool-from-pocket = pocket number used to retrieve tool

Note
At startup, iocontrol.0.tool-from-pocket = 0. An M61Qn (n!=0) command does not change the
iocontrol.0.tool-from-pocket. An M61Q0 (n==0) command sets iocontrol.0.tool-from-pocket
to 0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 852 / 1322

11.2.2.3 Tool Changers

LinuxCNC supports three types of tool changers: manual, random location and non-random or fixed
location. Information about configuring a LinuxCNC tool changer is in the EMCIO Section of the INI
chapter.
Manual Tool Changer Manual tool changer (you change the tool by hand) is treated like a fixed
location tool changer. Manual toolchanges can be aided by a HAL configuration that employs the non-
realtime program hal_manualtoolchange and is typically specified in an INI file with INI statements:
[HAL]
HALFILE = axis_manualtoolchange.hal

Fixed Location Tool Changers Fixed location tool changers always return the tools to a fixed position
in the tool changer. This would also include designs like lathe turrets. When LinuxCNC is configured
for a fixed location tool changer the P number is not used internally (but read, preserved and rewritten)
by LinuxCNC, so you can use P for any bookkeeping number you want.

Note
When using [EMCIO]RANDOM_TOOLCHANGER = 0 (the default), the P pocket number is a parameter of
the tooldata that is retrieved from the tooldata source ([EMCIO]TOOL_TABLE or [EMCIO]DB_PROGRAM).
In many applications it is fixed but it may be changed by edits to the [EMCIO]TOOL_TABLE or pro-
grammatically when the [EMCIO]DB_PROGRAM is used. LinuxCNC pushes updates to the data source
([EMCIO]TOOL_TABLE or [EMCIO]DB_PROGRAM) for G-codes G10L1, G10L10, G10L11, M61. LinuxCNC
can pull tooldata updates from the data source by UI (user-interface) commands (Python example:
linuxcnc.command().load_tool_table()) or by the G-code: G10L0.

Random Location Tool Changers Random location tool changers ([EMCIO]RANDOM_TOOLCHANGER =
1) swap the tool in the spindle with the one in the changer. With this type of tool changer the tool will
always be in a different pocket after a tool change. When a tool is changed LinuxCNC rewrites the
pocket number to keep track of where the tools are. T can be any number but P must be a number
that makes sense for the machine.

11.2.3 Tool Length Compensation

The tool length compensations are given as positive numbers in the tool table. A tool compensation
is programmed using G43 H_n_, where n is the index number of the desired tool in the tool table.
It is intended that all entries in the tool table are positive. The value of H is checked, it must be a
non-negative integer when read. The interpreter behaves as follows:

1. If G43 Hn is programmed, a call to the function USE_TOOL_LENGTH_OFFSET(_̀_length__) ̀ is
made (where length is the length difference, read from the tool table, of the indexed tool n),
tool_length_offset is repositioned in the machine settings model and the value of current_z in
the model is adjusted. Note that n does not have to be the same as the slot number of the tool
currently in the spindle.

2. If G49 is programmed, USE_TOOL_LENGTH_OFFSET(0.0) is called, tool_length_offset is reset to
0.0 in the machine settings template and the current value of current_z in the model is adjusted.
The effect of the tool length compensation is illustrated in the capture below. Note that the
tool length is subtracted from Z so that the programmed control point corresponds to the tip of
the tool. Note also that the effect of the length compensation is immediate when you see the
compensation is immediate when the position of Z is seen as a relative coordinate, but it has no
effect on the actual machine position until a Z movement is programmed.

Tool length test program. Tool #1 is one inch long.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 853 / 1322

N01 G1 F15 X0 Y0 Z0
N02 G43 H1 Z0 X1
N03 G49 X0 Z0
N04 G0 X2
N05 G1 G43 H1 G4 P10 Z0 X3
N06 G49 X2 Z0
N07 G0 X0

With this program, in most cases, the machine will apply the offset in the form of a ramp during the
movement in xyz following the word G43.

11.2.4 Cutter Radius Compensation

Cutter Compensation allows the programmer to program the tool path without knowing the exact tool
diameter. The only caveat is the programmer must program the lead in move to be at least as long as
the largest tool radius that might be used.
There are two possible paths the cutter can take since the cutter compensation can be on to the left
or right side of a line when facing the direction of cutter motion from behind the cutter. To visualize
this imagine you were standing on the part walking behind the tool as it progresses across the part.
G41 is your left side of the line and G42 is the right side of the line.
The end point of each move depends on the next move. If the next move creates an outside corner the
move will be to the end point of the compensated cut line. If the next move creates in an inside corner
the move will stop short so to not gouge the part. The following figure shows how the compensated
move will stop at different points depending on the next move.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 854 / 1322

Figure 11.3: Compensation End Point

11.2.4.1 Overview

Cutter compensation uses the data from the tool table to determine the offset needed. The data can
be set at run time with G10 L1.
Any move that is long enough to perform the compensation will work as the entry move. The minimum
length is the cutter radius. This can be a rapid move above the work piece. If several rapid moves are
issued after a G41/42 only the last one will move the tool to the compensated position.
In the following figure you can see that the entry move is compensated to the right of the line. This
puts the center of the tool to the right of X0 in this case. If you were to program a profile and the end
is at X0 the resulting profile would leave a bump due to the offset of the entry move.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 855 / 1322

Figure 11.4: Entry Move

Z axis motion may take place while the contour is being followed in the XY plane. Portions of the
contour may be skipped by retracting the Z axis above the part and by extending the Z-axis at the
next start point.
Rapid moves may be programmed while compensation is turned on.
Start a program with G40 to make sure compensation is off.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 856 / 1322

11.2.4.2 Examples

Figure 11.5: Outside Profile

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 857 / 1322

Figure 11.6: Inside Profile

11.3 Tool Edit GUI

11.3.1 Overview

Note
The tooledit elements described here are available since version 2.5.1 and later. In version 2.5.0, the
graphical interface interface does not allow these adjustments.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 858 / 1322

Figure 11.7: Tool Edit GUI - Overview

The tooledit program can update the tool table file with edited changes by using the SaveFile button.
The SaveFile button updates the system file but a separate action is required to update the tool table
data used by a running LinuxCNC instance. With the AXIS GUI, both the file and the current tool
table data used by LinuxCNC can be updated with the ReloadTable button. This button is enabled
only when the machine is ON and IDLE.

11.3.2 Column Sorting

The tool table display can be sorted on any column in ascending order by clicking on the column
header. A second click sorts in descending order. Column sorting requires that the machine is con-
figured with the default Tcl version >= 8.5.

Figure 11.8: Tool Edit GUI - Column Sorting

In Ubuntu Lucid 10.04 Tcl/Tk8.4 it is installed by default. The installation is performed as follows:
sudo apt-get install tcl8.5 tk8.5

Depending upon other applications installed on the system, it may be necessary to enable Tcl/Tk8.5
with the commands:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 859 / 1322

sudo update-alternatives --config tclsh ;# select the option for tclsh8.5
sudo update-alternatives --config wish ;# select the option for wish8.5

11.3.3 Columns Selection

By default, the tooledit program will display all possible tool table parameter columns. Since few
machines use all parameters, the columns displayed can be limited with the following INI file setting:
Syntax of INI file
[DISPLAY]
TOOL_EDITOR = tooledit column_name column_name ...

Example for Z and DIAM columns
[DISPLAY]
TOOL_EDITOR = tooledit Z DIAM

Figure 11.9: Tool Edit GUI - Columns Selection Example

11.3.4 Stand Alone Use

The tooledit program can also be invoked as a standalone program. For example, if the program is in
the user PATH, typing tooledit will show the usage syntax:
Stand Alone
tooledit
Usage:

tooledit filename
tooledit [column_1 ... column_n] filename

Valid column names are: x y z a b c u v w diam front back orien

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 860 / 1322

To synchronize a standalone tooledit with a running LinuxCNC application, the filename must resolve
to the same [EMCIO]TOOL_TABLE filename specified in the LinuxCNC INI file.
When using the program tooledit while LinuxCNC is running, G-code command execution or other
programs may alter tool table data and the tool table file. File changes are detected by tooledit and a
message is displayed:
Warning: File changed by another process

The tooledit tool table display can be updated to read the modified file with the ReRead button.
The tool table is specified in the INI file with an entry:
[EMCIO]TOOL_TABLE = tool_table_filename

The tool table file can be edited with any simple text editor (not a word processor).
The AXIS GUI can optionally use an INI file setting to specify the tool editor program:
[DISPLAY]TOOL_EDITOR = path_to_editor_program

By default, the program named tooledit is used. This editor supports all tool table parameters, allows
addition and deletion of tool entries, and performs a number of validity checks on parameter values.

11.4 Overview of G-Code Programming

11.4.1 Overview

The LinuxCNC G-code language is based on the RS274/NGC language. The G-code language is based
on lines of code. Each line (also called a block) may include commands to do several different things.
Lines of code may be collected in a file to make a program.
A typical line of code consists of an optional line number at the beginning followed by one or more
words. A word consists of a letter followed by a number (or something that evaluates to a number). A
word may either give a command or provide an argument to a command. For example, G1 X3 is a valid
line of code with two words. G1 is a command meaning move in a straight line at the programmed
feed rate to the programmed end point, and X3 provides an argument value (the value of X should be
3 at the end of the move). Most LinuxCNC G-code commands start with either G or M (for General
and Miscellaneous). The words for these commands are called G-codes and M-codes. Also common
are subroutine codes that begin with o- which are called o-codes.
The LinuxCNC language has no indicator for the start of a program. The Interpreter, however, deals
with files. A single program may be in a single file, or a program may be spread across several files. A
file may demarcated with percents in the following way. The first non-blank line of a file may contain
nothing but a percent sign, %, possibly surrounded by white space, and later in the file (normally at
the end of the file) there may be a similar line. Demarcating a file with percents is optional if the file
has an M2 or M30 in it, but is required if not. An error will be signaled if a file has a percent line at
the beginning but not at the end. The useful contents of a file demarcated by percents stop after the
second percent line. Anything after that is ignored.
The LinuxCNC G-code language has two commands (M2 or M30), either of which ends a program. A
program may end before the end of a file. Lines of a file that occur after the end of a program are not
to be executed. The interpreter does not even read them.

11.4.2 Format of a line

A permissible line of input code consists of the following, in order, with the restriction that there is a
maximum (currently 256) to the number of characters allowed on a line.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 861 / 1322

1. an optional block delete character, which is a slash /.

2. an optional line number.

3. Any number of:

1. words,
2. parameter settings,
3. subroutine codes, and
4. comments.

4. an end of line marker (carriage return or line feed or both).

Any input not explicitly allowed is illegal and will cause the Interpreter to signal an error.
Spaces and tabs are allowed anywhere on a line of code and do not change the meaning of the line,
except inside comments. This makes some strange-looking input legal. The line G0X +0. 12 34Y 7 is
equivalent to G0 x+0.1234 Y7, for example.
Blank lines are allowed in the input. They are to be ignored.
Input is case insensitive, except in comments, i.e., any letter outside a comment may be in upper or
lower case without changing the meaning of a line.

11.4.2.1 /: Block Delete

The optional block delete character the slash / when placed first on a line can be used by some user
interfaces to skip lines of code when needed. In Axis the key combination Alt-m-/ toggles block delete
on and off. When block delete is on any lines starting with the slash / are skipped.
In AXIS, it is also possible to enable block delete with the following icon:

AXIS Block Delete Icon

11.4.2.2 Optional Line Number

A line number is the letter N followed by an unsigned integer, optionally followed by a period and
another unsigned integer. For example, N1234 and N56.78 are valid line numbers. They may be
repeated or used out of order, although normal practice is to avoid such usage. Line numbers may
also be skipped, and that is normal practice. A line number is not required to be used, but must be in
the proper place if used.

Note
Line numbers are not recommended. See Best Practices.

11.4.2.3 Words, Parameters, Subroutines, Comments

A word is a letter other than N or O (”o”) followed by a real value.
Words may begin with any of the letters shown in the following Table. The table includes N and O
for completeness, even though, as defined above, line numbers and program flow parameters are not
words. Several letters (I, J, K, L, P, R) may have different meanings in different contexts. Letters which
refer to axis names are not valid on a machine which does not have the corresponding axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 862 / 1322

Table 11.3: Words and their meanings

Letter Meaning
A A axis of machine
B B axis of machine
C C axis of machine
D Tool radius compensation number
F Feed rate
G General function (See table G-code Modal Groups)
H Tool length offset index
I X offset for arcs and G87 canned cycles
J Y offset for arcs and G87 canned cycles

K Z offset for arcs and G87 canned cycles.
Spindle-Motion Ratio for G33 synchronized movements.

L generic parameter word for G10, M66 and others
M Miscellaneous function (See table M-code Modal Groups)
N Line number (not recommended, see Best Practices)
O o-codes for program flow control (See o-Codes)
P Dwell time in canned cycles and with G4.

Key used with G10.
Q Feed increment in G73, G83 canned cycles
R Arc radius or canned cycle plane
S Spindle speed
T Tool selection
U U axis of machine
V V axis of machine
W W axis of machine
X X axis of machine
Y Y axis of machine
Z Z axis of machine

Parameters are identified with a ”#” symbol in front of them. See Parameters Section below.
Also called o-codes these provide program flow control (such as if-else logic and callable subroutines)
and are covered fully at the page on o-Codes and also below in Subroutine Codes and Parameters.

Note
o-codes are sometimes also called o-words.

Comments can be embedded in a line using parentheses () or for the remainder of a line using a
semi-colon. There are also active comments like MSG, DEBUG, etc. See the section on comments.

11.4.2.4 End of Line Marker

This is any combination of carriage return or line feed.

11.4.3 Numbers

The following rules are used for (explicit) numbers. In these rules a digit is a single character between
0 and 9.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 863 / 1322

• A number consists of:

– an optional plus or minus sign, followed by
– zero to many digits, followed, possibly, by
– one decimal point, followed by
– zero to many digits - provided that there is at least one digit somewhere in the number.

• There are two kinds of numbers:

– Integers, that does not have a decimal point,
– Decimals, that do have a decimal point.

• Numbers may have any number of digits, subject to the limitation on line length. Only about sev-
enteen significant figures will be retained, however (enough for all known applications).

• A non-zero number with no sign but the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after the decimal
point and the last non-zero digit) zeros are allowed but not required. A number written with initial or
trailing zeros will have the same value when it is read as if the extra zeros were not there.
Numbers used for specific purposes in RS274/NGC are often restricted to some finite set of values or
some to some range of values. In many uses, decimal numbers must be close to integers; this includes
the values of indices (for parameters and carousel slot numbers, for example), M-codes, and G-codes
multiplied by ten. A decimal number which is intended to represent an integer is considered close
enough if it is within 0.0001 of an integer value.

11.4.4 Parameters

The RS274/NGC language supports parameters - what in other programming languages would be
called variables. There are several types of parameter of different purpose and appearance, each de-
scribed in the following sections. The only value type supported by parameters is floating-point; there
are no string, boolean or integer types in G-code like in other programming languages. However, logic
expressions can be formulated with boolean operators (AND, OR, XOR, and the comparison operators
EQ,NE,GT,GE,LT,LE), and the MOD, ROUND, FUP and FIX operators support integer arithmetic.
Parameters differ in syntax, scope, behavior when not yet initialized, mode, persistence and intended
use.

Syntax
There are three kinds of syntactic appearance:

• numbered - #4711
• named local - #<localvalue>
• named global - #<_globalvalue>

Scope
The scope of a parameter is either global, or local within a subroutine. Subroutine parameters
and local named variables have local scope. Global named parameters and numbered parameters
starting from number 31 are global in scope. RS274/NGC uses lexical scoping - in a subroutine
only the local variables defined therein, and any global variables are visible. The local variables
of a calling procedure are not visible in a called procedure.

Behavior of uninitialized parameters

• Uninitialized global parameters, and unused subroutine parameters return the value zero when
used in an expression.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 864 / 1322

• Uninitialized named parameters signal an error when used in an expression.

Mode
Most parameters are read/write and may be assigned to within an assignment statement. How-
ever, for many predefined parameters this does not make sense, so they are are read-only - they
may appear in expressions, but not on the left-hand side of an assignment statement.

Persistence
When LinuxCNC is shut down, volatile parameters lose their values. All parameters except num-
bered parameters in the current persistent range 1 are volatile. Persistent parameters are saved
in the .var file and restored to their previous values when LinuxCNC is started again. Volatile
numbered parameters are reset to zero.

Intended Use

• user parameters - numbered parameters in the range 31..5000, and named global and local
parameters except predefined parameters. These are available for general-purpose storage of
floating-point values, like intermediate results, flags etc, throughout program execution. They
are read/write (can be assigned a value).

• subroutine parameters - these are used to hold the actual parameters passed to a subroutine.
• numbered parameters - most of these are used to access offsets of coordinate systems.
• system parameters - used to determine the current running version. They are read-only.

11.4.4.1 Numbered Parameters

A numbered parameter is the pound character # followed by an integer between 1 and (currently)
5602 2. The parameter is referred to by this integer, and its value is whatever number is stored in the
parameter.
A value is stored in a parameter with the = operator; for example:
#3 = 15 (set parameter 3 to 15)

A parameter setting does not take effect until after all parameter values on the same line have been
found. For example, if parameter 3 has been previously set to 15 and the line #3=6 G1 X#3 is
interpreted, a straight move to a point where X equals 15 will occur and the value of parameter 3 will
be 6.
The # character takes precedence over other operations, so that, for example, #1+2 means the num-
ber found by adding 2 to the value of parameter 1, not the value found in parameter 3. Of course,
#[1+2] does mean the value found in parameter 3. The # character may be repeated; for example
##2 means the value of the parameter whose index is the (integer) value of parameter 2.

• 31-5000 - G-code user parameters. These parameters are global in the G code file, and available
for general use. Volatile.

• 5061-5069 - Coordinates of a G38 probe result (X, Y, Z, A, B, C, U, V & W). Coordinates are in the
coordinate system in which the G38 took place. Volatile.

• 5070 - G38 probe result: 1 if success, 0 if probe failed to close. Used with G38.3 and G38.5. Volatile.

• 5161-5169 - ”G28” Home for X, Y, Z, A, B, C, U, V & W. Persistent.

• 5181-5189 - ”G30” Home for X, Y, Z, A, B, C, U, V & W. Persistent.
1persistent_range,The range of persistent parameters may change as development progresses. This range is currently

5161- 5390. It is defined in the required_parameters array in file the src/emc/rs274ngc/interp_array.cc .
2The RS274/NGC interpreter maintains an array of numbered parameters. Its size is defined by the symbol

RS274NGC_MAX_PARAMETERS in the file src/emc/rs274ngc/interp_internal.hh). This number of numerical parameters may
also increase as development adds support for new parameters.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 865 / 1322

• 5210 - 1 if ”G52” or ”G92” offset is currently applied, 0 otherwise. Persistent by default; volatile if
DISABLE_G92_PERSISTENCE = 1 in the [RS274NGC] section of the INI file.

• 5211-5219 - Shared ”G52” and ”G92” offset for X, Y, Z, A, B, C, U, V & W. Volatile by default; persistent
if DISABLE_G92_PERSISTENCE = 1 in the [RS274NGC] section of the INI file.

• 5220 - Coordinate System number 1 - 9 for G54 - G59.3. Persistent.

• 5221-5230 - Coordinate System 1, G54 for X, Y, Z, A, B, C, U, V, W & R. R denotes the XY rotation
angle around the Z axis. Persistent.

• 5241-5250 - Coordinate System 2, G55 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5261-5270 - Coordinate System 3, G56 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5281-5290 - Coordinate System 4, G57 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5301-5310 - Coordinate System 5, G58 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5321-5330 - Coordinate System 6, G59 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5341-5350 - Coordinate System 7, G59.1 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5361-5370 - Coordinate System 8, G59.2 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5381-5390 - Coordinate System 9, G59.3 for X, Y, Z, A, B, C, U, V, W & R. Persistent.

• 5399 - Result of M66 - Check or wait for input. Volatile.

• 5400 - Tool Number. Volatile.

• 5401-5409 - Tool Offsets for X, Y, Z, A, B, C, U, V & W. Set by G43. Volatile.

• 5410 - Tool Diameter. Volatile.

• 5411 - Tool Front Angle. Volatile.

• 5412 - Tool Back Angle. Volatile.

• 5413 - Tool Orientation. Volatile.

• 5420-5428 - Current relative position in the active coordinate system including all offsets and in the
current program units for X, Y, Z, A, B, C, U, V & W, volatile.

• 5599 - Flag for controlling the output of (DEBUG,) statements. 1=output, 0=no output; default=1.
Volatile.

Numbered Parameters Persistence The values of parameters in the persistent range are retained
over time, even if the machining center is powered down. LinuxCNC uses a parameter file to ensure
persistence. It is managed by the Interpreter. The Interpreter reads the file when it starts up, and
writes the file when it exits.
The format of a parameter file is shown in Table Parameter File Format.
The Interpreter expects the file to have two columns. It skips any lines which do not contain exactly
two numeric values. The first column is expected to contain an integer value (the parameter’s num-
ber). The second column contains a floating point number (this parameter’s last value). The value is
represented as a double-precision floating point number inside the Interpreter, but a decimal point is
not required in the file.
Parameters in the user-defined range (31-5000) may be added to this file. Such parameters will be
read by the Interpreter and written to the file as it exits.
Missing Parameters in the persistent range will be initialized to zero and written with their current
values on the next save operation.
The parameter numbers must be arranged in ascending order. An Parameter file out of order error
will be signaled if they are not in ascending order.
The original file is saved as a backup file when the new file is written.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 866 / 1322

Table 11.4: Parameter File Format

Parameter Number Parameter Value
5161 0.0
5162 0.0

11.4.4.2 Subroutine Codes and Parameters

Subroutine codes, or o-codes (sometimes also called o-words), provide for logic and flow control in
NGC programs (as in if-else logic). They are called Subroutine codes because they can also form called
subroutines (as in sub-endsub).
See the chapter on o-Codes.

Note
If o-codes are used to form subroutines, then o-codes can also call those subroutines and pass up to
30 parameters, which are local to the subroutine and volatile. (Again, see o-Codes for fuller treatment
and examples.)

Note
While both lower and upper case o- are valid, best practice is using lower case ”o-” because it dis-
ambiguates 0 (zero) and O (capital o).

11.4.4.3 Named Parameters

Named parameters work like numbered parameters but are easier to read. All parameter names are
converted to lower case and have spaces and tabs removed, so <param> and <P a R am > refer to
the same parameter. Named parameters must be enclosed with < > marks.
#<named parameter> is a local named parameter. By default, a named parameter is local to the
scope in which it is assigned. You can’t access a local parameter outside of its subroutine. This means
that two subroutines can use the same parameter names without fear of one subroutine overwriting
the values in another.
#<_global named parameter> is a global named parameter. They are accessible from within called
subroutines and may set values within subroutines that are accessible to the caller. As far as scope is
concerned, they act just like regular numeric parameters. They are not stored in files.
Examples:
Declaration of named global variable
#<_endmill_dia> = 0.049

Reference to previously declared global variable
#<_endmill_rad> = [#<_endmill_dia>/2.0]

Mixed literal and named parameters
o100 call [0.0] [0.0] [#<_inside_cutout>-#<_endmill_dia>] [#<_Zcut>] [#<_feedrate>]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 867 / 1322

Named parameters spring into existence when they are assigned a value for the first time. Local
named parameters vanish when their scope is left: when a subroutine returns, all its local parameters
are deleted and cannot be referred to anymore.
It is an error to use a non-existent named parameter within an expression, or at the right-hand side
of an assignment. Printing the value of a non-existent named parameter with a DEBUG statement -
like (DEBUG, <no_such_parameter>) will display the string #.
Global parameters, as well as local parameters assigned to at the global level, retain their value once
assigned even when the program ends, and have these values when the program is run again.
The EXISTS function tests whether a given named parameter exists.

11.4.4.4 Predefined Named Parameters

The following global read only named parameters are available to access internal state of the inter-
preter and machine state. They can be used in arbitrary expressions, for instance to control flow of
the program with if-then-else statements. Note that new predefined named parameters can be added
easily without changes to the source code.

• #<_vmajor> - Major package version. If current version was 2.5.2 would return 2.5.

• #<_vminor> - Minor package version. If current version was 2.6.2 it would return 0.2.

• #<_line> - Sequence number. If running a G-code file, this returns the current line number.

• #<_motion_mode> - Return the interpreter’s current motion mode:

Motion
mode

return
value

G1 10
G2 20
G3 30
G33 330
G38.2 382
G38.3 383
G38.4 384
G38.5 385
G5.2 52
G73 730
G76 760
G80 800
G81 810
G82 820
G83 830
G84 840
G85 850
G86 860
G87 870
G88 880
G89 890

• #<_plane> - returns the value designating the current plane:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 868 / 1322

Plane return
value

G17 170
G18 180
G19 190
G17.1 171
G18.1 181
G19.1 191

• #<_ccomp> - Status of cutter compensation. Return values:

Mode return
value

G40 400
G41 410
G41.1 411
G41 410
G42 420
G42.1 421

• #<_metric> - Return 1 if G21 is on, else 0.

• #<_imperial> - Return 1 if G20 is on, else 0.

• #<_absolute> - Return 1 if G90 is on, else 0.

• #<_incremental> - Return 1 if G91 is on, else 0.

• #<_inverse_time> - Return 1 if inverse feed mode (G93) is on, else 0.

• #<_units_per_minute> - Return 1 if Units/minute feed mode (G94) is on, else 0.

• #<_units_per_rev> - Return 1 if Units/revolution mode (G95) is on, else 0.

• #<_coord_system> - Return a float of the current coordinate system name (G54..G59.3). For exam-
ple if your in G55 coordinate system the return value is 550.000000 and if your in G59.1 the return
value is 591.000000.

Mode return
value

G54 540
G55 550
G56 560
G57 570
G58 580
G59 590
G59.1 591
G59.2 592
G59.3 593

• #<_tool_offset> - Return 1 if tool offset (G43) is on, else 0.

• #<_retract_r_plane> - Return 1 if G98 is set, else 0.

• #<_retract_old_z> - Return 1 if G99 is on, else 0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 869 / 1322

11.4.4.5 System Parameters

* <_spindle_rpm_mode> - Return 1 if spindle rpm mode (G97) is on, else 0. * <_spindle_css_mode>
- Return 1 if constant surface speed mode (G96) is on, else 0. * <_ijk_absolute_mode> - Return 1 if
Absolute Arc distance mode (G90.1) is on, else 0. * <_lathe_diameter_mode> - Return 1 if this is a
lathe configuration and diameter (G7) mode is on, else 0. *<_lathe_radius_mode> - Return 1 if this is a
lathe configuration and radius (G8) mode is on, else 0. * <_spindle_on> - Return 1 if spindle currently
running (M3 or M4) else 0. * <_spindle_cw> - Return 1 if spindle direction is clockwise (M3) else 0. *
<_mist> - Return 1 if mist (M7) is on. * <_flood> - Return 1 if flood (M8) is on. * <_speed_override> -
Return 1 if feed override (M48 or M50 P1) is on, else 0. * <_feed_override> - Return 1 if feed override
(M48 or M51 P1) is on, else 0. * <_adaptive_feed> - Return 1 if adaptive feed (M52 or M52 P1) is
on, else 0. * <_feed_hold> - Return 1 if feed hold switch is enabled (M53 P1), else 0. * <_feed> -
Return the current value of F, not the actual feed rate. * <_rpm> - Return the current value of S, not
the actual spindle speed. * <_x> - Return current relative X coordinate including all offsets. Same as
5420. In a lathe configuration, it always returns radius. * <_y> - Return current relative Y coordinate
including all offsets. Same as 5421. * <_z> - Return current relative Z coordinate including all offsets.
Same as 5422. * <_a> - Return current relative A coordinate including all offsets. Same as 5423. *
<_b> - Return current relative B coordinate including all offsets. Same as 5424. * <_c> - Return
current relative C coordinate including all offsets. Same as 5425. * <_u> - Return current relative U
coordinate including all offsets. Same as 5426. *<_v> - Return current relative V coordinate including
all offsets. Same as 5427. * <_w> - Return current relative W coordinate including all offsets. Same
as 5428. * <_abs_x> - Return current absolute X coordinate (G53) including no offsets. * <_abs_y> -
Return current absolute Y coordinate (G53) including no offsets. *<_abs_z> - Return current absolute
Z coordinate (G53) including no offsets. * <_abs_a> - Return current absolute A coordinate (G53)
including no offsets. * <_abs_b> - Return current absolute B coordinate (G53) including no offsets.
* <_abs_c> - Return current absolute C coordinate (G53) including no offsets. * <_current_tool>
- Return number of the current tool in spindle. Same as 5400. * <_current_pocket> - Return the
tooldata index for the current tool. * <_selected_tool> - Return number of the selected tool post a
T code. Default -1. * <_selected_pocket> - Return the tooldata index of the selected pocket post a
T code. Default -1 (no pocket selected). * <_value> - Return value from the last O-code return or
endsub. Default value 0 if no expression after return or endsub. Initialized to 0 on program start. *
<_value_returned> - 1.0 if the last O-code return or endsub returned a value, 0 otherwise. Cleared
by the next O-code call. * <_task> - 1.0 if the executing interpreter instance is part of milltask, 0.0
otherwise. Sometimes it is necessary to treat this case specially to retain proper preview, for instance
when testing the success of a probe (G38.n) by inspecting #5070, which will always fail in the preview
interpreter (e.g. Axis). * <_call_level> - current nesting level of O-code procedures. For debugging.
* #<_remap_level> - current level of the remap stack. Each remap in a block adds one to the remap
level. For debugging.

11.4.5 HAL pins and INI values

If enabled in the INI file G-code has access to the values of INI file entries and HAL pins.

• #<_ini[section]name> Returns the value of the corresponding item in the INI file.

For example, if the INI file looks like so:
[SETUP]
XPOS = 3.145
YPOS = 2.718

you may refer to the named parameters #<_ini[setup]xpos> and #<_ini[setup]ypos> within G-
code.
EXISTS can be used to test for presence of a given INI file variable:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 870 / 1322

o100 if [EXISTS[#<_ini[setup]xpos>]]
(debug, [setup]xpos exists: #<_ini[setup]xpos>)

o100 else
(debug, [setup]xpos does not exist)

o100 endif

The value is read from the INI file once, and cached in the interpreter. These parameters are read-only
- assigning a value will cause a runtime error. In the G-code the names are not case sensitive - they
are converted to uppercase before consulting the INI file. Hence INI entries that contain lowercase
characters can not be accessed from G-code.

• #<_hal[HAL item]> Allows G-code programs to read the values of HAL pins Variable access is
read-only, the only way to set HAL pins from G-code remains M62-M65, M67, M68 and custom
M100-M199 codes. Note that the value read will not update in real-time, typically the value that
was on the pin when the G-code program was started will be returned. It is possible to work round
this by forcing a state synch. One way to do this is with a dummy M66 command: M66E0L0

Example:
(debug, #<_hal[motion-controller.time]>)

Access of HAL items is read-only. Currently, only all-lowercase HAL names can be accessed this way.
EXISTS can be used to test for the presence of a given HAL item:
o100 if [EXISTS[#<_hal[motion-controller.time]>]]
(debug, [motion-controller.time] exists: #<_hal[motion-controller.time]>)

o100 else
(debug, [motion-controller.time] does not exist)

o100 endif

This feature was motivated by the desire for stronger coupling between user interface components like
GladeVCP and PyVCP to act as parameter source for driving NGC file behavior. The alternative - going
through the M6x pins and wiring them - has a limited, non-mnemonic namespace and is unnecessarily
cumbersome just as a UI/Interpreter communications mechanism.

11.4.6 Expressions

An expression is a set of characters starting with a left bracket [and ending with a balancing right
bracket] . In between the brackets are numbers, parameter values, mathematical operations, and
other expressions. An expression is evaluated to produce a number. The expressions on a line are
evaluated when the line is read, before anything on the line is executed. An example of an expression
is [1 + acos[0] - [#3 ** [4.0/2]]].

11.4.7 Binary Operators

Binary operators only appear inside expressions. There are four basic mathematical operations: ad-
dition (+), subtraction (-), multiplication (*), and division (/). There are three logical operations:
non-exclusive or (OR), exclusive or (XOR), and logical and (AND). The eighth operation is the modulus
operation (MOD). The ninth operation is the power operation (**) of raising the number on the left of
the operation to the power on the right. The relational operators are equality (EQ), inequality (NE),
strictly greater than (GT), greater than or equal to (GE), strictly less than (LT), and less than or equal
to (LE).
The binary operations are divided into several groups according to their precedence. If operations
in different precedence groups are strung together (for example in the expression [2.0 / 3 * 1.5 - 5.5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 871 / 1322

/ 11.0]), operations in a higher group are to be performed before operations in a lower group. If an
expression contains more than one operation from the same group (such as the first / and * in the
example), the operation on the left is performed first. Thus, the example is equivalent to: [[[2.0 / 3]
* 1.5] - [5.5 / 11.0]] , which is equivalent to to [1.0 - 0.5] , which is 0.5.
The logical operations and modulus are to be performed on any real numbers, not just on integers.
The number zero is equivalent to logical false, and any non-zero number is equivalent to logical true.

Table 11.9: Operators Precedence

Operators Precedence
** highest

* / MOD
+ -

EQ NE GT GE LT LE
AND OR XOR lowest

11.4.8 Equality and floating-point values

Testing for equality or inequality of two double-precision floating-point values is inherently problem-
atic. The interpreter solves this problem by considering values equal if their absolute difference is
less than 1e-6 (this value is defined as TOLERANCE_EQUAL in src/emc/rs274ngc/interp_internal.hh).

11.4.9 Functions

The available functions are shown in following table. Arguments to unary operations which take angle
measures (COS, SIN, and TAN) are in degrees. Values returned by unary operations which return
angle measures (ACOS, ASIN, and ATAN) are also in degrees.

Table 11.10: G-code Functions

Function Name Function result
ATAN[arg]/[arg] Four quadrant inverse tangent

ABS[arg] Absolute value
ACOS[arg] Inverse cosine
ASIN[arg] Inverse sine
COS[arg] Cosine
EXP[arg] e raised to the given power
FIX[arg] Round down to integer
FUP[arg] Round up to integer

ROUND[arg] Round to nearest integer
LN[arg] Base-e logarithm
SIN[arg] Sine

SQRT[arg] Square Root
TAN[arg] Tangent

EXISTS[arg] Check named Parameter

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 872 / 1322

The FIX function rounds towards the left (less positive or more negative) on a number line, so that
FIX[2.8] =2 and FIX[-2.8] = -3.
The FUP operation rounds towards the right (more positive or less negative) on a number line;
FUP[2.8] = 3 and FUP[-2.8] = -2.
The EXISTS function checks for the existence of a single named parameter. It takes only one named
parameter and returns 1 if it exists and 0 if it does not exist. It is an error if you use a numbered
parameter or an expression. Here is an example for the usage of the EXISTS function:
o<test> sub
o10 if [EXISTS[#<_global>]]

(debug, _global exists and has the value #<_global>)
o10 else

(debug, _global does not exist)
o10 endif
o<test> endsub

o<test> call
#<_global> = 4711
o<test> call
m2

11.4.10 Repeated Items

A line may have any number of G words, but two G words from the same modal group may not appear
on the same line. See the Modal Groups section for more information.
A line may have zero to four M words. Two M words from the same modal group may not appear on
the same line.
For all other legal letters, a line may have only one word beginning with that letter.
If a parameter setting of the same parameter is repeated on a line, #3=15 #3=6, for example, only
the last setting will take effect. It is silly, but not illegal, to set the same parameter twice on the same
line.
If more than one comment appears on a line, only the last one will be used; each of the other comments
will be read and its format will be checked, but it will be ignored thereafter. It is expected that putting
more than one comment on a line will be very rare.

11.4.11 Item order

The three types of item whose order may vary on a line (as given at the beginning of this section) are
word, parameter setting, and comment. Imagine that these three types of item are divided into three
groups by type.
The first group (the words) may be reordered in any way without changing the meaning of the line.
If the second group (the parameter settings) is reordered, there will be no change in the meaning of
the line unless the same parameter is set more than once. In this case, only the last setting of the
parameter will take effect. For example, after the line #3=15 #3=6 has been interpreted, the value
of parameter 3 will be 6. If the order is reversed to #3=6 #3=15 and the line is interpreted, the value
of parameter 3 will be 15.
If the third group (the comments) contains more than one comment and is reordered, only the last
comment will be used.
If each group is kept in order or reordered without changing the meaning of the line, then the three
groups may be interleaved in any way without changing the meaning of the line. For example, the
line g40 g1 #3=15 (foo) #4=-7.0 has five items and means exactly the same thing in any of the 120
possible orders (such as #4=-7.0 g1 #3=15 g40 (foo)) for the five items.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 873 / 1322

11.4.12 Commands and Machine Modes

Many commands cause the controller to change from one mode to another, and the mode stays active
until some other command changes it implicitly or explicitly. Such commands are called modal. For
example, if coolant is turned on, it stays on until it is explicitly turned off. The G-codes for motion are
also modal. If a G1 (straight move) command is given on one line, for example, it will be executed
again on the next line if one or more axis words is available on the line, unless an explicit command
is given on that next line using the axis words or canceling motion.
Non-modal codes have effect only on the lines on which they occur. For example, G4 (dwell) is non-
modal.

11.4.13 Polar Coordinates

Polar Coordinates can be used to specify the XY coordinate of a move. The @n is the distance and ^n
is the angle. The advantage of this is for things like bolt hole circles which can be done very simply
by moving to a point in the center of the circle, setting the offset and then moving out to the first hole
then run the drill cycle. Polar Coordinates always are from the current XY zero position. To shift the
Polar Coordinates from machine zero use an offset or select a coordinate system.
In Absolute Mode the distance and angle is from the XY zero position and the angle starts with 0 on
the X Positive axis and increases in a CCW direction about the Z axis. The code G1 @1^90 is the same
as G1 Y1.
In Relative Mode the distance and angle is also from the XY zero position but it is cumulative. This
can be confusing at first how this works in incremental mode.
For example if you have the following program you might expect it to be a square pattern:
F100 G1 @.5 ^90
G91 @.5 ^90
@.5 ^90
@.5 ^90
@.5 ^90
G90 G0 X0 Y0 M2

You can see from the following figure that the output is not what you might expect. Because we added
0.5 to the distance each time the distance from the XY zero position increased with each line.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 874 / 1322

Figure 11.10: Polar Spiral

The following code will produce our square pattern:
F100 G1 @.5 ^90
G91 ^90
^90
^90
^90
G90 G0 X0 Y0 M2

As you can see by only adding to the angle by 90 degrees each time the end point distance is the same
for each line.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 875 / 1322

Figure 11.11: Polar Square

It is an error if:

• An incremental move is started at the origin

• A mix of Polar and X or Y words are used

11.4.14 Modal Groups

Commands are arranged in sets called modal groups, and only one member of a modal group may
be in force at any given time. In general, a modal group contains commands for which it is logically
impossible for two members to be in effect at the same time - like measure in inches versus measure
in millimeters. A machining center may be in many modes at the same time, with one mode from each
modal group being in effect. The modal groups are shown in the following Table.

Table 11.11: G-code Modal Groups

Modal Group Meaning Member Words
Non-modal codes (Group 0) G4, G10 G28, G30, G52, G53, G92, G92.1,

G92.2, G92.3,
Motion (Group 1) G0, G1, G2, G3, G33, G38.n, G73, G76, G80,

G81 G82, G83, G84, G85, G86, G87, G88,
G89

Plane selection (Group 2) G17, G18, G19, G17.1, G18.1, G19.1
Distance Mode (Group 3) G90, G91

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 876 / 1322

Table 11.11: (continued)

Modal Group Meaning Member Words
Arc IJK Distance Mode
(Group 4)

G90.1, G91.1

Feed Rate Mode (Group 5) G93, G94, G95
Units (Group 6) G20, G21
Cutter Diameter
Compensation (Group 7)

G40, G41, G42, G41.1, G42.1

Tool Length Offset (Group 8) G43, G43.1, G49
Canned Cycles Return Mode
(Group 10)

G98, G99

Coordinate System (Group
12)

G54, G55, G56, G57, G58, G59, G59.1,
G59.2, G59.3

Control Mode (Group 13) G61, G61.1, G64
Spindle Speed Mode (Group
14)

G96, G97

Lathe Diameter Mode (Group
15)

G7, G8

Table 11.12: M-code Modal Groups

Modal Group Meaning Member Words
Stopping (Group 4) M0, M1, M2, M30, M60
I/O Pins (Group 5) (M62-M65 digital output), (M66 digital or

analog input), (M67, M68 analog output)
Toolchange (Group 6) M6 Tn
Spindle (Group 7) M3, M4, M5
Coolant (Group 8) (M7 M8 can both be on), M9
Override Switches (Group 9) M48, M49
User Defined (Group 10) M100-M199

For several modal groups, when a machining center is ready to accept commands, one member of
the group must be in effect. There are default settings for these modal groups. When the machining
center is turned on or otherwise re-initialized, the default values are automatically in effect.
Group 1, the first group on the table, is a group of G-codes for motion. One of these is always in effect.
That one is called the current motion mode.
It is an error to put a G-code from group 1 and a G-code from group 0 on the same line if both of them
use axis words. If an axis word-using G-code from group 1 is implicitly in effect on a line (by having
been activated on an earlier line), and a group 0 G-code that uses axis words appears on the line, the
activity of the group 1 G-code is suspended for that line. The axis word-using G-codes from group 0
are G10, G28, G30, G52 and G92.
It is an error to include any unrelated words on a line with O- flow control.

11.4.15 Comments

Comments are purely informative and have no influence on machine behaviour.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 877 / 1322

Comments can be added to lines of G-code to help clear up the intention of the programmer. Comments
can be embedded in a line using parentheses () or for the remainder of a line using a semi-colon. The
semi-colon is not treated as the start of a comment when enclosed in parentheses.
Comments may appear between words, but not between words and their corresponding parameter.
So, S100(set speed)F200(feed) is OK while S(speed)100F(feed) is not.
Here is an example of a commented program:
G0 (Rapid to start) X1 Y1
G0 X1 Y1 (Rapid to start; but don’t forget the coolant)
M2 ; End of program.

There are several active comments which look like comments but cause some action, like (debug,..)
or (print,..). If there are several comments on a line, only the last comment will be interpreted ac-
cording to these rules. Hence, a normal comment following an active comment will in effect disable
the active comment. For example, (foo) (debug,#1) will print the value of parameter #1, however
(debug,#1)(foo) will not.
A comment introduced by a semicolon is by definition the last comment on that line, and will always
be interpreted for active comment syntax.

Note
Inline comments on O-codes should not be used see the O-code comments section for more infor-
mation.

11.4.16 Messages

* (MSG,) - displays message if MSG appears after the left parenthesis and before any other printing
characters. Variants of MSG which include white space and lower case characters are allowed. The
rest of the characters before the right parenthesis are considered to be a message. Messages should
be displayed on the message display device of the user interface if provided.
Message Example
(MSG, This is a message)

11.4.17 Probe Logging

* (PROBEOPEN filename.txt) - will open filename.txt and store the 9-number coordinate consisting of
XYZABCUVW of each successful straight probe in it. * (PROBECLOSE) - will close the open probelog
file.
For more information on probing see the G38 section.

11.4.18 Logging

* (LOGOPEN,filename.txt) - opens the named log file. If the file already exists, it is truncated. *
(LOGAPPEND,filename) - opens the named log file. If the file already exists, the data is appended. *
(LOGCLOSE) - closes an open log file. * (LOG,) - everything past the , is written to the log file if it is
open. Supports expansion of parameters as described below.
Examples of logging are in nc_files/examples/smartprobe.ngc and in nc_files/ngcgui_lib/rectange_probe.ngc
sample G-code files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 878 / 1322

11.4.19 Abort Messages

* (ABORT,) - displays a message like (MSG,) with the addition of special handling for comment param-
eters as described below and of aborting the current running process.

11.4.20 Debug Messages

* (DEBUG,) - displays a message like (MSG,) with the addition of special handling for comment pa-
rameters as described below.

11.4.21 Print Messages

* (PRINT,) - messages are output to stderr with special handling for comment parameters as described
below.

11.4.22 Comment Parameters

In the DEBUG, PRINT and LOG comments, the values of parameters in the message are expanded.
For example: to print a named global variable to stderr (the default console window).
Parameters Example
(print,endmill dia = #<_endmill_dia>)
(print,value of variable 123 is: #123)

Inside the above types of comments, sequences like #123 are replaced by the value of the parameter
123. Sequences like#<named parameter> are replaced by the value of the named parameter. Named
parameters will have white space removed from them. So, #<named parameter> will be converted
to #<namedparameter>.
Parameter numbers can be formatted, e.g.:
(DEBUG, value = %d#<some_value>)

will print the value rounded to an integer.

• %lf is default if there is no formatting string.

• %d = 0 decimals

• %f = four decimals

• %.xf = x (0-9) number of decimals

The formatting will be performed on all parameters in the same line unless changed, i.e., multiple
formatting is allowed in one line.
The formatting string does not need to be right beside the parameter.
If the formatting string is created with the wrong pattern it will be printed as characters.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 879 / 1322

11.4.23 File Requirements

A G-code file must contain one or more lines of G-code and be terminated with a Program End. Any
G-code past the program end is not evaluated.
If a program end code is not used a pair of percent signs % with the first percent sign on the first
line of the file followed by one or more lines of G-code and a second percent sign. Any code past the
second percent sign is not evaluated.

Warning
Using % to wrap a G-code file will not do the same thing as using a program end. The machine
will be in what ever state the program left it in using %, the spindle and coolant may still be on
and things like G90/91 are left as the last program set them. If you don’t use a proper preamble
the next program could start in a dangerous condition.

Note
The file must be created with a text editor like Gedit and not a word processor like Open Office Word
Processor.

11.4.24 File Size

The interpreter and task are carefully written so that the only limit on part program size is disk
capacity. The TkLinuxCNC and Axis interface both load the program text to display it to the user,
though, so RAM becomes a limiting factor. In Axis, because the preview plot is drawn by default, the
redraw time also becomes a practical limit on program size. The preview can be turned off in Axis to
speed up loading large part programs. In Axis sections of the preview can be turned off using preview
control comments.

11.4.25 G-code Order of Execution

The order of execution of items on a line is defined not by the position of each item on the line, but by
the following list:

• O-code commands (optionally followed by a comment but no other words allowed on the same line)

• Comment (including message)

• Set feed rate mode (G93, G94).

• Set feed rate (F).

• Set spindle speed (S).

• Select tool (T).

• HAL pin I/O (M62-M68).

• Change tool (M6) and Set Tool Number (M61).

• Spindle on or off (M3, M4, M5).

• Save State (M70, M73), Restore State (M72), Invalidate State (M71).

• Coolant on or off (M7, M8, M9).

• Enable or disable overrides (M48, M49,M50,M51,M52,M53).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 880 / 1322

• User-defined Commands (M100-M199).

• Dwell (G4).

• Set active plane (G17, G18, G19).

• Set length units (G20, G21).

• Cutter radius compensation on or off (G40, G41, G42)

• Cutter length compensation on or off (G43, G49)

• Coordinate system selection (G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3).

• Set path control mode (G61, G61.1, G64)

• Set distance mode (G90, G91).

• Set retract mode (G98, G99).

• Go to reference location (G28, G30) or change coordinate system data (G10) or set axis offsets (G52,
G92, G92.1, G92.2, G92.3).

• Perform motion (G0 to G3, G33, G38.n, G73, G76, G80 to G89), as modified (possibly) by G53.

• Stop (M0, M1, M2, M30, M60).

11.4.26 G-code Best Practices

Use an appropriate decimal precision Use at least 3 digits after the decimal when milling in mil-
limeters, and at least 4 digits after the decimal when milling in inches.
In particular, tolerance checks of arcs are done for .001 and .0001 according to the active units.
Use consistent white space G-code is most legible when at least one space appears before words.
While it is permitted to insert white space in the middle of numbers, there is no reason to do so.
Use Center-format arcs Center-format arcs (which use I- J- K- instead of R-) behave more consis-
tently than R-format arcs, particularly for included angles near 180 or 360 degrees.
Use a Preamble set modal groups When correct execution of your program depends on modal
settings, be sure to set them at the beginning of the part program. Modes can carry over from previous
programs and from the MDI commands.
Example Preamble for a Mill
G17 G20 G40 G49 G54 G80 G90 G94

G17 use XY plane, G20 inch mode, G40 cancel diameter compensation, G49 cancel length offset, G54
use coordinate system 1, G80 cancel canned cycles, G90 absolute distance mode, G94 feed/minute
mode.
Perhaps the most critical modal setting is the distance units—If you do not include G20 or G21, then
different machines will mill the program at different scales. Other settings, such as the return mode
in canned cycles may also be important.
Don’t put too many things on one line Ignore everything in section Order of Execution, and instead
write no line of code that is the slightest bit ambiguous.
Don’t set & use a parameter on the same line Don’t use and set a parameter on the same line,
even though the semantics are well defined. Updating a variable to a new value, such as#1=[#1+#2]
is OK.
Don’t use line numbers Line numbers offer no benefits. When line numbers are reported in error
messages, the numbers refer to the line number in the file, not the N-word value.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 881 / 1322

When several coordinate systems are moved Consider using the inverse time speed mode.
Because the meaning of an F word in meters per minute varies depending on the type of axis to be
moved and because the amount of removed material does not depend only on the feed rate, it can be
simpler to use G93, inverse speed of time, to achieve the removal of desired material.

11.4.27 Linear and Rotary Axis

Because the meaning of an F-word in feed-per-minute mode varies depending on which axes are com-
manded to move, and because the amount of material removed does not depend only on the feed rate,
it may be easier to use G93 inverse time feed mode to achieve the desired material removal rate.

11.4.28 Common Error Messages

• G-code out of range - A G-code greater than G99 was used, the scope of G codes in LinuxCNC is 0 -
99. Not every number between 0 and 99 is a valid G-code.

• Unknown G-code used - A G-code was used that is not part of the LinuxCNC G-code language.

• i,j,k word with no Gx to use it - i, j and k words must be used on the same line as the G-code.

• Cannot use axis values without a G-code that uses them - Axis values can not be used on a line
without either a modal G-code in effect or a G-code on the same line.

• File ended with no percent sign or program end - Every G-code file must end in a M2 or M30 or be
wrapped with the percent sign %.

11.5 G-Codes

11.5.1 Conventions

Conventions used in this section
In the G-code prototypes the hyphen (-) stands for a real value and (<>) denotes an optional item.
If L- is written in a prototype the - will often be referred to as the L number, and so on for any other
letter.
In the G-code prototypes the word axes stands for any axis as defined in your configuration.
An optional value will be written like this <L- >.
A real value may be:

• An explicit number, 4

• An expression, [2+2]

• A parameter value, #88

• A unary function value, acos[0]

In most cases, if axis words are given (any or all of X Y Z A B C U V W), they specify a destination
point.
Axis numbers are in the currently active coordinate system, unless explicitly described as being in the
absolute coordinate system.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 882 / 1322

Where axis words are optional, any omitted axes will retain their original value.
Any items in the G-code prototypes not explicitly described as optional are required.
The values following letters are often given as explicit numbers. Unless stated otherwise, the explicit
numbers can be real values. For example, G10 L2 could equally well be written G[2*5] L[1+1]. If the
value of parameter 100 were 2, G10 L#100 would also mean the same.
If L- is written in a prototype the - will often be referred to as the L number, and so on for any other
letter.

11.5.2 G-Code Quick Reference Table

Code Description
G0 Coordinated Motion at Rapid Rate
G1 Coordinated Motion at Feed Rate

G2 G3 Coordinated Helical Motion at Feed Rate
G4 Dwell
G5 Cubic Spline

G5.1 Quadratic B-Spline
G5.2 NURBS, add control point
G7 Diameter Mode (lathe)
G8 Radius Mode (lathe)

G10 L0 Reload Tool Table Data
G10 L1 Set Tool Table Entry

G10 L10 Set Tool Table, Calculated, Workpiece
G10 L11 Set Tool Table, Calculated, Fixture
G10 L2 Coordinate System Origin Setting

G10 L20 Coordinate System Origin Setting Calculated
G17 - G19.1 Plane Select

G20 G21 Set Units of Measure
G28 - G28.1 Go to Predefined Position
G30 - G30.1 Go to Predefined Position

G33 Spindle Synchronized Motion
G33.1 Rigid Tapping

G38.2 - G38.5 Probing
G40 Cancel Cutter Compensation

G41 G42 Cutter Compensation
G41.1 G42.1 Dynamic Cutter Compensation

G43 Use Tool Length Offset from Tool Table
G43.1 Dynamic Tool Length Offset
G43.2 Apply additional Tool Length Offset
G49 Cancel Tool Length Offset
G52 Local Coordinate System Offset
G53 Move in Machine Coordinates

G54-G59.3 Select Coordinate System (1 - 9)
G61 Exact Path Mode

G61.1 Exact Stop Mode
G64 Path Control Mode with Optional Tolerance
G70 Lathe finishing cycle

G71-G72 Lathe roughing cycle
G73 Drilling Cycle with Chip Breaking
G74 Left-hand Tapping Cycle with Dwell
G76 Multi-pass Threading Cycle (Lathe)
G80 Cancel Motion Modes
G81 Drilling Cycle

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 883 / 1322

Code Description
G82 Drilling Cycle with Dwell
G83 Drilling Cycle with Peck
G84 Right-hand Tapping Cycle with Dwell
G85 Boring Cycle, No Dwell, Feed Out
G86 Boring Cycle, Stop, Rapid Out
G87 Back-boring Cycle (not yet implemented)
G88 Boring Cycle, Stop, Manual Out (not yet

implemented)
G89 Boring Cycle, Dwell, Feed Out

G90 G91 Distance Mode
G90.1 G91.1 Arc Distance Mode

G92 Coordinate System Offset
G92.1 G92.2 Cancel G92 Offsets

G92.3 Restore G92 Offsets
G93 G94 G95 Feed Modes

G96 G97 Spindle Control Mode, Constant Surface vs
Rotation Speed (IPM or m/min vs RPM)

G98 G99 Canned Cycle Z Retract Mode

11.5.3 G0 Rapid Move

G0 <axes>

For rapid motion, program G0 axes, where all the axis words are optional. The G0 is optional if the
current motion mode is G0. This will produce coordinated motion to the destination point at the
maximum rapid rate (or slower). G0 is typically used as a positioning move.

11.5.3.1 Rapid Velocity Rate

The MAX_VELOCITY setting in the INI file [TRAJ] section defines the maximumrapid traverse rate. The
maximum rapid traverse rate can be higher than the individual axes MAX_VELOCITY setting during a
coordinated move. The maximum rapid traverse rate can be slower than the MAX_VELOCITY setting
in the [TRAJ] section if an axis MAX_VELOCITY or trajectory constraints limit it.
G0 Example
G90 (set absolute distance mode)
G0 X1 Y-2.3 (Rapid linear move from current location to X1 Y-2.3)
M2 (end program)

• See G90 & M2 sections for more information.

If cutter compensation is active, the motion will differ from the above; see the Cutter Compensation
section.
If G53 is programmed on the same line, the motion will also differ; see the G53 section for more
information.
The path of a G0 rapid motion can be rounded at direction changes and depends on the trajectory
control settings and maximum acceleration of the axes.
It is an error if:

• An axis letter is without a real value.

• An axis letter is used that is not configured.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 884 / 1322

11.5.4 G1 Linear Move

G1 axes

For linear (straight line) motion at programmed feed rate (for cutting or not), program G1 ’axes’,
where all the axis words are optional. The G1 is optional if the current motion mode is G1. This will
produce coordinated motion to the destination point at the current feed rate (or slower).
G1 Example
G90 (set absolute distance mode)
G1 X1.2 Y-3 F10 (linear move at a feed rate of 10 from current position to X1.2 Y-3)
Z-2.3 (linear move at same feed rate from current position to Z-2.3)
Z1 F25 (linear move at a feed rate of 25 from current position to Z1)
M2 (end program)

• See G90 & F & M2 sections for more information.

If cutter compensation is active, the motion will differ from the above; see the Cutter Compensation
section.
If G53 is programmed on the same line, the motion will also differ; see the G53 section for more
information.
It is an error if:

• No feed rate has been set.

• An axis letter is without a real value.

• An axis letter is used that is not configured

11.5.5 G2, G3 Arc Move

G2 or G3 axes offsets (center format)
G2 or G3 axes R- (radius format)
G2 or G3 offsets|R- <P-> (full circles)

A circular or helical arc is specified using either G2 (clockwise arc) or G3 (counterclockwise arc) at
the current feed rate. The direction (CW, CCW) is as viewed from the positive end of the axis about
which the circular motion occurs.
The axis of the circle or helix must be parallel to the X, Y, or Z axis of the machine coordinate system.
The axis (or, equivalently, the plane perpendicular to the axis) is selected with G17 (Z-axis, XY-plane),
G18 (Y-axis, XZ-plane), or G19 (X-axis, YZ-plane). Planes 17.1, 18.1, and 19.1 are not currently sup-
ported. If the arc is circular, it lies in a plane parallel to the selected plane.
To program a helix, include the axis word perpendicular to the arc plane, for example, if in the G17
plane, include a Z word. This will cause the Z axis to move to the programmed value during the
circular XY motion.
To program an arc that gives more than one full turn, use the P word specifying the number of full
turns plus the programmed arc. The P word must be an integer. If P is unspecified, the behavior is
as if P1 was given that is, only one full or partial turn will result. For example, if a 180 degree arc is
programmed with a P2, the resulting motion will be 1 1/2 rotations. For each P increment above 1
an extra full circle is added to the programmed arc. Multi turn helical arcs are supported and give
motion useful for milling holes or threads.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 885 / 1322

Warning
If the pitch of the helix is very small (less than the naive CAM tolerance) then the helix might
be converted into a straight line. Bug #222

If a line of code makes an arc and includes rotary axis motion, the rotary axes turn at a constant rate
so that the rotary motion starts and finishes when the XYZ motion starts and finishes. Lines of this
sort are hardly ever programmed.
If cutter compensation is active, the motion will differ from the above; see the Cutter Compensation
section.
The arc center is absolute or relative as set by G90.1 or G91.1 respectively.
Two formats are allowed for specifying an arc: Center Format and Radius Format.
It is an error if:

• No feed rate has been set.

• The P word is not an integer.

11.5.5.1 Center Format Arcs

Center format arcs are more accurate than radius format arcs and are the preferred format to use.
The end point of the arc along with the offset to the center of the arc from the current location are
used to program arcs that are less than a full circle. It is OK if the end point of the arc is the same as
the current location.
The offset to the center of the arc from the current location and optionally the number of turns are
used to program full circles.
When programming arcs an error due to rounding can result from using a precision of less than 4
decimal places (0.0000) for inch and less than 3 decimal places (0.000) for millimeters.
Incremental Arc Distance Mode Arc center offsets are a relative distance from the start location
of the arc. Incremental Arc Distance Mode is default.
One or more axis words and one or more offsets must be programmed for an arc that is less than 360
degrees.
No axis words and one or more offsets must be programmed for full circles. The P word defaults to 1
and is optional.
For more information on ’Incremental Arc Distance Mode see the G91.1 section.
Absolute Arc DistanceMode Arc center offsets are the absolute distance from the current 0 position
of the axis.
One or more axis words and both offsets must be programmed for arcs less than 360 degrees.
No axis words and both offsets must be programmed for full circles. The P word defaults to 1 and is
optional.
For more information on ’Absolute Arc Distance Mode see the G90.1 section.
XY-plane (G17)
G2 or G3 <X- Y- Z- I- J- P->

• Z - helix

https://github.com/LinuxCNC/linuxcnc/issues/222

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 886 / 1322

• I - X offset

• J - Y offset

• P - number of turns

XZ-plane (G18)
G2 or G3 <X- Z- Y- I- K- P->

• Y - helix

• I - X offset

• K - Z offset

• P - number of turns

YZ-plane (G19)
G2 or G3 <Y- Z- X- J- K- P->

• X - helix

• J - Y offset

• K - Z offset

• P - number of turns

It is an error if:

• No feed rate is set with the F word.

• No offsets are programmed.

• When the arc is projected on the selected plane, the distance from the current point to the center
differs from the distance from the end point to the center by more than (.05 inch/.5 mm) OR ((.0005
inch/.005mm) AND .1% of radius).

Deciphering the Error message Radius to end of arc differs from radius to start:

• start - the current position

• center - the center position as calculated using the i, j, or k words

• end - the programmed end point

• r1 - radius from the start position to the center

• r2 - radius from the end position to the center

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 887 / 1322

11.5.5.2 Center Format Examples

Calculating arcs by hand can be difficult at times. One option is to draw the arc with a CAD program
to get the coordinates and offsets. Keep in mind the tolerance mentioned above, you may have to
change the precision of your CAD program to get the desired results. Another option is to calculate
the coordinates and offset using formulas. As you can see in the following figures a triangle can be
formed from the current position the end position and the arc center.
In the following figure you can see the start position is X0 Y0, the end position is X1 Y1. The arc center
position is at X1 Y0. This gives us an offset from the start position of 1 in the X axis and 0 in the Y
axis. In this case only an I offset is needed.
G2 Example Line
G0 X0 Y0
G2 X1 Y1 I1 F10 (clockwise arc in the XY plane)

Figure 11.12: G2 Example

In the next example we see the difference between the offsets for Y if we are doing a G2 or a G3 move.
For the G2 move the start position is X0 Y0, for the G3 move it is X0 Y1. The arc center is at X1 Y0.5
for both moves. The G2 move the J offset is 0.5 and the G3 move the J offset is -0.5.
G2-G3 Example Line
G0 X0 Y0
G2 X0 Y1 I1 J0.5 F25 (clockwise arc in the XY plane)
G3 X0 Y0 I1 J-0.5 F25 (counterclockwise arc in the XY plane)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 888 / 1322

Figure 11.13: G2-G3 Example

In the next example we show how the arc can make a helix in the Z axis by adding the Z word.
G2 Example Helix
G0 X0 Y0 Z0
G17 G2 X10 Y16 I3 J4 Z-1 (helix arc with Z added)

In the next example we show how to make more than one turn using the P word.
P word Example
G0 X0 Y0 Z0
G2 X0 Y1 Z-1 I1 J0.5 P2 F25

In the center format, the radius of the arc is not specified, but it may be found easily as the distance
from the center of the circle to either the current point or the end point of the arc.

11.5.5.3 Radius Format Arcs

G2 or G3 axes R- <P->

• R - radius from current position

It is not good practice to program radius format arcs that are nearly full circles or nearly semicircles
because a small change in the location of the end point will produce a much larger change in the
location of the center of the circle (and, hence, the middle of the arc). The magnification effect is
large enough that rounding error in a number can produce out-of-tolerance cuts. For instance, a 1%
displacement of the endpoint of a 180 degree arc produced a 7% displacement of the point 90 degrees

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 889 / 1322

along the arc. Nearly full circles are even worse. Other size arcs (in the range tiny to 165 degrees or
195 to 345 degrees) are OK.
In the radius format, the coordinates of the end point of the arc in the selected plane are specified
along with the radius of the arc. Program G2 axes R- (or use G3 instead of G2). R is the radius. The
axis words are all optional except that at least one of the two words for the axes in the selected plane
must be used. The R number is the radius. A positive radius indicates that the arc turns through less
than 180 degrees, while a negative radius indicates a turn of more than 180 degrees. If the arc is
helical, the value of the end point of the arc on the coordinate axis parallel to the axis of the helix is
also specified.
It is an error if:

• both of the axis words for the axes of the selected plane are omitted

• the end point of the arc is the same as the current point.

G2 Example Line
G17 G2 X10 Y15 R20 Z5 (radius format with arc)

The above example makes a clockwise (as viewed from the positive Z-axis) circular or helical arc
whose axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with a radius of 20. If the
starting value of Z is 5, this is an arc of a circle parallel to the XY-plane; otherwise it is a helical arc.

11.5.6 G4 Dwell

G4 P-

• P - seconds to dwell (floating point)

The P number is the time in seconds that all axes will remain unmoving. The P number is a floating
point number so fractions of a second may be used. G4 does not affect spindle, coolant and any I/O.
G4 Example Line
G4 P0.5 (wait for 0.5 seconds before proceeding)

It is an error if:

• the P number is negative or not specified.

11.5.7 G5 Cubic Spline

G5 X- Y- <I- J-> P- Q-

• I - X incremental offset from start point to first control point

• J - Y incremental offset from start point to first control point

• P - X incremental offset from end point to second control point

• Q - Y incremental offset from end point to second control point

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 890 / 1322

G5 creates a cubic B-spline in the XY plane with the X and Y axes only. P and Q must both be specified
for every G5 command.
For the first G5 command in a series of G5 commands, I and J must both be specified. For subsequent
G5 commands, either both I and J must be specified, or neither. If I and J are unspecified, the starting
direction of this cubic will automatically match the ending direction of the previous cubic (as if I and
J are the negation of the previous P and Q).
For example, to program a curvy N shape:
G5 Sample initial cubic spline
G90 G17
G0 X0 Y0
G5 I0 J3 P0 Q-3 X1 Y1

A second curvy N that attaches smoothly to this one can now be made without specifying I and J:
G5 Sample subsequent cubic spline
G5 P0 Q-3 X2 Y2

It is an error if:

• P and Q are not both specified.

• Just one of I or J are specified.

• I or J are unspecified in the first of a series of G5 commands.

• An axis other than X or Y is specified.

• The active plane is not G17.

11.5.8 G5.1 Quadratic Spline

G5.1 X- Y- I- J-

• I - X incremental offset from start point to control point

• J - Y incremental offset from start point to control point

G5.1 creates a quadratic B-spline in the XY plane with the X and Y axis only. Not specifying I or J gives
zero offset for the unspecified axis, so one or both must be given.
For example, to program a parabola, through the origin, from X-2 Y4 to X2 Y4:
G5.1 Sample quadratic spline
G90 G17
G0 X-2 Y4
G5.1 X2 I2 J-8

It is an error if:

• both I and J offset are unspecified or zero

• An axis other than X or Y is specified

• The active plane is not G17

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 891 / 1322

11.5.9 G5.2 G5.3 NURBS Block

G5.2 <P-> <X- Y-> <L->
X- Y- <P->
...
G5.3

Warning
G5.2, G5.3 is experimental and not fully tested.

G5.2 is for opening the data block defining a NURBS and G5.3 for closing the data block. In the lines
between these two codes the curve control points are defined with both their related weights (P) and
the parameter (L) which determines the order of the curve.
The current coordinate, before the first G5.2 command, is always taken as the first NURBS control
point. To set the weight for this first control point, first program G5.2 P- without giving any X Y.
The default weight if P is unspecified is 1. The default order if L is unspecified is 3.
G5.2 Example
G0 X0 Y0 (rapid move)
F10 (set feed rate)
G5.2 P1 L3

X0 Y1 P1
X2 Y2 P1
X2 Y0 P1
X0 Y0 P2

G5.3
; The rapid moves show the same path without the NURBS Block
G0 X0 Y1

X2 Y2
X2 Y0
X0 Y0

M2

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 892 / 1322

Sample NURBSOutput
More information on NURBS can be found here:
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?NURBS

11.5.10 G7 Lathe Diameter Mode

G7

Program G7 to enter the diameter mode for axis X on a lathe. When in the diameter mode the X axis
moves on a lathe will be 1/2 the distance to the center of the lathe. For example X1 would move the
cutter to 0.500” from the center of the lathe thus giving a 1” diameter part.

11.5.11 G8 Lathe Radius Mode

G8

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?NURBS

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 893 / 1322

Program G8 to enter the radius mode for axis X on a lathe. When in Radius mode the X axis moves
on a lathe will be the distance from the center. Thus a cut at X1 would result in a part that is 2” in
diameter. G8 is default at power up.

11.5.12 G10 L0 Reload Tool Table Data

G10 L0

G10 L0 reload all tool table data. Requires that there is no current tool loaded in spindle.

Note
When using G10 L0, tool parameters (#5401-#5413) will be updated immediately and any altered
tool diameters will be used for subsequent G41,42 cutter radius compensation commands. Existing
G43 tool length compensation values will remain in effect until updated by new G43 commands.

11.5.13 G10 L1 Set Tool Table

G10 L1 P- axes <R- I- J- Q->

• P - tool number

• R - radius of tool

• I - front angle (lathe)

• J - back angle (lathe)

• Q - orientation (lathe)

G10 L1 sets the tool table for the P tool number to the values of the words.
A valid G10 L1 rewrites and reloads the tool table for the specified tool.
G10 L1 Example Line
G10 L1 P1 Z1.5 (set tool 1 Z offset from the machine origin to 1.5)
G10 L1 P2 R0.015 Q3 (lathe example setting tool 2 radius to 0.015 and orientation to 3)

It is an error if:

• Cutter Compensation is on

• The P number is unspecified

• The P number is not a valid tool number from the tool table

• The P number is 0

For more information on cutter orientation used by the Q word, see the Lathe Tool Orientation dia-
gram.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 894 / 1322

11.5.14 G10 L2 Set Coordinate System

G10 L2 P- <axes R->

• P - coordinate system (0-9)

• R - rotation about the Z axis

G10 L2 offsets the origin of the axes in the coordinate system specified to the value of the axis word.
The offset is from the machine origin established during homing. The offset value will replace any
current offsets in effect for the coordinate system specified. Axis words not used will not be changed.
Program P0 to P9 to specify which coordinate system to change.

Table 11.14: Coordinate System

P Value Coordinate
System

G-code

0 Active n/a
1 1 G54
2 2 G55
3 3 G56
4 4 G57
5 5 G58
6 6 G59
7 7 G59.1
8 8 G59.2
9 9 G59.3

Optionally program R to indicate the rotation of the XY axis around the Z axis. The direction of rotation
is CCW as viewed from the positive end of the Z axis.
All axis words are optional.
Being in incremental distance mode (G91) has no effect on G10 L2.
Important Concepts:

• G10 L2 Pn does not change from the current coordinate system to the one specified by P, you have
to use G54-59.3 to select a coordinate system.

• When a rotation is in effect jogging an axis will only move that axis in a positive or negative direction
and not along the rotated axis.

• If a G52 local offset or G92 origin offset was in effect before G10 L2, it will continue to be in effect
afterwards.

• When programming a coordinate system with R, any G52 or G92 will be applied after the rotation.

• The coordinate system whose origin is set by a G10 command may be active or inactive at the time
the G10 is executed. If it is currently active, the new coordinates take effect immediately.

It is an error if:

• The P number does not evaluate to an integer in the range 0 to 9.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 895 / 1322

• An axis is programmed that is not defined in the configuration.

G10 L2 Example Line
G10 L2 P1 X3.5 Y17.2

In the above example the origin of the first coordinate system (the one selected by G54) is set to be
X=3.5 and Y=17.2. Because only X and Y are specified, the origin point is only moved in X and Y; the
other coordinates are not changed.
G10 L2 Example Line
G10 L2 P1 X0 Y0 Z0 (clear offsets for X,Y & Z axes in coordinate system 1)

The above example sets the XYZ coordinates of the coordinate system 1 to the machine origin.
The coordinate system is described in the Coordinate System section.

11.5.15 G10 L10 Set Tool Table

G10 L10 P- axes <R- I- J- Q->

• P - tool number

• R - radius of tool

• I - front angle (lathe)

• J - back angle (lathe)

• Q - orientation (lathe)

G10 L10 changes the tool table entry for tool P so that if the tool offset is reloaded, with the machine in
its current position and with the current G5x and G52/G92 offsets active, the current coordinates for
the given axes will become the given values. The axes that are not specified in the G10 L10 command
will not be changed. This could be useful with a probe move as described in the G38 section.
G10 L10 Example
T1 M6 G43 (load tool 1 and tool length offsets)
G10 L10 P1 Z1.5 (set the current position for Z to be 1.5)
G43 (reload the tool length offsets from the changed tool table)
M2 (end program)

• See T & M6, and G43/G43.1 sections for more information.

It is an error if:

• Cutter Compensation is on

• The P number is unspecified

• The P number is not a valid tool number from the tool table

• The P number is 0

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 896 / 1322

11.5.16 G10 L11 Set Tool Table

G10 L11 P- axes <R- I- J- Q->

• P - tool number

• R - radius of tool

• I - front angle (lathe)

• J - back angle (lathe)

• Q - orientation (lathe)

G10 L11 is just like G10 L10 except that instead of setting the entry according to the current offsets,
it is set so that the current coordinates would become the given value if the new tool offset is reloaded
and the machine is placed in the G59.3 coordinate system without any G52/G92 offset active.
This allows the user to set the G59.3 coordinate system according to a fixed point on the machine,
and then use that fixture to measure tools without regard to other currently-active offsets. It is an
error if:

• Cutter Compensation is on

• The P number is unspecified

• The P number is not a valid tool number from the tool table

• The P number is 0

11.5.17 G10 L20 Set Coordinate System

G10 L20 P- axes

• P - coordinate system (0-9)

G10 L20 is similar to G10 L2 except that instead of setting the offset/entry to the given value, it is set
to a calculated value that makes the current coordinates become the given value.
G10 L20 Example Line
G10 L20 P1 X1.5 (set the X axis current location in coordinate system 1 to 1.5)

It is an error if:

• The P number does not evaluate to an integer in the range 0 to 9.

• An axis is programmed that is not defined in the configuration.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 897 / 1322

11.5.18 G17 - G19.1 Plane Select

These codes set the current plane as follows:

• G17 - XY (default)

• G18 - ZX

• G19 - YZ

• G17.1 - UV

• G18.1 - WU

• G19.1 - VW

The UV, WU and VW planes do not support arcs.
It is a good idea to include a plane selection in the preamble of each G-code file.
The effects of having a plane selected are discussed in section G2 G3 Arcs and section G81 G89.

11.5.19 G20, G21 Units

• G20 - to use inches for length units.

• G21 - to use millimeters for length units.

It is a good idea to include units in the preamble of each G-code file.

11.5.20 G28, G28.1 Go/Set Predefined Position

Warning
Only use G28 when your machine is homed to a repeatable position and the desired G28
position has been stored with G28.1.

G28 uses the values stored in parameters 5161-5169 as the X Y Z A B C U V W final point to move
to. The parameter values are absolute machine coordinates in the native machine units as specified
in the INI file. All axes defined in the INI file will be moved when a G28 is issued. If no positions are
stored with G28.1 then all axes will go to the machine origin.

• G28 - makes a rapid move from the current position to the absolute position of the values in param-
eters 5161-5166.

• G28 axes - makes a rapid move to the position specified by axes including any offsets, then will make
a rapid move to the absolute position of the values in parameters 5161-5166 for all axes specified.
Any axis not specified will not move.

• G28.1 - stores the current absolute position into parameters 5161-5166.

G28 Example Line
G28 Z2.5 (rapid to Z2.5 then to Z location specified in #5163)

It is an error if :

• Cutter Compensation is turned on

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 898 / 1322

11.5.21 G30, G30.1 Go/Set Predefined Position

Warning
Only use G30 when your machine is homed to a repeatable position and the desired G30
position has been stored with G30.1.

G30 functions the same as G28 but uses the values stored in parameters 5181-5189 as the X Y Z A B
C U V W final point to move to. The parameter values are absolute machine coordinates in the native
machine units as specified in the INI file. All axes defined in the INI file will be moved when a G30 is
issued. If no positions are stored with G30.1 then all axes will go to the machine origin.

Note
G30 parameters will be used to move the tool when a M6 is programmed if TOOL_CHANGE_AT_G30=1
is in the [EMCIO] section of the INI file.

• G30 - makes a rapid move from the current position to the absolute position of the values in param-
eters 5181-5189.

• G30 axes - makes a rapid move to the position specified by axes including any offsets, then will make
a rapid move to the absolute position of the values in parameters 5181-5189 for all axes specified.
Any axis not specified will not move.

• G30.1 - stores the current absolute position into parameters 5181-5186.

G30 Example Line
G30 Z2.5 (rapid to Z2.5 then to the Z location specified in #5183)

It is an error if :

• Cutter Compensation is turned on

11.5.22 G33 Spindle Synchronized Motion

G33 X- Y- Z- K- $-

• K - distance per revolution

For spindle-synchronized motion in one direction, code G33 X- Y- Z- K- where K gives the distance
moved in XYZ for each revolution of the spindle. For instance, if starting at Z=0, G33 Z-1 K.0625
produces a 1 inch motion in Z over 16 revolutions of the spindle. This command might be part of a
program to produce a 16TPI thread. Another example in metric, G33 Z-15 K1.5 produces a movement
of 15mm while the spindle rotates 10 times for a thread of 1.5mm.
The (optional) $ argument sets which spindle the motion is synchronised to (default is zero). For
example G33 Z10 K1 $1 will move the spindle in synchrony with the spindle.N.revs HAL pin value.
Spindle-synchronized motion waits for the spindle index and spindle at speed pins, so multiple passes
line up. G33 moves end at the programmed endpoint. G33 could be used to cut tapered threads or a
fusee.
All the axis words are optional, except that at least one must be used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 899 / 1322

Note
K follows the drive line described by X- Y- Z-. K is not parallel to the Z axis if X or Y endpoints are
used for example when cutting tapered threads.

Technical Info
At the beginning of each G33 pass, LinuxCNC uses the spindle speed and the machine acceleration
limits to calculate how long it will take Z to accelerate after the index pulse, and determines how many
degrees the spindle will rotate during that time. It then adds that angle to the index position and
computes the Z position using the corrected spindle angle. That means that Z will reach the correct
position just as it finishes accelerating to the proper speed, and can immediately begin cutting a good
thread.
HAL Connections The pin spindle.N.at-speed must be set or driven true for the motion to start. Ad-
ditionally spindle.N.revs must increase by 1 for each revolution of the spindle and the spindle.N.index-
enable pin must be connected to an encoder (or resolver) counter which resets index-enable once per
rev.
See the Integrators Manual for more information on spindle synchronized motion.
G33 Example
G90 (absolute distance mode)
G0 X1 Z0.1 (rapid to position)
S100 M3 (start spindle turning)
G33 Z-2 K0.125 (move Z axis to -2 at a rate to equal 0.125 per revolution)
G0 X1.25 (rapid move tool away from work)
Z0.1 (rapid move to starting Z position)
M2 (end program)

• See G90 & G0 & M2 sections for more information.

It is an error if:

• All axis words are omitted.

• The spindle is not turning when this command is executed.

• The requested linear motion exceeds machine velocity limits due to the spindle speed.

11.5.23 G33.1 Rigid Tapping

G33.1 X- Y- Z- K- I- $-

• K - distance per revolution

• I - optional spindle speed multiplier for faster return move

• $ - optional spindle selector

Warning
For Z only tapping preposition the XY location prior to calling G33.1 and only use a Z word in
the G33.1. If the coordinates specified are not the current coordinates when calling G33.1 for
tapping the move will not be along the Z axis but will be a coordinated, spindle-synchronized
move from the current location to the location specified and back.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 900 / 1322

For rigid tapping (spindle synchronized motion with return), code G33.1 X- Y- Z- K- where K- gives the
distance moved for each revolution of the spindle.
A rigid tapping move consists of the following sequence:

• A move from the current coordinate to the specified coordinate, synchronized with the selected
spindle at the given ratio and starting from the current coordinate with a spindle index pulse.

• When reaching the endpoint, a command to reverse the spindle, and speed up by a factor set by the
multiplier (e.g., from clockwise to counterclockwise).

• Continued synchronized motion beyond the specified end coordinate until the spindle actually stops
and reverses.

• Continued synchronized motion back to the original coordinate.

• When reaching the original coordinate, a command to reverse the spindle a second time (e.g., from
counterclockwise to clockwise).

• Continued synchronized motion beyond the original coordinate until the spindle actually stops and
reverses.

• An unsynchronized move back to the original coordinate.

Spindle-synchronized motions wait for spindle index, so multiple passes line up.G33.1 moves end at
the original coordinate.
All the axis words are optional, except that at least one must be used.
G33.1 Example
G90 (set absolute mode)
G0 X1.000 Y1.000 Z0.100 (rapid move to starting position)
S100 M3 (turn on the spindle, 100 RPM)
G33.1 Z-0.750 K0.05 (rigid tap a 20 TPI thread 0.750 deep)
M2 (end program)

• See G90 & G0 & M2 sections for more information.

It is an error if:

• All axis words are omitted.

• The spindle is not turning when this command is executed

• The requested linear motion exceeds machine velocity limits due to the spindle speed

11.5.24 G38.n Straight Probe

G38.n axes

• G38.2 - probe toward workpiece, stop on contact, signal error if failure

• G38.3 - probe toward workpiece, stop on contact

• G38.4 - probe away from workpiece, stop on loss of contact, signal error if failure

• G38.5 - probe away from workpiece, stop on loss of contact

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 901 / 1322

Important
You will not be able to use a probe move until your machine has been set up to provide a probe
input signal. The probe input signal must be connected to motion.probe-input in a .hal file.
G38.n uses motion.probe-input to determine when the probe has made (or lost) contact. TRUE
for probe contact closed (touching), FALSE for probe contact open.

Program G38.n axes to perform a straight probe operation. The axis words are optional, except that
at least one of them must be used. The axis words together define the destination point that the probe
will move towards, starting from the current location. If the probe is not tripped before the destination
is reached G38.2 and G38.4 will signal an error.
The tool in the spindle must be a probe or contact a probe switch.
In response to this command, the machine moves the controlled point (which should be at the center
of the probe ball) in a straight line at the current feed rate toward the programmed point. In inverse
time feed mode, the feed rate is such that the whole motion from the current point to the programmed
point would take the specified time. The move stops (within machine acceleration limits) when the
programmed point is reached, or when the requested change in the probe input takes place, whichever
occurs first.

Table 11.15: Probing G-Codes

Code Target State Move orientation Error Signal
G38.2 Touched Toward piece Yes
G38.3 Touched Toward piece No
G38.4 Untouched From piece Yes
G38.5 Untouched From piece No

After successful probing, parameters #5061 to #5069 will be set to the X, Y, Z, A, B, C, U, V, W coor-
dinates of the location of the controlled point at the time the probe changed state (in the current work
coordinate system). After unsuccessful probing, they are set to the coordinates of the programmed
point. Parameter 5070 is set to 1 if the probe succeeded and 0 if the probe failed. If the probing
operation failed, G38.2 and G38.4 will signal an error by posting an message on screen if the selected
GUI supports that. And by halting program execution.
Here is an example formula to probe tool height with conversion from a local coordinate system Z
offset to machine coordinates which is stored in the tool table. The existing tool height compensation
is first cancelled with G49 to avoid including it in the calculation of height, and the new height is
loaded from the tool table. The start position must be high enough above the tool height probe to
compensate for the use of G49.
G38.2 Example
G49
G38.2 Z-100 F100
#<zworkoffset> = [#[5203 + #5220 * 20] + #5213 * #5210]
G10 L1 P#5400 Z#<zworkoffset> (set new tool offset)
G43

A comment of the form (PROBEOPEN filename.txt) will open filename.txt and store the 9-number
coordinate consisting of XYZABCUVW of each successful straight probe in it. The file must be closed
with (PROBECLOSE). For more information see the Comments section.
An example file smartprobe.ngc is included (in the examples directory) to demonstrate using probe
moves to log to a file the coordinates of a part. The program smartprobe.ngc could be used with
ngcgui with minimal changes.
It is an error if:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 902 / 1322

• the current point is the same as the programmed point.

• no axis word is used

• cutter compensation is enabled

• the feed rate is zero

• the probe is already in the target state

11.5.25 G40 Compensation Off

• G40 - turn cutter compensation off. If tool compensation was on the next move must be a linear
move and longer than the tool diameter. It is OK to turn compensation off when it is already off.

G40 Example
; current location is X1 after finishing cutter compensated move
G40 (turn compensation off)
G0 X1.6 (linear move longer than current cutter diameter)
M2 (end program)

See G0 & M2 sections for more information.
It is an error if:

• A G2/G3 arc move is programmed next after a G40.

• The linear move after turning compensation off is less than the tool diameter.

11.5.26 G41, G42 Cutter Compensation

G41 <D-> (left of programmed path)
G42 <D-> (right of programmed path)

• D - tool number

The D word is optional; if there is no D word the radius of the currently loaded tool will be used (if no
tool is loaded and no D word is given, a radius of 0 will be used).
If supplied, the D word is the tool number to use. This would normally be the number of the tool in
the spindle (in which case the D word is redundant and need not be supplied), but it may be any valid
tool number.

Note
G41/G42 D0 is a little special. Its behavior is different on random tool changer machines and nonran-
dom tool changer machines (see the Tool Change section). On nonrandom tool changer machines,
G41/G42 D0 applies the Tool Length Offset of the tool currently in the spindle, or a TLO of 0 if no
tool is in the spindle. On random tool changer machines, G41/G42 D0 applies the TLO of the tool T0
defined in the tool table file (or causes an error if T0 is not defined in the tool table).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 903 / 1322

To start cutter compensation to the left of the part profile, use G41. G41 starts cutter compensation
to the left of the programmed line as viewed from the positive end of the axis perpendicular to the
plane.
To start cutter compensation to the right of the part profile, use G42. G42 starts cutter compensation
to the right of the programmed line as viewed from the positive end of the axis perpendicular to the
plane.
The lead in move must be at least as long as the tool radius. The lead in move can be a rapid move.
Cutter compensation may be performed if the XY-plane or XZ-plane is active.
User M100-M199 commands are allowed when Cutter Compensation is on.
The behavior of the machining center when cutter compensation is on is described in the Cutter
Compensation section along with code examples.
It is an error if:

• The D number is not a valid tool number or 0.

• The YZ plane is active.

• Cutter compensation is commanded to turn on when it is already on.

11.5.27 G41.1, G42.1 Dynamic Cutter Compensation

G41.1 D- <L-> (left of programmed path)
G42.1 D- <L-> (right of programmed path)

• D - cutter diameter

• L - tool orientation (see lathe tool orientation)

G41.1 & G42.1 function the same as G41 & G42 with the added scope of being able to program the
tool diameter. The L word defaults to 0 if unspecified.
It is an error if:

• The YZ plane is active.

• The L number is not in the range from 0 to 9 inclusive.

• The L number is used when the XZ plane is not active.

• Cutter compensation is commanded to turn on when it is already on.

11.5.28 G43 Tool Length Offset

G43 <H->

• H - tool number (optional)

• G43 - enables tool length compensation. G43 changes subsequent motions by offsetting the axis
coordinates by the length of the offset. G43 does not cause any motion. The next time a compensated
axis is moved, that axis’s endpoint is the compensated location.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 904 / 1322

G43 without an H word uses the currently loaded tool from the last Tn M6.
G43 Hn uses the offset for tool n.
The active tool length compensation values are stored in the numbered parameters 5401-5409.

Note
G43 H0 is a little special. Its behavior is different on random tool changer machines and nonrandom
tool changer machines (see the Tool Changers section). On nonrandom tool changer machines, G43
H0 applies the Tool Length Offset of the tool currently in the spindle, or a TLO of 0 if no tool is in the
spindle. On random tool changer machines, G43 H0 applies the TLO of the tool T0 defined in the tool
table file (or causes an error if T0 is not defined in the tool table).

G43 H- Example Line
G43 H1 (set tool offsets using the values from tool 1 in the tool table)

It is an error if:

• the H number is not an integer, or

• the H number is negative, or

• the H number is not a valid tool number (though note that 0 is a valid tool number on nonrandom
tool changer machines, it means ”the tool currently in the spindle”)

11.5.29 G43.1 Dynamic Tool Length Offset

G43.1 axes

• G43.1 axes - change subsequent motions by replacing the current offset(s) of axes. G43.1 does
not cause any motion. The next time a compensated axis is moved, that axis’s endpoint is the
compensated location.

G43.1 Example
G90 (set absolute mode)
T1 M6 G43 (load tool 1 and tool length offsets, Z is at machine 0 and DRO shows Z1.500)
G43.1 Z0.250 (replace current tool offset with 0.250, DRO now shows Z0.250)
M2 (end program)

• See G90 & T & M6 sections for more information.

It is an error if:

• motion is commanded on the same line as G43.1

Note
G43.1 does not write to the tool table.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 905 / 1322

11.5.30 G43.2 Apply additional Tool Length Offset

G43.2 H- or axes-

• H - tool number

• G43.2 Hn - applies an additional simultaneous tool offset to subsequent motions by adding the
offset(s) of tool n.

• G43.2 axes - applies an additional simultaneous tool offset to subsequent motions by adding the
value(s) of any axis words.

G43.2 Hn Example
G90 (set absolute mode)
T1 M6 (load tool 1)
G43 (or G43 H1 - replace all tool offsets with T1’s offset)
G43.2 H10 (also add in T10’s tool offset)
M2 (end program)

G43.2 axes Example
G90 (set absolute mode)
T1 M6 (load tool 1)
G43 (or G43 H1 - replace all tool offsets with T1’s offset)
G43.2 X0.01 Z0.02 (also add 0.01 to the x tool offset and 0.02 to the z tool offset)
M2 (end program)

You can sum together an arbitrary number of offsets by calling G43.2 more times. There are no built-
in assumptions about which numbers are geometry offsets and which are wear offsets, or that you
should have only one of each.
Like the other G43 commands, G43.2 does not cause any motion. The next time a compensated axis
is moved, that axis’s endpoint is the compensated location.
It is an error if:

• H is unspecified and no axis offsets are specified.

• H is specified and the given tool number does not exist in the tool table.

• H is specified and axes are also specified.

Note
G43.2 does not write to the tool table.

11.5.31 G49 Cancel Tool Length Compensation

• G49 - cancels tool length compensation

It is OK to program using the same offset already in use. It is also OK to program using no tool length
offset if none is currently being used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 906 / 1322

11.5.32 G52 Local Coordinate System Offset

G52 axes

G52 is used in a part program as a temporary ”local coordinate system offset” within the workpiece
coordinate system. For more information about G92 and G52 and how they interact see Local and
Global Offsets.

11.5.33 G53 Move in Machine Coordinates

G53 axes

To move in the machine coordinate system, program G53 on the same line as a linear move. G53 is
not modal and must be programmed on each line. G0 or G1 does not have to be programmed on the
same line if one is currently active.
For example G53 G0 X0 Y0 Z0 will move the axes to the home position even if the currently selected
coordinate system has offsets in effect.
G53 Example
G53 G0 X0 Y0 Z0 (rapid linear move to the machine origin)
G53 X2 (rapid linear move to absolute coordinate X2)

See G0 section for more information.
It is an error if:

• G53 is used without G0 or G1 being active,

• or G53 is used while cutter compensation is on.

11.5.34 G54-G59.3 Select Coordinate System

• G54 - select coordinate system 1

• G55 - select coordinate system 2

• G56 - select coordinate system 3

• G57 - select coordinate system 4

• G58 - select coordinate system 5

• G59 - select coordinate system 6

• G59.1 - select coordinate system 7

• G59.2 - select coordinate system 8

• G59.3 - select coordinate system 9

The coordinate systems store the axis values and the XY rotation angle around the Z axis in the pa-
rameters shown in the following table.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 907 / 1322

Table 11.16: Coordinate System Parameters

Select CS X Y Z A B C U V W R
G54 1 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
G55 2 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
G56 3 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
G57 4 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
G58 5 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
G59 6 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
G59.1 7 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
G59.2 8 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
G59.3 9 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390

It is an error if:

• selecting a coordinate system is used while cutter compensation is on.

See the Coordinate System section for an overview of coordinate systems.

11.5.35 G61 Exact Path Mode

• G61 - Exact path mode, movement exactly as programmed. Moves will slow or stop as needed to
reach every programmed point. If two sequential moves are exactly co-linear movement will not
stop.

11.5.36 G61.1 Exact Stop Mode

• G61.1 - Exact stop mode, movement will stop at the end of each programmed segment.

11.5.37 G64 Path Blending

G64 <P- <Q->>

• P - motion blending tolerance

• Q - naive cam tolerance

• G64 - best possible speed. Without P (Or a default value in RS274NGC) means to keep the best
speed possible, no matter how far away from the programmed point you end up.

• G64 P- - Blend between best speed and deviation tolerance

• G64 P- <Q- > blending with tolerance. It is a way to fine tune your system for best compromise
between speed and accuracy. The P- tolerance means that the actual path will be no more than P-
away from the programmed endpoint. The velocity will be reduced if needed to maintain the path.
If you set Q to a non-zero value it turns on the Naive CAM Detector: when there are a series of
linear XYZ feed moves at the same feed rate that are less than Q- away from being collinear, they
are collapsed into a single linear move. On G2/G3 moves in the G17 (XY) plane when the maximum
deviation of an arc from a straight line is less than the G64 P- tolerance the arc is broken into two
lines (from start of arc to midpoint, and from midpoint to end). those lines are then subject to the
naive cam algorithm for lines. Thus, line-arc, arc-arc, and arc-line cases as well as line-line benefit

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 908 / 1322

from the Naive CAM Detector. This improves contouring performance by simplifying the path. It is
OK to program for the mode that is already active. See also the Trajectory Control section for more
information on these modes. If Q is not specified then it will have the same behavior as before and
use the value of P-. Set Q to zero to disable the Naive CAM Detector.

It is a good idea to include a path control specification in the preamble of each G-code file.
G64 P- Q- Example Line
G64 P0.015 Q0.015 (set path following to be within 0.015 of the actual path)

The P- and Q- values are chosen small. Usually smaller than the machine accuracy or the accuracy of
commonly manufactured parts. Below are examples with extreme P- and Q- values to understand the
G64 function.
G64 Without values
G64 (set without P- and Q- values)

Figure 11.14: G64 Rectangle

G64 With big Q- value
G64 P0.015 Q6

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 909 / 1322

Figure 11.15: G64 Rectangle with radius before milling

Figure 11.16: G64 Rectangle with radius after milling

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 910 / 1322

G64 P0.015 Q2

Figure 11.17: G64 Heart

11.5.38 G70 Lathe finishing cycle

G70 Q- <X-> <Z-> <D-> <E-> <P->

• Q - The subroutine number.

• X - The starting X position, defaults to the initial position.

• Z - The starting Z position, defaults to the initial position.

• D - The starting distance of the profile, defaults to 0.

• E - The ending distance of the profile, defaults to 0.

• P - The number of passes to use, defaults to 1.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 911 / 1322

The G70 cycle is intended to be used after the shape of the profile given in the subroutine with number
Q has been cut with G71 or G72.

• Preliminary motion.

– If Z or X are used a rapid move to that position is done. This position is also used between each
finishing pass.

– Then a rapid move to the start of the profile is executed.
– The path given in Q- is followed using the G1 and Section 11.5.5 commands.
– If a next pass is required there is another rapid to the intermediate location, before a rapid is

done to the start of the profile.
– After the final pass, the tool is left at the end of the profile including E-.

• Multiple passes. The distance between the pass and the final profile is (pass-1)*(D-E)/P+E. Where
pass the pass number and D,E and P are the D/E/P numbers.

• The distance is computed using the starting position of the cycle, with a positive distance towards
this point.

• Fillet and chamfers in the profile. It is possible to add fillets or chamfers in the profile, see Sec-
tion 11.5.39 for more details.

It is an error if:

• There is no subroutine defined with the number given in Q.

• The path given in the profile is not monotonic in Z or X.

• Section 11.5.18 has not been used to select the ZX plane.

11.5.39 G71 G72 Lathe roughing cycles

Note
The G71 and G72 cycles are currently somewhat fragile. See issue #2939 for example.

G71 Q- <X-> <Z-> <D-> <I-> <R->
G71.1 Q- <X-> <Z-> <D-> <I-> <R->
G71.2 Q- <X-> <Z-> <D-> <I-> <R->
G72 Q- <X-> <Z-> <D-> <I-> <R->
G72.1 Q- <X-> <Z-> <D-> <I-> <R->
G72.2 Q- <X-> <Z-> <D-> <I-> <R->

• Q - The subroutine number.

• X - The starting X position, defaults to the initial position.

• Z - The starting Z position, defaults to the initial position.

• D - The remaining distance to the profile, defaults to 0.

• I - The cutting increment, defaults to 1.

• R - The retracting distance, defaults to 0.5.

https://github.com/LinuxCNC/linuxcnc/issues/2939

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 912 / 1322

The G71/G72 cycle is intended to rough cut a profile on a lathe. The G71 cycles remove layers of
the material while traversing in the Z direction. The G72 cycles remove material while traversing
the X axis, the so called facing cycle. The direction of travel is the same as in the path given in the
subroutine. For the G71 cycle the Z coordinate must be monotonically changing, for the G72 this is
required for the X axis.
The profile is given in a subroutine with number Q-. This subroutine may contain G0, G1, G2 and
G3 motion commands. All other commands are ignored, including feed and speed settings. The
Section 11.5.3 commands are interpreted as G1 commands. Each motion command may also include
an optional A- or C- number. If the number A- is added a fillet with the radius given by A will be
inserted at the endpoint of that motion, if this radius is too large the algorithm will fail with a non-
monotonic path error. It is also possible to use the C- number, which allows a chamfer to be inserted.
This chamfer has the same endpoints as a fillet of the same dimension would have but a straight line
is inserted instead of an arc.
When in absolute mode the U (for X) and W (for Z) can be used as incremental displacements.
The G7x.1 cycles do not cut pockets. The G7x.2 cycles only cut after the first pocket and continue
where G7x.1 stopped. It is advisible to leave some additional material to cut before the G7x.2 cycle,
so if G7x.1 used a D1.0 the G7x.2 can use D0.5 and 0.5mm will be removed while moving from one
pocket to the next.
The normal G7x cycles cut the entire profile in one cycle.

1. Preliminary motion.

• If Z or X are used a rapid move to that position is done.
• After the profile has been cut, the tool stops at the end of the profile, including the distance

specified in D.

2. The D number is used to keep a distance from the final profile, to allow material to remain for
finishing.

It is an error if:

• There is no subroutine defined with the number given in Q.

• The path given in the profile is not monotonic in Z or X.

• Section 11.5.18 has not been used to select the ZX plane.

• Section 11.5.26 is active.

11.5.40 G73 Drilling Cycle with Chip Breaking

G73 X- Y- Z- R- Q- P- <L->

• R - retract position along the Z axis.

• Q - delta increment along the Z axis.

• L - repeat

The G73 cycle is drilling or milling with chip breaking. This cycle takes a Q number which represents
a delta increment along the Z axis. Peck clearance can be specified by optional P number.

• Preliminary motion.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 913 / 1322

– If the current Z position is below the R position, The Z axis does a rapid move to the R position.
– Move to the X Y coordinates

• Move the Z-axis only at the current feed rate downward by delta or to the Z position, whichever is
less deep.

• Rapid up .010 of an inch or 0.254 mm.

• Repeat steps 2 and 3 until the Z position is reached at step 2.

• The Z axis does a rapid move to the R position.

It is an error if:

• the Q number is negative or zero.

• the R number is not specified

11.5.41 G74 Left-hand Tapping Cycle with Dwell

G74 (X- Y- Z-) or (U- V- W-) R- L- P- $- F-

• R- - Retract position along the Z axis.

• L- - Used in incremental mode; number of times to repeat the cycle. See G81 for examples.

• P- - Dwell time (seconds).

• $- - Selected spindle.

• F- - Feed rate (spindle speed multiplied by distance traveled per revolution (thread pitch)).

Warning
G74 does not use synchronized motion.

The G74 cycle is intended for tapping with floating chuck and dwell at the bottom of the hole.

1. Preliminary motion, as described in the Preliminary and In-Between Motion section.

2. Disable Feed and Speed Overrides.

3. Move the Z-axis at the current feed rate to the Z position.

4. Stop the selected spindle (chosen by the $ parameter)

5. Start spindle rotation clockwise.

6. Dwell for the P number of seconds.

7. Move the Z-axis at the current feed rate to clear Z

8. Restore Feed and Speed override enables to previous state

The length of the dwell is specified by a P- word in the G74 block. The feed rate F- is spindle speed
multiplied by distance per revolution (thread pitch). In example S100 with 1.25MM per revolution
thread pitch gives a feed of F125.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 914 / 1322

11.5.42 G76 Threading Cycle

G76 P- Z- I- J- R- K- Q- H- E- L- $-

Figure 11.18: G76 Threading

• Drive Line - A line through the initial X position parallel to the Z.

• P- - The thread pitch in distance per revolution.

• Z- - The final position of threads. At the end of the cycle the tool will be at this Z position.

Note
When G7 Lathe Diameter Mode is in force the values for I, J and K are diameter measurements. When
G8 Lathe Radius Mode is in force the values for I, J and K are radius measurements.

• I- - The thread peak offset from the drive line. Negative I values are external threads, and positive
I values are internal threads. Generally the material has been turned to this size before the G76
cycle.

• J- - A positive value specifying the initial cut depth. The first threading cut will be J beyond the
thread peak position.

• K- - A positive value specifying the full thread depth. The final threading cut will be K beyond the
thread peak position.

Optional settings

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 915 / 1322

• $- - The spindle number to which the motion will be synchronised (default 0). For example if $1 is
programmed then the motion will begin on the reset of spindle.1.index-enable and proceed in
synchrony with the value of spindle.1.revs.

• R- - The depth degression. R1.0 selects constant depth on successive threading passes. R2.0 selects
constant area. Values between 1.0 and 2.0 select decreasing depth but increasing area. Values
above 2.0 select decreasing area. Beware that unnecessarily high degression values will cause a
large number of passes to be used. (degression = a descent by stages or steps.)

Warning
Unnecessarily high degression values will produce an unnecessarily high number of passes.
(degressing = dive in stages)

• Q- - The compound slide angle is the angle (in degrees) describing to what extent successive passes
should be offset along the drive line. This is used to cause one side of the tool to remove more
material than the other. A positive Q value causes the leading edge of the tool to cut more heavily.
Typical values are 29, 29.5 or 30.

• H- - The number of spring passes. Spring passes are additional passes at full thread depth. If no
additional passes are desired, program H0.

Thread entries and exits can be programmed tapered with the E and L values.

• E- - Specifies the distance along the drive line used for the taper. The angle of the taper will be so
the last pass tapers to the thread crest over the distance specified with E. E0.2 will give a taper for
the first/last 0.2 length units along the thread. For a 45 degree taper program E the same as K.

• L- - Specifies which ends of the thread get the taper. Program L0 for no taper (the default), L1 for
entry taper, L2 for exit taper, or L3 for both entry and exit tapers. Entry tapers will pause at the
drive line to synchronize with the index pulse then move at the feed rate in to the beginning of the
taper. No entry taper and the tool will rapid to the cut depth then synchronize and begin the cut.

The tool is moved to the initial X and Z positions prior to issuing the G76. The X position is the drive
line and the Z position is the start of the threads.
The tool will pause briefly for synchronization before each threading pass, so a relief groove will be
required at the entry unless the beginning of the thread is past the end of the material or an entry
taper is used.
Unless using an exit taper, the exit move is not synchronized to the spindle speed and will be a rapid
move. With a slow spindle, the exit move might take only a small fraction of a revolution. If the
spindle speed is increased after several passes are complete, subsequent exit moves will require a
larger portion of a revolution, resulting in a very heavy cut during the exit move. This can be avoided
by providing a relief groove at the exit, or by not changing the spindle speed while threading.
The final position of the tool will be at the end of the drive line. A safe Z move will be needed with an
internal thread to remove the tool from the hole.
It is an error if:

• The active plane is not the ZX plane.

• Other axis words, such as X- or Y-, are specified.

• The R- degression value is less than 1.0.

• All the required words are not specified.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 916 / 1322

• P-, J-, K- or H- is negative.

• E- is greater than half the drive line length.

HAL Connections The pins spindle.N.at-speed and the encoder.n.phase-Z for the spindle must be
connected in your HAL file before G76 will work. See the spindle pins in the Motion section for more
information.
Technical Info The G76 canned cycle is based on the G33 Spindle Synchronized Motion. For more
information see the G33 Technical Info.
The sample program g76.ngc shows the use of the G76 canned cycle, and can be previewed and
executed on any machine using the sim/lathe.ini configuration.
G76 Example Code
G0 Z-0.5 X0.2
G76 P0.05 Z-1 I-.075 J0.008 K0.045 Q29.5 L2 E0.045

In the figure the tool is in the final position after the G76 cycle is completed. You can see the entry
path on the right from the Q29.5 and the exit path on the left from the L2 E0.045. The white lines are
the cutting moves.

Figure 11.19: G76 Example

11.5.43 G80-G89 Canned Cycles

The canned cycles G81 through G89 and the canned cycle stop G80 are described in this section.
All canned cycles are performed with respect to the currently-selected plane. Any of the nine planes
may be selected. Throughout this section, most of the descriptions assume the XY-plane has been
selected. The behavior is analogous if another plane is selected, and the correct words must be used.
For instance, in the G17.1 plane, the action of the canned cycle is along W, and the locations or
increments are given with U and V. In this case substitute U,V,W for X,Y,Z in the instructions below.
Rotary axis words are not allowed in canned cycles. When the active plane is one of the XYZ family,
the UVW axis words are not allowed. Likewise, when the active plane is one of the UVW family, the
XYZ axis words are not allowed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 917 / 1322

11.5.43.1 Common Words

All canned cycles use X, Y, Z, or U, V, W groups depending on the plane selected and R words. The
R (usually meaning retract) position is along the axis perpendicular to the currently selected plane
(Z-axis for XY-plane, etc.) Some canned cycles use additional arguments.

11.5.43.2 Sticky Words

For canned cycles, we will call a number sticky if, when the same cycle is used on several lines of
code in a row, the number must be used the first time, but is optional on the rest of the lines. Sticky
numbers keep their value on the rest of the lines if they are not explicitly programmed to be different.
The R number is always sticky.
In incremental distance mode X, Y, and R numbers are treated as increments from the current position
and Z as an increment from the Z-axis position before the move involving Z takes place. In absolute
distance mode, the X, Y, R, and Z numbers are absolute positions in the current coordinate system.

11.5.43.3 Repeat Cycle

The L number is optional and represents the number of repeats. L=0 is not allowed. If the repeat
feature is used, it is normally used in incremental distance mode, so that the same sequence of mo-
tions is repeated in several equally spaced places along a straight line. When L- is greater than 1
in incremental mode with the XY-plane selected, the X and Y positions are determined by adding the
given X and Y numbers either to the current X and Y positions (on the first go-around) or to the X and
Y positions at the end of the previous go-around (on the repetitions). Thus, if you program L10 , you
will get 10 cycles. The first cycle will be distance X,Y from the original location. The R and Z positions
do not change during the repeats. The L number is not sticky. In absolute distance mode, L>1 means
do the same cycle in the same place several times, Omitting the L word is equivalent to specifying
L=1.

11.5.43.4 Retract Mode

The height of the retract move at the end of each repeat (called clear Z in the descriptions below) is
determined by the setting of the retract mode, either to the original Z position (if that is above the
R position and the retract mode is G98, OLD_Z), or otherwise to the R position. See the G98 G99
section.

11.5.43.5 Canned Cycle Errors

It is an error if:

• axis words are all missing during a canned cycle,

• axis words from different groups (XYZ) (UVW) are used together,

• a P number is required and a negative P number is used,

• an L number is used that does not evaluate to a positive integer,

• rotary axis motion is used during a canned cycle,

• inverse time feed rate is active during a canned cycle,

• or cutter compensation is active during a canned cycle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 918 / 1322

If the XY plane is active, the Z number is sticky, and it is an error if:

• the Z number is missing and the same canned cycle was not already active,

• or the R number is less than the Z number.

If other planes are active, the error conditions are analogous to the XY conditions above.

11.5.43.6 Preliminary and In-Between Motion

Preliminary motion is a set of motions that is common to all of the milling canned cycles. If the current
Z position is below the R position, the Z axis does a rapid move to the R position. This happens only
once, regardless of the value of L.
In addition, at the beginning of the first cycle and each repeat, the following one or two moves are
made:

• A rapid move parallel to the XY-plane to the given XY-position.

• The Z-axis make a rapid move to the R position, if it is not already at the R position.

If another plane is active, the preliminary and in-between motions are analogous.

11.5.43.7 Why use a canned cycle?

There are at least two reasons for using canned cycles. The first is the economy of code. A single bore
would take several lines of code to execute.
The G81 Example 1 demonstrates how a canned cycle could be used to produce 8 holes with ten lines
of G-code within the canned cycle mode. The program below will produce the same set of 8 holes
using five lines for the canned cycle. It does not follow exactly the same path nor does it drill in the
same order as the earlier example. But the program writing economy of a good canned cycle should
be obvious.

Note
Line numbers are not needed but help clarify these examples.

Eight Holes
N100 G90 G0 X0 Y0 Z0 (move coordinate home)
N110 G1 F10 X0 G4 P0.1
N120 G91 G81 X1 Y0 Z-1 R1 L4(canned drill cycle)
N130 G90 G0 X0 Y1
N140 Z0
N150 G91 G81 X1 Y0 Z-0.5 R1 L4(canned drill cycle)
N160 G80 (turn off canned cycle)
N170 M2 (program end)

The G98 on the second line above means that the return move will be to the Z value on the first line
since it is higher than the specified R value.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 919 / 1322

Twelve Holes in a Square This example demonstrates the use of the L word to repeat a set of
incremental drill cycles for successive blocks of code within the same G81 motion mode. Here we
produce 12 holes using five lines of code in the canned motion mode.
N1000 G90 G0 X0 Y0 Z0 (move coordinate home)
N1010 G1 F50 X0 G4 P0.1
N1020 G91 G81 X1 Y0 Z-0.5 R1 L4 (canned drill cycle)
N1030 X0 Y1 R0 L3 (repeat)
N1040 X-1 Y0 L3 (repeat)
N1050 X0 Y-1 L2 (repeat)
N1060 G80 (turn off canned cycle)
N1070 G90 G0 X0 (rapid move home)
N1080 Y0
N1090 Z0
N1100 M2 (program end)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 920 / 1322

The second reason to use a canned cycle is that they all produce preliminary moves and returns that
you can anticipate and control regardless of the start point of the canned cycle.

11.5.44 G80 Cancel Canned Cycle

• G80 - cancel canned cycle modal motion. G80 is part of modal group 1, so programming any other
G-code from modal group 1 will also cancel the canned cycle.

It is an error if:

• Axis words are programmed when G80 is active.

G80 Example
G90 G81 X1 Y1 Z1.5 R2.8 (absolute distance canned cycle)
G80 (turn off canned cycle motion)
G0 X0 Y0 Z0 (rapid move to coordinate home)

The following code produces the same final position and machine state as the previous code.
G0 Example
G90 G81 X1 Y1 Z1.5 R2.8 (absolute distance canned cycle)
G0 X0 Y0 Z0 (rapid move to coordinate home)

The advantage of the first set is that, the G80 line clearly turns off the G81 canned cycle. With the
first set of blocks, the programmer must turn motion back on with G0, as is done in the next line, or
any other motion mode G word.
If a canned cycle is not turned off with G80 or another motion word, the canned cycle will attempt
to repeat itself using the next block of code that contains an X, Y, or Z word. The following file drills
(G81) a set of eight holes as shown in the following caption.
G80 Example 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 921 / 1322

N100 G90 G0 X0 Y0 Z0 (coordinate home)
N110 G1 X0 G4 P0.1
N120 G81 X1 Y0 Z0 R1 (canned drill cycle)
N130 X2
N140 X3
N150 X4
N160 Y1 Z0.5
N170 X3
N180 X2
N190 X1
N200 G80 (turn off canned cycle)
N210 G0 X0 (rapid move home)
N220 Y0
N230 Z0
N240 M2 (program end)

Note
Notice the Z position change after the first four holes. Also, this is one of the few places where line
numbers have some value, being able to point a reader to a specific line of code.

The use of G80 in line N200 is optional because the G0 on the next line will turn off the G81 cycle.
But using the G80 as shown in Example 1, will provide for easier to read canned cycle. Without it, it
is not so obvious that all of the blocks between N120 and N200 belong to the canned cycle.

11.5.45 G81 Drilling Cycle

G81 (X- Y- Z-) or (U- V- W-) R- L-

The G81 cycle is intended for drilling.
The cycle functions as follows:

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Move the Z-axis at the current feed rate to the Z position.

• The Z-axis does a rapid move to clear Z.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 922 / 1322

Figure 11.20: G81 Cycle

Example 1 - Absolute Position G81
G90 G98 G81 X4 Y5 Z1.5 R2.8

Suppose the current position is (X1, Y2, Z3) and the preceding line of NC code is interpreted.
This calls for absolute distance mode (G90) and OLD_Z retract mode (G98) and calls for the G81
drilling cycle to be performed once.

• The X value and X position are 4.

• The Y value and Y position are 5.

• The Z value and Z position are 1.5.

• The R value and clear Z are 2.8. OLD_Z is 3.

The following moves take place:

• A rapid move parallel to the XY plane to (X4, Y5)

• A rapid move move parallel to the Z-axis to (Z2.8).

• Move parallel to the Z-axis at the feed rate to (Z1.5)

• A rapid move parallel to the Z-axis to (Z3)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 923 / 1322

Example 2 - Relative Position G81
G91 G98 G81 X4 Y5 Z-0.6 R1.8 L3

Suppose the current position is (X1, Y2, Z3) and the preceding line of NC code is interpreted.
This calls for incremental distance mode (G91) and OLD_Z retract mode (G98). It also calls for the
G81 drilling cycle to be repeated three times. The X value is 4, the Y value is 5, the Z value is -0.6
and the R value is 1.8. The initial X position is 5 (=1+4), the initial Y position is 7 (=2+5), the clear Z
position is 4.8 (=1.8+3), and the Z position is 4.2 (=4.8-0.6). OLD_Z is 3.
The first preliminary move is a maximum rapid move along the Z axis to (X1,Y2,Z4.8), since OLD_Z <
clear Z.
The first repeat consists of 3 moves.

• A rapid move parallel to the XY-plane to (X5, Y7)

• Move parallel to the Z-axis at the feed rate to (Z4.2)

• A rapid move parallel to the Z-axis to (X5, Y7, Z4.8)

The second repeat consists of 3 moves. The X position is reset to 9 (=5+4) and the Y position to 12
(=7+5).

• A rapid move parallel to the XY-plane to (X9, Y12, Z4.8)

• Move parallel to the Z-axis at the feed rate to (X9, Y12, Z4.2)

• A rapid move parallel to the Z-axis to (X9, Y12, Z4.8)

The third repeat consists of 3 moves. The X position is reset to 13 (=9+4) and the Y position to 17
(=12+5).

• A rapid move parallel to the XY-plane to (X13, Y17, Z4.8)

• Move parallel to the Z-axis at the feed rate to (X13, Y17, Z4.2)

• A rapid move parallel to the Z-axis to (X13, Y17, Z4.8)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 924 / 1322

Example 3 - Relative Position G81
G90 G98 G81 X4 Y5 Z1.5 R2.8

Now suppose that you execute the first G81 block of code but from (X0, Y0, Z0) rather than from (X1,
Y2, Z3).
Since OLD_Z is below the R value, it adds nothing for the motion but since the initial value of Z is less
than the value specified in R, there will be an initial Z move during the preliminary moves.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 925 / 1322

Example 4 - Absolute G81 R > Z This is a plot of the path of motion for the second g81 block of
code.
G91 G98 G81 X4 Y5 Z-0.6 R1.8 L3

Since this plot starts with (X0, Y0, Z0), the interpreter adds the initial Z0 and R1.8 and rapid moves
to that location. After that initial Z move, the repeat feature works the same as it did in example 3
with the final Z depth being 0.6 below the R value.

Example 5 - Relative position R > Z
G90 G98 G81 X4 Y5 Z-0.6 R1.8

Since this plot starts with (X0, Y0, Z0), the interpreter adds the initial Z0 and R1.8 and rapid moves
to that location as in Example 4. After that initial Z move, the rapid move to X4 Y5 is done. Then the

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 926 / 1322

final Z depth being 0.6 below the R value. The repeat function would make the Z move in the same
location again.

11.5.46 G82 Drilling Cycle, Dwell

G82 (X- Y- Z-) or (U- V- W-) R- L- P-

The G82 cycle is intended for drilling with a dwell at the bottom of the hole.

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Move the Z-axis at the current feed rate to the Z position.

• Dwell for the P number of seconds.

• The Z-axis does a rapid move to clear Z.

The motion of a G82 canned cycle looks just like G81 with the addition of a dwell at the bottom of the
Z move. The length of the dwell is specified by a P- word in the G82 block.
G90 G82 G98 X4 Y5 Z1.5 R2.8 P2

This will be similar to example 3 above, just with an added dwell of 2 seconds at the bottom of the
hole.

11.5.47 G83 Peck Drilling Cycle

G83 (X- Y- Z-) or (U- V- W-) R- L- Q- P-

The G83 cycle (often called peck drilling) is intended for deep drilling ormilling with chip breaking.
The retracts in this cycle clear the hole of chips and cut off any long stringers (which are common
when drilling in aluminum). This cycle takes a Q number which represents a delta increment along
the Z-axis. The retract before final depth will always be to the retract plane even if G98 is in effect.
The final retract will honor the G98/99 in effect. G83 functions the same as G81 with the addition of
retracts during the drilling operation. Peck clearance can be specified by optional P number.

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Move the Z-axis at the current feed rate downward by delta or to the Z position, whichever is less
deep.

• Rapid move back out to the retract plane specified by the R word.

• Rapid move back down to the current hole bottom, less .010 of an inch or 0.254 mm.

• Repeat steps 2, 3, and 4 until the Z position is reached at step 2.

• The Z-axis does a rapid move to clear Z.

It is an error if:

• the Q number is negative or zero.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 927 / 1322

11.5.48 G84 Right-hand Tapping Cycle, Dwell

G84 (X- Y- Z-) or (U- V- W-) R- L- P- $- F-

• R- - Retract position along the Z axis.

• L- - Used in incremental mode; number of times to repeat the cycle. See G81 for examples.

• P- - Dwell time (seconds).

• $- - Selected spindle.

• F- - Feed rate (spindle speed multiplied by distance traveled per revolution (thread pitch)).

Warning
G84 does not use synchronized motion.

The G84 cycle is intended for tapping with floating chuck and dwell at the bottom of the hole.

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Disable Feed and Speed Overrides.

• Move the Z-axis at the current feed rate to the Z position.

• Stop the selected spindle (chosen by the $ parameter)

• Start spindle rotation counterclockwise.

• Dwell for the P number of seconds.

• Move the Z-axis at the current feed rate to clear Z

• Restore Feed and Speed override enables to previous state

The length of the dwell is specified by a P- word in the G84 block. The feed rate F- is spindle speed
multiplied by distance per revolution (thread pitch). In example S100 with 1.25MM per revolution
thread pitch gives a feed of F125.

11.5.49 G85 Boring Cycle, Feed Out

G85 (X- Y- Z-) or (U- V- W-) R- L-

The G85 cycle is intended for boring or reaming, but could be used for drilling or milling.

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Move the Z-axis only at the current feed rate to the Z position.

• Retract the Z-axis at the current feed rate to the R plane if it is lower than the initial Z.

• Retract at the traverse rate to clear Z.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 928 / 1322

11.5.50 G86 Boring Cycle, Spindle Stop, Rapid Move Out

G86 (X- Y- Z-) or (U- V- W-) R- L- P- $-

The G86 cycle is intended for boring. This cycle uses a P number for the number of seconds to dwell.

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Move the Z-axis only at the current feed rate to the Z position.

• Dwell for the P number of seconds.

• Stop the selected spindle turning. (Chosen by the $ parameter)

• The Z-axis does a rapid move to clear Z.

• Restart the spindle in the direction it was going.

It is an error if:

• the spindle is not turning before this cycle is executed.

11.5.51 G87 Back Boring Cycle

This code is currently unimplemented in LinuxCNC. It is accepted, but the behavior is undefined.

11.5.52 G88 Boring Cycle, Spindle Stop, Manual Out

This code is currently unimplemented in LinuxCNC. It is accepted, but the behavior is undefined.

11.5.53 G89 Boring Cycle, Dwell, Feed Out

G89 (X- Y- Z-) or (U- V- W-) R- L- P-

The G89 cycle is intended for boring. This cycle uses a P number, where P specifies the number of
seconds to dwell.

• Preliminary motion, as described in the Preliminary and In-Between Motion section.

• Move the Z-axis only at the current feed rate to the Z position.

• Dwell for the P number of seconds.

• Retract the Z-axis at the current feed rate to clear Z.

11.5.54 G90, G91 Distance Mode

• G90 - absolute distance mode In absolute distance mode, axis numbers (X, Y, Z, A, B, C, U, V, W)
usually represent positions in terms of the currently active coordinate system. Any exceptions to
that rule are described explicitly in the G80 G89 section.

• G91 - incremental distance mode In incremental distance mode, axis numbers usually represent
increments from the current coordinate.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 929 / 1322

G90 Example
G90 (set absolute distance mode)
G0 X2.5 (rapid move to coordinate X2.5 including any offsets in effect)

G91 Example
G91 (set incremental distance mode)
G0 X2.5 (rapid move 2.5 from current position along the X axis)

• See G0 section for more information.

11.5.55 G90.1, G91.1 Arc Distance Mode

• G90.1 - absolute distance mode for I, J & K offsets. When G90.1 is in effect I and J both must be
specified with G2/3 for the XY plane or J and K for the XZ plane or it is an error.

• G91.1 - incremental distance mode for I, J & K offsets. G91.1 Returns I, J & K to their default
behavior.

11.5.56 G92 Coordinate System Offset

G92 axes

Warning
Only use G92 after your machine has been positioned to the desired point.

G92 makes the current point have the coordinates you want (without motion), where the axis words
contain the axis numbers you want. All axis words are optional, except that at least one must be used.
If an axis word is not used for a given axis, the offset for that axis will be zero.
When G92 is executed, the origins of all coordinate systems move. They move such that the value of
the current controlled point, in the currently active coordinate system, becomes the specified value.
All of the coordinate system’s origins (G53-G59.3) are offset this same distance.
G92 uses the values stored in parameters 5211-5219 as the X Y Z A B C U V W offset values for each
axis. The parameter values are absolutemachine coordinates in the native machine units as specified
in the INI file. All axes defined in the INI file will be offset when G92 is active. If an axis was not
entered following the G92, that axis’ offset will be zero.
For example, suppose the current point is at X=4 and there is currently no G92 offset active. Then
G92 X7 is programmed. This moves all origins -3 in X, which causes the current point to become X=7.
This -3 is saved in parameter 5211.
Being in incremental distance mode (G91 instead of G90) has no effect on the action of G92.
G92 offsets may be already be in effect when the G92 is called. If this is the case, the offset is replaced
with a new offset that makes the current point become the specified value.
It is an error if all axis words are omitted.
LinuxCNC stores the G92 offsets and reuses them on the next run of a program. To prevent this, one
can program a G92.1 (to erase them), or program a G92.2 (to remove them - they are still stored).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 930 / 1322

Note
The G52 command can also be used to change this offset; see the Local and Global Offsets section
for more details about G92 and G52 and how they interact.

See the Coordinate System section for an overview of coordinate systems.
See the Parameters section for more information.

11.5.57 G92.1, G92.2 Reset G92 Offsets

• G92.1 - turn off G92 offsets and reset parameters 5211 - 5219 to zero.

• G92.2 - turn off G92 offsets but keep parameters 5211 - 5219 available.

Note
G92.1 only clears G92 offsets, to change G53-G59.3 coordinate system offsets in G-code use either
G10 L2 or G10 L20.

11.5.58 G92.3 Restore G92 Offsets

• G92.3 - set the G92 offset to the values saved in parameters 5211 to 5219

You can set axis offsets in one program and use the same offsets in another program. Program G92 in
the first program. This will set parameters 5211 to 5219. Do not use G92.1 in the remainder of the
first program. The parameter values will be saved when the first program exits and restored when
the second one starts up. Use G92.3 near the beginning of the second program. That will restore the
offsets saved in the first program.

11.5.59 G93, G94, G95 Feed Rate Mode

• G93 - is Inverse Time Mode. In inverse time feed rate mode, an F word means the move should be
completed in [one divided by the F number] minutes. For example, if the F number is 2.0, the move
should be completed in half a minute.
When the inverse time feed rate mode is active, an F word must appear on every line which has a
G1, G2, or G3 motion, and an F-word on a line that does not have G1, G2, or G3 is ignored. Being in
inverse time feed rate mode does not affect G0 (rapid move) motions.

• G94 - is Units per Minute Mode. In units per minute feed mode, an F word is interpreted to mean
the controlled point should move at a certain number of inches per minute, millimeters per minute,
or degrees per minute, depending upon what length units are being used and which axis or axes
are moving.

• G95 - is Units per Revolution Mode. In units per revolution mode, an F-word is interpreted to
mean the controlled point should move a certain number of inches per revolution of the spindle,
depending on what length units are being used and which axis or axes are moving. G95 is not
suitable for threading, for threading use G33 or G76. G95 requires that spindle.N.speed-in to be
connected. The actual spindle to which the feed is synchronised is chosen by the $ parameter.

It is an error if:

• Inverse time feed mode is active and a line with G1, G2, or G3 (explicitly or implicitly) does not have
an F-word.

• A new feed rate is not specified after switching to G94 or G95

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 931 / 1322

11.5.60 G96, G97 Spindle Control Mode

G96 <D-> S- <$-> (Constant Surface Speed Mode)
G97 S- <$-> (RPM Mode)

1. D - maximum rotation speed (RPM), optional

2. S - spindle speed

3. $ - the spindle of which the speed will be varied, optional.

• G96 S- <D-> - selects constant surface speed of S:
– In feet per minute if G20 is in effect,
– or meters per minute if G21 is in effect.

When using G96, ensure that X0 in the current coordinate system (including offsets and tool lengths)
is the center of rotation or LinuxCNC will not give the desired surface speed. G96 is not affected by
radius or diameter mode.
To achieve CSS mode on selected spindles programme successive G96 commands for each spindle
prior to issuing M3.

• G97 selects RPM mode.

G96 Example Line
G96 D2500 S250 (set CSS with a max rpm of 2500 and a surface speed of 250)

It is an error if:

• S is not specified with G96

• A feed move is specified in G96 mode while the spindle is not turning

11.5.61 G98, G99 Canned Cycle Return Level

When spindle retracts during canned cycles, there are two options to choose from for the way it does
it:

• G98 - retract to the position that axis was in just before this series of one or more contiguous canned
cycles was started.

• G99 - retract to the position specified by the R word of the canned cycle.

Program a G98 and the canned cycle will use the Z position prior to the canned cycle as the Z return
position if it is higher than the R value specified in the cycle. If it is lower, the R value will be used.
The R word has different meanings in absolute distance mode and incremental distance mode.
G98 Retract to Origin
G0 X1 Y2 Z3
G90 G98 G81 X4 Y5 Z-0.6 R1.8 F10

The G98 to the second line above means that the return move will be to the value of Z in the first line
since it is higher that the R value specified.
The initial (G98) plane is reset any time cycle motion mode is abandoned, whether explicitly (G80) or
implicitly (any motion code that is not a cycle). Switching among cycle modes (say G81 to G83) does
NOT reset the initial plane. It is possible to switch between G98 and G99 during a series of cycles.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 932 / 1322

11.6 M-Codes

11.6.1 M-Code Quick Reference Table

Code Description
M0 M1 Program Pause

M2 M30 Program End
M60 Pallet Change Pause

M3 M4 M5 Spindle Control
M6 Tool Change

M7 M8 M9 Coolant Control
M19 Orient Spindle

M48 M49 Feed & Spindle Overrides
Enable/Disable

M50 Feed Override Control
M51 Spindle Override Control
M52 Adaptive Feed Control
M53 Feed Stop Control
M61 Set Current Tool Number

m62-m65 Output Control
M66 Input Control
M67 Analog Output Control
M68 Analog Output Control
M70 Save Modal State
M71 Invalidate Stored Modal State
M72 Restore Modal State
M73 Save Autorestore Modal State

M98 M99 Call and Return From Subprogram
M100-M199 User Defined M-Codes

11.6.2 M0, M1 Program Pause

* M0 - pause a running program temporarily. LinuxCNC remains in the Auto Mode so MDI and other
manual actions are not enabled. Pressing the resume button will restart the program at the following
line. *M1 - pause a running program temporarily if the optional stop switch is on. LinuxCNC remains
in the Auto Mode so MDI and other manual actions are not enabled. Pressing the resume button will
restart the program at the following line.

Note
It is OK to program M0 and M1 in MDI mode, but the effect will probably not be noticeable, because
normal behavior in MDI mode is to stop after each line of input anyway.

11.6.3 M2, M30 Program End

* M2 - end the program. Pressing Cycle Start (”R” in the Axis GUI) will restart the program at the
beginning of the file. * M30 - exchange pallet shuttles and end the program. Pressing Cycle Start
will start the program at the beginning of the file.
Both of these commands have the following effects:

• Change from Auto mode to MDI mode.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 933 / 1322

• Origin offsets are set to the default (like G54).
• Selected plane is set to XY plane (like G17).
• Distance mode is set to absolute mode (like G90).
• Feed rate mode is set to units per minute (like G94).
• Feed and speed overrides are set to ON (like M48).
• Cutter compensation is turned off (like G40).
• The spindle is stopped (like M5).
• The current motion mode is set to feed (like G1).
• Coolant is turned off (like M9).

Note
Lines of code after M2/M30 will not be executed. Pressing Cycle Start will start the program at the
beginning of the file.

Warning
Using % to wrap the G-code does not do the same thing as a Program End. See the section on
File Requirements for more information on what using % does not do.

11.6.4 M60 Pallet Change Pause

* M60 - exchange pallet shuttles and then pause a running program temporarily (regardless of the
setting of the optional stop switch). Pressing the cycle start button will restart the program at the
following line.

11.6.5 M3, M4, M5 Spindle Control

* M3 [$n] - start the selected spindle clockwise at the S speed. * M4 [$n] - start the selected spindle
counterclockwise at the S speed. * M5 [$n] - stop the selected spindle.
Use $ to operate on specific spindles. If $ is omitted then the commands default to operating on
spindle 0. Use $-1 to operate on all active spindles.
This example will start spindles 0, 1, and 2 simultaneously at different speeds:
S100 $0
S200 $1
S300 $2
M3 $-1

This example will then reverse spindle 1 but leave the other spindles rotating forwards:
M4 $1

And this will stop spindle 2 and leave the other spindles rotating:
M5 $2

If the $ is omitted then behaviour is exactly as normal for a single spindle machine.
It is OK to use M3 or M4 if the S spindle speed is set to zero. If this is done (or if the speed override
switch is enabled and set to zero), the spindle will not start turning. If, later, the spindle speed is set
above zero (or the override switch is turned up), the spindle will start turning. It is OK to use M3 or
M4 when the spindle is already turning or to use M5 when the spindle is already stopped.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 934 / 1322

11.6.6 M6 Tool Change

11.6.6.1 Manual Tool Change

If the HAL component hal_manualtoolchange is loaded, M6 will stop the spindle and prompt the user to
change the tool based on the last T- number programmed. For more information on hal_manualtoolchange
see the Manual Tool Change section.

11.6.6.2 Tool Changer

To change a tool in the spindle from the tool currently in the spindle to the tool most recently selected
(using a T word - see section Select Tool), program M6. When the tool change is complete:

• The spindle will be stopped.

• The tool that was selected (by a T word on the same line or on any line after the previous tool
change) will be in the spindle.

• If the selected tool was not in the spindle before the tool change, the tool that was in the spindle (if
there was one) will be placed back into the tool changer magazine.

• If configured in the INI file some axis positions may move when a M6 is issued. See the EMCIO
section for more information on tool change options.

• No other changes will be made. For example, coolant will continue to flow during the tool change
unless it has been turned off by an M9.

Note
The T- word is an integer number designating the tool pocket number in the carousel (not its index).

Warning
The tool length offset is not changed by M6, use G43 after the M6 to change the tool length
offset.

The tool change may include axis motion. It is OK (but not useful) to program a change to the tool
already in the spindle. It is OK if there is no tool in the selected slot; in that case, the spindle will
be empty after the tool change. If slot zero was last selected, there will definitely be no tool in the
spindle after a tool change. The tool changer will have to be setup to perform the tool change in HAL
and possibly ClassicLadder.

11.6.7 M7, M8, M9 Coolant Control

* M7 - turn mist coolant on. M7 controls iocontrol.0.coolant-mist pin. * M8 - turn flood coolant on.
M8 controls iocontrol.0.coolant-flood pin. * M9 - turn both M7 and M8 off.
Connect one or both of the coolant control pins in HAL before M7 or M8 will control an output. M7
and M8 can be used to turn on any output via G-code.
It is OK to use any of these commands, regardless of the current coolant state.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 935 / 1322

11.6.8 M19 Orient Spindle

M19 R- Q- [P-] [$-]

• R Position to rotate to from 0, valid range is 0-360 degrees

• Q Number of seconds to wait until orient completes. If spindle.N.is-oriented does not become true
within Q timeout an error occurs.

• P Direction to rotate to position.

– 0 rotate for smallest angular movement (default)
– 1 always rotate clockwise (same as M3 direction)
– 2 always rotate counterclockwise (same as M4 direction)

• $ The spindle to orient (actually only determines which HAL pins carry the spindle position com-
mands)

M19 is a command of modal group 7, like M3, M4 and M5. M19 is cleared by any of M3,M4,M5.
Spindle orientation requires a quadrature encoder with an index to sense the spindle shaft position
and direction of rotation.
INI Settings in the [RS274NGC] section:

• ORIENT_OFFSET = 0-360 (fixed offset in degrees added to M19 R word)

• HAL Pins

– spindle.N.orient-angle (out float) Desired spindle orientation for M19. Value of the M19 R word
parameter plus the value of the [RS274NGC]ORIENT_OFFSET INI parameter.

– spindle.N.orient-mode (out s32) Desired spindle rotation mode. Reflects M19 P parameter word,
default = 0.

– spindle.N.orient (out bit) Indicates start of spindle orient cycle. Set by M19. Cleared by any of
M3,M4,M5. If spindle-orient-fault is not zero during spindle-orient true, the M19 command fails
with an error message.

– spindle.N.is-oriented (in bit) Acknowledge pin for spindle-orient. Completes orient cycle. If
spindle-orient was true when spindle-is-oriented was asserted, the spindle-orient pin is cleared
and the spindle-locked pin is asserted. Also, the spindle-brake pin is asserted.

– spindle.N.orient-fault (in s32) Fault code input for orient cycle. Any value other than zero will
cause the orient cycle to abort.

– spindle.N.locked (out bit) Spindle orient complete pin. Cleared by any of M3,M4,M5.

11.6.9 M48, M49 Speed and Feed Override Control

* M48 - enable the spindle speed and feed rate override controls. * M49 - disable both controls.
These commands also take an optional $ parameter to determine which spindle they operate on.
It is OK to enable or disable the controls when they are already enabled or disabled. See the Feed
Rate section for more details.
They also can be be toggled individually using M50 and M51, see below.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 936 / 1322

11.6.10 M50 Feed Override Control

* M50 <P1> - enable the feed rate override control. The P1 is optional. * M50 P0 - disable the feed
rate control.
While disabled the feed override will have no influence, and the motion will be executed at pro-
grammed feed rate. (unless there is an adaptive feed rate override active).

11.6.11 M51 Spindle Speed Override Control

* M51 <P1> <$->- enable the spindle speed override control for the selected spindle. The P1 is
optional. * M51 P0 <$-> - disable the spindle speed override control program.
While disabled the spindle speed override will have no influence, and the spindle speed will have the
exact program specified value of the S-word (described in the Spindle Speed section).

11.6.12 M52 Adaptive Feed Control

* M52 <P1> - use an adaptive feed. The P1 is optional. * M52 P0 - stop using adaptive feed.
When adaptive feed is enabled, some external input value is used together with the user interface
feed override value and the commanded feed rate to set the actual feed rate. In LinuxCNC, the HAL
pin motion.adaptive-feed is used for this purpose. The range for motion.adaptive-feed is defined by
the MAX_FEED_OVERRIDE value in the [DISPLAY] section of the ini file and will be limited to a range
of -MAX_FEED_OVERRIDE to MAX_FEED_OVERRIDE. 0 is equivalent to feed-hold.

Note
The use of negative adaptive-feed for reverse run is a new feature and is not very well tested as yet.
The intended use is for plasma cutters and wire spark eroders but it is not limited to such applications.

11.6.13 M53 Feed Stop Control

*M53 <P1> - enable the feed stop switch. The P1 is optional. Enabling the feed stop switch will allow
motion to be interrupted by means of the feed stop control. In LinuxCNC, the HAL pin motion.feed-
hold is used for this purpose. A true value will cause the motion to stop when M53 is active. * M53
P0 - disable the feed stop switch. The state of motion.feed-hold will have no effect on feed when M53
is not active.

11.6.14 M61 Set Current Tool

* M61 Q- - change the current tool number while in MDI or Manual mode without a tool change. One
use is when you power up LinuxCNC with a tool currently in the spindle you can set that tool number
without doing a tool change.

Warning
The tool length offset is not changed by M61, use G43 after the M61 to change the tool length
offset.

It is an error if:

• Q- is not 0 or greater

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 937 / 1322

11.6.15 M62 - M65 Digital Output Control

* M62 P- - turn on digital output synchronized with motion. * M63 P- - turn off digital output synchro-
nized with motion. * M64 P- - turn on digital output immediately. * M65 P- - turn off digital output
immediately.
The P- word specifies the digital output number. The P-word ranges from 0 to a default value of 3.
If needed the the number of I/O can be increased by using the num_dio parameter when loading the
motion controller. See the Motion section for more information.
The M62 & M63 commands will be queued. Subsequent commands referring to the same output
number will overwrite the older settings. More than one output change can be specified by issuing
more than one M62/M63 command.
The actual change of the specified outputs will happen at the beginning of the next motion command.
If there is no subsequent motion command, the queued output changes won’t happen. It’s best to
always program a motion G-code (G0, G1, etc) right after the M62/63.
M64 & M65 happen immediately as they are received by the motion controller. They are not synchro-
nized with movement, and they will break blending.

Note
M62-65 will not function unless the appropriate motion.digital-out-nn pins are connected in your HAL
file to outputs.

11.6.16 M66 Wait on Input

M66 P- | E- <L->

• P- - specifies the digital input number from 0 to 3. (Adjustable from motmod argument num_dio)

• E- - specifies the analog input number from 0 to 3. (Adjustable from motmod argument num_aio)

• L- - specifies the wait mode type.

– Mode 0: IMMEDIATE - no waiting, returns immediately. The current value of the input is stored
in parameter #5399

– Mode 1: RISE - waits for the selected input to perform a rise event.
– Mode 2: FALL - waits for the selected input to perform a fall event.
– Mode 3: HIGH - waits for the selected input to go to the HIGH state.
– Mode 4: LOW - waits for the selected input to go to the LOW state.

• Q- - specifies the timeout in seconds for waiting. If the timeout is exceeded, the wait is interrupt,
and the variable #5399 will be holding the value -1. The Q value is ignored if the L-word is zero
(IMMEDIATE). A Q value of zero is an error if the L-word is non-zero.

• Mode 0 is the only one permitted for an analog input.

M66 Example Lines
M66 P0 L3 Q5 (wait up to 5 seconds for digital input 0 to turn on)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 938 / 1322

M66 wait on an input stops further execution of the program, until the selected event (or the pro-
grammed timeout) occurs.
It is an error to program M66 with both a P-word and an E-word (thus selecting both an analog and a
digital input). In LinuxCNC these inputs are not monitored in real time and thus should not be used
for timing-critical applications.
The number of I/O can be increased by using the num_dio or num_aio parameter when loading the
motion controller. See the Motion section for more information.

Note
M66 will not function unless the appropriate motion.digital-in-nn pins or motion.analog-in-nn pins are
connected in your HAL file to an input.

Example HAL Connection
net signal-name motion.digital-in-00 <= parport.0.pin10-in

11.6.17 M67 Analog Output, Synchronized

M67 E- Q-

• M67 - set an analog output synchronized with motion.

• E- - output number ranging from 0 to 3 (Adjustable from motmod argument num_aio)

• Q- - is the value to set (set to 0 to turn off).

The actual change of the specified outputs will happen at the beginning of the next motion command.
If there is no subsequent motion command, the queued output changes won’t happen. It’s best to
always program a motion G-code (G0, G1, etc) right after the M67. M67 functions the same as M62-
63.
The number of I/O can be increased by using the num_dio or num_aio parameter when loading the
motion controller. See the Motion section for more information.

Note
M67 will not function unless the appropriate motion.analog-out-nn pins are connected in your HAL
file to outputs.

11.6.18 M68 Analog Output, Immediate

M68 E- Q-

• M68 - set an analog output immediately.

• E- - output number ranging from 0 to 3. (Adjustable from motmod argument num_aio)

• Q- - is the value to set (set to 0 to turn off).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 939 / 1322

M68 output happen immediately as they are received by the motion controller. They are not synchro-
nized with movement, and they will break blending. M68 functions the same as M64-65.
The number of I/O can be increased by using the num_dio or num_aio parameter when loading the
motion controller. See the Motion section for more information.

Note
M68 will not function unless the appropriate motion.analog-out-nn pins are connected in your HAL
file to outputs.

11.6.19 M70 Save Modal State

To explicitly save the modal state at the current call level, program M70. Once modal state has been
saved with M70, it can be restored to exactly that state by executing an M72.
A pair of M70 and M72 instructions will typically be used to protect a program against inadvertent
modal changes within subroutines.
M70 Saved state
The state saved consists of:

• current G20/G21 settings (imperial/metric)

• selected plane (G17/G18/G19 G17.1,G18.1,G19.1)

• status of cutter compensation (G40,G41,G42,G41.1,G42,1)

• distance mode - relative/absolute (G90/G91)

• feed mode (G93/G94,G95)

• current coordinate system (G54-G59.3)

• tool length compensation status (G43,G43.1,G49)

• retract mode (G98,G99)

• spindle mode (G96-css or G97-RPM)

• arc distance mode (G90.1, G91.1)

• lathe radius/diameter mode (G7,G8)

• path control mode (G61, G61.1, G64)

• current feed and speed (F and S values)

• spindle status (M3,M4,M5) - on/off and direction

• mist (M7) and flood (M8) status

• speed override (M51) and feed override (M50) settings

• adaptive feed setting (M52)

• feed hold setting (M53)

Note that in particular, the motion mode (G1 etc) is NOT restored.
current call level means either:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 940 / 1322

• executing in the main program. There is a single storage location for state at the main program
level; if severalM70 instructions are executed in turn, only the most recently saved state is restored
when an M72 is executed.

• executing within a G-code subroutine. The state saved withM70within a subroutine behaves exactly
like a local named parameter - it can be referred to only within this subroutine invocation with an
M72 and when the subroutine exits, the parameter goes away.

A recursive invocation of a subroutine introduces a new call level.

11.6.20 M71 Invalidate Stored Modal State

Modal state saved with anM70 or by anM73 at the current call level is invalidated (cannot be restored
from anymore).
A subsequent M72 at the same call level will fail.
If executed in a subroutine which protects modal state by anM73, a subsequent return or endsub will
not restore modal state.
The usefulness of this feature is dubious. It should not be relied upon as it might go away.

11.6.21 M72 Restore Modal State

Modal state saved with an M70 code can be restored by executing an M72.
The handling of G20/G21 is specially treated as feeds are interpreted differently depending on G20/G21:
if length units (mm/in) are about to be changed by the restore operation, ’M72 ’will restore the dis-
tance mode first, and then all other state including feed to make sure the feed value is interpreted in
the correct unit setting.
It is an error to execute an M72 with no previous M70 save operation at that level.
The following example demonstrates saving and explicitly restoring modal state around a subroutine
call usingM70 andM72. Note that the imperialsub subroutine is not ”aware” of the M7x features and
can be used unmodified:
O<showstate> sub
(DEBUG, imperial=#<_imperial> absolute=#<_absolute> feed=#<_feed> rpm=#<_rpm>)
O<showstate> endsub

O<imperialsub> sub
g20 (imperial)
g91 (relative mode)
F5 (low feed)
S300 (low rpm)
(debug, in subroutine, state now:)
o<showstate> call
O<imperialsub> endsub

; main program
g21 (metric)
g90 (absolute)
f200 (fast speed)
S2500 (high rpm)

(debug, in main, state now:)
o<showstate> call

M70 (save caller state in at global level)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 941 / 1322

O<imperialsub> call
M72 (explicitly restore state)

(debug, back in main, state now:)
o<showstate> call
m2

11.6.22 M73 Save and Autorestore Modal State

To save modal state within a subroutine, and restore state on subroutine endsub or any return path,
program M73.
Aborting a running program in a subroutine which has an M73 operation will not restore state .
Also, the normal end (M2) of a main program which contains an M73 will not restore state.
The suggested use is at the beginning of a O-word subroutine as in the following example. UsingM73
this way enables designing subroutines which need to modify modal state but will protect the calling
program against inadvertent modal changes. Note the use of predefined named parameters in the
showstate subroutine.
O<showstate> sub
(DEBUG, imperial=#<_imperial> absolute=#<_absolute> feed=#<_feed> rpm=#<_rpm>)
O<showstate> endsub

O<imperialsub> sub
M73 (save caller state in current call context, restore on return or endsub)
g20 (imperial)
g91 (relative mode)
F5 (low feed)
S300 (low rpm)
(debug, in subroutine, state now:)
o<showstate> call

; note - no M72 is needed here - the following endsub or an
; explicit ’return’ will restore caller state
O<imperialsub> endsub

; main program
g21 (metric)
g90 (absolute)
f200 (fast speed)
S2500 (high rpm)
(debug, in main, state now:)
o<showstate> call
o<imperialsub> call
(debug, back in main, state now:)
o<showstate> call
m2

11.6.23 M98 and M99

The interpreter supports Fanuc-style main- and sub-programs with the M98 and M99 M-codes. See
Fanuc-Style Programs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 942 / 1322

11.6.23.1 Selectively Restoring Modal State

Executing an M72 or returning from a subroutine which contains an M73 will restore all modal state
saved.
If only some aspects of modal state should be preserved, an alternative is the usage of predefined
named parameters, local parameters and conditional statements. The idea is to remember the modes
to be restored at the beginning of the subroutine, and restore these before exiting. Here is an example,
based on snippet of nc_files/tool-length-probe.ngc:
O<measure> sub (measure reference tool)
;
#<absolute> = #<_absolute> (remember in local variable if G90 was set)
;
g30 (above switch)
g38.2 z0 f15 (measure)
g91 g0z.2 (off the switch)
#1000=#5063 (save reference tool length)
(print,reference length is #1000)
;
O<restore_abs> if [#<absolute>]

g90 (restore G90 only if it was set on entry:)
O<restore_abs> endif
;
O<measure> endsub

11.6.24 M100-M199 User Defined Commands

M1-- <P- Q->

• M1-- - an integer in the range of 100 - 199.

• P- - a number passed to the file as the first parameter.

• Q- - a number passed to the file as the second parameter.

Note
After creating a new M1nn file you must restart the GUI so it is aware of the new file, otherwise you
will get an Unknown m code error.

The external program named M100 through M199 (no extension, a capital M, found in directory
pointed by [DISPLAY] PROGRAM_PREFIX parameter of the INI file) is executed with the optional P
and Q values as its two arguments.
Execution of the G-code file pauses until the external program exits. If the external program exits with
exit code other than 0 G-code program execution is stopped. Any valid executable file can be used.
The file must be located in the search path specified in the INI file configuration. See the Display
section for more information on search paths.
After creating a new M1nn program, the GUI should be restarted so that the new program is taken
into account, otherwise a Unknown M-code error will occur.

Warning
Do not use a word processor to create or edit the files. A word processor will leave unseen
codes that will cause problems and may prevent a bash or python file from working. Use a
text editor like Geany in Debian or Notepad++ in other operating systems to create or edit the
files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 943 / 1322

The error Unknown M-code used denotes one of the following:

• The specified User Defined Command does not exist.

• The file is not an executable file.

• The file name has an extension.

• The file name does not follow this format Mnnn where nnn = 100 through 199.

• The file name used a lower case M.

For example to open and close a collet closer that is controlled by a parallel port pin using a bash
script file using M101 and M102. Create two files named M101 and M102. Set them as executable
files (typically right click/properties/permissions) before running LinuxCNC. Make sure the parallel
port pin is not connected to anything in a HAL file.
M101 Example File
#!/bin/bash
file to turn on parport pin 14 to open the collet closer
halcmd setp parport.0.pin-14-out True
exit 0

M102 Example File
#!/bin/bash
file to turn off parport pin 14 to open the collet closer
halcmd setp parport.0.pin-14-out False
exit 0

To pass a variable to a M1nn file you use the P and Q option like this:
M100 P123.456 Q321.654

M100 Example file
#!/bin/bash
voltage=$1
feedrate=$2
halcmd setp thc.voltage $voltage
halcmd setp thc.feedrate $feedrate
exit 0

To display a graphic message and stop until the message window is closed use a graphic display
program like Eye of Gnome to display the graphic file. When you close it the program will resume.
M110 Example file
#!/bin/bash
eog /home/john/linuxcnc/nc_files/message.png
exit 0

To display a graphic message and continue processing the G-code file suffix an ampersand to the
command.
M110 Example display and keep going
#!/bin/bash
eog /home/john/linuxcnc/nc_files/message.png &
exit 0

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 944 / 1322

11.7 O Codes

11.7.1 Use of O-codes

O-codes provide for flow control in NC programs. Each block has an associated number, which is
the number used after O. Care must be taken to properly match the O-numbers. O-codes use the
letter O not the number zero as the first character in the number like O100 or o100. O-codes are also
sometimes called o-words and these terms are interchangeable.

Note
Using the lower case o makes it easier to distinguish from a 0 that might have been mistyped. For
example o100 is easier to see than O100 that it is not a 0.

11.7.2 Numbering

Numbered o-codes must have a unique number for each subroutine,
Numbering Example
(the start of o100)
o100 sub
(notice that the if-endif block uses a different number)
(the start of o110)
o110 if [#2 GT 5]
(some code here)

(the end of o110)
o110 endif
(some more code here)

(the end of o100)
o100 endsub

11.7.3 Comments

Comments on the same line as the o-word should not be used as the behavior can change in the future.
The behavior is undefined if:

• The same number is used for more than one block.

• Other words are used on a line with an o-word.

• Comments are used on a line with an o-word.

11.7.4 Subroutines

Subroutines starts at oNNN sub and ends at oNNN endsub. The lines between oNNN sub and oNNN
endsub are not executed until the subroutine is called with oNNN call. Each subroutine must use a
unique number.
Subroutine Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 945 / 1322

o100 sub
G53 G0 X0 Y0 Z0 (rapid move to machine home)

o100 endsub

(the subroutine is called)
o100 call
M2

See G53, G0 and M2 sections for more information.
O- Return Inside a subroutine, o- return can be executed. This immediately returns to the calling
code, just as though o- endsub was encountered.
O- Return Example
o100 sub
(test if parameter #2 is greater than 5)
o110 if [#2 GT 5]
(return to top of subroutine if test is true)
o100 return

o110 endif
(this only gets executed if parameter #2 is not greater than 5)
(DEBUG, parameter 1 is [#1])

o100 endsub

See the Binary Operators and Parameters sections for more information.
O- Call o- Call takes up to 30 optional arguments, which are passed to the subroutine as #1, #2 , …,
#N. Parameters from #N+1 to #30 have the same value as in the calling context. On return from the
subroutine, the values of parameters #1 through #30 (regardless of the number of arguments) will
be restored to the values they had before the call. Parameters #1 - #30 are local to the subroutine.
Because 1 2 3 is parsed as the number 123, the parameters must be enclosed in square brackets. The
following calls a subroutine with 3 arguments:
O- Call Example
o100 sub
(test if parameter #2 is greater than 5)
o110 if [#2 GT 5]
(return to top of subroutine if test is true)
o100 return

o110 endif
(this only gets executed if parameter #2 is not greater than 5)
(DEBUG, parameter 1 is [#1])
(DEBUG, parameter 3 is [#3])

o100 endsub

o100 call [100] [2] [325]

Subroutine bodies may not be nested. They may only be called after they are defined. They may
be called from other functions, and may call themselves recursively if it makes sense to do so. The
maximum subroutine nesting level is 10.
Subroutines can change the value of parameters above #30 and those changes will be visible to the
calling code. Subroutines may also change the value of global named parameters (i.e. parameters
whose names begin with the underscore character ”_”).

11.7.4.1 Fanuc-Style Numbered Programs

Numbered programs (both main and subprograms), the M98 call and M99 return M-codes, and their
respective semantic differences are an alternative to the rs274ngc subroutines described above, pro-
vided for compatibility with Fanuc and other machine controllers.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 946 / 1322

Numbered programs are enabled by default, and may be disabled by placing DISABLE_FANUC_STYLE_SUB
= 1 in the [RS274NGC] section of the .ini file.

Note
Numbered main and subprogram definitions and calls differ from traditional rs274ngc both in syntax
and execution. To reduce the possibility of confusion, the interpreter will raise an error if definitions
of one style are mixed with calls of another.

Numbered Subprogram Simple Example
o1 (Example 1) ; Main program 1, ”Example 1”
M98 P100 ; Call subprogram 100
M30 ; End main program

o100 ; Beginning of subprogram 100
G53 G0 X0 Y0 Z0 ; Rapid move to machine home

M99 ; Return from subprogram 100

o1 (Title) The optional main program beginning block gives the main program the number 1. Some
controllers treat an optional following parenthesized comment as a program title, Example 1 in this
example, but this has no special meaning in the rs274ngc interpreter.
M98 P- <L-> Call a numbered subprogram. The block M98 P100 is analogous to the traditional o100
call syntax, but may only be used to call a following numbered subprogram defined with o100…M99.
An optional L-word specifies a loop count.
M30 The main program must be terminated with M02 or M30 (or M99; see below).
O- subprogram definition start Marks the start of a numbered subprogram definition. The block
o100 is similar to o100 sub, except that it must be placed later in the file than the M98 P100 calling
block.
M99 return from numbered subroutine The block M99 is analogous to the traditional o100 endsub
syntax, but may only terminate a numbered program (o100 in this example), and may not terminate a
subroutine beginning with the o100 sub syntax.
The M98 subprogram call differs from rs274ngc o call in the following ways:

• The numbered subprogram must follow the M98 call in the program file. The interpreter will throw
an error if the subprogram precedes the call block.

• Parameters #1, #2, …, #30 are global and accessible in numbered subprograms, similar to higher-
numbered parameters in traditional style calls. Modifications to these parameters within a subpro-
gram are global modifications, and will be persist after subprogram return.

• M98 subprogram calls have no return value.

• M98 subprogram call blocks may contain an optional L-word specifying a loop repeat count. Without
the L-word, the subprogram will execute once only (equivalent to M98 L1). An M98 L0 block will not
execute the subprogram.

In rare cases, the M99 M-code may be used to terminate the main program, where it indicates an
endless program. When the interpreter reaches an M99 in the main program, it will skip back to the
beginning of the file and resume execution at the first line. An example use of an endless program is
in a machine warm-up cycle; a block delete program end /M30 block might be used to stop the cycle
at a tidy point when the operator is ready.
Numbered Subprogram Full Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 947 / 1322

o1 ; Main program 1
#1 = 0
(PRINT,X MAIN BEGIN: 1=#1)
M98 P100 L5 ; Call subprogram 100
(PRINT,X MAIN END: 1=#1)

M30 ; End main program

o100 ; Subprogram 100
#1 = [#1 + 1]
M98 P200 L5 ; Call subprogram 200
(PRINT,>> o100: #1)

M99 ; Return from Subprogram 100

o200 ; Subprogram 200
#1 = [#1 + 0.01]
(PRINT,>>>> o200: #1)

M99 ; Return from Subprogram 200

In this example, parameter #1 is initialized to 0. Subprogram o100 is called five times in a loop. Nested
within each call to o100, subprogram o200 is called five times in a loop, for 25 times total.
Note that parameter #1 is global. At the end of the main program, after updates within o100 and o200,
its value will equal 5.25.

11.7.5 Looping

The while loop has two structures: while/endwhile, and do/while. In each case, the loop is exited
when the while condition evaluates to false. The difference is when the test condition is done. The
do/while loop runs the code in the loop then checks the test condition. The while/endwhile loop does
the test first.
While Endwhile Example
(draw a sawtooth shape)
G0 X1 Y0 (move to start position)
#1 = 0 (assign parameter #1 the value of 0)
F25 (set a feed rate)
o101 while [#1 LT 10]
G1 X0
G1 Y[#1/10] X1
#1 = [#1+1] (increment the test counter)

o101 endwhile
M2 (end program)

Do While Example
#1 = 0 (assign parameter #1 the value of 0)
o100 do
(debug, parameter 1 = #1)
o110 if [#1 EQ 2]
#1 = 3 (assign the value of 3 to parameter #1)
(msg, #1 has been assigned the value of 3)
o100 continue (skip to start of loop)

o110 endif
(some code here)
#1 = [#1 + 1] (increment the test counter)

o100 while [#1 LT 3]
(msg, Loop Done!)
M2

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 948 / 1322

Inside a while loop, o- break immediately exits the loop, and o- continue immediately skips to the next
evaluation of the while condition. If it is still true, the loop begins again at the top. If it is false, it
exits the loop.

11.7.6 Conditional

The if conditional consists of a group of statements with the same o number that start with if and end
with endif. Optional elseif and else conditions may be between the starting if and the ending endif.
If the if conditional evaluates to true then the group of statements following the if up to the next
conditional line are executed.
If the if conditional evaluates to false then the elseif conditions are evaluated in order until one
evaluates to true. If the elseif condition is true then the statements following the elseif up to the
next conditional line are executed. If none of the if or elseif conditions evaluate to true then the
statements following the else are executed. When a condition is evaluated to true no more conditions
are evaluated in the group.
If Endif Example
(if parameter #31 is equal to 3 set S2000)
o101 if [#31 EQ 3]
S2000

o101 endif

If ElseIf Else EndIf Example
(if parameter #2 is greater than 5 set F100)
o102 if [#2 GT 5]
F100

o102 elseif [#2 LT 2]
(else if parameter #2 is less than 2 set F200)
F200

(else if parameter #2 is 2 through 5 set F150)
o102 else
F150

o102 endif

Several conditions may be tested for by elseif statements until the else path is finally executed if all
preceding conditions are false:
If Elseif Else Endif Example
(if parameter #2 is greater than 5 set F100)
o102 if [#2 GT 5]
F100

(else if parameter #2 less than 2 set F200)
o102 elseif [#2 LT 2]
F20

(parameter #2 is between 2 and 5)
o102 else
F200

o102 endif

11.7.7 Repeat

The repeat will execute the statements inside of the repeat/endrepeat the specified number of times.
The example shows how you might mill a diagonal series of shapes starting at the present position.
Example with repeat

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 949 / 1322

(Mill 5 diagonal shapes)
G91 (Incremental mode)
o103 repeat [5]
... (insert milling code here)
G0 X1 Y1 (diagonal move to next position)
o103 endrepeat
G90 (Absolute mode)

11.7.8 Indirection

The o-number may be given by a parameter and/or calculation.
Indirection Example
o[#101+2] call

Computing values in O-words For more information on computing values see the following sections:

• Parameters

• Expressions

• Binary Operators

• Functions

11.7.9 Calling Files

To call a separate file with a subroutine name the file the same as your call and include a sub and
endsub in the file. The file must be in the directory pointed to by PROGRAM_PREFIX or SUBROU-
TINE_PATH in the INI file. The file name can include lowercase letters, numbers, dash, and under-
score only. A named subroutine file can contain only a single subroutine definition.
Named File Example
o<myfile> call

Numbered File Example
o123 call

In the called file you must include the oxxx sub and endsub and the file must be a valid file.
Called File Example
(filename myfile.ngc)
o<myfile> sub
(code here)

o<myfile> endsub
M2

Note
The file names are lowercase letters only so o<MyFile> is converted to o<myfile> by the interpreter.
More information about the search path and options for the search path are in the INI configuration
section.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 950 / 1322

11.7.10 Subroutine return values

Subroutines may optionally return a value by an optional expression at an endsub or return statement.
Return value example
o123 return [#2 *5]
...
o123 endsub [3 * 4]

A subroutine return value is stored in the<_value> predefined named parameter , and the<_value_returned>
predefined parameter is set to 1, to indicate a value was returned. Both parameters are global, and
are cleared just before the next subroutine call.

11.7.11 Errors

The following statements cause an error message and abort the interpreter:

• a return or endsub not within a sub definition

• a label on repeat which is defined elsewhere

• a label on while which is defińed elsewhere and not referring to a do

• a label on if defined elsewhere

• a undefined label on else or elseif

• a label on else, elseif or endif not pointing to a matching if

• a label on break or continue which does not point to a matching while or do

• a label on endrepeat or endwhile no referring to a corresponding while or repeat

To make these errors non-fatal warnings on stderr, set bit 0x20 in the [RS274NGC]FEATURE= mask ini
option.

11.8 Other Codes

11.8.1 F: Set Feed Rate

Fx - set the feed rate to x. x is usually in machine units (inches or millimeters) per minute.
The application of the feed rate is as described in the Feed Rate Section, unless inverse time feed rate
mode or feed per revolution mode are in effect, in which case the feed rate is as described in the G93
G94 G95 section.

11.8.2 S: Set Spindle Speed

Sx [$n] - set the speed of the spindle to x revolutions per minute (RPM) with the optional $ set the
spindle speed for a specific spindle. Without the $ the command will default to spindle.0.
The spindle(s) or selected spindle will turn at that speed when a M3 or M4 is in effect. It is OK to
program an S word whether the spindle is turning or not. If the speed override switch is enabled and
not set at 100%, the speed will be different from what is programmed.
It is OK to program S0, the spindle will not turn if that is done.
It is an error if:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 951 / 1322

• the S number is negative.

As described in the section Right-hand Tapping Cycle with Dwell, if a G84 (tapping) drilling cycle is
active and the speed and feed potentiometers are enabled, the one with the lowest setting will be
used. The rotational speed and feed rate will remain synchronized. In this case, the speed may differ
from the one programmed, even if the speed correction potentiometer is set to 100%.

11.8.3 T: Select Tool

Tx - prepare to change to tool x.
The tool is not changed until an M6 is programmed (see Section M6). The T word may appear on the
same line as theM6 or on a previous line. It is OK if T words appear on two or more lines with no tool
change. Only the the most recent T word will take effect at the next tool change.

Note
When LinuxCNC is configured for a nonrandom toolchanger (see the entry for RAN-
DOM_TOOLCHANGER in the EMCIO Section), T0 gets special handling: no tool will be selected.
This is useful if you want the spindle to be empty after a tool change.

Note
When LinuxCNC is configured for a random toolchanger (see the entry for RANDOM_TOOLCHANGER
in the EMCIO Section), T0 does not get any special treatment: T0 is a valid tool like any other. It is
customary to use T0 on a random toolchanger machine to track an empty pocket, so that it behaves
like a nonrandom toolchanger machine and unloads the spindle.

It is an error if:

• a negative T number is used,

• T number is used that does not appear in the tool table file (with the exception that T0 on nonrandom
toolchangers is accepted, as noted above).

On some machines, the carousel will move when a T word is programmed, at the same time machining
is occurring. On such machines, programming the T word several lines before a tool change will save
time. A common programming practice for such machines is to put the T word for the next tool to be
used on the line after a tool change. This maximizes the time available for the carousel to move.
Rapid moves after a T<n> will not show on the AXIS preview until after a feed move. This is for
machines that travel long distances to change the tool like a lathe. This can be very confusing at first.
To turn this feature off for the current tool program a G1 without any move after the T<n>.

11.9 G-Code Examples

After you install LinuxCNC several sample files are placed in the /nc_files folder. Make sure the sample
file is appropriate for your machine before running.

11.9.1 Mill Examples

11.9.1.1 Helical Hole Milling

• File Name: useful-subroutines.ngc

• Description: Subroutine for milling a hole using parameters.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 952 / 1322

11.9.1.2 Slotting

• File Name: useful-subroutines.ngc

• Description: Subroutine for milling a slot using parameters.

11.9.1.3 Grid Probe

• File Name: gridprobe.ngc

• Description: Rectangular Probing

This program repeatedly probes in a regular XY grid and writes the probed location to the file probe-
results.txt in the same directory as the .ini file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 953 / 1322

11.9.1.4 Smart Probe

• File Name: smartprobe.ngc

• Description: Rectangular Probing

This program repeatedly probes in a regular XY grid and writes the probed location to the file probe-
results.txt in the same directory as the .ini file. This is improved from the grid probe file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 954 / 1322

11.9.1.5 Tool Length Probe

• File Name: tool-length-probe.ngc

• Description: Tool Length Probing

This program shows an example of how to measure tool lengths automatically using a switch hooked
to the probe input. This is useful for machines without tool holders, where the length of a tool is
different every time it is inserted.

11.9.1.6 Hole Probe

• File Name: probe-hole.ngc

• Description: Finding the Center and Diameter of a hole.

The program demonstrates how to find the center of a hole, measure the hole diameter and record
the results.

11.9.1.7 Cutter Compensation

• File Name: comp-g1.ngc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 955 / 1322

• Description: Entry and exit movements with compensation of tool radius.

This program demonstrates the peculiarity of the toolpath without and with tool radius compensation.
The tool radius is taken from the tool table.

11.9.2 Lathe Examples

11.9.2.1 Threading

• File Name lathe-g76.ngc

• Description: Facing, threading and parting off.

This file shows an example of threading on a lathe using parameters.

11.10 Image to G-Code

11.10.1 What is a depth map?

A depth map is a greyscale image where the brightness of each pixel corresponds to the depth (or
height) of the object at each point.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 956 / 1322

11.10.2 Integrating image-to-gcode with the AXIS user interface

Add the following lines to the [FILTER] section of your INI file to make AXIS automatically invoke
image-to-gcode when you open a PNG, GIF, or JPEG image:
PROGRAM_EXTENSION = .png,.gif,.jpg Grayscale Depth Image
png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode

The standard sim/axis.ini configuration file is already prepared this way.

11.10.3 Using image-to-gcode

Start image-to-gcode either by opening an image file in AXIS, or by invoking image-to-gcode from the
terminal, as follows:
image-to-gcode torus.png > torus.ngc

Verify all the settings in the right-hand column, then press OK to create the G-code. Depending on
the image size and options chosen, this may take from a few seconds to a few minutes. If you are
loading the image in AXIS, the G-code will automatically be loaded and previewed once image-to-
gcode completes. In AXIS, hitting reload will show the image-to-gcode option screen again, allowing
you to tweak them.

11.10.4 Option Reference

11.10.4.1 Units

Specifies whether to use G20 (inches) or G21 (mm) in the generated G-code and as the units for each
option labeled (units).

11.10.4.2 Invert Image

If ”no”, the black pixel is the lowest point and the white pixel is the highest point. If ”yes”, the black
pixel is the highest point and the white pixel is the lowest point.

11.10.4.3 Normalize Image

If yes, the darkest pixel is remapped to black, the lightest pixel is remapped to white.

11.10.4.4 Expand Image Border

If None, the input image is used as-is, and details which are at the very edges of the image may be
cut off. If White or Black, then a border of pixels equal to the tool diameter is added on all sides, and
details which are at the very edges of the images will not be cut off.

11.10.4.5 Tolerance (units)

When a series of points are within tolerance of being a straight line, they are output as a straight line.
Increasing tolerance can lead to better contouring performance in LinuxCNC, but can also remove or
blur small details in the image.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 957 / 1322

11.10.4.6 Pixel Size (units)

One pixel in the input image will be this many units—usually this number is much smaller than 1.0. For
instance, to mill a 2.5x2.5-inch object from a 400x400 image file, use a pixel size of .00625, because
2.5 / 400 = .00625.

11.10.4.7 Plunge Feed Rate (units per minute)

The feed rate for the initial plunge movement.

11.10.4.8 Feed Rate (units per minute)

The feed rate for other parts of the path.

11.10.4.9 Spindle Speed (RPM)

The spindle speed S-code that should be put into the G-code file.

11.10.4.10 Scan Pattern

Possible scan patterns are:

• Rows

• Columns

• Rows, then Columns

• Columns, then Rows

11.10.4.11 Scan Direction

Possible scan directions are:

• Positive: Start milling at a low X or Y axis value, and move towards a high X or Y axis value.

• Negative: Start milling at a high X or Y axis value, and move towards a low X or Y axis value.

• Alternating: Start on the same end of the X or Y axis travel that the last move ended on. This reduces
the amount of traverse movements.

• Up Milling: Start milling at low points, moving towards high points.

• Down Milling: Start milling at high points, moving towards low points.

11.10.4.12 Depth (units)

The top of material is always at Z = 0. The deepest cut into the material is at Z = -depth.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 958 / 1322

11.10.4.13 Step Over (pixels)

The distance between adjacent rows or columns. To find the number of pixels for a given units dis-
tance, compute distance/pixel size and round to the nearest whole number. For example, if pixel
size=.006 and the desired step over distance=.015, then use a Step Over of 2 or 3 pixels, because
.015/.006=2.5.

11.10.4.14 Tool Diameter

The diameter of the cutting part of the tool.

11.10.4.15 Safety Height

The height to move to for traverse movements. image-to-gcode always assumes the top of material is
at Z=0.

11.10.4.16 Tool Type

The shape of the cutting part of the tool. Possible tool shapes are:

• Ball End

• Flat End

• 45 degree ”vee”

• 60 degree ”vee”

11.10.4.17 Lace bounding

This controls whether areas that are relatively flat along a row or column are skipped. This option
only makes sense when both rows and columns are being milled. Possible bounding options are:

• None: Rows and columns are both fully milled.

• Secondary: When milling in the second direction, areas that do not strongly slope in that direction
are skipped.

• Full: When milling in the first direction, areas that strongly slope in the second direction are
skipped. When milling in the second direction, areas that do not strongly slope in that direction
are skipped.

11.10.4.18 Contact angle

When Lace bounding is not None, slopes greater than Contact angle are considered to be strong
slopes, and slopes less than that angle are considered to be weak slopes.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 959 / 1322

11.10.4.19 Roughing offset and depth per pass

Image-to-gcode can optionally perform roughing passes. The depth of successive roughing passes is
given by Roughing depth per pass. For instance, entering 0.2 will perform the first roughing pass
with a depth of 0.2, the second roughing pass with a depth of 0.4, and so on until the full Depth of
the image is reached. No part of any roughing pass will cut closer than Roughing Offset to the final
part. The following figure shows a tall vertical feature being milled. In this image, Roughing depth
per pass is 0.2 inches and roughing offset is 0.1 inches.

Figure 11.21: Roughing passes and final pass

11.11 RS274/NGC Differences

11.11.1 Changes from RS274/NGC

Differences that change the meaning of RS274/NGC programs

Location after a tool change
In LinuxCNC, the machine does not return to its original position after a tool change. This change
was made because the new tool might be longer than the old tool, and the move to the original
machine position could therefore leave the tool tip too low.

Offset parameters are INI file units
In LinuxCNC, the values stored in parameters for the G28 and G30 home locations, the P1…P9
coordinate systems, and the G92 offset are in ”INI file units”. This change was made because
otherwise the meaning of a location changed depending on whether G20 or G21 was active when
G28, G30, G10 L2, or G92.3 is programmed.

Tool table lengths/diameters are in INI file units
In LinuxCNC, the tool lengths (offsets) and diameters in the tool table are specified in INI file
units only. This change was made because otherwise the length of a tool and its diameter would

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 960 / 1322

change based on whether G20 or G21 was active when initiating G43, G41, G42 modes. This made
it impossible to run G-code in the machine’s non-native units, even when the G-code was simple
and well-formed (starting with G20 or G21, and didn’t change units throughout the program),
without changing the tool table.

G84, G87 not implemented
G84 and G87 are not currently implemented, but may be added to a future release of LinuxCNC.

G28, G30 with axis words
When G28 or G30 is programmed with only some axis words present, LinuxCNC only moves the
named axes. This is common on other machine controls. To move some axes to an intermediate
point and then move all axes to the predefined point, write two lines of G code:

G0 X- Y- (axes to move to intermediate point)
G28 (move all axes to predefined point)

11.11.2 Additions to RS274/NGC

Differences that do not change the meaning of RS274/NGC programs

G33, G76 threading codes
These codes are not defined in RS274/NGC.

G38.2
The probe tip is not retracted after a G38.2 movement. This retraction move may be added in a
future release of LinuxCNC.

G38.3…G38.5
These codes are not defined in RS274/NGC

O-codes
These codes are not defined in RS274/NGC

M50…M53 overrides
These codes are not defined in RS274/NGC

M61..M66
These codes are not defined in RS274/NGC

G43, G43.1
Negative Tool Lengths
The RS274/NGC spec says ”it is expected that” all tool lengths will be positive. However, G43
works for negative tool lengths.
Lathe tools
G43 tool length compensation can offset the tool in both the X and Z dimensions. This feature is
primarily useful on lathes.
Dynamic tool lengths
LinuxCNC allows specification of a computed tool length through G43.1 I K.

G41.1, G42.1
LinuxCNC allows specification of a tool diameter and, if in lathe mode, orientation in the G-
code. The format is G41.1/G42.1 D L, where D is diameter and L (if specified) is the lathe tool
orientation.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 961 / 1322

G43 without H word
In NGC this is not allowed. In LinuxCNC, it sets length offsets for the currently loaded tool. If no
tool is currently loaded, it is an error. This change was made so the user doesn’t have to specify
the tool number in two places for each tool change, and because it’s consistent with the way
G41/G42 work when the D word is not specified.

U, V, and W axes
LinuxCNC allows machines with up to 9 axes by defining an additional set of 3 linear axes known
as U, V and W

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 962 / 1322

Chapter 12

Virtual Control Panels

12.1 PyVCP

12.1.1 Introduction

PyVCP, Python Virtual Control Panel, is designed to give the integrator the ability to customize the
AXIS interface with buttons and indicators to do special tasks.
Hardware machine control panels can use up a lot of I/O pins and can be expensive. That is where
Virtual Control Panels have the advantage as well as it cost nothing to build a PyVCP.
Virtual Control Panels can be used for testing or monitoring things to temporarily replace real I/O
devices while debugging ladder logic, or to simulate a physical panel before you build it and wire it
to an I/O board.
The following graphic displays many of the PyVCP widgets.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 963 / 1322

Figure 12.1: PyVCP Widgets Showcase

12.1.2 Panel Construction

The layout of a PyVCP panel is specified with an XML file that contains widget tags between <pyvcp>
and </pyvcp>. For example:
<pyvcp>

<label text=”This is a LED indicator”/>
<led/>

</pyvcp>

Figure 12.2: Simple PyVCP LED Panel Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 964 / 1322

If you place this text in a file called tiny.xml, and run
halcmd loadusr pyvcp -c mypanel tiny.xml

PyVCP will create the panel for you, which includes two widgets, a Label with the text This is a LED
indicator, and a LED, used for displaying the state of a HAL BIT signal. It will also create a HAL
component named mypanel (all widgets in this panel are connected to pins that start with mypanel.).
Since no <halpin> tag was present inside the <led> tag, PyVCP will automatically name the HAL pin
for the LED widget mypanel.led.0
For a list of widgets and their tags and options, see the widget reference below.
Once you have created your panel, connecting HAL signals to and from the PyVCP pins is done with
the halcmd:
net <signal-name> <pin-name> <opt-direction> <opt-pin-name>signal-name

If you are new to HAL, the HAL basics chapter in the Integrator Manual is a good place to start.

12.1.3 Security

Parts of PyVCP files are evaluated as Python code, and can take any action available to Python pro-
grams. Only use PyVCP XML files from a source that you trust.

12.1.4 AXIS

Since AXIS uses the same GUI toolkit (Tkinter) as PyVCP, it is possible to include a PyVCP panel at
either the right side or the bottom of the AXIS user interface. It is not possible to display a panel in
both of these positions simultaneously. A typical example is explained below.
In addition to or instead of displaying a PyVCP panel as described above, it is possible to display one
or more PyVCP panels as embedded tabs in the AXIS GUI. This is achieved by the following in the
[DISPLAY] section of the INI file:
EMBED_TAB_NAME = Spindle
EMBED_TAB_COMMAND = pyvcp spindle.xml

The text label of the AXIS tab will display Spindle.

12.1.4.1 Example Panel

Place your PyVCP XML file describing the panel in the same directory where your INI file is. Say we
we want to display the current spindle speed using a Bar widget. Place the following in a file called
spindle.xml:
<pyvcp>

<label>
<text>”Spindle speed:”</text>

</label>
<bar>

<halpin>”spindle-speed”</halpin>
<max_>5000</max_>

</bar>
</pyvcp>

Here we’ve made a panel with a Label and a Bar widget, specified that the HAL pin connected to
the Bar should be named spindle-speed, and set the maximum value of the bar to 5000 (see widget
reference below for all options). To make AXIS aware of this file, and call it at start up, we need to
specify the following in the [DISPLAY] section of the INI file:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 965 / 1322

PYVCP = spindle.xml

If the panel should appear at the bottom of the AXIS user interface then we need to specify the
following in the [DISPLAY] section of the INI file:
PYVCP_POSITION = BOTTOM

Anything other than BOTTOM or omitting this variable will place the PYVCP panel at the right.
To make our widget actually display the spindle-speed it needs to be hooked up to the appropriate
HAL signal. A HAL file that will be run once AXIS and PyVCP have started can be specified in the
[HAL] section of the INI file:
POSTGUI_HALFILE = spindle_to_pyvcp.hal

This change will run the HAL commands specified in spindle_to_pyvcp.hal. In our example the con-
tents could look like this:
net spindle-rpm-filtered => pyvcp.spindle-speed

assuming that a signal called spindle-rpm-filtered already exists. Note that when running together
with AXIS, all PyVCP panel widget HAL pins have names that start with pyvcp., all PyVCP embedded
tab widget HAL pins start with the name specified as EMBED_TAB_NAME converted to lower case.

This is what the newly created PyVCP panel should look like in AXIS. The sim/lathe configuration is
already configured this way.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 966 / 1322

12.1.5 Stand Alone

This section describes how PyVCP panels can be displayed on their own with or without LinuxCNC’s
machine controller.
To load a stand alone PyVCP panel with LinuxCNC use these commands:
loadusr -Wn mypanel pyvcp -g WxH+X+Y -c mypanel <path/>panel_file.xml

You would use this if you wanted a floating panel or a panel with a GUI other than AXIS.

• -Wn panelname - makes HAL wait for the component panelname to finish loading (become ready
in HAL speak) before processing more HAL commands. This is important because PyVCP panels
export HAL pins, and other HAL components will need them present to connect to them. Note the
capital W and lowercase n. If you use the -Wn option you must use the -c option to name the panel.

• pyvcp < -g> < -c> panel.xml - builds the panel with the optional geometry and/or panelname from
the XML panel file. The panel.xml can be any name that ends in .xml. The .xml file is the file that
describes how to build the panel. You must add the path name if the panel is not in the directory
that the HAL script is in.

• -g <WxH><+X+Y> - specifies the geometry to be used when constructing the panel. The syntax is
Width x Height + X Anchor + Y Anchor. You can set the size or position or both. The anchor point
is the upper left corner of the panel. An example is -g 250x500+800+0 This sets the panel at 250
pixels wide, 500 pixels tall, and anchors it at X800 Y0.

• -c panelname - tells PyVCP what to call the component and also the title of the window. The panel-
name can be any name without spaces.

To load a stand alone PyVCP panel without LinuxCNC use this command:
loadusr -Wn mypanel pyvcp -g 250x500+800+0 -c mypanel mypanel.xml

The minimum command to load a PyVCP panel is:
loadusr pyvcp mypanel.xml

You would use this if you want a panel without LinuxCNC’s machine controller such as for testing or
a standalone DRO.
The loadusr command is used when you also load a component that will stop HAL from closing until it’s
done. If you loaded a panel and then loaded Classic Ladder using loadusr -w classicladder, CL would
hold HAL open (and the panel) until you closed CL. The -Wn above means wait for the component
-Wn ”name” to become ready. (name can be any name. Note the capital W and lowercase n.) The
-c tells PyVCP to build a panel with the name panelname using the info in panel_file_name.xml. The
name panel_file_name.xml can be any name but must end in .xml - it is the file that describes how to
build the panel. You must add the path name if the panel is not in the directory that the HAL script is
in.
An optional command to use if you want the panel to stop HAL from continuing commands / shutting
down. After loading any other components you want the last HAL command to be:
waitusr panelname

This tells HAL to wait for component panelname to close before continuing HAL commands. This is
usually set as the last command so that HAL shuts down when the panel is closed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 967 / 1322

12.1.6 Widgets

HAL signals come in two variants, bits and numbers. Bits are off/on signals. Numbers can be float,
s32, u32, s64 or u64. For more information on HAL data types see the HAL Data section. The PyVCP
widget can either display the value of the signal with an indicator widget, or modify the signal value
with a control widget. Thus there are four classes of PyVCP widgets that you can connect to a HAL
signal. A fifth class of helper widgets allow you to organize and label your panel.

• Widgets for indicating bit signals: led, rectled.

• Widgets for controlling bit signals: button, checkbutton, radiobutton.

• Widgets for indicating number signals: number, s32, u32, bar, meter.

• Widgets for controlling number signals: spinbox, scale, jogwheel.

• Helper widgets: hbox, vbox, table, label, labelframe.

12.1.6.1 Syntax

Each widget is described briefly, followed by the markup used, and a screen shot. All tags inside the
main widget tag are optional.

12.1.6.2 General Notes

At the present time, both a tag-based and an attribute-based syntax are supported. For instance, the
following XML fragments are treated identically:
<led halpin=”my-led”/>

and
<led><halpin>”my-led”</halpin></led>

When the attribute-based syntax is used, the following rules are used to turn the attributes value into
a Python value:

1. If the first character of the attribute is one of the following, it is evaluated as a Python expression:
{([”’ .

2. If the string is accepted by int(), the value is treated as an integer.

3. If the string is accepted by float(), the value is treated as floating-point.

4. Otherwise, the string is accepted as a string.

When the tag-based syntax is used, the text within the tag is always evaluated as a Python expression.
The examples below show a mix of formats.
Comments To add a comment use the xml syntax for a comment.
<!-- My Comment -->

Editing the XML file Edit the XML file with a text editor. In most cases you can right click on the
file and select open with text editor or similar.
Colors
Colors can be specified using the X11 rgb colors by name gray75 or hex #0000ff. A complete list is
located here https://sedition.com/perl/rgb.html.
Common Colors (colors with numbers indicate shades of that color)

https://sedition.com/perl/rgb.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 968 / 1322

• white

• black

• blue and blue1 - 4

• cyan and cyan1 - 4

• green and green1 - 4

• yellow and yellow1 - 4

• red and red1 - 4

• purple and purple1 - 4

• gray and gray0 - 100

HAL Pins HAL pins provide a means to connect the widget to something. Once you create a HAL pin
for your widget you can connect it to another HAL pin with a net command in a .hal file. For more
information on the net command see the HAL Commands section.

12.1.6.3 Label

A label is a way to add text to your panel.

• <label></label> - creates a label.

• <text>”text”</text> - the text to put in your label, a blank label can be used as a spacer to align
other objects.

• (”Helvetica”,20) - specify the font and size of the text.

• <relief>FLAT</relief> - specify the border around the label (FLAT, RAISED, SUNKEN) default is
FLAT.

• <bd>_n_</bd> - where n is the border width when RAISED or SUNKEN borders are used.

• <padx>_n_</padx> - where n is the amount of extra horizontal extra space.

• <pady>_n_</pady> - where n is the amount of extra vertical extra space.

The label has an optional disable pin that is created when you add <disable_pin>True</disable_pin>.
<label>

<text>”This is a Label:”</text>
(”Helvetica”,20)

</label>

The above code produced this example:

Figure 12.3: Simple Label Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 969 / 1322

12.1.6.4 Multi_Label

An extension of the text label.
Selectable text label, can display up to 6 label legends when associated bit pin is activated.
Attach each legend pin to a signal and get a descriptive label when the signal is TRUE.
If more than one legend pin is TRUE, the highest numbered TRUE legend will be displayed.
If a disable pin is created with <disable_pin>True</disable_pin> and that pin is set to true the label
changes to a grayed out state.
<multilabel>

<legends>[”Label1”, ”Label2”, ”Label3”, ”Label4”, ”Label5”, ”Label6”]</legends>
(”Helvetica”,20)
<disable_pin>True</disable_pin>

</multilabel>

The above example would create the following pins.
pyvcp.multilabel.0.disable
pyvcp.multilabel.0.legend0
pyvcp.multilabel.0.legend1
pyvcp.multilabel.0.legend2
pyvcp.multilabel.0.legend3
pyvcp.multilabel.0.legend4
pyvcp.multilabel.0.legend5

If you have more than one multilabel the pins created would increment the number like this pyvcp.multilabel.1.legend1.

12.1.6.5 LEDs

A LED is used to indicate the status of a bit halpin. The LED color will be on_color when the halpin is
true, and off_color otherwise.

• <led></led> - makes a round LED

• <rectled></rectled> - makes a rectangle LED

• <halpin>name</halpin> - name of the pin, default is led.n, where n is an integer that is incremented
for each LED.

• <size>n</size> - n is the size of the led in pixels, default is 20.

• <on_color>color</on_color> - sets the color of the LED to color when the pin is true. Default is
green. See section on colors for more info.

• <off_color>color</off_color> - sets the color of the LED to color when the pin is false. Default is
red.

• <height>n</height> - sets the height of the LED in pixels.

• <width>n</width> - sets the width of the LED in pixels.

• <disable_pin>false</disable_pin> - when true adds a disable pin to the led.

• <disabled_color>color</disabled_color> - sets the color of the LED to color when the pin is dis-
abled.

Round LED

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 970 / 1322

<led>
<halpin>”my-led”</halpin>
<size>50</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</led>

The above code produced this example:

Figure 12.4: Round LED Example

Rectangle LED This is a variant of the led widget.
<vbox>

<relief>RIDGE</relief>
<bd>6</bd>
<rectled>

<halpin>”my-led”</halpin>
<height>”50”</height>
<width>”100”</width>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</rectled>
</vbox>

The above code produced this example. Also showing a vertical box with relief.

Figure 12.5: Simple Rectangle LED Example

12.1.6.6 Buttons

A button is used to control a BIT pin. The pin will be set True when the button is pressed and held
down, and will be set False when the button is released. Buttons can use the following optional options.

• <padx>n</padx> - where n is the amount of extra horizontal extra space.

• <pady>n</pady> - where n is the amount of extra vertical extra space.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 971 / 1322

• <activebackground>”color”</activebackground> - the cursor over color set to color.

• <fg>”color”</fg> - the foreground color set to color.

• <bg>”color”</bg> - the background color set to color.

• <disable_pin>True</disable_pin> - disable pin.

Text Button A text button controls a bit halpin. The halpin is false until the button is pressed then it
is true. The button is a momentary button.
The text button has an optional disable pin that is created when you add <disable_pin>True</disable_pin>.
<button>

<halpin>”ok-button”</halpin>
<text>”OK”</text>

</button>
<button>

<halpin>”abort-button”</halpin>
<text>”Abort”</text>

</button>

The above code produced this example:

Figure 12.6: Simple Buttons Example

Checkbutton A checkbutton controls a bit halpin. The halpin will be set True when the button is
checked, and false when the button is unchecked. The checkbutton is a toggle type button. The
checkbuttons may be set initially as TRUE or FALSE the initval field A pin called changepin is also
created automatically, which can toggle the Checkbutton via HAL, if the value linked is changed, to
update the display remotely.

Figure 12.7: Unchecked button

Figure 12.8: Checked button

Checkbutton Code Example
<checkbutton>

<halpin>”coolant-chkbtn”</halpin>
<text>”Coolant”</text>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 972 / 1322

<initval>1</initval>
</checkbutton>
<checkbutton>

<halpin>”chip-chkbtn”</halpin>
<text>”Chips ”</text>
<initval>0</initval>

</checkbutton>

The above code produced this example:

Figure 12.9: Simple Checkbutton Example

The coolant checkbutton is checked.
Notice the extra spaces in the ”Chips” text to keep the checkbuttons aligned.
Radiobutton A radiobutton will set one of the halpins true. The other pins are set false. The initval
field may be set to choose the default selection when the panel displays. Only one radio button may
be set to TRUE (1) or only the highest number pin set TRUE will have that value.
<radiobutton>

<choices>[”one”,”two”,”three”]</choices>
<halpin>”my-radio”</halpin>
<initval>0</initval>

</radiobutton>

The above code produced this example:

Figure 12.10: Simple Radiobutton Example

Note that the HAL pins in the example above will be named my-radio.one, my-radio.two, and my-
radio.three. In the image above, one is the selected value. Use the tag <orient>HORIZONTAL</orient>
to display horizontally.

12.1.6.7 Number Displays

Number displays can use the following formatting options

• (”Font Name”,n), where n is the font size.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 973 / 1322

• <width>_n_</width>, where n is the overall width of the space used.

• <justify>_pos_</justify>, where pos is LEFT, CENTER, or RIGHT (doesn’t work).

• <padx>_n_</padx>, where n is the amount of extra horizontal extra space.

• <pady>_n_</pady>, where n is the amount of extra vertical extra space.

Number The number widget displays the value of a float signal.
<number>

<halpin>”my-number”</halpin>
(”Helvetica”,24)
<format>”+4.4f”</format>

</number>

The above code produced this example:

Figure 12.11: Simple Number Example

• - is a Tkinter font type and size specification. One font that will show up to at least size 200
is courier 10 pitch, so for a really big Number widget you could specify:

(”courier 10 pitch”,100)

• <format> - is a C-style format specified that determines how the number is displayed.

s32 Number The s32 number widget displays the value of a s32 number. The syntax is the same as
number except the name which is <s32>. Make sure the width is wide enough to cover the largest
number you expect to use.
<s32>

<halpin>”my-number”</halpin>
(”Helvetica”,24)
<format>”6d”</format>
<width>6</width>

</s32>

The above code produced this example:

Figure 12.12: Simple s32 Number Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 974 / 1322

u32 Number The u32 number widget displays the value of a u32 number. The syntax is the same as
number except the name which is <u32>.
Bar A bar widget displays the value of a FLOAT signal both graphically using a bar display and nu-
merically. The color of the bar can be set as one color throughout its range (default using fillcolor) or
set to change color, dependent upon the value of the halpin (range1, range2 range3 must all be set,
if you only want 2 ranges, set 2 of them to the same color).

• <halpin>”my-bar”</halpin> (text), derives and sets the pin name: pyvcp.my-bar.

• <min_>0</min_> (number), sets the minimum scale.

• <max_>140</max_> (number), sets the maximum scale.

• <format>”3.1f”</format> (text), sets the number format using Python number formatting.

• <bgcolor>”grey”</bgcolor> (text), sets the background color.

• <fillcolor>”red”</fillcolor> (text), sets the fill color.

• <range1>0,100,”green”</range1> (number, number, text), sets the first range and color.

• <range2>101,135,”orange”</range2> (number, number, text), sets the first range and color.

• <range3>136, 150,”red”</range3> number, number, text), sets the first range and color.

• <canvas_width>200</canvas_width> (number), sets the overall width.

• <canvas_height>50</canvas_height> (number), sets the overall height.

• <bar_height>30</bar_height> (number), sets the bar height, must be less than canvas_height.

• <bar_width>150</bar_width> (number), sets the bar width, must be less than canvas_width.

<bar>
<halpin>”my-bar”</halpin>
<min_>0</min_>
<max_>123</max_>
<format>”3.1f”</format>
<bgcolor>”grey”</bgcolor>
<fillcolor>”red”</fillcolor>
<range1>0,100,”green”</range1>
<range2>101,135,”orange”</range2>
<range3>136, 150,”red”</range3>
<canvas_width>200</canvas_width>
<canvas_height>50</canvas_height>
<bar_height>30</bar_height>
<bar_width>150</bar_width>

</bar>

The above code produced this example:

Figure 12.13: Simple Bar Example

Meter Meter displays the value of a FLOAT signal using a traditional dial indicator.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 975 / 1322

<meter>
<halpin>”mymeter”</halpin>
<text>”Battery”</text>
<subtext>”Volts”</subtext>
<size>250</size>
<min_>0</min_>
<max_>15.5</max_>
<majorscale>1</majorscale>
<minorscale>0.2</minorscale>
<region1>(14.5,15.5,”yellow”)</region1>
<region2>(12,14.5,”green”)</region2>
<region3>(0,12,”red”)</region3>

</meter>

The above code produced this example:

Figure 12.14: Simple Meter Example

12.1.6.8 Number Inputs

Spinbox A spinbox controls a FLOAT pin. You increase or decrease the value of the pin by either
pressing on the arrows, or pointing at the spinbox and rolling your mouse-wheel. If the param_pin
field is set TRUE(1), a pin will be created that can be used to set the spinbox to an initial value and to
remotely alter its value without HID input.
<spinbox>

<halpin>”my-spinbox”</halpin>
<min_>-12</min_>
<max_>33</max_>
<initval>0</initval>
<resolution>0.1</resolution>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 976 / 1322

<format>”2.3f”</format>
(”Arial”,30)
<param_pin>1</param_pin>

</spinbox>

The above code produced this example:

Figure 12.15: Simple Spinbox Example

Scale A scale controls a float or a s32 pin. You increase or decrease the value of the pin be either
dragging the slider, or pointing at the scale and rolling your mouse-wheel. The halpin will have both
-f and -i added to it to form the float and s32 pins. Width is the width of the slider in vertical and
the height of the slider in horizontal orientation. If the param_pin field is set TRUE(1), a pin will be
created that can be used to set the spinbox to an initial value and to remotely alter its value without
HID input.
<scale>

(”Helvetica”,16)
<width>”25”</width>
<halpin>”my-hscale”</halpin>
<resolution>0.1</resolution>
<orient>HORIZONTAL</orient>
<initval>-15</initval>
<min_>-33</min_>
<max_>26</max_>
<param_pin>1</param_pin>

</scale>
<scale>

(”Helvetica”,16)
<width>”50”</width>
<halpin>”my-vscale”</halpin>
<resolution>1</resolution>
<orient>VERTICAL</orient>
<min_>100</min_>
<max_>0</max_>
<param_pin>1</param_pin>

</scale>

The above code produced this example:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 977 / 1322

Figure 12.16: Simple Scale Example

Note
Note that by default it is ”min” which is displayed even if it is greater than ”max”, unless ”min” is
negative.

Dial The Dial outputs a HAL float and reacts to both mouse wheel and dragging. Double left click
to increase the resolution and double right click to reduce the resolution by one digit. The output is
capped by the min and max values. The <cpr> is how many tick marks are on the outside of the ring
(beware of high numbers). If the param_pin field is set TRUE(1), a pin will be created that can be
used to set the spinbox to an initial value and to remotely alter its value without HID input.
<dial>

<size>200</size>
<cpr>100</cpr>
<min_>-15</min_>
<max_>15</max_>
<text>”Dial”</text>
<initval>0</initval>
<resolution>0.001</resolution>
<halpin>”anaout”</halpin>
<dialcolor>”yellow”</dialcolor>
<edgecolor>”green”</edgecolor>
<dotcolor>”black”</dotcolor>
<param_pin>1</param_pin>

</dial>

The above code produced this example:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 978 / 1322

Figure 12.17: Simple Dial Example

Jogwheel Jogwheel mimics a real jogwheel by outputting a FLOAT pin which counts up or down as
the wheel is turned, either by dragging in a circular motion, or by rolling the mouse-wheel.
Optional tags: *<text>”My Text”</text> displays text *<bgcolor>”grey”</bgcolor><fillcolor>”green”</fillcolor>
background & active colors * <scale_pin>1</scale_pin> creates scale text and a FLOAT.scale pin to
display jog scale * <clear_pin>1</clear_pin> creates DRO and a BIT.reset pin to reset DRO. Needs
scale_pin for scaled DRO. Shift+click resets DRO also
<jogwheel>

<halpin>”my-wheel”</halpin>
<cpr>45</cpr>
<size>250</size>

</jogwheel>

The above code produced this example:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 979 / 1322

Figure 12.18: Simple Jogwheel Example

12.1.6.9 Images

Image displays use only .gif image format. All of the images must be the same size. The images must
be in the same directory as your INI file (or in the current directory if running from the command line
with halrun/halcmd).
Image Bit The image_bit toggles between two images by setting the halpin to true or false.
<image name=’fwd’ file=’fwd.gif’/>
<image name=’rev’ file=’rev.gif’/>
<vbox>

<image_bit halpin=’selectimage’ images=’fwd rev’/>
</vbox>

This example was produced from the above code. Using the two image files fwd.gif and rev.gif. FWD
is displayed when selectimage is false and REV is displayed when selectimage is true.

Figure 12.19: Selectimage False Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 980 / 1322

Figure 12.20: Selectimage True Example

Image u32 The image_u32 is the same as image_bit, except you have essentially an unlimited number
of images and you select the image by setting the halpin to a integer value with 0 for the first image
in the images list and 1 for the second image, etc.
<image name=’stb’ file=’stb.gif’/>
<image name=’fwd’ file=’fwd.gif’/>
<image name=’rev’ file=’rev.gif’/>
<vbox>

<image_u32 halpin=’selectimage’ images=’stb fwd rev’/>
</vbox>

The above code produced the following example by adding the stb.gif image.

Figure 12.21: Simple image_u32 Example with halpin=0

Figure 12.22: Simple image_u32 Example withhalpin=1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 981 / 1322

Figure 12.23: Simple image_u32 Example withhalpin=2

Notice that the default is the min even though it is set higher than max unless there is a negative min.

12.1.6.10 Containers

Containers are widgets that contain other widgets. Containers are used to group other widgets.
Borders Container borders are specified with two tags used together. The <relief> tag specifies the
type of border and the <bd> specifies the width of the border.

<relief>_type_</relief>
Where type is FLAT, SUNKEN, RAISED, GROOVE, or RIDGE.

<bd>_n_</bd>
Where n is the width of the border.

<hbox>
<button>

<relief>FLAT</relief>
<text>”FLAT”</text>
<bd>3</bd>

</button>
<button>

<relief>SUNKEN</relief>
<text>”SUNKEN”</text>
<bd>3</bd>

</button>
<button>

<relief>RAISED</relief>
<text>”RAISED”</text>
<bd>3</bd>

</button>
<button>

<relief>GROOVE</relief>
<text>”GROOVE”</text>
<bd>3</bd>

</button>
<button>

<relief>RIDGE</relief>
<text>”RIDGE”</text>
<bd>3</bd>

</button>
</hbox>

The above code produced this example:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 982 / 1322

Figure 12.24: Containers Borders Showcase

Fill Container fill are specified with the <boxfill fill=””/> tag. Valid entries are none, x, y and both.
The x fill is a horizontal fill and the y fill is a vertical fill

<boxfill fill =”style”/>
Where style is none, x, y, or both. Default is x for Vbox and y for Hbox.

Anchor Container anchors are specified with the <boxanchor anchor=””/> tag. The anchor specifies
where to position each slave in its parcel. Valid entries are center, n, s, e, w, for center, north, south,
east and west. Combinations like sw, se, nw and ne are also valid.

<boxanchor anchor=”position”/>
Where position is center, n, s, e, w, ne, nw, se or sw. Default is center.

Expand Container expand is specified with the boolean <boxexpand expand=””/> tag. Valid entries
are ”yes”, ”no”.

<boxexpand expand=”boolean”/>
Where boolean is either ”yes” or ”no”. Default is yes.

Hbox Use an Hbox when you want to stack widgets horizontally next to each other.
<hbox>

<relief>RIDGE</relief>
<bd>6</bd>
<label><text>”a hbox:”</text></label>
<led></led>
<number></number>
<bar></bar>

</hbox>

The above code produced this example:

Figure 12.25: Simple hbox Example

Inside an Hbox, you can use the <boxfill fill=””/>, <boxanchor anchor=””/>, and <boxexpand ex-
pand=””/> tags to choose how items in the box behave when the window is re-sized. The default is
fill=”y”, anchor=”center”, expand=”yes” for an Hbox.
Vbox Use a Vbox when you want to stack widgets vertically on top of each other.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 983 / 1322

<vbox>
<relief>RIDGE</relief>
<bd>6</bd>
<label><text>”a vbox:”</text></label>
<led></led>
<number></number>
<bar></bar>

</vbox>

The above code produced this example:

Figure 12.26: Simple vbox Example

Inside a Vbox, you can use the <boxfill fill=””/>, <boxanchor anchor=””/>, and <boxexpand ex-
pand=””/> tags to choose how items in the box behave when the window is re-sized. The default
is fill=”x”, anchor=”center”, expand=”yes” for a Vbox.
Labelframe A labelframe is a frame with a groove and a label at the upper-left corner.
<labelframe text=”Label: Leds groupées”>

<labelframe text=”Group Title”>
(”Helvetica”,16)
<hbox>
<led/>
<led/>
</hbox>

</labelframe>

The above code produced this example:

Figure 12.27: Simple labelframe Example

Table A table is a container that allows layout in a grid of rows and columns. Each row is started by
a <tablerow/> tag. A contained widget may span rows or columns through the use of the <tablespan

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 984 / 1322

rows= cols=/> tag. The sides of the cells to which the contained widgets ”stick” may be set through
the use of the <tablesticky sticky=/> tag. A table expands on its flexible rows and columns.
Table Code Example
<table flexible_rows=”[2]” flexible_columns=”[1,4]”>
<tablesticky sticky=”new”/>
<tablerow/>

<label>
<text>” A (cell 1,1) ”</text>
<relief>RIDGE</relief>
<bd>3</bd>

</label>
<label text=”B (cell 1,2)”/>
<tablespan columns=”2”/>
<label text=”C, D (cells 1,3 and 1,4)”/>

<tablerow/>
<label text=”E (cell 2,1)”/>
<tablesticky sticky=”nsew”/>
<tablespan rows=”2”/>
<label text=”’spans\n2 rows’”/>
<tablesticky sticky=”new”/>
<label text=”G (cell 2,3)”/>
<label text=”H (cell 2,4)”/>

<tablerow/>
<label text=”J (cell 3,1)”/>
<label text=”K (cell 3,2)”/>
<u32 halpin=”test”/>

</table>

The above code produced this example:

Figure 12.28: Table Example

Tabs A tabbed interface can save quite a bit of space.
<tabs>

<names> [”spindle”,”green eggs”]</names>
</tabs>
<tabs>

<names>[”Spindle”, ”Green Eggs”, ”Ham”]</names>
<vbox>

<label>
<text>”Spindle speed:”</text>

</label>
<bar>

<halpin>”spindle-speed”</halpin>
<max_>5000</max_>

</bar>
</vbox>
<vbox>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 985 / 1322

<label>
<text>”(this is the green eggs tab)”</text>

</label>
</vbox>
<vbox>

<label>
<text>”(this tab has nothing on it)”</text>

</label>
</vbox>

</tabs>

The above code produced this example showing each tab selected.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 986 / 1322

Figure 12.29: Simple Tabs Example

12.2 PyVCP Examples

12.2.1 AXIS

To create a PyVCP panel to use with the AXIS interface that is attached to the right of AXIS you need
to do the following basic things.

• Create an XML file that contains your panel description and put it in your config directory.

• Add the PyVCP entry to the [DISPLAY] section of the INI file with your XML file name.

• Add the POSTGUI_HALFILE entry to the [HAL] section of the INI file with the name of your postgui
HAL file name.

• Add the links to HAL pins for your panel in the postgui.hal file to connect your PyVCP panel to
LinuxCNC.

12.2.2 Floating Panels

To create floating PyVCP panels that can be used with any interface you need to do the following basic
things.

• Create an XML file that contains your panel description and put it in your config directory.

• Add a loadusr line to your HAL file to load each panel.

• Add the links to HAL pins for your panel in the postgui.hal file to connect your PyVCP panel to
LinuxCNC.

The following is an example of a loadusr command to load two PyVCP panels and name each one so
the connection names in HAL will be known.
loadusr -Wn btnpanel pyvcp -c btnpanel panel1.xml
loadusr -Wn sppanel pyvcp -c sppanel panel2.xml

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 987 / 1322

The -Wn makes HAL Wait for name to be loaded before proceeding.
The pyvcp -c makes PyVCP name the panel.
The HAL pins from panel1.xml will be named btnpanel.<_pin name_>.
The HAL pins from panel2.xml will be named sppanel.<_pin name_>.
Make sure the loadusr line is before any nets that make use of the PyVCP pins.

12.2.3 Jog Buttons Example

In this example we will create a PyVCP panel with jog buttons for X, Y, and Z. This configuration
will be built upon a StepConf Wizard generated configuration. First we run the StepConf Wizard
and configure our machine, on the Advanced Configuration Options page we then make a couple of
selections to add a blank PyVCP panel as shown in the following figure. For this example we named
the configuration pyvcp_xyz on the Basic Machine Information page of the StepConf Wizard.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 988 / 1322

Figure 12.30: XYZ Wizard Configuration

The StepConf Wizard will create several files and place them in the linuxcnc/configs/pyvcp_xyz
directory. If you left the create link checked you will have a link to those files on your desktop.

12.2.3.1 Create the Widgets

Open up the custompanel.xml file by right clicking on it and selecting open with text editor. Between
the <pyvcp></pyvcp> tags we will add the widgets for our panel.
Look in the PyVCP Widgets Reference section of the manual for more detailed information on each
widget documentation des widgets.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 989 / 1322

In your custompanel.xml file we will add the description of the widgets.
<pyvcp>
<labelframe text=”Jog Buttons”>
(”Helvetica”,16)

<!-- the X jog buttons -->
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<button>
(”Helvetica”,20)
<width>3</width>
<halpin>”x-plus”</halpin>
<text>”X+”</text>

</button>
<button>
(”Helvetica”,20)
<width>3</width>
<halpin>”x-minus”</halpin>
<text>”X-”</text>

</button>
</hbox>

<!-- the Y jog buttons -->
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<button>
(”Helvetica”,20)
<width>3</width>
<halpin>”y-plus”</halpin>
<text>”Y+”</text>

</button>
<button>
(”Helvetica”,20)
<width>3</width>
<halpin>”y-minus”</halpin>
<text>”Y-”</text>

</button>
</hbox>

<!-- the Z jog buttons -->
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<button>
(”Helvetica”,20)
<width>3</width>
<halpin>”z-plus”</halpin>
<text>”Z+”</text>

</button>
<button>
(”Helvetica”,20)
<width>3</width>
<halpin>”z-minus”</halpin>
<text>”Z-”</text>

</button>
</hbox>

<!-- the jog speed slider -->
<vbox>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 990 / 1322

<relief>RAISED</relief>
<bd>3</bd>
<label>
<text>”Jog Speed”</text>
(”Helvetica”,16)

</label>
<scale>
(”Helvetica”,14)
<halpin>”jog-speed”</halpin>
<resolution>1</resolution>
<orient>HORIZONTAL</orient>
<min_>0</min_>
<max_>80</max_>

</scale>
</vbox>

</labelframe>
</pyvcp>

After adding the above you now will have a PyVCP panel that looks like the following attached to the
right side of AXIS. It looks nice but it does not do anything until you connect the buttons to halui. If
you get an error when you try and run scroll down to the bottom of the pop up window and usually
the error is a spelling or syntax error and it will be there.

12.2.3.2 Make Connections

To make the connections needed open up your custom_postgui.hal file and add the following.
connect the X PyVCP buttons
net my-jogxminus halui.axis.x.minus <= pyvcp.x-minus

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 991 / 1322

net my-jogxplus halui.axis.x.plus <= pyvcp.x-plus

connect the Y PyVCP buttons
net my-jogyminus halui.axis.y.minus <= pyvcp.y-minus
net my-jogyplus halui.axis.y.plus <= pyvcp.y-plus

connect the Z PyVCP buttons
net my-jogzminus halui.axis.z.minus <= pyvcp.z-minus
net my-jogzplus halui.axis.z.plus <= pyvcp.z-plus

connect the PyVCP jog speed slider
net my-jogspeed halui.axis.jog-speed <= pyvcp.jog-speed-f

After resetting the E-Stop and putting it into jog mode and moving the jog speed slider in the PyVCP
panel to a value greater than zero the PyVCP jog buttons should work. You can not jog when running
a G-code file or while paused or while the MDI tab is selected.

12.2.4 Port Tester

This example shows you how to make a simple parallel port tester using PyVCP and HAL.
First create the ptest.xml file with the following code to create the panel description.
<!-- Test panel for the parallel port cfg for out -->
<pyvcp>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<button>
<halpin>”btn01”</halpin>
<text>”Pin 01”</text>

</button>
<led>
<halpin>”led-01”</halpin>
<size>25</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<button>
<halpin>”btn02”</halpin>
<text>”Pin 02”</text>

</button>
<led>
<halpin>”led-02”</halpin>
<size>25</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<label>
<text>”Pin 10”</text>
(”Helvetica”,14)

</label>

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 992 / 1322

<led>
<halpin>”led-10”</halpin>
<size>25</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<label>
<text>”Pin 11”</text>
(”Helvetica”,14)

</label>
<led>
<halpin>”led-11”</halpin>
<size>25</size>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</led>
</hbox>

</pyvcp>

This will create the following floating panel which contains a couple of in pins and a couple of out
pins.

To run the HAL commands that we need to get everything up and running we put the following in our
ptest.hal file.
loadrt hal_parport cfg=”0x378 out”
loadusr -Wn ptest pyvcp -c ptest ptest.xml
loadrt threads name1=porttest period1=1000000
addf parport.0.read porttest
addf parport.0.write porttest
net pin01 ptest.btn01 parport.0.pin-01-out ptest.led-01
net pin02 ptest.btn02 parport.0.pin-02-out ptest.led-02
net pin10 parport.0.pin-10-in ptest.led-10
net pin11 parport.0.pin-11-in ptest.led-11
start

To run the HAL file we use the following command from a terminal window.
~$ halrun -I -f ptest.hal

The following figure shows what a complete panel might look like.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 993 / 1322

To add the rest of the parallel port pins just modify the XML and HAL files.
To show the pins after running the HAL script use the following command at the halcmd prompt:
halcmd: show pin
Component Pins:
Owner Type Dir Value Name

2 bit IN FALSE parport.0.pin-01-out <== pin01
2 bit IN FALSE parport.0.pin-02-out <== pin02
2 bit IN FALSE parport.0.pin-03-out
2 bit IN FALSE parport.0.pin-04-out
2 bit IN FALSE parport.0.pin-05-out
2 bit IN FALSE parport.0.pin-06-out
2 bit IN FALSE parport.0.pin-07-out
2 bit IN FALSE parport.0.pin-08-out
2 bit IN FALSE parport.0.pin-09-out
2 bit OUT TRUE parport.0.pin-10-in ==> pin10
2 bit OUT FALSE parport.0.pin-10-in-not
2 bit OUT TRUE parport.0.pin-11-in ==> pin11
2 bit OUT FALSE parport.0.pin-11-in-not
2 bit OUT TRUE parport.0.pin-12-in
2 bit OUT FALSE parport.0.pin-12-in-not
2 bit OUT TRUE parport.0.pin-13-in
2 bit OUT FALSE parport.0.pin-13-in-not
2 bit IN FALSE parport.0.pin-14-out
2 bit OUT TRUE parport.0.pin-15-in
2 bit OUT FALSE parport.0.pin-15-in-not
2 bit IN FALSE parport.0.pin-16-out
2 bit IN FALSE parport.0.pin-17-out
4 bit OUT FALSE ptest.btn01 ==> pin01
4 bit OUT FALSE ptest.btn02 ==> pin02
4 bit IN FALSE ptest.led-01 <== pin01
4 bit IN FALSE ptest.led-02 <== pin02
4 bit IN TRUE ptest.led-10 <== pin10
4 bit IN TRUE ptest.led-11 <== pin11

This will show you what pins are IN and what pins are OUT as well as any connections.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 994 / 1322

12.2.5 GS2 RPM Meter

The following example uses the Automation Direct GS2 VDF driver and displays the RPM and other
info in a PyVCP panel. This example is based on the GS2 example in the Hardware Examples section
this manual.

12.2.5.1 The Panel

To create the panel we add the following to the XML file.
<pyvcp>

<!-- the RPM meter -->
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<meter>
<halpin>”spindle_rpm”</halpin>
<text>”Spindle”</text>
<subtext>”RPM”</subtext>
<size>200</size>
<min_>0</min_>
<max_>3000</max_>
<majorscale>500</majorscale>
<minorscale>100</minorscale>
<region1>0,10,”yellow”</region1>

</meter>
</hbox>

<!-- the On Led -->
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>”On”</text>
(”Helvetica”,18)
</label>
<width>5</width>
<hbox>
<label width=”2”/> <!-- used to center the led -->
<rectled>
<halpin>”on-led”</halpin>
<height>”30”</height>
<width>”30”</width>
<on_color>”green”</on_color>
<off_color>”red”</off_color>
</rectled>
</hbox>
</vbox>

<!-- the FWD Led -->
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>”FWD”</text>
(”Helvetica”,18)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 995 / 1322

<width>5</width>
</label>
<label width=”2”/>
<rectled>
<halpin>”fwd-led”</halpin>
<height>”30”</height>
<width>”30”</width>
<on_color>”green”</on_color>
<off_color>”red”</off_color>

</rectled>
</vbox>

<!-- the REV Led -->
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>”REV”</text>
(”Helvetica”,18)
<width>5</width>

</label>
<label width=”2”/>
<rectled>
<halpin>”rev-led”</halpin>
<height>”30”</height>
<width>”30”</width>
<on_color>”red”</on_color>
<off_color>”green”</off_color>

</rectled>
</vbox>
</hbox>

</pyvcp>

The above gives us a PyVCP panel that looks like the following.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 996 / 1322

12.2.5.2 The Connections

To make it work we add the following code to the custom_postgui.hal file.
display the rpm based on freq * rpm per hz
loadrt mult2
addf mult2.0 servo-thread
setp mult2.0.in1 28.75
net cypher_speed mult2.0.in0 <= spindle-vfd.frequency-out
net speed_out pyvcp.spindle_rpm <= mult2.0.out

run led
net gs2-run => pyvcp.on-led

fwd led
net gs2-fwd => pyvcp.fwd-led

rev led
net running-rev spindle-vfd.spindle-rev => pyvcp.rev-led

Some of the lines might need some explanations. The fwd led line uses the signal created in the
custom.hal file whereas the rev led needs to use the spindle-rev bit. You can’t link the spindle-fwd bit
twice so you use the signal that it was linked to.

12.2.6 Rapid to Home Button

This example creates a button on the PyVCP side panel when pressed will send all the axis back to
the home position. This example assumes you don’t have a PyVCP panel.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 997 / 1322

In your configuration directory create the XML file. In this example it’s named rth.xml. In the rth.xml
file add the following code to create the button.
<pyvcp>
<!-- rapid to home button example -->
<button>
<halpin>”rth-button”</halpin>
<text>”Rapid to Home”</text>
</button>
</pyvcp>

Open your INI file with a text editor and in the [DISPLAY] section add the following line. This is what
loads the PyVCP panel.
PYVCP = rth.xml

If you don’t have a [HALUI] section in the INI file create it and add the following MDI command.
MDI_COMMAND = G53 G0 X0 Y0 Z0

Note
Information about G53 and G0 G-codes.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 998 / 1322

In the [HAL] section if you don’t have a post gui file add the following and create a file called post-
gui.hal.
POSTGUI_HALFILE = postgui.hal

In the postgui.hal file add the following code to link the PyVCP button to the MDI command.
net rth halui.mdi-command-00 <= pyvcp.rth-button

Note
Information about the net command

12.3 GladeVCP: Glade Virtual Control Panel

12.3.1 What is GladeVCP?

GladeVCP is a LinuxCNC component which adds the ability to add a new user interface panel to
LinuxCNC user interfaces like:

• AXIS

• Touchy

• Gscreen

• GMOCCAPY

Unlike PyVCP, GladeVCP is not limited to displaying and setting HAL pins, as arbitrary actions can be
executed in Python code - in fact, a complete LinuxCNC user interface could be built with GladeVCP
and Python.
GladeVCP uses the Glade WYSIWYG user interface editor, which makes it easy to create visually
pleasing panels. It relies on the PyGObject bindings to the rich GTK3 widget set, and in fact all of
these widgets may be used in a GladeVCP application - not just the specialized widgets for interacting
with HAL and LinuxCNC, which are documented here.

12.3.1.1 PyVCP versus GladeVCP at a glance

Both support the creation of panels with HAL widgets - user interface elements like LED’s, buttons,
sliders etc whose values are linked to a HAL pin, which in turn interfaces to the rest of LinuxCNC.
PyVCP:

• Widget set: uses TkInter widgets.

• User interface creation: ”edit XML file / run result / evaluate looks” cycle.

• No support for embedding user-defined event handling.

• No LinuxCNC interaction beyond HAL pin I/O supported.

GladeVCP:

• Widget set: relies on the GTK3 widget set.

https://glade.gnome.org/
https://pygobject.readthedocs.io/en/latest/
https://docs.gtk.org/gtk3/
https://docs.gtk.org/gtk3/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 999 / 1322

• User interface creation: uses the Glade WYSIWYG user interface editor.

• Any HAL pin change may be directed to call back into a user-defined Python event handler.

• Any GTK signal (key/button press, window, I/O, timer, network events) may be associated with user-
defined handlers in Python.

• Direct LinuxCNC interaction: arbitrary command execution, like initiating MDI commands to call a
G-code subroutine, plus support for status change operations through Action Widgets.

• Several independent GladeVCP panels may be run in different tabs.

• Separation of user interface appearance and functionality: change appearance without touching
any code.

12.3.2 A Quick Tour with the Example Panel

GladeVCP panel windows may be run in three different setups:

• always visible integrated into AXIS at the right side, exactly like PyVCP panels,

• as a tab in AXIS,Touchy, Gscreen, or GMOCCAPY; in AXIS this would create a third tab besides the
Preview and DRO tabs which must be raised explicitly,

• as a standalone toplevel window, which can be iconifyed/deiconified independent of the main win-
dow.

Installed LinuxCNC If you’re using an installed version of LinuxCNC the examples shown below are
in the configuration picker in the Sample Configurations > apps > GladeVCP branch.
Git Checkout The following instructions only apply if you’re using a git checkout. Open a terminal
and change to the directory created by git then issue the commands as shown.

Note
For the following commands to work on your git checkout you must first run make then run sudo
make setuid then run . ./scripts/rip-environment. More information about a git checkout is on the
LinuxCNC wiki page.

Run the sample GladeVCP panel integrated into AXIS like PyVCP as follows:
$ cd configs/sim/axis/gladevcp
$ linuxcnc gladevcp_panel.ini

https://glade.gnome.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1000 / 1322

Run the same panel, but as a tab inside AXIS:
$ cd configs/sim/axis/gladevcp
$ linuxcnc gladevcp_tab.ini

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1001 / 1322

To run this panel inside Touchy:
$ cd configs/sim/touchy/gladevcp
$ linuxcnc gladevcp_touchy.ini

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1002 / 1322

Functionally these setups are identical - they only differ in screen real estate requirements and visibil-
ity. Since it is possible to run several GladeVCP components in parallel (with different HAL component
names), mixed setups are possible as well - for instance a panel on the right hand side, and one or
more tabs for less-frequently used parts of the interface.

12.3.2.1 Exploring the example panel

While running configs/sim/axis/gladevcp_panel.ini or configs/sim/axis/gladevcp_tab.ini, explore Show
HAL Configuration - you will find the gladevcp HAL component and may observe their pin values while
interacting with the widgets in the panel. The HAL setup can be found in configs/axis/gladevcp/manual-
example.hal.
The example panel has two frames at the bottom. The panel is configured so that resetting ESTOP
activates the Settings frame and turning the machine on enables the Commands frame at the bottom.
The HAL widgets in the Settings frame are linked to LEDs and labels in the Status frame, and to the
current and prepared tool number - play with them to see the effect. Executing the T<toolnumber>
and M6 commands in the MDI window will change the current and prepared tool number fields.
The buttons in the Commands frame are MDI Action widgets - pressing them will execute an MDI
command in the interpreter. The third button Execute Oword subroutine is an advanced example - it
takes several HAL pin values from the Settings frame, and passes them as parameters to the Oword
subroutine. The actual parameters received by the routine are displayed by (DEBUG,) commands -
see ../../nc_files/oword.ngc for the subroutine body.
To see how the panel is integrated into AXIS, see the [DISPLAY]GLADEVCP statement in configs/sim/ax-
is/gladevcp/gladevcp_panel.ini, the [DISPLAY]EMBED* statement in configs/sim/axis/gladevcp/glade-
vcp_tab.ini and [HAL]POSTGUI_HALFILE statements in both configs/sim/axis/gladevcp/gladevcp_tab.ini
and configs/sim/axis/gladevcp/gladevcp_panel.ini.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1003 / 1322

12.3.2.2 Exploring the User Interface description

The user interface is created with the Glade UI editor - to explore it, you need to have Glade installed.
To edit the user interface, run the command
$ glade configs/axis/gladevcp/manual-example.ui

The required glade program may be named glade-gtk2 on more recent systems.
The center window shows the appearance of the UI. All user interface objects and support objects
are found in the right top window, where you can select a specific widget (or by clicking on it in the
center window). The properties of the selected widget are displayed, and can be changed, in the right
bottom window.
To see how MDI commands are passed from the MDI Action widgets, explore the widgets listed under
Actions in the top right window, and in the right bottom window, under the General tab, the MDI
command property.

12.3.2.3 Exploring the Python callback

See how a Python callback is integrated into the example:

• In Glade, see the hits label widget (a plain GTK+ widget).

• In the button1 widget, look at the Signals tab, and find the signal pressed associated with the
handler on_button_press.

• In hitcounter.py, see the method on_button_press and see how it sets the label property in the hits
object.

The is just touching upon the concept - the callback mechanism will be handled in more detail in the
GladeVCP Programming section.

12.3.3 Creating and Integrating a Glade user interface

12.3.3.1 Prerequisite: Glade installation

To view or modify Glade UI files, you need Glade 3.38.2 or later installed - it is not needed just to run
a GladeVCP panel. If the glade command is missing, install it with the command:
$ sudo apt install glade

Then verify installed version, which must be equal or superior to 3.6.7:
$ glade --version

Glade contains an internal Python interpreter, and only Python 3 is supported. This is true for Debian
Bullseye, Ubuntu 21 and Mint 21 or later. Older versions will not work, you will get a Python error.

12.3.3.2 Running Glade to create a new user interface

This section just outlines the initial LinuxCNC-specific steps. For more information and a tutorial on
Glade, see http://glade.gnome.org. Some Glade tips & tricks may also be found on YouTube.
Either modify an existing UI component by running glade <file>.ui or start a new one by just run-
ning the glade command from the shell.

http://glade.gnome.org
https://www.youtube.com

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1004 / 1322

• If LinuxCNC was not installed from a package, the LinuxCNC shell environment needs to be set up
with source <linuxcncdir>/scripts/rip-environment, otherwise Glade won’t find the LinuxCNC-
specific widgets.

• When asked for unsaved preferences, just accept the defaults and hit Close.

• From Toplevels (toolbar), pick GtkWindow (first entry) as top level window. Set window1 as ID in
the right pane under the tab General. This naming is important because GladeVCP relies on it.

• From the button with the three dots you can find the LinuxCNC specific widgets.

• Add a container like a HAL_Box or a HAL_Table from HAL Python to the frame.

• Pick and place some elements like LED, button, etc. within a container.

This will look like this:

Glade tends to write a lot of messages to the shell window, which mostly can be ignored. Select
File→Save as, give it a name like myui.ui and make sure it is saved as GtkBuilder file (radio button
left bottom corner in Save dialog). GladeVCP will also process the older libglade format correctly but
there is no point in using it. The convention for GtkBuilder file extension is .ui.

12.3.3.3 Testing a panel

You’re now ready to give it a try (while LinuxCNC, e.g. AXIS is running) it with:
gladevcp myui.ui

GladeVCP creates a HAL component named like the basename of the UI file -myui in this case - unless
overridden by the -c <component name> option. If running AXIS, just try ShowHAL configuration and
inspect its pins.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1005 / 1322

You might wonder why widgets contained a HAL_Hbox or HAL_Table appear greyed out (inactive).
HAL containers have an associated HAL pin which is off by default, which causes all contained wid-
gets to render inactive. A common use case would be to associate these container HAL pins with
halui.machine.is-on or one of the halui.mode signals, to assure some widgets appear active only
in a certain state.
To just activate a container, execute the HAL command setp gladevcp.<container-name> 1.

12.3.3.4 Preparing the HAL command file

The suggested way of linking HAL pins in a GladeVCP panel is to collect them in a separate file with
extension .hal. This file is passed via the POSTGUI_HALFILE= option in the HAL section of your INI file.

Caution
Do not add the GladeVCP HAL command file to the AXIS [HAL]HALFILE= ini section, this will
not have the desired effect - see the following sections.

12.3.3.5 Integrating into AXIS, like PyVCP

Place the GladeVCP panel in the righthand side panel by specifying the following in the INI file:
[DISPLAY]
add GladeVCP panel where PyVCP used to live:
GLADEVCP= -u ./hitcounter.py ./manual-example.ui

[HAL]
HAL commands for GladeVCP components in a tab must be executed via POSTGUI_HALFILE
POSTGUI_HALFILE = ./manual-example.hal

[RS274NGC]
gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../../nc_files/gladevcp_lib

The default HAL component name of a GladeVCP application started with the GLADEVCP option is:
gladevcp.
The command line actually run by AXIS in the above configuration is as follows:
halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID} -u ./hitcounter.py ./manual- ←↩

example.ui

You may add arbitrary gladevcp options here, as long as they dont collide with the above command
line options.
It is possible to create a custom HAL component name by adding the -c option:
[DISPLAY]
add GladeVCP panel where PyVCP used to live:
GLADEVCP= -c example -u ./hitcounter.py ./manual-example.ui

The command line actually run by AXIS for the above is:
halcmd loadusr -Wn example gladevcp -c example -x {XID} -u ./hitcounter.py ./manual-example ←↩

.ui

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1006 / 1322

Note
The file specifiers like ./hitcounter.py, ./manual-example.ui, etc. indicate that the files are located
in the same directory as the INI file. You might have to copy them to you directory (alternatively,
specify a correct absolute or relative path to the file(s)).

Note
The [RS274NGC]SUBROUTINE_PATH= option is only set so the example panel will find the Oword sub-
routine (oword.ngc) for the MDI Command widget. It might not be needed in your setup. The relative
path specifier ../../nc_files/gladevcp_lib is constructed to work with directories copied by the config-
uration picker and when using a run-in-place setup.

12.3.3.6 Embedding as a Tab

To do so, edit your INI file and add to the DISPLAY and HAL sections of INI file as follows:
[DISPLAY]
add GladeVCP panel as a tab next to Preview/DRO:
EMBED_TAB_NAME=GladeVCP demo
EMBED_TAB_COMMAND=halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID} -u ./gladevcp/ ←↩

hitcounter.py ./gladevcp/manual-example.ui

[HAL]
HAL commands for GladeVCP components in a tab must be executed via POSTGUI_HALFILE
POSTGUI_HALFILE = ./gladevcp/manual-example.hal

[RS274NGC]
gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../../nc_files/gladevcp_lib

Note the halcmd loadusr way of starting the tab command - this assures that POSTGUI_HALFILEwill
only be run after the HAL component is ready. In rare cases you might run a command here which
uses a tab but does not have an associated HAL component. Such a command can be started without
halcmd loadusr, and this signifies to AXIS that it does not have to wait for a HAL component since
there is none.
When changing the component name in the above example, note that the names used in -Wn <component>
and -c <component> must be identical.
Try it out by running AXIS - there should be a new tab called GladeVCP demo near the DRO tab. Select
that tab, you should see the example panel nicely fit within AXIS.

Note
Make sure the UI file is the last option passed to GladeVCP in both the GLADEVCP= and
EMBED_TAB_COMMAND= statements.

12.3.3.7 Integrating into Touchy

To do add a GladeVCP tab to Touchy, edit your INI file as follows:
[DISPLAY]
add GladeVCP panel as a tab
EMBED_TAB_NAME=GladeVCP demo
EMBED_TAB_COMMAND=gladevcp -c gladevcp -x {XID} -u ./hitcounter.py -H ./gladevcp-touchy.hal ←↩

./manual-example.ui

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1007 / 1322

[RS274NGC]
gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../../nc_files/gladevcp_lib

Note
The file specifiers like ./hitcounter.py, ./manual-example.ui, etc. indicate that the files are located
in the same directory as the INI file. You might have to copy them to you directory (alternatively,
specify a correct absolute or relative path to the file(s)).

Note the following differences to the AXIS tab setup:

• The HAL command file is slightly modified since Touchy does not use the halui components so its
signals are not available and some shortcuts have been taken.

• There is no POSTGUI_HALFILE= INI option, but passing the HAL command file on theEMBED_TAB_COMMAND=
line is ok.

• The halcmd loaduser -Wn … incantation is not needed.

12.3.3.8 Loading Builtin Panels

There are builtin panels available on the system, you load them in a slightly different way.
You do not add any filename extension to the panel name.
If the panel requires a user file (-u option) it will automatically be loaded.
Builtin panel names can be shown by running the gladevcp command alone in a terminal.
Loading the builtin verser probe panel:
gladevcp gtk_verser_probe

Embedding is the same, no filename extension, but other options are fine:
[DISPLAY]
add GladeVCP panel as a tab next to Preview/DRO:
EMBED_TAB_NAME=GladeVCP demo
EMBED_TAB_COMMAND=halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID} ←↩

gtk_verser_probe

12.3.4 GladeVCP command line options

These are the GladeVCP command line options:
(See also man gladevcp.)
If you enter gladevcp in a terminal this is what you will see:

Usage: gladevcp [options] myfile.ui
usage: gladevcp [options] built_in_panel_name

Options:
-h, --help show this help message and exit
-c NAME Set component name to NAME. Default is basename of UI file
-d Enable debug output
-g GEOMETRY Set geometry WIDTHxHEIGHT+XOFFSET+YOFFSET. Values are in

pixel units, XOFFSET/YOFFSET is referenced from top left of

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1008 / 1322

screen use -g WIDTHxHEIGHT for just setting size or -g
+XOFFSET+YOFFSET for just position

-H FILE execute hal statements from FILE with halcmd after the
component is set up and ready

-i Enable info output
-m MAXIMUM Force panel window to maxumize
-q Enable only error debug output
-r GTK_RC read custom GTK rc file to set widget style
-t THEME Set gtk theme. Default is system theme
-x XID Reparent gladevcp into an existing window XID instead of

creating a new top level window
--xid reparent window into a plug add push the plug xid number to

standardout
-u FILE Use FILEs as additional user defined modules with handlers
-U USEROPT pass USEROPTs to Python modules
-v Enable verbose debug output
--always_above Request the window To always be above other windows
--ini=INI_PATH ini path

[GladeVCP-][CRITICAL] Available built-in VCP Panels: (gladevcp:205)
[’gtk_verser_probe’, ’gtk_little_probe’]

12.3.5 Understanding the GladeVCP startup process

The integration steps outlined above look a bit tricky, and they are. It does therefore help to under-
stand the startup process of LinuxCNC and how this relates to GladeVCP.
The normal LinuxCNC startup process does the following:

• The realtime environment is started.

• All HAL components are loaded.

• The HAL components are linked together through the .hal cmd scripts.

• task, iocontrol and eventually the user interface is started.

• Pre-GladeVCP the assumption was: by the time the UI starts, all of HAL is loaded, plumbed and
ready to go.

The introduction of GladeVCP brought the following issue:

• GladeVCP panels need to be embedded in a master GUI window setup.

• GladeVCP panels need to be embedded in a master GUI window setup, e.g., AXIS, or Touchy,
Gscreen, or GMOCCAPY (embedded window or as an embedded tab).

• This requires the master GUI to run before the GladeVCP window can be hooked into the master
GUI.

• However, GladeVCP is also a HAL component, and creates HAL pins of its own.

• As a consequence, all HAL plumbing involving GladeVCP HAL pins as source or destination must
be run after the GUI has been set up.

This is the purpose of the POSTGUI_HALFILE. This INI option is inspected by the GUIs. If a GUI detects
this option, it runs the corresponding HAL file after any embedded GladeVCP panel is set up. However,
it does not check whether a GladeVCP panel is actually used, in which case the HAL cmd file is just run
normally. So if you do NOT start GladeVCP through GLADEVCP or EMBED_TAB etc, but later in a separate

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1009 / 1322

shell window or some other mechanism, a HAL command file in POSTGUI_HALFILE will be executed too
early. Assuming GladeVCP pins are referenced herein, this will fail with an error message indicating
that the GladeVCP HAL component is not available.
So, in case you run GladeVCP from a separate shell window (i.e., not started by the GUI in an embedded
fashion):

• You cannot rely on the POSTGUI_HALFILE INI option causing the HAL commands being run at the
right point in time, so comment that out in the INI file.

• Explicitly pass the HAL command file which refers to GladeVCP pins to GladeVCP with the -H
<halcmd file> option (see previous section).

12.3.6 HAL Widget reference

GladeVCP includes a collection of Gtk widgets with attached HAL pins called HAL Widgets, intended
to control, display or otherwise interact with the LinuxCNC HAL layer. They are intended to be used
with the Glade user interface editor. With proper installation, the HAL Widgets should show up in
Glade’s HAL Python widget group. Many HAL specific fields in the Glade General section have an
associated mouse-over tool tip.
HAL signals come in two variants, bits and numbers. Bits are off/on signals. Numbers can be ”float”,
”s32” or ”u32”. For more information on HAL data types see the HAL manual. The GladeVCP widgets
can either display the value of the signal with an indicator widget, or modify the signal value with
a control widget. Thus there are four classes of GladeVCP widgets that you can connect to a HAL
signal. Another class of helper widgets allow you to organize and label your panel.

• Widgets for indicating ”bit” signals: HAL_LED
• Widgets for controlling ”bit” signals: HAL_Button HAL_RadioButton HAL_CheckButton
• Widgets for indicating ”number” signals: HAL_Label, HAL_ProgressBar, HAL_HBar and HAL_VBar,

HAL_Meter
• Widgets for controlling ”number” signals: HAL_SpinButton, HAL_HScale and HAL_VScale, Jog

Wheel, Speed Control
• Sensitive control widgets: State_Sensitive_Table HAL_Table and HAL_HBox
• Tool Path preview: HAL_Gremlin
• Widgets to show axis positions: DRO Widget, Combi DRO Widget
• Widgets for file handling: IconView File Selection
• Widgets for display/edit of all axes offsets: OffsetPage
• Widgets for display/edit of all tool offsets: Tooloffset editor
• Widget for G-code display and edit: HAL_Sourceview
• Widget for MDI input and history display: MDI History

12.3.6.1 Widget and HAL pin naming

Most HAL widgets have a single associated HAL pin with the same HAL name as the widget (glade:
General→Name).
Exceptions to this rule currently are:

• HAL_Spinbutton andHAL_ComboBox, which have two pins: a <widgetname>-f (float) and a <widgetname>-s
(s32) pin

• HAL_ProgressBar, which has a <widgetname>-value input pin, and a <widgetname>-scale input
pin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1010 / 1322

12.3.6.2 Python attributes and methods of HAL Widgets

HAL widgets are instances of GtKWidgets and hence inherit the methods, properties and signals of the
applicable GtkWidget class. For instance, to figure out which GtkWidget-related methods, properties
and signals a HAL_Button has, lookup the description of GtkButton in the PyGObject API Reference.
An easy way to find out the inheritance relationship of a given HAL widget is as follows: Run glade,
place the widget in a window, and select it; then choose the Signals tab in the Properties window. For
example, selecting a HAL_LED widget, this will show that a HAL_LED is derived from a GtkWidget,
which in turn is derived from a GtkObject, and eventually a GObject.
Full class hierarchy can be seen by invoking the GtkInspector while in the Glade GUI by selecting
a widget then pressing Control-Shift-I. If the Inspector doesn’t open then it can be enabled from a
terminal by entering:
gsettings set org.gtk.Settings.Debug enable-inspector-keybinding true

The Inspector is also handy for testing css style changes ”on the fly” as well as determining all the
properties and signals available for a widget.
HAL Widgets also have a few HAL-specific Python attributes:

hal_pin
The underlying HAL pin Python object in case the widget has a single pin type

hal_pin_s, hal_pin_f
The s32 and float pins of the HAL_Spinbutton and HAL_ComboBox widgets - note these widgets
do not have a hal_pin attribute!

hal_pin_scale
The float input pin of HAL_ProgressBar widget representing the maximum absolute value of
input.

The are several HAL-specific methods of HAL Widgets, but the only relevant method is:

<halpin>.get()
Retrieve the value of the current HAL pin, where <halpin> is the applicable HAL pin name listed
above.

12.3.6.3 Setting pin and widget values

As a general rule, if you need to set a HAL output widget’s value from Python code, do so by calling
the underlying Gtk setter (e.g., set_active(), set_value()). Do not try to set the associated pin’s
value by halcomp[pinname] = value directly because the widget will not take notice of the change!
It might be tempting to set HAL widget input pins programmatically. Note this defeats the purpose
of an input pin in the first place - it should be linked to, and react to signals generated by other HAL
components. While there is currently no write protection on writing to input pins in HAL Python, this
doesn’t make sense. You might use setp _pinname_ _value_ in the associated HAL file for testing
though.
It is perfectly OK to set an output HAL pin’s value with halcomp[pinname] = value provided this HAL
pin is not associated with a widget, that is, has been created by the hal_glib.GPin(halcomp.newpin(<name>,<type>,<direction>))
method (see GladeVCP Programming for an example).

https://lazka.github.io/pgi-docs/#Gtk-3.0/classes/Button.html
https://lazka.github.io/pgi-docs/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1011 / 1322

12.3.6.4 The hal-pin-changed signal

Event-driven programming means that the UI tells your code when ”something happens” - through
a callback, like when a button was pressed. The output HAL widgets (those which display a HAL
pin’s value) like LED, Bar, VBar, Meter, etc., support the hal-pin-changed signal, which may cause a
callback into your Python code when - well, a HAL pin changes its value. This means there’s no more
need for permanent polling of HAL pin changes in your code, the widgets do that in the background
and let you know.
Here is an example how to set a hal-pin-changed signal for a HAL_LED in the Glade UI editor:

The example in configs/apps/gladevcp/complex shows how this is handled in Python.

12.3.6.5 Buttons

This group of widgets are derived from various Gtk buttons and consists of HAL_Button, HAL_ToggleButton,
HAL_RadioButton and CheckButton widgets. All of them have a single output BIT pin named identical
to the widget. Buttons have no additional properties compared to their base Gtk classes.

• HAL_Button: instantaneous action, does not retain state. Important signal: pressed

• HAL_ToggleButton, HAL_CheckButton: retains on/off state. Important signal: toggled

• HAL_RadioButton: a one-of-many group. Important signal: toggled (per button).

• Important common methods: set_active(), get_active()

• Important properties: label, image

Figure 12.31: Check button

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1012 / 1322

Figure 12.32: Radio buttons

Figure 12.33: Toggle button

Tip
Defining radio button groups in Glade:

• Decide on default active button.

• In the other button’s General→Group select the default active button’s name in the Choose a Radio
Button in this project dialog.

See configs/apps/gladevcp/by-widget/ for a GladeVCP applications and UI file for working with
radio buttons.

12.3.6.6 Scales

HAL_HScale and HAL_VScale are derived from the GtkHScale and GtkVScale respectively.

<widgetname>
out FLOAT pin

<widgetname>-s
out s32 pin

To make a scale useful in Glade, add an Adjustment (General → Adjustment → New or existing ad-
justment) and edit the adjustment object. It defines the default/min/max/increment values. Also, set
adjustment Page size and Page increment to zero to avoid warnings.

Figure 12.34: Example HAL_HScale

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1013 / 1322

12.3.6.7 SpinButton

HAL SpinButton is derived from GtkSpinButton and holds two pins:

<widgetname>-f
out FLOAT pin

<widgetname>-s
out s32 pin

To be useful, Spinbuttons need an adjustment value like scales, see above.

Figure 12.35: Example SpinButton

12.3.6.8 Hal_Dial

The hal_dial widget simulates a jogwheel or adjustment dial.
It can be operated with the mouse. You can just use the mouse wheel, while the mouse cursor is over
the Hal_Dial widget, or you hold the left mouse button and move the cursor in circular direction to
increase or degrease the counts.
By double clicking the left or right button the scale factor can be increased or decreased.

• Counterclockwise = reduce counts

• Clockwise = increase counts

• Wheel up = increase counts

• Wheel down = reduce counts

• left Double Click = x10 scale

• Right Double Click = /10 scale

hal_dial exports its count value as HAL pins:

<widgetname>
out s32 pin

<widgetname>-scaled
out FLOAT pin

<widgetname>-delta-scaled
out FLOAT pin

hal_dial has the following properties:

cpr
Sets the Counts per Revolution, allowed values are in the range from 25 to 360
default = 100

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1014 / 1322

show_counts
Set this to False, if you want to hide the counts display in the middle of the widget.
default = True

label
Set the content of the label which may be shown over the counts value.
If the label given is longer than 15 Characters, it will be cut to 15 Characters.
default = blank

center_color
This allows one to change the color of the wheel. It uses a GDK color string.
default = #bdefbdefbdef (gray)

count_type_shown
There are three counts available 0) Raw CPR counts 1) Scaled counts 2) Delta scaled counts.
default = 1

• count is based on the CPR selected - it will count positive and negative. It is available as a s32
pin.

• Scaled-count is CPR count times the scale - it can be positive and negative.
If you change the scale the output will immediately reflect the change. It is available as a
FLOAT pin.

• Delta-scaled-count is cpr count CHANGE, times scale.
If you change the scale, only the counts after that change will be scaled and then added to the
current value.
It is available as a FLOAT pin.

scale_adjustable
Set this to False if you want to disallow scale changes by double clicking the widget.
If this is false the scale factor will not show on the widget.
default = True

scale
Set this to scale the counts.
default = 1.0

There are ways to directly control the widget using Python.
Using goobject to set the above listed properties:
[widget name].set_property(”cpr”,int(value))
[widget name].set_property(”show_counts, True)
[widget name].set_property(”center_color”,gtk.gdk.Color(’#bdefbdefbdef’))
[widget name].set_property(’label’, ’Test Dial 12345’)
[widget name].set_property(’scale_adjustable’, True)
[widget name].set_property(’scale’, 10.5)
[widget name].set_property(’count_type_shown’, 0)

There are Python methods:

• [widget name].get_value()
Will return the counts value as a s32 integer

• [widget name].get_scaled_value()
Will return the counts value as a float

• [widget name].get_delta_scaled_value()
Will return the counts value as a float

• [widget name].set_label(”string”)
Sets the label content with ”string”

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1015 / 1322

There are two GObject signals emitted:

• count_changed
Emitted when the widget’s count changes eg. from being wheel scrolled.

• scale_changed
Emitted when the widget’s scale changes eg. from double clicking.

Connect to these like so:
[widget name].connect(’count_changed’, [count function name])
[widget name].connect(’scale_changed’, [scale function name])

The callback functions would use this pattern:
def [count function name](widget, count,scale,delta_scale):

This will return: the widget, the current count, scale and delta scale of that widget.

Figure 12.36: Example Hal_Dial

12.3.6.9 Jog Wheel

The jogwheel widget simulates a real jogwheel. It can be operated with the mouse. You can just use
the mouse wheel, while the mouse cursor is over the JogWheel widget, or you push the left mouse
button and move the cursor in circular direction to increase or degrease the counts.

• Counterclockwise = reduce counts

• Clockwise = increase counts

• Wheel up = increase counts

• Wheel down = reduce counts

As moving the mouse the drag and drop way may be faster than the widget can update itself, you
may loose counts turning to fast. It is recommended to use the mouse wheel, and only for very rough
movements the drag and drop way.
jogwheel exports its count value as HAL pin:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1016 / 1322

<widgetname>-s
out s32 pin

jogwheel has the following properties:

size
Sets the size in pixel of the widget, allowed values are in the range of 100 to 500 default = 200

cpr
Sets the Counts per Revolution, allowed values are in the range from 25 to 100 default = 40

show_counts
Set this to False, if you want to hide the counts display in the middle of the widget.

label
Set the content of the label which may be shown over the counts value. The purpose is to give
the user an idea about the usage of that jogwheel. If the label given is longer than 12 Characters,
it will be cut to 12 Characters.

There a couple ways to directly control the widget using Python.
Using GObject to set the above listed properties:
[widget name].set_property(”size”,int(value))
[widget name].set_property(”cpr”,int(value))
[widget name].set_property(”show_counts, True)

There are two Python methods:

• [widget name].get_value()
Will return the counts value as integer

• [widget name].set_label(”string”)
Sets the label content with ”string”

Figure 12.37: Example JogWheel

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1017 / 1322

12.3.6.10 Speed Control

speedcontrol is a widget specially made to control an adjustment with a touch screen. It is a replace-
ment to the normal scale widget which is difficult to slide on a touch screen.
The value is controlled with two button to increase or decrease the value. The increment will change
as long a button is pressed. The value of each increment as well as the time between two changes
can be set using the widget properties.
speedcontrol offers some HAL pin:

<widgetname>-value
out float pin
The shown value of the widget.

<widgetname>-scaled-value
out float pin
The shown value divided by the scale value, this is very useful, if the velocity is shown in units /
min, but LinuxCNC expects it to be in units / second.

<widgetname>-scale
in float pin
The scale to apply.
Default is 60.

<widgetname>-increase
in bit pin
As long as the pin is true, the value will increase.
Very handy with connected momentary switch.

<widgetname>-decrease
in bit pin
As long as the pin is true, the value will decrease.
Very handy with connected momentary switch.

speedcontrol has the following properties:

height
Integer
The height of the widget in pixel.
Allowed values are 24 to 96.
Default is 36.

value
Float
The start value to set.
Allowed values are in the range from 0.001 to 99999.0.
Default is 10.0.

min
Float
The min allowed value.
Allowed values are 0.0 to 99999.0.
Default is 0.0.
If you change this value, the increment will be reset to default, so it might be necessary to set
afterwards a new increment.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1018 / 1322

max
Float
The max allowed value.
Allowed values are 0.001 to 99999.0.
Default is 100.0.
If you change this value, the increment will be reset to default, so it might be necessary to set
afterwards a new increment.

increment
Float
Sets the applied increment per mouse click.
Allowed values are 0.001 to 99999.0 and -1.
Default is -1, resulting in 100 increments from min to max.

inc_speed
Integer
Sets the timer delay for the increment speed holding pressed the buttons.
Allowed values are 20 to 300.
Default is 100.

unit
String
Sets the unit to be shown in the bar after the value.
Any string is allowed.
Default is ””.

color
Color
Sets the color of the bar.
Any hex color is allowed.
Default is ”#FF8116”.

template
String
Text template to display the value. Python formatting is used.
Any allowed format.
Default is ”%.1f”.

do_hide_button
Boolean
Whether to show or hide the increment an decrement button.
True or False.
Default = False.

There a couple ways to directly control the widget using Python.
Using GObject to set the above listed properties:
[widget name].set_property(”do_hide_button”,bool(value))
[widget name].set_property(”color”,”#FF00FF”)
[widget name].set_property(”unit”, ”mm/min”)
etc.

There are also Python methods to modify the widget:
[widget name].set_adjustment(gtk-adjustment)

You can assign a existing adjustment to the control, that way it is easy to replace existing sliders
without many code changes. Be aware, that after changing the adjustment you may need to set a new
increment, as it will be reset to its default (100 steps from MIN to MAX):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1019 / 1322

• [widget name].get_value()
Will return the counts value as float

• [widget name].set_value(float(value))
Sets the widget to the commanded value

• [widget name].set_digits(int(value))
Sets the digits of the value to be used

• [widget name].hide_button(bool(value))
Hide or show the button

Figure 12.38: Example Speedcontrol

12.3.6.11 Label

hal_label is a simple widget based on GtkLabel which represents a HAL pin value in a user-defined
format.

label_pin_type
The pin’s HAL type (0:s32, 1:float, 2:u32), see also the tooltip on General→HAL pin type (note
this is different from PyVCP which has three label widgets, one for each type).

text_template
Determines the text displayed - a Python format string to convert the pin value to text. Defaults
to %s (values are converted by the str() function) but may contain any legit as an argument to
Pythons format() method.
Example: Distance: %.03f will display the text and the pin value with 3 fractional digits padded
with zeros for a FLOAT pin.

12.3.6.12 Containers

• HAL_HideTable

• HAL_Table

• State_Sensitive_Table

• HAL_HBox (deprecated)

These containers are meant to be used to insensitize (grey out) or hide their children.
Insensitized children will not respond to input.

HAL_HideTable
Has one HAL BIT input pin which controls if its child widgets are hidden or not.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1020 / 1322

Pin: , <Panel_basename>.<widgetname>
in bit pin
If the pin is low then child widgets are visible which is the default state.

HAL_Table and HAL_Hbox
Have one HAL BIT input pin which controls if their child widgets are sensitive or not.

Pin: , <Panel_basename>.<widgetname>
in bit pin
If the pin is low then child widgets are inactive which is the default state.

State_Sensitive_Table
Responds to the state to LinuxCNC’s interpreter.
Optionally selectable to respond to must-be-all-homed, must-be-on and must-be-idle.
You can combine them. It will always be insensitive at Estop.
(Has no pin).

Warning
HAL_Hbox is deprecated - use HAL_Table.
If current panels use it, it won’t fail. You just won’t find it in the GLADE editor anymore.
Future versions of GladeVCP may remove this widget completely and then you will need to
update the panel.

Tip
If you find some part of your GladeVCP application is grayed out (insensitive), see whether a
HAL_Table pin is unset or unconnected.

12.3.6.13 LED

The hal_led simulates a real indicator LED.
It has a single input BIT pin which controls its state: ON or OFF.
LEDs have several properties which control their look and feel:

on_color
String defining ON color of LED.
May be any valid gdk.Color name.
Not working on Ubuntu 8.04.

off_color
String defining OFF color of LED.
May be any valid gdk.Color name or special value dark. dark means that OFF color will be set
to 0.4 value of ON color.
Not working on Ubuntu 8.04.

pick_color_on, pick_color_off
Colors for ON and OFF states.
These may be represented as #RRRRGGGGBBBB strings and are optional properties which have
precedence over on_color and off_color.

led_size
LED radius (for square - half of LED’s side)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1021 / 1322

led_shape
LED Shape.
Valid values are 0 for round, 1 for oval and 2 for square shapes.

led_blink_rate
If set and LED is ON then it is blinking.
Blink period is equal to ”led_blink_rate” specified in milliseconds.

create_hal_pin
Select/deselect creation of a HAL pin to control the LED.
With no HAL pin created LED can be controlled with a Python function.

As an input widget, LED also supports the hal-pin-changed signal. If you want to get a notification
in your code when the LED’s HAL pin was changed, then connect this signal to a handler, for example
on_led_pin_changed and provide the handler as follows:
def on_led_pin_changed(self,hal_led,data=None):

print(”on_led_pin_changed() - HAL pin value:”,hal_led.hal_pin.get())

This will be called at any edge of the signal and also during program start up to report the current
value.

Figure 12.39: Example LEDs

12.3.6.14 ProgressBar

Note
This widget might go away.
Use the HAL_HBar and HAL_VBar widgets instead.

The HAL_ProgressBar is derived from gtk.ProgressBar and has two float HAL input pins:

<widgetname>
the current value to be displayed

<widgetname>-scale
the maximum absolute value of input

HAL_ProgressBar has the following properties:

scale
Value scale.
Sets the maximum absolute value of input. Same as setting the <widgetname>.scale pin.
A float, range from -224 to +224.

green_limit
Green zone lower limit

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1022 / 1322

yellow_limit
Yellow zone lower limit

red_limit
Red zone lower limit

text_template
Text template to display the current value of the <widgetname> pin.
Python formatting may be used for dict {”value”:value}.

Figure 12.40: Example HAL_ProgressBar

12.3.6.15 ComboBox

HAL_ComboBox is derived from gtk.ComboBox. It enables choice of a value from a dropdown list.
HAL_ComboBox exports two HAL pins:

<widgetname>-f
Current value, type FLOAT

<widgetname>-s
Current value, type s32

HAL_ComboBox has the following property which can be set in Glade:

column
The column index.
Type s32.
Valid range from -1..100.
Defaults value -1.

In default mode this widgets sets the pins to the index of the chosen list entry. So if your widget has
three labels, it may only assume values 0,1 and 2.
In column mode (column > -1), the value reported is chosen from the ListStore array as defined in
Glade. So typically your widget definition would have two columns in the ListStore, one with text
displayed in the dropdown, and an int or float value to use for that choice.
There’s an example in configs/apps/by-widget/combobox.{py,ui} which uses column mode to pick
a float value from the ListStore.
If you’re confused like me about how to edit ComboBox ListStores and CellRenderer, see https://youtu.be/-
Z5_F-rW2cL8.

12.3.6.16 Bars

HAL_Bar and HAL_VBar widgets for horizontal and vertical bars representing float values.
HAL_Bar and HAL_VBar each have one input FLOAT HAL pin.
HAL_Bar and HAL_VBar both bars have the following properties:

https://youtu.be/Z5_F-rW2cL8
https://youtu.be/Z5_F-rW2cL8

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1023 / 1322

invert
Swap min and max direction.
An inverted HBar grows from right to left, an inverted VBar from top to bottom.

min, max
Minimum and maximum value of desired range. It is not an error condition if the current value
is outside this range.

show limits
Used to select/deselect the limits text on bar.

zero
Zero point of range.
If it is inside of min/max range then the bar will grow from that value and not from the left (or
right) side of the widget.
Useful to represent values that may be both positive or negative.

force_width, force_height
Forced width or height of widget.
If not set then size will be deduced from packing or from fixed widget size and bar will fill whole
area.

text_template
Like in Label, sets text format for min/max/current values.
Can be used to turn off value display.

value
Sets the bar display to the value entered.
Used only for testing in GLADE editor.
The value will be set from a HAL pin.

target value
Sets the target line to the value entered.
Used only for testing in GLADE editor.
The value will can be set in a Python function.

target_width
Width of the line that marks the target value.

bg_color
Background (inactive) color of bar.

target_color
Color of the the target line.

z0_color, z1_color, z2_color
Colors of different value zones.
Defaults are green, yellow and red.
For description of zones see z*_border properties.

z0_border, z1_border
Define up bounds of color zones.
By default only one zone is enabled. If you want more then one zone set z0_border and z1_border
to desired values so zone 0 will fill from 0 to first border, zone 1 will fill from first to second border
and zone 2 from last border to 1.
Borders are set as fractions.
Valid values range from 0 to 1.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1024 / 1322

Figure 12.41: Horizontal bar

Figure 12.42: Vertical bar

12.3.6.17 Meter

HAL_Meter is a widget similar to PyVCP meter - it represents a float value.
HAL_Meter has one input FLOAT HAL pin.
HAL Meter has the following properties:

min, max
Minimum and maximum value of desired range.
It is not an error condition if the current value is outside this range.

force_size
Forced diameter of widget.
If not set then size will be deduced from packing or from fixed widget size, and meter will fill all
available space with respect to aspect ratio.

text_template
Like in Label, sets text format for current value.
Can be used to turn off value display.

label
Large label above center of meter.

sublabel
Small label below center of meter.

bg_color
Background color of meter.

z0_color, z1_color, z2_color
Colors of different value zones.
Defaults are green, yellow and red.
For description of zones see z*_border properties.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1025 / 1322

z0_border, z1_border
Define up bounds of color zones.
By default only one zone is enabled. If you want more then one zone set z0_border and z1_border
to desired values so zone 0 will fill from min to first border, zone 1 will fill from first to second
border and zone 2 from last border to max.
Borders are set as values in range min-max.

Figure 12.43: Example HAL Meters

12.3.6.18 HAL_Graph

This widget is for plotting values over time.

12.3.6.19 Gremlin tool path preview for NGC files

Gremlin is a plot preview widget similar to the AXIS preview window. It assumes a running LinuxCNC
environment like AXIS or Touchy. To connect to it, inspects the INI_FILE_NAME environment variable.
Gremlin displays the current NGC file - it does monitor for changes and reloads the ngc file if the file
name in AXIS/Touchy changes. If you run it in a GladeVCP application when LinuxCNC is not running,
you might get a traceback because the Gremlin widget can’t find LinuxCNC status, like the current
file name.
Gremlin does not export any HAL pins.
Gremlin has the following properties:

enable_dro
This displays the dro on the graphics.
Default = true.

show_velocity
This displays the tool speed.
Default = true.

use_commanded
This selects the DRO to use: commanded or actual values.
Default = true.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1026 / 1322

metric_units
This selects the DRO to use: metric or imperial units.
Default = true.

show_rapids
This tells the plotter to show the rapid moves.
Default = true.

show_dtg_
This selects the DRO to display the distance-to-go value.
Default = true.

use_relative
This selects the DRO to show values relative to user system or machine coordinates.
Default = true.

show_live_plot
This tells the plotter to draw or not.
Default = true.

show_limits
This tells the plotter to show the machine’s limits.
Default = true.

show_lathe_radius
This selects the DRO to display the X axis in radius or diameter, if in lathe mode (selectable in
the INI file with LATHE = 1).
Default = true.

show_extents_option
This tells the plotter to show the machine’s extents.
Default = true.

show_tool
This tells the plotter to draw the tool.
Default = true.

show_program
Shows the G-code program.
Default = True

use_joints_mode
Used in non trivialkins machines (e.g., robots).
Default = false.

grid_size
Sets the size of the grid (only visible in the X, Y and Z views).
Defaults to 0

use_default_controls
This disables the default mouse controls.
This is most useful when using a touchscreen as the default controls do not work well. You can
programmatically add controls using Python and the handler file technique.
Default = true.

view
May be any of x, y, y2 , z, z2 , p (perspective).
Defaults to z view.

enable_dro
Type = boolean.
Whether to draw a DRO on the plot or not.
Default = true.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1027 / 1322

mouse_btn_mode
Type = integer.
Mouse button handling: leads to different functions of the button:

• 0 = default: left rotate, middle move, right zoom
• 1 = left zoom, middle move, right rotate
• 2 = left move, middle rotate, right zoom
• 3 = left zoom, middle rotate, right move
• 4 = left move, middle zoom, right rotate
• 5 = left rotate, middle zoom, right move
• 6 = left move, middle zoom, right zoom

Mode 6 is recommended for plasmas and lathes, as rotation is not needed for such machines.
There a couple ways to directly control the widget using Python.
Using GObject to set the above listed properties:
[widget name].set_property(’view’,’P’)
[widget name].set_property(’metric_units’,False)
[widget name].set_property(’use_default_controls’,False)
[widget name].set_property(’enable_dro’ False)
[widget name].set_property(’show_program’, False)
[widget name].set_property(’show_limits’, False)
[widget name].set_property(’show_extents_option’, False)
[widget name].set_property(’show_live_plot’, False)
[widget name].set_property(’show_tool’, False)
[widget name].set_property(’show_lathe_radius’,True)
[widget name].set_property(’show_dtg’,True)
[widget name].set_property(’show_velocity’,False)
[widget name].set_property(’mouse_btn_mode’, 4)

There are Python methods:
[widget name].show_offsets = True
[widget name].grid_size = .75
[widget name].select_fire(event.x,event.y)
[widget name].select_prime(event.x,event.y)
[widget name].start_continuous_zoom(event.y)
[widget name].set_mouse_start(0,0)
[widget name].gremlin.zoom_in()
[widget name].gremlin.zoom_out()
[widget name].get_zoom_distance()
[widget name].set_zoom_distance(dist)
[widget name].clear_live_plotter()
[widget name].rotate_view(x,y)
[widget name].pan(x,y)

Hints

• If you set all the plotting options false but show_offsets true you get an offsets page instead of
a graphics plot.

• If you get the zoom distance before changing the view then reset the zoom distance, it is much
more user friendly.

• if you select an element in the preview, the selected element will be used as rotation center
point

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1028 / 1322

Figure 12.44: Gremlin Example

12.3.6.20 HAL_Offset

The HAL_Offset widget is used to display the offset of a single axis.
HAL_Offset has the following properties:

display_units_mm
Display in metric units.

joint_number
Used to select which axis (technically which joint) is displayed.
On a trivialkins machine (mill, lathe, router) axis vs. joint number are:

0:X 1:Y 2:Z 3:A 4:B 5:C 6:U 7:V 8:W

mm_text_template
You can use Python formatting to display the position with different precision.

imperial_text_template
You can use Python formatting to display the position with different precision.

reference_type

0:G5x 1:tool 2:G92 3:Rotation around Z

12.3.6.21 DRO widget

The DRO widget is used to display the current axis position.
It has the following properties:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1029 / 1322

display_units_mm
Used to toggle the display units between metric and imperial. Default is False.

actual
Select actual (feedback) position or commanded position. Default is True.

diameter
Display diameter for a lathe. Default is False.

mm_text_template
You can use Python formatting to display the position with different precision. Default is ”%10.3f”.

imperial_text_template
You can use Python formatting to display the position with different precision. Default is ”%9.4f”.

joint_number
Used to select which axis (technically which joint) is displayed. Default is 0.
On a trivialkins machine (mill, lathe, router) axis vs. joint number are:
0:X 1:Y 2:Z 3:A 4:B 5:C 6:U 7:V 8:W +

reference_type

• 0 = absolute (machine origin).
• 1 = relative (to current user coordinate origin - G5x).
• 2 = distance-to-go (relative to current user coordinate origin). Default is 0.

font_family
Specify the font family e.g. mono. Defaults to sans. If the font does not exist then the current
system font will be used. Default is sans.

font_size
Specify the size of the font between 8 and 96. Default is 26.

font_weight
Specify the weight of the font. Select from lighter, normal, bold, or bolder. Default is bold.

unhomed_color
The text color when unhomed specified as a Gdk.RGBA color. Default is red, Gdk.RGBA(red=1.000000,
green=0.000000, blue=0.000000, alpha=1.000000)

homed_color
The text color when homed specified as a Gdk.RGBA color. Default is green, Gdk.RGBA(red=0.000000,
green=0.501961, blue=0.000000, alpha=1.000000)

Hints

• If you want the display to be right justified, set the Horizontal Alignment to End.
• The background of the widget is actually see through, so if you place it over an image, the DRO

numbers will show on top of it with no background. There is a special technique to do this.
See the animated function diagrams below.

• The DRO widget is a modified gtk label widget. As such, much of what can be done to a gtk
label can be done to the DRO widget.

• The font properties may also be set from a css stylesheet which has the highest priority and
will override values set by GObject properties.

There a couple ways to directly control the widget using Python.

Using GObject to set the above listed properties

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1030 / 1322

[widget name].set_property(”display_units_mm”, True)
[widget name].set_property(”actual”, True)
[widget name].set_property(”diameter”, True)
[widget name].set_property(”mm_text_template”, ”%10.3f”)
[widget name].set_property(”imperial_text_template”, ”%9.4f”)
[widget name].set_property(”joint_number”, 3)
[widget name].set_property(”reference_type”, 3)
[widget name].set_property(”font_family”, ”mono”)
[widget name].set_property(”font_size”, 30)
[widget name].set_property(”font_weight”, ”bold”)

it is easier to read colors by calling a function:
def str_to_rgba(color):
c = Gdk.RGBA()
c.parse(color)
return c

[widget name].set_property(”unhomed_color”, str_to_rgba(”magenta”))
[widget name].set_property(”homed_color”, str_to_rgba(”cyan”))

Using a CSS stylesheet to set font properties
Colors may be specified in one of several formats, these would all specify the same color, red,
*#ff0000, *rgb(255,0,0), or rgba(255,0,0,255).

Colors may be referenced either collectively:
.dro_unhomed {color: magenta}
.dro_homed {color: cyan}

or individually by widget name:
#[widget name].dro_unhomed {color: magenta}
#[widget name].dro_homed {color: cyan}

The other style properties need to be referenced by widget name:
#[widget name], #[widget name], #[widget name] {

font-family: mono;
font-size: 60px;
font-weight: lighter;

}

There are two Python methods

[widget name].set_dro_inch()
[widget name].set_dro_metric()

12.3.6.22 Combi_DRO widget

The Combi_DRO widget is used to display the current, the relative axis position and the distance to go
in one DRO.
By clicking on the DRO the Order of the DRO will toggle around.
In Relative Mode the actual coordinate system will be displayed.
Combi_DRO has the following properties:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1031 / 1322

joint_number
Used to select which axis (technically which joint) is displayed.
On a trivialkins machine (mill, lathe, router) axis/joint numbers are:

0:X 1:Y 2:Z etc.

actual
Select actual (feedback) or commanded position.

metric_units
Used to toggle the display units between metric and imperial.

auto_units
Units will toggle between metric and imperial according to the active G-code being G20 or G21.
Default is TRUE.

diameter
Whether to display position as diameter or radius.
In diameter mode the DRO will display the joint value multiplied by 2.

mm_text_template
You can use Python formatting to display the position with different precision.
Default is ”%10.3f”.

imperial_text_template
You can use Python formatting to display the position with different precision.
Default is ”%9.4f”.

homed_color
The foreground color of the DRO numbers if the joint is homed.
Default is green.

unhomed_color
The foreground color of the DRO numbers if the joint is not homed.
Default is red.

abs_color
The background color of the DRO, if main DRO shows absolute coordinates.
Default is blue.

rel_color
The background color of the DRO, if main DRO shows relative coordinates.
Default is black.

dtg_color
The background color of the DRO, if main DRO shows distance to go.
Default is yellow.

font_size
The font size of the big numbers, the small ones will be 2.5 times smaller.
The value must be an integer in the range of 8 to 96.
Default is 25.

toggle_readout
A left mouse click will toggle the DRO readout through the different modes [”Rel”, ”Abs”, ”DTG”].
By unchecking the box you can disable that behavior. The toggling can still be done with [widget
name].toggle_readout().
Value must be boolean.
Default is TRUE.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1032 / 1322

cycle_time
The time the DRO waits between two polls.
This setting should only be changed if you use more than 5 DRO at the same time, i.e. on a 6 axis
config, to avoid that the DRO slows down the main application too much.
The value must be an integer in the range of 100 to 1000. FIXME unit=ms ?
Default is 150.

Using GObject to set the above listed properties:
[widget name].set_property(property, value)

There are several Python methods to control the widget:

• [widget name].set_to_inch(state)
Sets the DRO to show imperial units.
state = boolean (True or False)
Default is FIXME.

• [widget name].set_auto_units(state)
If True the DRO will change units according to active G-code (G20 / G21).
state = boolean (True or False)
Default is True.

• [widget name].set_to_diameter(state)
If True the DRO will show the diameter not the radius, i.e., the axis value multiplied by 2 (specially
needed for lathes).
state = boolean (True or False)
Default is False.

• [widget name].toggle_readout()
Toggles the order of the DRO in the widget.

• [widget name].change_axisletter(letter)
Changes the automatically given axis letter.
Very useful to change an lathe DRO from X to R or D.
letter = string

• [widget name].get_order()
Returns the order of the DRO in the widget mainly used to maintain them consistent.
The order will also be transmitted with the clicked signal.
Returns a list containing the order.

• [widget name].set_order(order)
Sets the order of the DRO, mainly used to maintain them consistent.
order = list object, must be one of:

– [”Rel”, ”Abs”, ”DTG”] (default)
– [”DTG”, ”Rel”, ”Abs”]
– [”Abs”, ”DTG”, ”Rel”]

• [widget name].get_position()
Returns the position of the DRO as a list of floats.
The order is independent of the order shown on the DRO and will be given as [Absolute , relative
, DTG].

– Absolute = the machine coordinates, depends on the actual property will give actual or com-
manded position.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1033 / 1322

– Relative = will be the coordinates of the actual coordinate system.

– DTG = the distance to go.
Will mostly be 0, as this function should not be used while the machine is moving, because of time
delays.

The widget will emit the following signals:

• clicked
This signal is emitted, when the user has clicked on the Combi_DRO widget.
It will send the following data:

– widget = widget object
The widget object that sends the signal.

– joint_number = integer
The joint number of the DRO, where 0:X 1:Y 2:Z etc.

– order = list object
The order of the DRO in that widget.
The order may be used to set other Combi_DRO widgets to the same order with [widget name].set_order(order).

• units_changed
This signal is emitted if the DRO units are changed.
It will send the following data:

– widget = widget object
The widget object that sends the signal.

– metric_units = boolean
True if the DRO does display metric units, False in case of imperial display.

• system_changed
This signal is emitted if the DRO units are changed.
It will send the following data:

– widget = widget object
The widget object that sends the signal.

– system = string
The actual coordinate system. Will be one of G54 G55 G56 G57 G58 G59 G59.1 G59.2 G59.3 or
Rel if none has been selected at all, what will only happen in Glade with no LinuxCNC running.

There are some information you can get through commands, which may be of interest for you:

• [widget name].system
The actual system, as mentioned in the system_changed signal.

• [widget name].homed
True if the joint is homed.

• [widget name].machine_units
0 if Imperial, 1 if Metric.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1034 / 1322

Figure 12.45: Example: Three Combi_DRO in a window

X = Relative Mode
Y = Absolute Mode
Z = DTG Mode

12.3.6.23 IconView (File Select)

This is a touch screen friendly widget to select a file and to change directories.
IconView widget has the following properties:

icon_size
Sets the size of the displayed icon.
Allowed values are integers in the range from 12 to 96.
Default is 48.

start_dir
Sets the directory to start in when the widget is shown first time.
Must be a string, containing a valid directory path.
Default is ”/”.

jump_to_dir
Sets the ”jump to” directory, which is selected by the corresponding button in the bottom button
list (the 5th button counting from the left).
Must be a string, containing a valid directory path.
Default is ”\~”.

filetypes
Sets the file filter for the objects to be shown.
Must be a string containing a comma separated list of extensions to be shown.
Default is ”ngc,py”.

sortorder
Sets the sorting order of the displayed icon.
Must be an integer value from 0 to 3, where:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1035 / 1322

• 0 = ASCENDING (sorted according to file names)
• 1 = DESCENDING (sorted according to file names)
• 2 = FOLDERFIRST (show the folders first, then the files), default
• 3 = FILEFIRST (show the files first, then the folders)

Using GObject to set the above listed properties:
[widget name].set_property(property,Value)

There are Python methods to control the widget:

• [widget name].show_buttonbox(state)
If False the bottom button box will be hidden.
This is helpful in custom screens, with special buttons layouts to not alter the layout of the GUI.
Good example for that is GMOCCAPY.
state = boolean (True or False).
Default is True.

• [widget name].show_filelabel(state)
If True the file label (between the IconView window and the bottom button box) will be shown.
Hiding this label may save place, but showing it is very useful for debugging reasons.
state = boolean (True or False).
Default is True.

• [widget name].set_icon_size(iconsize)
Sets the icon size.
Must be an integer in the range from 12 to 96.
Default = 48.

• [widget name].set_directory(directory)
Allows to set an directory to be shown.
directory = string (a valid file path).

• [widget name].set_filetypes(filetypes)
Sets the file filter to be used.
Only files with the given extensions will be shown.
filetypes = string containing a comma separated list of extensions.
Default = ”ngc,py”.

• [widget name].get_selected()
Returns the path of the selected file, or None if a directory has been selected.

• [widget name].refresh_filelist()
Refreshes the filelist.
Needed if you add a file without changing the directory.

If the button box has been hidden, you can reach the functions of this button through its clicked signals
like so:
[widget name].btn_home.emit(”clicked”)
[widget name].btn_jump_to.emit(”clicked”)
[widget name].btn_sel_prev.emit(”clicked”)
[widget name].btn_sel_next.emit(”clicked”)
[widget name].btn_get_selected.emit(”clicked”)
[widget name].btn_dir_up.emit(”clicked”)
[widget name].btn_exit.emit(”clicked”)

The widget will emit the following signals:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1036 / 1322

• selected
This signal is emitted when the user selects an icon.
It will return a string containing a file path if a file has been selected, or None if a directory has been
selected.

• sensitive
This signal is emitted when the buttons change their state from sensitive to not sensitive or vice
versa.
This signal is useful to maintain surrounding GUI synchronized with the button of the widget. See
GMOCCAPY as example.
It will return the buttonname and the new state:

– buttonname is one of btn_home, btn_dir_up, btn_sel_prev, btn_sel_next, btn_jump_to or btn_select.
– state is a boolean and will be True or False.

• exit
This signal is emitted when the exit button has been pressed to close the IconView.
Mostly needed if the application is started as stand alone.

Figure 12.46: Iconview Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1037 / 1322

12.3.6.24 Calculator widget

This is a simple calculator widget, that can be used for numerical input.
You can preset the display and retrieve the result or that preset value.

calculator has the following properties:

is_editable
This allows the entry display to be typed into from a keyboard.

font
This allows you to set the font of the display.

There a couple ways to directly control the widget using Python.
Using goobject to set the above listed properties:
[widget name].set_property(”is_editable”,True)
[widget name].set_property(”font”,”sans 25”)

There are Python methods:

• [widget name].set_value(2.5)
This presets the display and is recorded.

• [widget name].set_font(”sans 25”)

• [widget name].set_editable(True)

• [widget name].get_value()
Returns the calculated value - a float.

• [widget name].set_editable(True)

• [widget name].get_preset_value()
Returns the recorded value: a float.

12.3.6.25 Tooleditor widget

This is a tooleditor widget for displaying and modifying a tool file.
If in lathe mode, it will display wear offsets and tool offsets separately.
Wear offsets are designated by tool number above 10000 (Fanuc style).
It checks the current file once a second to see if LinuxCNC updated it.

Note
LinuxCNC requires remapping of tool calls to actually use wear offsets.

tooleditor has the following properties:

font
Display font to use

hide_columns
This will hide the given columns.
The columns are designated (in order) as such: s,t,p,x,y,z,a,b,c,u,v,w,d,i,j,q.
You can hide any number of columns including the select and comments.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1038 / 1322

lathe_display_type
Show lathe format

There a couple ways to directly control the widget using Python.
Using goobject to set the above listed properties:
[widget name].set_properties(’hide_columns’,’uvwijq’)

This would hide the uvwij and q columns and show all others.
There are Python methods:

• [widget name].set_visible(”ijq”,False)
Would hide ij and Q columns and leave the rest as they were.

• [widget name].set_filename(path_to_file)
Sets and loads the tool file.

• [widget name].reload(None)
Reloads the current toolfile.

• [widget name].set_font(’sans 16,tab=’1’)
Sets the (Pango) font on the Tab, column title, and tool data.
The all_offsets, wear_offsets, tool_offsets can be set at the same time by adding 1, 2 and/or
3 to the tab string.
Default is all the tabs set.

• [widget name].set_title_font(’sans 16,tab=’1’)
Sets the (Pango) font on the column titles only.
The all_offsets, wear_offsets, tool_offsets can be set at the same time by adding 1, 2 and/or
3 to the tab string.
Default is all the tabs set.

• [widget name].set_tab_font(’sans 16,tab=’1’)
Sets the (Pango) font on the tabs only.
The all_offsets, wear_offsets, tool_offsets can be set at the same time by adding 1, 2 and/or
3 to the tab string.
Default is all the tabs set.

• [widget name].set_col_visible(”abcUVW”, False, tab=’1’)
This would hide (False) the abcuvw columns on tab 1 (all_offsets)

• [widget name].set_lathe_display(value)
Hides or shows the wear and tool offset tabs used for lathes

• [widget name].get_toolinfo(toolnum)
Returns the tool information array of the requested toolnumber or current tool if no tool number is
specified.
Returns None if tool not found in table or if there is no current tool.

• [widget name].hide_buttonbox(self, True)
Convenience method to hide buttons.
You must call this after show_all().

• [widget name].get_selected_tool()
Return the user selected (highlighted) tool number.

• [widget name].set_selected_tool(toolnumber)
Selects (highlights) the requested tool.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1039 / 1322

Figure 12.47: Tooleditor Example

12.3.6.26 Offsetpage

The Offsetpage widget is used to display/edit the offsets of all the axes.
It has convenience buttons for zeroing G92 and Rotation-Around-Z offsets.
It will only allow you to select the edit mode when the machine is on and idle.
You can directly edit the offsets in the table at this time. Unselect the edit button to allow the
OffsetPage to reflect changes.
It has the following properties:

display_units_mm
Display in metrice units

hide_columns
A no-space list of columns to hide. The columns are designated (in order) as such: xyzabcuvwt.
You can hide any of the columns.

hide_rows
A no-space list of rows to hide.
The rows are designated (in order) as such: 0123456789abc.
You can hide any of the rows.

font
Sets text font type and size.

highlight_color
When editing this is the highlight color.

foreground_color
When OffsetPage detects an active user coordinate system it will use this color for the text.

mm_text_template
You can use Python formatting to display the position with different precision.

imperial_text_template
You can use Python formatting to display the position with different precision.

There a couple ways to directly control the widget using Python.
Using goobject to set the above listed properties:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1040 / 1322

[widget name].set_property(”highlight_color”,gdk.Color(’blue’))
[widget name].set_property(”foreground_color”,gdk.Color(’black’))
[widget name].set_property(”hide_columns”,”xyzabcuvwt”)
[widget name].set_property(”hide_rows”,”123456789abc”)
[widget name].set_property(”font”,”sans 25”)

There are Python methods to control the widget:

• [widget name].set_filename(”../../../configs/sim/gscreen/gscreen_custom/sim.var”)

• [widget name].set_col_visible(”Yabuvw”,False)

• [widget name].set_row_visible(”456789abc”,False)

• [widget name].set_to_mm()

• [widget name].set_to_inch()

• [widget name].hide_button_box(True)

• [widget name].set_font(”sans 20”)

• [widget name].set_highlight_color(”violet”)

• [widget name].set_foreground_color(”yellow”)

• [widget name].mark_active(”G55”)
Allows you to directly set a row to highlight, e.g., in case you wish to use your own navigation
controls. See the chapter on GMOCCAPY.

• [widget name].selection_mask = (”Tool”,”Rot”,”G5x”)
These rows are NOT selectable in edit mode.

• [widget name].set_names([[’G54’,’Default’],[”G55”,”Vice1”],[’Rot’,’Rotational’]])
This allows you to set the text of the T column of each/any row.
This is a list of a list of offset-name/user-name pairs.
The default text is the same as the offset name.

• [widget name].get_names()
This returns a list of a list of row-keyword/user-name pairs.
The user name column is editable, so saving this list is user friendly.
See set_names above.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1041 / 1322

Figure 12.48: Offsetpage Example

12.3.6.27 HAL_sourceview widget

This is for displaying and simple editing of G-code. It looks for .ngc highlighting specs in ~/share/gtksourceview-4/language-specs/.
The current running line will be highlighted.
With external Python glue code it can:

• Search for text, undo and redo changes.

• Be used for program line selection.

There are Python methods to control the widget:

• [widget name].redo()
Redo one level of changes.

• [widget name].undo()
Undo one level of changes

• [widget name].text_search(direction=True,mixed_case=True,text=’G92’)
Searches forward (direction = True) or backward,
Searches with mixed case (mixed_case = True) or exact match

• [widget name].set_line_number(linenumber)
Sets the line to highlight.
Uses the sourceview line numbers.

• [widget name].get_line_number()
Returns the currently highlighted line.

• [widget name].line_up()
Moves the highlighted line up one line.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1042 / 1322

• [widget name].line_down()
Moves the highlighted line down one line.

• [widget name].load_file(’filename’)
Loads a file.
Using None (not a filename string) will reload the same program.

• [widget name].get_filename()
FIXME description

Figure 12.49: Sourceview Example

12.3.6.28 MDI history

This is for displaying and entering MDI codes.
It will be automatically grayed out when MDI is not available, e.g., during E-stop and program running.

font_size_tree
Integer value between 8 and 96.
Will modify the default font size of the treeview to the selected value.

font_size_entry
Integer value between 8 and 96.
Will modify the default font size of the entry to the selected value.

use_double_click
Boolean, True enables the mouse double click feature and a double click on an entry will submit
that command.
It is not recommended to use this feature on real machines, as a double click on a wrong entry
may cause dangerous situations.

Using goobject to set the above listed properties:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1043 / 1322

[widget name].set_property(”font_size_tree”,10)
[widget name].set_property(”font_size_entry”,20)
[widget name].set_property(”use_double_click”,False)

12.3.6.29 Animated function diagrams: HAL widgets in a bitmap

For some applications it might be desirable to have a background image - like a functional diagram
- and position widgets at appropriate places in that image. A good combination is setting a bitmap
background image, like from a .png file, making the GladeVCP window fixed-size, and use the Glade
Fixed widget to position widgets on this image. The code for the below example can be found in
configs/apps/gladevcp/animated-backdrop:

Figure 12.50: HAL widgets in a bitmap Example

12.3.7 Action Widgets Reference

GladeVCP includes a collection of ”canned actions” called VCP Action Widgets for the Glade user
interface editor.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1044 / 1322

Note
Other than HAL widgets, which interact with HAL pins, VCP Actions interact with LinuxCNC and the
G-code interpreter.

VCP Action Widgets are derived from the Gtk.Action widget.
The Action widget in a nutshell:

• It is an object available in Glade

• It has no visual appearance by itself

• Its purpose: Associate a visible, sensitive UI component like menu, toolbutton, button with a com-
mand. See these widget’s General→Related→Action property.

• The ”canned action” will be executed when the associated UI component is triggered (button press,
menu click..).

• It provides an easy way to execute commands without resorting to Python programming.

The appearance of VCP Actions in Glade is roughly as follows:

Figure 12.51: Action Widgets

Tooltip hovers provide a description.

12.3.7.1 VCP Action Widgets

VCP Action widgets are one-shot type widgets. They implement a single action and are for use in
simple buttons, menu entries or radio/check groups.

12.3.7.2 VCP Action Python

This widget is used to execute small arbitrary Python code.
The command string may use special keywords to access important functions.

• ACTION for access to the ACTION command library.

• GSTAT for access to the Gstat status message library.

• INFO for access to collected data from the INI file.

• HAL for access to the HAL linuxcnc Python module.

• STAT for access to LinuxCNC’s raw status via the LinuxCNC Python module.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1045 / 1322

• CMD for access to LinuxCNC’s commands via the LinuxCNC Python module.

• EXT for access to the handler file functions if available.

• linuxcnc for access to the LinuxCNC Python module.

• self for access to the widget instance.

• dir for access to the handlers list of attributes.

There are options to

• select when the widget will be active,

• set the mode before the command is executed.

Example command to just print a message to the terminal:
print(’action activated’)

Example command to set the machine to off state:
CMD.state(linuxcnc.STATE_OFF)

Example command to call a handler function that passes data:
EXT.on_button_press(self, 100)

You can use a semicolon to separate multiple commands;
print(’Set Machine Off’);CMD.state(linuxcnc.STATE_OFF)

More information on INFO and ACTION can be found here: GladeVCP Libraries modules.
More information on GStat can be found here: GStat.

12.3.7.3 VCP ToggleAction widgets

These are bi-modal widgets. They implement two actions or use a second (usually pressed) state
to indicate that currently an action is running. Toggle actions are aimed for use in ToggleButtons,
ToggleToolButtons or toggling menu items. A simplex example is the ESTOP toggle button.
Currently the following widgets are available:

• The ESTOP toggle sends ESTOP or ESTOP_RESET commands to LinuxCNC depending on its state.

• The ON/OFF toggle sends STATE_ON and STATE_OFF commands.

• Pause/Resume sends AUTO_PAUSE or AUTO_RESUME commands.

The following toggle actions have only one associated command and use the pressed state to indicate
that the requested operation is running:

• The Run toggle sends an AUTO_RUN command and waits in the pressed state until the interpreter is
idle again.

• The Stop toggle is inactive until the interpreter enters the active state (is running G-code) and then
allows user to send AUTO_ABORT command.

• The MDI toggle sends given MDI command and waits for its completion in pressed inactive state.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1046 / 1322

12.3.7.4 The Action_MDI Toggle and Action_MDI widgets

These widgets provide a means to execute arbitrary MDI commands.
The Action_MDI widget does not wait for command completion as the Action_MDI Toggle does, which
remains disabled until command complete.

12.3.7.5 A simple example: Execute MDI command on button press

configs/apps/gladevcp/mdi-command-example/whoareyou.ui is a Glade UI file which conveys the
basics:

1. Open it in Glade and study how it is done.

2. Start AXIS, and then start this from a terminal window with gladevcp whoareyou.ui.

3. See the hal_action_mdi1 action and its MDI command property - this just executes (MSG, ”Hi,
I’m an VCP_Action_MDI”) so there should be a message popup in AXIS like so:

Figure 12.52: Action_MDI Simple Example

You’ll notice that the button associated with the Action_MDI action is grayed out if the machine is off,
in E-Stop or if the interpreter is running. It will automatically become active when the machine is
turned on and out of E-Stop, and the program is idle.

12.3.7.6 Parameter passing with Action_MDI and ToggleAction_MDI widgets

Optionally, MDI command strings may have parameters substituted before they are passed to the inter-
preter. Parameters currently may be names of HAL pins in the GladeVCP component. This is how it
works:

• assume you have aHAL SpinBox named speed, and you want to pass its current value as a parameter
in an MDI command.

• The HAL SpinBox will have a float-type HAL pin named speed-f (see HalWidgets description).

• To substitute this value in the MDI command, insert the HAL pin name enclosed like so: ${pin-name}

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1047 / 1322

• for the above HAL SpinBox, we could use (MSG, ”The speed is: ${speed-f}”) just to show what’s
happening.

The example UI file is configs/apps/gladevcp/mdi-command-example/speed.ui. Here’s what you
get when running it:

Figure 12.53: Action_MDI Parameter Passing Example

12.3.7.7 An advanced example: Feeding parameters to an O-word subroutine

It’s perfectly OK to call an O-word subroutine in an MDI command, and pass HAL pin values as actual
parameters. An example UI file is in configs/apps/gladevcp/mdi-command-example/owordsub.ui.
Place nc_files/gladevcp_lib/oword.ngc so AXIS can find it, and run gladevcp owordsub.ui from
a terminal window. This looks like so:

Figure 12.54: Action_MDI Advanced Example

12.3.7.8 Preparing for an MDI Action, and cleaning up afterwards

The LinuxCNC G-code interpreter has a single global set of variables, like feed, spindle speed, rela-
tive/absolute mode and others. If you use G-code commands or O-word subs, some of these variables
might get changed by the command or subroutine - for example, a probing subroutine will very likely
set the feed value quite low. With no further precautions, your previous feed setting will be overwrit-
ten by the probing subroutine’s value.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1048 / 1322

To deal with this surprising and undesirable side effect of a given O-word subroutine or G-code state-
ment executed with an LinuxCNC ToggleAction_MDI, you might associate pre-MDI and post-MDI han-
dlers with a given LinuxCNC ToggleAction_MDI. These handlers are optional and provide a way to save
any state before executing the MDI Action, and to restore it to previous values afterwards. The signal
names are mdi-command-start and mdi-command-stop; the handler names can be set in Glade like
any other handler.
Here’s an example how a feed value might be saved and restored by such handlers (note that Lin-
uxCNC command and status channels are available as self.linuxcnc and self.stat through the
VCP_ActionBase class):

def on_mdi_command_start(self, action, userdata=None):
action.stat.poll()
self.start_feed = action.stat.settings[1]

def on_mdi_command_stop(self, action, userdata=None):
action.linuxcnc.mdi(’F%.1f’ % (self.start_feed))
while action.linuxcnc.wait_complete() == -1:

pass

Only the Action_MDI Toggle widget supports these signals.

Note
In a later release of LinuxCNC, the new M-codes M70-M72 will be available. They will make saving
state before a subroutine call, and restoring state on return much easier.

12.3.7.9 Using the LinuxCNC Stat object to deal with status changes

Many actions depend on LinuxCNC status - is it in manual, MDI or auto mode? Is a program running,
paused or idle? You cannot start an MDI command while a G-code program is running, so this needs
to be taken care of. Many LinuxCNC actions take care of this themselves, and related buttons and
menu entries are deactivated when the operation is currently impossible.
When using Python event handlers - which are at a lower level than Actions - one needs to take care
of dealing with status dependencies oneself. For this purpose, there’s the LinuxCNC Stat widget: to
associate LinuxCNC status changes with event handlers.
LinuxCNC Stat has no visible component - you just add it to your UI with Glade. Once added, you can
associate handlers with its following signals:

• state-related:

– state-estop: emitted when E-Stop condition occurs,
– state-estop-reset: emitted when machine is reset,
– state-on: emitted when machine is turned on,
– state-off: emitted when machine is turned off.

• mode-related:

– mode-manual: emitted when LinuxCNC enters manual mode,
– mode-mdi: emitted when LinuxCNC enters MDI mode,
– mode-auto: emitted when LinuxCNC enters automatic mode,

• interpreter-related: emitted when the G-code interpreter changes into that mode

– interp-run

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1049 / 1322

– interp-idle
– interp-paused
– interp-reading
– interp-waiting
– file-loaded
– line-changed

• homing-related: emitted when LinuxCNC is homed or not

– all-homed
– not-all-homed

12.3.8 GladeVCP Programming

12.3.8.1 User Defined Actions

Most widget sets, and their associated user interface editors, support the concept of callbacks, i.e.
functions in user-written code which are executed when something happens in the UI - events like
mouse clicks, characters typed, mouse movement, timer events, window hiding and exposure and so
forth.
HAL output widgets typically map input-type events like a button press to a value change of the
associated HAL pin by means of such a - predefined - callback. Within PyVCP, this is really the only
type of event handling supported - doing something more complex, like executing MDI commands to
call a G-code subroutine, is not supported.
Within GladeVCP, HAL pin changes are just one type of the general class of events (called signals) in
GTK+. Most widgets may originate such signals, and the Glade editor supports associating such a
signal with a Python method or function name.
If you decide to use user-defined actions, your job is to write a Python module whose class methods - or
in the simple case, just functions - can be referred to in Glade as event handlers. GladeVCP provides
a way to import your module(s) at startup and will automatically link your event handlers with the
widget signals as set in the Glade UI description.

12.3.8.2 Core Library

There are three libraries of functions that can be used to help program GladeVCP.

• Info: collects details from the INI file.

• Action: A collection of functions to change LinuxCNC states.

• Status: Reports the state of LinuxCNC. It wraps around Gstat.

Importing and instantiating the libraries:
from gladevcp.core import Info, Action

ACTION = Action()
INFO = Info()

Using the library functions:
print(INFO.MACHINE_IS_METRIC)
ACTION.SET_ERROR_MESSAGE(’Something went wrong’)

More information can be found here: GladeVCP Libraries modules. There is a sample configuration
that demonstrates using the core library with GladeVCP’s action Python widgets and with a Python
handler file. Try loading sim/axis/gladevcp/gladevcp_panel_tester.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1050 / 1322

12.3.8.3 An example: adding custom user callbacks in Python

This is just a minimal example to convey the idea - details are laid out in the rest of this section.
GladeVCP can not only manipulate or display HAL pins, you can also write regular event handlers in
Python. This could be used, among others, to execute MDI commands. Here’s how you do it:
Write a Python module like so and save as e.g. handlers.py:
nhits = 0
def on_button_press(gtkobj,data=None):

global nhits
nhits += 1
gtkobj.set_label(”hits: %d” % nhits)

In Glade, define a button or HAL button, select the Signals tab, and in the GtkButton properties select
the pressed line. Enter on_button_press there, and save the Glade file.
Then add the option -u handlers.py to the GladeVCP command line. If your event handlers are spread
over several files, just add multiple -u <pyfilename> options.
Now, pressing the button should change its label since it is set in the callback function.
What the +-u+ flag does: all Python functions in this file are collected and setup as potential callback
handlers for your Gtk widgets - they can be referenced from Glade Signals tabs. The callback handlers
are called with the particular object instance as parameter, like the GtkButton instance above, so you
can apply any GtkButton method from there.
Or do some more useful stuff, like calling an MDI command!

12.3.8.4 HAL value change events

HAL input widgets, like a LED, automatically associate their HAL pin state (on/off) with the optical
appearance of the widget (LED lit/dark).
Beyond this built-in functionality, one may associate a change callback with any HAL pin, including
those of predefined HAL widgets. This fits nicely with the event-driven structure of a typical widget
application: Every activity, be it mouse click, key, timer expired, or the change of a HAL pin’s value,
generates a callback and is handled by the same orthogonal mechanism.
For user-defined HAL pins not associated with a particular HAL widget, the signal name is value-
changed. See the Adding HAL pins section below for details.
HAL widgets come with a pre-defined signal called hal-pin-changed. See the HAL Widgets section for
details.

12.3.8.5 Programming model

The overall approach is as follows:

• Design your UI with Glade, and set signal handlers where you want actions associated with a widget.

• Write a Python module which contains callable objects (see handler models below).

• Pass your module’s path name to GladeVCP with the -u <module> option.

• GladeVCP imports the module, inspects it for signal handlers and connects them to the widget tree.

• The main event loop is run.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1051 / 1322

For simple tasks it is sufficient to define functions named after the Glade signal handlers. These will be
called when the corresponding event happens in the widget tree. Here’s a trivial example - it assumes
that the pressed signal of a Gtk Button or HAL Button is linked to a callback called on_button_press:
nhits = 0
def on_button_press(gtkobj,data=None):

global nhits
nhits += 1
gtkobj.set_label(”hits: %d” % nhits)

Add this function to a Python file and run as follows:
gladevcp -u <myhandler>.py mygui.ui

Note communication between handlers has to go through global variables, which does not scale well
and is positively un-pythonic. This is why we came up with the class-based handler model.
The idea here is: Handlers are linked to class methods. The underlying class(es) are instantiated and
inspected during GladeVCP startup and linked to the widget tree as signal handlers. So the task now
is to write:

• One or more several class definition(s) with one or several methods, in one module or split over
several modules,

• a function get_handlers in each module which will return a list of class instances to GladeVCP - their
method names will be linked to signal handlers.

Here is a minimum user-defined handler example module:
class MyCallbacks :

def on_this_signal(self,obj,data=None):
print(”this_signal happened, obj=”,obj)

def get_handlers(halcomp,builder,useropts):
return [MyCallbacks ()]

Now, on_this_signal will be available as signal handler to your widget tree.
For GladeVCP panel which respond to HAL inputs it may be important that the handler code can tell
that the GladeVCP panel is currently active and displayed. For example a panel inside the Touchy
interface might well need to perform an action when the switch connected to touchy.cycle-start is
operated (in the same way that the native tabs respond differently to the same button).
To make this possible, a signal is sent from the GUI (at the time of writing, only Touchy) to the em-
bedded tab. The signal is of type ”Gladevcp” and the two messages sent are ”Visible” and ”Hidden”.
(Note that the signals have a fixed length of 20 characters so only the first characters should be used
in any comparison, hence the [:7] below.) A sample handler for these signals is:

This catches our messages from another program
def event(self,w,event):

print(event.message_type,event.data)
if event.message_type == ’Gladevcp’:

if event.data[:7] == ’Visible’:
self.active = True

else:
self.active = False

connect to client-events from the host GUI
def on_map_event(self, widget, data=None):

top = widget.get_toplevel()
print(”map event”)
top.connect(’client-event’, self.event)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1052 / 1322

If during module inspection GladeVCP finds a function get_handlers, it calls it as follows:
get_handlers(halcomp,builder,useropts)

The arguments are:

• halcomp - refers to the HAL component under construction,

• builder - widget tree - result of reading the UI definition (either referring to a GtkBuilder or
libglade-type object),

• useropts - a list of strings collected from the GladeVCP command line -U <useropts> option.

GladeVCP then inspects the list of class instances and retrieves their method names. Qualifying
method names are connected to the widget tree as signal handlers. Only method names which do
not begin with an _ (underscore) are considered.
Note that regardless whether you’re using the libglade or the new GtkBuilder format for your Glade
UI, widgets can always be referred to as builder.get_object(<widgetname>). Also, the complete
list of widgets is available as builder.get_objects() regardless of UI format.

12.3.8.6 Initialization sequence

It is important to know in which state of affairs your get_handlers() function is called so you know
what is safe to do there and what not. First, modules are imported and initialized in command line
order. After successful import, get_handlers() is called in the following state:

• The widget tree is created, but not yet realized (no toplevel window.show() has been executed yet).

• The halcomp HAL component is set up and all HAL widgets’ pins have already been added to it.

• It is safe to add more HAL pins because halcomp.ready() has not yet been called at this point, so
you may add your own pins, for instance in the class __init__() method.

Once all modules have been imported and method names extracted, the following steps happen:

• All qualifying method names will be connected to the widget tree with connect_signals()/signal_autoconnect()
(depending on the type of UI imported - GtkBuilder vs the old libglade format).

• The HAL component is finalized with halcomp.ready().

• If a window ID was passed as argument, the widget tree is re-parented to run in this window, and
Glade’s toplevel window1 is abandoned (see FAQ).

• If a HAL command file was passed with -H halfile, it is executed with halcmd.

• The Gtk main loop is run.

So when your handler class is initialized, all widgets are existent but not yet realized (displayed on
screen). And the HAL component isn’t ready as well, so its unsafe to access pins values in your
__init__() method.
If you want to have a callback to execute at program start after it is safe to access HAL pins, then a
connect a handler to the realize signal of the top level window1 (which might be its only real purpose).
At this point GladeVCP is done with all setup tasks, the HAL file has been run, and GladeVCP is about
to enter the Gtk main loop.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1053 / 1322

12.3.8.7 Multiple callbacks with the same name

Within a class, method names must be unique. However, it is OK to have multiple class instances
passed to GladeVCP by get_handlers() with identically named methods. When the corresponding
signal occurs, these methods will be called in definition order - module by module, and within a module,
in the order class instances are returned by get_handlers().

12.3.8.8 The GladeVCP -U <useropts> flag

Instead of extending GladeVCP for any conceivable option which could potentially be useful for a
handler class, you may use the -U <useroption> flag (repeatedly if you wish). This flag collects a list
of <useroption> strings. This list is passed to the get_handlers() function (useropts argument). Your
code is free to interpret these strings as you see fit. An possible usage would be to pass them to the
Python exec function in your get_handlers() as follows:
debug = 0
...
def get_handlers(halcomp,builder,useropts):

...
global debug # assuming there’s a global var
for cmd in useropts:

exec cmd in globals()

This way you can pass arbitrary Python statements to your module through the gladevcp -U option,
for example:
gladevcp -U debug=42 -U ”print ’debug=%d’ % debug” ...

This should set debug to 2 and confirm that your module actually did it.

12.3.8.9 Persistent variables in GladeVCP

An annoying aspect of GladeVCP in its earlier form and PyVCP is the fact that you may change values
and HAL pins through text entry, sliders, spin boxes, toggle buttons, etc., but their settings are not
saved and restored at the next run of LinuxCNC - they start at the default value as set in the panel or
widget definition.
GladeVCP has an easy-to-use mechanism to save and restore the state of HAL widgets, and program
variables (in fact any instance attribute of type int, float, bool or string).
This mechanism uses the popular INI file format to save and reload persistent attributes.
Persistence, program versions and the signature check Imagine renaming, adding or deleting
widgets in Glade: An .INI file lying around from a previous program version, or an entirely different
user interface, would be not be able to restore the state properly since variables and types might have
changed.
GladeVCP detects this situation by a signature which depends on all object names and types which
are saved and to be restored. In the case of signature mismatch, a new INI file with default settings
is generated.

12.3.8.10 Using persistent variables

If you want any of Gtk widget state, HAL widgets output pin’s values and/or class attributes of your
handler class to be retained across invocations, proceed as follows:

• Import the gladevcp.persistence module.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1054 / 1322

• Decide which instance attributes, and their default values you want to have retained, if any.

• Decide which widgets should have their state retained.

• Describe these decisions in your handler class’ __init()__ method through a nested dictionary
as follows:

def __init__(self, halcomp,builder,useropts):
self.halcomp = halcomp
self.builder = builder
self.useropts = useropts
self.defaults = {

the following names will be saved/restored as method attributes
the save/restore mechanism is strongly typed - the variables type will be derived ←↩

from the type of the
initialization value. Currently supported types are: int, float, bool, string
IniFile.vars : { ’nhits’ : 0, ’a’: 1.67, ’d’: True ,’c’ : ”a string”},
to save/restore all widget’s state which might remotely make sense, add this:
IniFile.widgets : widget_defaults(builder.get_objects())
a sensible alternative might be to retain only all HAL output widgets’ state:
IniFile.widgets: widget_defaults(select_widgets(self.builder.get_objects(), ←↩

hal_only=True,output_only = True)),
}

Then associate an INI file with this descriptor:
self.ini_filename = __name__ + ’.ini’
self.ini = IniFile(self.ini_filename,self.defaults,self.builder)
self.ini.restore_state(self)

After restore_state(), self will have attributes set if as running the following:
self.nhits = 0
self.a = 1.67
self.d = True
self.c = ”a string”

Note that types are saved and preserved on restore. This example assumes that the INI file didn’t
exist or had the default values from self.defaults.
After this incantation, you can use the following IniFile methods:

ini.save_state(obj)
Saves objs’s attributes as per IniFile.vars dictionary and the widget state as described in
IniFile.widgets in self.defaults.

ini.create_default_ini()
Create an INI file with default values.

ini.restore_state(obj)
Restore HAL out pins and obj’s attributes as saved/initialized to default as above.

12.3.8.11 Saving the state on GladeVCP shutdown

To save the widget and/or variable state on exit, proceed as follows:

• Select some interior widget (type is not important, for instance a table).

• In the Signals tab, select GtkObject. It should show a destroy signal in the first column.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1055 / 1322

• Add the handler name, e.g. on_destroy, to the second column.

• Add a Python handler like below:

import gtk
...
def on_destroy(self,obj,data=None):

self.ini.save_state(self)

This will save state and shutdown GladeVCP properly, regardless whether the panel is embedded in
AXIS, or a standalone window.

Caution
Do not use window1 (the toplevel window) to connect a destroy event. Due to the way a
GladeVCP panel interacts with AXIS, if a panel is embedded within AXIS, window1 will not
receive destroy events properly. However, since on shutdown all widgets are destroyed,
anyone will do. Recommended: use a second-level widget - for instance, if you have a table
container in your panel, use that.

Next time you start the GladeVCP application, the widgets should come up in the state when the
application was closed.

Caution
The GtkWidget line has a similarly sounding destroy-event - dont use that to connect to
the on_destroy handler, it wont work - make sure you use the destroy event from the
GtkObject line.

12.3.8.12 Saving state when Ctrl-C is pressed

By default, the reaction of GladeVCP to a Ctrl-C event is to just exit - without saving state. To make
sure that this case is covered, add a handler call on_unix_signal which will be automatically be called
on Ctrl-C (actually on the SIGINT and SIGTERM signals). Example:
def on_unix_signal(self,signum,stack_frame):

print(”on_unix_signal(): signal %d received, saving state” % (signum))
self.ini.save_state(self)

12.3.8.13 Hand-editing INI (.ini) files

You can do that, but note that the values in self.defaults override your edits if there is a syntax or type
error in your edit. The error is detected, a console message will hint about that happened, and the
bad inifile will be renamed to have the .BAD suffix. Subsequent bad INI files overwrite earlier .BAD
files.

12.3.8.14 Adding HAL pins

If you need HAL pins which are not associated with a specific HAL widget, add them as follows:
import hal_glib
...
in your handler class __init__():
self.example_trigger = hal_glib.GPin(halcomp.newpin(’example-trigger’, hal.HAL_BIT, hal. ←↩

HAL_IN))

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1056 / 1322

To get a callback when this pin’s value changes, associate a value-change callback with this pin, add:
self.example_trigger.connect(’value-changed’, self._on_example_trigger_change)

and define a callback method (or function, in this case leave out the self parameter):
note ’_’ - this method will not be visible to the widget tree
def _on_example_trigger_change(self,pin,userdata=None):

print(”pin value changed to:” % (pin.get()))

12.3.8.15 Adding timers

Since GladeVCP uses Gtk widgets which rely on the PyGObject base class, the full GLib functionally
is available. Here is an example for a timer callback:
def _on_timer_tick(self,userdata=None):

...
return True # to restart the timer; return False for on-shot

...
demonstrate a slow background timer - granularity is one second
for a faster timer (granularity 100 ms), use this:
GLib.timeout_add(100, self._on_timer_tick,userdata) # 10Hz
GLib.timeout_add_seconds(1, self._on_timer_tick)

12.3.8.16 Setting HAL widget properties programmatically

With Glade, widget properties are typically set fixed while editing. You can, however, set widget
properties at runtime, for instance from INI file values, which would typically be done in the handler
initialization code. Setting properties from HAL pin values is possible, too.
In the following example (assuming a HAL Meter widget called meter), the meter’s min value is set
from an INI file parameter at startup, and the max value is set via a HAL pin, which causes the widget’s
scale to readjust dynamically:
import linuxcnc
import os
import hal
import hal_glib

class HandlerClass:

def _on_max_value_change(self,hal_pin,data=None):
self.meter.max = float(hal_pin.get())
self.meter.queue_draw() # force a widget redraw

def __init__(self, halcomp,builder,useropts):
self.builder = builder

HAL pin with change callback.
When the pin’s value changes the callback is executed.
self.max_value = hal_glib.GPin(halcomp.newpin(’max-value’, hal.HAL_FLOAT, hal. ←↩

HAL_IN))
self.max_value.connect(’value-changed’, self._on_max_value_change)

inifile = linuxcnc.ini(os.getenv(”INI_FILE_NAME”))
mmin = float(inifile.find(”METER”, ”MIN”) or 0.0)
self.meter = self.builder.get_object(’meter’)
self.meter.min = mmin

https://pygobject.readthedocs.io/en/latest/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1057 / 1322

def get_handlers(halcomp,builder,useropts):
return [HandlerClass(halcomp,builder,useropts)]

12.3.8.17 Value-changed callback with hal_glib

GladeVCP uses the hal_glib library, which can be used to connect a ”watcher” signal on a HAL input
pin.
This signal can be used to register a function to call when the HAL pin changes state.

One must import the hal_glib and the hal modules:
import hal_glib
import hal

Then make a pin and connect a value-changed (the watcher) signal to a function call:
class HandlerClass:

def __init__(self, halcomp,builder,useropts):
self.example_trigger = hal_glib.GPin(halcomp.newpin(’example-trigger’, hal.HAL_BIT, ←↩

hal.HAL_IN))
self.example_trigger.connect(’value-changed’, self._on_example_trigger_change)

And have a function to be called:
def _on_example_trigger_change(self,pin,userdata=None):

print(”pin value changed to: {}”.format(pin.get()))
print(”pin name= {}”.format(pin.get_name()))
print(”pin type= {}”.format(pin.get_type()))

this can be called outside the function
self.example_trigger.get()

12.3.8.18 Examples, and rolling your own GladeVCP application

Visit linuxcnc_root_directory/configs/apps/gladevcp for running examples and starters for your
own projects.

12.3.9 FAQ

1. I get an unexpected unmap event in my handler function right after startup. What’s this?
This is a consequence of your Glade UI file having the window1 Visible property set to True,
together with re-parenting the GladeVCP window into AXIS or touchy. The GladeVCP widget
tree is created, including a top level window, and then reparented into AXIS, leaving that toplevel
window laying around orphaned. To avoid having this useless empty window hanging around, it
is unmapped (made invisible), which is the cause of the unmap signal you get. Suggested fix: set
window1.visible to False, and ignore an initial unmap event.

2. My GladeVCP program starts, but no window appears where I expect it to be?
The window AXIS allocates for GladeVCP will obtain the natural size of all its child widgets
combined. It is the child widget’s job to request a size (width and/or height). However, not all
widgets do request a width greater than 0, for instance the Graph widget in its current form. If
there’s such a widget in your Glade file and it is the one which defines the layout you might want

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1058 / 1322

to set its width explicitly. Note that setting the window1 width and height properties in Glade
does not make sense because this window will be orphaned during re-parenting and hence its
geometry will have no impact on layout (see above). The general rule is: if you manually run a UI
file with gladevcp <uifile> and its window has reasonable geometry, it should come up in AXIS
properly as well.

3. I want a blinking LED, but it wont blink
I ticked the checkbutton to let it blink with 100 msec interval. It wont blink, and I get a startup
warning: Warning: value ”0” of type ‘gint’ is invalid or out of range for property ‘led-blink-rate’
of type ‘gint’? This seems to be a Glade bug. Just type over the blink rate field, and save again -
this works for me.

4. MyGladeVCP panel in AXIS doesn’t save state when I close AXIS, although I defined an on_destroy
handler linked to the window destroy signal
Very likely this handler is linked to window1, which due to reparenting isn’t usable for this pur-
pose. Please link the on_destroy handler to the destroy signal of an interior window. For instance,
I have a notebook inside window1, and linked on_destroy to the notebooks destroy signal, and
that works fine. It doesn’t work for window1.

5. I want to set the background color or text of a HAL_Label widget depending on its HAL pin value
See the example in configs/apps/gladevcp/colored-label. Setting the background color of a Gtk-
Label widget (and HAL_Label is derived from GtkLabel) is a bit tricky. The GtkLabel widget has
no window object of its own for performance reasons, and only window objects can have a back-
ground color. The solution is to enclose the Label in an EventBox container, which has a window
but is otherwise invisible - see the coloredlabel.ui file.

I defined a hal_spinbutton widget in Glade, and set a default value property in the corresponding adjustment. It comes up with zero?

This is due to a bug in the old Gtk version distributed with Ubuntu 8.04 and 10.04, and is likely
to be the case for all widgets using adjustment. The workaround mentioned for instance in
http://osdir.com/ml/gtk-app-devel-list/2010-04/msg00129.html does not reliably set the HAL pin
value, it is better to set it explicitly in an on_realize signal handler during widget creation. See
the example in configs/apps/gladevcp/by-widget/spinbutton.{ui,py}.

12.3.10 Troubleshooting

• Make sure you have the development version of LinuxCNC installed. You don’t need the axisrc file
any more, this was mentioned in the old GladeVCP wiki page.

• Run GladeVCP or AXIS from a terminal window. If you get Python errors, check whether there’s still
a /usr/lib/python2.6/dist-packages/hal.so file lying around besides the newer /usr/lib/python2.6/dist-packages/_hal.so
(note the underscore); if yes, remove the hal.so file. It has been superseded by hal.py in the same
directory and confuses the import mechanism.

• If you’re using run-in-place, do a make clean to remove any accidentally left over hal.so file, then
make.

• If you’re using HAL_table or HAL_HBox widgets, be aware they have an HAL pin associated with it
which is off by default. This pin controls whether these container’s children are active or not.

12.3.11 Implementation note: Key handling in AXIS

We believe key handling works OK, but since it is new code, we’re telling about it you so you can
watch out for problems; please let us know of errors or odd behavior. This is the story:

http://osdir.com/ml/gtk-app-devel-list/2010-04/msg00129.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1059 / 1322

AXIS uses the TkInter widget set. GladeVCP applications use Gtk widgets and run in a separate
process context. They are hooked into AXIS with the Xembed protocol. This allows a child application
like GladeVCP to properly fit in a parent’s window, and - in theory - have integrated event handling.
However, this assumes that both parent and child application properly support the Xembed protocol,
which Gtk does, but TkInter does not. A consequence of this is that certain keys would not be for-
warded from a GladeVCP panel to AXIS properly under all circumstances. One of these situations
was the case when an Entry, or SpinButton widget had focus: In this case, for instance an Escape key
would not have been forwarded to AXIS and cause an abort as it should, with potentially disastrous
consequences.
Therefore, key events in GladeVCP are explicitly handled, and selectively forwarded to AXIS, to assure
that such situations cannot arise. For details, see the keyboard_forward() function in lib/python/gladevcp/xembed.py.

12.3.12 Adding Custom Widgets

The LinuxCNC Wiki has information on adding custom widgets to GladeVCP. GladeVCP Custom Wid-
gets

12.3.13 Auxiliary GladeVCP Applications

Support is provided for independently installed GladeVCP applications that conform to system direc-
tory placements as defined by the LINUXCNC_AUX_GLADEVCP and LINUXCNC_AUX_EXAMPLES
items reported by the script linuxcnc_var:
$ linuxcnc_var LINUXCNC_AUX_GLADEVCP
/usr/share/linuxcnc/aux_gladevcp
$ linuxcnc_var LINUXCNC_AUX_EXAMPLES
/usr/share/linuxcnc/aux_examples

The system directory defined by LINUXCNC_AUX_GLADEVCP (/usr/share/linuxcnc/aux_gladevcp) spec-
ifies the location for a GladeVCP-compatible Python file(s) and related subdirectories. The Python file
is imported at GladeVCP startup and made available to subsequent GladeVCP applications including
embedded usage in supporting GUIs.
The system directory defined by LINUXCNC_AUX_EXAMPLES (/usr/share/linuxcnc/aux_examples) spec-
ifies the location of example configuration subdirectories used for auxiliary applications. See the
getting-started/running-linuxcnc section for Adding Configuration Selection Items.
For testing, a runtime specification of auxiliary applications may be specified using the exported envi-
ronmental variable: GLADEVCP_EXTRAS. This variable should be a path list of one or more configu-
ration directories separated by a (:). Typically, this variable would be set in a shell starting linuxcnc
or in a user’s ~/.profile startup script. Example:
export GLADEVCP_EXTRAS=~/mygladevcp:/opt/othergladevcp

Files found in directories specified with the environmental variable GLADEVCP_EXTRAS supersede
identically-named files within subdirectories of the system directory specified by LINUXNC_AUX_GLADEVCP
(e.g., /usr/share/linuxcnc/aux_gladevcp). This provision allows a developer to test an application by
exporting GLADEVCP_EXTRAS to specify a private application directory without removing a system-
installed application directory. Messages indicating rejected duplicates are printed to stdout.

Note
Support for auxiliary GladeVCP applications requires a Python module named importlib. This module
may not be available in older installations like Ubuntu-Lucid.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?GladeVCP_Custom_Widgets
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?GladeVCP_Custom_Widgets

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1060 / 1322

12.4 GladeVCP Library modules

Libraries are prebuilt Python modules that give added features to GladeVCP. In this way you can select
what features you want - yet don’t have to build common ones yourself.

12.4.1 Info

Info is a library to collect and filters data from the INI file.
The available data and defaults:
LINUXCNC_IS_RUNNING
LINUXCNC_VERSION
INIPATH
INI = linuxcnc.ini(INIPATH)
MDI_HISTORY_PATH = ’~/.axis_mdi_history’
QTVCP_LOG_HISTORY_PATH = ’~/qtvcp.log’
MACHINE_LOG_HISTORY_PATH = ’~/.machine_log_history’
PREFERENCE_PATH = ’~/.Preferences’
SUB_PATH = None
SUB_PATH_LIST = []
self.MACRO_PATH = None
MACRO_PATH_LIST = []
INI_MACROS = self.INI.findall(”DISPLAY”, ”MACRO”)

IMAGE_PATH = IMAGEDIR
LIB_PATH = os.path.join(HOME, ”share”,”qtvcp”)

PROGRAM_FILTERS = None
PARAMETER_FILE = None
MACHINE_IS_LATHE = False
MACHINE_IS_METRIC = False
MACHINE_UNIT_CONVERSION = 1
MACHINE_UNIT_CONVERSION_9 = [1]*9
TRAJ_COORDINATES =
JOINT_COUNT = int(self.INI.find(”KINS”,”JOINTS”)or 0)
AVAILABLE_AXES = [’X’,’Y’,’Z’]
AVAILABLE_JOINTS = [0,1,2]
GET_NAME_FROM_JOINT = {0:’X’,1:’Y’,2:’Z’}
GET_JOG_FROM_NAME = {’X’:0,’Y’:1,’Z’:2}
NO_HOME_REQUIRED = False
HOME_ALL_FLAG
JOINT_TYPE = self.INI.find(section, ”TYPE”) or ”LINEAR”
JOINT_SEQUENCE_LIST
JOINT_SYNC_LIST

JOG_INCREMENTS = None
ANGULAR_INCREMENTS = None
GRID_INCREMENTS

DEFAULT_LINEAR_JOG_VEL = 15 units per minute
MIN_LINEAR_JOG_VEL = 60 units per minute
MAX_LINEAR_JOG_VEL = 300 units per minute

DEFAULT_ANGULAR_JOG_VEL =
MIN_ANGULAR_JOG_VEL =
MAX_ANGULAR_JOG_VEL =

MAX_FEED_OVERRIDE =
MAX_TRAJ_VELOCITY =

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1061 / 1322

AVAILABLE_SPINDLES = int(self.INI.find(”TRAJ”, ”SPINDLES”) or 1)
DEFAULT_SPINDLE_0_SPEED = 200
MAX_SPINDLE_0_SPEED = 2500
MAX_SPINDLE_0_OVERRIDE = 100
MIN_SPINDLE_0_OVERRIDE = 50

MAX_FEED_OVERRIDE = 1.5
MAX_TRAJ_VELOCITY

user message dialog info
USRMESS_BOLDTEXT = self.INI.findall(”DISPLAY”, ”MESSAGE_BOLDTEXT”)
USRMESS_TEXT = self.INI.findall(”DISPLAY”, ”MESSAGE_TEXT”)
USRMESS_TYPE = self.INI.findall(”DISPLAY”, ”MESSAGE_TYPE”)
USRMESS_PINNAME = self.INI.findall(”DISPLAY”, ”MESSAGE_PINNAME”)
USRMESS_DETAILS = self.INI.findall(”DISPLAY”, ”MESSAGE_DETAILS”)
USRMESS_ICON = self.INI.findall(”DISPLAY”, ”MESSAGE_ICON”)
ZIPPED_USRMESS =

self.GLADEVCP = (self.INI.find(”DISPLAY”, ”GLADEVCP”)) or None

embedded program info
TAB_NAMES = (self.INI.findall(”DISPLAY”, ”EMBED_TAB_NAME”)) or None
TAB_LOCATION = (self.INI.findall(”DISPLAY”, ”EMBED_TAB_LOCATION”)) or []
TAB_CMD = (self.INI.findall(”DISPLAY”, ”EMBED_TAB_COMMAND”)) or None
ZIPPED_TABS =

MDI_COMMAND_LIST = (heading: [MDI_COMMAND_LIST], title: MDI_COMMAND”)
TOOL_FILE_PATH = (heading: [EMCIO], title:TOOL_TABLE)
POSTGUI_HALFILE_PATH = (heading: [HAL], title: POSTGUI_HALFILE)

There are some helper functions - mostly used for widget support
get_error_safe_setting(self, heading, detail, default=None)
convert_metric_to_machine(data)
convert_imperial_to_machine(data)
convert_9_metric_to_machine(data)
convert_9_imperial_to_machine(data)
convert_units(data)
convert_units_9(data)
get_filter_program(fname)

To import this modules add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from gladevcp.core import Info

To instantiate the module so you can use it in a handler file add this Python code to your instantiate
section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

INFO = Info()

To access INFO data use this general syntax:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1062 / 1322

home_state = INFO.NO_HOME_REQUIRED
if INFO.MACHINE_IS_METRIC is True:

print(’Metric based’)

12.4.2 Action

This library is used to command LinuxCNC’s motion controller. It tries to hide incidental details and
add convenience methods for developers.
To import this modules add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from gladevcp.core import Action

To instantiate the module so you can use it add this Python code to your instantiate section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

ACTION = Action()

To access Action commands use general syntax such as these:
ACTION.SET_ESTOP_STATE(state)
ACTION.SET_MACHINE_STATE(state)

ACTION.SET_MACHINE_HOMING(joint)
ACTION.SET_MACHINE_UNHOMED(joint)

ACTION.SET_LIMITS_OVERRIDE()

ACTION.SET_MDI_MODE()
ACTION.SET_MANUAL_MODE()
ACTION.SET_AUTO_MODE()

ACTION.SET_LIMITS_OVERRIDE()

ACTION.CALL_MDI(code)
ACTION.CALL_MDI_WAIT(code)
ACTION.CALL_INI_MDI(number)

ACTION.CALL_OWORD()

ACTION.OPEN_PROGRAM(filename)
ACTION.SAVE_PROGRAM(text_source, fname):

ACTION.SET_AXIS_ORIGIN(axis,value)
ACTION.SET_TOOL_OFFSET(axis,value,fixture = False)

ACTION.RUN()
ACTION.ABORT()
ACTION.PAUSE()

ACTION.SET_MAX_VELOCITY_RATE(rate)
ACTION.SET_RAPID_RATE(rate)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1063 / 1322

ACTION.SET_FEED_RATE(rate)
ACTION.SET_SPINDLE_RATE(rate)

ACTION.SET_JOG_RATE(rate)
ACTION.SET_JOG_INCR(incr)
ACTION.SET_JOG_RATE_ANGULAR(rate)
ACTION.SET_JOG_INCR_ANGULAR(incr, text)

ACTION.SET_SPINDLE_ROTATION(direction = 1, rpm = 100, number = 0)
ACTION.SET_SPINDLE_FASTER(number = 0)
ACTION.SET_SPINDLE_SLOWER(number = 0)
ACTION.SET_SPINDLE_STOP(number = 0)

ACTION.SET_USER_SYSTEM(system)

ACTION.ZERO_G92_OFFSET()
ACTION.ZERO_ROTATIONAL_OFFSET()
ACTION.ZERO_G5X_OFFSET(num)

ACTION.RECORD_CURRENT_MODE()
ACTION.RESTORE_RECORDED_MODE()

ACTION.SET_SELECTED_AXIS(jointnum)

ACTION.DO_JOG(jointnum, direction)
ACTION.JOG(jointnum, direction, rate, distance=0)

ACTION.TOGGLE_FLOOD()
ACTION.SET_FLOOD_ON()
ACTION.SET_FLOOD_OFF()

ACTION.TOGGLE_MIST()
ACTION.SET_MIST_ON()
ACTION.SET_MIST_OFF()

ACTION.RELOAD_TOOLTABLE()
ACTION.UPDATE_VAR_FILE()

ACTION.TOGGLE_OPTIONAL_STOP()
ACTION.SET_OPTIONAL_STOP_ON()
ACTION.SET_OPTIONAL_STOP_OFF()

ACTION.TOGGLE_BLOCK_DELETE()
ACTION.SET_BLOCK_DELETE_ON()
ACTION.SET_BLOCK_DELETE_OFF()

ACTION.RELOAD_DISPLAY()
ACTION.SET_GRAPHICS_VIEW(view)

ACTION.UPDATE_MACHINE_LOG(text, option=None):

ACTION.SET_DISPLAY_MESSAGE(string)
ACTION.SET_ERROR_MESSAGE(string)

There are some helper functions - mostly used for this library’s support
get_jog_info (num)
jnum_check(num)
ensure_mode(modes)
open_filter_program(filename, filter)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1064 / 1322

12.5 QtVCP

QtVCP is an infrastructure to build custom CNC screens or control panels for LinuxCNC.
It displays a .ui file built with Qt Designer screen editor and combines this with Python programming
to create a GUI screen for running a CNC machine.
QtVCP is completely customizable: you can add different buttons and status LEDs etc., or add Python
code for even finer grain customization.

12.5.1 Showcase

Few examples of QtVCP built screens and virtual control panels:

Figure 12.55: QtDragon - 3/4-Axis Sample

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1065 / 1322

Figure 12.56: QtDefault - 3-Axis Sample

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1066 / 1322

Figure 12.57: QtAxis - Self Adjusting Axis Sample

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1067 / 1322

Figure 12.58: Blender - 4-Axis Sample

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1068 / 1322

Figure 12.59: X1mill - 4-Axis Sample

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1069 / 1322

Figure 12.60: cam_align - Camera Alignment VCP

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1070 / 1322

Figure 12.61: test_panel - Test Panel VCP

12.5.2 Overview

Two files are used, individually or in combination, to add customizations:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1071 / 1322

• A UI file that is a XML file made with Qt Designer graphical editor.

• A handler file which is a Python code text file.

Normally QtVCP uses the stock UI and handler file, but you can specify QtVCP to use local UI and
handler files.
A local file is one that is in the configuration folder that defines the rest of the machine’s requirements.
One is not restricted to adding a custom panel on the right or a custom tab as QtVCP leverages Qt
Designer (the editor) and PyQt5 (the widget toolkit).
QtVCP has some added special LinuxCNC widgets and actions.
There are special widgets to bridge third party widgets to HAL pins.
It’s possible to create widget responses by connecting signals to Python code in the handler file.

12.5.2.1 QtVCP Widgets

QtVCP uses the PyQt5 toolkit’s widgets for LinuxCNC integration.
Widget is the general name for user interface objects such as buttons and labels in PyQt5.
You are free to use any available default widgets in the Qt Designer editor.
There are also special widgets made for LinuxCNC that make integration easier.
These are split in three heading on the left side of the editor:

• One is for HAL only widgets;

• One is for CNC control widgets;

• One is for Dialog widgets.

You are free to mix them in any way on your panel.
A very important widget for CNC control is the ScreenOptions widget: It does not add anything
visually to the screen but, allows important details to be selected rather then be coded in the handler
file.

12.5.2.2 INI Settings

If you are using QtVCP to make a CNC motion control screen (rather then a HAL based panel), in the
INI file, in the [DISPLAY] section, add a line with the following pattern:
DISPLAY = qtvcp <options> <screen_name>

Note
All <options> must appear before <screen_name>.

Options

• -d Debugging on.

• -i Enable info output.

• -v Enable verbose debug output.

• -q Enable only error debug output.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1072 / 1322

• -a Set window always on top.

• -c NAME HAL component name. Default is to use the UI file name.

• -g GEOMETRY Set geometry WIDTHxHEIGHT+XOFFSET+YOFFSET. Values are in pixel units, XOFF-
SET/YOFFSET is referenced from top left of screen. Use -g WIDTHxHEIGHT for just setting size or
-g +XOFFSET+YOFFSET for just position. Example: -g 200x400+0+100

• -H FILE Execute hal statements from FILE with halcmd after the component is set up and ready.

• -m Maximize window.

• -f Fullscreen the window.

• -t THEME Default is system theme

• -x XID Embed into a X11 window that doesn’t support embedding.

• --push_xid Send QtVCP’s X11 window id number to standard output; for embedding.

• -u USERMOD File path of a substitute handler file.

• -o USEROPTS Pass a string to QtVCP’s handler file under self.w.USEROPTIONS_ list variable. Can
be multiple -o.

<screen_name> <screen_name> is the base name of the .ui and _handler.py files. If <screen_name>
is missing, the default screen will be loaded.
QtVCP assumes the UI file and the handler file use the same base name. QtVCP will first search
the LinuxCNC configuration directory that was launched for the files, then in the system skin folder
holding standard screens.
Cycle Times
[DISPLAY]
CYCLE_TIME = 100
GRAPHICS_CYCLE_TIME = 100
HALPIN_CYCLE = 100

Adjusts the response rate of the GUI updates in milliseconds. Defaults to 100, useable range 50 - 200.
The widgets, graphics and HAL pin update can be set separately.
If the update time is not set right the screen can become unresponsive or very jerky.

12.5.2.3 Qt Designer UI File

A Qt Designer file is a text file organized in the XML standard that describes the layout and widgets
of the screen.
PyQt5 uses this file to build the display and react to those widgets.
The Qt Designer editor makes it relatively easy to build and edit this file.

12.5.2.4 Handler Files

A handler file is a file containing Python code, which adds to QtVCP default routines.
A handler file allows one to modify defaults, or add logic to a QtVCP screen without having to modify
QtVCP’s core code. In this way you can have custom behaviors.
If present a handler file will be loaded. Only one file is allowed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1073 / 1322

12.5.2.5 Libraries Modules

QtVCP, as built, does little more than display the screen and react to widgets. For more prebuilt
behaviors there are available libraries (found in lib/python/qtvcp/lib in RIP LinuxCNC install).
Libraries are prebuilt Python modules that add features to QtVCP. In this way you can select what
features you want - yet don’t have to build common ones yourself.
Such libraries include:

• audio_player

• aux_program_loader

• keybindings

• message

• preferences

• notify

• virtual_keyboard

• machine_log

12.5.2.6 Themes

Themes are a way to modify the look and feel of the widgets on the screen.
For instance the color or size of buttons and sliders can be changed using themes.
The Windows theme is default for screens.
The System theme is default for panels.
To see available themes, they can be loaded by running the following command in a terminal:
qtvcp -d -t <theme_name>

QtVCP can also be customized with Qt stylesheets (QSS) using CSS.

12.5.2.7 Local Files

If present, local UI/QSS/Python files in the configuration folder will be loaded instead of the stock UI
files.
Local UI/QSS/Python files allow you to use your customized designs rather than the default screens.
QtVCP will look for a folder named <screen_name> (in the launched configuration folder that holds
the INI file).
In that folder, QtVCP will load any of the available following files:

• <screen_name>.ui,

• <screen_name>_handler.py, and

• <screen_name>.qss.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1074 / 1322

12.5.2.8 Modifying Stock Screens

There are three ways to customize a screen/panel.
Stylesheets can be used to set Qt properties. If a widget uses properties then they usually can be
modified by stylesheets.
Example of a widget with accompanying style sheet settings.
State_LED #name_of_led{
qproperty-color: red;
qproperty-diameter: 20;
qproperty-flashRate: 150;
}

We can have QtVCP load a subclassed version of the standard handler file. In that file we can manip-
ulate the original functions or add new ones.
Subclassing just means our handler file first loads the original handler file and adds our new code on
top of it - effectively a patch of changes.
This is useful for changing/adding behaviour while still retaining standard handler updates from Lin-
uxCNC repositories.
You may still need to use the handler copy dialog to copy the original handler file to decide how to
patch it. See custom handler file.
There should be a folder in the config folder; for screens: named<CONFIG FOLDER>/qtvcp/screens/<SCREEN
NAME>/
add the handle patch file there, named like so <ORIGINAL SCREEN NAME>_handler.py,
e.g., for QtDragon the file would be called qtdragon_handler.py.
Here is a sample to add X axis jog pins to a screen like QtDragon:
import sys
import importlib
from qtvcp.core import Path, Qhal, Action
PATH = Path()
QHAL = Qhal()
ACTION = Action()

get reference to original handler file so we can subclass it
sys.path.insert(0, PATH.SCREENDIR)
module = ”{}.{}_handler”.format(PATH.BASEPATH,PATH.BASEPATH)
mod = importlib.import_module(module, PATH.SCREENDIR)
sys.path.remove(PATH.SCREENDIR)
HandlerClass = mod.HandlerClass

return our subclassed handler object to QtVCP
def get_handlers(halcomp, widgets, paths):

return [UserHandlerClass(halcomp, widgets, paths)]

sub class HandlerClass which was imported above
class UserHandlerClass(HandlerClass):

add a terminal message so we know this got loaded
print(’\nCustom subclassed handler patch loaded.\n’)

def init_pins(self):
call original handler init_pins function
super().init_pins()

add jog pins X axis
pin = QHAL.newpin(”jog.axis.jog-x-plus”, QHAL.HAL_BIT, QHAL.HAL_IN)
pin.value_changed.connect(lambda s: self.kb_jog(s, 0, 1, fast = False, linear = ←↩

True))

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1075 / 1322

pin = QHAL.newpin(”jog.axis.jog-x-minus”, QHAL.HAL_BIT, QHAL.HAL_IN)
pin.value_changed.connect(lambda s: self.kb_jog(s, 0, -1, fast = False, linear = ←↩

True))

Another Python file can be used to add commands to the screen, after the handler file is parsed.
This can be useful for minor changes while still honouring standard handler updates from LinuxCNC
repositories.

Note
Handler patching is a better way to add changes - instance patching is black magic voodoo - this is
here for legacy reasons.

In the INI file under the [DISPLAY] heading add USER_COMMAND_FILE = _PATH_
PATH can be any valid path. It can use ~ for home directory or WORKINGFOLDER or CONFIGFOLDER to
represent QtVCP’s idea of those directories, e.g.:
[DISPLAY]
USER_COMMAND_FILE = CONFIGFOLDER/<screen_name_added_commands>

If no entry is found in the INI, QtVCP will look in the default path. The default path is in the configura-
tion directory as a hidden file using the screen basename and rc, e.g., CONFIGURATION DIRECTORY/.<screen_name>rc.
This file will be read and executed as Python code in the handler file context.
Only local functions and local attributes can be referenced.
Global libraries defined in the screen’s handler file can be referenced by importing the handler file.
These are usually seen as all capital words with no preceding self.
self references the window class functions.
self.w typically references the widgets.
What can be used can vary by screen and development cycle.
A simple example Reference the main window to change the title (won’t show if using INI entries
for title change).
self.w.setWindowTitle(’My Title Test’)

An advanced instance patching example This could work with the QtDragon screen’s handler file.
Here we show how to add new functions and override existing ones.
Needed to instance patch.
reference: https://ruivieira.dev/python-monkey-patching-for-readability.html
import types

import the handlerfile to get reference to its libraries.
use <screenname>_handler
import qtdragon_handler as hdlr

This is actually an unbounded function with ’obj’ as a parameter.
You call this function without the usual preceding ’self.’.
This is because will will not be patching it into the original handler class instance
It will only be called from code in this file.
def test_function(obj):

print(dir(obj))

This is a new function we will added to the existing handler class instance.
Notice it calls the unbounded function with ’self’ as an parameter ’self’ is the only ←↩

global reference available.
It references the window instance.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1076 / 1322

def on_keycall_F10(self,event,state,shift,cntrl):
if state:

print (’F10’)
test_function(self)

This will be used to override an existing function in the existing handler class instance ←↩
.

Note, we also call a copy of the original function too.
This shows how to extend an existing function to do extra functions.
def on_keycall_F11(self,event,state,shift,cntrl):

if state:
self.on_keycall_F11_super(event,state,shift,cntrl)
print (’Hello’)

We are referencing the KEYBIND library that was instantiated in the original handler ←↩
class instance

by adding ’hdlr.’ to it (from the imp).
This function tells KEYBIND to call ’on_keycall_F10’ when F10 is pressed.
hdlr.KEYBIND.add_call(’Key_F10’,’on_keycall_F10’)

Here we are instance patching the original handler file to add a new function
that calls our new function (of the same name) defined in this file.
self.on_keycall_F10 = types.MethodType(on_keycall_F10, self)

Here we are defining a copy of the original ’on_keycall_F11’ function,
so we can call it later. We can use any valid, unused function name.
We need to do this before overriding the original function.
self.on_keycall_F11_super = self.on_keycall_F11

Here we are instance patching the original handler file to override an existing function
to point to our new function (of the same name) defined in this file.
self.on_keycall_F11 = types.MethodType(on_keycall_F11, self)

add a new pin to the screen:

pin callback to print the state
def new_pin_changed(data):

print(data)

Special function that gets called before the HAL component is set ready.
Here we used the function to add a bit input pin with a callback.
def after_override__(self):

try:
pin = hdlr.QHAL.newpin(”new_pin”, hdlr.QHAL.HAL_BIT, hdlr.QHAL.HAL_IN)
pin.value_changed.connect(new_pin_changed)

except Exception as e:
print(e)

Here we are instance patching the original handler file to add a new function
that calls our new function (of the same name) defined in this file.
self.after_override__ = types.MethodType(after_override__, self)

If you wish to modify a stock screen with full control, copy its UI and handler file to your configura-
tion folder.
There is a QtVCP panel to help with this:

• Open a terminal and run the following command:
qtvcp copy

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1077 / 1322

• Select the screen and destination folder in the dialog

• If you wish to name your screen differently than the builtin screen’s default name, change the
basename in the edit box.

• There should be a folder in the config folder; for screens: named<CONFIG FOLDER>/qtvcp/screens/
for panels: named <CONFIG FOLDER>/qtvcp/panels/ add the folders if they are missing and copy
your folder/files in it.

• Validate to copy all the files

• Delete the files you don’t wish to modify so that the original files will be used.

12.5.3 VCP Panels

QtVCP can be used to create control panels that interface with HAL.

12.5.3.1 Builtin Panels

There are several builtin HAL panels available.
In a terminal type qtvcp <return> to see a list:

test_panel
Collection of useful widgets for testing HAL components, including speech of LED state.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1078 / 1322

Figure 12.62: QtVCP HAL Test Builtin Panel

cam_align
A camera display widget for rotational alignment.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1079 / 1322

Figure 12.63: cam_align - Camera Alignment VCP

sim_panel
A small control panel to simulate MPG jogging controls etc.
For simulated configurations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1080 / 1322

Figure 12.64: QtVCP Sim Builtin Panel

vismach_mill_xyz
3D OpenGL view of a 3-axis milling machine.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1081 / 1322

Figure 12.65: QtVismach - 3-Axis Mill Builtin Panel

You can load these from the terminal or from a HAL file with this basic command:
loadusr qtvcp test_panel

But more typically like this:
loadusr -Wn test_panel qtvcp test_panel

In this way HAL will wait till the HAL pins are made before continuing on.

12.5.3.2 Custom Panels

You can of course make your own panel and load it.
If you made a UI file named my_panel.ui and a HAL file named my_panel.hal, you would then load
this from a terminal with:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1082 / 1322

halrun -I -f my_panel.hal

Example HAL file loading a QtVCP panel
load realtime components
loadrt threads
loadrt classicladder_rt

load non-realtime programs
loadusr classicladder
loadusr -Wn my_panel qtvcp my_panel.ui # y1
add components to thread
addf classicladder.0.refresh thread1

connect pins
net bit-input1 test_panel.checkbox_1 classicladder.0.in-00
net bit-hide test_panel.checkbox_4 classicladder.0.hide_gui

net bit-output1 test_panel.led_1 classicladder.0.out-00

net s32-in1 test_panel.doublescale_1-s classicladder.0.s32in-00

start thread
start

y1 In this case we load qtvcp using -Wn which waits for the panel to finish loading before continuing
to run the next HAL command.
This is to ensure that the panel created HAL pins are actually done in case they are used in the
rest of the file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1083 / 1322

12.5.4 Build A Simple Clean-sheet Custom Screen

Figure 12.66: QtVCP Ugly custom screen

12.5.4.1 Overview

To build a panel or screen:

• Use Qt Designer to build a design you like and save it to your configuration folder with a name of
your choice, ending with .ui

• Modify the configuration INI file to load QtVCP using your new .ui file.

• Then connect any required HAL pins in a HAL file.

12.5.4.2 Get Qt Designer To Include LinuxCNC Widgets

Install Qt Designer First you must have the Qt Designer installed.
The following commands should add it to your system, or use your package manager to do the same:
sudo apt-get install qttools5-dev-tools qttools5-dev libpython3-dev

Add qtvcp_plugin.py link to the Qt Designer Search Path Then you must add a link to the
qtvcp_plugin.py in one of the folders that Qt Designer will search into.
In a RIP version of LinuxCNC qtvcp_plugin.py will be:

’~/LINUXCNC_PROJECT_NAME/lib/python/qtvcp/plugins/qtvcp_plugin.py’

For a Package installed version it should be:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1084 / 1322

’usr/lib/python2.7/qtvcp/plugins/qtvcp_plugin.py’ or
’usr/lib/python2.7/dist-packages/qtvcp/plugins/qtvcp_plugin.py’

Make a symbolic link to the above file and move it to one of the places Qt Designer searches in.
Qt Designer searches in these two place for links (pick one):
’/usr/lib/x86_64-linux-gnu/qt5/plugins/designer/python’ or
’~/.designer/plugins/python’

You may need to create the plugins/python folder.
Start Qt Designer:

• For a RIP install:
Open a terminal, set the environment for LinuxCNC <1>, then load Qt Designer <2> with :

. scripts/rip-environment y1
designer -qt=5 y2

• For a package install:
Open a terminal and type:
designer -qt=5

If all goes right, Qt Designer will launch and you will see the selectable LinuxCNC widgets on the left
hand side.

12.5.4.3 Build The Screen .ui File

Create MainWindow Widget When Qt Designer is first started there is a ’New Form’ dialog dis-
played.
Pick ’Main Window’ and press the ’Create’ button.
A MainWindow widget is displayed.
We are going to make this window a specific non resizeable size:
Set MainWindow Minimum and Maximum Size

• Grab the corner of the window and resize to an appropriate size, say 1000x600.

• Right click on the window and click set minimum size.

• Do it again and set maximum size.

Our sample widget will now not be resizable.
Add the ScreenOptions Widget Drag and drop the ScreenOptions widget anywhere onto the main
window.
This widget doesn’t add anything visually but sets up some common options.
It’s recommended to always add this widget before any other.
Right click on the main window, not the ScreenOptions widget, and set the layout as vertical to make
the ScreenOptions fullsized.
Add Panel Content On the right hand side there is a panel with tabs for a Property editor and an
Object inspector.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1085 / 1322

On the Object inspector click on the ScreenOptions.
Then switch to the Property Editor and, under the ScreenOptions heading, toggle filedialog_option.

Drag and drop a GCodeGraphics widget and a GcodeEditor widget.
Place and resize them as you see fit leaving some room for buttons.
Add Action Buttons Add 7 action buttons on to the main window.
If you double click the button, you can add text.
Edit the button labels for Estop, Machine On, Home, Load, Run, Pause and stop.
Action buttons default to no action so we must change the properties for defined functions. You can
edit the properties:

• directly in the property editor on the right side of Qt Designer, or

• conveniently, left double clicking on the button to launch a properties dialog that allows selecting
actions while only displaying relevant data to the action.

We will describe the convenient way first:

• Right click the Machine On button and select Set Actions.

• When the dialog displays, use the combobox to navigate to MACHINE CONTROLS - Machine On.

• In this case there is no option for this action so select OK.

Now the button will turn the machine on when pressed.
And now the direct way with Qt Designer’s property editor:

• Select the Machine On button.

• Go to the Property Editor on the right side of Qt Designer.

• Scroll down until you find the ActionButton heading.

• Click the machine_on action checkbox you will see in the list of properties and values.

The button will now control machine on/off.
Do the same for all the other button with the addition of:

• With the Home button we must also change the joint_number property to -1.
This tells the controller to home all the axes rather then a specific axis.

• With the Pause button:

– Under the Indicated_PushButton heading check the indicator_option.
– Under the QAbstactButton heading check checkable.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1086 / 1322

Figure 12.67: Qt Designer: Selecting Pause Button’s Properties

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1087 / 1322

Save The .ui File We then need to save this design as tester.ui in the sim/qtvcp folder.
We are saving it as tester as that is a file name that QtVCP recognizes and will use a built in handler
file to display it.

12.5.4.4 Handler file

A handler file is required.
It allows customizations to be written in Python.
For instance, keyboard controls are usually written in the handler file.
In this example, the built in file tester_handler.py is automatically used: It does the minimum re-
quired to display the tester.ui defined screen and do basic keyboard jogging.

12.5.4.5 INI Configuration

[DISPLAY] Section If you are using QtVCP to make a CNC control screen, under the INI file [DISPLAY]
heading, set:
DISPLAY = qtvcp <screen_name>

<screen_name> is the base name of the .ui and _handler.py files.
In our example there is already a sim configuration called tester, that we will use to display our test
screen.
[HAL] Section If your screen used widgets with HAL pins, then you must connect them in a HAL
file.
QtVCP looks in the INI file, under the [HAL] heading for the entries below:

POSTGUI_HALFILE=<filename>
Typically <filename> would be +<screen_name>_postgui.hal+, but can be any legal filename.
You can have multiple POSTGUI_HALFILE lines in the INI: each will be run one after the other in
the order they appear.
These commands are executed after the screen is built, guaranteeing the widget HAL pins are
available.

POSTGUI_HALCMD=<command>
<command> would be any valid HAL command.
You can have multiple POSTGUI_HALCMD lines in the INI: each will be run one after the other in
the order they appear.
To guaranty the widget HAL pins are available, these commands are executed:

• after the screen is built,
• after all the POSTGUI_HALFILEs are run.

In our example there are no HAL pins to connect.

12.5.5 Handler File In Detail

Handler files are used to create custom controls using Python.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1088 / 1322

12.5.5.1 Overview

Here is a sample handler file.
It’s broken up in sections for ease of discussion.
############################
**** IMPORT SECTION ****
############################
import sys
import os
import linuxcnc

from PyQt5 import QtCore, QtWidgets

from qtvcp.widgets.mdi_line import MDILine as MDI_WIDGET
from qtvcp.widgets.gcode_editor import GcodeEditor as GCODE
from qtvcp.lib.keybindings import Keylookup
from qtvcp.core import Status, Action

Set up logging
from qtvcp import logger
LOG = logger.getLogger(__name__)

Set the log level for this module
#LOG.setLevel(logger.INFO) # One of DEBUG, INFO, WARNING, ERROR, CRITICAL

###
**** INSTANTIATE LIBRARIES SECTION ****
###

KEYBIND = Keylookup()
STATUS = Status()
ACTION = Action()
###################################
**** HANDLER CLASS SECTION ****
###################################

class HandlerClass:

########################
**** INITIALIZE ****
########################
widgets allows access to widgets from the QtVCP files
at this point the widgets and hal pins are not instantiated
def __init__(self, halcomp,widgets,paths):

self.hal = halcomp
self.w = widgets
self.PATHS = paths

##
SPECIAL FUNCTIONS SECTION
##

at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
This is where you make HAL pins or initialize state of widgets etc
def initialized__(self):

pass

def processed_key_event__(self,receiver,event,is_pressed,key,code,shift,cntrl):
when typing in MDI, we don’t want keybinding to call functions

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1089 / 1322

so we catch and process the events directly.
We do want ESC, F1 and F2 to call keybinding functions though
if code not in(QtCore.Qt.Key_Escape,QtCore.Qt.Key_F1 ,QtCore.Qt.Key_F2,

QtCore.Qt.Key_F3,QtCore.Qt.Key_F5,QtCore.Qt.Key_F5):

search for the top widget of whatever widget received the event
then check if it is one we want the keypress events to go to
flag = False
receiver2 = receiver
while receiver2 is not None and not flag:

if isinstance(receiver2, QtWidgets.QDialog):
flag = True
break

if isinstance(receiver2, MDI_WIDGET):
flag = True
break

if isinstance(receiver2, GCODE):
flag = True
break

receiver2 = receiver2.parent()

if flag:
if isinstance(receiver2, GCODE):

if in manual do our keybindings - otherwise
send events to G-code widget
if STATUS.is_man_mode() == False:

if is_pressed:
receiver.keyPressEvent(event)
event.accept()

return True
elif is_pressed:

receiver.keyPressEvent(event)
event.accept()
return True

else:
event.accept()
return True

if event.isAutoRepeat():return True

ok if we got here then try keybindings
try:

return KEYBIND.call(self,event,is_pressed,shift,cntrl)
except NameError as e:

LOG.debug(’Exception in KEYBINDING: {}’.format (e))
except Exception as e:

LOG.debug(’Exception in KEYBINDING:’, exc_info=e)
print(’Error in, or no function for: %s in handler file for-%s’%(KEYBIND. ←↩

convert(event),key))
return False

########################
CALLBACKS FROM STATUS
########################

#######################
CALLBACKS FROM FORM
#######################

#####################
GENERAL FUNCTIONS
#####################

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1090 / 1322

keyboard jogging from key binding calls
double the rate if fast is true
def kb_jog(self, state, joint, direction, fast = False, linear = True):

if not STATUS.is_man_mode() or not STATUS.machine_is_on():
return

if linear:
distance = STATUS.get_jog_increment()
rate = STATUS.get_jograte()/60

else:
distance = STATUS.get_jog_increment_angular()
rate = STATUS.get_jograte_angular()/60

if state:
if fast:

rate = rate * 2
ACTION.JOG(joint, direction, rate, distance)

else:
ACTION.JOG(joint, 0, 0, 0)

#####################
KEY BINDING CALLS
#####################

Machine control
def on_keycall_ESTOP(self,event,state,shift,cntrl):

if state:
ACTION.SET_ESTOP_STATE(STATUS.estop_is_clear())

def on_keycall_POWER(self,event,state,shift,cntrl):
if state:

ACTION.SET_MACHINE_STATE(not STATUS.machine_is_on())
def on_keycall_HOME(self,event,state,shift,cntrl):

if state:
if STATUS.is_all_homed():

ACTION.SET_MACHINE_UNHOMED(-1)
else:

ACTION.SET_MACHINE_HOMING(-1)
def on_keycall_ABORT(self,event,state,shift,cntrl):

if state:
if STATUS.stat.interp_state == linuxcnc.INTERP_IDLE:

self.w.close()
else:

self.cmnd.abort()

Linear Jogging
def on_keycall_XPOS(self,event,state,shift,cntrl):

self.kb_jog(state, 0, 1, shift)

def on_keycall_XNEG(self,event,state,shift,cntrl):
self.kb_jog(state, 0, -1, shift)

def on_keycall_YPOS(self,event,state,shift,cntrl):
self.kb_jog(state, 1, 1, shift)

def on_keycall_YNEG(self,event,state,shift,cntrl):
self.kb_jog(state, 1, -1, shift)

def on_keycall_ZPOS(self,event,state,shift,cntrl):
self.kb_jog(state, 2, 1, shift)

def on_keycall_ZNEG(self,event,state,shift,cntrl):
self.kb_jog(state, 2, -1, shift)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1091 / 1322

def on_keycall_APOS(self,event,state,shift,cntrl):
pass
#self.kb_jog(state, 3, 1, shift, False)

def on_keycall_ANEG(self,event,state,shift,cntrl):
pass
#self.kb_jog(state, 3, -1, shift, linear=False)

###########################
**** closing event ****
###########################

##############################
required class boiler code
##############################

def __getitem__(self, item):
return getattr(self, item)

def __setitem__(self, item, value):
return setattr(self, item, value)

################################
required handler boiler code
################################

def get_handlers(halcomp,widgets,paths):
return [HandlerClass(halcomp,widgets,paths)]

12.5.5.2 IMPORT Section

This section is for importing required library modules for your screen.
It would be typical to import QtVCP’s keybinding, Status and Action libraries.

12.5.5.3 INSTANTIATE LIBRARIES Section

By instantiating the libraries here we create global reference.
You can note this by the commands that don’t have self. in front of them.
By convention we capitalize the names of globally referenced libraries.

12.5.5.4 HANDLER CLASS Section

The custom code is placed in a class so QtVCP can utilize it.
This is the definitions of the handler class.

12.5.5.5 INITIALIZE Section

Like all Python libraries the +__init__+ function is called when the library is first instantiated.
This is where you would set up defaults, as well as reference variables and global variables.
The widget references are not available at this point.
The variables halcomp, widgets and paths give access to QtVCP’s HAL component, widgets, and path
info respectively.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1092 / 1322

12.5.5.6 SPECIAL FUNCTIONS Section

There are several special functions that QtVCP looks for in the handler file. If QtVCP finds these it
will call them, if not it will silently ignore them.

class_patch__(self):
Class patching, also known as monkey patching, allows to override function calls in an im-
ported module.
Class patching must be done before the module is instantiated, and itmodifies all instancesmade
after that.
An example might be patching button calls from the G-code editor to call functions in the handler
file instead.
Class patching function redefined here, will be called with the HandlerClass instance as self
rather than the patched class instance. This can make access to the patched class function/vari-
ables more difficult.
When class patching outside of the HandlerClass class, the function call will use the patched
class instance as self.

initialized__(self):
This function is called after the widgets and HAL pins are built.
You can manipulate the widgets and HAL pins or add more HAL pins here.
Typically there can be

• preferences checked and set,
• styles applied to widgets,
• status of LinuxCNC connected to functions.
• keybindings would be added.

pre_hal_init__(self):
This function is called before the HAL-ified widgets have their hal_init_ function called.
Some property changes need to be done before HAL_init is called on the widget.

after_override__(self):
This function is called after the optional override file is loaded but
before the optional HAL file is loaded or HAL component is set ready.

processed_key_event__(self,receiver,event,is_pressed,key,code,shift,cntrl):
This function is called to facilitate keyboard jogging, etc.
By using the keybinding library this can be used to easily add functions bound to keypresses.

keypress_event__(self,receiver, event):
This function gives raw key press events.
It takes precedence over the processed_key_event.

keyrelease_event__(receiver, event):
This function gives raw key release events.
It takes precedence over the processed_key_event.

before_loop__(self):
This function is called just before the Qt event loop is entered. At that point, all widgets/li-
braries/initialization code has completed and the screen is already displayed.

system_shutdown_request__(self):
If present, this function overrides the normal function called for total system shutdown.
It could be used to do pre-shutdown housekeeping.

The Linux system will not shutdown if using this function, you will have to do that yourself.
QtVCP/LinuxCNC will terminate without a prompt once this function returns.

closing_cleanup__(self):
This function is called just before the screen closes. It can be used to do cleanup before closing.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1093 / 1322

12.5.5.7 STATUS CALLBACKS Section

By convention this is where you would put functions that are callbacks from STATUS definitions.

12.5.5.8 CALLBACKS FROM FORM Section

By convention this is where you would put functions that are callbacks from the widgets connected
to the MainWindow in the Qt Designer editor.

12.5.5.9 GENERAL FUNCTIONS Section

By convention this is where you put your general functions.

12.5.5.10 KEY BINDING Section

If you are using the keybinding library this is where you place your custom key call routines.
The function signature is:
def on_keycall_KEY(self,event,state,shift,cntrl):

if state:
self.do_something_function()

KEY being the code (from the keybindings library) for the desired key.

12.5.5.11 CLOSING EVENT Section

Putting the closeEvent function here will catch closing events.
This replaces any predefined closeEvent function from QtVCP.
def closeEvent(self, event):

self.do_something()
event.accept()

Note
It is usually better to use the special closing_cleanup__ function.

12.5.6 Connecting Widgets to Python Code

It is possible to connect widgets to Python code using signals and slots.
In this way you can:

• Give new functions to LinuxCNC widgets, or

• Utilize standard Qt widgets to control LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1094 / 1322

12.5.6.1 Overview

In the Qt Designer editor:

• You create user function slots

• You connect the slots to widgets using signals.

In the handler file:

• You create the slot’s functions defined in Qt Designer.

12.5.6.2 Using Qt Designer to add Slots

When you have loaded your screen into Qt Designer, add a plain PushButton to the screen.
You could change the name of the button to something interesting like test_button.
There are two ways to edit connections - This is the graphical way.

• There is a button in the top tool bar of Qt Designer for editing signals. After pushing it, if you click-
and-hold on the button it will show an arrow (looks like a ground signal from electrical schematic).

• Slide this arrow to a part of the main window that does not have widgets on it.

• A Configure Connections dialog will pop up.

– The list on the left are the available signals from the widget.
– The list on the right are the available slots on the main window and you can add to it.

• Pick the signal clicked() - this makes the slots side available.

• Click Edit on the slots list.

• A Slots/Signals of MainWindow dialog will pop up.

• On the slots list at the top there is a + icon - click it.

• You can now edit a new slot name.

• Erase the default name slot() and change it to test_button().

• Press the OK button.

• You’ll be back to the Configure Connections dialog.

• Now you can select your new slot in the slot list.

• Then press OK and save the file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1095 / 1322

Figure 12.68: Qt Designer Signal/Slot Selection

12.5.6.3 Python Handler Changes

Now you must add the function to the handler file.
The function signature is def slot_name(self):.
For our example, we will add some code to print the widget name:
def test_button(self):

name = self.w.sender().text()
print(name)

Add this code under the section named:
#######################
callbacks from form
#######################

In fact it doesn’t matter where in the handler class you put the commands but by convention this is
where to put it.
Save the handler file.
Now when you load your screen and press the button it should print the name of the button in the
terminal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1096 / 1322

12.5.7 More Information

QtVCP Builtin Virtual Control Panels
QtVCP Widgets
QtVCP Libraries
Qt Vismach
QtVCP Handler File Code Snippets
QtVCP Development
QtVCP Custom Qt Designer Widgets

12.6 QtVCP Virtual Control Panels

QtVCP can be used to create control panels that interface with HAL.

12.6.1 Builtin Virtual Control Panels

There are several builtin HAL panels available.
In a terminal type qtvcp list to see a list.

12.6.1.1 copy

Used for copying QtVCP’s builtin Screens/VCP Panels/QtVismach code to a folder so one can
customize it.
In a terminal run:
qtvcp copy

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1097 / 1322

Figure 12.69: QtVCP copy Dialog - Screen, VCP Panel or QtVismach Code Copy Panel

12.6.1.2 spindle_belts

This panel is designed to display additional RS485 VFD data and also to configure a 4 sheave, 2 belt
spindle drive via a series of buttons.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1098 / 1322

In addition, it is also a useful template to use for your custom panel because it includes:

• Display of additional HAL data

• Buttons and button groups

• Dynamic changes to button enabled/disabled state based on the state of other buttons

• Saving data to the qtdragon.prefs file

• Custom button to reset the VFD

Modify this panel to suit your own requirements. Most common features are used. The advantage of
using panels is that it separates your custom display code from the qtdragon core code so upgrading
the system will not break your customization.

• A spindle drive (for instance VFDMOD)

• A custom component that scales the VFD frequency to obtain the desired spindle speed.

• A belt driven spindle that uses two belts and an intermediate idler pulley much like a drill press.

• Connect the input pins qtdragon.belts.<pin-name> in your postgui HAL file.

The belts are broken into two button groups, the front belts and the rear belts. These are numbered as
per the plate on the machine. Buttons in a group are mutually exclusive, i.e., only one can be selected
in the group.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1099 / 1322

Additionally, it’s not possible to have both belts on the same level with this kind of mechanism because
you cannot fit two belts to the one idler pulley sheave. So if a belt is selected, its opposite button is
disabled. E.g., if belt 3 is selected, belt 7 is disabled.
Add these lines to the [DISPLAY] section in your .ini file
The example tab_location is for the QtDragon screen.
EMBED_TAB_NAME=Spindle Extras
EMBED_TAB_COMMAND=qtvcp spindle_belts
EMBED_TAB_LOCATION=tabWidget_utilities

Here is how to load spindle_belt from a HAL script:
loadusr qtvcp spindle_belts

Customizing the panel:

• Copy the files located in /user/share/qtvcp/qtdragon/panels/belts to: ~/linuxcnc/configs/<my_configuration_folder>/qtvcp/panels/belts
(you can use the copy dialog panel to do this)

• Edit belts.ui with designer.

• Edit belts_handler.py with a text editor

• Connect the relevant pins in a postgui.hal file

• Make sure your postgui file is loaded by your .ini file.

For information on the finer points, consult the QtVCP and QtDragon documentation. The Python
handler file also provides a useful template for any custom panel.

12.6.1.3 test_dial

• This panel has a dial that adjusts S32 and Float HAL output pins.

• The dial’s range can be adjusted from a drop down menu.

• The output can be scaled with the spinbox.

• A combobox can be used to automatically select and connect to a signal.

loadusr qtvcp test_dial

Figure 12.70: QtVCP test_dial Panel - Test Dial VCP

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1100 / 1322

12.6.1.4 test_button

• This panel has a button that will set a HAL pin.

• The button can be selected as a momentary or a toggle button.

• A HAL pin will be created that follows the button state.

• The button’s indicator color can be adjusted from a drop down menu.

• A HAL pin or signal can be selected to follow the button state.

• You can add more buttons from the drop down menu.

• You can load a Halmeter from the drop down menu.

• You can load a test LED from the drop down menu.

• The button can be detached from the main windows.

Here is how to load test_button from a HAL script:
loadusr qtvcp test_button
loadusr qtvcp -o 4 test_button

The -o switch sets how many buttons the panel starts with.
If loading directly from a terminal omit the loadusr.

Figure 12.71: QtVCP test_button - Test Button VCP

12.6.1.5 test_led

• This panel has an LED that can selected to watch HAL bit pins/signals.

• The LED’s color can be adjusted from a drop down menu.

• The text box and state can be output as speech if sound is selected.

• A combobox can be used to automatically select and connect to a pin/signal.

• You can add more LEDs from the drop down menu.

• The LED can be detached from the main windows.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1101 / 1322

Here is how to load test_led from a HAL script:
loadusr qtvcp test_led
loadusr qtvcp -o 4 test_led

The -o switch sets how many LEDs the panel starts with.
If loading directly from a terminal omit the loadusr.

Figure 12.72: QtVCP test_dial Panel - Test LED VCP

12.6.1.6 test_panel

Collection of useful widgets for testing HAL component, including speech of LED state.
loadusr qtvcp test_panel

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1102 / 1322

Figure 12.73: QtVCP test_panel - HAL Component Testing Panel

12.6.1.7 cam_align

A camera display widget for rotational alignment.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1103 / 1322

Figure 12.74: QtVCP cam_align Panel - Camera Based Alignment Panel

Usage Add these lines to the INI file:
[DISPLAY]
EMBED_TAB_NAME = cam_align
EMBED_TAB_COMMAND = halcmd loadusr -Wn qtvcp_embed qtvcp -d -c qtvcp_embed -x {XID} ←↩

cam_align
The following line is needed if embedding in GMOCCAPY
EMBED_TAB_LOCATION = ntb_preview

Note
All <options> must appear before the cam_align panel name.

Qtvcp Options

• -c NAME HAL component name. Default is to use the UI file name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1104 / 1322

• -d Debugging on. or remove for no minimum output

• -v Verbose debugging on. You can find all available resolutions.

• -x {XID} used for embedding into AXIS or Gmoccapy

• -o <option> Options passed to cam_align. can use multiple -o entries

Cam_align Options These are the available -o option:

• size=400,400 Size of the embedded window (width,height)

• imagesize=300,300 Size of the image inside the window (width,height)

• rotincr=5 Sets the increment of the crosshair rotation. (degrees)

• xscale=100 Scales the image in X. A negative value will flip the image in X (percent)

• yscale=100 Scales the image in Y. A negative value will flip the image in Y (percent)

• camnumber=1 Sets what system camera to use

• api=V4L2 Sets the opencv backend library for the camera

• res=1280,720 Sets the requested resolution (width,height)

For instance you can add window width and height size, rotation increment, and camera number from
the INI with -o options.
EMBED_TAB_COMMAND = halcmd loadusr -Wn qtvcp_embed qtvcp -d -c qtvcp_embed -x {XID} -o size ←↩

=400,400 -o rotincr=.2 -o camnumber=0 cam_align

Mouse controls:

• left mouse single click - increase cross hair rotation one increment

• right mouse single click - decrease cross hair rotation one increment

• middle mouse single click - cycle through rotation increments

• left mouse hold and scroll - scroll camera zoom

• right mouse hold and scroll - scroll cross hair rotation angle

• mouse scroll only - scroll circle diameter

• left mouse double click - reset zoom

• right mouse double click - reset rotation

• middle mouse double click - reset circle diameter

To use the top buttons you have to assign a command (or a sub-routine). This could look like this:
[MDI_COMMAND_LIST]
MDI_COMMAND_CAM_ALIGN1=G10 L20 P1 X0 Y0,Set XY\nOrigin
MDI_COMMAND_CAM_ALIGN2=G0 X0 Y0,Go To\nOrigin

Where the first command is referring to the button ”SET origin” and the second to the button ”GOTO
Origin”.
Note the comma and text after is optional - it will override the default button text.
These buttons are QtVCP action buttons and follow those rules.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1105 / 1322

12.6.1.8 sim_panel

Small control panel to simulate MPG jogging controls etc for simulated configurations.
The MPG, selection buttons and control buttons export HAL pins to connect to linuxcnc.
The selection and control group boxes can be hidden if not needed by using the -o hide= option.
groupBoxControl and groupBoxSelection are the widget names that can be hidden.
If you want to hide both, use a comma between them with no spaces.
The -a option will make the panel always-on-top of all windows.
loadusr qtvcp sim_panel

Here we load the panel with no MPG selection buttons and the always-on-top option.
loadusr qtvcp -a -o hide=groupBoxSelection sim_panel

Figure 12.75: QtVCP sim_panel - Simulated Controls Panel For Screen Testing.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1106 / 1322

12.6.1.9 tool_dialog

Manual tool change dialog that gives tool description.
loadusr -Wn tool_dialog qtvcp -o speak_on -o audio_on tool_dialog

Options:

• -o notify_on - use desktop notify dialogs instead of QtVCP native ones.

• -o audio_on - play sound on tool change

• -o speak_on - speak announcement of tool change

Figure 12.76: QtVCP tool_dialog - Manual Tool Change Dialog

12.6.2 vismach 3D Simulation Panels

These panels are prebuilt simulation of common machine types.
These are also embed-able in other screens such as AXIS or GMOCCAPY.

12.6.2.1 QtVCP vismach_mill_xyz

3D OpenGL view of a 3-Axis milling machine.
loadusr qtvcp vismach_mill_xyz

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1107 / 1322

Figure 12.77: QtVCP vismach_mill_xyz - 3-Axis Mill 3D View Panel

12.6.2.2 QtVCP vismach_router_atc

3D OpenGL view of a 3-Axis router style, gantry bed milling machine.
This particular panel shows how to define and connect the model parts in the handler file, rather then
importing the pre-built model from QtVCP’s vismach library.
loadusr qtvcp vismach_router_atc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1108 / 1322

Figure 12.78: QtVCP vismach_router_atc - 3-Axis Gantry Bed Mill 3D View Panel

12.6.2.3 QtVCP vismach_scara

3D OpenGL view of a SCARA based milling machine.
loadusr qtvcp vismach_scara

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1109 / 1322

Figure 12.79: QtVCP vismach_scara - SCARA Mill 3D View Panel

12.6.2.4 QtVCP vismach_millturn

3D OpenGL view of a 3-Axis milling machine with an A axis/spindle.
loadusr qtvcp vismach_millturn

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1110 / 1322

Figure 12.80: QtVCP vismach_millturn - 4 Axis MillTurn 3D View Panel

12.6.2.5 QtVCP vismach_mill_5axis_gantry

3D OpenGL view of a 5-Axis gantry type milling machine.
loadusr qtvcp vismach_mill_5axis_gantry

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1111 / 1322

Figure 12.81: QtVCP vismach_mill_5axis_gantry - 5-AxIs Gantry Mill 3D View Panel

12.6.2.6 QtVCP vismach_fanuc_200f

3D openGL view of a 6 joint robotic arm.
loadusr qtvcp vismach_fanuc_200f

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1112 / 1322

Figure 12.82: QtVCP vismach_fanuc_200f - 6 Joint Robotic Arm

12.6.3 Custom Virtual Control Panels

You can of course make your own panel and load it.
If you made a UI file named my_panel.ui and a HAL file named my_panel.hal, you would then load
this from a terminal with:
halrun -I -f my_panel.hal

Example HAL file loading a QtVCP panel
load realtime components
loadrt threads
loadrt classicladder_rt

load non-realtime programs
loadusr classicladder
loadusr -Wn my_panel qtvcp my_panel.ui # y1
add components to thread
addf classicladder.0.refresh thread1

connect pins
net bit-input1 test_panel.checkbox_1 classicladder.0.in-00

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1113 / 1322

net bit-hide test_panel.checkbox_4 classicladder.0.hide_gui

net bit-output1 test_panel.led_1 classicladder.0.out-00

net s32-in1 test_panel.doublescale_1-s classicladder.0.s32in-00

start thread
start

y1 , y1 In this case we load qtvcp using -Wnwhich waits for the panel to finish loading before continuing
to run the next HAL command.
This is to ensure that the panel created HAL pins are actually done in case they are used in the
rest of the file.

12.6.4 Embedding QtVCP Virtual Control Panels into QtVCP Screens

QtVCP panels can be embedded into most QtVCP screens and avoids problems such as focus trans-
ferring that can be a problem in non-native embedding.

12.6.4.1 Embedding Commands

A typical screen such as QtDragon will search the INI file under the heading [DISPLAY] for commands
to embed a panel.
[DISPLAY]
EMBED_TAB_NAME=Embedding demo
EMBED_TAB_COMMAND=qtvcp simple_hal
EMBED_TAB_LOCATION=tabWidget_utilities

EMBED_TAB_NAME
will typically be the title of the tab.

EMBED_TAB_LOCATION
will be specific to the screen and specifies the tabWidget or stackedWidget to embed into.

EMBED_TAB_COMMAND
is the command used to invoke loading of the panel. For native embedded panels the first word
will always be qtvcp, the last will be the panel name to load. You can also pass options to the
panel with -o switches in the command line between qtvcp and the panel name. The panel will
follow the debugging mode setting of the main screen.

12.6.4.2 Location of builtin Panels

There are panels available that are included with LinuxCNC. To see a list open a terminal and type
qtvcp and press return.
You will get a help printout and a list of builtin screen and panels.
Pick any of the names from the panel list and add that to the COMMAND entry after qtvcp.
The builtin panel search path is share/qtvcp/panels/PANELNAME.
Run-In-Place and installed versions of LinuxCNC have these in different locations on the system.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1114 / 1322

12.6.4.3 Location of Custom Panels

Custom panels can be embedded too -either a modified builtin panel or a new user-built one.
When loading panels, QtVCP looks in the configuration folders path for qtvcp/panels/PANELNAME/-
PANELNAME.ui.
PANNELNAME being any valid string with no spaces. If no path is found there, then looks in the
builtin file path.
QtVCP will do the same process for the optional handler file: qtvcp/panels/PANELNAME/PANEL-
NAME_handler.py

12.6.4.4 Handler Programming Tips

In a screen handler file, the reference used for the window is self.w.
In QtVCP panels, that reference will refers to the panel’s window.
To reference the main window use self.w.MAIN. If your panel is to be able to run independently and
embedded, you must trap errors from referencing objects not available. (Note, main screen objects
are not available in an independent panel.)
E.g., this would use the panel’s preference file if there is one.
try:

belt_en = self.w.PREFS_.getpref(’Front_Belt_enabled’, 1, int, ’SPINDLE_EXTRAS’)
except:

belt_en = 1

This would use the main screen preference file if there is one.
try:

belt_en = self.w.MAIN.PREFS_.getpref(’Front_Belt_enabled’, 1, int, ’SPINDLE_EXTRAS’)
except:

belt_en = 1

12.6.4.5 Designer Widget Tips

When using Python command option in Action Button widgets of an embedded panel:

INSTANCE
refers to the panel window. E.g., INSTANCE.my_panel_handler_function_call(True)

MAIN_INSTANCE
refers to the main screen window. E.g., MAIN_INSTANCE.my_main_screen_handler_function_call(True)

If the panel is not embedded, both refer to the panel window.

12.6.4.6 Handler Patching - Subclassing Builtin Panels

We can have QtVCP load a subclassed version of the standard handler file. In that file we can manip-
ulate the original functions or add new ones.
Subclassing just means our handler file first loads the original handler file and adds our new code on
top of it - effectively a patch of changes.
This is useful for changing/adding behaviour while still retaining standard handler updates from Lin-
uxCNC repositories.
You may still need to use the handler copy dialog to copy the original handler file to decide how to
patch it.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1115 / 1322

There should be a folder in the config folder; for panel: named<CONFIG FOLDER>/qtvcp/panels/<PANEL
NAME>/
add the handle patch file there, named like so <ORIGINAL PANEL NAME>_handler.py,
i.e. for cam_align the file would be called cam_align_handler.py.
Here is a sample to change the circle color in cam_align:

import sys
import os
import importlib
from PyQt5.QtCore import Qt
from qtvcp.core import Path

PATH = Path()

get reference to original handler file so we can subclass it
sys.path.insert(0, PATH.PANELDIR)
panel = os.path.splitext(os.path.basename(os.path.basename(__file__)))[0]
base = panel.replace(’_handler’,’’)
module = ”{}.{}”.format(base,panel)
mod = importlib.import_module(module, PATH.PANELDIR)
sys.path.remove(PATH.PANELDIR)
HandlerClass = mod.HandlerClass

return our subclassed handler object to Qtvcp
def get_handlers(halcomp, widgets, paths):

return [UserHandlerClass(halcomp, widgets, paths)]

subclassed from HandlerClass which was imported above
class UserHandlerClass(HandlerClass):

print(’Custom subclassed panel handler loaded\n’)

def initialized__(self):
call original handler initialized function
super().initialized__()

add our customization
self.w.camview.circle_color = Qt.green

12.7 QtVCP Widgets

Qtscreen uses QtVCP widgets for LinuxCNC integration.
Widget is the general name for the UI objects such as buttons and labels in PyQt.
You are free to use any available default widgets in the Qt Designer editor.
There are also special widgets made for LinuxCNC that make integration easier. These are split in
two, heading on the right side of the editor:

• One is for HAL only widgets.

• The other is for CNC control widgets.

You are free to mix them in any way on your panel.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1116 / 1322

Note
This description of widget properties can easily be out of date due to further development and lack
of people to write docs (a good way to give back to the project). The definitive descriptions are found
by looking in the source code.

12.7.1 HAL Only Widgets

These widgets usually have HAL pins and don’t react to the machine controller.

12.7.1.1 CheckBox Widget

This widget allows the user to check a box to set a HAL pin true or false.
It is based on PyQt’s QCheckButton.

12.7.1.2 DetachTabWidget - Container Widget With User Detachable Panels

This container widget works just like a QTabWidget -it displays multiple panels one at a time with tabs
to select.
If you double click the tab or drag the tab, the tab will detach from the main window.
When a tab is detached, the contents are placed into a QDialog.
The tab can be re-attached by closing the dialog or by double clicking on its window frame.
It is based on PyQt’s QTabWidget.

12.7.1.3 DoubleScale - Spin Button Entry Widget

This widget is a spin button entry widget used for setting a s32 and float HAL pin.
It has an internal scale factor, set to a default of 1, that can be set programmatically or using a
QtSignal.
The setInput slot can be connected to an integer, or a float signal.

[HALLabelName].setInput(some_value)
This is a function call to change the internal scaling factor.

The HAL pins will be set to the value of the internal scale times the widget displayed value.

12.7.1.4 FocusOverlay - Focus Overlay Widget

This widget places a colored overlay over the screen, usually while a dialog is showing.

https://github.com/LinuxCNC/linuxcnc/tree/master/lib/python/qtvcp/widgets

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1117 / 1322

Figure 12.83: Focus overlay example for confirm close prompt

Used to create a focused feel and to draw attention to critical information.
It can also show a translucent image.
It can also display message text and buttons.
This widget can be controlled with STATUS messages.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1118 / 1322

12.7.1.5 Gauge - Round Dial Gauge Widget

Figure 12.84: QtVCP Gauge: Round Dial Gauge Widget

Round Gauge can be used in a LinuxCNC GUI to display an input parameter on the dial face.
Customizable Parameters There are several properties that are user settable in order to customize
the appearance of the gauge.
The following parameters can be set either programmatically or via the Qt Designer property editor.

halpin_option
Setting this to True will create 2 HAL pins:

• One is for setting the value input
• The other is for setting the setpoint.

If this option is not set, then value and setpoint must be connected programmatically, i.e., in
the handler file.

max_reading
This value determines the highest number displayed on the gauge face.

max_value
This is the maximum expected value of the value input signal.
In other words, it is the full scale input.

num_ticks
This is the number of ticks/gauge readings on the gauge face.
It should be set to a number that ensures the text readings around the gauge face are readable.
The minimum allowed value is 2.

zone1_color
Zone1 extends from the maximum reading to the threshold point.
It can be set to any RGB color.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1119 / 1322

zone2_color
Zone2 extends from the threshold point to the minimum reading, which is 0.
It can be set to any RGB color.

bezel_color
This is the color of the outer ring of the gauge.

bezel_width
This is the width of the outer ring of the gauge.

threshold
The threshold is the transition point between the zones.
It should be set to a value between 0 and the maximum value.
The maximum allowed value is set to the gauge’s max_value and minimum value is 0.

gauge_label
This is the text below the value readout, near the bottom of the gauge.
The function of the gauge is then easily visible.

base_color
The color of the gauge.

base_gradient_color
The highlight color of the gauge.

center_color
The color of the center of the gauge.

center_gradient_color
The highlight color of the center of the gauge.

Non Customizable Parameters There are 2 inputs that are not customizable. They can be set via
HAL pins, programmatically or via signals from other widgets:

value
This is the actual input value that will be displayed with the gauge needle and in the digital
readout.
It must be set to a value between 0 and max_value maximum value.

setpoint
This is a value that determines the location of a small marker on the gauge face. It must be set
to a value between 0 and the maximum value.

12.7.1.6 GeneralHALInput - General Signals/Slots Input Connection Widget

This widget is used to connect an arbitrary Qt widget to HAL using signals/slots.
It is used for widgets that should respond to HAL pin changes.

12.7.1.7 GeneralHALOutput - General Signals/Slots Output Connection Widget

This widget is used to connect an arbitrary Qt widget to HAL using signals/slots.
It is used for widgets that should control HAL pins.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1120 / 1322

12.7.1.8 GridLayout - Grid Layout Widget

This widget controls if the widgets inside it are enabled or disabled.
Disabled widgets typically have a different color and do not respond to actions.
It is based on PyQt’s QGridLayout.

12.7.1.9 HalBar - HAL Bar Level Indicator

Figure 12.85: QtVCP HalBar: Panel demonstrating the HAL Bar Level Indicator

This widget is used to indicate level or value, usually of a HAL s32/float pin.
You can also disable the HAL pin and use Qt signals or Python commands to change the level.

HalBar is a subclass of the Bar widget, so it inherits these properties:

• stepColorList: a list of color strings, the number of colors defines the number of bars.

• backgroundColor: a QColor definition of the background color.

• indicatorColor: a QColor definition of the optional single color current value bar.

• useMultiColorIndicator: bool switch for choosing the option of single or multicolor value bar.

• split: the integer percentage split of max value bar versus current value bar (0 to 50%).

• setVertical: bool switch for choosing vertical or horizontal indicator.

• setInverted: bool switch for choosing inverted direction.

• setMaximum: an integer that defines the maximum level of indication.

• setMinimum: an integer that defines the lowest level of indication.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1121 / 1322

• pinType: to select HAL pins type:

– NONE no HAL pin will be added
– S32 A S32 integer pin will be added
– FLOAT A Float pin will be added

• pinName: to change the HAL pin name otherwise the widget base name is used.

The above Bar properties could be set in styles sheets.
pinType and pinName properties can not be changed in stylesheets.

Note
In style sheets, stepColorList is a single string of color names separated by commas.

HalBar{
qproperty-backgroundColor: #000;
qproperty-stepColorList: ’green,green,#00b600,#00b600,#00d600,#00d600,yellow,yellow,red ←↩

,red’;
}

12.7.1.10 HALPad - HAL Buttons Joypad

Figure 12.86: QtVCP HALPad: HAL Buttons Joypad

This widget looks and acts like a 5 buttons D-pad, with an LED ring.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1122 / 1322

Each button has an selectable type (Bit, S32 or Float) output HAL pin.
The LED center ring has selectable colors for off and on and is controlled by a bit HAL pin.
HALPad ENUMS There are enumerated constants used:

• To reference indicator positions:

– NONE
– LEFT
– RIGHT
– CENTER
– TOP
– BOTTOM
– LEFTRIGHT
– TOPBOTTOM

• For HAL pins type:

– NONE
– BIT
– S32
– FLOAT

You use the widget name in Qt Designer plus the reference constant:
self.w.halpadname.set_highlight(self.w.halpadname.LEFTRIGHT)

HALPad Properties

pin_name
Optional name to use for the HAL pins basename. If left blank, the Qt Designer widget name will
be used.

pin_type
Select the HAL output pin type. This property is only used at startup. Selection can be set in Qt
Designer:

• NONE
• BIT
• S32
• FLOAT

left_image_path , right_image_path , center_image_path , top_image_path , bottom_image_path

File or resource path to an image to display in the described button location.
If the reset button is pressed in the Qt Designer editor property, the image will not be displayed
(allowing optional text).

left_text , right_text , center_text , top_text , bottom_text
A text string to be displayed in the described button location.
If left blank an image can be designated to be displayed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1123 / 1322

true_color , false_color
Color selection for the center LED ring to be displayed when the <BASENAME>.light.center HAL
pin is True or False.

text_color
Color selection for the button text.

text_font
Font selection for the button text.

HALPad Styles The above properties could be set in styles sheets.
HALPad{

qproperty-on_color: #000;
qproperty-off_color: #444;

}

12.7.1.11 HALLabel - HAL Label Widget

This widget displays values sent to it.
Values can be sent from:

• HAL pins
The input pin can be selected as Bit, S32, Float or no pin selected

• Programmatically

• A QtSignal

There is a textTemplate property to set the rich text and/or to format the text.
Basic formatting might be:

• %r for booleans

• %d for integers

• %0.4f for floats.

A rich text example might be:
self.w.my_hal_label.setProperty(textTemplate,”””
<html>
<head/>
<body>
<p>%0.4f</p>

</body>
</html>
”””
)

The setDisplay slot can be connected to an integer, a float or a bool signal.
If the property pin_name is not set the widget name will be used.
There are function calls to display values:

[HALLabelName].setDisplay(some_value)
Can be used to set the display if no HAL pin is selected.

[HALLabelName].setProperty(textTemplate,”%d”)
Sets the template of the display.

It is based on PyQt’s QLabel.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1124 / 1322

12.7.1.12 LCDNumber - LCD Style Number Readout Widget

This widget displays HAL float/s32/bit values in a LCD looking way.
It can display numbers in decimal, hexadecimal, binary and octal formats by setting the mode property.
When using floats you can set a formatting string.
You must set the digitCount property to an appropriate setting to display the largest number.
Properties

pin_name
Option string to be used as the HAL pin name.
If set to an empty string the widget name will be used.

bit_pin_type
Selects the input pin as type BIT.

s32_pin_type
Selects the input pin as type S32.

float_pin_type
Select the input pin as type FLOAT.

floatTemplate
A string that will be used as a Python3 format template to tailor the LCD display.
Only used when a FLOAT pin is selected, e.g., {:.2f} will display a float rounded to 2 numbers
after the decimal.
A blank setting will allow the decimal to move as required.

It is based on PyQt’s QLCDNumber.

12.7.1.13 LED - Indicator Widget

Figure 12.87: QtVCP LED: LED Indicator Widget

A LED like indicator that optionally follows a HAL pin’s logic.

halpin_option
Selects if the LED follows an input HAL pin or program state.

diameter
Diameter of the LED (defaults to 15).

color
Color of the LED when on (defaults to green).

off_color
Color of the LED when off (defaults to black).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1125 / 1322

gradient
turns the gradient high light on or off (defaults to on).

on_gradient_color
Color highlight of the LED when on (defaults to white).

off_gradient_color
Color highlight of the LED when off (defaults to white).

alignment
Qt alignment hint.

state
Current state of LED

flashing
Turns flashing option on and off.

flashRate
Sets the flash rate.

The LED properties can be defined in a stylesheet with the following code added to the .qss file,
name_of_led being the widget name defined in Qt Designer’s editor:
LED #name_0f_led{
qproperty-color: red;
qproperty-diameter: 20;
qproperty-flashRate: 150;

}

12.7.1.14 PushButton - HAL Pin Toggle Widget

This widget allows a user to set a HAL pin true or false with the push of a button.
As an option it can be a toggle button.
For a LED Indicator Option, see Section 12.7.5.1[IndicatedPushButton] below for more info.
It also has other options.
It is based on PyQt’s QPushButton.

12.7.1.15 RadioButton Widget

This widget allows a user to set HAL pins true or false. Only one RadioButton widget of a group
can be true at a time.
It is based on PyQt’s QRadioButton.

12.7.1.16 Slider - HAL Pin Value Adjusting Widget

Allows one to adjust a HAL pin value using a sliding pointer.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1126 / 1322

12.7.1.17 TabWidget - Tab Widget

This widget allows the tab height to be adjusted with stylesheets.
The TabWidget properties can be defined in a stylesheet with the following code added to the .qss
file.
name_of_tab being the widget name defined in Qt Designer’s editor.
If you omit the #name_of_tab text, all TabWidgets tab height will be set.
This shows how to set a particular widget’s tab height:
TabWidget #name_of_tab{
qproperty-tabsize: 1.5;

}

It is based on PyQt’s QTabWidget.

12.7.1.18 WidgetSwitcher - Multi-widget Layout View Switcher Widget

This is used to switch the view of a multi-widget layout to show just one widget, i.e. to flip between
a large view of a widget and a smaller multi widget view.
It is different from a stacked widget as it can pull a widget from anywhere in the screen and place it
in its page with a different layout than it originally had.
The original widget must be in a layout for switcher to put it back.
In Qt Designer you will:

• Add the WidgetSwitcher widget on screen.

• Right click the WidgetSwitcher and add a page.

• Populate it with the widgets/layouts you wish to see in a default form.

• Add as many pages as there are views to switch to.

• On each page, add a layout widget.
After adding the layout you must right click the widget switcher again and set the layout option.

• Click on the WidgetSwitcher widget and then scroll to the bottom of the property editor.

• Look for the dynamic property widget_list and double click to the right of it.

• A dialog pops up allowing you to add the names of the widgets to move to the pages you added to
the WidgetSwitcher.

There are function calls to display specific widgets.
By calling one of these functions, you control what widget is currently displayed:

[_WidgetSwitcherName_].show_id_widget(_number_) , [_WidgetSwitcherName_].show_named_widget(_widget_name_) , [_WidgetSwitcherName_].show_default()

This shows the page 0 layout, and puts all other widgets back to where they were as initially
built in Qt Designer.

[_WidgetSwitcherName_].show_next()
Show next widget.

It is based on the QStack widget.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1127 / 1322

12.7.1.19 XEmbed - Program Embedding Widget

Allows one to embed a program into the widget.
Only programs that utilize the xembed protocol will work such as:

• GladeVCP virtual control panels

• Onboard virtual keyboard

• QtVCP virtual control panels

• mplayer video player

12.7.2 Machine Controller Widgets

These widgets interact with the Machine Controller state.

12.7.2.1 ActionButton - Machine Controller Action Control Widget

These buttons are used for control actions on the machine controller.
They are built on top of IndicatedPushButton so can have LEDs overlaid.

Note
If you left double click on this widget you can launch a dialog to set any of these actions. The dialogs
will help to set the right related data to the selected action. You can also change these properties
directly in the property editor.

Actions You can select one of these:

Estop , Machine On , Auto , mdi , manual , run , run_from_line status
Gets line number from STATUS message gcode-line-selected.

run_from_line slot
Gets line number from Qt Designer int/str slot setRunFromLine.

abort , pause , load dialog
Requires a dialog widget present.

Camview dialog
Requires camview dialog widget present.

origin offset dialog
Requires origin offset dialog widget present.

macro dialog
Requires macro dialog widget present.

Launch Halmeter , Launch Status , Launch Halshow , Home
Set the joint number to -1 for all-home.

Unhome
Set the joint number to -1 for all-unhome.

Home Selected
Homes the joint/axis selected by STATUS.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1128 / 1322

Unhome Selected
Unhomes the joint/axis selected by STATUS.

zero axis , zero G5X
Zeros the current user coordinate system offsets.

zero G92
Zeros the optional G92 offsets.

zero Z rotational
Zeros the rotation offset.

jog joint positive
Set the joint number.

jog joint negative
Set the joint number.

jog selected positive
Selected with a different widget or STATUS.

jog selected negative
Selected with a different widget or STATUS.

jog increment
Set metric/imperial/angular numbers.

jog rate
Set the float/alt float number.

feed override
Set the float/alt float number.

rapid override
Set the float/alt float number.

spindle override
Set the float/alt float number.

spindle fwd , spindle backward , spindle stop , spindle up , spindle down , view change
Set view_type_string.

limits override , flood , mist , block delete , optional stop , mdi command
Set command_string, i.e.,calls a hard coded MDI command

INI mdi number
Set ini_mdi_number, i.e., calls an INI based MDI command

dro absolute , dro relative , dro dtg , exit screen
Closes down LinuxCNC

Override limits
Temporarily override hard limits

launch dialogs
Pops up dialogs if they are included in ui file.

set DRO to relative , set DRO to absolute , set DRO to distance-to-go

Attributes These set attributes of the selected action (availability depends on the widget):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1129 / 1322

toggle float option
Allows jog rate and overrides to toggle between two rates.

joint number
Selects the joint/axis that the button controls.

incr imperial number
Sets the imperial jog increment (set negative to ignore).

incr mm number
Sets the metric jog increment (set negative to ignore).

incr angular number
Sets the angular jog increment (set negative to ignore).

float number
Used for jograte and overrides.

float alternate number
For jograte and overrides that can toggle between two float numbers.

view type string
Can be:

• p,
• x, y, y2, z, z2,
• zoom-in, zoom-out,
• pan-up, pan-down, pan-left, pan-right,
• rotate-up, rotate-down, rotate-cw, rotate-ccw
• clear.

command string
MDI command string that will be invoked if the MDI command action is selected.

ini_mdi_number
(Legacy way)
A reference to the INI file [MDI_COMMAND_LIST] section.
Set an integer of select one line under the INI ̀s [MDI_COMMAND] line starting at 0.
Then in the INI file, under the heading [MDI_COMMAND_LIST] add appropriate lines.
Commands separated by the ; will be run one after another
The button label text can be set with any text after a comma, the \n symbol adds a line break.

ini_mdi_key
(preferred way)
A reference to the INI file [MDI_COMMAND_LIST] section.
This string will be added to MDI_COMMAND_ to form an entry to look for
in the INI file, under the heading [MDI_COMMAND_LIST].
Commands separated by the ; will be run one after another
The button label text can be set with any text after a comma, the \n symbol adds a line break.

[MDI_COMMAND_LIST]
MDI_COMMAND_MACRO0 = G0 Z25;X0 Y0;Z0, Goto\nUser\nZero
MDI_COMMAND_MACRO1 = G53 G0 Z0;G53 G0 X0 Y0, Goto\nMachn\nZero

Action buttons are subclassed from Section 12.7.5.1[IndicatedPushButton]. See the following sec-
tions for more information about:

• LED Indicator option

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1130 / 1322

• Enabled on State

• Text Changes On State

• Call Python Command On State

12.7.2.2 ActionToolButton - Optional Actions Menu Button Widget

ActionToolButton buttons are similar in concept to action buttons, but they use QToolButtons to
allow for optional actions to be selected by pushing and holding the button till the option menu pops
up. Currently there is only one option: userView.
It is based on PyQt’s QToolButton. userView Record and Set User View Widget
User View tool button allows to record and return to an arbitrary graphics view.
Press and hold the button to have the menu pop up and press record view to record the currently
displayed graphics view.
Click the button normally to return to the last recorded position.
The recorded position will be remembered at shutdown if a preference file option is set up.

Note
Due to programming limitations, the recorded position may not show exactly the same. Particularly,
if you pan zoomed out and pan zoomed in again while setting the desired view.
Best practice is to select a main view, modify as desired, record, then immediately click the button
to switch to the recorded position. If it is not as you like, modify its existing position and re-record.

12.7.2.3 AxisToolButton - Select and Set Axis Widget

This allows one to select and set an axis.
If the button is set checkable, it will indicate which axis is selected.
If you press and hold the button a pop up menu will show allowing one to:

• Zero the axis

• Divide the axis by 2

• Set the axis arbitrarily

• Reset the axis to the last number recorded

You must have selected an entry dialog widget that corresponds to the dialog_code_string, usually
this is selected from the screenOptions widget.

halpin_option
Will set a HAL pin true when the axis is selected.

joint_number
Should be set to the appropriate joint number.

axis_letter
Should be set to the appropriate axis letter.

These are the click-and-hold menu properties:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1131 / 1322

showLast
Show the Set to last action.

showDivide
Show the Divide by 2 action.

showGotoOrigin
Show the Go to G53/G5x origin action.

showZeroOrigin
Show the Zero Origin action.

showSetOrigin
Show the Set Origin action.

dialog_code_string
Sets which dialog will pop up with numerical entry, i.e. ENTRY or CALCULATOR to call a typing
only entry dialog or a touch/typing calculator type entry dialog.

Here is a sample stylesheet entry:
AxisToolButton {

/* Modify all the menu options */
qproperty-showLast: false;
qproperty-showDivide : true;
qproperty-showGotoOrigin: true;
qproperty-showZeroOrigin: true;
qproperty-showSetOrigin: false;
qproperty-dialog_code_string: CALCULATOR;

}

It is based on PyQt’s QToolButton.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1132 / 1322

12.7.2.4 BasicProbe - Simple Mill Probing Widget

Figure 12.88: QtVCP BasicProbe: Simple Mill Probing Widget

Widget for probing on a mill. Used by the QtDragon screen.

12.7.2.5 CamView - Workpiece Alignment and Origin Setting Widget

This widget displays a image from a web camera.
It overlays an adjustable circular and cross hair target over the image.
CamView was built with precise visual positioning in mind.
This is used to align the work piece or zero part features using a webcam.
It uses OpenCV vision library.

12.7.2.6 DROLabel - Axis Position Display Widget

This will display the current position of an axis.
You can also click on the label and see a list of actions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1133 / 1322

Qjoint_number
Joint index number (X=0 Y=1) of offset to display (10 will specify rotational offset).

Qreference_type
Actual, relative or distance to go (0,1,2).

metric_template
Format of display, e.g. %10.3f.

imperial_template
format of display, e.g. %9.4f.

angular_template
Format of display, e.g. %Rotational: 10.1f.

always_display_diameter
Toggles display option

always_display_radius
Toggles display option

display_as_per_m7m8
Toggles display option. Will follow the current M7/8 mode.

follow_reference_changes
Toggles display option. Will follow the STATUS message reference mode, i.e. you can use Action
buttons to set how it is currently displayed.

These are the click-on-menu options:

showLast
Show the Set to last action.

showDivide
Show the Divide by 2 action.

showGotoOrigin
Show the Go to G53/G5x origin action.

showZeroOrigin
Show the Zero Origin action.

showSetOrigin
Show the Set Origin action.

dialogName
Sets which dialog window will pop up with numerical entry, i.e. ENTRY or CALCULATOR.

The DROLabel widget holds a property isHomed that can be used with a stylesheet to change the color
of the DRO_Label based on homing state of the joint number in LinuxCNC.
Here is a sample stylesheet entry that:

• Sets the font of all DRO_Label widgets,

• Sets the text template (to set resolution) of the DRO,

• Then sets the text color based on the Qt isHomed property.

• show all the menu options.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1134 / 1322

DROLabel {
font: 25pt ”Lato Heavy”;
qproperty-imperial_template: ’%9.4f’;
qproperty-metric_template: ’%10.3f’;
qproperty-angular_template: ’%11.2f’;

/* Modify all the menu options */
qproperty-showLast: true;
qproperty-showDivide : true;
qproperty-showGotoOrigin: true;
qproperty-showZeroOrigin: true;
qproperty-showSetOrigin: true;
qproperty-dialogName: CALCULATOR;

}

DROLabel[isHomed=false] {
color: red;

}

DROLabel[isHomed=true] {
color: green;

}

Here is how you specify a particular widget by its objectName in Qt Designer:
DROLabel #dr0_x_axis [isHomed=false] {

color: yellow;
}

It is based on PyQt’s QLabel.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1135 / 1322

12.7.2.7 FileManager - File Loading Selector Widget

Figure 12.89: QtVCP FileManager: File Loading Selector Widget

This widget is used to select files to load.
It has a the ability to scroll the names with hardware such as a MPG.
One can class patch the function load(self,fname) to customize file loading.
The function getCurrentSelected() will return a Python tuple, containing the file path and whether
it is a file.
temp = FILEMANAGER.getCurrentSelected()
print(’filepath={}’.format(temp[0]))
if temp[1]:

print(’Is a file’)

Stylesheets Properties

doubleClickSelection (bool)
Determines whether or not to require double clicking on a folder.
Single clicking a folder (False) is enabled by default and is intended for touch screen users.
The following shows an example of how to set this property:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1136 / 1322

#filemanager {
qproperty-doubleClickSelection: True;

}

showListView (bool)
Determines whether or not to show the file/folder structure in list form.
Table view (False) is enabled by default.
The following shows an example of how to set this property:
#filemanager {

qproperty-showListView: True;
}

It is based on PyQt’s FIXME

12.7.2.8 GcodeDisplay - G-code Text Display Widget

This displays G-code in text form, highlighting the currently running line.
This can also display:

• MDI history when LinuxCNC is in MDI mode.

• Log entries when LinuxCNC is in MANUAL mode.

• Preference file entries if you enter PREFERENCE in capitals into the MDILine widget.

It has a signal percentDone(int) that can be connected to a slot (such as a progressBar to display
percent run).

auto_show_mdi_status
Set true to have the widget switch to MDI history when in MDI mode.

auto_show_manual_status
Set true to have the widget switch to machine log when in Manual mode.

The GcodeDisplay properties can be set in a stylesheet with the following code added to the .qss file
(the following color choices are random).
EditorBase{

qproperty-styleColorBackground: lightblue;
qproperty-styleColorCursor:white;
qproperty-styleColor0: black;
qproperty-styleColor1: #000000; /* black */
qproperty-styleColor2: blue;
qproperty-styleColor3: red;
qproperty-styleColor4: green;
qproperty-styleColor5: darkgreen;
qproperty-styleColor6: darkred;
qproperty-styleColor7: deeppink;
qproperty-styleColorMarginText: White;
qproperty-styleColorMarginBackground: blue;
qproperty-styleFont0: ”Times,12,-1,0,90,0,0,0,0,0”;
qproperty-styleFont1: ”Times,18,-1,0,90,1,0,0,0,0”;
qproperty-styleFont2: ”Times,12,-1,0,90,0,0,0,0,0”;
qproperty-styleFont3: ”Times,12,-1,0,90,0,0,0,0,0”;
qproperty-styleFont4: ”Times,12,-1,0,90,0,0,0,0,0”;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1137 / 1322

qproperty-styleFont5: ”Times,12,-1,0,90,0,0,0,0,0”;
qproperty-styleFont6: ”Times,12,-1,0,90,0,0,0,0,0”;
qproperty-styleFont7: ”Times,12,-1,0,90,0,0,0,0,0”;
qproperty-styleFontMargin: ”Times,14,-1,0,90,0,0,0,0,0”;

}

For GcodeDisplay widget’s default G-code lexer:

• styleColor0 = Default: Everything not part of the groups below

• styleColor1 = LineNo and Comments: Nxxx and comments (characters inside of and including
() or anything after ; (when used outside of parenthesis) with the exception of the note below)

• styleColor2 = G-code: G and the digits after

• styleColor3 = M-code: M and the digits after

• styleColor4 = Axis: XYZABCUVW

• styleColor5 = Other: EFHIJKDQLRPST (feed, rpm, radius, etc.)

• styleColor6 = AxisValue: Values following XYZABCUVW

• styleColor7 = OtherValue: Values following EFHIJKDQLRPST$

Note
For comments, the ”OtherValue” color (Color 5) can be used to highlight ”print,” ”debug,” ”msg,”
”logopen,” ”logappend,” ”logclose” ”log,” ”pyrun,” ”pyreload” ”abort,” ”probeopen” ”probeclose”
inside of a parenthesis comment in a line of G-code. As well as ”py,” if a line that starts with ”;py,”.
Examples: (print, text), (log, text), (msg, text), or (debug, text). Only the last of the examples will
be highlighted if there are more than one on the same line.

Font definitions:

”style name, size, -1, 0, bold setting (0-99), italics (0-1),
underline (0-1),0,0,0”

It is based on PyQt’s QsciScintilla.

12.7.2.9 GcodeEditor - G-code Program Editor Widget

This is an extension of the GcodeDisplay widget that adds editing convenience.
It is based on PyQt’s QWidget which incorporates GcodeDisplay widget.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1138 / 1322

12.7.2.10 GCodeGraphics - G-code Graphic Backplot Widget

Figure 12.90: QtVCP GcodeGraphics: G-code Graphic Backplot Widget

This displays the current G-code in a graphical form.
Stylesheets Properties

dro-font/dro-large-font (string)
Sets the small and large DRO font properties
Here we reference with the widget base name; GCodeGraphics

GCodeGraphics{
qproperty-dro_font:”monospace bold 12”;

}
GCodeGraphics{

qproperty-dro_large_font:”Times 25”;
}

_view (string)
Sets the default view orientation on GUI load.
Valid choices for a lathe are p, y, y2. For other screens, valid choices are p, x, y, z, z2.
The following shows an example of how to set this property (referenced using the widget user
selected name):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1139 / 1322

#gcodegraphics{
qproperty-_view: z;

}

_dro (bool)
Determines whether or not to show the DRO.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_dro: False;
}

_dtg (bool)
Determine whether or not to show the Distance To Go.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_dtg: False;
}

_metric (bool)
Determines whether or not to show the units in metric by default.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_metric: False;
}

_overlay (bool)
Determines whether or not to show the overlay by default.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_overlay: False;
}

_offsets (bool)
Determines whether or not to show the offsets by default.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_offsets: False;
}

_small_origin (bool)
Determines whether or not to show the small origin by default.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_small_origin: False;
}

overlay_color (primary, secondary, or RGBA formatted color)
Sets the default overlay color.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-overlay_color: blue;
}

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1140 / 1322

overlay_alpha (float)
Sets the default overlay alpha value. This affects the opacity of the overlay when set between
0.0 and 1.0.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-overlay_alpha: 0.15;
}

background_color (primary, secondary, or RGBA formatted color)
Sets the default background color.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-background_color: blue;
}

+_use_gradient_background+ (bool)
Determines whether or not use a gradient background by default.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-_use_gradient_background: False;
}

jog_color (primary, secondary, or RGBA formatted color)
Sets the default jog color.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-jog_color: red;
}

Feed_color (primary, secondary, or RGBA formatted color)
Sets the default feed color.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-Feed_color: green;
}

Rapid_color (primary, secondary, or RGBA formatted color)
Sets the default rapid color.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-Rapid_color: rgba(0, 0, 255, .5);
}

InhibitControls (bool)
Determines whether or not to inhibit external controls by default.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-InhibitControls:True;
}

MouseButtonMode (int)
Changes the mouse button behavior to rotate, move or zoom within the preview.
The following shows an example of how to set this property:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1141 / 1322

#gcodegraphics{
qproperty-MouseButtonMode: 1;

}

There are 12 valid modes:

Mode Move Zoom Rotate
0 Left Middle Right
1 Middle Right Left
2 Middle Left Right
3 Left Right Middle
4 Right Left Middle
5 Right Middle Left

Modes 6-11 are intended for machines that only require a 2D preview such as plasma or some
lathes and have no rotate button assigned.

Mode Move Zoom
6 Left Middle
7 Middle Left
8 Right Left
9 Left Right
10 Middle Right
11 Right Middle

MouseWheelInvertZoom (bool)
Determines whether or not to invert the zoom direction when zooming with the mouse wheel.
The following shows an example of how to set this property:
#gcodegraphics{

qproperty-MouseWheelInvertZoom:True;
}

ACTION functions The ACTION library can control the G-code graphics widget.

ACTION.RELOAD_DISPLAY()
Reload the current program which recalculates the origin/offsets.

ACTION.SET_GRAPHICS_VIEW(_view_)
The following view commands can be sent:

• clear
• zoom-in
• zoom-out
• pan-up
• pan-down
• pan-right
• pan-left
• rotate-cw
• rotate-ccw
• rotate-up
• rotate-down

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1142 / 1322

• overlay-dro-on
• overlay-dro-off
• overlay-offsets-on
• overlay-offsets-off
• alpha-mode-on
• alpha-mode-off
• inhibit-selection-on
• inhibit-selection-off
• dimensions-on
• dimensions-off
• grid-size
• record-view
• set-recorded-view
• P
• X
• Y
• Y2
• Z
• Z2
• set-large-dro
• set-small-dro

ACTION.ADJUST_PAN(_X,Y_)
Directly set the relative pan of view in x and y direction.

ACTION.ADJUST_ROTATE(_X,Y_)
Directly set the relative rotation of view in x and y direction.

It is based on PyQt’s OpenGL widget.

12.7.2.11 JointEnableWidget - FIXME

FIXME JointEnableWidget documentation

12.7.2.12 JogIncrements - Jog Increments Value Selection Widget

This widget allows the user to select jog increment values for jogging.
The jogging values come from the INI file under:

• [DISPLAY]INCREMENTS, or

• [DISPLAY]ANGULAR_INCREMENTS

This will be available to all widgets through STATUS.
You can select linear or angular increments by the property linear_option in Qt Designer property
editor.
It is based on PyQt’s ComboBox.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1143 / 1322

12.7.2.13 MacroTab - Special Macros Widget

Figure 12.91: QtVCP MacroTab: Special Macros Widget

This widget allows a user to select and adjust special macro programs for doing small jobs.
It uses images for visual representation of the macro and for an icon.
It searches for special macros using the INI definition:
[RS274NGC]
SUBROUTINE_PATH =

The macros are O-word subroutines with special comments to work with the launcher. The first
three lines must have the keywords below, the fourth is optional.
Here is a sample for the first four lines in an O-word file:
; MACROCOMMAND = Entry1,Entry2
; MACRODEFAULTS = 0,true
; MACROIMAGE = my_image.svg,Icon layer number,Macro layer number
; MACROOPTIONS = load:yes,save:yes,default:default.txt,path:~/macros

MACROCOMMAND This is the first line in the O-word file.
It is a comma separated list of text to display above an entry.
There will be one for every variable required in the O-word function.
If the macro does not require variables, leave it empty:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1144 / 1322

; MACROCOMMAND=

MACRODEFAULTS This must be the second line in the O-word file.
It is a comma separated list of the default values for each variable in the O-word function.
If you use the word radiotrue, radiofalse, true or false in the list, a *radiobutton* will be shown.
If you use the word checktrue or checkfalse in the list, a *checkbox* will be shown.
If you use the word buttontrue or buttonfalse in the list, a *Checkable Pushbutton* will be shown.
If the default has a decimal, macroTab assumes you want a float value otherwise an integer.

Note
When using radiobuttons, only set one radiobutton as true. Radio button are used for exclusive
choices.

MACROIMAGE This must be the third line in the O-word file.

• SVG Images
If using SVG image files, they must end with the .svg extension.

The images must be added to SVG layers which are used to define the different images for macro
and icon.
Value is comma separated list of three ordered fields:
; MACROIMAGE=filename.svg,macro_layer_name[,icon_layer_name]

With:

filename.svg
SVG image file name as first field.
It is assumed to be in the same folder as the O-word file.

*macro_layer_name
Macro image layer name as second field.

icon_layer_name
Icon image layer name as optional third field. If the third entry is missing, the same image will
be used for macro and icon.

• PNG/JPG Images:
Value remains a comma separated list:
; MACROIMAGE=macro_image.(png|jpg)[,icon_image.(png|jpg)]

With:

_macro_image_.(png|jpg)
Macro image file name as first field.
It is assumed that the image file are in the same folder than the macro.

_icon_image_.(png|jpg)
Icon image file name as optional second field.
If the second entry is missing the same image will be used for macro and image.

If the keyword is present but the entries are missing, no images will be used.
MACROOPTIONS This optional line must be the fourth line in the O-word file.
It is a comma separated list of keyword and data, all of which are optional:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1145 / 1322

LOAD:yes
Shows a load button.

SAVE:yes
Shows a save button.

DEFAULT:ThisMacroData.txt
Sets the default preselected filename when loading/saving data for this macro.
It can be any valid filename but must end in .txt.

PATH:~/linuxcnc/nc_files/mySavedMacrosData
Sets the default directory folder to preselect when loading/saving data for this macro.

Here are stylesheet hints for adjusting the MacroTab widget.
MacroTab CustomButton{

width: 20px;
height: 40px;

}

MacroTab QPushButton {
width: 80px;
height: 40px;

}

MacroTab QLabel {
font: 24pt ”Lato Heavy”;

}

TouchSpinBox LineEdit {
font: 12pt ”Lato Heavy”;

}

TouchSpinBox QPushButton {
width: 60px;
height: 100px;

}

12.7.2.14 OperatorValueLine - Operator Value Line Entry Widget

The operator enters values into this widget, which will be applied to a template and then optionally is-
sued to the MDI either immediately or applied at a later time. The widget supports the optional popup
calculator, keyboard, or tool chooser for touchscreen-friendly entry by setting the dialog_keyboard_option.
To change which type of dialog is presented, edit the dialog_code_option.

The widget supports a formatting option which is passed to Python’s string format() to produce the
final output for the MDI command. The special token {value} can be inserted anywhere in this format
string where the value should appear. The formatting property is called mdi_command_format_option,
e.g.:

• M3 S{value} to start the spindle at the speed entered by the operator.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1146 / 1322

• M6 T{value} G43 H{value} to issue a tool change and tool length offset change from the tool num-
ber entered

The widget may be configured to automatically issue the MDI command upon submit when issue_mdi_on_submit_option
is set to True. If False issuing the command may be done at a later time via a signal or function call
from another widget.
In cases where issue_mdi_on_submit_option is False, calling the issue_mdi() function will issue
the command. Slots attached to widgets such as PushButtons can trigger the MDI command when
pressed, e.g.:

def setSpindleSpeed(self, event):
self.w.lineSpindleSpeed.issue_mdi()
ACTION.SET_MANUAL_MODE()

def setToolNumber(self, event):
self.w.lineToolNumber.issue_mdi()
ACTION.SET_MANUAL_MODE()

The widget tracks whether a value entered is pending and has not yet been issued via the property
isPendingValue. This may be used to style the widget via the stylesheet. This can be used to alert
the operator that they entered a value but another action must be taken to apply it.
The following style sheet excerpt will highlight the entry widget with a cyan background when values
are pending and have not been applied.
#lineSpindleSpeed[isPendingValue=true],
#lineToolNumber[isPendingValue=true] {

background: cyan;
}

#lineSpindleSpeed[isPendingValue=false],
#lineToolNumber[isPendingValue=false] {

background: none;
}

12.7.2.15 MDILine - MDI Commands Line Entry Widget

One can enter MDI commands here.
A popup keyboard is available.
Embedded Commands There are also embedded commands available from this widget.
Enter any of these case sensitive commands to load the respective program or access the feature:

HALMETER
Starts LinuxCNC halmeter utility.

HALSHOW
Starts LinuxCNC halshow utility.

HALSCOPE
Starts LinuxCNC halscope utility.

STATUS
Starts LinuxCNC status utility.

CALIBRATION
Starts LinuxCNC Calibration

../hal/tools.html#sec:halmeter
../hal/halshow.html#cha:halshow
../hal/tutorial.html#sec:tutorial-halscope
../man/man1/linuxcnctop.1.html
../man/man1/emccalib.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1147 / 1322

CLASSICLADDER
Starts the ClassicLadder GUI if the ClassicLadder realtime HAL component was loaded by the
machine’s config files.

PREFERENCE
Loads the preference file into the GcodeEditor.

CLEAR HISTORY
Clears the MDI History.

net
See halcmd net commands.
An error will result if the command is unsuccessful.

• Syntax: net <signal name> <pin name>
• Example: net plasmac:jog-inhibit motion.jog-stop

setp
Sets the value of a pin or a parameter.
Valid values depend on the object type of the pin or parameter.
It results in an error if the data types do not match or the pin is connected to a signal.

• Syntax: setp <pin/parameter-name> <value>
• Example: setp plasmac.resolution 100

unlinkp
Disconnects a pin from a signal.
An error will result if the pin does not exist.
Running LinuxCNC from terminal may help determine the root cause as error messages from
hal_lib.c will be displayed there.

• Syntax: unlinkp <pin name>
• Example: unlinkp motion.jog-stop

Note
The MDILine function spindle_inhibit can be used by a GUI’s handler file to inhibit M3, M4, and M5
spindle commands if necessary.

It is based on PyQt’s QLineEdit.

12.7.2.16 MDIHistory - MDI Commands History Widget

Displays a scrollable list of past MDI command.
An edit line is embedded for MDI commands. The same MDILine embedded commands may be ac-
cessed from this widget.
The history is recorded on a file defined in the INI under the heading [DISPLAY] (this shows the
default):
MDI_HISTORY_FILE = ’~/.axis_mdi_history’

../ladder/classic-ladder.html
../man/man1/halcmd.1.html#COMMANDS

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1148 / 1322

12.7.2.17 MDITouchy - Touch Screen MDI Entry Widget

Figure 12.92: QtVCP MDITouchy: Touch Screen MDI Entry Widget

This widget displays buttons and entry lines to use for entering MDI commands.
Based on LinuxCNC’s Touchy screen’s MDI entry process, its large buttons are most useful for touch
screens.
To use MDITouchy:

• First press one of the G/XY, G/RO, M or T button. On the left will show the entry fields that can be
filled out.

• Then press Next and Back to navigate between fields.

• Calc will pop up a calculator dialog.

• Clear clears the current entry.

• Set Tool will call for a tool change.

• Set Origin will allow setting the origin of the current G6x system.

• Macro will call any available macro ngc programs.

The widget requires an explicit call to MDITouchy Python code to actually run the MDI command:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1149 / 1322

• For handler file code
If the widget was named mditouchy in Qt Designer, the command below would run the displayed
MDI command:
self.w.mditouchy.run_command()

• For action button use
If the widget was named mditouchy in Qt Designer, use the action button’s Call Python commands
option and enter:
INSTANCE.mditouchy.run_command()

The macro button cycles though macros defined in the INI [DISPLAY] heading.
Add one or more MACRO lines of the following format:
MACRO = macro_name [param1] [... paramN]

In the example below, increment is the name of the macro, and it accepts two parameters, named
xinc and yinc.
MACRO = incerment xinc yinc

Now, place the macro in a file named macro_name.ngc in the PROGRAM_PREFIX directory, or into any
directory in the SUBROUTINE_PATH specified in the INI file.
Keeping on with the example above, it would be named increment.ngc and its content could look like:
O<increment> sub
G91 G0 X#1 Y#2
G90
O<increment> endsub

Notice the name of the sub matches the file name and macro name exactly, including case.
When you invoke the macro by pressing the Macro button you can enter values for parameters (xinc
and yinc in our example).
These are passed to the macro as positional parameters: #1, #2… #N respectively.
Parameters you leave empty are passed as value 0.
If there are several different macros, press the Macro button repeatedly to cycle through them.
In this simple example, if you enter -1 for xinc and invoke the running of the MDI cycle, a rapid G0
move will be invoked, moving one unit to the left.
This macro capability is useful for edge/hole probing and other setup tasks, as well as perhaps hole
milling or other simple operations that can be done from the panel without requiring specially-written
G-code programs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1150 / 1322

12.7.2.18 OriginOffsetView - Origins View and Setting Widget

Figure 12.93: QtVCP OriginOffsetsView: Origins View and Setting Widget

This widget allows one to visualize and modify User System Origin offsets directly.
It will update LinuxCNC’s Parameter file for changes made or found.
The settings can only be changed in LinuxCNC after homing and when the motion controller is idle.
The display and entry will change between metric and imperial, based on LinuxCNC’s current G20 /
G21 setting.
The current in-use user system will be highlighted.
Extra actions can be integrated to manipulate settings.
These actions depend on extra code added either to a combined widget, like originoffsetview dialog,
or the screens handler code.
Typical actions might be Clear Current User offsets or Zero X.
Clicking on the columns and rows allows one to adjust the settings.
A dialog can be made to popup for data or text entry.
The comments section will be recorded in the preference file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1151 / 1322

It is based on PyQt’s QTableView, QAbstractTableModel, and ItemEditorFactory.
Properties, functions and styles of the PyQt base objects are always available.
Properties OriginOffsetView has the following properties:

dialog_code_string
Sets which dialog will pop up with numerical entry.

test_dialog_code_string
Sets which dialog will pop up with text entry.

metric_template
Metric numerical data format.

imperial_template
Imperial numerical data format.

styleCodeHighlight
Current in-use user system highlight color.

These can be set in:

• Qt Designer, in

• Python handler code
self.w.originoffsetview.setProperty(’dialog_code’,’CALCULATOR’)
self.w.originoffsetview.setProperty(’metric_template’,’%10.3f’)

• Or (if appropriate) in stylesheets
OriginOffsetView{
qproperty-styleColorHighlist: lightblue;

}

12.7.2.19 RadioAxisSelector - FIXME

FIXME RadioAxisSelector documentation

12.7.2.20 RoundButton - Round Shapped ActionButton Widget

Round buttons work the same as ActionButtons other than the button is cropped round.
They are intended only to be visually different.
They have two path properties for displaying images on true and false.

12.7.2.21 StateLabel - Controller Modes State Label Display Widget

This will display a label based on the machine controller modes true/false states.
You can select between different texts based on true or false.
States Selection Properties The states are selectable via these properties:

css_mode_status
True when machine is in G96 Constant Surface Speed Mode.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1152 / 1322

diameter_mode_status
True when machine is in G7 Lathe Diameter Mode.

fpr_mode_status
True when machine is in G95 Feed per revolution Mode.

metric_mode_status
True when machine is in G21 Metric Mode.

Text templates properties

true_textTemplate
This will be the text set when the option is True.
You can use Qt rich text code for different fonts/colors etc.
Typical template for metric mode in true state, might be: Metric Mode

false_textTemplate
This will be the text set when the option is False.
You can use Qt rich text code for different fonts/colors etc.
Typical template for metric mode in false state, might be: Imperial Mode.

It is based on PyQt’s QLabel.

12.7.2.22 StatusLabel - Controller Variables State Label Display Widget

This will display a label based on selectable status of the machine controller.
You can change how the status will be displayed by substituting Python formatting code in the text
template. You can also use rich text for different fonts/colors etc.
Selectable States These states are selectable:

actual_spindle_speed_status
Used to display the actual spindle speed as reported from the HAL pin spindle.0.speed-i.
It’s converted to RPM.
A textTemplate of %d would typically be used.

actual_surface_speed_status
Used to display the actual cutting surface speed on a lathe based on X axis and spindle speed.
It’s converted to distance per minute.
A textTemplate of %4.1f (feet per minute) and altTextTemplate of %d (meters per minute)
would typically be used.

blendcode_status
Shows the current G64 setting.

current_feedrate_status
Shows the current actual feedrate.

current_FPU_status
Shows the current actual feed per unit.

fcode_status
Shows the current programmed F code setting.

feed_override_status
Shows the current feed override setting in percent.

filename_status
Shows the last loaded file name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1153 / 1322

filepath_status
Shows the last loaded full file path name.

gcode_status
Shows all active G-codes.

gcode_selected_status
Show the current selected G-code line.

halpin_status
Shows the HAL pin output of a selected HAL pin.

jograte_status
Shows the current QtVCP based Jog Rate.

jograte_angular_status
Shows the current QtVCP based Angular Jog Rate.

jogincr_status
Shows the current QtVCP based Jog increment.

jogincr_angular_status
Shows the current QtVCP based Angular Jog increment.

machine_state_status
Shows the currentmachine interpreter state using the text described from the machine_state_list.
The interpreter states are:

• Estopped
• Running
• Stopped
• Paused
• Waiting
• Reading

max_velocity_override_status
Shows the current max axis velocity override setting.

mcode_status
Shows all active M-codes.

motion_type_status
Shows current type of machine motion using the text described from the motion_type_list.

• None
• Rapid
• Feed
• Arc
• Tool Change
• Probe
• Rotary Index

requested_spindle_speed_status
Shows the requested spindle speed - actual may be different.

rapid_override_status
Shows the current rapid override setting in (0-100) percent.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1154 / 1322

spindle_override_status
Shows the current spindle override setting in percent.

timestamp_status
Shows the time based on the system settings.
An example of a useful textTemplate setting: %I:%M:%S %p.
See the Python time module for more info.

tool comment_status
Returns the comment text from the current loaded tool.

tool diameter_status
Returns the diameter from the current loaded tool.

tool_number_status
Returns the tool number of the current loaded tool.

tool_offset_status
Returns the offset of the current loaded tool, indexed by index_number to select axis (0=x,1=y,etc.).

user_system_status
Shows the active user coordinate system (G5x setting).

Other Properties

index_number
Integer that specifies the tool status index to display.

state_label_list
List of labels used to describe different machine states.

motion_label_list
List of labels used to describe different motion types.

halpin_names
Name of a halpin to monitor (must be the complete name, including the HAL component base-
name).

textTemplate
This is usually used for imperial (G20) or angular numerical settings, though not every option
has imperial/metric conversion.
This uses Python formatting rules to set the text output.
One can use %s for no conversion, %d for integer conversion, %f for float conversion, etc.
You can also use Qt rich text code.
Typical template used for formatting imperial float numbers to text would be %9.4f or %9.4f inch.

alt_textTemplate
This is usually used for metric (G21) numerical settings.
This uses Python formatting rules to set the text output.
Typical template used for formatting metric float to text would be %10.3f or %10.3f mm.

It is based on PyQt’s QLabel.

12.7.2.23 StatusImageSwitcher - Controller Status Image Switcher

Status image switcher will switch between images based on LinuxCNC states.

*watch_spindle
Toggles between 3 images: stop, fwd, revs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1155 / 1322

*watch_axis_homed
Toggles between 2 images: axis not homed, axis homed.

*watch_all_homed
Would toggle between 2 images: not all homed, all homed.

*watch_hard_limits
Would toggle between 2 images or one per joint.

Here is an example of using it to display an icon of Z axis homing state:

Figure 12.94: QtVCP StatusImageSwitcher: Controller Status Image Switcher

In the properties section notice that:

• watch_axis_homed is checked

• axis_letter is set to Z

If you double click the image_list a dialog will show and allow you to add image paths to.
If you have one image as an icon and one clear image then that will look like it shows and hides the
icon.
Selecting image paths can be done by selecting the pixmap property and selecting an image.

Note
The pixmap setting is for test display only and will be ignored outside of Qt Designer.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1156 / 1322

• Right click the image name and you should see Copy path.

• Click Copy path.

• Now double click the image list property so the dialog shows.

• Click the New button.

• Paste the image path in the entry box.

Do that again for the next image.
Use a clear image to represent a hidden icon.
You can test the images display from the image list by changing the image number. In this case 0 is
unhomed and 1 would be homed.
This is for test display only and will be ignored outside of Qt Designer.

12.7.2.24 StatusStacked - Mode Status Display Switching Widget

This widget displays one of three panels based on LinuxCNC’s mode.
This allows you to automatically display different widgets on Manual, MDI and Auto modes. TODO
It is based on PyQt’s QStacked widget.

12.7.2.25 ScreenOption - General Options Setting widget

This widget doesn’t add anything visually to a screen but sets up important options.
This is the preferred way to use these options.
Properties These properties can be set in Qt Designer, in Python handler code or (if appropriate) in
stylesheets.
These include:

halCompBaseName
If left empty QtVCP will use the screen’s name as the HAL component’s basename.
If set, QtVCP will use this string as the HAL component’s basename.
If the -c command line option is used when loading QtVCP, it will use the name specified on the
command line - it overrides all above options.
If you programmatically set the basename in the handlerfile - it will override all above options.
This property cannot be set in stylesheets.

notify_option
Hooking into the desktop notification bubbles for error and messages.

notify_max_messages
Number of messages shown on screen at one time.

catch_close_option
Catching the close event to pop up a ’are you sure’ prompt.

close_overlay_color
Color of transparent layer shown when quitting.

catch_error_option
Monitoring of the LinuxCNC error channel.
This also sends the message through STATUS to anything that registers.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1157 / 1322

play_sounds_option
Playing sounds using beep, espeak and the system sound.

use_pref_file_option
Setting up a preferences file path.
Using the magic word WORKINGFOLDER in the preference file path will be replaced with the launched
configuration path, e.g. WORKINFOLDER/my_preferences.

use_send_zmq_option
Used to initiate ZMQ based outgoing messages.

use_receive_zmq_messages
Used to initiate ZMQ based in coming messages.
These messages can be used to call functions in the handler file, allowing external programs
to integrate tightly with QtVCP based screens.

embedded_program_option
Embed programs defined in the INI.

default_embed_tab
This is the property for a default location to embed external programs.
It should be set to name of a tab page widget in Qt Designer.

focusOverlay_option
Focus_overlay will put a transparent image or colored panel over the main screen to emphasize
focus to an external event - typically a dialog.

messageDialog_option
Sets up the message dialog - used for general messages.

message_overlay_color
Color of transparent layer shown when the message dialog is shown.

closeDialog_option
Sets up the standard close screen prompt dialog.

entryDialog_option
Sets up the numerical entry dialog.

entryDialogSoftKey_option
Sets up a floating software keyboard when entry dialog is focused.

entry_overlay_color
Color of transparent layer shown when the entry dialog is shown.

toolDialog_option
Sets up the manual tool change dialog, including HAL pin.

tool_overlay_color
Color of transparent layer shown when the tool dialog is shown.

ToolUseDesktopNotify
Option to use desktop notify dialogs for manual tool change dialog.

ToolFrameless
Frameless dialogs can not be easily moved by users.

fileDialog_option
Sets up the file choosing dialog.

file_overlay_color
Color of transparent layer shown when the file dialog is shown.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1158 / 1322

keyboardDialog_option
Sets up a keyboard entry widget.

keyboard_overlay_color
Color of transparent layer shown when the keyboard dialog is shown.

vesaProbe_option
Sets up the Versa style probe dialog.

versaProbe_overlay_color
Color of transparent layer shown when the versaProbe dialog is shown.

macroTabDialog_option
Sets up the macro selection dialog.

macroTab_overlay_color
Color of transparent layer shown when the macroTab dialog is shown.

camViewDialog_option
Sets up the camera alignment dialog.

camView_overlay_color
Color of transparent layer shown when the camView dialog is shown.

toolOffset_option
Sets up the tool offset display/editor dialog.

toolOffset_overlay_color
Color of transparent layer shown when the toolOffset dialog is shown.

originOffset_option
Sets up the origin display/editor dialog.

originOffset_overlay_color
Color of transparent layer shown when the originOffset dialog is shown.

calculatorDialog_option
Sets up the calculator entry dialog.

calculator_overlay_color
Color of transparent layer shown when the calculator dialog is shown.

machineLogDialog_option
Sets up a dialog to display logs from the machine and QtVCP.

machineLog_overlay_color
Color of transparent layer shown when the machineLog dialog is shown.

runFromLineDialog_option
Sets up a dialog to display starting options when starting machine execution from a arbitrary
line.

runFromLine_overlay_color
Color of transparent layer shown when the runFromLine dialog is shown.

user1Color
Optional color the screen designer can use in their design.

user2Color
Optional color the screen designer can use in their design.

user3Color
Optional color the screen designer can use in their design.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1159 / 1322

user4Color
Optional color the screen designer can use in their design.

user5Color
Optional color the screen designer can use in their design.

user6Color
Optional color the screen designer can use in their design.

user7Color
Optional color the screen designer can use in their design.

user8Color
Optional color the screen designer can use in their design.

user9Color
Optional color the screen designer can use in their design.

user10Color
Optional color the screen designer can use in their design.

Setting Properties Programmatically The screen designer chooses the default settings of the
screenOptions widget.
Once chosen, most won’t ever need to be changed. But if needed, some can be changed in the handler
file or in stylesheets.

• In the handler file:
Here we reference the widget by the Qt Designer user defined name:
red,green,blue,alpha 0-255
color = QtGui.QColor(0, 255, 0, 191)
self.w.screen_options.setProperty(’close_overlay_color’, color)
self.w.screen_options.setProperty(’play_sounds_option’,False)

• In style sheets:
Here we can reference the widget by Qt Designer user defined name or by widget class name.
/* red, green, blue 0-255, alpha 0-100% or 0.0 to 1.0 */
/* the # sign is used to refer to Qt Designer defined widget name */
/* matches/applied to only this named widget */
#screen_options {
qproperty-close_overlay_color: rgba(0, 255, 0, 0.75)

}

Some settings are only checked on startup so will not cause changes after startup. In these cases
you would need to make the changes in Qt Designer only.
Preference File Entries If the preference file option is selected, screenOption widget will make an
INI based preference file.
While other QtVCP widgets will add to this list, the screenOptions widget will add these entries under
the following headings:

[SCREEN_OPTIONS]

catch_errors (bool) , desktop_notify (bool)
Whether to display errors/messages in the system’s notification mechanism.

notify_max_msgs (int)
Number of displayed errors at one time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1160 / 1322

shutdown_check (bool)
Whether to pop a confirmation dialog.

sound_player_on (bool)
Turns all sounds on or off.

[MCH_MSG_OPTIONS]

mchnMsg_play_sound (bool)
To play alert sound when dialog pops.

mchnMsg_speak_errors (bool)
To use Espeak to speak error messages.

mchnMsg_speak_text (bool)
To use Espeak to speak all other messages.

mchnMsg_sound_type (str)
Sound to play when messages displayed. See notes below.

[USER_MSG_OPTIONS]

usermsg_play_sound (bool)
To play alert sound when dialog pops.

userMsg_sound_type (str)
Sound to play when user messages displayed. See notes below.

userMsg_use_focusOverlay (bool)

[SHUTDOWN_OPTIONS]

shutdown_play_sound (bool) , shutdown_alert_sound_type (str)
Sound to play when messages displayed. See notes below.

shutdown_exit_sound_type (str)
Sound to play when messages displayed. See notes below.

shutdown_msg_title (str)
Short title string to display in dialog.

shutdown_msg_focus_text (str)
Large text string to superimpose in focus layer.

shutdown_msg_detail (str)
Longer descriptive string to display in dialog.

NOTIFY_OPTIONS

notify_start_greeting (bool)
Whether to display a greeting dialog on start-up.

notify_start_title (str)
Short Title string.
If the speak option is also selected it will be spoken with Espeak.

notify_start_detail (str)
Longer description string.

notify_start_timeout (int)
Time in seconds to display before closing.

*_sound_type entries

• System Sounds
In Debian/Ubuntu/Mint based installations these system sounds should be available as sound-type
entries above:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1161 / 1322

– ERROR
– READY
– DONE
– ATTENTION
– RING
– LOGIN
– LOGOUT
– BELL

These Sound options require python3-gst1.0 installed.

• Audio Files
You can also specify a file path to an arbitrary audio file.
You can use ~ in path to substitute for the user home file path.

• Kernel Beeps
If the beep kernel module is installed and it is not disabled, these sound-type entries are available:

– BEEP
– BEEP_RING
– BEEP_START

• Text-To-Speech
If the Espeakmodule (python3-espeak) is installed, you can use the SPEAK entry to pronounce text:

• SPEAK ’_my message_’

12.7.2.26 StatusSlider - Controller Setting Adjustment Slider Widget

This widget allow the user to adjust a LinuxCNC setting via a slider.
The widget can adjust:

• Jog rate

• Angular jog rate

• Feed rate

• Spindle override rate

• Rapid override rate

Properties StatusSlider has the following properties:

halpin_option
Sets option to make a HAL float pin that reflects current value.

rapid_rate
Selects a rapid override rate slider.

feed_rate
Selects a feed override rate slider.

spindle_rate
Selects a spindle override rate slider.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1162 / 1322

jograte_rate
Selects a linear jograte slider.

jograte_angular_rate
Selects a angular jograte slider.

max_velocity_rate
Selects a maximum velocity rate slider.

alertState
String to define style change: read-only, under, over and normal.

alertUnder
Sets the float value that signals the stylesheet for under warning.

alertOver
Sets the float value that signals the stylesheet for over warning.

These can be set in:

• Qt Designer

• Python handler code,
self.w.status_slider.setProperty(’spindle_rate’,True)
self.w.status_slider.setProperty(’alertUnder’,35)
self.w.status_slider.setProperty(’alertOver’,100)

• Or (if appropriate) in stylesheets.
/* warning colors for overrides if out of normal range*/
/* widget object name is slider_spindle_ovr */

#slider_spindle_ovr[alertState=’over’] {
background: red;

}
#slider_spindle_ovr[alertState=’under’] {

background: yellow;
}

It is based on PyQt’s QSlider.

12.7.2.27 StateLED - Controller State LED Widget

This widget gives status on the selected LinuxCNC state.
States The state options are:

is_paused_status , is_estopped_status , is_on_status , is_idle_status_ , is_homed_status , is_flood_status , is_mist_status , is_block_delete_status , is_optional_stop_status , is_joint_homed_status , is_limits_overridden_status , is_manual_status , is_mdi_status , is_auto_status , is_spindle_stopped_status , is_spindle_fwd_status , is_spindle_rev_status , is_spindle_at_speed_status , is_neg_limit_tripped , is_pos_limit_tripped , is_limits_tripped

Properties There are properties that can be changed:

halpin_option
Adds an output pin that reflects selected state.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1163 / 1322

invert_state_status
Invert the LED state compared to the LinuxCNC state.

diameter
Diameter of the LED.

color
Color of the LED when on.

off_color
Color of the LED when off.

alignment
Qt Alignment hint.

state
Current state of LED (for testing in Qt Designer).

flashing
Turns flashing option on and off.

flashRate
Sets the flash rate.

The LED properties can be defined in a stylesheet with the following code added to the .qss file.

State_LED #name_of_led{ y1
qproperty-color: red;
qproperty-diameter: 20;
qproperty-flashRate: 150;

}

y1 name_of_led would be the name defined in Qt Designer’s editor.

It is based on the LED widget.

12.7.2.28 StatusAdjustmentBar - Controller Value Setting Widget

This widget allows setting values using buttons while displaying a bar.
It also has an optional hi/low toggle button that can be held down to set the levels.
The widget can adjust:

• Jog rate

• Angular jog rate

• Feed rate

• Spindle override rate

• Rapid override rate

It is based on PyQt’s QProgressBar.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1164 / 1322

12.7.2.29 SystemToolButton - User System Selection Widget

This widget allows you to manually select a G5x user system by pressing and holding.
If you don’t set the button text it will automatically update to the current system.
It is based on PyQt’s QToolButton.

12.7.2.30 StateEnableGridlayout - Controller State Enabled Container Widget

disable the widgets inside it depending on LinuxCNC’s current state.

This is a container that other widgets can be placed in.
Embedded widgets are be greyed-out when the StateEnableGridlayout is disabled.
It can selectably react to:

• Machine on

• Interpreter idle

• E-stop off

• All-homed

It is based on PyQt’s QGridLayout.

12.7.2.31 StatusImageSwitcher - Controller Status Image Switching Widget

This widget will display images based on LinuxCNC status.
You can watch:

• the state of the spindle,

• the state of all homed,

• the state of a certain axis homed,

• the state of hard limits.

It is based on PyQt’s FIXME

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1165 / 1322

12.7.2.32 ToolOffsetView - Tools Offsets View And Edit Widget

Figure 12.95: QtVCP ToolOffsetView: Tools Offsets View And Edit Widget

This widget displays and allows one to modify tools offsets.
It will update LinuxCNC’s tool table for changes made or found.
The tool settings can only be changed in LinuxCNC after homing and when the motion controller is
idle.
The display and entry will change between metric and imperial based on LinuxCNC’s current G20/G21
setting.
The current in-use tool will be highlighted, and the current selected tool will be highlighted in a
different color.
The checkbox beside each tool can be used to select too for an action that depends on extra code
added either to a combined widget, like the toolOffsetView dialog or the screens handler code.
Typical actions are load selected tool, delete selected tools, etc.
Clicking on the columns and rows allows one to adjust the settings.
A dialog can be made to popup for data or text entry.
The comments section will typically be displayed in the manual tool change dialog.
If using a lathe configuration, there can be columns for X and Z wear.
To use these columns to adjust the tool wear, it requires a remapped tool change routine.
It is based on PyQt’s QTableView, QAbstractTableModel, and ItemEditorFactory.
Properties, functions and styles of the PyQt base objects are always available.
Properties ToolOffsetView has properties that can be set in Qt Designer, in Python handler code or
(if appropriate) in stylesheets:

dialog_code_string
Sets which dialog will pop up with numerical entry.

text_dialog_code_string
Sets which dialog will pop up with text entry.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1166 / 1322

metric_template
Metric numerical data format.

imperial_template
Imperial numerical data format.

styleCodeHighlight
Current tool-in-use highlight color.

styleCodeSelected
Selected highlight color.

In a handler file:
self.w.tooloffsetview.setProperty(’dialog_code’,’CALCULATOR’)
self.w.tooloffsetview.setProperty(’metric_template’,’%10.3f’)

and in style sheets:
ToolOffsetView{
qproperty-styleColorHighlist: lightblue;
qproperty-styleColorSelected: #444;

}

Functions ToolOffsetView has some functions useful for screen builders to add actions:

add_tool()
Adds a blank dummy tool (99) that the user can edit to suit.

delete_tools()
Deletes the currently checkbox selected tools.

get_checked_list()
Returns a list of tools selected by checkboxs.

set_all_unchecked()
Uncheck all selected tools.

Example for handler file executing aforementioned functions.
self.w.tooloffsetview.add_tool()
self.w.tooloffsetview.delete_tools()
toolList = self.w.tooloffsetview.get_checked_list()
self.w.tooloffsetview.set_all_unchecked()

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1167 / 1322

12.7.2.33 VersaProbe - Mill Probing Widget

Figure 12.96: QtVCP VersaProbe: Mill Probing Widget

Widget for probing on a mill. Used by the QtDragon screen.

12.7.3 Dialog Widgets

Dialogs are used to present or request immediately required information in a focused way.
The typical used dialogs can be loaded using the ScreenOptions widget.
You can also add them directly to the UI - but each dialog must have a unique launch name or you will
see multiple dialogs displayed, one after another.
Use dialogs from Python Code You can show dialogs directly with Python code, but a safer way is
to use STATUS messages to request the dialog to launch and to return the gathered information.

• Register to STATUS channel:
To set this up, first register to catch the general message from STATUS:
STATUS.connect(’general’,self.return_value)

• Add a function to call a dialog:
This function must build a message dict to send to the dialog.
This message will be passed back in the general message with the addition of the return variable.
It is possible to add extra user information to the message. The dialog will ignore these and pass
them back.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1168 / 1322

NAME
Launches code name of dialog to show.

ID
A unique id so we process only a dialog that we requested.

TITLE
The title to use on the dialog.

def show_dialog(self):
mess = {’NAME’:’ENTRY’,’ID’:’__test1__’,

’TITLE’:’Test Entry’}
ACTION.CALL_DIALOG, mess)

• Add a callback function that processes the general message:
Keep in mind this function will get all general messages so the dict keynames are not guaranteed
to be there. Using the .get() function and/or using try/except is advisable. This function should:

– check the name and id is the same as we sent,
– then extract the return value and any user variables.

process the STATUS return message
def return_value(self, w, message):

rtn = message.get(’RETURN’)
code = bool(message.get(’ID’) == ’__test1__’)
name = bool(message.get(’NAME’) == ’ENTRY’)
if code and name and not rtn is None:

print(’Entry return value from {} = {}’.format(code, rtn))

12.7.3.1 LcncDialog - General Message Dialog Widget

This is a general message dialog widget.
If there is a Focus Overlay widget present, it can signal it to display.
If the sound library is set up it can play sounds.
There are options that can be set when requesting a dialog, these would be added to the message
dict.

TITLE
Title of the dialog window.

MESSAGE
Title message text in bold.

MORE
Standard text under the heading.

DETAILS
Initial hidden text.

TYPE (OK|YESNO|OKCANCEL) , ICON (QUESTION|INFO|CRITICAL|WARNING) , PINNAME
Not implemented yet.

FOCUSTEXT (overlay text|None)
Text to display if focus overlay is used. Use None for no text.

FOCUSCOLOR (QColor(_R, G, B, A_))
Color to use if focus overlay is used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1169 / 1322

PLAYALERT
Sound to play if sound is available, i.e., SPEAK <spoken_message> .

When using STATUS ’s request-dialog function, the default launch name is MESSAGE.
It is based on PyQt’s QMessagebox.

12.7.3.2 ToolDialog - Manual Tool Change Dialog Widget

Figure 12.97: QtVCP ToolDialog: Manual Tool Change Dialog

This is used as a manual tool change prompt.
It has HAL pins to connect to the machine controller. The pins are named the same as the original
AXIS manual tool prompt and works the same.
The tool change dialog can only be launched by HAL pins.
If there is a Focus Overlay widget present, it will signal it to display.
It is based on PyQt’s QMessagebox.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1170 / 1322

12.7.3.3 FileDialog - Load and Save File Chooser Dialog Widget

Figure 12.98: QtVCP FileDialog: Load and Save File Chooser Widget

This is used to load G-code files.
If there is a Focus Overlay widget present, it will signal it to display.
When using STATUS ’s request-dialog function, the default launch names are LOAD or SAVE.
There are options that can be set when requesting a dialog, these would be added to the message
dict:

EXTENSIONS , FILENAME , DIRECTORY

An example Python call, for a load dialog:
mess = {’NAME’:’LOAD’,’ID’:’_MY_DIALOG_’,

’TITLE’:’Load Some text File’,
’FILENAME’:’~/linuxcnc/nc_files/someprogram.txt’,
’EXTENSIONS’:’Text Files (*.txt);;ALL Files (*.*)’
}

ACTION.CALL_DIALOG(mess)

And for a save dialog

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1171 / 1322

mess = {’NAME’:’SAVE’,’ID’:’_MY_DIALOG_’,
’TITLE’:’Save Some text File’,
’FILENAME’:’~/linuxcnc/nc_files/someprogram.txt’,
’EXTENSIONS’:’Text Files (*.txt);;ALL Files (*.*)’
}

ACTION.CALL_DIALOG(mess)

It is based on PyQt’s QMessagebox.

12.7.3.4 OriginOffsetDialog - Origin Offset Setting Dialog Widget

Figure 12.99: QtVCP OriginOffsetDialog: Origin Offset Setting Widget

This widget allows one to modify User System origin offsets directly in a dialog form.
If there is an Focus Overlay widget present, it will signal it to display.
When using STATUS ’s request-dialog function, the default launch name is ORIGINOFFSET.
It is based on PyQt’s QDialog.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1172 / 1322

12.7.3.5 ToolOffsetDialog - Tool Offset Setting Dialog Widget

Figure 12.100: QtVCP ToolOffsetDialog: Tool Offset Setting Dialog Widget

This widget allows one to modify Tool offsets directly in a dialog form.
If there is an Focus Overlay widget present, it will signal it to display.
When using STATUS ’s request-dialog function, the default launch name is TOOLOFFSET.
It is based on PyQt’s QDialog.

12.7.3.6 ToolChooserDialog - Tool Chooser Dialog Widget

Figure 12.101: QtVCP ToolChooserDialog: Tool Chooser Dialog Widget

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1173 / 1322

This widget allows the operator to select one of the tools defined in the tool table. If a tool is selected
and Apply is pressed or the tool is double-clicked, the dialog will return the tool number selected.
This can be used in conjunction with the OperatorValueLine widget to create a tool change widget,
for example.
If there is an Focus Overlay widget present, it will signal it to display.
When using STATUS ’s request-dialog function, the default launch name is TOOLCHOOSER.
It is based on PyQt’s QDialog.

12.7.3.7 MachineLog - Machine Events Journal Display Widget

This widget displays various log event messages that have been output by the system during the
current session. This includes informational messages as well as errors.

Figure 12.102: QtVCP MachineLog: Machine Events Log in machine_log (plain) mode

Figure 12.103: QtVCP MachineLog: Machine Events Log in machine_log_severity mode

Two distinct types of logs may be displayed:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1174 / 1322

• machine log (plain text or severity highlighted)

• integrator log (plain text only)

The type of log shown by the widget is controlled by the option properties of the widget. By selecting
machine_log_option or integrator_log_option the appropriate log will be displayed. These options
will display plain styled logs in a Qt QTextEdit widget.
Additionally, there is a machine_log_severity_option property that may be chosen that will dis-
play the machine log in a variety of colors depending on the severity of the message, by using a
QTableWidget. The colors may be configured with the properties of the widget.
Severity is conveyed via the option value sent along with the STATUS signal called update-machine-log.
The option parameter is a comma-delimited list, containing typically
 ̀ ̀ ̀ text = an error has occurred. STATUS.emit(update-machine-log, text, TIME,ERROR) ̀ ̀ ̀
The log may be cleared by calling the clear() method of the widget.

12.7.3.8 MacroTabDialog - Macro Launch Dialog Widget

This is a dialog to display the macrotab widget.
MacroTab displays a choice of macro programs to run using icons.
If there is a Focus Overlay widget present, it will signal it to display.
When using ̀ ̀STATUS ̀ ̀’s request-dialog function, the default launch name is MACROTAB.
It is based on PyQt’s QDialog.

12.7.3.9 CamViewDialog - WebCam Part Alignment Dialog Widget

This is a dialog to display the CamView widget for Webcam part alignment.
When using ̀ ̀STATUS ̀ ̀’s request-dialog function, the default launch name is CAMVIEW.
It is based on PyQt’s QDialog.

12.7.3.10 EntryDialog - Edit Line Dialog Widget

This is a dialog to display an edit line for information entry, such as origin offset.
It returns the entry via STATUS messages using a Python DICT.
The DICT contains at minimum, the name of the dialog requested and an ID code.
When using ̀ ̀STATUS ̀ ̀’s request-dialog function, the default launch name is ENTRY.
It is based on PyQt’s QDialog.

12.7.3.11 CalculatorDialog - Calculator Dialog Widget

This is a dialog to display a calculator for numeric entry, such as origin offset, spindle RPM, etc.
It is primarily intended for touchscreen use, but it has support for physical keyboard input as well.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1175 / 1322

Figure 12.104: QtVCP CalculatorDialog: Calculator Dialog Widget

It returns the entry via STATUS messages using a Python DICT.
The DICT contains at minimum, the name of the dialog requested and an ID code.
When using ̀ ̀STATUS ̀ ̀’s request-dialog function, the default launch name is CALCULATOR.
It is based on PyQt’s QDialog.
In the CALCULATOR section of the preferences file the following options may be set:

• constValuesList - A comma-delimited list of common values you might enter, that will appear on
a dedicated row of buttons at the bottom of the calculator. e.g. setting to 0.100, -0.100 would
provide two buttons for +0.100 and -0.100 which are commonly used when edge-finding on inch
mills. Up to six (6) values may be entered, beyond that the list will be truncated. Values must be
valid floating point or integer.

• onShowBehavior - A list of optional behaviors that will be triggered when the calculator dialog is
shown. Each option must be separated by a comma.

– CLEAR_ALL to issue a Clear All each time the calculator is shown. This will clear any previously
entered values from the last time the calculator was used and open with the display value set to 0

– FORCE_FOCUS will force the focus to the calculator input field when the widget is shown. This will
allow a physical keyboard to provide input to the widget properly without additional clicks. Also,
it has the side-effect of selecting the current value, such that typing from a physical keyboard will
replace the existing value unless the text selection is changed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1176 / 1322

• acceptOnReturnKey - If set to True, the calculator will accept the current value and close the dialog
when the keyboard return/enter key is pressed. If set to False, the return key will be ignored and
the Apply button must be clicked. For cases where the Apply Next button is available, the return
key will perform this action instead, and the dialog will remain open.

While the intent of this widget is to provide a touchscreen-friendly interface, it is possible to use a
physical keyboard to enter values, typically via a numeric keypad. The keys perform mostly as one
would expect, but a few special key functions also exist:

• the Enter or Return key is equivalent to the Equal (=) operator in the cases where a calculation
is pending. Otherwise it will perform the Apply function if it is enabled via the acceptOnReturnKey
preference.

• the minus key (-) will toggle the sign of the current number in the calculator display when it is hit
twice in a row. Otherwise when hit only once it will perform a subtraction operator as expected.

• Alt+Left Arrow will perform Back function, moving to the previous field for cases where this is
supported.

• Alt+Right Arrow will perform a Next function, moving to the next field for cases where this is
supported.

• Alt+Backspacewill cancel out of the calculator and not provide a return value to the calling widget.

12.7.3.12 RunFromLine - Run-From-Line Dialog Widget

Figure 12.105: QtVCP RunFromLine: Run-From-Line Dialog Widget

Dialog to preset spindle settings before running a program from a specific line.
It is based on PyQt’s QDialog.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1177 / 1322

12.7.3.13 VersaProbeDialog - Part Touch Probing Dialog Widget

Figure 12.106: QtVCP VersaProbeDialog: Part Touch Probing Dialog Widget

This is a dialog to display a part probing screen based on Verser Probe v2.
It is based on PyQt’s QDialog.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1178 / 1322

12.7.3.14 MachineLogDialog - Machine and Debugging Logs Dialog Widget

Figure 12.107: QtVCP MachineLogDialog: Machine and Debugging Logs Dialog Widget

This is a dialog to display the machine log and QtVCP’s debugging log.
It is based on PyQt’s QDialog.

12.7.4 Other Widgets

Other available widgets:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1179 / 1322

12.7.4.1 NurbsEditor - NURBS Editing Widget

Figure 12.108: QtVCP NurbsEditor: NURBS Editing Widget

The Nurbs editor allows you tomanipulate a NURBS based geometry on screen and then convert
NURBS to G-code.
You can edit the G-code on screen and then send it to LinuxCNC.
It is based on PyQt’s QDialog.

12.7.4.2 JoyPad - 5 button D-pad Widget

It is the base class for the HALPad widget.
This widget looks and acts like a 5 button D-pad, with a LED like indicators in a ring.
You can put text or icons in each of the button positions.
You can connect to output signals when the buttons are pressed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1180 / 1322

There are also input slots to change the color of the indicator(s).
ENUMS There are enumerated constants used to reference indicator positions.
They are used in Qt Designer editor’s property editor or in Python code.

NONE , LEFT, L , RIGHT, R , CENTER, C , TOP, T , BOTTOM, B , LEFTRIGHT, X , TOPBOTTOM, A
For Python handler code, you use the widget name in Qt Designer plus the reference constant:

self.w.joypadname.set_highlight(self.w.joypadname.LEFT)

Useful Override-able Functions
def _pressedOutput(self, btncode):

self.joy_btn_pressed.emit(btncode)
self[’’.format(btncode.lower())].emit(True)

def _releasedOutput(self, btncode):
self.joy_btn_released.emit(btncode)
self[’joy_{}_pressed’.format(btncode.lower())].emit(False)

As coded these function issue (emit) PyQt5 signals (joy_btn_pressed and joy<letter>_pressed) for the
any button pressed or released_.
Signal joy_btn_pressed outputs a string code for the button.
Signal joy_<letter>_pressed outputs a bool value.
You could override the functions to do something else if making a custom widget:
Callable Functions

reset_highlight()
Clears the highlight indicator.

set_highlight(_button_, state=_True_)
Set the highlight indicator in position button to state state.
You can use strings letters (LRCTBXA) or position ENUMS for the button argument.

set_button_icon(_button_, _pixmap_)
Sets the button’s icon pixmap.

set_button_text(_button_, _text_)
Sets the button’s icon text.

set_tooltip(_button_, _text_)
Sets the buttons pop-up tooltip descriptive text.

setLight(_state_)
Sets the highlight indicator to the True color or False color.
The set_highlight() function must be used prior to set the indicator to use.

Signals These signals will be sent when buttons are pressed.
They can be connected to in Qt Designer editor or Python code.
The first two output a string that indicates the button pressed:

joy_btn_pressed (string) , joy_btn_released (string) , joy_l_pressed (bool) , joy_l_released (bool) , joy_r_pressed (bool) , joy_r_released (bool) , joy_c_pressed (bool) , joy_c_released (bool) , joy_t_pressed (bool) , joy_t_released (bool) , joy_b_pressed (bool) , joy_b_released (bool)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1181 / 1322

They are based on PyQt’s Signal (QtCore.pyqtSignal())
Slots Slots can be connected to in Qt Designer editor or Python code:

set_colorStateTrue() , set_colorStateFalse() , set_colorState(_bool_) , set_true_color(_str_) , set_true_color(_qcolor_) , set_false_color(_str_) , set_false_color(_qcolor_)

Properties These can be set in stylesheets or Python code:

highlightPosition
Set the indicator position.

setColorState
Select the color state of the indicator.

left_image_path , right_image_path , center_image_path , top_image_path , bottom_image_path

A file path or resource path to an image to display in the described button location.
If the reset button is pressed in Qt Designer editor property, the image will not be displayed
(allowing optionally text).

left_text , right_text , center_text , top_text , bottom_text
A text string to be displayed in the described button location.
If left blank an image can be designated to be displayed.

true_color , false_color
Color selection for the center LED ring to be displayed, when the BASENAME.light.center HAL
pin is True or False.

text_color
Color selection for the button text.

button_font
Font selection for the button text.

The above properties could be set in:

• Stylesheets:
You would usually use the Qt Designer widget name with # prefix to set individual widget properties,
otherwise you would use the JoyPad class name to set all JoyPad widgets the same:
#joypadname{
qproperty-true_color: #000;
qproperty-false_color: #444;

}

• In Python handler code:

self.w.joypadename.setProperty(’true_color’,’green’)
self.w.joypadename.setProperty(’false_color’,’red’)

12.7.4.3 WebWidget

This widget will create a html/pdf viewing page using the QtWebKit or QtWebEngine libraries. The
newer QtWebEngine is preferred if both are on the system.
If the QtWebEngine library is used with the Qt Designer editor, a placeholder QWidget will show in
Qesigner. This will be replaced with the QtWebEngine widget at run time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1182 / 1322

12.7.5 BaseClass/Mixin Widgets

These widgets are used to combine different properties and behaviours into other widgets.
You will see them as a collapsible header in the Qt Designer properties column.

12.7.5.1 IndicatedPushButtons

This class modifies QPushButton behaviour.
indicator_option puts a LED on the top of the button.

Figure 12.109: QtVCP PushButton: IndicatedPushButton Button, LED Indicator Option

It can be a triangle, circle, top bar, or side bar.
The triangle and circle LEDs can display double vertical LEDs optionally each with it’s own HAL pin.
The size and position can be adjusted.
It will indicate:

• the current state of the button, or

• the state of a HAL pin, or

• LinuxCNC status.

Properties These properties are available to customize the indicator (not all are applicable to every
LED shape):

doubleIndicator
With triangle or round LEDs add a second vertical LED.

on_color , off_color , flashIndicator
When the indicator is true, flash the LED on and off.

flashRate
Rate of the flashing

indicator_size
Size of triangle LED

circle_diameter
Diameter of round LED

shape_option
0-4 LED shape type

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1183 / 1322

right_edge_offset
Space from right edge

top_edge_offset
Space from top edge

height_fraction
Used for bar Leds

width_fraction
Used for bar Leds

corner_radius
Indicator corner radius.

The LED indicator color can be defined in a stylesheet with the following code added to the .qss file:
Indicated_PushButton{
qproperty-on_color: #000;
qproperty-off_color: #444;

}

Or for a particular button:
Indicated_PushButton #button_estop{
qproperty-on_color: black;
qproperty-off_color: yellow;

}

Options IndicatedPushButton have exclusive options:

indicator_HAL_pin_option
Adds a halpin, named <buttonname>-led that controls the button indicator state.

indicator_status_option
Makes the LED indicate the state of these selectable LinuxCNC status:

• Is Estopped
• Is On
• All Homed
• Is Joint Homed
• Idle
• Paused
• Flood
• Mist
• Block Delete
• Optional Stop
• Manual
• MDI
• Auto
• Spindle Stopped
• Spindle Forward
• Spindle Reverse
• On Limits

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1184 / 1322

Some indicator_status_options holds a property that can be used with a stylesheet to change
the color of the button based on the state of the property in LinuxCNC.
Currently these status properties can be used to auto style buttons:

• is_estopped_status will toggle the isEstop property
• is_on_status will toggle the isStateOn property
• is_manual_status, is_mdi_status, is_auto_status will toggle the isManual, isMDI, isAuto

properties.
• is_homed_status will toggle the isAllHomed property

Here is a sample stylesheet entry setting the background of mode button widgets when LinuxCNC is
in that mode:
ActionButton[isManual=true] {

background: red;
}
ActionButton[isMdi=true] {

background: blue;
}
ActionButton[isAuto=true] {

background: green;
}

Here is how you specify a particular widget by its objectName in Qt Designer:
ActionButton #estop button [isEstopped=false] {

color: yellow;
}

Often, having the button disabled and enabled based on the state of LinuxCNC’s motion controller is
necessary.
There are several properties that can be selected to aid with this:

isAllHomedSentive , isOnSensitive , isIdleSensitive , isRunSensitive , isRunPausedSensitive , isManSensitive , isMDISensitive , isAutoSensitive

You can select multiple properties for combined requirements.

Choosing the checked_state_text_option allows a checkable button to change the text based on its
checked state.
It uses the following properties to specify the text for each state:

true_state_string , false_state_string
\\n will be converted to a newline.

You can set/change these in stylesheets:
ActionButton #action_aux{
qproperty-true_state_string: ”Air\\nOn”;
qproperty-false_state_string: ”Air\\nOff”;

}

The python_command_option allow small snippets of Python code to be run from the push of a button,
without having to edit the handler file. Though, it can call functions in the handler file.
When using the command_string properties.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1185 / 1322

true_python_cmd_string
A Python command that will be called when the button is toggled True.

false_python_cmd_string
A Python command that will be called when the button is toggled False.

Special capitalized words will give access to the following:

INSTANCE
Will give access to the widgets instances and handler functions.
E.g., INSTANCE.my_handler_function_call(True)

ACTION
Will give access to QtVCP’s ACTION library.
E.g., ACTION.TOGGLE_FLOOD()

PROGRAM_LOADER
Will give access to QtVCP’s PROGRAM_LOADER library.
E.g., PROGRAM_LOADER.load_halshow()

HAL
Will give access to HAL’s Python module.
E.g., HAL.set_p(’motion.probe-input’,’1’)

12.7.6 Import-Only Widgets

These widgets are usually the base class widget for other QtVCP widgets.
They are not available directly from the Qt Designer editor but could be imported and manually
inserted.
They could also be subclassed to make a similar widget with new features.

12.7.6.1 Auto Height

Widget for measuring two heights with a probe.
For setup.

12.7.6.2 G-code Utility

Widgets for performing common machining processes.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1186 / 1322

12.7.6.3 Facing

Slab or face a definable area with different strategies.

12.7.6.4 Hole Circle

Drill multiple holes on a bolt hole circle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1187 / 1322

12.7.6.5 Hole Enlarge

Use an end mill to enlarge a drilled hole.

12.7.6.6 Qt NGCGUI

QtVCP’s version of NGC subroutine selector (Shown as used in QtDragon).
LinuxCNC needs to know where to look to run the subroutines.
If the subroutine calls other subroutines or custom M codes, those paths must be added too.
[RS274NGC]
SUBROUTINE_PATH = ~/linuxcnc/nc_files/examples/ngcgui_lib:~/linuxcnc/nc_files/examples/ ←↩

ngcgui_lib/utilitysubs

QtVCP needs to know where to open subroutines from.
You can also specify subroutines to be pre-opened in tabs.
[DISPLAY]
NGCGUI subroutine path.
This path must also be in [RS274NGC] SUBROUTINE_PATH
NGCGUI_SUBFILE_PATH = ~/linuxcnc/nc_files/examples/ngcgui_lib

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1188 / 1322

pre selected programs tabs
specify filenames only, files must be in the NGCGUI_SUBFILE_PATH
NGCGUI_SUBFILE = slot.ngc
NGCGUI_SUBFILE = qpocket.ngc

• NEW TAB - add new blank tab to NGCGUI

• SELECT PREAMBLE - select a file that add preamble G-code

• SELECT SUBFILE - select a NGCGUI subroutine file

• SELECT POST - select a file that add post G-code

• REREAD FILE - reload the subroutine file

• CREATE FEATURE - add feature to the list

• RESTART FEATURE - remove all features from the list

• FINALIZE GCODE - create the full G-code and send it to LinuxCNC/a file

You can create your own subroutines for use with NGCGUI. They must follow these rules:

• For creating a subroutine for use with NGCGUI, the filename and the subroutine name must be the
same.

• The subroutine must be in a folder within LinuxCNC’s INI designated search path.

• On the first line there may be a comment of type info:

• The subroutine must be surrounded by the sub and endsub tags.

• The variables used must be numbered variables and must not skip number.

• Comments and presets may be included.

• If an image file of the same name is in the folder, it will be shown.

(info: feedrate -- simple example for setting feedrate)
o<feedrate> sub

#<feedrate> = #1 (= 6 Feed Rate) ; comments in brackets will be shown in ngcui
f#<feedrate>

o<feedrate> endsub

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1189 / 1322

12.7.6.7 Qt PDF

Allows adding loadable PDFs to a screen.

12.7.6.8 Qt Vismach

Use this to build/add OpenGl simulated machines.

12.7.6.9 Hal Selection Box

This widget is combobox that will allows selection of a pin or signal on the system.

from qtvcp.widgets.hal_selectionbox import HALSelectionBox

def buildComboBox(self):
combo box for HAL pin selection
combobox = HALSelectionBox()
combobox.setShowTypes([combobox.PINS,combobox.SIGNALS])
combobox.setPinTypes([combobox.HAL_BIT], direction = [combobox.HAL_IN])
combobox.setSignalTypes([combobox.HAL_BIT], driven = [False,True])
combobox.hal_init()
combobox.selectionUpdated.connect(lambda w: self.signalSelected(w))

def signalSelected(self, sig):
print(’Watching:’,sig)

There are function calls
set the list of types to show from: PINS SIGNALS
combobox.setShowTypes([combobox.PINS])

set the pin types to show: HAL_BIT,HAL_FLOAT,HAL_S32,HAL_U32
and a list of directions: HAL_IN HAL_OUT
combobox.setPinTypes(types=[combobox.HAL_BIT], direction = [HAL_IN])

set the signal types to show: HAL_BIT,HAL_FLOAT,HAL_S32,HAL_U32
and a list of driven/undriven (by a connected pin) to show
combobox.setSignalTypes(types=[combobox.HAL_BIT], driven = [True,True])

12.8 QtVCP Libraries modules

Libraries are prebuilt Python modules that give added features to QtVCP. In this way you can
select what features you want - yet don’t have to build common ones yourself.

12.8.1 Status

Status is a library that sends GObject messages based on LinuxCNC’s current state. It is an
extension of GladeVCP’s GStat object.
It also has some functions to report status on such things as internal jog rate.
You connect a function call to the STATUS message you are interested in, and QtVCP will call this
function when the message is sent from STATUS.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1190 / 1322

12.8.1.1 Usage

• Import Status modules
Add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.core import Status

• Instantiate Status module
Add this Python code to your instantiate section:
STATUS = Status()

• Connect to STATUS messages
Use GObject syntax.

12.8.1.2 Example

For example, you can catch machine on and off messages.

Note
The example below shows the two common ways of connecting signals, one of them using lambda.
lambda is used to strip off or manipulate arguments from the status message before calling the
function. You can see the difference in the called function signature: The one that uses lambda does
not accept the status object - lambda did not pass it to the function.

• Place these commands into the [INITIALIZE] section of the Python handler file:
STATUS.connect(’state-on’, self.on_state_on)
STATUS.connect(’state-off’, lambda: w, self.on_state_off())

In this example code, when LinuxCNC is in ”machine on” state the function self.on_state_on will
be called.
When LinuxCNC is in ”machine off” state the function self.on_state_off will be called.

• These would call functions that looks like these:
def on_state_on(self, status_object):

print(’LinuxCNC machine is on’)
def on_state_off(self):

print(’LinuxCNC machine is off’)

12.8.2 Info

Info is a library to collect and filter data from the INI file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1191 / 1322

12.8.2.1 Available data and defaults

LINUXCNC_IS_RUNNING
LINUXCNC_VERSION
INIPATH
INI = linuxcnc.ini(INIPATH)
MDI_HISTORY_PATH = ’~/.axis_mdi_history’
QTVCP_LOG_HISTORY_PATH = ’~/qtvcp.log’
MACHINE_LOG_HISTORY_PATH = ’~/.machine_log_history’
PREFERENCE_PATH = ’~/.Preferences’
SUB_PATH = None
SUB_PATH_LIST = []
self.MACRO_PATH = None
MACRO_PATH_LIST = []
INI_MACROS = self.INI.findall(”DISPLAY”, ”MACRO”)

IMAGE_PATH = IMAGEDIR
LIB_PATH = os.path.join(HOME, ”share”,”qtvcp”)

PROGRAM_FILTERS = None
PARAMETER_FILE = None
MACHINE_IS_LATHE = False
MACHINE_IS_METRIC = False
MACHINE_UNIT_CONVERSION = 1
MACHINE_UNIT_CONVERSION_9 = [1]*9
TRAJ_COORDINATES =
JOINT_COUNT = int(self.INI.find(”KINS”,”JOINTS”)or 0)
AVAILABLE_AXES = [’X’,’Y’,’Z’]
AVAILABLE_JOINTS = [0,1,2]
GET_NAME_FROM_JOINT = {0:’X’,1:’Y’,2:’Z’}
GET_JOG_FROM_NAME = {’X’:0,’Y’:1,’Z’:2}
NO_HOME_REQUIRED = False
HOME_ALL_FLAG
JOINT_TYPE = self.INI.find(section, ”TYPE”) or ”LINEAR”
JOINT_SEQUENCE_LIST
JOINT_SYNC_LIST

JOG_INCREMENTS = None
ANGULAR_INCREMENTS = None
GRID_INCREMENTS

DEFAULT_LINEAR_JOG_VEL = 15 units per minute
MIN_LINEAR_JOG_VEL = 60 units per minute
MAX_LINEAR_JOG_VEL = 300 units per minute

DEFAULT_ANGULAR_JOG_VEL =
MIN_ANGULAR_JOG_VEL =
MAX_ANGULAR_JOG_VEL =

MAX_FEED_OVERRIDE =
MAX_TRAJ_VELOCITY =

AVAILABLE_SPINDLES = int(self.INI.find(”TRAJ”, ”SPINDLES”) or 1)
DEFAULT_SPINDLE_0_SPEED = 200
MAX_SPINDLE_0_SPEED = 2500
MAX_SPINDLE_0_OVERRIDE = 100
MIN_SPINDLE_0_OVERRIDE = 50

MAX_FEED_OVERRIDE = 1.5
MAX_TRAJ_VELOCITY

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1192 / 1322

12.8.2.2 User message dialog info

USRMESS_BOLDTEXT = self.INI.findall(”DISPLAY”, ”MESSAGE_BOLDTEXT”)
USRMESS_TEXT = self.INI.findall(”DISPLAY”, ”MESSAGE_TEXT”)
USRMESS_TYPE = self.INI.findall(”DISPLAY”, ”MESSAGE_TYPE”)
USRMESS_PINNAME = self.INI.findall(”DISPLAY”, ”MESSAGE_PINNAME”)
USRMESS_DETAILS = self.INI.findall(”DISPLAY”, ”MESSAGE_DETAILS”)
USRMESS_ICON = self.INI.findall(”DISPLAY”, ”MESSAGE_ICON”)
ZIPPED_USRMESS =

self.GLADEVCP = (self.INI.find(”DISPLAY”, ”GLADEVCP”)) or None

12.8.2.3 Embedded program info

TAB_NAMES = (self.INI.findall(”DISPLAY”, ”EMBED_TAB_NAME”)) or None
TAB_LOCATION = (self.INI.findall(”DISPLAY”, ”EMBED_TAB_LOCATION”)) or []
TAB_CMD = (self.INI.findall(”DISPLAY”, ”EMBED_TAB_COMMAND”)) or None
ZIPPED_TABS =

MDI_COMMAND_LIST = (heading: [MDI_COMMAND_LIST], title: MDI_COMMAND”)
TOOL_FILE_PATH = (heading: [EMCIO], title:TOOL_TABLE)
POSTGUI_HALFILE_PATH = (heading: [HAL], title: POSTGUI_HALFILE)

12.8.2.4 Helpers

There are some helper functions - mostly used for widget support:

get_error_safe_setting(_self_, _heading_, _detail_, default=_None_) , convert_metric_to_machine(_data_) , convert_imperial_to_machine(_data_) , convert_9_metric_to_machine(_data_) , convert_9_imperial_to_machine(_data_) , convert_units(_data_) , convert_units_9(_data_) , get_filter_program(_fname_) , get_qt_filter_extensions()

Get filter extensions in Qt format.

12.8.2.5 Usage

• Import Info module
Add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.core import Info

• Instantiate Info module.
Add this Python code to your instantiate section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

INFO = Info()

• Access INFO data Use this general syntax:
home_state = INFO.NO_HOME_REQUIRED
if INFO.MACHINE_IS_METRIC is True:

print(’Metric based’)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1193 / 1322

12.8.3 Action

Action library is used to command LinuxCNC’s motion controller.
It tries to hide incidental details and add convenience methods for developers.

12.8.3.1 Helpers

There are some helper functions, mostly used for this library’s support:

get_jog_info (_num_) , jnum_check(_num_) , ensure_mode(_modes_) , open_filter_program(_filename_, _filter_)

Open G-code filter program.

12.8.3.2 Usage

• Import Action module
Add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.core import Action

• Instantiate Action module
Add this Python code to your instantiate section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

ACTION = Action()

• Access ACTION commands
Use general syntax such as these:
ACTION.SET_ESTOP_STATE(state)
ACTION.SET_MACHINE_STATE(state)

ACTION.SET_MACHINE_HOMING(joint)
ACTION.SET_MACHINE_UNHOMED(joint)

ACTION.SET_LIMITS_OVERRIDE()

ACTION.SET_MDI_MODE()
ACTION.SET_MANUAL_MODE()
ACTION.SET_AUTO_MODE()

ACTION.SET_LIMITS_OVERRIDE()

ACTION.CALL_MDI(code)
ACTION.CALL_MDI_WAIT(code)
ACTION.CALL_INI_MDI(number)

ACTION.CALL_OWORD()

ACTION.OPEN_PROGRAM(filename)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1194 / 1322

ACTION.SAVE_PROGRAM(text_source, fname):

ACTION.SET_AXIS_ORIGIN(axis,value)
ACTION.SET_TOOL_OFFSET(axis,value,fixture = False)

ACTION.RUN()
ACTION.ABORT()
ACTION.PAUSE() # Toggles pause/resume
ACTION.PAUSE_MACHINE()
ACTION.RESUME()

ACTION.SET_MAX_VELOCITY_RATE(rate)
ACTION.SET_RAPID_RATE(rate)
ACTION.SET_FEED_RATE(rate)
ACTION.SET_SPINDLE_RATE(rate)

ACTION.SET_JOG_RATE(rate)
ACTION.SET_JOG_INCR(incr)
ACTION.SET_JOG_RATE_ANGULAR(rate)
ACTION.SET_JOG_INCR_ANGULAR(incr, text)

ACTION.SET_SPINDLE_ROTATION(direction = 1, rpm = 100, number = 0)
ACTION.SET_SPINDLE_FASTER(number = 0)
ACTION.SET_SPINDLE_SLOWER(number = 0)
ACTION.SET_SPINDLE_STOP(number = 0)

ACTION.SET_USER_SYSTEM(system)

ACTION.ZERO_G92_OFFSET()
ACTION.ZERO_ROTATIONAL_OFFSET()
ACTION.ZERO_G5X_OFFSET(num)

ACTION.RECORD_CURRENT_MODE()
ACTION.RESTORE_RECORDED_MODE()

ACTION.SET_SELECTED_AXIS(jointnum)

ACTION.DO_JOG(jointnum, direction)
ACTION.JOG(jointnum, direction, rate, distance=0)

ACTION.TOGGLE_FLOOD()
ACTION.SET_FLOOD_ON()
ACTION.SET_FLOOD_OFF()

ACTION.TOGGLE_MIST()
ACTION.SET_MIST_ON()
ACTION.SET_MIST_OFF()

ACTION.RELOAD_TOOLTABLE()
ACTION.UPDATE_VAR_FILE()

ACTION.TOGGLE_OPTIONAL_STOP()
ACTION.SET_OPTIONAL_STOP_ON()
ACTION.SET_OPTIONAL_STOP_OFF()

ACTION.TOGGLE_BLOCK_DELETE()
ACTION.SET_BLOCK_DELETE_ON()
ACTION.SET_BLOCK_DELETE_OFF()

ACTION.RELOAD_DISPLAY()
ACTION.SET_GRAPHICS_VIEW(view)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1195 / 1322

ACTION.UPDATE_MACHINE_LOG(text, option=None):

ACTION.CALL_DIALOG(command):

ACTION.HIDE_POINTER(state):

ACTION.PLAY_SOUND(path):
ACTION.PLAY_ERROR():
ACTION.PLAY_DONE():
ACTION.PLAY_READY():
ACTION.PLAY_ATTENTION():
ACTION.PLAY_LOGIN():
ACTION.PLAY_LOGOUT():
ACTION.SPEAK(speech):

ACTION.BEEP():
ACTION.BEEP_RING():
ACTION.BEEP_START():

ACTION.SET_DISPLAY_MESSAGE(string)
ACTION.SET_ERROR_MESSAGE(string)

ACTION.TOUCHPLATE_TOUCHOFF(search_vel, probe_vel, max_probe,
z_offset, retract_distance, z_safe_travel, rtn_method=None, error_rtn = None)

12.8.4 Qhal

A library for HAL component/system interactions.

12.8.4.1 Attributes

These are the functions that can be called on the Qhal object:

setUpdateRate(cyclerate)
Set cycle rate in ms

newPin(name, pin type constant, pin direction constant)
returns a new QPin object

getPinObject(name)
returns an existing named QPin object

getValue(name)
returns the named pin, signal, or parameter’s value, use the full component.pin name.

setPin(name,value)
sets the named pin’s value, use the full component.pin name.

setSignal(name,value)
sets the named signal’s value, use the full component.pin name.

makeUniqueName(name)
returns an unique HAL pin name string by adding -x (a number) to the given pin name string

exit()
kills the component

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1196 / 1322

12.8.4.2 Constants

Here are the available constants:

• HAL_BIT

• HAL_FLOAT

• HAL_S32

• HAL_U32

• HAL_IN

• HAL_OUT

• HAL_IO

• HAL_RO

• HAL_RW

12.8.4.3 References

12.8.5 QPin

A wrapper class around HAL pins

12.8.5.1 Signals

There are 3 Qt signals that the QPin pin can be connect to:

• value_changed will call a named function with an argument of the current value (depreciated)

• pinValueChanged will call a named function with arguments of the pin object and the current
value

• isDrivenChanged will call a named function with arguments of the pin object and current state
when the pin is (un)connected to a driving pin

12.8.5.2 Attributes

These are the functions that can be called on a QPin object:

• <Pin object>.get() returns the current value of the pin object

• <Pin object>.set(X) sets the value of the pin object to the value X

• <Pin object>.text() returns the pin name string

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1197 / 1322

12.8.5.3 References

12.8.5.4 Example

Add a function that gets called when the pin state changes
from qtvcp.core import Qhal
QHAL = Qhal()

##
Special Functions called from QtVCP
##

at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
def initialized__(self):

self.pin_button_in = QHAL.newpin(’cycle-start-in’,QHAL.HAL_BIT, QHAL.HAL_IN)
self.pin_button_in.pinValuechanged.connect(self.buttonChanged)
self.pin_button_in.isDrivenChanged.connect(lambda p,s: self.buttonDriven(p,s))

def buttonChanged(self, pinObject, value):
print(’Pin name:{} changed value to {}’.format(pinObject.text(), value))

def buttonDriven(self, pinObject, state):
message = ’not driven by an output pin’
if state:

message = ’is driven by an output pin’
print(’Pin name:{} is {}’.format(pinObject.text(), message))

12.8.6 Tool

This library handles tool offset file changes.

Warning
LinuxCNC doesn’t handle third party manipulation of the tool file well.

12.8.6.1 Helpers

GET_TOOL_INFO(_toolnumber_)
This will return a Python list of information on the requested tool number.

GET_TOOL_ARRAY()
This return a single Python list of Python lists of tool information.
This is a raw list formed from the system tool file.

ADD_TOOL(_newtool_ = [_-99, 0,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’, 0,’New Tool’_])

This will return a Python tuple of two Python lists of Python lists of tool information:

• [0] will be real tools information

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1198 / 1322

• [1] will be wear tools information (tool numbers will be over 10000; Fanuc style tool wear)

By default, adds a blank tool entry with tool number -99.
You can preload the newtool array with tool information.

DELETE_TOOLS(_toolnumber_)
Delete the numbered tool.

SAVE_TOOLFILE(_toolarray_)
This will parse the toolarray and save it to the tool file specified in the INI file as the tool
path.
This tool array must contain all the available tools information.
This array is expected to use the LinuxCNC raw tool array, i.e. it does not feature tool wear
entries.

It will return True if there was an error.

CONVERT_TO_WEAR_TYPE(_toolarray_)
This function converts a LinuxCNC raw tool array to a QtVCP tool array.
QtVCP’s tool array includes entries for X and Z axis tool wear.
LinuxCNC supports tool wear by adding tool wear information into tool entries above 10000.

Note
This also requires remap code to add the wear offsets at tool change time.

CONVERT_TO_STANDARD_TYPE(_toolarray_)
This function converts QtVCP’s tool array into a LinuxCNC raw tool array.
QtVCP’s array includes entries for X and Z axis tool wear.
LinuxCNC supports tool wear by adding tool wear information into tool entries above 10000.

Note
This also requires remap code to add the wear offsets t tool change time.

12.8.7 Path

Path module gives reference to important files paths.

12.8.7.1 Referenced Paths

PATH.PREFS_FILENAME
The preference file path.

PATH.WORKINGDIR
The directory QtVCP was launched from.

PATH.IS_SCREEN
Is this a screen or a VCP?

PATH.CONFIGPATH
Launched configuration folder.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1199 / 1322

PATH.RIPCONFIGDIR
The Run-in-place config folder for QtVCP screens.

PATH.BASEDIR
Base folder for LinuxCNC.

PATH.BASENAME
The Qt Designer files name (no ending).

PATH.IMAGEDIR
The QtVCP image folder.

PATH.SCREENDIR
The QtVCP builtin Screen folder.

PATH.PANELDIR
The QtVCP builtin VCP folder.

PATH.HANDLER
Handler file Path.

PATH.HANDLERDIR
Directory where the Python handler file was found.

PATH.XML
QtVCP UI file path.

PATH.HANDLERDIR
Directory where the UI file was found.

PATH.QSS
QtVCP QSS file path.

PATH.PYDIR
LinuxCNC’s Python library.

PATH.LIBDIR
The QtVCP library folder.

PATH.WIDGET
The QtVCP widget folder.

PATH.PLUGIN
The QtVCP widget plugin folder.

PATH.VISMACHDIR
Directory where prebuilt Vismach files are found.

Not currently used:

PATH.LOCALEDIR
Locale translation folder.

PATH.DOMAIN
Translation domain.

12.8.7.2 Helpers

There are some helper functions available:
file_list = PATH.find_vismach_files()
directory_list = PATH.find_screen_dirs()
directory_list = PATH.find_panel_dirs()

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1200 / 1322

12.8.7.3 Usage

• Import Path module
Add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.core import Path

• Instantiate Path module
Add this Python code to your instantiate section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

PATH = Path()

12.8.8 VCPWindow

VCPWindow module gives reference to the MainWindow and widgets.
Typically this would be used for a library (e.g., the toolbar library uses it) as the widgets get a reference
to the MainWindow from the _hal_init() function.

12.8.8.1 Usage

• Import VCPWindow module
Add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.qt_makegui import VCPWindow

• Instantiate VCPWindow module
Add this Python code to your instantiate section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

WIDGETS = VCPWindow()

12.8.9 Aux_program_loader

Aux_program_loader module allows an easy way to load auxiliary programs LinuxCNC often uses.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1201 / 1322

12.8.9.1 Helpers

load_halmeter()
Halmeter is used to display one HAL pin data.
Load a halmeter with:
AUX_PRGM.load_halmeter()

load_ladder()
Load ClassicLadder PLC program:
AUX_PRGM.load_ladder()

load_status()
Load LinuxCNC status program:
AUX_PRGM.load_status()

load_halshow()
Load HALshow, configure display program:
AUX_PRGM.load_halshow()

load_halscope()
Load HALscope program:
AUX_PRGM.load_halscope()

load_tooledit()
Load Tooledit program:
AUX_PRGM.load_tooledit(<TOOLEFILE_PATH>)

load_calibration()
Load Calibration program:
AUX_PRGM.load_calibration()

keyboard_onboard()
Load onboard/Matchbox keyboard
AUX_PRGM.keyboard_onboard(<ARGS>)

12.8.9.2 Usage

• Import Aux_program_loader module
Add this Python code to your import section:

############################
**** IMPORT SECTION ****
############################

from qtvcp.lib.aux_program_loader import Aux_program_loader

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1202 / 1322

• Instantiate Aux_program_loader module
Add this Python code to your instantiate section:

###
**** INSTANTIATE LIBRARIES SECTION ****
###

AUX_PRGM = Aux_program_loader()

12.8.10 Keylookup

Keylookup module is used to allow keypresses to control behaviors such as jogging.
It’s used inside the handler file to facilitate creation of key bindings such as keyboard jogging, etc.

12.8.10.1 Usage

Import Keylookup module To import this modules add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.lib.keybindings import Keylookup

Instantiate Keylookup module To instantiate Keylookup module* so you can use it, add this Python
code to your instantiate section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

KEYBIND = Keylookup()

Note
Keylookup requires code under the processed_key_event function to call KEYBIND.call().
Most handler files already have this code.

In the handler file, under the initialized function use this general syntax to create keybindings:
KEYBIND.add_call(”DEFINED_KEY”,”FUNCTION TO CALL”, USER DATA)

Here we add a keybinding for F10, F11 and F12:
##
Special Functions called from QtVCP
##

at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
def initialized__(self):

KEYBIND.add_call(’Key_F10’,’on_keycall_F10’,None)
KEYBIND.add_call(’Key_F11’,’on_keycall_override’,10)
KEYBIND.add_call(’Key_F12’,’on_keycall_override’,20)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1203 / 1322

And then we need to add the functions that get called.
In the handler file, under the KEY BINDING CALLS section, add this:
#####################
KEY BINDING CALLS
#####################

def on_keycall_F12(self,event,state,shift,cntrl,value):
if state:

print(’F12 pressed’)

def on_keycall_override(self,event,state,shift,cntrl,value):
if state:

print(’value = {}’.format(value))

12.8.10.2 Key Defines

Here is a list of recognized key words. Use the quoted text.
Letter keys use Key_ with the upper or lower letter added.
e.g., Key_a and Key_A.
keys = {

Qt.Key_Escape: ”Key_Escape”,
Qt.Key_Tab: ”Key_Tab”,
Qt.Key_Backtab: ”Key_Backtab”,
Qt.Key_Backspace: ”Key_Backspace”,
Qt.Key_Return: ”Key_Return”,
Qt.Key_Enter: ”Key_Enter”,
Qt.Key_Insert: ”Key_Insert”,
Qt.Key_Delete: ”Key_Delete”,
Qt.Key_Pause: ”Key_Pause”,
Qt.Key_Print: ”Key_Print”,
Qt.Key_SysReq: ”Key_SysReq”,
Qt.Key_Clear: ”Key_Clear”,
Qt.Key_Home: ”Key_Home”,
Qt.Key_End: ”Key_End”,
Qt.Key_Left: ”Key_Left”,
Qt.Key_Up: ”Key_Up”,
Qt.Key_Right: ”Key_Right”,
Qt.Key_Down: ”Key_Down”,
Qt.Key_PageUp: ”Key_PageUp”,
Qt.Key_PageDown: ”Key_PageDown”,
Qt.Key_Shift: ”Key_Shift”,
Qt.Key_Control: ”Key_Control”,
Qt.Key_Meta: ”Key_Meta”,
Qt.Key_Alt: ”Key_Alt”,
Qt.Key_AltGr: ”Key_AltGr”,
Qt.Key_CapsLock: ”Key_CapsLock”,
Qt.Key_NumLock: ”Key_NumLock”,
Qt.Key_ScrollLock: ”Key_ScrollLock”,
Qt.Key_F1: ”Key_F1”,
Qt.Key_F2: ”Key_F2”,
Qt.Key_F3: ”Key_F3”,
Qt.Key_F4: ”Key_F4”,
Qt.Key_F5: ”Key_F5”,
Qt.Key_F6: ”Key_F6”,
Qt.Key_F7: ”Key_F7”,
Qt.Key_F8: ”Key_F8”,
Qt.Key_F9: ”Key_F9”,
Qt.Key_F10: ”Key_F10”,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1204 / 1322

Qt.Key_F11: ”Key_F11”,
Qt.Key_F12: ”Key_F12”,
Qt.Key_F13: ”Key_F13”,
Qt.Key_F14: ”Key_F14”,
Qt.Key_F15: ”Key_F15”,
Qt.Key_F16: ”Key_F16”,
Qt.Key_F17: ”Key_F17”,
Qt.Key_F18: ”Key_F18”,
Qt.Key_F19: ”Key_F19”,
Qt.Key_F20: ”Key_F20”,
Qt.Key_F21: ”Key_F21”,
Qt.Key_F22: ”Key_F22”,
Qt.Key_F23: ”Key_F23”,
Qt.Key_F24: ”Key_F24”,
Qt.Key_F25: ”Key_F25”,
Qt.Key_F26: ”Key_F26”,
Qt.Key_F27: ”Key_F27”,
Qt.Key_F28: ”Key_F28”,
Qt.Key_F29: ”Key_F29”,
Qt.Key_F30: ”Key_F30”,
Qt.Key_F31: ”Key_F31”,
Qt.Key_F32: ”Key_F32”,
Qt.Key_F33: ”Key_F33”,
Qt.Key_F34: ”Key_F34”,
Qt.Key_F35: ”Key_F35”,
Qt.Key_Super_L: ”Key_Super_L”,
Qt.Key_Super_R: ”Key_Super_R”,
Qt.Key_Menu: ”Key_Menu”,
Qt.Key_Hyper_L: ”Key_HYPER_L”,
Qt.Key_Hyper_R: ”Key_Hyper_R”,
Qt.Key_Help: ”Key_Help”,
Qt.Key_Direction_L: ”Key_Direction_L”,
Qt.Key_Direction_R: ”Key_Direction_R”,
Qt.Key_Space: ”Key_Space”,
Qt.Key_Any: ”Key_Any”,
Qt.Key_Exclam: ”Key_Exclam”,
Qt.Key_QuoteDbl: ”Key_QuoteDdl”,
Qt.Key_NumberSign: ”Key_NumberSign”,
Qt.Key_Dollar: ”Key_Dollar”,
Qt.Key_Percent: ”Key_Percent”,
Qt.Key_Ampersand: ”Key_Ampersand”,
Qt.Key_Apostrophe: ”Key_Apostrophe”,
Qt.Key_ParenLeft: ”Key_ParenLeft”,
Qt.Key_ParenRight: ”Key_ParenRight”,
Qt.Key_Asterisk: ”Key_Asterisk”,
Qt.Key_Plus: ”Key_Plus”,
Qt.Key_Comma: ”Key_Comma”,
Qt.Key_Minus: ”Key_Minus”,
Qt.Key_Period: ”Key_Period”,
Qt.Key_Slash: ”Key_Slash”,
Qt.Key_0: ”Key_0”,
Qt.Key_1: ”Key_1”,
Qt.Key_2: ”Key_2”,
Qt.Key_3: ”Key_3”,
Qt.Key_4: ”Key_4”,
Qt.Key_5: ”Key_5”,
Qt.Key_6: ”Key_6”,
Qt.Key_7: ”Key_7”,
Qt.Key_8: ”Key_8”,
Qt.Key_9: ”Key_9”,
Qt.Key_Colon: ”Key_Colon”,
Qt.Key_Semicolon: ”Key_Semicolon”,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1205 / 1322

Qt.Key_Less: ”Key_Less”,
Qt.Key_Equal: ”Key_Equal”,
Qt.Key_Greater: ”Key_Greater”,
Qt.Key_Question: ”Key_Question”,
Qt.Key_At: ”Key_At”,
Qt.Key_BracketLeft: ”Key_BracketLeft”,
Qt.Key_Backslash: ”Key_Backslash”,
Qt.Key_BracketRight: ”Key_BracketRight”,
Qt.Key_AsciiCircum: ”Key_AsciiCircum”,
Qt.Key_Underscore: ”Key_Underscore”,
Qt.Key_QuoteLeft: ”Key_QuoteLeft”,
Qt.Key_BraceLeft: ”Key_BraceLeft”,
Qt.Key_Bar: ”Key_Bar”,
Qt.Key_BraceRight: ”Key_BraceRight”,
Qt.Key_AsciiTilde: ”Key_AsciiTilde”,

}

12.8.11 Messages

Messages module is used to display pop up dialog messages on the screen.
These messages are:

• defined in the INI file under the [DISPLAY] heading, and

• controlled by HAL pins.

Use this style if you need independent HAL pins for each dialog message.

12.8.11.1 Properties

BOLDTEXT
Generally is a title.

TEXT
Text below title, and usually longer.

DETAIL
Text hidden unless clicked on.

PINNAME
Basename of the HAL pin(s).

TYPE
Specifies whether it is a (can have dialog and status options together):

• status - shown in the status bar and the notify dialog.
Requires no user intervention.

• nonedialog - specifically does not show a dialog.

• okdialog - requiring the user to click OK to close the dialog.
OK messages have two HAL pins:
– One HAL pin to launch the dialog, and
– one to signify it is waiting for a response.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1206 / 1322

• yesnodialog - requiring the user to select yes or no buttons to close the dialog.
Yes/No messages have three HAL pins:
– One to show the dialog,
– One for waiting, and
– one for the answer.

• okcanceldialog - requiring the user to select ok or cancel
Ok/Cancel messages have _three HAL pins:
– One to show the dialog,
– One for waiting, and
– one for the answer.

• closepromptdialog - requiring the user to select

By default, STATUS messages for focus_overlay and alert sound will be sent when the dialog shows.
This allows screen focus dimming/blurring and sounds to be added to alerts.

12.8.11.2 HAL Pins

The HAL pin names would use these patterns:

<SCREEN BASENAME>.<PINNAME>
invoking s32 pin

<SCREEN BASENAME>.<PINNAME>-waiting
Waiting for the user’s response output bit pin

<SCREEN BASENAME>.<PINNAME>-response
The user response output bit pin

<SCREEN BASENAME>.<PINNAME>-response-s32
The user response output s32 pin

12.8.11.3 Examples

Here are sample INI message definition code blocks that would be found under the [DISPLAY] head-
ing:

• Status bar and desktop notify pop up message:
MESSAGE_BOLDTEXT = NONE
MESSAGE_TEXT = This is a statusbar test
MESSAGE_DETAILS = STATUS DETAILS
MESSAGE_TYPE = status
MESSAGE_PINNAME = statustest

• Pop up dialog asking a Yes/No question:
MESSAGE_BOLDTEXT = NONE
MESSAGE_TEXT = This is a yes no dialog test
MESSAGE_DETAILS = Y/N DETAILS
MESSAGE_TYPE = yesnodialog
MESSAGE_PINNAME = yndialogtest

• Pop up dialog asking an OK answer + Status bar and desktop notification:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1207 / 1322

MESSAGE_BOLDTEXT = This is the short text
MESSAGE_TEXT = This is the longer text of the both type test. It can be longer then the ←↩

status bar text
MESSAGE_DETAILS = BOTH DETAILS
MESSAGE_TYPE = okdialog status
MESSAGE_PINNAME = bothtest

The ScreenOptions widget can automatically set up the message system.

12.8.12 multimessages

Messages module is used to display pop up dialog messages on the screen.
These messages are:

• defined in the INI file under the [DISPLAY] heading, and

• controlled by one s32 HAL pin per defined id.

• each message is called by a corresponding number on the s32 pin.

Use this style of user messages for instance when a VFD sends error messages encoded as numbers.
It uses common invoke/response/wait HAL pins for all (per ID name) multimessage dialogs. The HAL
pin names would use these patterns:

<SCREEN BASENAME>.<ID NAME>
invoking s32 pin

<SCREEN BASENAME>.<ID NAME>-waiting
Waiting for the user’s response output bit pin

<SCREEN BASENAME>.<ID NAME>-response
The user response output bit pin

<SCREEN BASENAME>.<ID NAME>-response-s32
The user response output s32 pin

12.8.12.1 Properties

TITLE
This is the title shown on the dialog window.

TEXT
Text below title, and usually longer.

DETAIL
Text hidden unless clicked on.

TYPE
Specifies type of message the user sees (can have dialog and status options together):

• status - shown in the status bar and the notify dialog.
Requires no user intervention.

• nonedialog - specifically does not show a dialog.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1208 / 1322

• okdialog - requiring the user to click OK to close the dialog.
OK messages use two HAL pins:
– One HAL pin to launch the dialog, and
– one to signify it’s waiting for response.

• yesnodialog - requiring the user to select yes or no buttons to close the dialog.
Yes/No messages use three HAL pins:
– One to show the dialog,
– One for waiting, and
– one for the answer.

By default, STATUS messages for focus_overlay and alert sound will be sent when the dialog shows.
This allows screen focus dimming/blurring and sounds to be added to alerts.

12.8.12.2 Examples

Here are sample INI message definition code blocks that would be found under the [DISPLAY] head-
ing:
[DISPLAY]
MULTIMESSAGE_ID = VFD

MULTIMESSAGE_VFD_NUMBER = 1
MULTIMESSAGE_VFD_TYPE = okdialog status
MULTIMESSAGE_VFD_TITLE = VFD Error: 1
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR MESSAGE NUMBER 1
MULTIMESSAGE_VFD_DETAILS = DETAILS for VFD error 1
MULTIMESSAGE_VFD_ICON = WARNING

MULTIMESSAGE_VFD_NUMBER = 2
MULTIMESSAGE_VFD_TYPE = nonedialog status
MULTIMESSAGE_VFD_TITLE = VFD Error: 2
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR MESSAGE NUMBER 2
MULTIMESSAGE_VFD_DETAILS = DETAILS for VFD error 2
MULTIMESSAGE_VFD_ICON = INFO

12.8.13 Notify

Notify module is used to send messages that are integrated into the desktop.
It uses the pynotify library.
Ubuntu/Mint does not follow the standard so you can’t set how long the message stays up for.
I suggest fixing this with the notify-osd package available from this PPA (DISCONTINUED due to
move of Ubuntu to Gnome).
Notify keeps a list of all the alarm messages since starting in self.alarmpage.
If you click ’Show all messages’ in the notify popup, it will print them to the terminal.
The ScreenOptions widget can automatically set up the notify system.
Typically STATUS messages are used to sent notify messages.

https://launchpad.net/~leolik/+archive/leolik?field.series_filter=lucid

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1209 / 1322

12.8.13.1 Properties

You can set the:

title
Notification message title text.

message
Notification message content text.

icon
Notification message icon.

timeout
How long the message stays up for.

12.8.14 Preferences

Preferences module allows one to load and save preference data permanently to storage media.
The ScreenOptions widget can automatically set up the preference system.
QtVCP searches for the ScreenOptions widget first and, if found, calls _pref_init().
This will create the preferences object and return it to QtVCP to pass to all the widgets and add it to
the window object attributes.
In this case the preferences object would be accessible from the handler file’s initialized_ method
as self.w.PREFS_. Also all widgets can have access to a specific preferences file at initialization
time. The ScreenOptions widget can automatically set up the preference file.

12.8.15 Player

This module allows playing sounds using Gstreamer, beep and Espeak.
It can:

• play sound/music files using Gstreamer (non blocking),

• play sounds using the beep library (currently blocks while beeping),

• speak words using the espeak library (non blocking while speaking).

There are default alert sounds using Mint or FreeDesktop default sounds.
You can play arbitrary sounds or even songs by specifying the path.
STATUS has messages to control Player module.
The ScreenOptions widget can automatically set up the audio system.

12.8.15.1 Sounds

Alerts There are default alerts to choose from:

• ERROR

• READY

• ATTENTION

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1210 / 1322

• RING

• DONE

• LOGIN

• LOGOUT

Beeps There are three beeps:

• BEEP_RING

• BEEP_START

• BEEP

12.8.15.2 Usage

• Import Player module
Add this Python code to your import section:
############################
**** IMPORT SECTION ****
############################

from qtvcp.lib.audio_player import Player

• Instantiate Player module
Add this Python code to your instantiated section:
###
**** INSTANTIATE LIBRARIES SECTION ****
###

SOUND = Player()
SOUND._register_messages()

The _register_messages() function connects the audio player to the STATUS library so sounds can
be played with the STATUS message system.

12.8.15.3 Example

To play sounds upon STATUS messages, use these general syntaxes:
STATUS.emit(’play-alert’,’LOGOUT’)
STATUS.emit(’play-alert’,’BEEP’)
STATUS.emit(’play-alert’,’SPEAK This is a test screen for Q t V C P’)
STATUS.emit(’play-sound’, ’PATH TO SOUND’)

12.8.16 Virtual Keyboard

This library allows you to use STATUS messages to launch a virtual keyboard.
It uses Onboard or Matchbox libraries for the keyboard.

https://launchpad.net/onboard
https://git.yoctoproject.org/matchbox-keyboard/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1211 / 1322

12.8.17 Toolbar Actions

This library supplies prebuilt submenus and actions for toolbar menus and toolbar buttons.
Toolbuttons, menu and toolbar menus are:

• built in Qt Designer, and

• assigned actions/submenus in the handler file.

12.8.17.1 Actions

estop , power , load , reload , gcode_properties , run , pause , abort , block_delete , optional_stop , touchoffworkplace , touchofffixture , runfromline , load_calibration , load_halmeter , load_halshow , load_status , load_halscope , about , zoom_in , zoom_out , view_x , view_y , view_y2 , view_z , view_z2 , view_p , view_clear , show_offsets , quit , system_shutdown , tooloffsetdialog , originoffsetdialog , calculatordialog , alphamode , inhibit_selection , show_dimensions

Toggles dimensions display.

12.8.17.2 Submenus

recent_submenu , home_submenu , unhome_submenu , zero_systems_submenu , grid_size_submenu

Menu to set graphic grid size

12.8.17.3 Usage

Here is the typical code to add to the relevant handler file sections:
############################
**** IMPORT SECTION ****
############################

from qtvcp.lib.toolbar_actions import ToolBarActions

###
**** instantiate libraries section ****
###

TOOLBAR = ToolBarActions()

12.8.17.4 Examples

• Assigning Tool Actions To Toolbar Buttons
##
Special Functions called from QtVCP
##

At this point:
* the widgets are instantiated,
* the HAL pins are built but HAL is not set ready.
def initialized__(self):

TOOLBAR.configure_submenu(self.w.menuHoming, ’home_submenu’)
TOOLBAR.configure_action(self.w.actionEstop, ’estop’)
TOOLBAR.configure_action(self.w.actionQuit, ’quit’, lambda d:self.w.close())
TOOLBAR.configure_action(self.w.actionEdit, ’edit’, self.edit)
Add a custom function
TOOLBAR.configure_action(self.w.actionMyFunction, ’my_Function’, self.my_function)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1212 / 1322

• Add a custom toolbar function:
#####################
GENERAL FUNCTIONS
#####################

def my_function(self, widget, state):
print(’My function State = ()’.format(state))

12.8.18 Qt Vismach Machine Graphics library

Qt_vismach is a set of Python functions that can be used to create and animate models of ma-
chines.
Vismach:

• displays the model in a 3D viewport

• animates the model parts as the values of associated HAL pins change.

This is the Qt based version of the library, there is also a tkinter version available in LinuxCNC.
The Qt version allows embedding the simulation in other screens.

12.8.18.1 Builtin Samples

There are included sample panels in QtVCP for:

• a 3-Axis XYZ mill,

• a 5-Axis gantry mill,

• a 3-Axis mill with an A axis/spindle, and

• a scara mill.

Most of these samples, if loaded after a running LinuxCNC configuration (including non-QtVCP based
screens), will react to machine movement.
Some require HAL pins to be connected for movement.
From a terminal (pick one):
qtvcp vismach_mill_xyz
qtvcp vismach_scara
qtvcp vismach_millturn
qtvcp vismach_5axis_gantry

12.8.18.2 Primitives Library

Provides the basic building blocks of a simulated machine.

Collection
A collection is an object of individual machine parts.
This holds a hierarchical list of primitive shapes or STL objects that operations can be applied
to.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1213 / 1322

Translate
This object will perform an OpenGL translation calculation on a Collection object.
Translation refers to moving an object in straight line to a different position on screen.

Scale
This object will perform an OpenGL scale function on a collection object.

HalTranslate
This object will perform an OpenGL translation calculation on a Collection object, offset by
the HAL pin value.
Translation refers to moving an object in straight line to a different position on screen.
You can either:

• read a pin from a component owned by the Vismach object, or
• read a HAL system pin directly if the component argument is set to None.

Rotate
This object will perform an OpenGL rotation calculation on a Collection object.

HalRotate
This object will perform an OpenGL rotation calculation on a Collection object, offset by the
HAL pin value.
You can either:

• read a pin from a component owned by the vismach object, or
• read a HAL system pin directly if the component argument is set to None.

HalToolCylinder
This object will build a CylinderZ object that will change size and length based on loaded
tool dimensition (from the tool table)

It reads the halui.tool.diameter and motion.tooloffset.z HAL pins.
Example from mill_xyz sample:
toolshape = CylinderZ(0)
toolshape = Color([1, .5, .5, .5], [toolshape])
tool = Collection([

Translate([HalTranslate([tooltip], None, ”motion.tooloffset.z”, 0, 0, - ←↩
MODEL_SCALING)], 0, 0, 0),

HalToolCylinder(toolshape)
])

Track
Move and rotate an object to point from one capture() ’d coordinate system to another.
Base object to hold coordinates for primitive shapes.

CylinderX, CylinderY, CylinderZ
Build a cylinder on the X, Y or Z axis by giving endpoint (X, Y, or Z) and radii coordinates.

Sphere
Build a sphere from center and radius coordinates.

TriangleXY, TriangleXZ, TriangleYZ
Build a triangle in the specified plane by giving the corners Z coordinates for each side.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1214 / 1322

ArcX
Build an arc by specifying

Box
Build a box specified by the 6 vertex coordinates.

BoxCentered
Build a box centered on origin by specifying the width in X and Y, and the height in Z.

BoxCenteredXY
Build a box centered in X and Y, and running from Z=0, by specifying the width in X and Y,
and running up or down to the specified height in Z.

Capture
Capture current transformation matrix of a collection.

Note
This transforms from the current coordinate system to the viewport system, NOT to the world
system.

Hud
Heads up display draws a semi-transparent text box.
Use:

• HUD.strs for things that must be updated constantly,
• HUD.show(”stuff”) for one-shot things like error messages.

Color
Applies a color to the parts of a collection.

AsciiSTL, AsciiOBJ
Loads a STL or OBJ data file as a Vismach part.

12.8.18.3 Usage

Import a simulation Here is how one might import the XYZ_mill simulation in a QtVCP panel or
screen handler file.
############################
**** IMPORT SECTION ****
############################

import mill_xyz as MILL

Instantiate and use the simulation widget Instantiate the simulation widget and add it to the
screen’s main layout:
##
Special Functions called from QtVCP
##

At this point:
* the widgets are instantiated,
* the HAL pins are built but HAL is not set ready.
def initialized__(self):

machine = MILL.Window()
self.w.mainLayout.addWidget(machine)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1215 / 1322

12.8.18.4 More Information

More information on how to build a custom machine simulation in the Qt Vismach chapter.

12.9 QtVismach

Vismach is a set of Python functions that can be used to create and animate models of ma-
chines.
This chapter is about the Qt embedded version of Vismach, also see: https://sa-cnc.com/linuxcnc-
vismach/ .

12.9.1 Introduction

Vismach displays the model in a 3D viewport and the model parts are animated as the values of
associated HAL pins change.

https://sa-cnc.com/linuxcnc-vismach/
https://sa-cnc.com/linuxcnc-vismach/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1216 / 1322

Figure 12.110: QtVismach 3D Viewport

The Vismach 3D viewport view can be manipulated as follows:

• zoom by scroll wheel

• pan by middle button drag

• rotate by right-button drag

• tilt by left button drag

A Vismach model takes the form of a Python script and can use standard Python syntax.
This means that there is more than one way to lay out the script, but in the examples given in this
document the simplest and most basic of them will be used.
The basic sequence in creating the Vismach model is:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1217 / 1322

1. Create the parts

2. Define how they move

3. Assemble into movement groups

12.9.2 Hierarchy of Machine Design

The model follows logical tree design.
Picture the tree, with root/trunk, branches and smaller branches off it. If you move the larger branch,
smaller branches will move with it, but if you move the smaller branch, the larger will not.
Machine design follows that conceptual design.
Taking the mill shown in the 3D Viewport picture above for example:

• If you move X, it can move on its own,

• but if you move Y, it will also move X assembly, as it is attached to Y assembly.

So for this machine, the tree looks like this:
model
|
|---frame
| |
| |---base
| |
| |---column
| |
| |---top
|
|---yassembly
| |
| |---xassembly
| | |
| | |---xbase
| | |
| | |---work
| |
| |---ybase
|
|---zassembly

|
|---zframe
| |
| |---zbody
| |
| |---spindle
|
|---toolassembly

|
|---cat30
|
|---tool

|
|---tooltip
|
|---(tool cylinder function)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1218 / 1322

As you can see, the lowest parts must exist first before those can be grouped with others into an
assembly. So you build upwards from lowest point in tree and assemble them together.
The same is applicable for any design of machine: look at the machine arm example and you will see
that it starts with the tip and adds to the larger part of the arm, then it finally groups with the base.

12.9.3 Start the script

It is useful for testing to include the #!/usr/bin/env python3 shebang line to _allow the file to be
executed directly from the command line.
The first thing to do is to import the required libraries.
#!/usr/bin/env python3

import hal
import math
import sys

from qtvcp.lib.qt_vismach.qt_vismach import *

12.9.4 HAL pins.

Originally the vismach library required creating a component and connecting HAL pins to control the
simulation.
qt_vismach can read the HAL system pins directly or if you wish, to use separate HAL pins that you
must define in a HAL component:
c = hal.component(”samplegui”)
c.newpin(”joint0”, hal.HAL_FLOAT, hal.HAL_IN)
c.newpin(”joint1”, hal.HAL_FLOAT, hal.HAL_IN)
c.ready()

You can select between the two options in the functions that take these entries:

hal_comp
The HAL component Object or None.
In QtVCP if you are reading system pins directly, then the component argument is set to None.

hal_pin
The name of the BIT HAL IN pin that will change the color.
If hal_comp isNone then this must be the full name of a system pin otherwise this is the pin name
excluding the component name.

12.9.5 Creating Parts

12.9.5.1 Import STL or OBJ Files

It is probably easiest to:

• create geometry in a CAD package

• import into the model script using the AsciiSTL() or AsciiOBJ() functions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1219 / 1322

Both functions can take one of two named arguments, either a filename or data:
part = AsciiSTL(filename=”path/to/file.stl”)
part = AsciiSTL(data=”solid part1 facet normal ...”)
part = AsciiOBJ(filename=”path/to/file.obj”)
part = AsciiOBJ(data=”v 0.123 0.234 0.345 1.0 ...”)

• STL model parts are added to the Vismach space in the same locations as they were created in the
STL or OBJ space, i.e. ideally with a rotational point at their origin.

Note
It is much easier to move while building if the origin of the model is at a rotational pivot point.

12.9.5.2 Build from Geometric Primitives

Alternatively parts can be created inside the model script from a range of shape primitives.

assembly = collction([part1,part2,part3])
Collection is a general container of related parts

Many shapes are created at the origin and need to be moved to the required location after creation.

cylinder = CylinderX(x1, r1, x2, r2) , cylinder = CylinderY(y1, r1, y2, r2) , cylinder = CylinderZ(z1, r1, z2, r2)

Creates a (optionally tapered) cylinder on the given axis with the given radii at the given points
on the axis.

sphere = Sphere(x, y, z, r)
Creates a sphere of radius r at (x,y,z).

triangle = TriangleXY(x1, y1, x2, y2, x3, y3, z1, z2) , triangle = TriangleXZ(x1, z1, x2, z2, x3, z3, y1, y2) , triangle = TriangleYZ(y1, z1, y2, z2, y3, z3, x1, x2)

Creates a triangular plate between planes defined by the last two values parallel to the spec-
ified plane, with vertices given by the three coordinate pairs.

arc = ArcX(x1, x2, r1, r2, a1, a2)
Create an arc shape.

box = Box(x1, y1, z1, x2, y2, z2)
Creates a rectangular prism with opposite corners at the specified positions and edges parallel
to the XYZ axes.

box = BoxCentered(xw, yw, zw)
Creates an xw by yw by zw box centred on the origin.

box = BoxCenteredXY(xw, yw, z)
Creates a box ground on WY plane of width xw / yw and height z.

Composite parts may be created by assembling these primitives either at creation time or subse-
quently:
part1 = Collection([Sphere(100,100,100,50), CylinderX(100,40,150,30)])
part2 = Box(50,40,75,100,75,100)
part3 = Collection([part2, TriangleXY(10,10,20,10,15,20,100,101)])
part4 = Collection([part1, part2])

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1220 / 1322

12.9.6 Moving Model Parts

Parts may need to be moved in the Vismach space to assemble the model. The origin does not move -
Translate() and Rotate() move the Collection as you add parts, relative to a stationary origin.

12.9.6.1 Translating Model parts

part1 = Translate([part1], x, y, z)
Move part1 the specified distances in x, y and z.

12.9.6.2 Rotating Model Parts

part1 = Rotate([part1], theta, x, y, z)
Rotate the part by angle theta [degrees] about an axis between the origin and x, y, z.

12.9.7 Animating Parts

To animate themodel controlled by the values of HAL pins there are four functions: HalTranslate,
HalRotate, HalToolCylinder and HalToolTriangle.
For parts to move inside an assembly they need to have their HAL motions defined before being
assembled with the ”Collection” command.
The rotation axis and translation vector move with the part:

• as it is moved by the Vismach script during model assembly, or

• as it moves in response to the HAL pins as the model is animated.

12.9.7.1 HalTranslate

part = HalTranslate([part], hal_comp, hal_pin, xs, ys, zs)

part
A collection or part.
It can be pre-created earlier in the script, or could be created at this point if preferred, e.g.,

‘part1 = HalTranslate([Box(....)], ...)‘. +

hal_comp
The HAL component is the next argument.
In QtVCP if you are reading system pins directly then the component argument is set to None.

hal_pin
The name of the HAL pin that will animate the motion.
This needs to match an existing HAL pin that describes the joint position such as:
”joint.2.pos-fb”

Otherwise the component instance would be specified and the pin name of that component
would be specified. xs, ys, zs;; The X, Y, Z scales.
For a Cartesian machine created at 1:1 scale this would typically be 1,0,0 for a motion in
the positive X direction.
However if the STL file happened to be in cm and the machine was in inches, this could be
fixed at this point by using 0.3937 (= 1 cm/1 inch = 1 cm /2.54 cm) as the scale.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1221 / 1322

12.9.7.2 HalRotate

part = HalRotate([part], hal_comp, hal_pin, angle_scale, x, y, z)
This command is similar in its operation to HalTranslate, except that it is typically necessary to
move the part to the origin first to define the axis.

x, y, z
Defines the axis of rotation from the origin the point of coordinates (x,y,z).
When the part is moved back away from the origin to its correct location, the axis of rotation
can be considered to remain ”embedded” in the part.

angle_scale
Rotation angles are in degrees, so for a rotary joint with a 0-1 scaling you would need to use
an angle scale of 360.

12.9.7.3 HalToolCylinder

tool = HalToolCylinder()
Make a cylinder to represent a cylindrical mill tool, based on the tool table and current loaded
tool.

tool = HalToolCylinder()
toolshape = Color([1, .5, .5, .5],[tool])

or more compact:
toolshape = Color([1, .5, .5, .5], [HalToolCylinder()])

12.9.7.4 HalToolTriangle

tool = HalToolTriangle()
Make a triangle to represent a triangular lathe tool, based on the tool table and current loaded
tool.

tool = HalToolTriangle()
toolshape = Color([1, 1, 0, 1],[tool])

or more compact:
toolshape = Color([1, 1, 0, 1],[HalToolTriangle()])

12.9.7.5 HAL Adjustable Primitives

All shape primitives can have HAL pin names substituted for coordinates.
Either by adding the component object as the first variable and substituting the pinname string for a
coordinate, or
by substituting the full component/pinname string for a coordinate.

This example creates a rectangular prism with opposite corners at the specified positions and edges
parallel to the XYZ axes.
The Z start coordinate will be controlled by the HAL pin Zstart.
box = Box(component, x1, y1, ’Zstart’, x2, y2, z2)
box = Box(x1, y1, ’componentName.Zstart’, x2, y2, z2)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1222 / 1322

12.9.8 Assembling the model

In order for parts to move together they need to be assembled with the Collection() command.
It is important to assemble the parts and define their motions in the correct sequence.
For example to create a moving head milling machine with a rotating spindle and an animated draw
bar you would:

• Create the head main body.

• Create the spindle at the origin.

• Define the rotation.

• Move the head to the spindle or spindle to the head.

• Create the draw bar.

• Define the motion of the draw bar.

• Assemble the three parts into a head assembly.

• Define the motion of the head assembly.

In this example the spindle rotation is indicated by rotation of a set of drive dogs:
#Drive dogs
dogs = Box(-6,-3,94,6,3,100)
dogs = Color([1,1,1,1],[dogs])
dogs = HalRotate([dogs],c,”spindle”,360,0,0,1)
dogs = Translate([dogs],-1,49,0)

#Drawbar
draw = CylinderZ(120,3,125,3)
draw = Color([1,0,.5,1],[draw])
draw = Translate([draw],-1,49,0)
draw = HalTranslate([draw],c,”drawbar”,0,0,1)

head/spindle
head = AsciiSTL(filename=”./head.stl”)
head = Color([0.3,0.3,0.3,1],[head])
head = Translate([head],0,0,4)
head = Collection([head, tool, dogs, draw])
head = HalTranslate([head],c,”Z”,0,0,0.1)

base
base = AsciiSTL(filename=”./base.stl”)
base = Color([0.5,0.5,0.5,1],[base])
mount head on it
base = Collection([head, base])

Finally a single collection of all the machine parts, floor and work (if any) needs to be created.
For a serial machine each new part will be added to the collection of the previous part.
For a parallel machine there may be several ”base” parts.
Thus, for example, in scaragui.py link3 is added to link2, link2 to link1 and link1 to link0, so the final
model is created by:
model = Collection([link0, floor, table])

Whereas a VMC model with separate parts moving on the base might have
model = Collection([base, saddle, head, carousel])

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1223 / 1322

12.9.9 Other functions

12.9.9.1 Color

Sets the display color of the part.

part = Color([_colorspec_], [_part_])
Note that unlike the other functions, the part definition comes second in this case.

colorspec
Three (0-1.0) RGB values and opacity. [R,G,B,A]
For example [1.0,0,0,0.5] for a 50% opacity red.

12.9.9.2 HALColorFlip

Sets the display color of the part based on a designated HAL bit pin state.

part = HALColorFlip([_colorspec_], [_colorspec_], [_part_], hal_comp, hal_pin)
Note that unlike the other functions, the part definition comes second in this case.

colorspec
Three (0-1.0) RGB values and opacity.
For example [1.0,0,0,0.5] for a 50% opacity red.

hal_comp
The HAL component Object or None.
In QtVCP if you are reading system pins directly, then the component argument is set to None.

hal_pin
The name of the BIT HAL IN pin that will change the color.
if hal_comp is None then this must be the full name of a system pin other wise this is the pin
name excluding the component name.

12.9.9.3 HALColorRGB

Sets the display color of the part based on a designated HAL U32 pin value.
The color is decoded from the U32 value. each color is a 0-255 decimal value (shown here in hex)
red = 0xXXXXXXRR
green = 0xXXXXGGXX
blue = 0xXXBBXXXX
combined as 0xXXBBGGRR

part = HALColorRGB([_part_], hal_comp, hal_pin, alpha=1.0)

hal_comp
The HAL component Object or None.
In QtVCP if you are reading system pins directly, then the component argument is set to None.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1224 / 1322

hal_pin
The name of the U32 HAL IN pin that will change the color.
if hal_comp is None then this must be the full name of a system pin other wise this is the pin
name excluding the component name.

alpha=
Sets the opacity. (0-1.0)

12.9.9.4 Heads Up Display

Creates a heads-up display in the Vismach GUI to display items such as axis positions, titles, or mes-
sages.

myhud = Hud()

myhud = Hud()
myhud.show(”Mill_XYZ”)‘

12.9.9.5 HAL Heads Up Display

A more advanced version of the Hud that allows HAL pins to be displayed:

myhud = HalHud()

myhud = HalHud()
myhud.display_on_right()
myhud.set_background_color(0,.1,.2,0)
myHud.set_text_color(1,1,1)
myhud.show_top(”Mill_XYZ”)
myhud.show_top(”------------”)
myhud.add_pin(’axis-x: ’,”{:10.4f}”,”axis.x.pos-cmd”)
myhud.add_pin(’axis-y: ’,”{:10.4f}”,”axis.y.pos-cmd”)
myhud.add_pin(’axis-z: ’,”{:10.4f}”,”axis.z.pos-cmd”)
myhud.show(”-------------”)

Some of the available HalHUD function:

• set_background_color(red, green, blue, alpha)

• add_pin(text, format, pinname)

• set_text_color(red, green, blue)

12.9.9.6 HideCollection

HideCollection is a container that uses a HAL pin to control display of the ←↩
contained parts. +

A logic high on the HAL pin will hide the contained parts.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1225 / 1322

comp.newpin(”hide-chuck”, hal.HAL_BIT, hal.HAL_IN)
<snip make a machine with an A axis chuck assembly>
chuckassembly = HideCollection([chuckassembly],comp,’hide-chuck’)
also can be used like this
chuckassembly = HideCollection([chuckassembly],None,’myvismach.hide-chuck’)

12.9.9.7 Plot Color Based on Motion Type

If you wish to plot different colors for different motions you need to add some more Python code.
Add this at the top of the file:
from qtvcp.core import Status
STATUS = Status()

and this to the Window class:
STATUS.connect(’motion-type-changed’, lambda w, data: v.choosePlotColor(data))

uncomment to change feed color and to see all colors printed to the terminal
#v.setColorsAttribute(’FEED’,(0,1,0))
#print(v.colors)

You can set DEFAULT, FEED, TRAVERSE, ARC, PROBE, ROTARYINDEX, TOOLCHANGE colors with
setColorsAttribute().

12.9.9.8 Capture

• tooltip = Capture()
Think of this as an invisible part that needs to be attached to the tooltip to track the position and
orientation of the tool coordinate system. It is actually a transformation matrix that is constantly
updated as the model moves.

• work = Capture()
Same as above but attached to the work table to track the work coordinate system.

12.9.9.9 main

This is the command that makes it all happen, creates the display, etc. if invoked directly from Python.
Usually this file is imported by QtVCP and the window() object is instantiated and embedded into
another screen.

main(model, tooltip, work, size=10, hud=myhud, rotation_vectors=None, lat=0, lon=0)

model
Should be a collection that contains all the machine parts.

tooltip and _work_
Need to be created by Capture() to draw the backplot which is basically the tooltip position
drawn in the work coordinate system. See mill_xyz.py for an example of how to connect
the tool tip to a tool and the tool to the model.

size
Sets the extent of the volume visualized in the initial view.

hud
refers to a head-up display.

_rotation_vectors_ or _lat, lon_
Can be used to set the original viewpoint. It is advisable to do as the default initial viewpoint
is rather unhelpful from immediately overhead.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1226 / 1322

12.9.10 Tips

Create an axes origin marker to be able to see parts relative to it, for construction purposes. You can
remove it when you are done.
build axis origin markers
X = CylinderX(-500,1,500,1)
X = Color([1, 0, 0, 1], [X])
Y = CylinderY(-500,1,500,1)
Y = Color([0, 1, 0, 1], [Y])
Z = CylinderZ(-500,1,500,1)
Z = Color([0, 0, 1, 1], [Z])
origin = Collection([X,Y,Z])

Add it to the Window class Collection so it is never moved from the origin.
v.model = Collection([origin, model, world])

Start from the cutting tip and work your way back. Add each collection to the model at the origin and
run the script to confirm the location, then rotate/translate and run the script to confirm again.

12.9.11 Basic structure of a QtVismach script

imports
import hal
from qtvcp.lib.qt_vismach.qt_vismach import *

import Status for motion type messages
from qtvcp.core import Status
STATUS = Status()

create HAL pins here if needed
#c = hal.component(”samplegui”)
#c.newpin(”joint0”, hal.HAL_FLOAT, hal.HAL_IN)

create the floor, tool and work
floor = Box(-50, -50, -3, 50, 50, 0)
work = Capture()
tooltip = Capture()

Build and assemble the model
part1 = Collection([Box(-6,-3,94,6,3,100)])
part1 = Color([1,1,1,1],[part1])
part1 = HalRotate([part1],None,”joint.0.pos-fb”,360,0,0,1)
part1 = Translate([dogs],-1,49,0)

create a top-level model
model = Collection([base, saddle, head, carousel])

we want to either embed into qtvcp or display directly with PyQt5
so build a window to display the model

class Window(QWidget):

def __init__(self):
super(Window, self).__init__()
self.glWidget = GLWidget()
v = self.glWidget
v.set_latitudelimits(-180, 180)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1227 / 1322

world = Capture()

uncomment if there is a HUD
HUD needs to know where to draw
#v.hud = myhud
#v.hud.app = v

update plot color based on motion type
STATUS.connect(’motion-type-changed’, lambda w, data: v.choosePlotColor(data))

uncomment to change feed color
#v.setColorsAttribute(’FEED’,(0,1,0))
and to see all colors printed to the terminal
#print(v.colors)

v.model = Collection([model, world])
size = 600
v.distance = size * 3
v.near = size * 0.01
v.far = size * 10.0
v.tool2view = tooltip
v.world2view = world
v.work2view = work

mainLayout = QHBoxLayout()
mainLayout.addWidget(self.glWidget)
self.setLayout(mainLayout)

if you call this file directly from python3, it will display a PyQt5 window
good for confirming the parts of the assembly.

if __name__ == ’__main__’:
main(model, tooltip, work, size=600, hud=None, lat=-75, lon=215)

12.9.12 Builtin Vismach Sample Panels

QtVCP builtin Vismach Panels

12.10 QtVCP: Building Custom Widgets

12.10.1 Overview

Building custom widgets allows one to use the Qt Designer editor to place a custom widget rather
than doing it manually in a handler file.
A useful custom widgets would be a great way to contribute back to LinuxCNC.

12.10.1.1 Widgets

Widget is the general name for the UI objects such as buttons and labels in PyQt.
There are also special widgets made for LinuxCNC that make integration easier.
All these widgets can be placed with Qt Designer editor - allowing one to see the result before actually
loading the panel in LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1228 / 1322

12.10.1.2 Qt Designer

Qt Designer is a WYSIWYG (What You See is What You Get) editor for placing PyQt widgets.
It’s original intend was for building the graphic widgets for programs.
We leverage it to build screens and panels for LinuxCNC.
In Qt Designer, on the left side of the editor, you find three categories of LinuxCNC widgets:

• HAL only widgets.
• LinuxCNC controller widgets.
• dialog widgets.

For Qt Designer to add custom widgets to it’s editor it must have a plugin added to the right folder.

12.10.1.3 Initialization Process

QtVCP does extra setup for widgets subclassed from _HALWidgetBase, aka ”HAL-ified” widgets.
This includes:

• Injecting important variables,
• Calling an extra setup function
• Calling a closing cleanup function at shutdown.

These functions are not called when the Qt Designer editor displays the widgets.
When QtVCP builds a screen from the .ui file:

1. It searches for all the HAL-ified widgets.
2. It finds the ScreenOptions widget, to collect information it needs to inject into the other widgets
3. It instantiates each widget and if it is a HAL-ified widget, calls the hal_init() function.

hal_init() is defined in the base class and it:

a. Adds variables such as the preference file to every HAL-ified widget.
b. Call +_hal_init()+ on the widget.

+_hal_init()+ allows the widget designer to do setup that requires access to the extra
variables.

Here is a description of the extra variables injected into ”HAL-ified” widgets:

self.HAL_GCOMP
The HAL component instance

self.HAL_NAME
This widget’s name as a string

self.QT_OBJECT_
This widget’s object instance

self.QTVCP_INSTANCE_
The very top level parent of the screen

self.PATHS_
The QtVCP’s path library instance

self.PREFS_
The optional preference file instance

self.SETTINGS_
The Qsettings object instance

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1229 / 1322

12.10.1.4 cleanup process

When QtVCP closes, it calls the +_hal_cleanup()+ function on all HAL-ified widgets.
The base class creates an empty +_hal_cleanup()+ function, which can be redefined in the custom
widget subclass.
This can be used to do such things as record preferences, etc.
This function is not called when the Qt Designer editor displays the widgets.

12.10.2 Custom HAL Widgets

HAL widgets are the simplest to show example of.
qtvcp/widgets/simple_widgets.py holds many HAL only widgets.
Lets look at a snippet of simple_widgets.py:
In the Imports section This is where we import libraries that our widget class needs.
#!/usr/bin/env python3

###############################
Imports
###############################
from PyQt5 import QtWidgets # y1
from qtvcp.widgets.widget_baseclass \

import _HalWidgetBase, _HalSensitiveBase # y2
import hal # y3
In this case we need access to:

y1 PyQt’s QtWidgets library,y2 LinuxCNC’s HAL library, andy3 QtVCP’s widget baseclass ’s _HalSensitiveBase for automatic HAL pin setup and to disable/en-
able the widget (also known as input sensitivity).
There is also _HalToggleBase, and _HalScaleBase functions available in the library._HalToggleBase,
and _HalScaleBase.

In the WIDGET section Here is a custom widget based on PyQt’s QGridLayout widget.
QGridLayout allows one to:

• Place objects in a grid fashion.

• Enable/disable all widgets inside it based on a HAL pin state.

######################
WIDGET
######################

class Lcnc_GridLayout(QtWidgets.QWidget, _HalSensitiveBase): # y1
def __init__(self, parent = None): # y2

super(GridLayout, self).__init__(parent) # y3
Line by Line:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1230 / 1322

y1 This defines the class name and the libraries it inherits from.
This class, named Lcnc_GridLayout, inherits the functions of QWidget and +_HalSensitiveBase+.
+_HalSensitiveBase+ is subclass of +_HalWidgetBase+, the base class of most QtVCP widgets,
meaning it has all the functions of +_HalWidgetBase+ plus the functions of +_HalSensitiveBase+.
It adds the function to make the widget be enabled or disabled based on a HAL input BIT pin.y2 This is the function called when the widget is first made (said instantiated) - this is pretty stan-
dard.y3 This function initializes our widget’s Super classes.
Super just means the inherited baseclasses, that is QWidget and _HalSensitiveBase.
Pretty standard other than the widget name will change.

12.10.3 Custom Controller Widgets Using STATUS

Widget that interact with LinuxCNC’s controller are only a little more complicated and they require
some extra libraries.
In this cut down example we will add properties that can be changed in Qt Designer.
This LED indicator widget will respond to selectable LinuxCNC controller states.
#!/usr/bin/env python3

###############################
Imports
###############################
from PyQt5.QtCore import pyqtProperty
from qtvcp.widgets.led_widget import LED
from qtvcp.core import Status

###
**** instantiate libraries section ****
###
STATUS = Status()

##
custom widget class definition
##
class StateLED(LED):

def __init__(self, parent=None):
super(StateLED, self).__init__(parent)
self.has_hal_pins = False
self.setState(False)
self.is_estopped = False
self.is_on = False
self.invert_state = False

def _hal_init(self):
if self.is_estopped:

STATUS.connect(’state-estop’, lambda w:self._flip_state(True))
STATUS.connect(’state-estop-reset’, lambda w:self._flip_state(False))

elif self.is_on:
STATUS.connect(’state-on’, lambda w:self._flip_state(True))
STATUS.connect(’state-off’, lambda w:self._flip_state(False))

def _flip_state(self, data):
if self.invert_state:

data = not data
self.change_state(data)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1231 / 1322

###
Qt Designer properties setter/getters/resetters
##

invert status
def set_invert_state(self, data):

self.invert_state = data
def get_invert_state(self):

return self.invert_state
def reset_invert_state(self):

self.invert_state = False

machine is estopped status
def set_is_estopped(self, data):

self.is_estopped = data
def get_is_estopped(self):

return self.is_estopped
def reset_is_estopped(self):

self.is_estopped = False

machine is on status
def set_is_on(self, data):

self.is_on = data
def get_is_on(self):

return self.is_on
def reset_is_on(self):

self.is_on = False

#######################################
Qt Designer properties
#######################################
invert_state_status = pyqtProperty(bool, get_invert_state, set_invert_state, ←↩

reset_invert_state)
is_estopped_status = pyqtProperty(bool, get_is_estopped, set_is_estopped, ←↩

reset_is_estopped)
is_on_status = pyqtProperty(bool, get_is_on, set_is_on, reset_is_on)

12.10.3.1 In The Imports Section

This is where we import libraries that our widget class needs.
#!/usr/bin/env python3

###############################
Imports
###############################
from PyQt5.QtCore import pyqtProperty # y1
from qtvcp.widgets.led_widget import LED # y2
from qtvcp.core import Status # y3
We import

y1 pyqtProperty so we can interact with the Qt Designer editor,y2 LED because our custom widget is based on it,y3 Status because it gives us status messages from LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1232 / 1322

12.10.3.2 In The Instantiate Libraries Section

Here we create the Status library instance:
###
**** instantiate libraries section ****
###
STATUS = Status()

Typically we instantiated the library outside of the widget class so that the reference to it is global -
meaning you don’t need to use self. in front of it.
By convention we use all capital letters in the name for global references.

12.10.3.3 In The Custom Widget Class Definition Section

This is the meat and potatoes of our custom widget.
Class definition and instance initialization function

class StateLed(LED): # y1
def __init__(self, parent=None): # y2

super(StateLed, self).__init__(parent) # y3
self.has_hal_pins = False # y4
self.setState(False) # y5
self.is_estopped = False
self.is_on = False
self.invert_state = False

y1 Defines the name of our custom widget and what other class it inherits from.
In this case we inherit LED - a QtVCP widget that represents a status light.y2 Typical of most widgets - called when the widget is first made.y3 Typical of most widgets - calls the parent (super) widget initialization code.
Then we set some attributes:y4 Inherited from Lcnc_Led - we set it here so no HAL pin is made.y5 Inherited from Lcnc_led - we set it to make sure the LED is off.

The other attributes are for the selectable options of our widget.
Widget’s HAL initialization function

def _hal_init(self):
if self.is_estopped:

STATUS.connect(’state-estop’, lambda w:self._flip_state(True))
STATUS.connect(’state-estop-reset’, lambda w:self._flip_state(False))

elif self.is_on:
STATUS.connect(’state-on’, lambda w:self._flip_state(True))
STATUS.connect(’state-off’, lambda w:self._flip_state(False))

This function connects STATUS (LinuxCNC status message library) to our widget, so that the LED will
on or off based on the selected state of the controller.
We have two states we can choose from is_estopped or is_on.
Depending on which is active our widget get connected to the appropriate STATUS messages.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1233 / 1322

+_hal_init()+ is called on each widget that inherits +_HalWidgetBase+, when QtVCP first builds the
screen.
You might wonder why it’s called on this widget since we didn’t have +_HalWidgetBase+ in our class
definition (class Lcnc_State_Led(Lcnc_Led):) - it’s called because Lcnc_Led inherits +_HalWidgetBase+.
In this function you have access to some extra information (though we don’t use them in this example):

self.HAL_GCOMP
the HAL component instance

self.HAL_NAME
This widget’s name as a string

self.QT_OBJECT_
This widget’s PyQt object instance

self.QTVCP_INSTANCE_
The very top level parent of the screen

self.PATHS_
The instance of QtVCP’s path library

self.PREFS_
the instance of an optional preference file

self.SETTINGS_
the Qsettings object

We could use this information to create HAL pins or look up image paths etc.
STATUS.connect(’state-estop’, lambda w:self._flip_state(True))

Lets look at this line more closely:

• STATUS is very common theme is widget building.
STATUS uses GObject message system to send messages to widgets that register to it.
This line is the registering process.

• state-estop is the message we wish to listen for and act on. There are many messages available.

• lambda w:self._flip_state(True) is what happens when the message is caught.
The lambda function accepts the widget instance (w) that GObject sends it and then calls the function
self._flip_state(True).
Lambda was used to strip the (w) object before calling the self._flip_state function.
It also allowed use to send self._flip_state() the True state.

def _flip_state(self, data):
if self.invert_state:

data = not data
self.change_state(data)

This is the function that actually flips the state of the LED.
It is what gets called when the appropriate STATUS message is accepted.
STATUS.connect(’current-feed-rate’, self._set_feedrate_text)

The function called looks like this:
def _set_feedrate_text(self, widget, data):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1234 / 1322

in which the widget and any data must be accepted by the function.
###
Qt Designer properties setter/getters/resetters
##

invert status
def set_invert_state(self, data):

self.invert_state = data
def get_invert_state(self):

return self.invert_state
def reset_invert_state(self):

self.invert_state = False

machine is estopped status
def set_is_estopped(self, data):

self.is_estopped = data
def get_is_estopped(self):

return self.is_estopped
def reset_is_estopped(self):

self.is_estopped = False

machine is on status
def set_is_on(self, data):

self.is_on = data
def get_is_on(self):

return self.is_on
def reset_is_on(self):

self.is_on = False

This is how Qt Designer sets the attributes of the widget.
This can also be called directly in the widget.

#######################################
Qt Designer properties
#######################################
invert_state_status = pyqtProperty(bool, get_invert_state, set_invert_state, ←↩

reset_invert_state)
is_estopped_status = pyqtProperty(bool, get_is_estopped, set_is_estopped, ←↩

reset_is_estopped)
is_on_status = pyqtProperty(bool, get_is_on, set_is_on, reset_is_on)

This is the registering of properties in Qt Designer.
The property name:

• is the text used in Qt Designer,

• cannot be the same as the attributes they represent.

These properties show in Qt Designer in the order they appear here.

12.10.4 Custom Controller Widgets with Actions

Here is an example of a widget that sets the user reference system.
It changes:

• the machine controller state using the ACTION library,

• whether the button can be clicked or not using the STATUS library.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1235 / 1322

import os
import hal

from PyQt5.QtWidgets import QWidget, QToolButton, QMenu, QAction
from PyQt5.QtCore import Qt, QEvent, pyqtProperty, QBasicTimer, pyqtSignal
from PyQt5.QtGui import QIcon

from qtvcp.widgets.widget_baseclass import _HalWidgetBase
from qtvcp.widgets.dialog_widget import EntryDialog
from qtvcp.core import Status, Action, Info

Instantiate the libraries with global reference
STATUS gives us status messages from LinuxCNC
INFO holds INI details
ACTION gives commands to LinuxCNC
STATUS = Status()
INFO = Info()
ACTION = Action()

class SystemToolButton(QToolButton, _HalWidgetBase):
def __init__(self, parent=None):

super(SystemToolButton, self).__init__(parent)
self._joint = 0
self._last = 0
self._block_signal = False
self._auto_label_flag = True
SettingMenu = QMenu()
for system in(’G54’, ’G55’, ’G56’, ’G57’, ’G58’, ’G59’, ’G59.1’, ’G59.2’, ’G59.3’):

Button = QAction(QIcon(’exit24.png’), system, self)
Button.triggered.connect(self[system.replace(’.’,’_’)])
SettingMenu.addAction(Button)

self.setMenu(SettingMenu)
self.dialog = EntryDialog()

def _hal_init(self):
if not self.text() == ’’:

self._auto_label_flag = False
def homed_on_test():

return (STATUS.machine_is_on()
and (STATUS.is_all_homed() or INFO.NO_HOME_REQUIRED))

STATUS.connect(’state-off’, lambda w: self.setEnabled(False))
STATUS.connect(’state-estop’, lambda w: self.setEnabled(False))
STATUS.connect(’interp-idle’, lambda w: self.setEnabled(homed_on_test()))
STATUS.connect(’interp-run’, lambda w: self.setEnabled(False))
STATUS.connect(’all-homed’, lambda w: self.setEnabled(True))
STATUS.connect(’not-all-homed’, lambda w, data: self.setEnabled(False))
STATUS.connect(’interp-paused’, lambda w: self.setEnabled(True))
STATUS.connect(’user-system-changed’, self._set_user_system_text)

def G54(self):
ACTION.SET_USER_SYSTEM(’54’)

def G55(self):
ACTION.SET_USER_SYSTEM(’55’)

def G56(self):
ACTION.SET_USER_SYSTEM(’56’)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1236 / 1322

def G57(self):
ACTION.SET_USER_SYSTEM(’57’)

def G58(self):
ACTION.SET_USER_SYSTEM(’58’)

def G59(self):
ACTION.SET_USER_SYSTEM(’59’)

def G59_1(self):
ACTION.SET_USER_SYSTEM(’59.1’)

def G59_2(self):
ACTION.SET_USER_SYSTEM(’59.2’)

def G59_3(self):
ACTION.SET_USER_SYSTEM(’59.3’)

def _set_user_system_text(self, w, data):
convert = { 1:”G54”, 2:”G55”, 3:”G56”, 4:”G57”, 5:”G58”, 6:”G59”, 7:”G59.1”, 8:”G59 ←↩

.2”, 9:”G59.3”}
if self._auto_label_flag:

self.setText(convert[int(data)])

def ChangeState(self, joint):
if int(joint) != self._joint:

self._block_signal = True
self.setChecked(False)
self._block_signal = False
self.hal_pin.set(False)

##############################
required class boiler code
##############################

def __getitem__(self, item):
return getattr(self, item)

def __setitem__(self, item, value):
return setattr(self, item, value)

12.10.5 Stylesheet Property Changes Based On Events

It’s possible to have widgets restyled when events change. You must explicitly ”polish” the widget
to have PyQt redo the style.
This is a relatively expensive function so should be used sparingly.
This example sets an isHomed property based on LinuxCNC’s homed state and in turn uses it to change
stylesheet properties:
This example will set the property isHomed based on LinuxCNC’s homed state.
class HomeLabel(QLabel, _HalWidgetBase):

def __init__(self, parent=None):
super(HomeLabel, self).__init__(parent)
self.joint_number = 0
for stylesheet reading
self._isHomed = False

def _hal_init(self):
super(HomeLabel, self)._hal_init()

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1237 / 1322

STATUS.connect(’homed’, lambda w,d: self._home_status_polish(int(d), True))
STATUS.connect(’unhomed’, lambda w,d: self._home_status_polish(int(d), False))

update ishomed property
polish widget so stylesheet sees the property change
some stylesheets color the text on home/unhome
def _home_status_polish(self, d, state):

if self.joint_number = d:
self.setProperty(’isHomed’, state)
self.style().unpolish(self)
self.style().polish(self)

Qproperty getter and setter
def getisHomed(self):

return self._isHomed
def setisHomed(self, data):

self._isHomed = data

Qproperty
isHomed = QtCore.pyqtProperty(bool, getisHomed, setisHomed)

Here is a sample stylesheet to change text color based on home state.
In this case any widget based on the HomeLabel widget above will change text color.
You would usually pick specific widgets using HomeLabel #specific_widget_name[homed=true]:
HomeLabel[homed=true] {

color: green;
}
HomeLabel[homed=false] {

color: red;
}

12.10.6 Use Stylesheets To Change Custom Widget Properties

class Label(QLabel):
def __init__(self, parent=None):

super(Label, self).__init__(parent)
alternateFont0 = self.font

Qproperty getter and setter
def getFont0(self):

return self.aleternateFont0
def setFont0(self, value):

self.alternateFont0(value)
Qproperty
styleFont0 = pyqtProperty(QFont, getFont0, setFont0)

Sample stylesheet that sets a custom widget property.
Label{

qproperty-styleFont0: ”Times,12,-1,0,90,0,0,0,0,0”;
}

12.10.7 Widget Plugins

We must register our custom widget for Qt Designer to use them.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1238 / 1322

Here are a typical samples.
They would need to be added to qtvcp/plugins/
Then qtvcp/plugins/qtvcp_plugin.py would need to be adjusted to import them.

12.10.7.1 Gridlayout Example

#!/usr/bin/env python3

from PyQt5 import QtCore, QtGui
from PyQt5.QtDesigner import QPyDesignerCustomWidgetPlugin
from qtvcp.widgets.simple_widgets import Lcnc_GridLayout
from qtvcp.widgets.qtvcp_icons import Icon
ICON = Icon()

####################################
GridLayout
####################################
class LcncGridLayoutPlugin(QPyDesignerCustomWidgetPlugin):

def __init__(self, parent = None):
QPyDesignerCustomWidgetPlugin.__init__(self)
self.initialized = False

def initialize(self, formEditor):
if self.initialized:

return
self.initialized = True

def isInitialized(self):
return self.initialized

def createWidget(self, parent):
return Lcnc_GridLayout(parent)

def name(self):
return ”Lcnc_GridLayout”

def group(self):
return ”LinuxCNC - HAL”

def icon(self):
return QtGui.QIcon(QtGui.QPixmap(ICON.get_path(’lcnc_gridlayout’)))

def toolTip(self):
return ”HAL enable/disable GridLayout widget”

def whatsThis(self):
return ””

def isContainer(self):
return True

def domXml(self):
return ’<widget class=”Lcnc_GridLayout” name=”lcnc_gridlayout” />\n’

def includeFile(self):
return ”qtvcp.widgets.simple_widgets”

12.10.7.2 SystemToolbutton Example

#!/usr/bin/env python3

from PyQt5 import QtCore, QtGui
from PyQt5.QtDesigner import QPyDesignerCustomWidgetPlugin
from qtvcp.widgets.system_tool_button import SystemToolButton
from qtvcp.widgets.qtvcp_icons import Icon
ICON = Icon()

####################################
SystemToolButton

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1239 / 1322

####################################
class SystemToolButtonPlugin(QPyDesignerCustomWidgetPlugin):

def __init__(self, parent = None):
super(SystemToolButtonPlugin, self).__init__(parent)
self.initialized = False

def initialize(self, formEditor):
if self.initialized:

return
self.initialized = True

def isInitialized(self):
return self.initialized

def createWidget(self, parent):
return SystemToolButton(parent)

def name(self):
return ”SystemToolButton”

def group(self):
return ”LinuxCNC - Controller”

def icon(self):
return QtGui.QIcon(QtGui.QPixmap(ICON.get_path(’systemtoolbutton’)))

def toolTip(self):
return ”Button for selecting a User Coordinate System”

def whatsThis(self):
return ””

def isContainer(self):
return False

def domXml(self):
return ’<widget class=”SystemToolButton” name=”systemtoolbutton” />\n’

def includeFile(self):
return ”qtvcp.widgets.system_tool_button”

12.10.7.3 Making a plugin with a MenuEntry dialog box

It possible to add an entry to the dialog that pops up when you right click the widget in the layout.
This can do things such as selecting options in a more convenient way.
This is the plugin used for action buttons.
#!/usr/bin/env python3

import sip
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtDesigner import QPyDesignerCustomWidgetPlugin, \

QPyDesignerTaskMenuExtension, QExtensionFactory, \
QDesignerFormWindowInterface, QPyDesignerMemberSheetExtension

from qtvcp.widgets.action_button import ActionButton
from qtvcp.widgets.qtvcp_icons import Icon
ICON = Icon()

Q_TYPEID = {
’QDesignerContainerExtension’: ’org.qt-project.Qt.Designer.Container’,
’QDesignerPropertySheetExtension’: ’org.qt-project.Qt.Designer.PropertySheet’,
’QDesignerTaskMenuExtension’: ’org.qt-project.Qt.Designer.TaskMenu’,
’QDesignerMemberSheetExtension’: ’org.qt-project.Qt.Designer.MemberSheet’

}

####################################
ActionBUTTON
####################################
class ActionButtonPlugin(QPyDesignerCustomWidgetPlugin):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1240 / 1322

The __init__() method is only used to set up the plugin and define its
initialized variable.
def __init__(self, parent=None):

super(ActionButtonPlugin, self).__init__(parent)
self.initialized = False

The initialize() and isInitialized() methods allow the plugin to set up
any required resources, ensuring that this can only happen once for each
plugin.
def initialize(self, formEditor):

if self.initialized:
return

manager = formEditor.extensionManager()
if manager:

self.factory = ActionButtonTaskMenuFactory(manager)
manager.registerExtensions(self.factory, Q_TYPEID[’QDesignerTaskMenuExtension’ ←↩

])
self.initialized = True

def isInitialized(self):
return self.initialized

This factory method creates new instances of our custom widget
def createWidget(self, parent):

return ActionButton(parent)

This method returns the name of the custom widget class
def name(self):

return ”ActionButton”

Returns the name of the group in Qt Designer’s widget box
def group(self):

return ”LinuxCNC - Controller”

Returns the icon
def icon(self):

return QtGui.QIcon(QtGui.QPixmap(ICON.get_path(’actionbutton’)))

Returns a tool tip short description
def toolTip(self):

return ”Action button widget”

Returns a short description of the custom widget for use in a ”What’s
This?” help message for the widget.
def whatsThis(self):

return ””

Returns True if the custom widget acts as a container for other widgets;
def isContainer(self):

return False

Returns an XML description of a custom widget instance that describes
default values for its properties.
def domXml(self):

return ’<widget class=”ActionButton” name=”actionbutton” />\n’

Returns the module containing the custom widget class. It may include
a module path.
def includeFile(self):

return ”qtvcp.widgets.action_button”

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1241 / 1322

class ActionButtonDialog(QtWidgets.QDialog):

def __init__(self, widget, parent = None):

QtWidgets.QDialog.__init__(self, parent)

self.widget = widget

self.previewWidget = ActionButton()

buttonBox = QtWidgets.QDialogButtonBox()
okButton = buttonBox.addButton(buttonBox.Ok)
cancelButton = buttonBox.addButton(buttonBox.Cancel)

okButton.clicked.connect(self.updateWidget)
cancelButton.clicked.connect(self.reject)

layout = QtWidgets.QGridLayout()
self.c_estop = QtWidgets.QCheckBox(”Estop Action”)
self.c_estop.setChecked(widget.estop)
layout.addWidget(self.c_estop)

layout.addWidget(buttonBox, 5, 0, 1, 2)
self.setLayout(layout)

self.setWindowTitle(self.tr(”Set Options”))

def updateWidget(self):

formWindow = QDesignerFormWindowInterface.findFormWindow(self.widget)
if formWindow:

formWindow.cursor().setProperty(”estop_action”,
QtCore.QVariant(self.c_estop.isChecked()))

self.accept()

class ActionButtonMenuEntry(QPyDesignerTaskMenuExtension):

def __init__(self, widget, parent):
super(QPyDesignerTaskMenuExtension, self).__init__(parent)
self.widget = widget
self.editStateAction = QtWidgets.QAction(
self.tr(”Set Options...”), self)

self.editStateAction.triggered.connect(self.updateOptions)

def preferredEditAction(self):
return self.editStateAction

def taskActions(self):
return [self.editStateAction]

def updateOptions(self):
dialog = ActionButtonDialog(self.widget)
dialog.exec_()

class ActionButtonTaskMenuFactory(QExtensionFactory):
def __init__(self, parent = None):

QExtensionFactory.__init__(self, parent)

def createExtension(self, obj, iid, parent):

if not isinstance(obj, ActionButton):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1242 / 1322

return None
if iid == Q_TYPEID[’QDesignerTaskMenuExtension’]:

return ActionButtonMenuEntry(obj, parent)
elif iid == Q_TYPEID[’QDesignerMemberSheetExtension’]:

return ActionButtonMemberSheet(obj, parent)
return None

12.11 QtVCP Handler File Code Snippets

12.11.1 Preference File Loading/Saving

Here is how to load and save preferences at launch and closing time.
Prerequisites

• Preference file option must be set in the ScreenOptions widget.

• Preference file path must be set in the INI configuration.

Reading preferences at launch time Under the def initialized__(self): function add:
if self.w.PREFS_:

variable name (entry name, default value, type, section name)
self.int_value = self.w.PREFS_.getpref(’Integer_value’, 75, int, ’CUSTOM_FORM_ENTRIES’)
self.string_value = self.w.PREFS_.getpref(’String_value’, ’on’, str, ’ ←↩

CUSTOM_FORM_ENTRIES’)

Writing preferences at close time In the closing_cleanup__() function, add:
if self.w.PREFS_:

variable name (entry name, variable name, type, section name)
self.w.PREFS_.putpref(’Integer_value’, self.integer_value, int, ’CUSTOM_FORM_ENTRIES’)
self.w.PREFS_.putpref(’String_value’, self.string_value, str, ’CUSTOM_FORM_ENTRIES’)

12.11.2 Use QSettings To Read/Save Variables

Here is how to load and save variables using PyQt’s QSettings functions:
Good practices

• Use Group to keep names organized and unique.

• Account for none value returned when reading a setting which has no entry.

• Set defaults to cover the first time it is run using the or _<default_value>_ syntax.

Note
The file is actually saved in ~/.config/QtVcp

Example In this example:

• We add or 20 and or 2.5 as defaults.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1243 / 1322

• The names MyGroupName, int_value, float_value, myInteger, and myFloat are user defined.

• Under the def initialized__(self): function add:
set recorded columns sort settings
self.SETTINGS_.beginGroup(”MyGroupName”)
self.int_value = self.SETTINGS_.value(’myInteger’, type = int) or 20
self.float_value = self.SETTINGS_.value(’myFloat’, type = float) or 2.5
self.SETTINGS_.endGroup()

• Under the def closing_cleanup__(self): function add:
save values with QSettings
self.SETTINGS_.beginGroup(”MyGroupName”)
self.SETTINGS_.setValue(’myInteger’, self.int_value)
self.SETTINGS_.setValue(’myFloat’, self.float_value)
self.SETTINGS_.endGroup()

12.11.3 Add A Basic Style Editor

Being able to edit a style on a running screen is convenient.
Import StyleSheetEditor module in the IMPORT SECTION:
from qtvcp.widgets.stylesheeteditor import StyleSheetEditor as SSE

Instantiate StyleSheetEditor module in the INSTANTIATE SECTION:
STYLEEDITOR = SSE()

Create a keybinding in the INITIALIZE SECTION:Under the +__init__.(self, halcomp, widgets,
paths):+ function add:
KEYBIND.add_call(’Key_F12’,’on_keycall_F12’)

Create the key bound function in the KEYBINDING SECTION:
def on_keycall_F12(self,event,state,shift,cntrl):

if state:
STYLEEDITOR.load_dialog()

12.11.4 Request Dialog Entry

QtVCP uses STATUS messages to pop up and return information from dialogs.
Prebuilt dialogs keep track of their last position and include options for focus shading and sound.
To get information back from the dialog requires using a STATUS general message.
Import and Instantiate the Status module in the IMPORT SECTION
from qtvcp.core import Status
STATUS = Status()

This loads and initializes the Status library.
Register function for STATUS generalmessages in the INITIALIZE SECTIONUnder the +__init__.(self,
halcomp, widgets, paths)+ function:
STATUS.connect(’general’,self.return_value)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1244 / 1322

This registers STATUS to call the function self.return_value when a general message is sent.
Add entry dialog request function in the GENERAL FUNCTIONS section
def request_number(self):

mess = {’NAME’:’ENTRY’,’ID’:’FORM__NUMBER’, ’TITLE’:’Set Tool Offset’}
STATUS.emit(’dialog-request’, mess)

The function

• creates a Python dict with:

– NAME - needs to be set to the dialogs unique launch name.
NAME sets which dialog to request.
ENTRY or CALCULATOR allows entering numbers.

– ID - needs to be set to a unique name that the function supplies. ID should be a unique key.
– TITLE sets the dialog title.
– Arbitrary data can be added to the dict. The dialog will ignore them but send them back to the

return code.

• Sends the dict as a dialog-request STATUS message

Add message data processing function in the CALLBACKS FROM STATUS section.
Process the STATUS return message from set-tool-offset
def return_value(self, w, message):

num = message.get(’RETURN’)
id_code = bool(message.get(’ID’) == ’FORM__NUMBER’)
name = bool(message.get(’NAME’) == ’ENTRY’)
if id_code and name and num is not None:

print(’The {} number from {} was: {}’.format(name, id_code, num))

This catches all general messages so it must check the dialog type and id code to confirm it’s our
dialog. In this case we had requested an ENTRY dialog and our unique id was FORM_NUMBER, so now we
know the message is for us. ENTRY or CALCULATOR dialogs return a float number.

12.11.5 Speak a Startup Greeting

This requires the espeak library installed on the system.
Import and instantiate the Status in the IMPORT section
from qtvcp.core import Status
STATUS = Status()

Emit spoken message in the INITIALIZE SECTION Under the init.(self, halcomp, widgets,
paths) function:
STATUS.emit(’play-alert’,’SPEAK Please remember to oil the ways.’)

SPEAK is a keyword: everything after it will be pronounced.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1245 / 1322

12.11.6 ToolBar Functions

Toolbar buttons and submenus are added in Qt Designer but the code to make them do something is
added in the handler file. To add a submenus in Qt Designer:

• Add a Qaction by typing in the toolbar column then clicking the + icon on the right.

• This will add a sub column that you need to type a name into.

• Now the original Qaction will be a Qmenu instead.

• Now erase the Qaction you added to that Qmenu, the menu will stay as a menu.

In this example we assume you added a toolbar with one submenu and three actions. These actions
will be configured to create:

• a recent file selection menu,

• an about pop up dialog action,

• a quit program action, and

• a user defined function action.

The objectName of the toolbar button is used to identify the button when configuring it - descriptive
names help.
Using the action editor menu, right click and select edit.
Edit the object name, text, and button type for an appropriate action.
In this example the:

• submenu name must be menuRecent,

• actions names must be actionAbout, actionQuit, actionMyFunction

Loads the toolbar_actions library in the IMPORT SECTION
from qtvcp.lib.toolbar_actions import ToolBarActions

Instantiate ToolBarActions module in the INSTANTIATE LIBRARY SECTION
TOOLBAR = ToolBarActions()

Configure submenus and actions in the SPECIAL FUNCTIONS SECTIONUnder the def initialized__(self)
function add:
TOOLBAR.configure_submenu(self.w.menuRecent, ’recent_submenu’)
TOOLBAR.configure_action(self.w.actionAbout, ’about’)
TOOLBAR.configure_action(self.w.actionQuit, ’Quit’, lambda d:self.w.close())
TOOLBAR.configure_action(self.w.actionMyFunction, ’My Function’, self.my_function)

Define the user function in the GENERAL FUNCTIONS SECTION
def my_function(self, widget, state):

print(’My function State = ()’.format(state))

The function to be called if the action ”My Function” button is pressed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1246 / 1322

12.11.7 Add HAL Pins That Call Functions

In this way you don’t need to poll the state of input pins.
Loads the Qhal library in the IMPORT SECTION
from qtvcp.core import Qhal

This is to allow access to QtVCP’s HAL component. For more info: Qhal
Qhal’s newPin function returns a QPin object. For more info: QPin
Instantiate Qhal in the INSTANTIATE LIBRARY SECTION
QHAL = Qhal()

Add a function that gets called when the pin state changes Under the initialized__ function,
make sure there is an entry similar to this:
##
Special Functions called from QtVCP
##

at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
def initialized__(self):

self.pin_cycle_start_in = QHAL.newPin(’cycle-start-in’,QHAL.HAL_BIT, QHAL.HAL_IN)
self.pin_cycle_start_in.pinValueChanged.connect(lambda o,s: self.cycleStart(s))

Define the function called by pin state change in the GENERAL FUNCTIONS SECTION
#####################
general functions
#####################

def cycleStart(self, state):
if state:

tab = self.w.mainTab.currentWidget()
if tab in(self.w.tab_auto, self.w.tab_graphics):

ACTION.RUN(line=0)
elif tab == self.w.tab_files:

self.w.filemanager.load()
elif tab == self.w.tab_mdi:

self.w.mditouchy.run_command()

This function assumes there is a Tab widget, named mainTab, that has tabs with the names tab_auto,
tab_graphics, tab_filemanager and tab_mdi.
In this way the cycle start button works differently depending on what tab is shown.
This is simplified - checking state and error trapping might be helpful.

12.11.8 Read/Write System HAL Pins Directly

Sometimes you need to read a system pin and creating a HAL pin and connecting to it, is more work
then required. You can read it directly without connecting to it.
Here is how to read a pin, parameter, or signal:
self.h.hal.get_value(’spindle.0.at-speed’)

or use the Qhal library like this:
QHAL.getValue(’spindle.0.at-speed’)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1247 / 1322

Here is how to write to an unconnected pin or a non driven signal:
self.h.hal.set_p(’componentName.pinName’,’10’)
self.h.hal.set_s(’componentName.signalName’,’10’)

or use the Qhal library like this:
QHAL.setPin(’componentName.pinName’, ’10’)
QHAL.setSignal(’componentName.signalName’, ’10’)

Using self.h.hal orQHAL.hal allows access to the HAL python module functions: Python HAL Interface

12.11.9 Add A Special Max Velocity Slider Based On Percent

Some times you want to build a widget to do something not built in. The built in Max velocity
slider acts on units per minute, here we show how to do on percent.
The STATUS command makes sure the slider adjusts if LinuxCNC changes the current max velocity.
valueChanged.connect() calls a function when the slider is moved.
In Qt Designer add a QSlider widget called mvPercent, then add the following code to the handler
file:
#############################
SPECIAL FUNCTIONS SECTION
#############################

def initialized__(self):
self.w.mvPercent.setMaximum(100)
STATUS.connect(’max-velocity-override-changed’, \

lambda w, data: self.w.mvPercent.setValue(\
(data / INFO.MAX_TRAJ_VELOCITY)*100 \
)

)
self.w.mvPercent.valueChanged.connect(self.setMVPercentValue)

#####################
GENERAL FUNCTIONS
#####################

def setMVPercentValue(self, value):
ACTION.SET_MAX_VELOCITY_RATE(INFO.MAX_TRAJ_VELOCITY * (value/100.0))

12.11.10 Toggle Continuous Jog On and Off

Generally selecting continuous jogging is a momentary button, that requires you to select the previous
jog increment after.
We will build a button that toggles between continuous jog and whatever increment that was already
selected.
In Qt Designer:

• Add an ActionButton with no action

• Call it btn_toggle_continuous.

• Set the AbstractButton property checkable to True.

• Set the ActionButton properties incr_imperial_number and incr_mm_number to 0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1248 / 1322

• Use Qt Designer’s slot editor to use the button signal clicked(bool) to call form’s handler function
toggle_continuous_clicked().
See Using Qt Designer To Add Slots section for more information.

Then add this code snippets to the handler file under the initialized__ function:
at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
def initialized__(self):

STATUS.connect(’jogincrement-changed’, \
lambda w, d, t: self.record_jog_incr(d,t) \
)

set a default increment to toggle back to
self.L_incr = 0.01
self.L_text = ”0.01in”

In the GENERAL FUNCTIONS SECTION add:
#####################
GENERAL FUNCTIONS
#####################

if it isn’t continuous, record the latest jog increment
and untoggle the continuous button
def record_jog_incr(self,d, t):

if d != 0:
self.L_incr = d
self.L_text = t
self.w.btn_toggle_continuous.safecheck(False)

In the CALLBACKS FROM FORM SECTION add:
#######################
CALLBACKS FROM FORM
#######################

def toggle_continuous_clicked(self, state):
if state:

set continuous (call the actionbutton’s function)
self.w.btn_toggle_continuous.incr_action()

else:
reset previously recorded increment
ACTION.SET_JOG_INCR(self.L_incr, self.L_text)

12.11.11 Class Patch The File Manager Widget

Note
Class patching (monkey patching) is a little like black magic - so use it only when needed. The Major
problem is if the widget library functions are changed during development, the functions may break.
The File manager widget is designed to load a selected program in LinuxCNC.
But maybe you want to print the file name first.

We can ”class patch” the library to redirect the function call.
You can do this class patch inside or outside the HandlerClass instance.
This will change what self represents in the function.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1249 / 1322

Outside the HanderClass, self will be the patched class instance.
Inside the HanderClass, self will be the HandlerClass instance.
This would change what functions/variables you can access in the function.
Here we show an inside the HandlerClass example:
In the IMPORT SECTION add:
from qtvcp.widgets.file_manager import FileManager as FM

Here we are going to:

1. Keep a reference to the original function (1) so we can still call it

2. Redirect the class to call our custom function (2) in the handler file instead.
##
Special Functions called from QtVCP
##

For changing functions in widgets we can ’class patch’.
class patching must be done before the class is instantiated.
def class_patch__(self):

self.old_load = FM.load # keep a reference of the old function y1
FM.load = self.our_load # redirect function to our handle file function y2

3. Write a custom function to replace the original:
This function must have the same signature as the original function.
self is the HandlerClass instance not the patched class instance.
In this example we are still going to call the original function by using the reference to it we
recorded earlier.
It requires the first argument to be the widget instance, which in this case is self.w.filemanager
(the name given in the Qt Designer editor).
#####################
GENERAL FUNCTIONS
#####################

def our_load(self,fname):
print(fname)
self.old_load(self.w.filemanager,fname)

Now our custom function will print the file path to the terminal before loading the file. Obviously
boring but shows the principle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1250 / 1322

Note
There is another slightly different way to do this that can have advantages: you can store the refer-
ence to the original function in the original class.
The trick here is to make sure the function name you use to store it is not already used in the class.
super__ added to the function name would be a good choice.
We won’t use that in built in QtVCP widgets.
##
Special Functions called from QtVCP
##

For changing functions in widgets we can ’class patch’.
class patching must be done before the class is instantiated.
def class_patch__(self):

FM.super__load = FM.load # keep a reference of the old function in the original class
FM.load = self.our_load # redirect function to our handle file function

#####################
GENERAL FUNCTIONS
#####################

def our_load(self,fname):
print(fname)
self.w.filemanager.super__load(fname)

12.11.12 Adding Widgets Programmatically

In some situation it is only possible to add widgets with Python code rather then using the Qt
Designer editor.
When adding QtVCP widgets programmatically, sometimes there are extra steps to be taken.
Here we are going to add a spindle speed indicator bar and up-to-speed LED to a tab widget corner.
Qt Designer does not support adding corner widgets to tabs but PyQt does.
This is a cut down example from QtAxis screen’s handler file.
Import required libraries First we must import the libraries we need, if they’re not already imported
in the handler file:

• QtWidgets gives us access to the QProgressBar,

• QColor is for the LED color,

• StateLED is the QtVCP library used to create the spindle-at-speed LED,

• Status is used to catch LinuxCNC status information,

• Info gives us information about the machine configuration.

############################
**** IMPORT SECTION ****
############################

from PyQt5 import QtWidgets
from PyQt5.QtGui import QColor
from qtvcp.widgets.state_led import StateLED as LED
from qtvcp.core import Status, Info

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1251 / 1322

Instantiate Status and Info channels STATUS and INFO are initialized outside the handler class so
as to be global references (no self. in front):
##
**** instantiate libraries section ****
###

STATUS = Status()
INFO = Info()

Register STATUSmonitoring function For the spindle speed indicator we need to know the current
spindle speed. For this we register with STATUS to:

• Catch the actual-spindle-speed-changed signal

• Call the self.update_spindle() function

########################
**** INITIALIZE ****
########################
Widgets allow access to widgets from the QtVCP files.
At this point the widgets and HAL pins are not instantiated.
def __init__(self,halcomp,widgets,paths):

self.hal = halcomp
self.w = widgets
self.PATHS = paths

STATUS.connect(’actual-spindle-speed-changed’, \
lambda w,speed: self.update_spindle(speed))

Add the widgets to the tab We need to make sure the Qt Designer widgets are already built before
we try to add to them. For this, we add a call to self.make_corner_widgets() function to build our
extra widgets at the right time, i.e. under the initialized__() function:
##
Special Functions called from QtScreen
##

at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
def initialized__(self):

self.make_corner_widgets()

Create the widgets building functions Ok let’s code the function to build the widgets and add them
in the tab widget. We are assuming there is a tab widget built with Designer called rightTab.
We are assuming there is a tab widget built with Qt Designer called rightTab.
#####################
general functions
#####################

def make_corner_widgets(self):
make a spindle-at-speed green LED
self.w.led = LED() # y1
self.w.led.setProperty(’is_spindle_at_speed_status’,True) # y2
self.w.led.setProperty(’color’,QColor(0,255,0,255)) # y3
self.w.led.hal_init(HAL_NAME = ’spindle_is_at_speed’) # y4

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1252 / 1322

make a spindle speed bar
self.w.rpm_bar = QtWidgets.QProgressBar() # y5
self.w.rpm_bar.setRange(0, INFO.MAX_SPINDLE_SPEED) # y6
container
w = QtWidgets.QWidget() # y7
w.setContentsMargins(0,0,0,6)
w.setMinimumHeight(40)

layout
hbox = QtWidgets.QHBoxLayout() # y8
hbox.addWidget(self.w.rpm_bar) # y9
hbox.addWidget(self.w.led) # y10
w.setLayout(hbox)

add the container to the corner of the right tab widget
self.w.rightTab.setCornerWidget(w) # y11

y1 , y1 This initializes the basic StateLed widget and uses self.w.led as the reference from then on.y2 , y2 Since the state LED can be used for many indications, we must set the property that designates
it as a spindle-at-speed LED.y3 This sets it as green when on.y4 This is the extra function call required with some QtVCP widgets.
If HAL_NAME is omitted it will use the widget’s objectName if there is one.
It gives the special widgets reference to:

self.HAL_GCOMP
the HAL component instance

self.HAL_NAME
This widget’s name as a string

self.QT_OBJECT_
This widget’s PyQt object instance

self.QTVCP_INSTANCE_
The very top level parent of the screen

self.PATHS_
The instance of QtVCP’s path library

self.PREFS_
the instance of an optional preference file

self.SETTINGS_
the Qsettings objecty5 Initializes a PyQt5 QProgressBar.y6 Sets the max range of the progress bar to the max specified in the INI.y7 We create a QWidget

Since you can only add one widget to the tab corner and we want two there, we must add both
into a container.y8 add a QHBoxLayout to the QWidget.

y9 , y10 Then we add our QProgress bar and LED to the layout.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1253 / 1322

y11 Finally we add the QWidget (with our QProgress bar and LED in it) to the tab widget’s corner.

Create the STATUS monitoring function Now we build the function to actually update out the
QProgressBar when STATUS updates the spindle speed:
########################
callbacks from STATUS
########################
def update_spindle(self, data):

self.w.rpm_bar.setInvertedAppearance(bool(data<0)) # y1
self.w.rpm_bar.setFormat(’{0:d} RPM’.format(int(data))) # y2
self.w.rpm_bar.setValue(abs(data)) # y3

y1 In this case we chose to display left-to-right or right-to-left, depending if we are turning clockwise
or anticlockwise.y2 This formats the writing in the bar.y3 This sets the length of the colored bar.

12.11.13 Update/Read Objects Periodically

Sometimes you need to update a widget or read a value regularly that isn’t covered by normal
libraries.
Here we update an LED based on a watched HAL pin every 100 ms.
We assume there is an LED named led in the Qt Designer UI file.
Load the Qhal library for access to QtVCP’s HAL component In the IMPORT SECTION add:
from qtvcp.core import Qhal

Instantiate Qhal In the INSTANTIATE LIBRARY SECTION add:
QHAL = Qhal()

Now add/modify these sections to include code that is similar to this:
Register a function to be called at CYCLE_TIME period This is usually every 100 ms.
########################
**** INITIALIZE ****
########################
widgets allows access to widgets from the QtVCP files
at this point the widgets and hal pins are not instantiated
def __init__(self,halcomp,widgets,paths):

self.hal = halcomp
self.w = widgets
self.PATHS = paths

register a function to be called at CYCLE_TIME period (usually every 100 ms)
STATUS.connect(’periodic’, lambda w: self.update_periodic())

Create the custom function to be called periodically
#####################
general functions
#####################
def update_periodic(self):

data = QHAL.getvalue(’spindle.0.is-oriented’)
self.w.led.setState(data)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1254 / 1322

12.11.14 External Control With ZMQ

QtVCP can automatically set up ZMQ messaging to send and/or receive remote messages from ex-
ternal programs.
It uses ZMQ’s publish/subscribe messaging pattern.
As always, consider security before letting programs interface though messaging.

12.11.14.1 ZMQ Messages Reading

Sometimes you want to control the screen with a separate program.
Enable reception of ZMQ messages In the ScreenOptions widget, you can select the property
use_receive_zmq_option.
You can also set this property directly in the handler file, as in this sample.
We assume the ScreenOptions widget is called screen_options in Qt Designer:
########################
**** INITIALIZE ****
########################
widgets allows access to widgets from the QtVCP files
at this point the widgets and hal pins are not instantiated
def __init__(self,halcomp,widgets,paths):

directly select ZMQ message receiving
self.w.screen_options.setProperty(’use_receive_zmq_option’,True)

This allows an external program to call functions in the handler file.
Add a function to be called on ZMQ message reception Let’s add a specific function for testing.
You will need to run LinuxCNC from a terminal to see the printed text.
#####################
general functions
#####################
def test_zmq_function(self, arg1, arg2):

print(’zmq_test_function called: ’, arg1, arg2)

Create an external program sending ZMQ messages that will trigger function call Here is a
sample external program to call a function. It alternates between two data sets every second. Run
this in a separate terminal from LinuxCNC to see the sent messages.
#!/usr/bin/env python3
from time import sleep

import zmq
import json

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind(”tcp://127.0.0.1:5690”)
topic = b’QtVCP’

prebuilt message 1
makes a dict of function to call plus any arguments
x = { # y1
”FUNCTION”: ”test_zmq_function”,
”ARGS”: [True,200]

}
convert to JSON object
m1 = json.dumps(x)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1255 / 1322

prebuild message 2
x = { # y2
”FUNCTION”: ”test_zmq_function”,
”ARGS”: [False,0],

}
convert to JSON object
m2 = json.dumps(x)

if __name__ == ’__main__’:
while True:

print(’send message 1’)
socket.send_multipart([topic, bytes((m1).encode(’utf-8’))])
sleep(ms(1000))

print(’send message 2’)
socket.send_multipart([topic, bytes((m2).encode(’utf-8’))])
sleep(ms(1000))

y1 , y2 Set the function to call and the arguments to send to that function.

You will need to know the signature of the function you wish to call. Also note that the message is
converted to a JSON object. This is because ZMQ sends byte messages not Python objects. json
converts Python objects to bytes and will be converted back when received.

12.11.14.2 ZMQ Messages Writing

You may also want to communicate with an external program from the screen.
In the ScreenOptions widget, you can select the property use_send_zmq_message. You can also set
this property directly in the handler file, as in this sample.
We assume the ScreenOptions widget is called screen_options in Qt Designer:
Enable sending of ZMQ messages
########################
**** INITIALIZE ****
########################
’widgets’ allows access to widgets from the QtVCP files
at this point the widgets and hal pins are not instantiated
def __init__(self, halcomp,widgets,paths):

directly select ZMQ message sending
self.w.screen_options.setProperty(’use_send_zmq_option’,True)

This allows sending messages to a separate program.
The message sent will depend on what the external program is expecting.
Create a function to send ZMQ messages Let’s add a specific function for testing.
You will need to run LinuxCNC from a terminal to see the printed text.
Also, something needs to be added to call this function, such as a button click.
#####################
general functions
#####################
def send_zmq_message(self):

This could be any Python object JSON can convert
message = {”name”: ”John”, ”age”: 30}
self.w.screen_options.send_zmq_message(message)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1256 / 1322

Use or create a program that will receive ZMQ messages Here is a sample program that will
receive the message and print it to the terminal:
import zmq
import json

ZeroMQ Context
context = zmq.Context()

Define the socket using the ”Context”
sock = context.socket(zmq.SUB)

Define subscription and messages with topic to accept.
topic = ”” # all topics
sock.setsockopt_string(zmq.SUBSCRIBE, topic)
sock.connect(”tcp://127.0.0.1:5690”)

while True:
topic, message = sock.recv_multipart()
print(’{} sent message:{}’.format(topic,json.loads(message)))

12.11.15 Sending Messages To Status Bar Or Desktop Notify Dialogs

There are several ways to report information to the user.
A status bar is used for short information to show the user.

Note
Not all screens have a status bar.

Status bar usage example
self.w.statusbar.showMessage(message, timeout * 1000)

timeout is in seconds and we assume statusbar is the Qt Designer set name of the widget.
You can also use the Status library to send a message to the notify library if it is enabled (usually
set in ScreenOptions widget): This will send the message to the statusbar and the desktop notify
dialog.
The messages are also recorded until the user erases them using controls. The users can recall any
recorded messages.
There are several options:

STATUS.TEMPORARY_MESSAGE
Show the message for a short time only.

STATUS.OPERATOR_ERROR , STATUS.OPERATOR_TEXT , STATUS.NML_ERROR , STATUS.NML_TEXT

Example of sending an operator message:
STATUS.emit(’error’, STATUS.OPERATOR_ERROR, ’message’)

You can send messages thru LinuxCNC’s operator message functions. These are usually caught by
the notify system, so are equal to above. They would be printed to the terminal as well.
ACTION.SET_DISPLAY_MESSAGE(’MESSAGE’)
ACTION.SET_ERROR_MESSAGE(’MESSAGE’)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1257 / 1322

12.11.16 Catch Focus Changes

Focus is used to direct user action such as keyboard entry to the proper widget.
Get currently focused widget
fwidget = QtWidgets.QApplication.focusWidget()
if fwidget is not None:

print(”focus widget class: {} name: {} ”.format(fwidget, fwidget.objectName()))

Get focused widget when focus changes
at this point:
the widgets are instantiated.
the HAL pins are built but HAL is not set ready
def initialized__(self):

QtWidgets.QApplication.instance().event_filter.focusIn.connect(self.focusInChanged)

#####################
general functions
#####################

def focusInChanged(self, widget):
if isinstance(widget.parent(),type(self.w.gcode_editor.editor)):

print(’G-code Editor’)
elif isinstance(widget,type(self.w.gcodegraphics)):

print(’G-code Display’)
elif isinstance(widget.parent(),type(self.w.mdihistory)):

print(’MDI History’)

Notice we sometimes compare to widget, sometimes to widget.parent().
This is because some QtVCP widgets are built from multiple sub-widgets and the latter actually get
the focus; so we need to check the parent of those sub-widgets.
Other times the main widget is what gets the focus, e.g., the G-code display widget can be set to
accept the focus. In that case there are no sub-widgets in it, so comparing to the widget.parent()
would get you the container that holds the G-code widget.

12.11.17 Read Command Line Load Time Options

Some panels need information at load time for setup/options. QtVCP covers this requirement with -o
options.
The -o argument is good for a few, relatively short options, that can be added to the loading command
line.
For more involved information, reading an INI or preference file is probably a better idea.

Multiple -o options can be used on the command line so you must decode them.
self.w.USEROPTIONS_ will hold any found -o options as a list of strings. You must parse and define
what is accepted and what to do with it.
Example code to get -o options for camera number and window size

def initialized__(self):

set a default camera number
number = 0

check if there are any -o options at all
if self.w.USEROPTIONS_ is not None:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1258 / 1322

if in debug mode print the options to the terminal
LOG.debug(’cam_align user options: {}’.format(self.w.USEROPTIONS_))

go through the found options one by one
for num, i in enumerate(self.w.USEROPTIONS_):

if the -o option has ’size=’ in it, assume it’s width and height of ←↩
window

override the default width and height of the window
if ’size=’ in self.w.USEROPTIONS_[num]:

try:
strg = self.w.USEROPTIONS_[num].strip(’size=’)
arg = strg.split(’,’)
self.w.resize(int(arg[0]),int(arg[1]))

except Exception as e:
print(’Error with cam_align size setting:’,self.w.USEROPTIONS_[num ←↩

])

if the -o option has ’camnumber=’ in it, assume it’s the camera number ←↩
to use

elif ’camnumber=’ in self.w.USEROPTIONS_[num]:
try:

number = int(self.w.USEROPTIONS_[num].strip(’camnumber=’))
except Exception as e:

print(’Error with cam_align camera selection - not a number - using ←↩
0’)

set the camera number either as default or if -o option changed the ’number’ ←↩
variable, to that number.

self.w.camview._camNum = number

12.11.18 G-code to read Qt preferences

Here is how to create an O-word program to read a QtDragon preference file entry and add it as a
G-code parameter.
Calling this O-word will update the param toolToLoad
This uses Python hot comment to communicate with the embedded python instance.
See the Remap section of the Documents for a description.
(filename myofile.ngc)
o<myofile> sub

;py,from interpreter import *
;py,import os
;py,from qtvcp.lib.preferences import Access

; find and print the preference file path
;py,CONFPATH = os.environ.get(’CONFIG_DIR’, ’/dev/null’)
; adjust for your preference file name
;py,PREFFILE = os.path.join(CONFPATH,’qtdragon.pref’)
;py,print(PREFFILE)

; get an preference instance
;py,Pref = Access(PREFFILE)

; load a preference and print it
;py,this.params[’toolToLoad’]=Pref.getpref(’Tool to load’, 0, int,’CUSTOM_FORM_ENTRIES’)
;py,print(’Tool to load->:’,this.params[’toolToLoad’])

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1259 / 1322

; return the value
o<myofile> endsub [#<toolToLoad>]
M2

12.12 QtVCP Development

12.12.1 Overview

The intention of QtVCP is to supply an infrastructure to support screen and VCP panel building
for LinuxCNC.
By providing a diverse widget set and supporting custom coding, QtVCP hopes that development
energy will be expended in one toolkit rather than continuous re-invention.
By using the same toolkit across many screens/panels, users should have an easier time customiz-
ing/creating these, and developers should find it easier to help trouble shoot with less effort.
QtVCP uses a Qt Designer built .ui file and a Python handler file

• to load and control a screen/panel that displays Qt widgets and

• to control LinuxCNC’s motion controller or HAL pins.

There are builtin screens and panels, easily loaded by a user, or users can build/modify one of their
own.
QtVCP uses libraries and customwidgets to hide some of the complexity of interfacing to LinuxCNC.
By using QtVCP’s library rather than LinuxCNC’s, we can mitigate minor LinuxCNC code changes.

12.12.2 Builtin Locations

Builtin screens and panels are stored in separate folders:

• Screens in share/qtvcp/screens

• Panels in share/qtvcp/panels

• Stock images in share/qtvcp/images

Screens and panels are sorted by their folder name, which is also the name used to load them.
Inside the folder would be:

• the .ui file,

• the handler file, and

• possibly the .qss theme file.

12.12.3 QtVCP Startup To Shutdown

QtVCP source is located in +src/emc/usr_intf/qtvcp+ folder of LinuxCNC source tree.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1260 / 1322

12.12.3.1 QtVCP Startup

When QtVCP first starts:

1. It must decide if this object is a screen or a panel.

2. It searches for and collects information about paths of required files and useful folders.

3. It then:

a. Builds the HAL component,
b. Loads the window instance,
c. Adds handler extensions,
d. Installs an event filter.

Now the window/widgets are instantiated, the HAL pins are built. This also initiates the +_init_hal()+
function of the widgets. . The +initialized__()+ handler function is called . The STATUS library is
forced to update. . HAL component is set ready at this point. . A variety of optional switch arguments
are set, including calling a POSTGUI HAL file (if a screen). . Terminate signals are trapped and QtVCP
now polls for events.

12.12.3.2 QtVCP Shutdown

Finally when QtVCP is asked to shutdown:

1. It calls shutdown functions in the handler file,

2. STATUS monitoring is shut down

3. HAL component gets killed

12.12.4 Path Information

When QtVCP loads it collects paths information.
This is available in the handler file’s +__init__()+ function as path:

IMAGEDIR
Path of builtin images

SCREENDIR
Path of builtin motion controller screens

PANELDIR
Path of builtin accessory panels

WORKINGDIR
Path of where QtVCP was launched from

CONFIGPATH
Path of the launched configuration

BASEDIR
General path, used to derive all paths

BASENAME
Generic name used to derive all paths

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1261 / 1322

LIBDIR
Path of QtVCP’s Python library

HANDLER
Path of handler file

XML
Path of .ui file

DOMAIN
Path of translation

IS_SCREEN
Screen/panel switch

12.12.5 Idiosyncrasies

These try to cover non-obvious situations.

12.12.5.1 Error Code Collecting

LinuxCNC’s error code collecting can only be read from one place.
When read, it is consumed, i.e. no other object can read it.
In QtVCP screens, it is recommended to use the ScreenOptions widget to set up error reading.
Errors are then sent to other objects via STATUS signals.

12.12.5.2 Jog Rate

LinuxCNC has no internal record of jog rate: you must specify it at the time of jogging.
QtVCP uses the STATUS library to keep track of the latest linear and angular jog rates.
It is always specified in machine units per minute and must be converted when in non-machine
units mode.
So, if your machine is imperial based but you are in metric mode, changes to jog rate sent to ACTION
functions must be converted to imperial.
In the same manner, if the machine is metric based and you are in imperial mode, changes to jog rate
must be sent to ACTION functions in metric units.
For angular jog rates the units don’t change in metric/imperial mode so you can send them to ACTION
functions without conversion.
While you are free to ignore this jogging record while building screens, anyone modifying your screen
and using the builtin jog rate widgets would not get the desired results as the ACTION library’s DO_JOG
function gets it’s jog rate from the STATUS library.

12.12.5.3 Keybinding

Warning
Keybinding is always a difficult-to-get-right-in-all-cases affair.

Custom keybinding functions are to be defined in the handler file.
Most importantly widgets that require regular key input and not jogging, should be checked for in the
processed_key_event__ function.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1262 / 1322

12.12.5.4 Preference File

Some QtVCP widgets use the preference file to record important information.
This requires the preference file to be set up early in the widget initialization process.
The easiest way to do this is to use the ScreenOptions widget.

12.12.5.5 Widget Special Setup Functions

QtVCP looks for and calls the +_hal_init()+ function when the widget is first loaded.
It is not called when using Qt Designer editor.
After this function is called the widget has access to some special variables:

self.HAL_GCOMP
The HAL component instance

self.HAL_NAME
This widget’s name as a string

self.QT_OBJECT_
This widget’s PyQt object instance

self.QTVCP_INSTANCE_
The very top level parent of the screen

self.PATHS_
The instance of QtVCP’s path library

self.PREFS_
The instance of an optional preference file

self.SETTINGS_
The Qsettings object

When making a custom widget, _import and sub class _the +_HalWidgetBase+ class for this behavior.

12.12.5.6 Dialogs

Dialogs (AKA ”pop up windows”) are best loaded with the ScreenOptions widget, but they can be
placed on the screen in Qt Designer.
It doesn’t matter where on the layout but to make them hidden, cycle the state property to true then
false.
By default, if there is a preference file, the dialogs will remember their last size/placement.
It is possible to override this so they open in the same location each time.

12.12.5.7 Styles (Themes)

While it is possible to set styles in Qt Designer, it is more convenient to change them later if they are
all set in a separate .qss file. The file should be put in the same location as the handler file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1263 / 1322

Chapter 13

User Interface Programming

13.1 Panelui

13.1.1 Introduction

Panelui is a non-realtime component to interface buttons to LinuxCNC or HAL:

• It decodes MESA 7I73 style key-scan codes and calls the appropriate routine.

• It gets input from a realtime component - sampler. Sampler gets its input from either the MESA
7I73 or sim_matrix_kb component.

• Panelui is configurable using an INI style text file to define button types, HAL pin types, and/or
commands.

• It can be extended using a Python based handler file to add functions.

While actual input buttons are required to be momentary, Panelui will use this input to make toggle,
radio, or momentary button output.

13.1.2 Loading Commands

The command used to load panelui (with optional -d debug switch):
loadusr -W panelui -d

This will initialize panelui, which will look for the INI file panelui.ini in the config folder or user folder.
One can validate the INI file with this command:
loadusr pyui

This will read, try to correct, then save the panelui.ini file. It will print errors to the terminal if found.
A typical HAL file will have these commands added:
commands needed for panelui loading
#
sampler is needed for panelui
cfg= must always be u for panelui. depth sets the available buffer
loadrt sampler cfg=u depth=1025

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1264 / 1322

#uncomment to validate the panelui INI file
#loadusr pyui

-d = debug, -v = verbose debug
-d will show you keypress identification and commands called
-v is for develeper info
loadusr -W panelui -d

using simulated buttons instead of the MESA 7I73 card
so we load the sim_matrix_kb component to convert HAL pins to keyscan codes
loadrt sim_matrix_kb

connect the components together.
sampler talks to panelui internally
net key-scan sim-matrix-kb.0.out
net key-scan sampler.0.pin.0

add panelui components to a thread

addf sim-matrix-kb.0 servo-thread
addf sampler.0 servo-thread

13.1.3 panelui.ini file reference

Key words

• KEY= This is used to designate the key that the button responds to. It can be NONE or ROW number
and column number eg R1C2. A row and column can only be used once.

• OUTPUT= This sets the Button’s output type, eg S32, U32, FLOAT, BIT, NONE, COMMAND, ZMQ.

• DEFAULT= This sets the starting output of the group or button.

• GROUP= In radiobuttons, designates the group the button interacts with.

• GROUP_OUTPUT= sets the output the group pin will be, if this button is active.

• STATUS_PIN= If TRUE, a HAL pin will be added that reflects the current state of button.

• TRUE_STATE= sets the output the HAL pin will be, if button is TRUE.

• FALSE_STATE= sets the OUTPUT the HAL pin will be, if the button is FALSE.

• TRUE_COMMAND= sets the command and arguments to be called when the button is TRUE.

• FALSE_COMMAND= sets the command and arguments to be called when the button is FALSE.

• TRUE_FUNCTION= sets the ZMQ message function and arguments to be called when the button
is TRUE.

• FALSE_FUNCTION= sets the ZMQ message function and arguments to be called when the button
is FALSE.

HAL Prefix
[HAL_PREFIX]

NAME= Yourname

This allows one to change the prefix of the HAL pins from panelui to an arbitrary name.
ZMQ Messaging Setup

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1265 / 1322

[ZMQ_SETUP]
TOPIC = ’QTVCP’
SOCKET = ’tcp://127.0.0.1:5690’
ENABLE = True

This sets up and enables ZMQ based messaging. TOPIC and SOCKET must match the listening pro-
gram.
Radio Buttons Radiobutons allow only one button in the group to be active at a time. Each group
has its own output pin, separate from each button in the group. Radio button definitions start with
the text RADIO_BUTTON inside single brackets.
[RADIO_BUTTONS]
The double bracket section(s) define the group(s) of radio buttons.
The group name must be unique and is case sensitive.
Groups output is controlled by what button is active not directly by keycode.
DEFAULT references a button in the group by name and is case sensitive.
[[group1_name]]
KEY = NONE
OUTPUT = FLOAT
DEFAULT = small
The triple bracket sections define the buttons in this group.
button names must be unique and are case sensitive.
There must be at least two buttons in a group.
#
This button, named ’small’is controller by the row 0 column 1 key.
It will cause the group output to be .0001 when it is pressed.
It has no output of its own, but has a status
pin which will follow its current state.
since this button is in a group, DEFAULT has no bearing.
since OUTPUT in not ’COMMAND’ _COMMAND entries are ignored.
[[[small]]]
KEY = R0C1
GROUP = group1_name
GROUP_OUTPUT = .0001
OUTPUT = NONE
STATUS_PIN = True
TRUE_STATE = TRUE
FALSE_STATE = FALSE
TRUE_COMMAND = NONE, NONE
FALSE_COMMAND = NONE, NONE
DEFAULT = false

This button, named ’large’ is controller by the row 0 column 2 key.
It will cause the group output to be 1000 when it is pressed.
It has a S32 output of its own, will be 20 on true and 0 on false.
It also has a status pin which will follow its current state.
since this button is in a group, DEFAULT has no bearing.
since OUTPUT in not ’COMMAND’ _COMMAND entries are ignored.
[[[large]]]
KEY = R0C2
GROUP = group1_name
GROUP_OUTPUT = 1000
OUTPUT = S32
STATUS_PIN = True
TRUE_STATE = 20
TRUE_COMMAND = NONE, NONE
FALSE_COMMAND = NONE, NONE
FALSE_STATE = 0
DEFAULT = false

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1266 / 1322

Toggle Buttons Togglebuttons only change state on each press of the button. Toggle button defini-
tions start with the text TOGGLE_BUTTON inside single brackets.
[TOGGLE_BUTTONS]
Each button name inside double brackets, must be unique and is case sensitive.
This button, named ’tool_change’is controller by the row 2 column 5 key.
It has a BIT output, will output 1 on true state and 0 on false state.
It also has a status pin which will follow its current state.
DEFAULT sets this to true when first initialized.
The _COMMAND are not used since OUTPUT is not set to COMMAND but validation will
add the lines regardless
[[tool_change]]
KEY = R2C5
OUTPUT = BIT
TRUE_COMMAND = NONE, NONE
FALSE_COMMAND = NONE, NONE
STATUS_PIN = True
DEFAULT = TRUE
TRUE_STATE = 1
FALSE_STATE = 0

Momentary Buttons Momentary buttons are true when pressed and false when released. Momen-
tary button definitions start with the text MOMENTARY_BUTTON inside single brackets.
[MOMENTARY_BUTTONS]
Each button name inside double brackets, must be unique and is case sensitive.
This button, named ’spindle_rev’is controller by the row 2 column 3 key.
It has a COMMAND output, so will use TRUE_COMMAND and FALSE_COMMAND.
It also has a status pin which will follow its current state.
COMMANDs will have a command name and then any required arguments
This TRUE_COMMAND calls an internal command to start the spindle in reverse at 200 rpm
If the spindle is already started, it will increase the rpm.
DEFAULT is not used with Momentary buttons.
The _STATE are not used since OUTPUT is set to COMMAND but validation will
add the lines regardless
[[spindle_rev]]
KEY = R2C3
OUTPUT = COMMAND
TRUE_COMMAND = SPINDLE_REVERSE_INCREASE, 200
FALSE_COMMAND = None, NONE
STATUS_PIN = True
DEFAULT = FALSE
TRUE_STATE = 1
FALSE_STATE = 0

13.1.4 Internal Command reference

There are a number of internal commands you may use.
home_selected

• required argument: axis number (int)

unhome_selected

• required argument: axis number (int)

spindle_forward_adjust

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1267 / 1322

• optional argument: starting RPM (int) - default 100

• Description: If the spindle is stopped it will start in the forward direction. If it is already running it
will increase or decrease the rpm depending on what direction the spindle is running in.

spindle_forward

• optional argument: starting RPM (int) - default 100

spindle_reverse

• optional argument: starting RPM (int) - default 100

spindle_reverse_adjust

• optional argument: starting RPM (int) - default 100

• Description: If the spindle is stopped it will start in the reverse direction. If it is already running it
will increase or decrease the rpm depending on what direction the spindle is running in.

spindle_faster

• Description: increases spindle speed by 100 RPM

spindle_slower

• Description: decreases spindle speed by 100 RPM, until RPM is 100

set_linear_jog_velocity

• required argument: velocity in inches per minute (float)

• description: sets the jog velocity on axis 0,1,2,6,7,8 (X,Y,Z,U,V,W)

set_angular_jog_velocity

• required argument: velocity in degrees per minute (float)

• description: sets the jog velocity on axis 3,4,5 (A.B.C)

continuous_jog

• required arguments: axis number (int), direction (int)

incremental_jog

• required arguments: axis number (int), direction (int), distance (float)

quill_up

• optional arguments: machine Z axis absolute position (float)

• Description: Move Z axis to the given machine position

feed_hold

• required argument: state (bool 0 or 1)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1268 / 1322

feed_override

• required argument: rate (float)

rapid_override

• required argument: rate (float 0-1)

spindle_override

• required argument: rate (float)

max_velocity

• required argument: rate (float)

optional_stop

• required argument: state (bool 0 or 1)

block_delete

• required argument: state (bool 0 or 1)

single_block

• required argument: state (bool 0 or 1)

smart_cycle_start

• Description: If idle, starts G-code program, if paused runs one line.

re_start line

• required argument: line number (int)

mdi_and_return

• required argument: G-code command(s)

• Description: records the current mode, calls commands and then returns to mode.

mdi

• required argument: G-code command(s)

• Description: sets mode to MDI, calls commands.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1269 / 1322

13.1.5 ZMQ Messages

Panelui can send ZMQ based messages on button presses.
In this way panelui can interact will other programs such as QtVCP screens.

[TOGGLE_BUTTONS]
[[zmq_test]]
KEY = R2C3
OUTPUT = ZMQ
TRUE_FUNCTION = ZMQ_BUTTON, 200
FALSE_FUNCTION = ZMQ_BUTTON, 0
STATUS_PIN = False
DEFAULT = FALSE
TRUE_STATE = 1
FALSE_STATE = 0

Here is a sample program that will receive the message and print it to the terminal.

import zmq
import json

ZeroMQ Context
context = zmq.Context()

Define the socket using the ”Context”
sock = context.socket(zmq.SUB)

Define subscription and messages with topic to accept.
topic = ”” # all topics
sock.setsockopt(zmq.SUBSCRIBE, topic)
sock.connect(”tcp://127.0.0.1:5690”)

while True:
topic, message = sock.recv_multipart()
print(’{} sent message:{}’.format(topic,json.loads(message)))

13.1.6 Handler File Extension

A special file can be used to add custom python code that will be available as commands. pan-
elui_handler.py must be written in python and be placed in the configuration folder. If panelui finds a
file there it will add its function calls to the available commands. Here is an example of a handler file
that adds two functions - hello_world and cycle_mode:
standard handler call - This will always be required
def get_handlers(linuxcnc_stat, linucnc_cmd, commands, master):

return [HandlerClass(linuxcnc_stat, linucnc_cmd, commands, master)]

Also required - handler class
class HandlerClass:

This will be pretty standard to gain access to everything
linuxcnc_stat: is the python status instance of LinuxCNC
linuxcnc_cmd: is the python command instance of LinuxCNC
commands: is the command instance so one can call the internal routines
master: give access to the master functions/data

def __init__(self, linuxcnc_stat, linuxcnc_cmd, commands, master):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1270 / 1322

self.parent = commands
self.current_mode = 0

command functions are expected to have this layout:
def some_name(self, widget_instance, arguments from widget):
widget_instance gives access to the calling widget’s function/data
arguments can be a list of arguments, a single argument, or None
depending on what was given in panelui’s INI file.
def hello_world(self, wname, m):

print to terminal so we know it worked
print(’\nHello world\n’)
print(m) # print the argument(s)
print(wname.metadata) # Print the calling widgets internal metadata (from config ←↩

file)

Call a mdi command to print a msg in LinuxCNC.
This requires LinuxCNC to be homed, but does not check for that.
parent commands expect a widget_instance - None is substituted
self.parent.mdi(None,’(MSG, Hello Linuxcnc World!)’)

Each call to this function will cycle the mode of LinuxCNC.
def cycle_mode(self, wname, m):

if self.current_mode == 0:
self.current_mode = 1
self.parent.set_mdi_mode()

elif self.current_mode == 1:
self.current_mode = 2
self.parent.set_auto_mode()

else:
self.current_mode = 0
self.parent.set_manual_mode()

print(self.current_mode)

Boiler code, often required
def __getitem__(self, item):

return getattr(self, item)
def __setitem__(self, item, value):

return setattr(self, item, value)

13.2 The LinuxCNC Python module

This documentation describes the linuxcnc python module, which provides a Python API for talking
to LinuxCNC.

13.2.1 Introduction

User interfaces control LinuxCNC activity by sending NML messages to the LinuxCNC task controller,
and monitor results by observing the LinuxCNC status structure, as well as the error reporting chan-
nel.
Programmatic access to NML is through a C++ API; however, the most important parts of the NML
interface to LinuxCNC are also available to Python programs through the linuxcnc module.
Beyond the NML interface to the command, status and error channels, the linuxcnc module also
contains:

• support for reading values from INI files

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1271 / 1322

13.2.2 Usage Patterns for the LinuxCNC NML interface

The general pattern for linuxcnc usage is roughly like this:

• Import the linuxcnc module.

• Establish connections to the command, status and error NML channels as needed.

• Poll the status channel, either periodically or as needed.

• Before sending a command, determine from status whether it is in fact OK to do so (for instance,
there is no point in sending a Run command if task is in the ESTOP state, or the interpreter is not
idle).

• Send the command by using one of the linuxcnc command channel methods.

To retrieve messages from the error channel, poll the error channel periodically, and process any
messages retrieved.

• Poll the status channel, either periodically or as needed.

• Print any error message and explore the exception code.

The module linuxcnc also defines the error Python exception type to support error reporting.

13.2.3 Reading LinuxCNC status with the linuxcnc Python module

Here is a Python fragment to explore the contents of the linuxcnc.stat object which contains some
80+ values (run while LinuxCNC is running for typical values):
#!/usr/bin/env python3
-*- coding: utf-8 -*-
import sys
import linuxcnc
try:

s = linuxcnc.stat() # create a connection to the status channel
s.poll() # get current values

except linuxcnc.error, detail:
print(”error”, detail)
sys.exit(1)

for x in dir(s):
if not x.startswith(”_”):

print(x, getattr(s,x))

The linuxcnc module uses the default compiled-in path to the NML configuration file unless overrid-
den, see ReadingINI file values for an example.

13.2.3.1 linuxcnc.stat attributes

acceleration
(returns float) - default acceleration, reflects the INI entry [TRAJ]DEFAULT_ACCELERATION.

active_queue
(returns integer) - number of motions blending.

actual_position
(returns tuple of floats) - current trajectory position, (x y z a b c u v w) in machine units.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1272 / 1322

adaptive_feed_enabled
(returns boolean) - status of adaptive feedrate override (0/1).

ain
(returns tuple of floats) - current value of the analog input pins.

angular_units
(returns float) - machine angular units per deg, reflects [TRAJ]ANGULAR_UNITS INI value.

aout
(returns tuple of floats) - current value of the analog output pins.

axes (Removed since version 2.9)
instead, use axis_mask.bit_count() to get the number of axes configured.

axis
(returns tuple of dicts) - reflecting current axis values. See The axis dictionary.

axis_mask
(returns integer) - mask of axis available as defined by [TRAJ]COORDINATES in the INI file. Returns
the sum of the axes X=1, Y=2, Z=4, A=8, B=16, C=32, U=64, V=128, W=256.

block_delete
(returns boolean) - block delete current status.

call_level
(returns integer) ̀ - current subroutine depth. - 0 if not in a subroutine, depth if not otherwise
specified.

command
(returns string) - currently executing command.

current_line
(returns integer) - currently executing line.

current_vel
(returns float) - current velocity in user units per second.

cycle_time
(returns float) - thread period

debug
(returns integer) - debug flag from the INI file.

delay_left
(returns float) - remaining time on dwell (G4) command, seconds.

din
(returns tuple of integers) - current value of the digital input pins.

distance_to_go
(returns float) - remaining distance of current move, as reported by trajectory planner.

dout
(returns tuple of integers) - current value of the digital output pins.

dtg
(returns tuple of floats) - remaining distance of current move for each axis, as reported by tra-
jectory planner.

echo_serial_number
(returns integer) - The serial number of the last completed command sent by a UI to task. All
commands carry a serial number. Once the command has been executed, its serial number is
reflected in echo_serial_number.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1273 / 1322

enabled
(returns boolean) - trajectory planner enabled flag.

estop
(returns integer) - Returns either STATE_ESTOP or not.

exec_state
(returns integer) - task execution state. One of EXEC_ERROR, EXEC_DONE, EXEC_WAITING_FOR_MOTION,
EXEC_WAITING_FOR_MOTION_QUEUE, EXEC_WAITING_FOR_IO, EXEC_WAITING_FOR_MOTION_AND_IO,
EXEC_WAITING_FOR_DELAY, EXEC_WAITING_FOR_SYSTEM_CMD, EXEC_WAITING_FOR_SPINDLE_ORIENTED.

feed_hold_enabled
(returns boolean) - enable flag for feed hold.

feed_override_enabled
(returns boolean) - enable flag for feed override.

feedrate
(returns float) - current feedrate override, 1.0 = 100%.

file
(returns string) - currently loaded G-code filename with path.

flood
(returns integer) - Flood status, either FLOOD_OFF or FLOOD_ON.

g5x_index
(returns integer) - currently active coordinate system, G54=1, G55=2 etc.

g5x_offset
(returns tuple of floats) - offset of the currently active coordinate system.

g92_offset
(returns tuple of floats) - pose of the current g92 offset.

gcodes
(returns tuple of integers) - Active G-codes for each modal group.
The integer values reflect the nominal G-code numbers multiplied by 10. (Examples: 10 = G1,
430 = G43, 923 = G92.3)

homed
(returns tuple of integers) - currently homed joints, with 0 = not homed, 1 = homed.

id
(returns integer) - currently executing motion ID.

ini_filename
(returns string) - path to the INI file passed to linuxcnc.

inpos
(returns boolean) - machine-in-position flag.

input_timeout
(returns boolean) - flag for M66 timer in progress.

interp_state
(returns integer) - current state of RS274NGC interpreter. One of INTERP_IDLE, INTERP_READING,
INTERP_PAUSED, INTERP_WAITING.

interpreter_errcode
(returns integer) - current RS274NGC interpreter return code. One of INTERP_OK, INTERP_EXIT,
INTERP_EXECUTE_FINISH, INTERP_ENDFILE, INTERP_FILE_NOT_OPEN, INTERP_ERROR. see
src/emc/nml_intf/interp_return.hh

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1274 / 1322

joint
(returns tuple of dicts) - reflecting current joint values. See The joint dictionary.

joint_actual_position
(returns tuple of floats) - actual joint positions.

joint_position
(returns tuple of floats) - Desired joint positions.

joints
(returns integer) - number of joints. Reflects [KINS]JOINTS INI value.

kinematics_type
(returns integer) - The type of kinematics. One of:

• KINEMATICS_IDENTITY
• KINEMATICS_FORWARD_ONLY
• KINEMATICS_INVERSE_ONLY
• KINEMATICS_BOTH

limit
(returns tuple of integers) - axis limit masks. minHardLimit=1, maxHardLimit=2, minSoftLimit=4,
maxSoftLimit=8.

linear_units
(returns float) - machine linear units per mm, reflects [TRAJ]LINEAR_UNITS INI value.

max_acceleration
(returns float) - maximum acceleration. Reflects [TRAJ]MAX_ACCELERATION.

max_velocity
(returns float) - maximum velocity. Reflects the current maximum velocity. If not modified by
halui.max-velocity or similar it should reflect [TRAJ]MAX_VELOCITY.

mcodes
(returns tuple of 10 integers) - currently active M-codes.

mist
(returns integer) - Mist status, either MIST_OFF or MIST_ON

motion_line
(returns integer) - source line number motion is currently executing. Relation to id unclear.

motion_mode
(returns integer) - This is the mode of the Motion controller. One of TRAJ_MODE_COORD,
TRAJ_MODE_FREE, TRAJ_MODE_TELEOP.

motion_type
(returns integer) - The type of the currently executing motion. One of:

• MOTION_TYPE_TRAVERSE
• MOTION_TYPE_FEED
• MOTION_TYPE_ARC
• MOTION_TYPE_TOOLCHANGE
• MOTION_TYPE_PROBING
• MOTION_TYPE_INDEXROTARY
• Or 0 if no motion is currently taking place.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1275 / 1322

optional_stop
(returns integer) - option stop flag.

paused
(returns boolean) - motion paused flag.

pocket_prepped
(returns integer) - A Tx command completed, and this pocket is prepared. -1 if no prepared
pocket.

poll()
-(built-in function) method to update current status attributes.

position
(returns tuple of floats) - trajectory position.

probe_tripped
(returns boolean) - flag, True if probe has tripped (latch).

probe_val
(returns integer) - reflects value of the motion.probe-input pin.

probed_position
(returns tuple of floats) - position where probe tripped.

probing
(returns boolean) - flag, True if a probe operation is in progress.

program_units
(returns integer) - one of CANON_UNITS_INCHES=1, CANON_UNITS_MM=2, CANON_UNITS_CM=3

queue
(returns integer) - current size of the trajectory planner queue.

queue_full
(returns boolean) - the trajectory planner queue is full.

rapidrate
(returns float) - rapid override scale.

read_line
(returns integer) - line the RS274NGC interpreter is currently reading.

rotation_xy
(returns float) - current XY rotation angle around Z axis.

settings
(returns tuple of floats) - current interpreter settings:
settings[0] = sequence number,
settings[1] = feed rate,
settings[2] = speed,
settings[3] = G64 P blend tolerance,
settings[4] = G64 Q naive CAM tolerance.

spindle
’ (returns tuple of dicts) ’ - returns the current spindle status, see The spindle dictionary.

spindles
(returns integer) - number of spindles. Reflects [TRAJ]SPINDLES INI value.

state
(returns integer) - current command execution status. One of RCS_DONE, RCS_EXEC, RCS_ERROR.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1276 / 1322

task_mode
(returns integer) - current task mode. One of MODE_MDI, MODE_AUTO, MODE_MANUAL.

task_paused
(returns integer) - task paused flag.

task_state
(returns integer) - current task state. One of STATE_ESTOP, STATE_ESTOP_RESET, STATE_ON, STATE_OFF.

tool_in_spindle
(returns integer) - current tool number.

tool_from_pocket
(returns integer) - pocket number for the currently loaded tool (0 if no tool loaded).

tool_offset
(returns tuple of floats) - offset values of the current tool.

tool_table
(returns tuple of tool_results) - list of tool entries. Each entry is a sequence of the following fields:
id, xoffset, yoffset, zoffset, aoffset, boffset, coffset, uoffset, voffset, woffset, diameter, frontangle,
backangle, orientation. The id and orientation are integers and the rest are floats.

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import linuxcnc
s = linuxcnc.stat()
s.poll()
to find the loaded tool information it is in tool table index 0
if s.tool_table[0].id != 0: # a tool is loaded

print(s.tool_table[0].zoffset)
else:

print(”No tool loaded.”)

toolinfo(toolno)
(returns dict of tooldata for toolno) - An initial stat.poll() is required to initialize. toolno must be
greater than zero and less than or equal to the highest tool number in use. Dictionary items
include all tooldata items: toolno, pocketno, diameter,frontangle,backangle,orientation, xoff-
set,yoffset, … woffset, comment.
As an example, the following script

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import linuxcnc
s = linuxcnc.stat()
s.poll()
toolno = 1
print(s.toolinfo(toolno))

produces the output:

’: 0, ’xoffset’: 0.0, ’yoffset’: 0.0, ’zoffset’: 0.18, ’aoffset’: 0.0, ’boffset’: 0.0, ’ ←↩
coffset’: 0.0, ’uoffset’: 0.0, ’voffset’: 0.0, ’woffset’: 0.0, ’comment’: ’Tool_18 28 ←↩
Jan23:18.53.25’}

velocity
(returns float) - This property is defined, but it does not have a useful interpretation.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1277 / 1322

13.2.3.2 The axis dictionary

The axis configuration and status values are available through a list of per-axis dictionaries. Here’s an
example how to access an attribute of a particular axis: Note that many properties that were formerly
in the axis dictionary are now in the joint dictionary, because on nontrivial kinematics machines
these items (such as backlash) are not the properties of an axis.

max_position_limit
(returns float) - maximum limit (soft limit) for axis motion, in machine units.configuration param-
eter, reflects [JOINT___n__]MAX_LIMIT.

min_position_limit
(returns float) - minimum limit (soft limit) for axis motion, in machine units.configuration param-
eter, reflects [JOINT___n__]MIN_LIMIT.

velocity
(returns float) - current velocity.

13.2.3.3 The joint dictionary

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import linuxcnc
s = linuxcnc.stat()
s.poll()
print(”Joint 1 homed: ”, s.joint[1][”homed”])

For each joint, the following dictionary keys are available:

backlash
(returns float) - Backlash in machine units. configuration parameter, reflects [JOINT___n__]BACKLASH.

enabled
(returns integer) - non-zero means enabled.

fault
(returns integer) - non-zero means axis amp fault.

ferror_current
(returns float) - current following error.

ferror_highmark
(returns float) - magnitude of max following error.

homed
(returns integer) - non-zero means has been homed.

homing
(returns integer) - non-zero means homing in progress.

inpos
(returns integer) - non-zero means in position.

input
(returns float) - current input position.

jointType
(returns integer) - type of axis configuration parameter, reflects [JOINT___n__]TYPEwith LINEAR=1,
ANGULAR=2. See Joint INI configuration for details.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1278 / 1322

max_ferror
(returns float) - maximum following error. configuration parameter, reflects [JOINT___n__]FERROR.

max_hard_limit
(returns integer) - non-zero means max hard limit exceeded.

max_position_limit
(returns float) - maximum limit (soft limit) for joint motion, in machine units. configuration pa-
rameter, reflects [JOINT___n__]MAX_LIMIT.

max_soft_limit
non-zero means max_position_limit was exceeded, int

min_ferror
(returns float) - configuration parameter, reflects [JOINT___n__]MIN_FERROR.

min_hard_limit
(returns integer) - non-zero means min hard limit exceeded.

min_position_limit
(returns float) - minimum limit (soft limit) for joint motion, in machine units. configuration pa-
rameter, reflects [JOINT___n__]MIN_LIMIT.

min_soft_limit
(returns integer) - non-zero means min_position_limit was exceeded.

output
(returns float) - commanded output position.

override_limits
(returns integer) - non-zero means limits are overridden.

units
(returns float) - joint units per mm, or per degree for angular joints.
(joint units are the same as machine units, unless set otherwise by the configuration parameter
[JOINT___n__]UNITS)

velocity
(returns float) - current velocity.

13.2.3.4 The spindle dictionary

brake
(returns integer) - value of the spindle brake flag.

direction
(returns integer) - rotational direction of the spindle with forward=1, reverse=-1.

enabled
(returns integer) - value of the spindle enabled flag.

homed
(not currently implemented)

increasing
(returns integer) - unclear.

orient_fault
(returns integer)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1279 / 1322

orient_state
(returns integer)

override
(returns float) - spindle speed override scale.

override_enabled
(returns boolean) - value of the spindle override enabled flag.

speed
(returns float) - spindle speed value, rpm, > 0: clockwise, < 0: counterclockwise.
With G96 active this reflects the maximum speed set by the optional G96 D-word or, if the D-word
was missing, the default values +/-1e30.

13.2.4 Preparing to send commands

Some commands can always be sent, regardless of mode and state; for instance, the linuxcnc.command.abort()
method can always be called.
Other commands may be sent only in appropriate state, and those tests can be a bit tricky. For
instance, an MDI command can be sent only if:

• ESTOP has not been triggered, and

• the machine is turned on and

• the axes are homed and

• the interpreter is not running and

• the mode is set to MDI mode

An appropriate test before sending an MDI command through linuxcnc.command.mdi() could be:
#!/usr/bin/env python3
-*- coding: utf-8 -*-
import linuxcnc
s = linuxcnc.stat()
c = linuxcnc.command()

def ok_for_mdi():
s.poll()
return not s.estop and s.enabled and (s.homed.count(1) == s.joints) and (s.interp_state ←↩

== linuxcnc.INTERP_IDLE)

if ok_for_mdi():
c.mode(linuxcnc.MODE_MDI)
c.wait_complete() # wait until mode switch executed (or default timeout of 5s occurs!)
c.mdi(”G0 X10 Y20 Z30”)

Warning
Read important information on wait_complete() in the ‘linuxcnc.command methods’ section
below.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1280 / 1322

13.2.5 Sending commands through linuxcnc.command

Before sending a command, initialize a command channel like so:
#!/usr/bin/env python3
-*- coding: utf-8 -*-
import linuxcnc
c = linuxcnc.command()

Usage examples for some of the commands listed below:
c.abort()

c.auto(linuxcnc.AUTO_RUN, program_start_line)
c.auto(linuxcnc.AUTO_STEP)
c.auto(linuxcnc.AUTO_PAUSE)
c.auto(linuxcnc.AUTO_RESUME)

c.brake(linuxcnc.BRAKE_ENGAGE)
c.brake(linuxcnc.BRAKE_RELEASE)

c.flood(linuxcnc.FLOOD_ON)
c.flood(linuxcnc.FLOOD_OFF)

c.home(2)

c.jog(linuxcnc.JOG_STOP, jjogmode, joint_num_or_axis_index)
c.jog(linuxcnc.JOG_CONTINUOUS, jjogmode, joint_num_or_axis_index, velocity)
c.jog(linuxcnc.JOG_INCREMENT, jjogmode, joint_num_or_axis_index, velocity, increment)

c.load_tool_table()

c.maxvel(200.0)

c.mdi(”G0 X10 Y20 Z30”)

c.mist(linuxcnc.MIST_ON)
c.mist(linuxcnc.MIST_OFF)

c.mode(linuxcnc.MODE_MDI)
c.mode(linuxcnc.MODE_AUTO)
c.mode(linuxcnc.MODE_MANUAL)

c.override_limits()

c.program_open(”foo.ngc”)
c.reset_interpreter()

c.tool_offset(toolno, z_offset, x_offset, diameter, frontangle, backangle, orientation)

13.2.5.1 linuxcnc.command attributes

serial
the current command serial number

13.2.5.2 linuxcnc.command methods:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1281 / 1322

abort()
send EMC_TASK_ABORT message.

auto(int[, int])
run, step, pause or resume a program.

brake(int)
engage or release spindle brake.

debug(int)
set debug level via EMC_SET_DEBUG message.

display_msg(string)
sends a operator display message to the screen. (max 254 characters)

error_msg(string)
sends a operator error message to the screen. (max 254 characters)

feedrate(float)
set the feedrate override, 1.0 = 100%.

flood(int)
turn on/off flooding.

Syntax
flood(command)
flood(linuxcnc.FLOOD_ON)
flood(linuxcnc.FLOOD_OFF)

Constants
FLOOD_ON
FLOOD_OFF

home(int)
home a given joint.

jog(command-constant, bool, int[, float[, float]])

Syntax
jog(command, jjogmode, joint_num_or_axis_index, velocity[, distance])
jog(linuxcnc.JOG_STOP, jjogmode, joint_num_or_axis_index)
jog(linuxcnc.JOG_CONTINUOUS, jjogmode, joint_num_or_axis_index, velocity)
jog(linuxcnc.JOG_INCREMENT, jjogmode, joint_num_or_axis_index, velocity, distance)

Command Constants
linuxcnc.JOG_STOP
linuxcnc.JOG_CONTINUOUS
linuxcnc.JOG_INCREMENT

jjogmode
True

request individual joint jog (requires teleop_enable(0))
False

request axis Cartesian coordinate jog (requires teleop_enable(1))
joint_num_or_axis_index

For joint jog (jjogmode=1)
joint_number

For axis Cartesian coordinate jog (jjogmode=0)
zero-based index of the axis coordinate with respect to the known coordinate letters
XYZABCUVW (x=>0,y=>1,z=>2,a=>3,b=>4,c=>5,u=>6,v=>7,w=>8)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1282 / 1322

load_tool_table()
reload the tool table.

maxvel(float)
set maximum velocity

mdi(string)
send an MDI command. Maximum 254 chars.

mist(int)
turn on/off mist.

Syntax
mist(command)
mist(linuxcnc.MIST_ON)
mist(linuxcnc.MIST_OFF)

Constants
MIST_ON
MIST_OFF

mode(int)
set mode (MODE_MDI, MODE_MANUAL, MODE_AUTO).

override_limits()
set the override axis limits flag.

program_open(string)
open an NGC file.

rapidrate()
set rapid override factor

reset_interpreter()
reset the RS274NGC interpreter

set_adaptive_feed(int)
set adaptive feed flag

set_analog_output(int, float)
set analog output pin to value

set_block_delete(int)
set block delete flag

set_digital_output(int, int)
set digital output pin to value

set_feed_hold(int)
set feed hold on/off

set_feed_override(int)
set feed override on/off

set_max_limit(int, float)
set max position limit for a given axis

set_min_limit()
set min position limit for a given axis

set_optional_stop(int)
set optional stop on/off

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1283 / 1322

set_spindle_override(int [, int])
set spindle override enabled. Defaults to spindle 0.

spindle(direction: int, speed: float=0, spindle: int=0, wait_for_speed: int=0)

• Direction: [SPINDLE_FORWARD, SPINDLE_REVERSE, SPINDLE_OFF, SPINDLE_INCREASE, SPINDLE_DECREASE,
or SPINDLE_CONSTANT]

• Speed: Speed in RPM, defaults to 0.
• Spindle: Spindle number to command defaults to 0.
• Wait_for_speed: if 1 motion will wait for speed before continuing, defaults to not.

Warning
MDI commands will ignore this. ”S1000” after this will turn the spindle off.

text_msg(string)
sends a operator text message to the screen (max 254 characters).

#!/usr/bin/env python3
import linuxcnc
c = linuxcnc.command()

Increase speed of spindle 0 by 100rpm. Spindle must be on first.
c.spindle(linuxcnc.INCREASE)

Increase speed of spindle 2 by 100rpm. Spindle must be on first.
c.spindle(linuxcnc.SPINDLE_INCREASE, 2)

Set speed of spindle 0 to 1024 rpm.
c.spindle.(linuxcnc.SPINDLE_FORWARD, 1024)

Set speed of spindle 1 to -666 rpm.
c.spindle.(linuxcnc.SPINDLE_REVERSE, 666, 1)

Stop spindle 0.
c.spindle.(linuxcnc.SPINDLE_OFF)

Stop spindle 0 explicitly.
c.spindle.(linuxcnc.SPINDLE_OFF, 0)

spindleoverride(float [, int])
Set spindle override factor. Defaults to spindle 0.

state(int)
Set the machine state. Machine state should be STATE_ESTOP, STATE_ESTOP_RESET, STATE_ON, or
STATE_OFF.

task_plan_sync()
On completion of this call, the VAR file on disk is updated with live values from the interpreter.

teleop_enable(int)
Enable/disable teleop mode (disable for joint jogging).

tool_offset(int, float, float, float, float, float, int)
Set the tool offset. See usage example above.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1284 / 1322

traj_mode(int)
Set trajectory mode. Mode is one of MODE_FREE, MODE_COORD, or MODE_TELEOP.

unhome(int)
Unhome a given joint.

wait_complete([float])
Wait for completion of the last command. Takes an optional timeout value in seconds.
Timeout defaults to 5 seconds if omitted.
Returns -1 if timed out.
Returns RCS_DONE or RCS_ERROR according to command execution status.
Note that python execution will be blocked until this function returns.

13.2.6 Reading the error channel

To handle error messages, connect to the error channel and periodically poll() it.
Note that the NML channel for error messages has a queue (other than the command and status
channels), which means that the first consumer of an error message deletes that message from the
queue; whether your another error message consumer (e.g. AXIS) will see the message is dependent
on timing. It is recommended to have just one error channel reader task in a setup.
#!/usr/bin/env python3
-*- coding: utf-8 -*-
import linuxcnc
e = linuxcnc.error_channel()

error = e.poll()

if error:
kind, text = error
if kind in (linuxcnc.NML_ERROR, linuxcnc.OPERATOR_ERROR):

typus = ”error”
else:

typus = ”info”
print(typus, text)

13.2.7 Reading INI file values

Here’s an example for reading values from an INI file through the linuxcnc.ini object:
#!/usr/bin/env python3
-*- coding: utf-8 -*-
run as:
python3 ini-example.py ~/emc2-dev/configs/sim/axis/axis_mm.ini

import sys
import linuxcnc

inifile = linuxcnc.ini(sys.argv[1])

inifile.find() returns None if the key wasn’t found - the
following idiom is useful for setting a default value:

machine_name = inifile.find(”EMC”, ”MACHINE”) or ”unknown”
print(”machine name: ”, machine_name)

inifile.findall() returns a list of matches, or an empty list

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1285 / 1322

if the key wasn’t found:

extensions = inifile.findall(”FILTER”, ”PROGRAM_EXTENSION”)
print(”extensions: ”, extensions)

override default NML file by INI parameter if given
nmlfile = inifile.find(”EMC”, ”NML_FILE”)
if nmlfile:

linuxcnc.nmlfile = os.path.join(os.path.dirname(sys.argv[1]), nmlfile)

Or for the same INI file as LinuxCNC:
#!/usr/bin/env python3
-*- coding: utf-8 -*-
run as:
python3 ini-example2.py

import linuxcnc

stat = linuxcnc.stat()
stat.poll()

inifile = linuxcnc.ini(stat.ini_filename)

See example above for usage of ’inifile’ object

13.2.8 The linuxcnc.positionlogger type

Some usage hints can be gleaned from src/emc/usr_intf/gremlin/gremlin.py.

13.2.8.1 members

npts
number of points.

13.2.8.2 methods

start(float)
start the position logger and run every ARG seconds

clear()
clear the position logger

stop()
stop the position logger

call()
Plot the backplot now.

last([int])
Return the most recent point on the plot or None

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1286 / 1322

13.3 The HAL Python module

This documentation describes the hal python module, which provides a Python API for creating and
accessing HAL pins and signals.

13.3.1 Basic usage

#!/usr/bin/env python3
import hal, time
h = hal.component(”passthrough”)
h.newpin(”in”, hal.HAL_FLOAT, hal.HAL_IN)
h.newpin(”out”, hal.HAL_FLOAT, hal.HAL_OUT)
h.ready()

13.3.2 Functions

component
+ The component itself is created by a call to the constructor hal.component. The arguments
are the HAL component name and (optionally) the prefix used for pin and parameter names. If
the prefix is not specified, the component name is used.
.Example

h = hal.component(”passthrough”)

newpin
+ Create new pin.
Arguments: pin name suffix, pin type, and pin direction. For parameters, the arguments are:
parameter name suffix, parameter type, and parameter direction.
.Example:

h.newpin(”in”, hal.HAL_FLOAT, hal.HAL_IN)

ready
Tells the HAL system the component is initialized. Locks out adding pins.

unready
Allows a component to add pins after ready() has been called. One should call ready() on the
component after.

component_exists
Does the specified component exist at this time.

Example
hal.component_exists(”testpanel”)

component_is_ready
Is the specified component ready at this time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1287 / 1322

Example
hal.component_is_ready(”testpanel”)

get_msg_level
Get the current Realtime msg level.

set_msg_level
Set the current Realtime msg level. used for debugging information.

connect
Connect a pin to a signal.

Example
hal.connect(”pinname”,”signal_name”)

disconnect
Disconnect a pin from a signal.

Example
hal.disconnect(”pinname”)

get_value
Read a pin, param, or signal directly.

Example
value = hal.get_value(”iocontrol.0.emc-enable-in”)

get_info_pins()
Returns a list of dicts of all system pins.

listOfDicts = hal.get_info_pins()
pinName1 = listOfDicts[0].get(’NAME’)
pinValue1 = listOfDicts[0].get(’VALUE’)
pinType1 = listOfDicts[0].get(’TYPE’)
pinDirection1 = listOfDicts[0].get(’DIRECTION’)

get_info_signals()
Returns a list of dicts of all system signals.

listOfDicts = hal.get_info_signals()
signalName1 = listOfDicts[0].get(’NAME’)
signalValue1 = listOfDicts[0].get(’VALUE’)
driverPin1 = listOfDicts[0].get(’DRIVER’)

get_info_params()
Returns a list of dicts of all system parameters.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1288 / 1322

listOfDicts = hal.get_info_params()
paramName1 = listOfDicts[0].get(’NAME’)
paramValue1 = listOfDicts[0].get(’VALUE’)
paramDirection1 = listOfDicts[0].get(’DIRECTION’)

new_sig
Create a new signal of the type specified.

Example
hal.new_sig(”signalname”,hal.HAL_BIT)

pin_has_writer
Does the specified pin have a driving pin connected.
Returns True or False.

h.in.pin_has_writer()

get_name
Get the HAL object name.
Return a string.

h.in.get_name()

get_type
Get the HAL object’s type.
Returns an integer.

h.in.get_type()

get_dir
Get the HAL object direction type.
Returns an integer.

h.in.get_dir()

get
Get the HAL object value.

h.in.get()

set
Set the HAL object value.

h.out.set(10)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1289 / 1322

is_pin
Is the object a pin or parameter?
Returns True or False.

h.in.is_pin()

sampler_base
TODO

stream_base
TODO

stream
TODO

set_p
Set a pin value of any pin in the HAL system.

Example
hal.set_p(”pinname”,”10”)

set_s
Set the value of any unconnected signal in the HAL system.

Example
hal.set_s(”signalname”,”10”)

13.4 GStat Python Module

13.4.1 Intro

GStat is a Python class used to send messages from LinuxCNC to other Python programs. It uses
GObject to deliver messages, making it easy to listen for specific information. This is referred to
as event-driven programming, which is more efficient then every program polling LinuxCNC at the
same time. GladeVCP, Gscreen, Gmoccapy and QtVCP use GStat extensively. GStat is in the hal_glib
module.
Overview

• First, a program imports the hal_glib module and instantiates GStat.

• Then it connects to the messages it wishes to monitor.

• GStat checks LinuxCNC’s status every 100 ms and if there are differences from the last check, it
will send a callback message to all the connected programs with the current status.

• When GStat calls the registered function, it sends the GStat object plus any return codes from the
message.

Typical code signatures:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1290 / 1322

GSTAT.connect(’MESSGAE-TO-LISTEN-FOR’, FUNCTION_TO_CALL)

def FUNCTION_TO_CALL(gstat_object, return_codes):

Often LAMBDA is used to strip the GSTAT object and manipulate the return codes:
GSTAT.connect(’MESSGAE-TO-LISTEN-FOR’, lambda o, return: FUNCTION_TO_CALL(not return))

def FUNCTION_TO_CALL(return_codes):

13.4.2 Sample GStat Code

There are some basic patterns for using GStat, depending on what library you are using them in. If
using GStat with GladeVCP, Gscreen, or QtVCP, the GObject library is not needed as those toolkits
already set up GObject.

13.4.2.1 Sample HAL component code pattern

This program creates two HAL pins that output the status of G20/G21.
#!/usr/bin/env python3

import gi
gi.require_version(’Gtk’, ’3.0’)
from gi.repository import GObject
from gi.repository import GLib
import hal
from hal_glib import GStat
GSTAT = GStat()

callback to change HAL pin state
def mode_changed(obj, data):

h[’g20’] = not data
h[’g21’] = data

Make a component and pins
h = hal.component(”metric_status”)
h.newpin(”g20”, hal.HAL_BIT, hal.HAL_OUT)
h.newpin(”g21”, hal.HAL_BIT, hal.HAL_OUT)
h.ready()

connect a GSTAT message to a callback function
GSTAT.connect(”metric-mode-changed”,mode_changed)

force GSTAT to initialize states
GSTAT.forced_update()

loop till exit
try:

GLib.MainLoop().run()
except KeyboardInterrupt:

raise SystemExit

This would be loaded with loadusr python PATH-TO-FILE/FILENAME.py or if you need to wait for the
pins to be made before continuing:
loadusr python -Wn metric_status PATH-TO-FILE/FILENAME.py
The pins would be: metric_status.g20 and metric_status.g21.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1291 / 1322

13.4.2.2 GladeVCP Python extension code pattern

This file assumes there are three GTK labels named:

• state_label

• e_state_label

• interp_state_label

#!/usr/bin/env python3

from hal_glib import GStat
GSTAT = GStat()

class HandlerClass:

def __init__(self, halcomp, builder, useropts):
self.builder = builder

GSTAT.connect(”state-estop”,lambda w: self.update_estate_label(’ESTOP’))
GSTAT.connect(”state-estop-reset”,lambda w: self.update_estate_label(’RESET’))

GSTAT.connect(”state-on”,lambda w: self.update_state_label(’MACHINE ON’))
GSTAT.connect(”state-off”,lambda w: self.update_state_label(’MACHINE OFF’))

GSTAT.connect(”interp-paused”,lambda w: self.update_interp_label(’Paused’))
GSTAT.connect(”interp-run”,lambda w: self.update_interp_label(’Run’))
GSTAT.connect(”interp-idle”,lambda w: self.update_interp_label(’Idle’))

def update_state_label(self,text):
self.builder.get_object(’state_label’).set_label(”State: %s” % (text))

def update_estate_label(self,text):
self.builder.get_object(’e_state_label’).set_label(”E State: %s” % (text))

def update_interp_label(self,text):
self.builder.get_object(’interp_state_label’).set_label(”Interpreter State: %s” % (←↩

text))

def get_handlers(halcomp,builder,useropts):
return [HandlerClass(halcomp,builder,useropts)]

13.4.2.3 QtVCP Python extension code pattern

QtVCP extends GStat, so must be loaded differently but all the messages are available in QtVCP.
This handler file assumes there are three QLabels named:

• state_label

• e_state_label

• interp_state_label

#!/usr/bin/env python3

from qtvcp.core import Status
GSTAT = Status()

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1292 / 1322

class HandlerClass:

def __init__(self, halcomp,widgets,paths):
self.w = widgets

GSTAT.connect(”state-estop”,lambda w: self.update_estate_label(’ESTOP’))
GSTAT.connect(”state-estop-reset”,lambda w: self.update_estate_label(’RESET’))

GSTAT.connect(”state-on”,lambda w: self.update_state_label(’MACHINE ON’))
GSTAT.connect(”state-off”,lambda w: self.update_state_label(’MACHINE OFF’))

GSTAT.connect(”interp-paused”,lambda w: self.update_interp_label(’Paused’))
GSTAT.connect(”interp-run”,lambda w: self.update_interp_label(’Run’))
GSTAT.connect(”interp-idle”,lambda w: self.update_interp_label(’Idle’))

def update_state_label(self,text):
self.w.state_label.setText(”State: %s” % (text))

def update_estate_label(self,text):
self.w.e_state_label.setText(”E State: %s” % (text))

def update_interp_label(self,text):
self.winterp_state_label.setText(”Interpreter State: %s” % (text))

def get_handlers(halcomp,builder,useropts):
return [HandlerClass(halcomp,widgets,paths)]

13.4.3 Messages

periodic
(returns nothing) - sent every 100 ms.

state-estop
(returns nothing) - Sent when LinuxCNC is goes into estop.

state-estop-reset
(returns nothing) - Sent when LinuxCNC comes out of estop.

state-on
(returns nothing) - Sent when LinuxCNC is in machine on state.

state-off
(returns nothing) - Sent when LinuxCNC is in machine off state.

homed
(returns string) - Sent as each joint is homed.

all-homed
(returns nothing) - Sent when all defined joints are homed.

not-all-homed
(returns string) - Sends a list of joints not currently homed.

override_limits_changed
(returns string) - Sent if LinuxCNC has been directed to override its limits.

hard-limits-tripped
(returns bool, Python List) - Sent when any hard limit is tripped. bool indicates if any limit is
tripped, the list shows all available joint’s current limit values.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1293 / 1322

mode-manual
(returns nothing) - Sent when LinuxCNC switches to manual mode.

mode-mdi
(returns nothing) - Sent when LinuxCNC switches to MDI mode.

mode-auto
(returns nothing) - Sent when LinuxCNC switches to auto mode.

command-running
(returns nothing) - Sent when running a program or MDI

command-stopped
(returns nothing) - Sent when a program or MDI stopped

command-error
(returns nothing) - Sent when there is a command error

interp-run
(returns nothing) - Sent when LinuxCNC’s interpreter is running an MDI or program.

interp-idle
(returns nothing) - Sent when LinuxCNC’s interpreter is idle.

interp-paused
(returns nothing) - Sent when LinuxCNC’s interpreter is paused.

interp-reading
(returns nothing) - Sent when LinuxCNC’s interpreter is reading.

interp-waiting
(returns nothing) - Sent when LinuxCNC’s interpreter is waiting.

jograte-changed
(returns float) - Sent when jog rate has changed.
LinuxCNC does not have an internal jog rate.
This is GStat’s internal jog rate.
It is expected to be in the machine’s native units regardless of the current unit mode .

jograte-angular-changed
(returns float) - Sent when the angular jog rate has changed.
LinuxCNC does not have an internal angular jog rate.
This is GStat’s internal jog rate.
It is expected to be in the machine’s native units regardless of the current unit mode .

jogincrement-changed
(returns float, text) - Sent when jog increment has changed.
LinuxCNC does not have an internal jog increment.
This is GStat’s internal jog increment.
It is expected to be in the machine’s native units regardless of the current unit mode .

jogincrement-angular-changed
(returns float, text) - Sent when angular jog increment has changed.
LinuxCNC does not have an internal angular jog increment.
This is GStat’s internal angular jog increment.
It is expected to be in the machine’s native units regardless of the current unit mode .

program-pause-changed
(returns bool) - Sent when program is paused/unpaused.

optional-stop-changed
(returns bool) - Sent when optional stop is set/unset

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1294 / 1322

block-delete-changed
(returns bool) - sent when block delete is set/unset.

file-loaded
(returns string) - Sent when LinuxCNC has loaded a file

reload-display
(returns nothing) - Sent when there is a request to reload the display

line-changed
(returns integer) - Sent when LinuxCNC has read a new line.
LinuxCNC does not update this for every type of line.

tool-in-spindle-changed
(returns integer) - Sent when the tool has changed.

tool-info-changed
(returns Python object) - Sent when current tool info changes.

current-tool-offset
(returns Python object) - Sent when the current tool offsets change.

motion-mode-changed
(returns integer) - Sent when motion’s mode has changed

spindle-control-changed
(returns integer, bool, integer, bool) - (spindle num, spindle on state, requested spindle direction
& rate, at-speed state)
Sent when spindle direction or running status changes or at-speed changes.

current-feed-rate
(returns float) - Sent when the current feed rate changes.

current-x-rel-position
(returns float) - Sent every 100 ms.

current-position
(returns pyobject, pyobject, pyobject, pyobject) - Sent every 100 ms.
Returns tuples of position, relative position, distance-to-go and the joint actual position. Before
homing, on multi-joint axes, only joint position is valid.

current-z-rotation
(returns float) - Sent as the current rotatated angle around the Z axis changes

requested-spindle-speed-changed
(returns float) - Sent when the current requested RPM changes

actual-spindle-speed-changed
(returns float) - Sent when the actual RPM changes based on the HAL pin spindle.0.speed-in.

spindle-override-changed
(returns float) - Sent when the spindle override value changes
in percent

feed-override-changed
(returns float) - Sent when the feed override value changes
in percent

rapid-override-changed
(returns float) - Sent when the rapid override value changes
in percent (0-100)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1295 / 1322

max-velocity-override-changed
(returns float) - Sent when the maximum velocity override value changes
in units per minute

feed-hold-enabled-changed
(returns bool) - Sent when feed hold status changes

itime-mode
(returns bool) - Sent when G93 status changes
(inverse time mode)

fpm-mode
(returns bool) - Sent when G94 status changes
(feed per minute mode)

fpr-mode
(returns bool) - Sent when G95 status changes
(feed per revolution mode)

css-mode
(returns bool) - Sent when G96 status changes
(constant surface feed mode)

rpm-mode
(returns bool) - Sent when G97 status changes
(constant RPM mode)

radius-mode
(returns bool) - Sent when G8 status changes
display X in radius mode

diameter-mode
(returns bool) - Sent when G7 status changes
display X in Diameter mode

flood-changed
(returns bool) - Sent when flood coolant state changes.

mist-changed
(returns bool) - Sent when mist coolant state changes.

m-code-changed
(returns string) - Sent when active M-codes change

g-code-changed
(returns string) - Sent when active G-code change

metric-mode-changed
(returns bool) - Sent when G21 status changes

user-system-changed
(returns string) - Sent when the reference coordinate system (G5x) changes

mdi-line-selected
(returns string, string) - intended to be sent when an MDI line is selected by user.
This depends on the widget/libraries used.

gcode-line-selected
(returns integer) - intended to be sent when a G-code line is selected by user.
This depends on the widget/libraries used.

graphics-line-selected
(returns integer) - intended to be sent when graphics line is selected by user.
This depends on the widget/libraries used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1296 / 1322

graphics-loading-progress
(returns integer) - intended to return percentage done of loading a program or running a pro-
gram.
This depends on the widget/libraries used.

graphics-gcode-error
(returns string) - intended to be sent when a G-code error is found when loading.
This depends on the widget/libraries used.

graphics-gcode-properties
(returns Python dict) - Sent when G-code is loaded.
The dict contains the following keys:

• name (string): Name of the loaded file
• size (string): Size in bytes and lines
• g0 (string): Total rapid distance
• g1 (string): Total feed distance
• run (string): Estimated program run time
• toollist (list): List of used tools
• x (string): X extents (bounds) 1

• x_zero_rxy (string): X extents without rotation around z (bounds) 1

• y (string): Y extents (bounds) 1

• y_zero_rxy (string): Y extents without rotation around z (bounds) 1

• z (string): Z extents (bounds) 1

• z_zero_rxy (string): Z extents without rotation around z (bounds) 1

• machine_unit_sys (string): Machine units (Metric or Imperial)
• gcode_units (string): Units in G-code file (mm or in)

Note

1. See the images and for a
better understanding.

graphics-view-changed
(returns string, Python dict or None) - intended to be sent when graphics view is changed.
This depends on the widget/libraries used.

mdi-history-changed
(returns None) - intended to be sent when an MDI history needs to be reloaded.
This depends on the widget/libraries used.

machine-log-changed
(returns None) - intended to be sent when machine log has changed.
This depends on the widget/libraries used.

update-machine-log
(returns string, string) - intended to be sent when updating the machine.
This depends on the widget/libraries used.

move-text-lineup
(returns None) - intended to be sent when moving the cursor one line up in G-code display.
This depends on the widget/libraries used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1297 / 1322

move-text-linedown
(returns None) - intended to be sent when moving the cursor one line down in G-code display.
This depends on the widget/libraries used.

dialog-request
(returns Python dict) - intended to be sent when requesting a GUI dialog.
It uses a Python dict for communication. The dict must include the following keyname pair:

• NAME: requested dialog name
The dict usually has several keyname pairs - it depends on the dialog.
dialogs return information using a general message
This depends on the widget/libraries used.

focus-overlay-changed
(returns bool, string, Python object) - intended to be sent when requesting an overlay to be put
over the display.
This depends on the widget/libraries used.

play-sound
(returns string) - intended to be sent when requesting a specific sound file to be played.
This depends on the widget/libraries used.

virtual-keyboard
(returns string) - intended to be sent when requesting a on screen keyboard.
This depends on the widget/libraries used.

dro-reference-change-request
(returns integer) - intended to be sent when requesting a DRO widget to change its reference.
0 = machine, 1 = relative, 3 = distance-to-go
This depends on the widget/libraries used.

show-preferences
(returns None) - intended to be sent when requesting the screen preferences to be displayed.
This depends on the widget/libraries used.

shutdown
(returns None) - intended to be sent when requesting LinuxCNC to shutdown.
This depends on the widget/libraries used.

status-message
returns python dict (message), python dict (options) Intended for a screen/panel to get status/log
messages from widgets, but can be used generally.
The listening object is expected to look for and handle at least these entries:

The message dict would include:

• TITLE: (string)

• SHORTTEXT: (string)

• DETAILS: (string)

The options dict would include:

• LEVEL: (integer)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1298 / 1322

• LOG: (bool)

The listening object could use this to display information on a text line or message dialog.
The LEVEL would indicate urgency 0 = DEFAULT 1 = WARNING 2 = CRITICAL
LOG indicates whether the message should be logged to a file/page if available.
LOG messages would be assumed to use the DETAILS entry.

An example of how to send a message:
mess = {’SHORTTEXT’:’File Copy Failed’,

’TITLE’:’FileManager’,
’DETAILS’:’There is not enough room on disk to copy the file’}

opt = {’LOG’:True,’LEVEL’:2}
STATUS.emit(’status-message’,mess,opt)

An example of the listening object:
tell STATUS we want to respond to any sent ’status-message’ messages.
STATUS.connect(’status-message’, lambda w, d, o: self.add_external_status(m,o))

def add_external_status(self, message, option):

extract and trap errors for expected entries
level = option.get(’LEVEL’, STATUS.DEFAULT)
log = option.get(”LOG”, True)
title = message.get(’TITLE’, ’’)
mess = message.get(’SHORTTEXT’, ’’)
logtext = message.get(’DETAILS’, ’’)

call a function to print the message on a statusbar:
self.add_status(mess, level, noLog=True)

request a log file update
if log:

STATUS.emit(’update-machine-log’, ”{}\n{}”.format(title, logtext), ’TIME’)

error
(returns integer, string) - intended to be sent when an error has been reported .
integer represents the kind of error. ERROR, TEXT or DISPLAY
string is the actual error message.
This depends on the widget/libraries used.

general
(returns Python dict) - intended to be sent when message must be sent that is not covered by a
more specific message.
General message should be used a sparsely as reasonable because all object connected to it will
have to parse it.
It uses a Python dict for communication.
The dict should include and be checked for a unique id keyname pair:

• ID: UNIQUE_ID_CODE
The dict usually has more keyname pair - it depends on implementation.

forced-update
(returns None) - intended to be sent when one wishes to initialize or arbitrarily update an object.
This depends on the widget/libraries used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1299 / 1322

progress
(returns integer, Python object) - intended to be sent to indicate the progress of a filter program.
This depends on the widget/libraries used.

following-error
(returns Python list) - returns a list of all joints current following error.

13.4.4 Functions

These are convenience functions that are commonly used in programming.

set_jograte
(float) - LinuxCNC has no internal concept of jog rate -each GUI has its own. This is not always
convenient.
This function allows one to set a jog rate for all objects connected to the signal jograte-changed.
It defaults to 15.
GSTAT.set_jog_rate(10) would set the jog rate to 10 machine-units-per-minute and emit the jograte-changed
signal.

get_jograte()
(Nothing) - x = GSTAT.get_jograte() would return GSTAT’s current internal jograte (float).

set_jograte_angular
(float) -

get_jograte_angular
(None) -

set_jog_increment_angular
(float, string) -

get_jog_increment_angular
(None) -

set_jog_increments
(float, string) -

get_jog_increments
(None) -

is_all_homed
(nothing) - This will return the current state of all_homed (BOOL).

machine_is_on
(nothing) - This will return the current state of machine (BOOL).

estop_is_clear
(nothing) - This will return the state of Estop (BOOL)

set_tool_touchoff
(tool,axis,value) - This command will

1. record the current mode,
2. switch to MDI mode,
3. invoke the MDI command: G10 L10 P[TOOL] [AXIS] [VALUE],
4. wait for it to complete,
5. invoke G43,
6. wait for it to complete,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1300 / 1322

7. switch back to the original mode.

set_axis_origin
(axis,value) - This command will

1. record the current mode,
2. switch to MDI mode,
3. invoke the MDI command: G10 L20 P0 [AXIS] [VALUE],
4. wait for it to complete,
5. switch back to the original mode,
6. emit a reload-display signal.

do_jog
(axis_number,direction, distance) - This will jog an axis continuously or at a set distance.
You must be in the proper mode to jog.

check_for_modes
(mode) - This function checks for required LinuxCNC mode.
It returns a Python tuple (state, mode)
mode will be set the mode the system is in
state will set to:

• false if mode is 0
• false if machine is busy
• true if LinuxCNC is in the requested mode
• None if possible to change, but not in requested mode

get_current_mode
(nothing) - returns integer: the current LinuxCNC mode.

set_selected_joint
(integer) - records the selected joint number internally.
requests the joint to be selected by emitting the
joint-selection-changed message.

get_selected_joint
(None) - returns integer representing the internal selected joint number.

set_selected_axis
(string) - records the selected axis letter internally.
Requests the axis to be selected by emitting the axis-selection-changed message.

get_selected_axis
(None) - returns string representing the internal selected axis letter.

is_man_mode
(None) -

is_mdi_mode
(None) -

is_auto_mode
(None) -

is_on_and_idle
(None) -

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1301 / 1322

is_auto_running
(None) -

is_auto_paused
(None) -

is_file_loaded
(None) -

is_metric_mode
(None) -

is_spindle_on
(None) -

shutdown
(None) -

13.4.5 Known Issues

Some status points are reported wrongly during a running program because the interpreter runs
ahead of the current position of a running program. This will hopefully be resolved with the merge of
state-tags branch.

13.5 Vismach

Vismach is a set of Python functions that can be used to create and animate models of machines.
Vismach displays the model in a 3D viewport and the model parts are animated as the values of
associated HAL pins change.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1302 / 1322

The Vismach viewport view can be manipulated as follows:

• zoom by scroll wheel or right button drag,

• pan by left button drag,

• rotate by middle-button drag or shift-drag.

A Vismach model takes the form of a Python script and can use standard Python syntax. This means
that there is more than one way to lay out the script, but in the examples given in this document I will
use the simplest and most basic of them.
The basic sequence in creating the Vismach model is

• Create the HAL pins that control the motion.

• Create the parts.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1303 / 1322

• Define how they move.

• Assemble into movement groups.

13.5.1 Start the script

It is useful for testing to include the #!/usr/bin/env python3 to allow the file to be run as a script. The
first thing to do is to import the required libraries.
#!/usr/bin/env python3

from vismach import *
import hal
import math
import sys

13.5.2 Create the HAL pins.

HAL pins are created with the normal Python ”hal” library, and are not specific to Vismach. Further
details can be found in the Creating Non-realtime Components in Python section. A component should
be created with a name that matches the script file name and then the HAL pins are added to that
component. They will be referenced by their component handle and short name when used to animate
the Vismach model.
c = hal.component(”samplegui”)
c.newpin(”joint0”, hal.HAL_FLOAT, hal.HAL_IN)
c.newpin(”joint1”, hal.HAL_FLOAT, hal.HAL_IN)
c.ready()

Will create HAL pins samplegui.joint0 and samplegui.joint1. When loading the Vismach model with
loadusr -W samplegui the c.ready() function tells loadusr it’s ready.

13.5.3 Creating Parts

It is probably easiest to create geometry in a CAD package and import into the model script with the
AsciiSTL() or AsciiOBJ() functions. Both functions can take one of two named arguments, either a
filename or raw data:

• part = AsciiSTL(filename=”path/to/file.stl”) + part = AsciiSTL(data=”solid part1 facet
normal”) + part = AsciiOBJ(filename=”path/to/file.obj”) + part = AsciiOBJ(data=”v
0.123 0.234 0.345 1.0 ...”)
The parts will be created in the Vismach space in the same locations as they occupy in the STL or
OBJ space. This means that it may be possible to assemble the model in the CAD package.

Alternatively parts can be created inside the model script from a range of shape primitives. Many
shapes are created at the origin and need to be moved to the required location after creation:

• cylinder = CylinderX(x1, r1, x2, r2) + cylinder = CylinderY(y1, r1, y2, r2) + cylinder
= CylinderZ(z1, r1, z2, r2)
Creates a (optionally tapered) cylinder on the given axis with the given radii at the given points on
the axis.

• sphere = Sphere(x, y, z, r)
Creates a sphere of radius r at (x,y,z)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1304 / 1322

• triangle = TriangleXY(x1, y1, x2, y2, x3, y3, z1, z2) + triangle = TriangleXZ(x1, z1,
x2, z2, x3, z3, y1, y2) + triangle = TriangleYZ(y1, z1, y2, z2, y3, z3, x1, x2)
Creates a triangular plate between planes defined by the last two values parallel to the specified
plane, with vertices given by the three coordinate pairs.

• arc = ArcX(x1, x2, r1, r2, a1, a2)
Create an arc shape.

• box = Box(x1, y1, z1, x2, y2, z2)
Creates a rectangular prism with opposite corners at the specified positions and edges parallel to
the XYZ axes.

• box = BoxCentered(xw, yw, zw)
Creates an xw by yw by zw box centred on the origin.

• box = BoxCenteredXY(xw, yw, z)
Creates a box of width xw / yw and height z.

Composite parts may be created by assembling these primitives either at creation time or subse-
quently using Collection():
part1 = Collection([Sphere(100,100,100,50), CylinderX(100,40,150,30)])
part2 = Box(50,40,75,100,75,100)
part3 = Collection([part2, TriangleXY(10,10,20,10,15,20,100,101)])
part4 = Collection([part1, part2])

13.5.4 Moving Parts

Parts may need to be moved in the Vismach space to assemble the model. They may also need to be
moved to create the animation as the animation rotation axis is created at the origin (but moves with
the Part):

• part1 = Translate([part1], x, y, z)
Move part1 the specified distances in x, y and z.

• part1 = Rotate([part1], theta, x, y, z)
Rotate the part by angle theta about an axis between the origin and x, y, z.

13.5.5 Animating Parts

To animate the model (controlled by the values of HAL pins) there are two functions HalTranslate and
HalRotate. For parts to move inside an assembly they need to have their HAL motions defined before
being assembled with the ”Collection” command. The rotation axis and translation vector move with
the part as it is moved by the vismach script during model assembly, or as it moves in response to the
HAL pins as the model is animated:

• part = HalTranslate([part], comp, ”hal_pin”, xs, ys, zs)
The function arguments are:

– first a collection/part which can be pre-created earlier in the script, or could be created at this
point if preferred eg part1 = HalTranslate([Box(....)], ...).

– TheHAL component is the next argument, i.e. the object returned by the comp = hal.component(...)
command. After that is the name of the HAL in that will animate the motion, this needs to match
an existing HAL pin that is part of the HAL component created earlier in the script.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1305 / 1322

– Then follow the X, Y, Z scales.
For a Cartesian machine created at 1:1 scale this would typically be 1,0,0 for a motion in the
positive X direction.
However if the STL file happened to be in cm and the machine was in inches, this could be fixed
at this point by using 0.3937 (1cm /2.54in) as the scale.

• part = HalRotate([part], comp, ”hal_pin”, angle_scale, x, y, z)
This command is similar in its operation to HalTranslate except that it is typically necessary to move
the part to the origin first to define the axis.

– The axis of rotation is from the origin point to the point defined by (x,y,z).
When the part is moved back away from the origin to its correct location the axis of rotation can
be considered to remain ”embedded” in the part.

– Rotation angles are in degrees, so for a rotary joint with a 0-1 scaling you would need to use an
angle scale of 360.

13.5.6 Assembling the model.

In order for parts to move together they need to be assembled with the Collection() command. It is
important to assemble the parts and define their motions in the correct sequence. For example to
create a moving head milling machine with a rotating spindle and an animated draw bar you would:

• Create the head main body.

• Create the spindle at the origin.

• Define the rotation.

• Move the head to the spindle or spindle to the head.

• Create the draw bar.

• Define the motion of the draw bar.

• Assemble the three parts into a head assembly.

• Define the motion of the head assembly.

In this example the spindle rotation is indicated by rotation of a set of drive dogs:
#Drive dogs
dogs = Box(-6,-3,94,6,3,100)
dogs = Color([1,1,1,1],[dogs])
dogs = HalRotate([dogs],c,”spindle”,360,0,0,1)
dogs = Translate([dogs],-1,49,0)

#Drawbar
draw = CylinderZ(120,3,125,3)
draw = Color([1,0,.5,1],[draw])
draw = Translate([draw],-1,49,0)
draw = HalTranslate([draw],c,”drawbar”,0,0,1)

head/spindle
head = AsciiSTL(filename=”./head.stl”)
head = Color([0.3,0.3,0.3,1],[head])
head = Translate([head],0,0,4)
head = Collection([head, tool, dogs, draw])
head = HalTranslate([head],c,”Z”,0,0,0.1)

base

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1306 / 1322

base = AsciiSTL(filename=”./base.stl”)
base = Color([0.5,0.5,0.5,1],[base])
mount head on it
base = Collection([head, base])

Finally a single collection of all the machine parts, floor and work (if any) needs to be created:

• For a serial machine each new part will be added to the collection of the previous part.

• For a parallel machine there may be several ”base” parts.

Thus, for example, in scaragui.py link3 is added to link2, link2 to link1 and link1 to link0, so the final
model is created by:
model = Collection([link0, floor, table])

Whereas a VMC model with separate parts moving on the base might have:
model = Collection([base, saddle, head, carousel])

13.5.7 Other functions

• part = Color([colorspec], [part])
Sets the display color of the part. Note that unlike the other functions the part definition comes
second in this case.
The colorspec consists of the three RGB values and an opacity. For example [1,0,0,0.5] for a 50%
opacity red.

• myhud = Hud()
Creates a heads-up display in the Vismach GUI to display such items as axis positions.

• tooltip = Capture()
Think of this as an invisible part that needs to be attached to the tooltip to track the position and
orientation of the tool coordinate system. It is actually a transformation matrix that is constantly
updated as the model moves.

• work = Capture()
Same as above but attached to the work table to track the work coordinate system.

• main(model, tooltip, work, size=10, hud=0, rotation_vectors=None, lat=0, lon=0)
This is the command that makes it all happen, creates the display etc.

– model should be a collection that contains all the machine parts.
– tooltip and work need to be created by Capture(). Vismach needs this information to draw the

backplot which is basically the tooltip position drawn in the work coordinate system.
See scaragui.py for an example of how to connect the tool tip to a tool and the tool to the model.

– Either rotation_vectors or latitude/longitude can be used to set the original viewpoint and it is
advisable to do as the default initial viewpoint is rather unhelpfully from immediately overhead.

– size sets the extent of the volume visualized in the initial view.
– hud refers to a head-up display of axis positions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1307 / 1322

13.5.8 Basic structure of a Vismach script.

#imports
from vismach import *
import hal
#create the HAL component and pins
comp = hal.component(”compname”)
comp.newpin(”pin_name”, hal.HAL_FLOAT, hal.HAL_IN)
...
#create the floor, tool and work
floor = Box(-50, -50, -3, 50, 50, 0)
work = Capture()
tooltip = Capture()
...
#Build and assemble the model
part1 = Collection([Box(-6,-3,94,6,3,100)])
part1 = Color([1,1,1,1],[part1])
part1 = HalRotate([part1],comp,”pin_name”,360,0,0,1)
part1 = Translate([dogs],-1,49,0)
...
#create a top-level model
model = Collection([base, saddle, head, carousel])
#Start the visualization
main(model, tooltip, work, 100, lat=-75, lon=215)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1308 / 1322

Part III

Glossary, Copyright & History

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1309 / 1322

Chapter 14

Overleaf

This handbook is a work in progress. If you are able to help with writing, editing, or graphic prepara-
tion please contact any member of the writing team or join and send an email to emc-users@lists.sourceforge.net.
Copyright © 2000-2025 LinuxCNC.org
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled ”GNU Free Documentation License”.
If you do not find the license you may order a copy from:

Free Software Foundation, Inc.
51 Franklin Street
Fifth Floor
Boston, MA 02110-1301 USA.

(The English language version is authoritative)
LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered
trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a world-wide basis.
The LinuxCNC project is not affiliated with Debian®. Debian is a registered trademark owned by
Software in the Public Interest, Inc.
The LinuxCNC project is not affiliated with UBUNTU®. UBUNTU is a registered trademark owned
by Canonical Limited.

mailto:emc-users@lists.sourceforge.net

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1310 / 1322

Chapter 15

Glossary

A listing of terms and what they mean. Some terms have a general meaning and several additional
meanings for users, installers, and developers.

Acme Screw
A type of lead-screw that uses an Acme thread form. Acme threads have somewhat lower friction
and wear than simple triangular threads, but ball-screws are lower yet. Most manual machine
tools use acme lead-screws.

Axis
One of the computer controlled movable parts of the machine. For a typical vertical mill, the
table is the X axis, the saddle is the Y axis, and the quill or knee is the Z axis. Angular axes like
rotary tables are referred to as A, B, and C. Additional linear axes relative to the tool are called
U, V, and W respectively.

AXIS(GUI)
One of the Graphical User Interfaces available to users of LinuxCNC. It features the modern use
of menus and mouse buttons while automating and hiding some of the more traditional LinuxCNC
controls. It is the only open-source interface that displays the entire tool path as soon as a file is
opened.

GMOCCAPY (GUI)
A Graphical User Interfaces available to users of LinuxCNC. It features the use and feel of an
industrial control and can be used with touch screen, mouse and keyboard. It support embedded
tabs and hal driven user messages, it offers a lot of hal beens to be controlled with hardware.
GMOCCAPY is highly customizable.

Backlash
The amount of ”play” or lost motion that occurs when direction is reversed in a lead screw. or
other mechanical motion driving system. It can result from nuts that are loose on leadscrews,
slippage in belts, cable slack, ”wind-up” in rotary couplings, and other places where the mechan-
ical system is not ”tight”. Backlash will result in inaccurate motion, or in the case of motion
caused by external forces (think cutting tool pulling on the work piece) the result can be broken
cutting tools. This can happen because of the sudden increase in chip load on the cutter as the
work piece is pulled across the backlash distance by the cutting tool.

Backlash Compensation
Any technique that attempts to reduce the effect of backlash without actually removing it from
the mechanical system. This is typically done in software in the controller. This can correct the
final resting place of the part in motion but fails to solve problems related to direction changes
while in motion (think circular interpolation) and motion that is caused when external forces
(think cutting tool pulling on the work piece) are the source of the motion.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1311 / 1322

Ball Screw
A type of lead-screw that uses small hardened steel balls between the nut and screw to reduce
friction. Ball-screws have very low friction and backlash, but are usually quite expensive.

Ball Nut
A special nut designed for use with a ball-screw. It contains an internal passage to re-circulate
the balls from one end of the screw to the other.

CNC
Computer Numerical Control. The general term used to refer to computer control of machinery.
Instead of a human operator turning cranks to move a cutting tool, CNC uses a computer and
motors to move the tool, based on a part program.

Halcompile
A tool used to build, compile and install LinuxCNC HAL components.

Configuration(n)
A directory containing a set of configuration files. Custom configurations are normally saved in
the users home/linuxcnc/configs directory. These files include LinuxCNC’s traditional INI file and
HAL files. A configuration may also contain several general files that describe tools, parameters,
and NML connections.

Configuration(v)
The task of setting up LinuxCNC so that it matches the hardware on a machine tool.

Coordinate Measuring Machine
A Coordinate Measuring Machine is used to make many accurate measurements on parts. These
machines can be used to create CAD data for parts where no drawings can be found, when a hand-
made prototype needs to be digitized for moldmaking, or to check the accuracy of machined or
molded parts.

Display units
The linear and angular units used for onscreen display.

DRO
A Digital Read Out is a system of position-measuring devices attached to the slides of a machine
tool, which are connected to a numeric display showing the current location of the tool with
respect to some reference position. DROs are very popular on hand-operated machine tools
because they measure the true tool position without backlash, even if the machine has very loose
Acme screws. Some DROs use linear quadrature encoders to pick up position information from
the machine, and some use methods similar to a resolver which keeps rolling over.

EDM
EDM is a method of removing metal in hard or difficult to machine or tough metals, or where
rotating tools would not be able to produce the desired shape in a cost-effective manner. An
excellent example is rectangular punch dies, where sharp internal corners are desired. Milling
operations can not give sharp internal corners with finite diameter tools. A wire EDM machine
can make internal corners with a radius only slightly larger than the wire’s radius. A sinker EDM
can make internal corners with a radius only slightly larger than the radius on the corner of the
sinking electrode.

EMC
The Enhanced Machine Controller. Initially a NIST project. Renamed to LinuxCNC in 2012.

EMCIO
The module within LinuxCNC that handles general purpose I/O, unrelated to the actual motion
of the axes.

EMCMOT
The module within LinuxCNC that handles the actual motion of the cutting tool. It runs as a
real-time program and directly controls the motors.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1312 / 1322

Encoder
A device to measure position. Usually a mechanical-optical device, which outputs a quadrature
signal. The signal can be counted by special hardware, or directly by the parport with LinuxCNC.

Feed
Relatively slow, controlled motion of the tool used when making a cut.

Feed rate
The speed at which a cutting motion occurs. In auto or MDI mode, feed rate is commanded using
an F word. F10 would mean ten machine units per minute.

Feedback
A method (e.g., quadrature encoder signals) by which LinuxCNC receives information about the
position of motors.

Feedrate Override
A manual, operator controlled change in the rate at which the tool moves while cutting. Often
used to allow the operator to adjust for tools that are a little dull, or anything else that requires
the feed rate to be ”tweaked”.

Floating Point Number
A number that has a decimal point. (12.300) In HAL it is known as float.

G-code
The generic term used to refer to the most common part programming language. There are
several dialects of G-code, LinuxCNC uses RS274/NGC.

GUI
Graphical User Interface.

General
A type of interface that allows communications between a computer and a human (in most
cases) via the manipulation of icons and other elements (widgets) on a computer screen.

LinuxCNC
An application that presents a graphical screen to the machine operator allowing manipula-
tion of the machine and the corresponding controlling program.

HAL
Hardware Abstraction Layer. At the highest level, it is simply a way to allow a number of building
blocks to be loaded and interconnected to assemble a complex system. Many of the building
blocks are drivers for hardware devices. However, HAL can do more than just configure hardware
drivers.

Home
A specific location in the machine’s work envelope that is used to make sure the computer and
the actual machine both agree on the tool position.

INI file
A text file that contains most of the information that configures LinuxCNC for a particular ma-
chine.

Instance
One can have an instance of a class or a particular object. The instance is the actual object
created at runtime. In programmer jargon, the ”Lassie” object is an instance of the ”Dog” class.

Joint Coordinates
These specify the angles between the individual joints of the machine. See also Kinematics

Jog
Manually moving an axis of a machine. Jogging either moves the axis a fixed amount for each
key-press, or moves the axis at a constant speed as long as you hold down the key. In manual
mode, jog speed can be set from the graphical interface.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1313 / 1322

kernel-space
Code running inside the kernel, as opposed to code running in userspace. Some realtime sys-
tems (like RTAI) run realtime code in the kernel and non-realtime code in userspace, while other
realtime systems (like Preempt-RT) run both realtime and non-realtime code in userspace.

Kinematics
The position relationship between world coordinates and joint coordinates of a machine. There
are two types of kinematics. Forward kinematics is used to calculate world coordinates from joint
coordinates. Inverse kinematics is used for exactly the opposite purpose. Note that kinematics
does not take into account, the forces, moments etc. on the machine. It is for positioning only.

Lead-screw
An screw that is rotated by a motor to move a table or other part of a machine. Lead-screws are
usually either ball-screws or acme screws, although conventional triangular threaded screws
may be used where accuracy and long life are not as important as low cost.

Machine units
The linear and angular units used for machine configuration. These units are specified and used
in the INI file. HAL pins and parameters are also generally in machine units.

MDI
Manual Data Input. This is a mode of operation where the controller executes single lines of
G-code as they are typed by the operator.

NIST
National Institute of Standards and Technology. An agency of the Department of Commerce in
the United States.

NML
Neutral Message Language provides a mechanism for handling multiple types of messages in
the same buffer as well as simplifying the interface for encoding and decoding buffers in neutral
format and the configuration mechanism.

Offsets
An arbitrary amount, added to the value of something to make it equal to some desired value.
For example, G-code programs are often written around some convenient point, such as X0, Y0.
Fixture offsets can be used to shift the actual execution point of that G-code program to properly
fit the true location of the vice and jaws. Tool offsets can be used to shift the ”uncorrected” length
of a tool to equal that tool’s actual length.

Part Program
A description of a part, in a language that the controller can understand. For LinuxCNC, that
language is RS-274/NGC, commonly known as G-code.

Program Units
The linear and angular units used in a part program. The linear program units do not have to
be the same as the linear machine units. See G20 and G21 for more information. The angular
program units are always measured in degrees.

Python
General-purpose, very high-level programming language. Used in LinuxCNC for the Axis GUI,
the StepConf configuration tool, and several G-code programming scripts.

Rapid
Fast, possibly less precise motion of the tool, commonly used to move between cuts. If the tool
meets the workpiece or the fixturing during a rapid, it is probably a bad thing!

Rapid rate
The speed at which a rapid motion occurs. In auto or MDI mode, rapid rate is usually the max-
imum speed of the machine. It is often desirable to limit the rapid rate when testing a G-code
program for the first time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1314 / 1322

Real-time
Software that is intended to meet very strict timing deadlines. On Linux, in order to meet these
requirements it is necessary to install a realtime kernel such as RTAI or Preempt-RT, and build
the LinuxCNC software to run in the special real-time environment. Realtime software can run
in the kernel or in userspace, depending on the facilities offered by the system.

RTAI
Real Time Application Interface, see https://www.rtai.org/, the real-time extensions for Linux that
LinuxCNC can use to achieve real-time performance.

RTLINUX
See https://en.wikipedia.org/wiki/RTLinux, an older real-time extension for Linux that LinuxCNC
used to use to achieve real-time performance. Obsolete, replaced by RTAI.

RTAPI
A portable interface to real-time operating systems including RTAI and POSIX pthreads with
realtime extensions.

RS-274/NGC
The formal name for the language used by LinuxCNC part programs.

Servo Motor
Generally, any motor that is used with error-sensing feedback to correct the position of an actu-
ator. Also, a motor which is specially-designed to provide improved performance in such appli-
cations.

Servo Loop
A control loop used to control position or velocity of an motor equipped with a feedback device.

Signed Integer
A whole number that can have a positive or negative sign. In HAL it is usually a s32, but could
be also a s64.

Spindle
The part of a machine tool that spins to do the cutting. On a mill or drill, the spindle holds the
cutting tool. On a lathe, the spindle holds the workpiece.

Spindle Speed Override
A manual, operator controlled change in the rate at which the tool rotates while cutting. Often
used to allow the operator to adjust for chatter caused by the cutter’s teeth. Spindle Speed
Override assumes that the LinuxCNC software has been configured to control spindle speed.

StepConf
An LinuxCNC configuration wizard. It is able to handle many step-and-direction motion command
based machines. It writes a full configuration after the user answers a few questions about the
computer and machine that LinuxCNC is to run on.

Stepper Motor
A type of motor that turns in fixed steps. By counting steps, it is possible to determine how far
the motor has turned. If the load exceeds the torque capability of the motor, it will skip one or
more steps, causing position errors.

TASK
The module within LinuxCNC that coordinates the overall execution and interprets the part pro-
gram.

Tcl/Tk
A scripting language and graphical widget toolkit with which several of LinuxCNCs GUIs and
selection wizards were written.

Traverse Move
A move in a straight line from the start point to the end point.

https://www.rtai.org/
https://en.wikipedia.org/wiki/RTLinux

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1315 / 1322

Units
See ”Machine Units”, ”Display Units”, or ”Program Units”.

Unsigned Integer
A whole number that has no sign. In HAL it is usually a u32 but could be also a u64.

World Coordinates
This is the absolute frame of reference. It gives coordinates in terms of a fixed reference frame
that is attached to some point (generally the base) of the machine tool.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1316 / 1322

Chapter 16

Copyright

16.1 Legal Section

Translations of this file provided in the source tree are not legally binding.

16.1.1 Copyright Terms

Copyright (c) 2000-2022 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled ”GNU Free Documentation License”.

16.1.2 GNU Free Documentation License

GNU Free Documentation License Version 1.1, March 2000
Copyright © 2000 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document ”free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.
This License is a kind of ”copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1317 / 1322

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The ”Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as ”you”.
A ”Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.
A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.
The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.
The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.
A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not ”Transparent” is called
”Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced
by some word processors for output purposes only.
The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1318 / 1322

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete Transpar-
ent copy of the Document, free of added material, which the general network-using public has access
to download anonymously at no charge using public-standard network protocols. If you use the lat-
ter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the
Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission. B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice
for your modifications adjacent to the other copyright notices. F. Include, immediately after the
copyright notices, a license notice giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum below. G. Preserve in that license
notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license
notice. H. Include an unaltered copy of this License. I. Preserve the section entitled ”History”,
and its title, and add to it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section entitled ”History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous
sentence. J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the ”History” section. You may omit
a network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission. K. In any section entitled
”Acknowledgements” or ”Dedications”, preserve the section’s title, and preserve in the section
all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section titles. M.
Delete any section entitled ”Endorsements”. Such a section may not be included in the Modified
Version. N. Do not retitle any existing section as ”Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1319 / 1322

You may add a section entitled ”Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.
In the combination, you must combine any sections entitled ”History” in the various original docu-
ments, forming one section entitled ”History”; likewise combine any sections entitled ”Acknowledge-
ments”, and any sections entitled ”Dedications”. You must delete all sections entitled ”Endorsements.”
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this Li-
cense, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an ”aggregate”, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permis-
sion from their copyright holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include a translation of

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1320 / 1322

this License provided that you also include the original English version of this License. In case of a
disagreement between the translation and the original English version of this License, the original
English version will prevail.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License ”or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.
ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES,
with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license
is included in the section entitled ”GNU Free Documentation License”.
If you have no Invariant Sections, write ”with no Invariant Sections” instead of saying which ones
are invariant. If you have no Front-Cover Texts, write ”no Front-Cover Texts” instead of ”Front-Cover
Texts being LIST”; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing these exam-
ples in parallel under your choice of free software license, such as the GNU General Public License,
to permit their use in free software.

https://www.gnu.org/copyleft/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1321 / 1322

Chapter 17

LinuxCNC History

17.1 Origin

EMC (the Enhanced Machine Controller) was created by NIST , the National Institute of Standards
and Technology, which is an agency of the Commerce Department of the United States government.
NIST first became interested in writing a motion control package as a test platform for concepts and
standards. Early sponsorship from General Motors resulted in an adaptation of the fledgling version
of EMC using PMAC intelligent control boards running under a ”real time” version of Windows NT
and controlling a large milling machine.
As is required of all work product of US federal government employees, the resulting software and
the report about it are required to be in the public domain and a report about it was duly published,
including on the Internet. It was there that Matt Shaver discovered EMC. He contacted NIST and
entered into discussions with Fred Proctor about adapting the code for use in controlling less expen-
sive hardware to be used for upgrades and replacements of CNC controls that were obsolete or just
plain dead. NIST was intrigued because they too wanted something less expensive. In order to launch
a cooperative effort, a formal agreement was created which guaranteed that the resulting code and
design would remain in the public domain.
Early considerations focused on replacing the expensive and temperamental ”real time” Windows NT
system. It was proposed that a relatively new (at the time) real time extension of the Linux operating
system be tried. This idea was pursued with success. Next up was the issue of the expensive intelligent
motion control boards. By this time the processing power of a PC was considered great enough to
directly take control of the motion routines. A quick search of available hardware resulted in the
selection of a ”Servo-To-Go” interface board as the first platform for letting the PC directly control the
motors. Software for trajectory planning and PID loop control was added to the existing user interface
and RS274 interpreter. Matt successfully used this version to upgrade a couple of machines with dead
controls and this became the EMC system that first caught the attention of the outside world. Mention
of EMC on the rec.crafts.metalworking USENET newsgroup resulted in early adopters like Jon Elson
building systems to take advantage of EMC.
NIST set up a mailing list for people interested in EMC. As time went on, others outside NIST became
interested in improving EMC. Many people requested or coded small improvements to the code. Ray
Henry wanted to refine the user interface. Since Ray was reluctant to try tampering with the C code
in which the user interface was written, a simpler method was sought. Fred Proctor of NIST sug-
gested a scripting language and wrote code to interface the Tcl/Tk scripting language to the internal
NML communications of EMC. With this tool Ray went on to write a Tcl/Tk program that became the
predominant user interface for EMC at the time.
For NIST’s perspective, see this paper written by William Shackleford and Frederick Proctor, describ-
ing the history of EMC and its transition to open source.

https://www.nist.gov/index.html
https://pico-systems.com/motion.html
https://web.archive.org/web/20120417094958/https://www.isd.mel.nist.gov/documents/shackleford/4191_05.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1322 / 1322

By this time interest in EMC as beginning to pick up substantially. As more and more people attempted
installation of EMC, the difficulty of patching a Linux kernel with the real time extensions and of
compiling the EMC code became glaringly obvious. Many attempts to document the process and
write scripts were attempted, some with moderate success. The problem of matching the correct
version of the patches and compilers with the selected version of Linux kept cropping up. Paul Corner
came to the rescue with the BDI (brain dead install) which was a CD from which a complete working
system (Linux, patches, and EMC) could be installed. The BDI approach opened the world of EMC to
a much larger user community. As this community continued to grow, the EMC mailing list and code
archives were moved to SourceForge and the LinuxCNC web site was established.
With a larger community of users participating, EMC became a major focus of interest at the on-going
CNC exhibits at NAMES and NAMES became the annual meeting event for EMC. For the first couple
of years, the meetings just happened because the interested parties were at NAMES. In 2003 the
EMC user community had its first announced public meeting. It was held the Monday after NAMES
in the lobby of the arena where the NAMES show was held. Organization was loose, but the idea of
a hardware abstraction layer (HAL) was born and the movement to restructure the code for ease of
development (EMC2) was proposed.

17.1.1 Name Change

In the spring of 2011, the LinuxCNC Board of Directors was contacted by a law firm representing EMC
Corporation (www.emc.com) about the use of ”EMC” and ”EMC2” to identify the software offered on
linuxcnc.org. EMC Corporation has registered various trademarks relating to EMC and EMC² (EMC
with superscripted numeral two).
After a number of conversations with the representative of EMC Corporation, the final result is that,
starting with the next major release of the software, linuxcnc.org will stop identifying the software
using ”emc” or ”EMC”, or those terms followed by digits. To the extent that the LinuxCNC Board
of Directors controls the names used to identify the software offered on linuxcnc.org, the board has
agreed to this.
As a result, it was necessary to choose a new name for the software. Of the options the board consid-
ered, there was consensus that ”LinuxCNC” is the best option, as this has been our website’s name
for years.
In preparation for the new name, we have received a sub-license of the LINUX® trademark from the
Linux Foundation (www.linuxfoundation.org), protecting our use of the LinuxCNC name. (LINUX® is
the registered trademark of Linus Torvalds in the U.S. and other countries.)
The rebranding effort included the linuxcnc.org website, the IRC channels, and versions of the soft-
ware and documentation since version 2.5.0.

17.1.2 Additional Info

NIST published a paper describing the RS274NGC language and the abstract machining center it con-
trols, as well as an early implementation of EMC. The paper is also available at https://linuxcnc.org/-
files/RS274NGCv3.pdf .
NIST also published a paper on the history of EMC and its transition to open source. The paper is also
available at https://linuxcnc.org/files/Use-of-Open-Source-Distribution-for-a-Machine-Tool-Controller.pdf

https://sourceforge.net/projects/emc/
https://www.nist.gov/node/704046
https://linuxcnc.org/files/RS274NGCv3.pdf
https://linuxcnc.org/files/RS274NGCv3.pdf
https://www.nist.gov/node/702276
https://linuxcnc.org/files/Use-of-Open-Source-Distribution-for-a-Machine-Tool-Controller.pdf

	I Getting Started & Configuration
	Getting Started with LinuxCNC
	About LinuxCNC
	The Software
	The Operating System
	Getting Help
	Web Forum
	IRC
	Mailing List
	Web Forum
	LinuxCNC Wiki
	Bug Reports

	System Requirements
	Minimum Requirements
	Kernel and Version requirements
	Preempt-RT with linuxcnc-uspace package
	RTAI with linuxcnc package
	Xenomai with linuxcnc-uspace package
	RTAI with linuxcnc-uspace package

	Problematic Hardware
	Laptops
	Video Cards

	Getting LinuxCNC
	Download the image
	Normal Download
	Download using zsync
	Verify the image

	Write the image to a bootable device
	Raspberry Pi Image
	AMD-64 (x86-64, PC) Image using GUI tools
	Command line - Linux
	Command line - MacOS

	Testing LinuxCNC
	Installing LinuxCNC
	Updates to LinuxCNC
	Install Problems
	Alternate Install Methods
	Installing on Debian Trixie (with Preempt-RT kernel)
	Installing on Debian Trixie (with experimental RTAI kernel)
	Installing on Raspbian 12

	Running LinuxCNC
	Invoking LinuxCNC
	Configuration Launcher
	Next steps in configuration
	Simulator Configurations
	Configuration Resources

	Updating LinuxCNC
	Upgrade to the new version
	Apt Sources Configuration
	Upgrading to the new version
	Ubuntu

	Updating without Network
	Updating Configuration Files for 2.9
	Stricter handling of pluggable interpreters
	Canterp
	Spindle limits in the INI

	Updating Configuration Files for 2.10.y
	New HAL components
	Non-Realtime
	Realtime

	New Drivers

	Linux FAQ
	Automatic Login
	Debian
	Ubuntu

	Automatic Startup
	Terminal
	Man Pages
	List Modules
	Editing a Root File
	The Command Line Way
	The GUI Way
	Root Access

	Terminal Commands
	Working Directory
	Changing Directories
	Listing files in a directory
	Finding a File
	Searching for Text
	Diagnostic Messages

	Convenience Items
	Terminal Launcher

	Hardware Problems
	Hardware Info
	Monitor Resolution

	Paths

	General User Information
	User Foreword
	LinuxCNC User Introduction
	Introduction
	How LinuxCNC Works
	Graphical User Interfaces
	User Interfaces
	Virtual Control Panels
	Languages
	Think Like a CNC Operator
	Modes of Operation

	Important User Concepts
	Trajectory Control
	Trajectory Planning
	Path Following
	Programming the Planner
	Planning Moves

	G-code
	Defaults
	Feed Rate
	Tool Radius Offset

	Homing
	Tool Changes
	Coordinate Systems
	G53 Machine Coordinate
	G54-59.3 User Coordinates
	When You Are Lost

	Machine Configurations

	Starting LinuxCNC
	Running LinuxCNC
	Configuration Selector

	CNC Machine Overview
	Mechanical Components
	Axes
	Spindle
	Coolant
	Feed and Speed Override
	Block Delete Switch
	Optional Program Stop Switch

	Control and Data Components
	Linear Axes
	Rotational Axes
	Controlled Point
	Coordinated Linear Motion
	Feed Rate
	Cooling
	Dwell
	Units
	Current Position
	Selected Plane
	Tool Carousel
	Tool Change
	Pallet Shuttle
	Speed Override
	Path Control Mode

	Interpreter Interaction with Switches
	Feed and Speed Override Switches
	Block Delete Switch
	Optional Program Stop Switch

	Tool Table
	Parameters

	Lathe User Information
	Lathe Mode
	Lathe Tool Table
	Lathe Tool Orientation
	Tool Touch Off
	X Touch Off
	Z Touch Off
	The Z Machine Offset

	Spindle Synchronized Motion
	Arcs
	Arcs and Lathe Design
	Radius & Diameter Mode

	Tool Path
	Control point
	Cutting Angles without Cutter Comp
	Cutting a Radius
	Using Cutter Comp

	Plasma Cutting Primer for LinuxCNC Users
	What Is Plasma?
	Arc Initialisation
	High Frequency Start
	Blowback Start

	CNC Plasma
	Choosing a Plasma Machine for CNC operations
	Types Of Torch Height Control
	Arc OK Signal
	Initial Height Sensing
	Float Switches
	Ohmic Sensing
	Hypersensing with a MESA THCAD-5
	Example HAL Code for Hypersensing

	THC Delay
	Torch Voltage Sampling
	Torch Breakaway
	Corner Lock / Velocity Anti-Dive
	Void / Kerf Crossing
	Hole And Small Shape Cutting
	I/O Pins For Plasma Controllers
	Arc OK (input)
	Torch On (output)
	Float switch (input)
	Ohmic Sensor enable (output)
	Ohmic Sensing (input)
	Torch Breakaway Sensor

	G-code For Plasma Controllers
	Enable/Disable THC Operation:

	External Offsets and Plasma Cutting
	Reading Arc Voltage With The Mesa THCAD
	THCAD Connections
	THCAD Initial Testing
	Which Model THCAD To Use?

	Post Processors And Nesting
	Designing For Noisy Electrical Environments
	Water Tables
	Downdraft Tables
	Designing For Speed And Acceleration
	Distance Travelled Per Motor Revolution
	QtPlasmaC LinuxCNC Plasma Configuration
	Hypertherm RS485 Control
	Post Processors For Plasma Cutting

	Configuration Wizards
	Stepper Configuration Wizard
	Introduction
	Start Page
	Basic Information
	Parallel Port Setup
	Parallel Port 2 Setup
	Axis Configuration
	Finding Maximum Velocity
	Finding Maximum Acceleration

	Spindle Configuration
	Spindle Speed Control
	Spindle-synchronized motion
	Determining Spindle Calibration

	Options
	Complete Machine Configuration
	Axis Travels and Homes
	Operating without Limit Switches
	Operating without Home Switches
	Home and Limit Switch wiring options

	Mesa Configuration Wizard
	Step by Step Instructions
	Create or Edit
	Basic Machine Information
	External Configuration
	GUI Configuration
	Mesa Configuration
	Mesa I/O Setup
	Parallel port configuration
	Axis Configuration
	Spindle Configuration
	Advanced Options
	HAL Components
	Advanced Usage Of PnCconf

	Configuration
	Integrator Concepts
	File Locations
	Installed
	Command Line

	Files
	Stepper Systems
	Base Period
	Step Timing

	Servo Systems
	Basic Operation
	Proportional term
	Integral term
	Derivative term
	Loop tuning
	Manual tuning

	S-Curve Trajectory Planning
	Enabling
	Tuning

	RTAI
	ACPI

	Computer/Machine Interface Hardware Options
	litehm2/rv901t

	Latency Testing
	What is latency?
	Latency Tests
	Latency Test
	Latency Plot
	Latency Histogram

	Latency tuning
	Tuning the BIOS for latency
	Tuning Preempt-RT for latency

	Stepper Tuning
	Getting the most out of Software Stepping
	Run a Latency Test
	Figure out what your drives expect
	Choose your BASE_PERIOD
	Use steplen, stepspace, dirsetup, and/or dirhold
	No Guessing!

	INI Configuration
	The INI File Components
	Comments
	Sections
	Variables
	Custom Sections and Variables
	Include Files

	INI File Sections
	[EMC] Section
	[DISPLAY] Section
	[FILTER] Section
	[RS274NGC] Section
	[EMCMOT] Section
	[TASK] Section
	[HAL] section
	[HALUI] section
	[APPLICATIONS] Section
	[TRAJ] Section
	[KINS] Section
	[AXIS_<letter>] Section
	[JOINT_<num>] Sections
	[SPINDLE_<num>] Section(s)
	[EMCIO] Section

	Homing Configuration
	Overview
	Prerequisite
	Separate Home Switch Example Layout
	Shared Limit/Home Switch Example Layout
	Homing Sequence
	Configuration
	HOME_SEARCH_VEL
	HOME_LATCH_VEL
	HOME_FINAL_VEL
	HOME_IGNORE_LIMITS
	HOME_USE_INDEX
	HOME_INDEX_NO_ENCODER_RESET
	HOME_OFFSET
	HOME
	HOME_IS_SHARED
	HOME_ABSOLUTE_ENCODER
	HOME_SEQUENCE
	VOLATILE_HOME
	LOCKING_INDEXER
	Immediate Homing
	Inhibiting Homing

	Lathe Configuration
	Default Plane
	INI Settings

	Stepper Quickstart
	Latency Test
	Sherline
	Xylotex
	Machine Information
	Pinout Information
	Mechanical Information

	Stepper Configuration
	Introduction
	Maximum step rate
	Pinout
	Standard Pinout HAL
	Overview
	Changing the standard_pinout.hal
	Changing polarity of a signal
	Adding PWM Spindle Speed Control
	Adding an enable signal
	External ESTOP button

	Stepper Diagnostics
	Common Problems
	Stepper Moves One Step
	No Steppers Move
	Distance Not Correct

	Error Messages
	Following Error
	RTAPI Error

	Testing
	Step Timing

	Filter Programs
	Introduction
	Setting up the INI for Program Filters
	Making Python Based Filter Programs

	HAL (Hardware Abstraction Layer)
	HAL Introduction
	HAL Overview
	Communication
	HAL System Design
	Part Selection
	Interconnection Design
	Implementation
	Testing
	Summary

	HAL Concepts
	HAL components
	Timing Issues In HAL

	HAL Basics
	HAL Commands
	loadrt
	addf
	loadusr
	net
	setp
	sets
	unlinkp
	Obsolete Commands

	HAL Data
	Bit
	Float
	s32
	u32
	s64
	u64

	HAL Files
	HAL Parameter
	Basic Logic Components
	and2
	not
	or2
	xor2

	Logic Examples
	Conversion Components
	weighted_sum

	HAL TWOPASS
	TWOPASS
	Post GUI
	Excluding .hal files
	Examples

	HAL Tutorial
	Introduction
	Halcmd
	Notation
	Tab-completion
	The RTAPI environment

	A Simple Example
	Loading a component
	Examining the HAL
	Making realtime code run
	Changing Parameters
	Saving the HAL configuration
	Exiting halrun
	Restoring the HAL configuration
	Removing HAL from memory

	Halmeter
	Stepgen Example
	Installing the components
	Connecting pins with signals
	Setting up realtime execution - threads and functions
	Setting parameters
	Run it!

	Halscope
	Hooking up the scope probes
	Capturing our first waveforms
	Vertical Adjustments
	Triggering
	Horizontal Adjustments
	More Channels
	More samples

	HAL Examples
	Connecting Two Outputs
	Manual Toolchange
	Compute Velocity
	Soft Start Details
	Stand Alone HAL

	Core Components
	Motion
	Options
	Pins
	Parameters
	Functions

	Spindle
	Pins

	Axis and Joint Pins and Parameters
	iocontrol
	Pins

	INI settings
	Pins

	HAL Component List
	Components
	User Interfaces (non-realtime)
	Motion (non-realtime)
	Hardware Drivers
	Mesa and other I/O Cards (Realtime)
	Utilities (non-realtime)
	Signal processing (Realtime)
	Signal generation (Realtime)
	Kinematics (Realtime)
	Motion control (Realtime)
	Motor control (Realtime)
	Simulation/Testing
	Other (Realtime)

	Not categorized (auto generated from man pages)
	Without man page or broken link (auto generated from component list)
	HAL API calls
	RTAPI calls

	HAL Component Descriptions
	StepGen
	Pins
	Parameters
	Step Types
	Functions

	PWMgen
	Output Types
	Pins
	Parameters
	Functions

	Encoder
	Pins
	Parameters
	Functions

	PID
	Pins
	Functions

	Simulated Encoder
	Pins
	Parameters
	Functions

	Debounce
	Pins
	Parameters
	Functions

	SigGen
	Pins
	Parameters
	Functions

	lut5

	HAL Component Generator
	Introduction
	Installing
	Compiling
	Inside the source tree
	Realtime components outside the source tree
	Non-realtime components outside the source tree

	Using a Component
	Definitions
	Instance creation
	Implicit Parameters
	Syntax
	HAL functions
	Options
	License and Authorship
	Per-instance data storage
	Comments

	Restrictions
	Convenience Macros
	Components with one function
	Component Personality
	Examples
	constant
	sincos
	out8
	hal_loop
	arraydemo
	rand
	logic (using personality)
	General Functions

	Command Line Usage

	HALTCL Files
	Compatibility
	Haltcl Commands
	Haltcl INI-file variables
	Converting HAL files to Tcl files
	Haltcl Notes
	Haltcl Examples
	Haltcl Interactive
	Haltcl Distribution Examples (sim)

	HAL User Interface
	Introduction
	MDI
	Example Configuration
	Halui Pin Reference
	Abort
	E-Stop
	Feed Override
	Mist
	Flood
	Homing
	Machine
	Max Velocity
	MDI
	Joint
	Joint Jogging
	Axis
	Axis Jogging
	Mode
	Program
	Rapid Override
	Spindle Override
	Spindle
	Tool

	Halui Examples
	Remote Start
	Pause & Resume

	Creating Non-realtime Python Components
	Basic usage example
	Non-realtime components and delays
	Create pins and parameters
	Changing the prefix

	Reading and writing pins and parameters
	Driving output (HAL_OUT) pins
	Driving bidirectional (HAL_IO) pins

	Exiting
	Helpful Functions
	Constants
	System Information

	Canonical Device Interfaces
	Introduction
	Digital Input
	Pins
	Parameters
	Functions

	Digital Output
	Pins
	Parameters
	Functions

	Analog Input
	Pins
	Parameters
	Functions

	Analog Output
	Pins
	Parameters
	Functions

	HAL Tools
	Halcmd
	Halmeter
	Halshow
	Halscope
	Sim Pin
	Simulate Probe
	HAL Histogram
	Halreport

	Hardware Drivers
	Parallel Port Driver
	Loading
	PCI Port Address
	Pins
	Parameters
	Functions
	Common problems
	Using DoubleStep
	probe_parport
	Installing probe_parport

	AX5214H Driver
	Installing
	Pins
	Parameters
	Functions

	General Mechatronics Driver
	I/O connectors
	Pins
	Parameters

	Axis connectors
	Axis interface modules
	Encoder
	StepGen module
	Enable and Fault signals
	Axis DAC

	CAN-bus servo amplifiers
	Pins
	Parameters

	Watchdog timer
	Pins
	Parameters

	End-, homing- and E-stop switches
	Pins
	Parameters

	Status LEDs
	CAN
	RS485
	EMC
	Boot
	Error

	RS485 I/O expander modules
	Relay output module
	Digital input module
	DAC & ADC module
	Teach Pendant module

	Errata
	GM6-PCI card Errata

	GS2 VFD Driver
	Command Line Options
	Pins
	Parameters

	HAL Driver for Raspberry Pi GPIO pins
	Purpose
	Usage
	Pins
	Parameters
	Functions
	Pin Numbering
	Known Bugs

	Generic driver for any GPIO supported by gpiod.
	Purpose
	Usage
	Pins
	Parameters
	Functions
	Pin Identification
	Troubleshooting permissions problems.
	Author
	Known Bugs

	Mesa HostMot2 Driver
	Introduction
	Firmware Binaries
	Installing Firmware
	Loading HostMot2
	Watchdog
	Pins
	Parameters

	HostMot2 Functions
	Pinouts
	PIN Files
	Firmware
	HAL Pins
	Configurations
	GPIO
	Pins
	Parameters

	StepGen
	Pins
	Parameters
	Output Parameters

	PWMGen
	Pins
	Parameters
	Output Parameters

	Encoder
	Pins
	Parameters

	5I25 Configuration
	Firmware
	Configuration
	SSERIAL Configuration
	7I77 Limits

	Example Configurations

	MB2HAL
	Introduction
	Usage
	Options
	Init Section
	Transaction Sections
	Error codes

	Example config file
	Pins
	fnct_01_read_coils
	fnct_02_read_discrete_inputs
	fnct_03_read_holding_registers
	fnct_04_read_input_registers
	fnct_05_write_single_coil
	fnct_06_write_single_register
	fnct_15_write_multiple_coils
	fnct_16_write_multiple_registers

	Mitsub VFD Driver
	Command Line Options
	Pins
	HAL example
	Configuring the Mitsubishi VFD for serial usage
	Connecting the Serial Port
	Modbus setup

	Motenc Driver
	Pins
	Parameters
	Functions

	Opto22 Driver
	The Adapter Card
	The Driver
	Pins
	Parameters
	FUNCTIONS
	Configuring I/O Ports
	Pin Numbering

	Pico Drivers
	Command Line Options
	Pins
	Parameters
	Functions

	Pluto P Driver
	General Info
	Requirements
	Connectors
	Physical Pins
	LED
	Power
	PC interface
	Rebuilding the FPGA firmware
	For more information

	Pluto Servo
	Pinout
	Input latching and output updating
	HAL Functions, Pins and Parameters
	Compatible driver hardware

	Pluto Step
	Pinout
	Input latching and output updating
	Step Waveform Timings
	HAL Functions, Pins and Parameters

	Powermax Modbus Driver
	Pins
	Description
	Reference:

	Servo To Go Driver
	Installing
	Pins
	Parameters
	Functions

	Shuttle
	Description
	Setup
	Pins

	VFS11 VFD Driver
	Command Line Options
	Pins
	Parameters
	INI file configuration
	HAL example
	Panel operation
	Error Recovery
	Configuring the VFS11 VFD for Modbus usage
	Connecting the Serial Port
	Modbus setup

	Programming Note

	Hardware Examples
	PCI Parallel Port
	Spindle Control
	0-10 Volt Spindle Speed
	PWM Spindle Speed
	Spindle Enable
	Spindle Direction
	Spindle Soft Start
	Spindle Feedback
	Spindle Synchronized Motion
	Spindle At Speed

	MPG Pendant
	GS2 Spindle
	Example

	ClassicLadder
	ClassicLadder Introduction
	History
	Introduction
	Example
	Basic Latching On-Off Circuit

	ClassicLadder Programming
	Ladder Concepts
	Languages
	Components
	Files
	Realtime Module
	Variables

	Loading the ClassicLadder non-realtime module
	ClassicLadder GUI
	Sections Manager
	Section Display
	The Variable Windows
	Symbol Window
	The Editor window
	Config Window

	Ladder objects
	CONTACTS
	IEC TIMERS
	TIMERS
	MONOSTABLES
	COUNTERS
	COMPARE
	VARIABLE ASSIGNMENT
	COILS

	ClassicLadder Variables
	GRAFCET (State Machine) Programming
	Modbus
	MODBUS Settings
	MODBUS Info
	Communication Errors

	Debugging modbus problems
	Request
	Error response
	Data response
	MODBUS Bugs

	Setting up ClassicLadder
	Add the Modules
	Adding Ladder Logic

	ClassicLadder Examples
	Wrapping Counter
	Reject Extra Pulses
	External E-Stop
	Timer/Operate Example

	Advanced Topics
	Kinematics
	Introduction
	Joints vs Axes

	Trivial Kinematics
	Non-trivial kinematics
	Forward transformation
	Inverse transformation

	Implementation details
	Kinematics module using the userkins.comp template

	Setting up "modified" Denavit-Hartenberg (DH) parameters for genserkins
	Prelude
	General
	Modified DH-Parameters
	Modified DH-Parameters as used in genserkins
	Numbering of joints and parameters
	How to start
	Special cases
	Detailed Example (RV-6SL)
	Credits

	5-Axis Kinematics
	Introduction
	5-Axis Machine Tool Configurations
	Tool Orientation and Location
	Translation and Rotation Matrices
	Table Rotary/Tilting 5-Axis Configurations
	Transformations for a xyzac-trt machine tool with work offsets
	Transformations for a xyzac-trt machine with rotary axis offsets
	Transformations for a xyzbc-trt machine with rotary axis offsets

	Table Rotary/Tilting Examples
	Vismach Simulation Models
	Tool-Length Compensation

	Custom Kinematics Components
	Figures
	REFERENCES

	Switchable Kinematics (switchkins)
	Introduction
	Switchable Kinematic Modules
	Identity letter assignments
	Backwards compatibility

	HAL Pins
	HAL Pin Summary

	Usage
	HAL Connections
	G-/M-code commands
	INI file limit settings
	Coordinate system offset considerations
	External offset considerations

	Simulation configs
	User kinematics provisions
	Warnings
	Code Notes

	PID Tuning
	PID Controller
	Control loop basics
	Theory
	Loop Tuning
	Automatic PID tuning

	Remap Extending G-code
	Introduction: Extending the RS274NGC Interpreter by Remapping Codes
	A Definition: Remapping Codes
	Why would you want to extend the RS274NGC Interpreter?

	Getting started
	Builtin Remaps
	Picking a code
	Parameter handling
	Handling results
	Execution sequencing
	An minimal example remapped code

	Configuring Remapping
	The REMAP statement
	Useful REMAP option combinations
	The argspec parameter

	Upgrading an existing configuration for remapping
	Remapping tool change-related codes: T, M6, M61
	Overview
	Understanding the role of iocontrol with remapped tool change codes
	Specifying the M6 replacement
	Configuring iocontrol with a remapped M6
	Writing the change and prepare O-word procedures
	Making minimal changes to the built in codes, including M6
	Specifying the T (prepare) replacement
	Error handling: dealing with abort
	Error handling: failing a remapped code NGC procedure

	Remapping other existing codes:
	Automatic gear selection be remapping S (set spindle speed)
	Adjusting the behavior of M0, M1
	Adjusting the behavior of M7, M8, M9

	Creating new G-code cycles
	Configuring Embedded Python
	Python plugin : INI file configuration
	Executing Python statements from the interpreter

	Programming Embedded Python in the RS274NGC Interpreter
	The Python plugin namespace
	The Interpreter as seen from Python
	The Interpreter __init__ and __delete__ functions
	Calling conventions: NGC to Python
	Calling conventions: Python to NGC
	Built in modules

	Adding Predefined Named Parameters
	Standard Glue routines
	T: prepare_prolog and prepare_epilog
	M6: change_prolog and change_epilog
	G-code Cycles: cycle_prolog and cycle_epilog
	S (Set Speed) : setspeed_prolog and setspeed_epilog
	F (Set Feed) : setfeed_prolog and setfeed_epilog
	M61 Set tool number : settool_prolog and settool_epilog

	Remapped code execution
	NGC procedure call environment during remaps
	Nested remapped codes
	Sequence number during remaps
	Debugging flags
	Debugging Embedded Python code

	Axis Preview and Remapped code execution
	Remappable Codes
	Existing codes which can be remapped
	Currently unallocated G-codes:
	Currently unallocated M-codes:

	A short survey of LinuxCNC program execution
	Interpreter state
	Task and Interpreter interaction, Queuing and Read-Ahead
	Predicting the machine position
	Queue-busters break position prediction
	How queue-busters are dealt with
	Word order and execution order
	Parsing
	Execution
	Procedure execution
	How tool change currently works
	How Tx (Prepare Tool) works
	How M6 (Change tool) works
	How M61 (Change tool number) works

	Status
	Changes
	Debugging

	Moveoff Component
	Modifying an existing configuration

	Stand Alone Interpreter
	Usage
	Example

	External Axis Offsets
	INI File Settings
	HAL Pins
	Per-Axis Motion HAL Pins
	Other Motion HAL Pins

	Usage
	Offset Computation
	Machine-off/Machine-on
	Soft Limits
	Notes
	Warning

	Related HAL Components
	eoffset_per_angle.comp

	Testing
	Examples
	eoffsets.ini
	jwp_z.ini
	dynamic_offsets.ini
	opa.ini (eoffset_per_angle)

	Tool Database Interface
	Interface
	INI file Settings
	db_program operation (v2.1)
	Usage
	Example program
	Python tooldb module

	Simulation configs
	Notes

	II Usage
	User Interfaces
	AXIS GUI
	Introduction
	Getting Started
	INI settings
	A Typical Session

	AXIS Window
	Menu Items
	Toolbar buttons
	Graphical Display Area
	Text Display Area
	Manual Control
	MDI
	Feed Override
	Spindle Speed Override
	Jog Speed
	Max Velocity

	Keyboard Controls
	Feed Override Keys

	Show LinuxCNC Status (linuxcnctop)
	MDI interface
	axis-remote
	Manual Tool Change
	Python modules
	Using AXIS in Lathe Mode
	Using AXIS in Foam Cutting mode
	Advanced Configuration
	Program Filters
	The X Resource Database
	Jogwheel
	~/.axisrc
	USER_COMMAND_FILE
	user_live_update()
	user_hal_pins()
	External Editor
	Virtual Control Panel
	Preview Control
	Touch Off using Actual Position

	Axisui
	AXIS Customization Hints
	The update function
	Disable the Close Dialog
	Change the Text Font
	Modify Rapid Rate with Keyboard Shortcuts
	Read the INI file
	Read LinuxCNC Status
	Change the current view
	Creating new AXISUI HAL Pins
	Creating new HAL Component and Pins
	Switch Tabs with HAL Pins
	Add a GOTO Home button
	Add Button to manual frame
	Reading Internal Variables
	Hide Widgets
	Change a label
	Redirect an existing command
	Change the DRO color
	Change the Toolbar Buttons
	Change Plotter Colors

	GMOCCAPY
	Introduction
	Requirements
	How to get GMOCCAPY
	Basic Configuration
	The DISPLAY Section
	The TRAJ Section
	Macro Buttons
	Embedded Tabs and Panels
	User Created Messages
	Preview Control
	User Command File
	User CSS File
	Logging

	HAL Pins
	Right and Bottom Button Lists
	Velocities and Overrides
	Jog HAL Pins
	Jog Velocities and Turtle-Jog HAL Pin
	Jog Increment HAL Pins
	Hardware Unlock Pin
	Error/Warning Pins
	User Created Message HAL Pins
	Spindle Feedback Pins
	Pins to Indicate Program Progress Information
	Tool Related Pins

	Auto Tool Measurement
	Provided Pins
	INI File Modifications
	Needed Files
	Needed HAL Connections

	The Settings Page
	Appearance
	Hardware
	Advanced Settings

	Icon Theme
	Custom Icon Theme
	Symbolic Icons

	Lathe Specific Section
	Plasma Specific Section
	Videos on YouTube
	Basic Usage
	Simulated Jog Wheels
	Settings Page
	Simulated Hardware Button
	User Tabs
	Tool Measurement Videos

	Known Problems
	Strange numbers in the info area
	Not ending macro

	The Touchy Graphical User Interface
	Panel Configuration
	HAL connections
	Recommended for any setup

	Setup
	Enabling Touchy
	Preferences
	Macros

	Gscreen
	Introduction
	Glade File
	PyGTK

	GladeVCP
	Overview
	Build a GladeVCP Panel

	Building a simple clean-sheet custom screen
	Handler file example
	Adding Keybindings Functions
	Linuxcnc State Status
	Jogging Keys

	Gscreen Start Up
	INI Settings
	User Dialog Messages
	Copy the Stock Handler/Glade File For Modification

	QtDragon GUI
	Introduction
	QtDragon
	QtDragon_lathe
	QtDragon_hd
	QtDragon_hd_vertical

	Getting Started - The INI File
	Display
	Preferences
	Logging
	Override controls
	Spindle controls
	Jogging increments
	Grid Increments
	Jog speed
	User message dialog system
	Embed Custom VCP Panels
	Subroutine Paths
	Preview Control
	Program Extensions/Filters
	Probe/Touchplate/Laser Settings
	Abort detection
	Startup codes
	Macro Buttons
	Post GUI HAL File
	Post GUI HAL Command
	HAL Bridge
	Builtin Sample Configurations

	Key Bindings
	Buttons
	Virtual Keyboard
	HAL Pins
	HAL files
	Manual Tool Changes
	Spindle
	Auto Raise Z Axis on Program Pause
	Z level compensation
	Using G-code Ripper for Z level Compensation

	Probing
	Versa Probe
	Basic probe
	Customizing Probe Screen Widget

	Touch plate
	Auto Tool Measurement
	Overview
	Workflow Overview
	Detailed Workflow Example
	Work Piece Height Probing in QtDragon_hd
	Work Piece Height Probing
	Tool Measurement Pins
	Tool Measurement INI File Modifications
	Required HAL Connections

	Run from Line
	Laser buttons
	Tabs Description
	Main tab
	File Tab
	Offsets Tab
	Tool Tab
	Status Tab
	Probe Tab
	Camview Tab
	G-codes Tab
	Setup Tab
	Settings Tab
	Utilities Tab
	User Tab

	Styles
	Internationalisation
	Customization
	Stylesheets
	Qt Designer and Python code

	NGCGUI
	Overview
	Demonstration Configurations
	Library Locations
	Standalone Usage
	Standalone NGCGUI
	Standalone PyNGCGUI

	Embedding NGCGUI
	Embedding NGCGUI in AXIS
	Embedding PyNGCGUI as a GladeVCP tab page in a GUI
	Additional INI File items required for NCGUI or PyNGCGUI
	Truetype Tracer
	INI File Path Specifications
	Summary of INI File item details for NGCGUI usage

	File Requirements for NGCGUI Compatibility
	Single-File Gcode (.ngc) Subroutine Requirements
	Gcode-meta-compiler (.gcmc) file requirements

	DB25 Example
	Creating a subroutine

	TkLinuxCNC GUI
	Introduction
	Getting Started
	A typical session with TkLinuxCNC

	Elements of the TkLinuxCNC window
	Main buttons
	Offset display status bar
	Coordinate Display Area
	TkLinuxCNC Interpreter / Automatic Program Control
	Manual Control
	Code Entry
	Jog Speed
	Feed Override
	Spindle speed Override

	Keyboard Controls

	QtPlasmaC
	Preamble
	License
	Introduction
	Installing LinuxCNC
	If The User Does Not Have Linux Installed
	Package Installation (Buildbot) If The User Has Linux on Debian 12 (Bookworm)
	Package Installation (Buildbot) If The User Has Linux on Debian 12 (Bookworm) or Debian 11 (Bullseye)
	Run In Place Installation If The User Has Linux Installed

	Creating A QtPlasmaC Configuration
	Modes
	Available I/Os
	Recommended Settings:
	Configuring
	Qt Dependency Errors
	Initial Setup

	Migrating to QtPlasmaC From PlasmaC (AXIS or GMOCCAPY)
	Other QtPlasmaC Setup Considerations
	Low-pass Filter
	Contact Bounce
	Contact Load
	Desktop Launcher
	QtPlasmaC Files
	INI File

	QtPlasmaC GUI Overview
	Exiting QtPlasmaC
	MAIN Tab
	Preview Views
	CONVERSATIONAL Tab
	PARAMETERS Tab
	SETTINGS Tab
	STATISTICS Tab

	Using QtPlasmaC
	Units Systems
	Preamble and Postamble Codes
	Mandatory Codes
	Coordinates
	Cut Feed Rate
	Material File
	Manual Material Handling
	Automatic Material Handling
	Material Addition Via Magic Comments In G-code
	Material Converter
	LASER
	CAMERA
	Path Tolerance
	Paused Motion
	Pause At End Of Cut
	Multiple Tools
	Velocity Reduction
	THC (Torch Height Controller)
	Cutter Compensation
	Initial Height Sense (IHS) Skip
	Probing
	Offset Probing
	Cut Types
	Hole Cutting - Intro
	Hole Cutting
	Hole Cutting - Automatic
	Single Cut
	Thick Materials
	Mesh Mode (Expanded Metal Cutting)
	Ignore Arc OK
	Cut Recovery
	Run From Line
	Scribe
	Spotting
	Tube Cutting
	Virtual Keyboard Custom Layouts
	Keyboard Shortcuts
	MDI

	Conversational Shape Library
	Conversational Settings
	Conversational Lines And Arcs
	Conversational Single Shape
	Conversational Group Of Shapes
	Conversational Block
	Conversational Saving A Job

	Error Messages
	Error Logging
	Error Message Display
	Critical Errors
	Warning Messages

	Updating QtPlasmaC
	Standard Update
	Continuous Update

	Modify An Existing QtPlasmaC Configuration
	Customizing QtPlasmaC GUI
	Add A Custom Style
	Create A New Style
	Returning To The Default Styling
	Custom Python Code
	Custom G-code Filter

	QtPlasmaC Advanced Topics
	Custom User Buttons
	Peripheral Offsets (Laser, Camera, Scribe, Offset Probe)
	Keep Z Motion
	External HAL Pins
	Hide Program Buttons
	Tuning Mode 0 Arc OK
	Lost Arc Delay
	Zero Window
	Tuning Void Sensing
	Max Offset
	Enable Tabs During Automated Motion
	Override Jog Inhibit Via Z+ Jog
	QtPlasmaC State Outputs
	QtPlasmaC Debug Print
	Hypertherm PowerMax Communications
	Moving Pierce

	Internationalisation
	Appendix
	Example Configurations
	NGC Samples
	QtPlasmaC Specific G-codes
	QtPlasmaC G-code Examples
	Mesa THCAD
	RS485 Connections
	Arc OK With A Reed Relay
	Contact Load Schematics

	Known Issues
	Keyboard Jogging
	NO_FORCE_HOMING

	Contributing Code To QtPlasmaC
	Support

	MDRO GUI
	Introduction
	Getting Started
	INI File Options
	Command Line Options
	Pins

	MDRO Window
	Index operations
	Simulation

	G-code Programming
	Coordinate Systems
	Introduction
	Machine Coordinate System
	Machine coordinates moves: G53

	Coordinate Systems
	Default Coordinate System
	Setting Coordinate System Offsets

	Local and Global Offsets
	The G52 command

	G92 Axes Offsets
	The G92 commands
	Setting G92 Values
	G92 Persistence Cautions
	G92 and G52 Interaction Cautions

	Sample Programs Using Offsets
	Sample Program Using Workpiece Coordinate Offsets
	Sample Program Using G52 Offsets

	Tool Compensation
	Touch Off
	Using G10 L1/L10/L11

	Tool Table
	Tool Table Format
	Tool IO
	Tool Changers

	Tool Length Compensation
	Cutter Radius Compensation
	Overview
	Examples

	Tool Edit GUI
	Overview
	Column Sorting
	Columns Selection
	Stand Alone Use

	Overview of G-Code Programming
	Overview
	Format of a line
	/: Block Delete
	Optional Line Number
	Words, Parameters, Subroutines, Comments
	End of Line Marker

	Numbers
	Parameters
	Numbered Parameters
	Subroutine Codes and Parameters
	Named Parameters
	Predefined Named Parameters
	System Parameters

	HAL pins and INI values
	Expressions
	Binary Operators
	Equality and floating-point values
	Functions
	Repeated Items
	Item order
	Commands and Machine Modes
	Polar Coordinates
	Modal Groups
	Comments
	Messages
	Probe Logging
	Logging
	Abort Messages
	Debug Messages
	Print Messages
	Comment Parameters
	File Requirements
	File Size
	G-code Order of Execution
	G-code Best Practices
	Linear and Rotary Axis
	Common Error Messages

	G-Codes
	Conventions
	G-Code Quick Reference Table
	G0 Rapid Move
	Rapid Velocity Rate

	G1 Linear Move
	G2, G3 Arc Move
	Center Format Arcs
	Center Format Examples
	Radius Format Arcs

	G4 Dwell
	G5 Cubic Spline
	G5.1 Quadratic Spline
	G5.2 G5.3 NURBS Block
	G7 Lathe Diameter Mode
	G8 Lathe Radius Mode
	G10 L0 Reload Tool Table Data
	G10 L1 Set Tool Table
	G10 L2 Set Coordinate System
	G10 L10 Set Tool Table
	G10 L11 Set Tool Table
	G10 L20 Set Coordinate System
	G17 - G19.1 Plane Select
	G20, G21 Units
	G28, G28.1 Go/Set Predefined Position
	G30, G30.1 Go/Set Predefined Position
	G33 Spindle Synchronized Motion
	G33.1 Rigid Tapping
	G38.n Straight Probe
	G40 Compensation Off
	G41, G42 Cutter Compensation
	G41.1, G42.1 Dynamic Cutter Compensation
	G43 Tool Length Offset
	G43.1 Dynamic Tool Length Offset
	G43.2 Apply additional Tool Length Offset
	G49 Cancel Tool Length Compensation
	G52 Local Coordinate System Offset
	G53 Move in Machine Coordinates
	G54-G59.3 Select Coordinate System
	G61 Exact Path Mode
	G61.1 Exact Stop Mode
	G64 Path Blending
	G70 Lathe finishing cycle
	G71 G72 Lathe roughing cycles
	G73 Drilling Cycle with Chip Breaking
	G74 Left-hand Tapping Cycle with Dwell
	G76 Threading Cycle
	G80-G89 Canned Cycles
	Common Words
	Sticky Words
	Repeat Cycle
	Retract Mode
	Canned Cycle Errors
	Preliminary and In-Between Motion
	Why use a canned cycle?

	G80 Cancel Canned Cycle
	G81 Drilling Cycle
	G82 Drilling Cycle, Dwell
	G83 Peck Drilling Cycle
	G84 Right-hand Tapping Cycle, Dwell
	G85 Boring Cycle, Feed Out
	G86 Boring Cycle, Spindle Stop, Rapid Move Out
	G87 Back Boring Cycle
	G88 Boring Cycle, Spindle Stop, Manual Out
	G89 Boring Cycle, Dwell, Feed Out
	G90, G91 Distance Mode
	G90.1, G91.1 Arc Distance Mode
	G92 Coordinate System Offset
	G92.1, G92.2 Reset G92 Offsets
	G92.3 Restore G92 Offsets
	G93, G94, G95 Feed Rate Mode
	G96, G97 Spindle Control Mode
	G98, G99 Canned Cycle Return Level

	M-Codes
	M-Code Quick Reference Table
	M0, M1 Program Pause
	M2, M30 Program End
	M60 Pallet Change Pause
	M3, M4, M5 Spindle Control
	M6 Tool Change
	Manual Tool Change
	Tool Changer

	M7, M8, M9 Coolant Control
	M19 Orient Spindle
	M48, M49 Speed and Feed Override Control
	M50 Feed Override Control
	M51 Spindle Speed Override Control
	M52 Adaptive Feed Control
	M53 Feed Stop Control
	M61 Set Current Tool
	M62 - M65 Digital Output Control
	M66 Wait on Input
	M67 Analog Output, Synchronized
	M68 Analog Output, Immediate
	M70 Save Modal State
	M71 Invalidate Stored Modal State
	M72 Restore Modal State
	M73 Save and Autorestore Modal State
	M98 and M99
	Selectively Restoring Modal State

	M100-M199 User Defined Commands

	O Codes
	Use of O-codes
	Numbering
	Comments
	Subroutines
	Fanuc-Style Numbered Programs

	Looping
	Conditional
	Repeat
	Indirection
	Calling Files
	Subroutine return values
	Errors

	Other Codes
	F: Set Feed Rate
	S: Set Spindle Speed
	T: Select Tool

	G-Code Examples
	Mill Examples
	Helical Hole Milling
	Slotting
	Grid Probe
	Smart Probe
	Tool Length Probe
	Hole Probe
	Cutter Compensation

	Lathe Examples
	Threading

	Image to G-Code
	What is a depth map?
	Integrating image-to-gcode with the AXIS user interface
	Using image-to-gcode
	Option Reference
	Units
	Invert Image
	Normalize Image
	Expand Image Border
	Tolerance (units)
	Pixel Size (units)
	Plunge Feed Rate (units per minute)
	Feed Rate (units per minute)
	Spindle Speed (RPM)
	Scan Pattern
	Scan Direction
	Depth (units)
	Step Over (pixels)
	Tool Diameter
	Safety Height
	Tool Type
	Lace bounding
	Contact angle
	Roughing offset and depth per pass

	RS274/NGC Differences
	Changes from RS274/NGC
	Additions to RS274/NGC

	Virtual Control Panels
	PyVCP
	Introduction
	Panel Construction
	Security
	AXIS
	Example Panel

	Stand Alone
	Widgets
	Syntax
	General Notes
	Label
	Multi_Label
	LEDs
	Buttons
	Number Displays
	Number Inputs
	Images
	Containers

	PyVCP Examples
	AXIS
	Floating Panels
	Jog Buttons Example
	Create the Widgets
	Make Connections

	Port Tester
	GS2 RPM Meter
	The Panel
	The Connections

	Rapid to Home Button

	GladeVCP: Glade Virtual Control Panel
	What is GladeVCP?
	PyVCP versus GladeVCP at a glance

	A Quick Tour with the Example Panel
	Exploring the example panel
	Exploring the User Interface description
	Exploring the Python callback

	Creating and Integrating a Glade user interface
	Prerequisite: Glade installation
	Running Glade to create a new user interface
	Testing a panel
	Preparing the HAL command file
	Integrating into AXIS, like PyVCP
	Embedding as a Tab
	Integrating into Touchy
	Loading Builtin Panels

	GladeVCP command line options
	Understanding the GladeVCP startup process
	HAL Widget reference
	Widget and HAL pin naming
	Python attributes and methods of HAL Widgets
	Setting pin and widget values
	The hal-pin-changed signal
	Buttons
	Scales
	SpinButton
	Hal_Dial
	Jog Wheel
	Speed Control
	Label
	Containers
	LED
	ProgressBar
	ComboBox
	Bars
	Meter
	HAL_Graph
	Gremlin tool path preview for NGC files
	HAL_Offset
	DRO widget
	Combi_DRO widget
	IconView (File Select)
	Calculator widget
	Tooleditor widget
	Offsetpage
	HAL_sourceview widget
	MDI history
	Animated function diagrams: HAL widgets in a bitmap

	Action Widgets Reference
	VCP Action Widgets
	VCP Action Python
	VCP ToggleAction widgets
	The Action_MDI Toggle and Action_MDI widgets
	A simple example: Execute MDI command on button press
	Parameter passing with Action_MDI and ToggleAction_MDI widgets
	An advanced example: Feeding parameters to an O-word subroutine
	Preparing for an MDI Action, and cleaning up afterwards
	Using the LinuxCNC Stat object to deal with status changes

	GladeVCP Programming
	User Defined Actions
	Core Library
	An example: adding custom user callbacks in Python
	HAL value change events
	Programming model
	Initialization sequence
	Multiple callbacks with the same name
	The GladeVCP -U <useropts> flag
	Persistent variables in GladeVCP
	Using persistent variables
	Saving the state on GladeVCP shutdown
	Saving state when Ctrl-C is pressed
	Hand-editing INI (.ini) files
	Adding HAL pins
	Adding timers
	Setting HAL widget properties programmatically
	Value-changed callback with hal_glib
	Examples, and rolling your own GladeVCP application

	FAQ
	Troubleshooting
	Implementation note: Key handling in AXIS
	Adding Custom Widgets
	Auxiliary GladeVCP Applications

	GladeVCP Library modules
	Info
	Action

	QtVCP
	Showcase
	Overview
	QtVCP Widgets
	INI Settings
	Qt Designer UI File
	Handler Files
	Libraries Modules
	Themes
	Local Files
	Modifying Stock Screens

	VCP Panels
	Builtin Panels
	Custom Panels

	Build A Simple Clean-sheet Custom Screen
	Overview
	Get Qt Designer To Include LinuxCNC Widgets
	Build The Screen .ui File
	Handler file
	INI Configuration

	Handler File In Detail
	Overview
	IMPORT Section
	INSTANTIATE LIBRARIES Section
	HANDLER CLASS Section
	INITIALIZE Section
	SPECIAL FUNCTIONS Section
	STATUS CALLBACKS Section
	CALLBACKS FROM FORM Section
	GENERAL FUNCTIONS Section
	KEY BINDING Section
	CLOSING EVENT Section

	Connecting Widgets to Python Code
	Overview
	Using Qt Designer to add Slots
	Python Handler Changes

	More Information

	QtVCP Virtual Control Panels
	Builtin Virtual Control Panels
	copy
	spindle_belts
	test_dial
	test_button
	test_led
	test_panel
	cam_align
	sim_panel
	tool_dialog

	vismach 3D Simulation Panels
	QtVCP vismach_mill_xyz
	QtVCP vismach_router_atc
	QtVCP vismach_scara
	QtVCP vismach_millturn
	QtVCP vismach_mill_5axis_gantry
	QtVCP vismach_fanuc_200f

	Custom Virtual Control Panels
	Embedding QtVCP Virtual Control Panels into QtVCP Screens
	Embedding Commands
	Location of builtin Panels
	Location of Custom Panels
	Handler Programming Tips
	Designer Widget Tips
	Handler Patching - Subclassing Builtin Panels

	QtVCP Widgets
	HAL Only Widgets
	CheckBox Widget
	DetachTabWidget - Container Widget With User Detachable Panels
	DoubleScale - Spin Button Entry Widget
	FocusOverlay - Focus Overlay Widget
	Gauge - Round Dial Gauge Widget
	GeneralHALInput - General Signals/Slots Input Connection Widget
	GeneralHALOutput - General Signals/Slots Output Connection Widget
	GridLayout - Grid Layout Widget
	HalBar - HAL Bar Level Indicator
	HALPad - HAL Buttons Joypad
	HALLabel - HAL Label Widget
	LCDNumber - LCD Style Number Readout Widget
	LED - Indicator Widget
	PushButton - HAL Pin Toggle Widget
	RadioButton Widget
	Slider - HAL Pin Value Adjusting Widget
	TabWidget - Tab Widget
	WidgetSwitcher - Multi-widget Layout View Switcher Widget
	XEmbed - Program Embedding Widget

	Machine Controller Widgets
	ActionButton - Machine Controller Action Control Widget
	ActionToolButton - Optional Actions Menu Button Widget
	AxisToolButton - Select and Set Axis Widget
	BasicProbe - Simple Mill Probing Widget
	CamView - Workpiece Alignment and Origin Setting Widget
	DROLabel - Axis Position Display Widget
	FileManager - File Loading Selector Widget
	GcodeDisplay - G-code Text Display Widget
	GcodeEditor - G-code Program Editor Widget
	GCodeGraphics - G-code Graphic Backplot Widget
	JointEnableWidget - FIXME
	JogIncrements - Jog Increments Value Selection Widget
	MacroTab - Special Macros Widget
	OperatorValueLine - Operator Value Line Entry Widget
	MDILine - MDI Commands Line Entry Widget
	MDIHistory - MDI Commands History Widget
	MDITouchy - Touch Screen MDI Entry Widget
	OriginOffsetView - Origins View and Setting Widget
	RadioAxisSelector - FIXME
	RoundButton - Round Shapped ActionButton Widget
	StateLabel - Controller Modes State Label Display Widget
	StatusLabel - Controller Variables State Label Display Widget
	StatusImageSwitcher - Controller Status Image Switcher
	StatusStacked - Mode Status Display Switching Widget
	ScreenOption - General Options Setting widget
	StatusSlider - Controller Setting Adjustment Slider Widget
	StateLED - Controller State LED Widget
	StatusAdjustmentBar - Controller Value Setting Widget
	SystemToolButton - User System Selection Widget
	StateEnableGridlayout - Controller State Enabled Container Widget
	StatusImageSwitcher - Controller Status Image Switching Widget
	ToolOffsetView - Tools Offsets View And Edit Widget
	VersaProbe - Mill Probing Widget

	Dialog Widgets
	LcncDialog - General Message Dialog Widget
	ToolDialog - Manual Tool Change Dialog Widget
	FileDialog - Load and Save File Chooser Dialog Widget
	OriginOffsetDialog - Origin Offset Setting Dialog Widget
	ToolOffsetDialog - Tool Offset Setting Dialog Widget
	ToolChooserDialog - Tool Chooser Dialog Widget
	MachineLog - Machine Events Journal Display Widget
	MacroTabDialog - Macro Launch Dialog Widget
	CamViewDialog - WebCam Part Alignment Dialog Widget
	EntryDialog - Edit Line Dialog Widget
	CalculatorDialog - Calculator Dialog Widget
	RunFromLine - Run-From-Line Dialog Widget
	VersaProbeDialog - Part Touch Probing Dialog Widget
	MachineLogDialog - Machine and Debugging Logs Dialog Widget

	Other Widgets
	NurbsEditor - NURBS Editing Widget
	JoyPad - 5 button D-pad Widget
	WebWidget

	BaseClass/Mixin Widgets
	IndicatedPushButtons

	Import-Only Widgets
	Auto Height
	G-code Utility
	Facing
	Hole Circle
	Hole Enlarge
	Qt NGCGUI
	Qt PDF
	Qt Vismach
	Hal Selection Box

	QtVCP Libraries modules
	Status
	Usage
	Example

	Info
	Available data and defaults
	User message dialog info
	Embedded program info
	Helpers
	Usage

	Action
	Helpers
	Usage

	Qhal
	Attributes
	Constants
	References

	QPin
	Signals
	Attributes
	References
	Example

	Tool
	Helpers

	Path
	Referenced Paths
	Helpers
	Usage

	VCPWindow
	Usage

	Aux_program_loader
	Helpers
	Usage

	Keylookup
	Usage
	Key Defines

	Messages
	Properties
	HAL Pins
	Examples

	multimessages
	Properties
	Examples

	Notify
	Properties

	Preferences
	Player
	Sounds
	Usage
	Example

	Virtual Keyboard
	Toolbar Actions
	Actions
	Submenus
	Usage
	Examples

	Qt Vismach Machine Graphics library
	Builtin Samples
	Primitives Library
	Usage
	More Information

	QtVismach
	Introduction
	Hierarchy of Machine Design
	Start the script
	HAL pins.
	Creating Parts
	Import STL or OBJ Files
	Build from Geometric Primitives

	Moving Model Parts
	Translating Model parts
	Rotating Model Parts

	Animating Parts
	HalTranslate
	HalRotate
	HalToolCylinder
	HalToolTriangle
	HAL Adjustable Primitives

	Assembling the model
	Other functions
	Color
	HALColorFlip
	HALColorRGB
	Heads Up Display
	HAL Heads Up Display
	HideCollection
	Plot Color Based on Motion Type
	Capture
	main

	Tips
	Basic structure of a QtVismach script
	Builtin Vismach Sample Panels

	QtVCP: Building Custom Widgets
	Overview
	Widgets
	Qt Designer
	Initialization Process
	cleanup process

	Custom HAL Widgets
	Custom Controller Widgets Using STATUS
	In The Imports Section
	In The Instantiate Libraries Section
	In The Custom Widget Class Definition Section

	Custom Controller Widgets with Actions
	Stylesheet Property Changes Based On Events
	Use Stylesheets To Change Custom Widget Properties
	Widget Plugins
	Gridlayout Example
	SystemToolbutton Example
	Making a plugin with a MenuEntry dialog box

	QtVCP Handler File Code Snippets
	Preference File Loading/Saving
	Use QSettings To Read/Save Variables
	Add A Basic Style Editor
	Request Dialog Entry
	Speak a Startup Greeting
	ToolBar Functions
	Add HAL Pins That Call Functions
	Read/Write System HAL Pins Directly
	Add A Special Max Velocity Slider Based On Percent
	Toggle Continuous Jog On and Off
	Class Patch The File Manager Widget
	Adding Widgets Programmatically
	Update/Read Objects Periodically
	External Control With ZMQ
	ZMQ Messages Reading
	ZMQ Messages Writing

	Sending Messages To Status Bar Or Desktop Notify Dialogs
	Catch Focus Changes
	Read Command Line Load Time Options
	G-code to read Qt preferences

	QtVCP Development
	Overview
	Builtin Locations
	QtVCP Startup To Shutdown
	QtVCP Startup
	QtVCP Shutdown

	Path Information
	Idiosyncrasies
	Error Code Collecting
	Jog Rate
	Keybinding
	Preference File
	Widget Special Setup Functions
	Dialogs
	Styles (Themes)

	User Interface Programming
	Panelui
	Introduction
	Loading Commands
	panelui.ini file reference
	Internal Command reference
	ZMQ Messages
	Handler File Extension

	The LinuxCNC Python module
	Introduction
	Usage Patterns for the LinuxCNC NML interface
	Reading LinuxCNC status with the linuxcnc Python module
	linuxcnc.stat attributes
	The axis dictionary
	The joint dictionary
	The spindle dictionary

	Preparing to send commands
	Sending commands through linuxcnc.command
	linuxcnc.command attributes
	linuxcnc.command methods:

	Reading the error channel
	Reading INI file values
	The linuxcnc.positionlogger type
	members
	methods

	The HAL Python module
	Basic usage
	Functions

	GStat Python Module
	Intro
	Sample GStat Code
	Sample HAL component code pattern
	GladeVCP Python extension code pattern
	QtVCP Python extension code pattern

	Messages
	Functions
	Known Issues

	Vismach
	Start the script
	Create the HAL pins.
	Creating Parts
	Moving Parts
	Animating Parts
	Assembling the model.
	Other functions
	Basic structure of a Vismach script.

	III Glossary, Copyright & History
	Overleaf
	Glossary
	Copyright
	Legal Section
	Copyright Terms
	GNU Free Documentation License

	LinuxCNC History
	Origin
	Name Change
	Additional Info

