LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

Contents

I Getting Started & Configuration

1 Getting Started with LinuxCNC

1.1 About LInuxCNC

1.1.1 The Software
1.1.2 The Operating System
1.1.3 GettingHelp
1.1.3.1 Web Forum
1132 1IRC...............
1.1.3.3 Mailing List
1.1.3.4 Web Forum
1.1.3.5 LinuxCNC Wiki
1.1.3.6 BugReports

1.2 System Requirements
1.2.1 Minimum Requirements

1.2.2 Kernel and Version requirements .

1.2.2.1 Preempt-RT with linuxcnc-uspace package

1.2.2.2 RTAI with linuxcnc package

1.2.2.3 Xenomai with linuxcnc-uspace package

1.2.2.4 RTAI with linuxcnc-uspace package,

1.2.3 Problematic Hardware
1.2.3.1 Laptops
1.2.3.2 VideoCards

1.3 Getting LinuxCNC

1.3.1 Download the image
1.3.1.1 Normal Download
1.3.1.2 Download using zsync . . .
1.3.1.3 Verify the image

1.3.2 Write the image to a bootable device

W W w w N NN

O N N N TN

o N e 2 e e B) o) B e) BN 6) BN) BN G BN 6

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 iii

1.3.2.1 Raspberry Pilmage e 8
1.3.2.2 AMD-64 (x86-64, PC) Image using GUItools 8
1.3.2.3 Command line - Linux e 8
1.3.2.4 Command line - MacOS 8

1.3.3 Testing LInuxCNC e e e e e e e 9
1.3.4 Installing LinuxCNC e e e e e 9
1.3.5 Updates to LInuxCNC e e e e e e e e 10
1.3.6 Install Problems e 10
1.3.7 Alternate Install Methods 10
1.3.7.1 Installing on Debian Trixie (with Preempt-RT kernel) 11
1.3.7.2 Installing on Debian Trixie (with experimental RTAI kernel) 12
1.3.7.3 Installingon Raspbian 12 12

1.4 Running LInuxCNC e e e e e e e e e e e e e e 12
1.4.1 Invoking LinuxCNC e e e e e e e 12
1.4.2 Configuration Launcher e 12
1.4.3 Next stepsin configuration 15
1.4.4 Simulator Configurations e 15
1.4.5 Configuration Resources. i i i e e e 16
1.5 Updating LINnuxCNC e e e e e e e e e 16
1.5.1 Upgrade tothenew version i i, 16
1.5.1.1 Apt Sources Configuration 17
1.5.1.2 Upgrading tothe newversion, 18
1.5.1.3 Ubuntu e 19

1.5.2 Updating without Network, 19
1.5.3 Updating Configuration Filesfor2.9 19
1.5.3.1 Stricter handling of pluggable interpreters 19
1.5.3.2 Canterp e e e e e e e e e e e e e e 20
1.5.3.3 Spindle limitsinthe INT 20

1.5.4 Updating Configuration Files for 2.10.y 20
1.5.5 New HAL components @ i i i ittt e e et e e e e e e 20
1.5.5.1 Non-Realtime 20
1.5.5.2 Realtime e 20

1.5.6 New Drivers e 20
1.6 Linux FAQ e 21
1.6.1 Automatic Login e e e e e e 21
1.6.1.1 Debian. 21
1.6.1.2 Ubuntu 21

1.6.2 Automatic Startup e e e e 21

1.6.3 Terminal e e e 22

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 iv

1.6.4 Man Pages e e e e e e e 22
1.6.5 List Modules e 22
1.6.6 Editinga RootFile e 22
1.6.6.1 The Command Line Way, 22

1.6.6.2 The GUIWay o e 23

1.6.6.3 ROOL ACCESS i e e e e e 23

1.6.7 Terminal Commands i i i ittt ittt it e e 23
1.6.7.1 Working Directory e 23

1.6.7.2 Changing Directories e 23

1.6.7.3 Listing filesinadirectory, 23

1.6.7.4 Findinga File e 24

1.6.7.5 Searching for Text e 24

1.6.7.6 Diagnostic MeSsages v v it i e e e e e e e e e e e e e 24

1.6.8 Convenience Items e 25
1.6.8.1 Terminal Launcher 25

1.6.9 Hardware Problems e 25
1.6.9.1 Hardware Info e e 25

1.6.9.2 Monitor Resolution 25
1.6.10Paths e e e e e e e e e e 25

2 General User Information 26
2.1 User Foreword e e e e e 26
2.2 LinuxCNC User Introduction ittt ittt et 27
2.2.1 Introduction e e e e 27
2.2.2 How LinuxCNC Works e e e e e e e 27
2.2.3 Graphical User Interfaces e 29
2.2.4 UserlInterfaces e e 37
2.2.5 Virtual Control Panels e 37
2.2.6 Languages ot e e e e e e e e e e e e e e e e 40
2.2.7 Think Like a CNC Operator it it e ettt e e 40
2.2.8 Modes of Operation e e e 41

2.3 Important User Concepts i i i i i it e e e e e e e e e e e e 41
2.3.1 Trajectory Control e 41
2.3.1.1 Trajectory Planning e e 41

2.3.1.2 Path Following e e 42

2.3.1.3 Programming the Planner 42

2.3.1.4 Planning MOVES 0 i i e e e e e e e e e e e e 43

2.3.2 G-Code e e e 44

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Y

2.4

2.5

2.3.22 Feed Rate e e 44
2.3.2.3 ToolRadius Offset e 44
2.3.3 Homing o e e e e e e e e e e e e e e e e 44
2.3.4 Tool Changes o i e e e e e e e e e 44
2.3.5 Coordinate Systems e e 44
2.3.5.1 G53 Machine Coordinate 45
2.3.5.2 G54-59.3 User Coordinates 45
2.3.5.3 WhenYou Are Lost e 45
2.3.6 Machine Configurations e 45
Starting LInuxCNC e e e e e e e e e e e e e 47
2.4.1 Running LInuxCNCt e e e e e e e e e 47
2.4.1.1 Configuration Selector e 48
CNC Machine OVEIVIEW o v it it e e e e e e e e e e e e e e e e e 49
2.5.1 Mechanical Components e e e e e e 49
2.5.1.1 AXES . . . o e e e e e e 49
2.5.1.2 Spindle e e e e e e 50
2.5.1.3 Coolant e e 50
2.5.1.4 Feed and Speed Override i it 50
2.5.1.5 Block Delete Switch 50
2.5.1.6 Optional Program Stop Switch 50
2.5.2 Control and Data Components ittt 50
2.5.2.1 Linear AXeS o o i i e e e e e 50
2.5.2.2 Rotational AXes e e e 51
2.5.2.3 Controlled Point L 51
2.5.2.4 Coordinated Linear Motion 51
2.5.25 Feed Rate e 51
2.5.2.6 Cooling e e e 52
2.5.2.7 Dwell . . e e e e e e e 52
25.2.8 Units o e e 52
2.5.2.9 Current Position 52
2.5.2.10Selected Plane e e e e e e e e e e e 52
2.5.2.11Tool Carousel e 52
2.5.2.12Tool Change i e e e e e e e 52
2.5.2.13Pallet Shuttle e 53
2.5.2.14Speed Override e e e e e 53
2.5.2.15Path Control Mode e 53
2.5.3 Interpreter Interaction with Switches 53
2.5.3.1 Feed and Speed Override Switches 53

2.5.3.2 Block Delete Switch e 53

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Vi

2.6

2.7

2.5.3.3 Optional Program Stop Switch 53
2.5.4 ToolTable e e 54
2.5.5 Parameters e e e e e e e 54
Lathe User Information e 55
2.6.1 Lathe Mode. e e 55
2.6.2 Lathe Tool Table L e 55
2.6.3 Lathe Tool Orientation e 55
2.6.4 Tool Touch Off o e 57
2.6.4.1 XTouch Off e e e 57
2.6.4.2 ZTouch Off e e e 57
2.6.4.3 The ZMachine Offset. e 58
2.6.5 Spindle Synchronized Motion e 58
2.6.6 ATCS o e e e e e 58
2.6.6.1 Arcsand Lathe Design e 59
2.6.6.2 Radius & Diameter Mode e 59
2.6.7 Tool Path e 59
2.6.7.1 Control point e e 59
2.6.7.2 Cutting Angles without CutterComp 60
2.6.7.3 Cuttinga Radius e 61
2.6.7.4 Using Cutter Comp i i i e e e e e e 63
Plasma Cutting Primer for LInuxCNC Users vt i v i i it i ii e 63
2.7.1 WhatIsPlasma? e 63
2.7.2 Arc Initialisation e e 64
2.7.2.1 High Frequency Start i 64
2.7.2.2 Blowback Start e 65
2.7.3 CNCPlasma e e e e 65
2.7.4 Choosing a Plasma Machine for CNC operations 66
2.7.5 Types Of Torch Height Control, 67
2.7.6 Arc OK Signal e e e e 67
2.7.7 Initial Height Sensing e 68
2.7.7.1 Float Switches e e e 68
2.7.7.2 Ohmic Sensing o e e e e e e e e 68
2.7.7.3 Hypersensing witha MESATHCAD-5. 69
2.7.7.4 Example HAL Code for Hypersensing 70
2.7.8 THC Delay i e e e e e e e e s e e 71
2.7.9 Torch Voltage Sampling e 71
2.7.10Torch Breakaway i i i i e e e e e e e e e e e e 71
2.7.11Corner Lock / Velocity Anti-Dive e 72

2.7.12Void / Kerf Crossing o . o i i e e e e e e e e e e e 72

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 vii

2.7.13Hole And Small Shape Cutting 72
2.7.141/0 Pins For Plasma Controllers 73
2.7.14.1Arc OK (input) o o o o e e e e e e e e e 73
2.7.14.2Torch On (output) e e 74
2.7.14.3Float switch (input) e 74
2.7.14.40hmic Sensor enable (output) 74
2.7.14.50hmic Sensing (input) e 74
2.7.14.6Torch Breakaway Sensor i i i i it 75
2.7.15G-code For Plasma Controllers ittt 75
2.7.15.1Enable/Disable THC Operation: 75
2.7.16External Offsets and Plasma Cutting 76
2.7.17Reading Arc Voltage With The Mesa THCAD 76
2.7.17.1THCAD Connections ittt et ise e 77
2.7.17.2THCAD Initial Testing ittt ittt e 77
2.7.17.3Which Model THCAD To Use? it ittt 77
2.7.18Post Processors And Nesting i 78
2.7.19Designing For Noisy Electrical Environments 78
2.7.20Water Tables e 79
2.7.21Downdraft Tables 79
2.7.22Designing For Speed And Acceleration, 79
2.7.23Distance Travelled Per Motor Revolution 80
2.7.24QtPlasmaC LinuxCNC Plasma Configuration 80
2.7.25Hypertherm RS485 Control 80
2.7.26Post Processors For Plasma Cutting 80
3 Configuration Wizards 82
3.1 Stepper Configuration Wizard e 82
3.1.1 Introduction 82
3.1.2 Start Page e e e e e 83
3.1.3 Basic Information 84
3.1.4 Parallel Port Setup 86
3.1.5 Parallel Port 2 Setup e e e e 87
3.1.6 Axis Configuration e 88
3.1.6.1 Finding Maximum Velocity 90
3.1.6.2 Finding Maximum Acceleration 91

3.1.7 Spindle Configuration e 91
3.1.7.1 Spindle Speed Control 92
3.1.7.2 Spindle-synchronized motion 92

3.1.7.3 Determining Spindle Calibration 92

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 viii

3.1.8 Options e e e e e e 93
3.1.9 Complete Machine Configuration 94
3.1.10Axis Travels and Homes 94
3.1.10.10perating without Limit Switches 95
3.1.10.20perating without Home Switches 95
3.1.10.3Home and Limit Switch wiring options 95

3.2 Mesa Configuration Wizard e 96
3.2.1 Step by Step Instructions e 97
3.2.2 Create or Edit e e 97
3.2.3 Basic Machine Information o 98
3.2.4 External Configuration e 100
3.2.5 GUI Configuration e e e e e e e 102
3.2.6 Mesa Configuration e e e e e e e 105
3.2.7 Mesal/O Setup e e e e 107
3.2.8 Parallel port configuration. 111
3.2.9 Axis Configuration e e 112
3.2.10Spindle Configuration e 119
3.2.11Advanced Options o i e e e e e e 121
3.2.12HAL Components i e e e e e e e e e e e e e e 122
3.2.13Advanced Usage Of PnCconf 123
4 Configuration 126
4.1 Integrator Concepts e e e e e e e e e e e e e e e e 126
4.1.1 File Locations e 126
4.1.1.1 Installed e e e 126
4.1.1.2 Command Line e 127

4.1.2 Files o o e e e e e e 127
4.1.3 Stepper Systems e e e e e e e e 127
4.1.3.1 Base Period 127
4.1.3.2 Step TIMING o e e e e e e e e e e e e e e 128

4.1.4 Servo Systems e e e e e e e e e 128
4.1.4.1 Basic Operation @ i e e e 128
4.1.4.2 Proportionalterm 130
4.1.4.3 Integralterm e e e e e 130
4.1.4.4 Derivative term e 130
4.1.4.5 Loop tuning e e e e e e e e e e e e e e 131
4.1.4.6 Manual tuning e e e e e e 131

4.1.5 S-Curve Trajectory Planning it 131

4.1.5.1 Enabling e e e 131

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 ix

4.2

4.3

4.4

4.1.5.2 Tuning e e e e e e e e e e e e e e e 131
4.1.6 RTAL . . . e e 132
4.1.6.1 ACPI e 132
4.1.7 Computer/Machine Interface Hardware Options 132
4.1.7.1 litehm?2/rvO01t o e e 132
Latency Testing o o i e e e e e e e e 132
4.2.1 Whatislatency? e e e e e e 132
4.2.2 Latency Tests e e e e e e e e 133
4.2.2.1 Latency Test e e e e e e e 133
4.2.2.2 Latency Plot e 134
4.2.2.3 Latency Histogram it 135
4.2.3 Latency tuning e e e e e e e e e e e 136
4.2.3.1 Tuning the BIOS forlatency. 136
4.2.3.2 Tuning Preempt-RT forlatency 137
Stepper TUNING e e e e e e e e e e e e e e e e 137
4.3.1 Getting the most out of Software Stepping 137
4.3.1.1 Runalatency Test i 138
4.3.1.2 Figure out what yourdrivesexpect 138
4.3.1.3 Choose your BASE PERIOD 139
4.3.1.4 Use steplen, stepspace, dirsetup, and/or dirhold 140
4.3.1.5 No Guessing! o e e e e 140
INI Configuration e e e e e e e 140
4.4.1 The INI File Components ittt 140
4.4.1.1 Comments e e e e 141
4.4.1.2 SeCtionS e e e e e e e 141
4.4.1.3 Variables 142
4.4.1.4 Custom Sections and Variables 142
4.4.1.5 Include Files o e 143
4.4.2 INIFile Sections i 144
4.4.2.1 [EMC] Section e 144
4.4.2.2 [DISPLAY] Section 144
4.4.2.3 [FILTER] Section 148
4.4.2.4 [RS274ANGC] Section 150
4.4.2.5 [EMCMOT] Section i 152
4.4.2.6 [TASK] Section 152
4.4.2.77 [HALTsection ittt e e e 152
4.4.2.8 [HALUI]section it 154
4.4.2.9 [APPLICATIONS] Section 154

4.4.2.10[TRAJ] Section e e 154

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 X

4.5

4.6

4.7

4.8

442 11[KINS] Section e 157
4.4.2.12[AXIS <letter>] Section o oo 157
4.4.2.13[JOINT <num>]Sections 158
4.4.2.14[SPINDLE <num>] Section(s) 165
4.4.2.15[EMCIO] Section e 165
Homing Configuration e e e 166
4.5.1 OVEIVIEW o e e e e e e e e e e e e e e 166
4.5.2 Prerequisite e e e e e 166
4.5.3 Separate Home Switch Example Layout 167
4.5.4 Shared Limit/Home Switch Example Layout 168
4.5.5 Homing Sequence i i i it e e e e e e e e e 169
4.5.6 Configuration e e e e e 171
4.5.6.1 HOME SEARCH VEL 171
4.5.6.2 HOME LATCH VEL e 171
4.5.6.3 HOME FINAL VEL ettt 171
4.5.6.4 HOME IGNORE LIMITS 172
4.5.6.5 HOME USE INDEX 172
4.5.6.6 HOME INDEX NO ENCODER RESET 172
4.5.6.7 HOME OFFSET ettt 172
4.5.6.8 HOME e 172
4.5.6.9 HOME IS SHARED i 173
4.5.6.10HOME ABSOLUTE ENCODER 173
4.5.6.11HOME SEQUENCE e, 173
4.5.6.12VOLATILE HOME e 174
4.5.6.13LOCKING INDEXER e, 174
4.5.6.14Immediate Homing e 174
4.5.6.15Inhibiting Homing 175
Lathe Configuration e e e 176
4.6.1 DefaultPlane. 176
4.6.2 INI Settings o o i i i 176
Stepper Quickstart L e e e 177
4.7.1 Latency Test o . e e e e e e e 177
4.7.2 Sherline 177
4.7.3 XyloteX e e 177
4.7.4 Machine Information L L 177
4.7.5 Pinout Information 178
4.7.6 Mechanical Information o o L 178
Stepper Configuration e e e 179

4.8.1 Introduction e e 179

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Xi

4.8.2 Maximum steprate e e e e e e 180
4.8.3 Pinout 180
4.8.3.1 Standard Pinout HAL 180

4.8.3.2 OVEIVIEW e e 182

4.8.3.3 Changing the standard pinout.hal 182

4.8.3.4 Changing polarityofasignal 182

4.8.3.5 Adding PWM Spindle Speed Control 183

4.8.3.6 Adding an enablesignal e 183

4.8.3.7 External ESTOP button 183

4.9 Stepper DiagnostiCs L e e e e e e e e e e e e e 183
4.9.1 Common Problems e 183
4.9.1.1 Stepper Moves One Step i i i it e 183

4.9.1.2 No Steppers Move i i e e e e e e e e 183

4.9.1.3 Distance Not Correct e 184

4.9.2 Error MESSAgeS . . v v v v v i e i e 184
4.9.2.1 Following Error e 184

4.9.2.2 RTAPI EITOT e e e e e 184

4.9.3 Testing o e e e e e e e e e e e e e e e e e e e 185
4.9.3.1 Step TIMING o ot e e e e e e e e e e e e 185
4.10Filter Programs i e e e e e e e e e e e e e 185
4.10.1Introduction e e 185
4.10.2Setting up the INI for Program Filters 185
4.10.3Making Python Based Filter Programs 186

5 HAL (Hardware Abstraction Layer) 189
5.1 HAL Introduction e e 189
5.1.1 HAL OVEIVIEW L o ittt e e e e e e e e e e e e e e e e 189
5.1.2 Communication e e e e e e e e 191
5.1.3 HAL System Design 0 i e e e e e 192
5.1.3.1 Part Selection 193

5.1.3.2 Interconnection Design 194

5.1.3.3 Implementation 194

5.1.3.4 Testing o o e e e e e e e e e 194

5.1.3.5 Summary e e e e e e e e e 194

5.1.4 HAL Concepts i e e e e e e e 195
5.1.5 HAL components 0 i it e e e e e e e e e 197
5.1.6 Timing Issues In HAL e e e e e e e e 197

5.2 HAL BasSiCS o o i e e e e e e e e e 198
5.2.1 HAL Commands o vt i it e e e e e e e e e e e e e e e e e e e 198

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Xii

5.3

5.4

5.2.1.1 loadrt e e e e e 198
5.2.1.2 addf . . . e e e e e e e e 199
5.2.1.3 loadusr e e e e e e e e 200
5.2.1.4 mnet . . e e e e e 200
5.2.1.5 setD e e e e e e e e e 201
5.2.1.6 sets e e 202
5.2.1.7 unlinkp e e e e 202
5.2.1.8 Obsolete Commands e 202
5.2.2 HALData e e e e e e e 203
5.2.2.1 Bit . .o e e e e e 203
5.2.2.2 Float e e e e e 203
5.2.2.3 S32 . L e e 203
5.2.2.4 U32 . . e e 203
5.2.2.5 SB4 . L L e e e 203
5.2.2.6 UBA e e e 203
5.2.3 HALFiles e 204
5.2.4 HAL Parameter i i it e e e e e e e e e e e e 204
5.2.5 Basic Logic Components e e 204
5.2.5.1 and?2 e e e e e 204
5.2.5.2 not . . L e 205
5.2.5.3 0T2 . . . e e e 205
5.2.5.4 XOT2 . . L o e e e e e 206
5.2.6 Logic Examples e e e e 206
5.2.7 Conversion Components e e e e e e e 207
5.2.7.1 weighted sum e e e 207
HAL TWOPASS . . . 207
5.3.1 TWOPASS 207
5.3.2 Post GUL e 209
5.3.3 Excluding .halfiles e 210
5.3.4 Examples e e e e e e e e e e e e e e 210
HAL Tutorial o o o 211
5.4.1 Introduction e e 211
5.4.2 Halcmd 211
5.4.2.1 Notation e 211
5.4.2.2 Tab-completion 211
5.4.2.3 The RTAPI environment 212
5.4.3 ASimple Example e e e e e e 212
5.4.3.1 Loadingacomponent. i 212

5.4.3.2 Examining the HAL e 212

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xiii

5.5

5.6

5.4.3.3 Making realtimecoderun 214
5.4.3.4 Changing Parameters e 215
5.4.3.5 Saving the HAL configuration 216
5.4.3.6 Exiting halrun e 216
5.4.3.7 Restoring the HAL configuration 216
5.4.3.8 Removing HALfrom memory vt i, 217
5.4.4 Halmeter e e e e e 217
5.4.5 Stepgen Example e e e 219
5.4.5.1 Installing the components 219
5.4.5.2 Connecting pinswith signals 221
5.4.5.3 Setting up realtime execution - threads and functions 221
5.4.5.4 Setting parameters 223
5.4.5.5 Runit! o e e 223
5.4.6 HalsSCope e e e e e e e e e 223
5.4.6.1 Hooking up the scopeprobes 226
5.4.6.2 Capturing our first waveforms 229
5.4.6.3 Vertical Adjustments 230
5.4.6.4 Triggering o v i i i i e e e e e e e e e e e e e 231
5.4.6.5 Horizontal Adjustments 233
5.4.6.6 More Channels e 234
5.4.6.7 More samples e e 235
HAL Examples e e e e e e e e e e e e e e 235
5.5.1 Connecting Two Outputs. e 235
5.5.2 Manual Toolchange e 236
5.5.3 Compute Velocity e e 237
5.5.4 Soft Start Details e 238
5.5.5 Stand Alone HAL 240
Core COmMpPONENtS it e e e e e e e e e e e e e e 241
5.6.1 Motion o L e e e e e 241
5.6.1.1 Options e e e e e e e 242
5.6.1.2 PINS o e e e e e e e e e e 242
5.6.1.3 Parameters L 244
5.6.1.4 Functions e e e 244
5.6.2 Spindle e 245
5.6.2.1 PINS o e e e e e e e e e e e 245
5.6.3 Axis and Joint Pins and Parameters 246
5.6.4 iocontrol 246
5.6.4.1 PINS e e e e e e e e e e 246

5.6.5 INIsettings o e e e e e e e e e e 246

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Xiv

5.6.5.1 PINS e e e 247

5.7 HAL Component List e e e e e 248
5.7.1 Components e e e e 248
5.7.1.1 User Interfaces (non-realtime) 248
5.7.1.2 Motion (non-realtime) e 249
5.7.1.3 Hardware Drivers i e e 249
5.7.1.4 Mesa and other I/O Cards (Realtime) 250
5.7.1.5 Utilities (non-realtime) 250
5.7.1.6 Signal processing (Realtime) 251
5.7.1.7 Signal generation (Realtime) 253
5.7.1.8 Kinematics (Realtime) e 254
5.7.1.9 Motion control (Realtime) e 254
5.7.1.10Motor control (Realtime) @ e 255
5.7.1.11Simulation/Testing e 255
5.7.1.120ther (Realtime) e e 255

5.7.2 Not categorized (auto generated from manpages) 256
5.7.3 Without man page or broken link (auto generated from component list) 256
5.7.4 HAL API calls e 257
5.7.5 RTAPI calls e e e e e 257
5.8 HAL Component Descriptions e e e e 258
5.8.1 StepGen e e e e 259
5.8.1.1 PInS L . e e 259
5.8.1.2 Parameters e e e 260
5.8.1.3 Step TypPes o i e e e e e e 260
5.8.1.4 Functions L e e e e 261

5.8.2 PWMgen 262
5.8.2.1 Output Types o i e e e e e e e e e e 262
5.8.2.2 PINS e e e e e e e e 263
5.8.2.3 Parameters e 263
5.8.2.4 Functions e 263

5.8.3 Encoder e e e 264
5.8.3.1 PIns L e e e e e e e e 264
5.8.3.2 Parameters e e 265
5.8.3.3 Functions L 266

5.8.4 PID 266
5.8.4.1 PINS e e e e e e e 266
5.8.4.2 Functions e e e e 268

5.8.5 Simulated Encoder 268

5.8.5.1 PINS 268

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XV

5.8.5.2 Parameters e e e e e e e 268
5.8.5.3 Functions 269

5.8.6 Debounce e e e e e 269
5.8.6.1 PIns e e e e e e e e e e 269
5.8.6.2 Parameters e e e e e e e 269
5.8.6.3 Functions e 270

5.8.7 SigGen e e e e 270
5.8.7.1 PINS e e e 270
5.8.7.2 Parameters e e e e e e e e 271
5.8.7.3 Functions e e e e 271

5.8.8 LULS .« . L L e e 271
5.9 HAL Component Generator i it et e e e e e e e 272
5.9.1 Introduction e e 272
5.9.2 Installing e e e e 273
5.9.3 Compiling e e e e e 273
5.9.3.1 Inside the sourcetree 273
5.9.3.2 Realtime components outside the sourcetree 273
5.9.3.3 Non-realtime components outside the sourcetree 274

5.9.4 Usinga Component 0 i i i it e e e e e e e e e e e e 274
5.9.5 Definitions e e 275
5.9.6 Instance creation e e e e e e e e 275
5.9.7 Implicit Parameters e e e e e e e e e 275
5.9.8 Syntax e e e e 275
5.9.8.1 HAL functions e 277
5.9.8.2 Oplions e e e e e e e 277
5.9.8.3 License and Authorship 279
5.9.8.4 Per-instance datastorage e 279
5.9.8.5 Comments e 279

5.9.9 Restrictions e e 280
5.9.10Convenience MacCros i it e e e e e e e 280
5.9.11Components with one function, 281
5.9.12Component Personality e 281
5.9.13Examples e e e e e e e 281
5.9.13.1constant 281
5.9.13.2S5INC0OS o e e e e e 282
5.9.13.30ut8 e e 282
5.9.13.4hal 100D o e e e 283
5.9.13.5arraydemo e e e e e e e e e e 283

5.9.13.6rand e e 283

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XVi

5.9.13.7logic (using personality) 284
5.9.13.8General Functions e 285
5.9.14Command Line Usage i i i i it e e e e e e e e 285
5.10HALTCL Files o o o i ittt e e e 285
5.10.1Compatibility e e 286
5.10.2Haltcl Commands L e e e e e e 286
5.10.3Haltcl INI-file variables e 286
5.10.4Converting HAL filesto Tclfiles 287
5.10.5Haltcl Notes e e e e e 288
5.10.6Haltcl Examples e e e e e e e e e e e e e 288
5.10.7Haltcl Interactive e e e 289
5.10.8Haltcl Distribution Examples (sim) e 289
5.11HAL User Interface e e e 289
5.11.1Introduction e e e e 289
5.11.2MDI e e e e e 289
5.11.3Example Configuration e 290
5.11.4Halui Pin Reference e 290
5.11.4.TADOTE . . . o e e e e e e e e e e e e 290
5.11.4.2E-StOD . . o o o o e e e e e e e e e e e e 290
5.11.4.3Feed Override o o i i e e e 290
5.11.4.4MISt . . . o o o e e e e e e e e e e e e 291
5.11.4.5Flood e e e e e e e 291
5.11.4.6Homing o o i e e e e e e e e 291
5.11.4.7Machine L e 291
5.11.4.8Max Velocity e e e 291
5.11.4.9MDI . . L e e e e e e e e e e 292
5.11.4.1 00Nt L e e e e e e e e e e e e e 292
5.11.4.1Joint JOgging o e e e e e e e e e e e e e e e 293
SUTAIRXIS . o o o e 294

5. 114 1BXIS JOGING . . o v v v o e 294
5.11.4.1Mode o e e e e e e e e e e e e e 295
5.11.4.1Brogram e e e e e e e e e e e e e e e e 295
5.11.4.1Rapid Override e e e e 295
5.11.4.18pindle Override @ e e e e 296
5.11.4.18pindle e e e e e e e e e e 296
5.11.4.1T00L e e e e e e e e e e 297
5.12Halui Examples e e e e e e e e 297
5.12.1Remote Start e e 297

5.12.2Pause & Resume e e e 298

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XVii

5.13Creating Non-realtime Python Components 299
5.13.1Basic usage example e e e e 299
5.13.2Non-realtime components and delays 300
5.13.3Create pins and parameters i e e e e e e e e e e e e 300

5.13.3.1Changing the prefix 300
5.13.4Reading and writing pins and parameters 301
5.13.4.1Driving output (HAL OUT) pins 301
5.13.4.2Driving bidirectional (HAL IO)pins v 301
5.A3.5EXItINg e e e e 301
5.13.6Helpful Functions e e e e e e 301
5.13.7Constantso e e e e e e e e e 301
5.13.8System Information L e 302

5.14Canonical Device Interfaces e 302
5.14. 1Introduction e e e e 302
5.14.2Digital Input e e e e e 302

5. 14.2.1PINS . . o o o e e e e e e e e e e 302
S5.14.2.2Parameters L e e e e e e e e 303
5.14.2.3FuUnctions e e e e e 303
5.14.3Digital Output e e 303
5. 14.3.1PINS . . . o o e e e e e e e e e e e 303
5.14.3.2Parameters L e e e e e e e 303
5.14.3.3Functions e e e e 303
5.14.4Analog Input e e e 303
5. 144.TPINS . . L o o e e e e e e e 303
5.14.42Parameters e e e e e e e e 303
5.14.4.3Functions L e e e e 303
5.14.5Analog Output L e e e e e 304
5.14.5.1PINS o e e e e e e e e e e e 304
5.14.5.2Parameters e e e e e 304
5.14.5.3Functions L e 304

5.15HAL TOOIS o o 304
5.15.1Halcmd e 304
5.15.2Halmeter 305
5.15.3Halshow 307
5.15.4HalSCope e e e e 308
5.15.5SIm Pin 308
5.15.6Simulate Probe 309
S5.15.7HAL Histogram it i i e e e e e e e e e e e 310

5.15.8Halreport e e e e e e e 311

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XViii

6 Hardware Drivers 314
6.1 Parallel Port Driver e e e 314
6.1.1 Loading e e e e 314
6.1.2 PCIPort Address o o i i i e e e e 317
6.1.3 PIns e e 318
6.1.4 Parameters e e e e e 318
6.1.5 Functions e e e e e e e 318
6.1.6 Common problems e e e e e e e 319
6.1.7 Using DoubleStep e e e e 319
6.1.8 probe parport e e e e 319
6.1.8.1 Installing probe parport 319

6.2 AXSD2I4AH Driver e e e e e e 320
6.2.1 Installing e e e e 320
6.2.2 PINS e 320
6.2.3 Parameters L e e e 320
6.2.4 Functions e e e e 320

6.3 General Mechatronics Driver e e 321
6.3.1 I/O connectors e e e e e 322
6.3.1.1 PINS o e e e e e e e e e e e e 323

6.3.1.2 Parameters e e e 323

6.3.2 AXiS CONNECLOTS v i i i e e e e e e e e e e e e e e e e 323
6.3.2.1 Axisinterfacemodules L o 324

6.3.2.2 Encoder e e e e e e e e e 325

6.3.2.3 StepGenmodule e e e 327

6.3.2.4 Enable and Faultsignals 330

6.3.2.5 Axis DAC e e e e e 330

6.3.3 CAN-bus servo amplifiers e 331
6.3.3.1 PInS e e e e e e e 332

6.3.3.2 Parameters e e 332

6.3.4 Watchdog timer e e 332
6.3.4.1 PINS e e e e e e e e e e e e 332

6.3.4.2 Parameters 332

6.3.5 End-, homing- and E-stop switches, 333
6.3.5.1 PIns e e e e e e 334

6.3.5.2 Parameters e 334

6.3.6 Status LEDS 334
6.3.6.1 CAN e e e e e e e e e 334

6.3.6.2 RS485 e e e e 335

6.3.6.3 EMC 335

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Xix

6.3.6.4 B0OOt e e e e e e 335

6.3.6.5 EITOr. e e 335

6.3.7 RS4851/0 expander modules e 335
6.3.7.1 Relayoutputmodule 336

6.3.7.2 Digitalinput module 337

6.3.7.3 DAC & ADCmodulettt 338

6.3.7.4 Teach Pendantmodule 339

6.3.8 Errata e e 340
6.3.8.1 GM6-PCIcardErrata e 340

6.4 GS2VED DIIvVer o o e e e e e e e e e e e e e e e e 340
6.4.1 Command Line Options e e 340
6.4.2 PINS e 341
6.4.3 Parameters e e e e e e e e e e e e e e e 342

6.5 HAL Driver for Raspberry PiGPIO pins i 342
0.5.1 PUurpose e e e e e e e e e e e e 342
6.5.2 TUSage« i e e e e e e e e 342
6.5.3 PIns e e 343
6.5.4 Parameters e e e e e 343
6.5.5 Functions e e e e e e e e e 344
6.5.6 Pin Numbering e e e 344
6.5.7 Known Bugs e e 344

6.6 Generic driver for any GPIO supported by gpiod. 344
6.6.1 Purpose e e e e e e 344
6.6.2 USAgE i e e e e e e e e e 345
6.6.3 PIns 346
6.6.4 Parameters L e 346
6.6.5 Functions e e e 346
6.6.6 Pin Identification 346
6.6.7 Troubleshooting permissions problems. 347
6.6.8 Author 347
6.6.9 Known Bugs e e e e e e e e e e 347

6.7 Mesa HostMot2 Driver e e 347
6.7.1 Introduction e 347
6.7.2 Firmware Binaries e 348
6.7.3 Installing Firmware e e e e 348
6.7.4 Loading HostMot2 e e 348
6.7.5 Watchdog e e e e 349
6.7.5.1 PINS e e e e e e e e 349

6.7.5.2 Parameters e e e e e e e e e 349

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XX

6.8

6.7.6 HostMot2 Functions et e e e e e 349
6.7.7 PInouts e 349
6.7.8 PIN Files e e e 351
6.7.9 Firmware e e e e e 351
6.7.10HAL Pins o e e e e e e e 351
6.7.11Configurations e e e e e e e e e e e e 352
6.7.12GPIO e e e e 354
6.7.12.1PINS L e e e e e e e e e e e 354
6.7.12.2Parameters e e e e e e e e e 354
6.7.13StepGen e e e e e e e e e e e e e 354
6.7.13.1PINS e e e e e 355
6.7.13.2Parameters e e e e 355
6.7.13.30utput Parameters e 356
6.7.14PWMGEN e 356
6.7.14.1PINS e e e e e 356
6.7.14.2Parameters e e e e e e e 356
6.7.14.30utput Parameters 357
6.7.15Encoder e e e e e e e 357
6.7.15.1PINS e e e e e e e e 357
6.7.15.2Parameters e e e e e 358
6.7.165125 Configuration e e e 358
6.7.16.1Firmware e e e e e e 358
6.7.16.2Configuration e e 358
6.7.16.3SSERIAL Configuration 359
6.7.16.47177 Limits e e e e e e e e e e e e e e 359
6.7.17Example Configurations e 359
MB2HAL . . . 360
6.8.1 Introduction e e 360
6.8.2 Usage i e e e e e e e e e e e e e e e e 360
6.8.3 Oplions e e e e 360
6.8.3.1 Init Section L 360
6.8.3.2 Transaction Sections e 361
6.8.3.3 Errorcodes e e e e e e e e e e e 362
6.8.4 Example configfile e 363
6.8.5 PINS e e 368
6.8.5.1 fnct 01 read coils 368
6.8.5.2 fnct 02 read discrete inputs 368
6.8.5.3 fnct 03 read holding registers, 368

6.8.5.4 fnct 04 read input registers 368

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXi

6.8.5.5 fnct 05 write single coil L o o 368

6.8.5.6 fnct 06 write single register 368

6.8.5.7 fnct 15 write multiple coils L L o o 369

6.8.5.8 fnct 16 write multiple registers 369

6.9 Mitsub VED Driver e e e e e e e e 369
6.9.1 Command Line Options i i i e e e 369
6.9.2 PINS e e 370
6.9.3 HAL example e e e e e e e e e e e e 370
6.9.4 Configuring the Mitsubishi VFD for serialusage 371
6.9.4.1 Connecting the Serial Port, 371

6.9.4.2 Modbus setup e e e 371
6.10Motenc Driver e e e e e e 371
6.10.1PINS e e e 372
6.10.2Parameters e e e e e 372
6.10.3Functions e e e e e e e e e 373
6.110pt022 DIIVET o e e e e e e e e e e e e e e e e e e e 373
6.11.1The Adapter Card e e e e e 373
6.11.2The Driver e e e 374
6.11.3PINS e e e 374
6.11.4Parameters e e e e e e 374
6.11.5FUNCTIONS e e e e e e e e e e e e e e e s e e e s e e 374
6.11.6Configuring I/O Ports e e e e 375
6.11.7Pin Numbering e e e 375
6.12Pico DTivers e e e e e 375
6.12.1Command Line Options e e 376
6.12.2PINnS e 376
6.12.3Parameters e e e e 378
6.12.4Functions L e e e e e e 379
6.13Pluto P Driver o e 379
6.13.1General Info 379
6.13.1.1Requirements e e e e e e e e e e 379
6.13.1.2C0NnNectors e e 379
6.13.1.3Physical Pins e e 380
6.13.1.ALED e e e e e e e e e e e e e 380
6.13.1.0Power e e e 380
6.13.1.6PCinterface e 380
6.13.1.7Rebuilding the FPGA firmware 380
6.13.1.8For more information L L 381

6.13.2PIuto Servo e e e 381

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXii

6.13.2.1PIN0UL e e e e e e e e e 381
6.13.2.2Input latching and output updating 382
6.13.2.3HAL Functions, Pins and Parameters 383
6.13.2.4Compatible driver hardware, 383
6.13.3Pluto Step e e e e 383
6.13.3.1PIn0out e e e e e e e e e e e e 383
6.13.3.2Input latching and output updating 384
6.13.3.3Step Waveform Timings 384
6.13.3.4HAL Functions, Pins and Parameters 385
6.14Powermax Modbus Driver e 385
6.14.1PInS e 386
6.14.2Description e e e e e e e e 386
6.14.3Reference: e e e 386
6.15Servo To Go Driver e e e e 387
6.15.1Installing e e e e e e 387
6.15.2PINns e 387
6.15.3Parameters e e e e 388
6.15.4Functions e e e e e e 388
6.16Shuttle e e e e e e e e 388
6.16.1Description e e e e e e e e e e 388
6.16.2Setup 389
6.16.3PIns e 389
6.17VFS11 VED Driver e e e e e e e e e e e e e e e e e e 390
6.17.1Command Line Options e e e e 390
6.17.2PINS 390
6.17.3Parameters e e e e e e e e e e e e e e e e e e e 392
6.17.4INI file configuration e e e 392
6.17.5HAL example e e e e e e e e e e e e 393
6.17.6Panel operation e e 394
6.17.7ErrOor RECOVETY e e e e e e e e e e e e 394
6.17.8Configuring the VFS11 VFD for Modbususage 394
6.17.8.1Connecting the Serial Port, 394
6.17.8.2Modbus setup e e e 394

6.17.9Programming Note e e e e e 395

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xXxiii

7 Hardware Examples 396
7.1 PCIParallel Port. e e 396
7.2 Spindle Control e e e e e e 397

7.2.1 0-10 Volt Spindle Speed e 397
7.2.2 PWM Spindle Speed e e e e e 397
7.2.3 Spindle Enable e e e 397
7.2.4 Spindle Direction e 398
7.2.5 Spindle Soft Start e 398
7.2.6 Spindle Feedback e e 399
7.2.6.1 Spindle Synchronized Motion 399

7.2.6.2 Spindle At Speed e e e e 400

7.3 MPG Pendant e e e 400
7.4 GS2 Spindle 402
7.4.1 Example o e e e e e e e e e e 402

8 ClassicLadder 404

8.1 ClassicLadder Introduction e 404
8.1.1 History e e e e e e e e e e e e e e e e 404
8.1.2 Introduction e e 404
8.1.3 Example e e e e e 405
8.1.4 Basic Latching On-Off Circuit i 406

8.2 ClassicLadder Programming @ . i i ittt e e e e 407
8.2.1 Ladder Concepts i i i i i i e e e e 407
8.2.2 Languages e e e e e e e e e e e e e e 407
8.2.3 Components e e e e e e 407

8.2.3.1 Files o e e e e e e e 407
8.2.3.2 Realtime Module 408
8.2.3.3 Variables e 408
8.2.4 Loading the ClassicLadder non-realtime module 409
8.2.5 ClassicLadder GUI e e e e e e 409
8.2.5.1 Sections Manager e e e e e e e e e 410
8.2.5.2 Section Display e e e e 410
8.2.5.3 The Variable Windows 412
8.2.5.4 Symbol Window e e 414
8.2.5.5 The Editor window e 415
8.2.5.6 ConfigWindow e 416
8.2.6 Ladderobjects e e e e e e e e e 418
8.2.6.1 CONTACTS o e 418

8.2.6.2 IECTIMERS 418

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXiV

8.2.6.3 TIMERS e e e e 419

8.2.6.4 MONOSTABLES e et e e e e e 419

8.2.6.5 COUNTERS e et e e e e 419

8.2.6.6 COMPARE e e e e e e e e 420

8.2.6.7 VARIABLE ASSIGNMENT ittt ettt et 421

8.2.6.8 COILS e e e e 423

8.2.7 ClassicLadder Variables 424
8.2.8 GRAFCET (State Machine) Programming 425
8.2.9 Modbus e e e e 427
8.2.10MODBUS Settings o i i i e e e e e e e e e e e e e 430
8.2.10.IMODBUS Info e e e e e e 431
8.2.10.2Communication Errors e e e e 431
8.2.11Debugging modbus problems e 431
8.2.11.1Request e e e e e 433
8.2.11.2ETTOr TESPONSE« v v o e 434
8.2.11.3Data reSponsSe i e e e e e e e e e e e e 435
8.2.11.AMODBUS BUJS . . . o o o o e e e e e e e e e e e e e e e e e 436
8.2.12Setting up ClassicLadder e 436
8.2.12.1Add the Modules 437
8.2.12.2Adding Ladder Logic e 437

8.3 ClassicLadder Examples o o i i e e e e e e e e e e e e 442
8.3.1 Wrapping Counter e e e e e e 442
8.3.2 Reject Extra Pulses e e e 443
8.3.3 External E-Stop e e e e e e e 444
8.3.4 Timer/Operate Example e e 447

9 Advanced Topics 449
9.1 KinematiCs e e e e 449
9.1.1 Introduction e e e e e 449
9.1.1.1 Joints VS AXES e e e e e e e e 449

9.1.2 Trivial Kinematics L e 450
9.1.3 Non-trivial kinematics 451
9.1.3.1 Forward transformation 452

9.1.3.2 Inverse transformation L Lo o 453

9.1.4 Implementationdetails. 453
9.1.4.1 Kinematics module using the userkins.comp template 454

9.2 Setting up "modified” Denavit-Hartenberg (DH) parameters for genserkins 454
9.2.1 Prelude e e e 454

9.2.2 General e 455

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXV

9.3

9.4

9.2.3 Modified DH-Parameters ittt 455
9.2.4 Modified DH-Parameters as used in genserkins 455
9.2.5 Numbering of joints and parameters, 456
9.2.6 Howtostart e 456
9.2.7 Special cases e e e e e e 456
9.2.8 Detailed Example (RV-6SL) e e e e 456
9.2.9 Credits e e 475
5-Axis KinematiCs o e e e 475
9.3.1 Introduction e e e e 475
9.3.2 5-Axis Machine Tool Configurations 475
9.3.3 Tool Orientation and Location, 475
9.3.4 Translation and Rotation Matrices 476
9.3.5 Table Rotary/Tilting 5-Axis Configurations 477
9.3.5.1 Transformations for a xyzac-trt machine tool with work offsets 479
9.3.5.2 Transformations for a xyzac-trt machine with rotary axis offsets 483
9.3.5.3 Transformations for a xyzbc-trt machine with rotary axis offsets 486
9.3.6 Table Rotary/Tilting Examples e 489
9.3.6.1 Vismach Simulation Models oo . 489
9.3.6.2 Tool-Length Compensation 489
9.3.7 Custom Kinematics Components i 489
9.3.8 Figures e e e e e e e e e 491
9.3.9 REFERENCES e e e 493
Switchable Kinematics (switchkins) 493
9.4.1 Introduction e e e e 493
9.4.2 Switchable Kinematic Modules 494
9.4.2.1 Identity letter assignments 494
9.4.2.2 Backwards compatibility oo 495
9.4.3 HALPINS o e 495
9.4.3.1 HAL Pin Summary i i ittt e e e e e e e e e e e 495
9.4.4 USAGE . . . v i i e e e e e e e e e e e e e e e e 495
9.4.4.1 HAL Connections i i ittt 495
9.4.4.2 G-/M-code commandsot e 496
9.4.4.3 INIfile limit settings 496
9.4.4.4 Coordinate system offset considerations 498
9.4.4.5 External offset considerations 498
9.4.5 Simulation configs e e e e 498
9.4.6 User kinematics provisions e 499
9.4.7 Warnings v v v i et e e e e e e e e e e e e e e e e e e e 499
9.4.8 Code NoOtes o e e e e 499

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXVi

9.5 PIDTUnIng o ot e 500
9.5.1 PID Controller e e 500
9.5.1.1 Controlloop basics e 500
9.5.1.2 Theory i e e e e e e 501
9.5.1.3 Loop Tuning o 0 i e e e e e e e e e 501
9.5.1.4 Automatic PID tuning e 502

9.6 Remap Extending G-code e e 503
9.6.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes 503
9.6.1.1 A Definition: Remapping Codes 503
9.6.1.2 Why would you want to extend the RS274NGC Interpreter? 504

9.6.2 Getting started e 505
9.6.2.1 Builtin Remaps e e e e e e 505
9.6.2.2 Pickingacode e 506
9.6.2.3 Parameter handling 506
9.6.2.4 Handlingresults. e 507
9.6.2.5 Execution sequencing it i e e e 507
9.6.2.6 An minimal example remappedcode, 507

9.6.3 Configuring Remapping 0 i e e e e e 507
9.6.3.1 The REMAP statement, 507
9.6.3.2 Useful REMAP option combinations 508
9.6.3.3 The argspec parameter i 509

9.6.4 Upgrading an existing configuration for remapping 512
9.6.5 Remapping tool change-related codes: T, M6, M61 513
9.6.5.1 OVEIVIEW o i it e e e e e e e e e 513
9.6.5.2 Understanding the role of iocontrol with remapped tool change codes . 514
9.6.5.3 Specifying the M6 replacement 515
9.6.5.4 Configuring iocontrol with a remapped M6 516
9.6.5.5 Writing the change and prepare O-word procedures 517
9.6.5.6 Making minimal changes to the built in codes, includingM6 517
9.6.5.7 Specifying the T (prepare) replacement 518
9.6.5.8 Error handling: dealing with abort 519
9.6.5.9 Error handling: failing a remapped code NGC procedure 520

9.6.6 Remapping other existingcodes:. 521
9.6.6.1 Automatic gear selection be remapping S (set spindle speed) 521
9.6.6.2 Adjusting the behavior of MO, M1 521
9.6.6.3 Adjusting the behavior of M7, M8, M9 521

9.6.7 Creating new G-code cycles e 521
9.6.8 Configuring Embedded Python, 522

9.6.8.1 Python plugin : INI file configuration 522

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXVii

9.6.8.2 Executing Python statements from the interpreter 522
9.6.9 Programming Embedded Python in the RS274NGC Interpreter 523
9.6.9.1 The Python plugin namespace, 523
9.6.9.2 The Interpreter as seen from Python 523
9.6.9.3 The Interpreter init and delete functions 523
9.6.9.4 Calling conventions: NGCtoPython 524
9.6.9.5 Calling conventions: Pythonto NGC 527
9.6.9.6 Builtinmodules 529
9.6.10Adding Predefined Named Parameters 529
9.6.11Standard Glue routines L 530
9.6.11.1T: prepare_prolog and prepare epilog 530
9.6.11.2M6: change prolog and change epilog 530
9.6.11.3G-code Cycles: cycle prolog and cycle epilog 531
9.6.11.4S (Set Speed) : setspeed prolog and setspeed epilog 532
9.6.11.5F (Set Feed) : setfeed prolog and setfeed epilog 532
9.6.11.6M61 Set tool number : settool prolog and settool epilog. 532
9.6.12Remapped code execution e e 532
9.6.12.1NGC procedure call environment during remaps 532
9.6.12.2Nested remapped codes e e 532
9.6.12.3Sequence number during remapso e e e e e 532
9.6.12.4Debugging flags e e 533
9.6.12.5Debugging Embedded Pythoncode 533
9.6.13Axis Preview and Remapped code execution 534
9.6.14Remappable Codes e e e e e e e e 535
9.6.14.1Existing codes which can be remapped 535
9.6.14.2Currently unallocated G-codes: 535
9.6.14.3Currently unallocated M-codes: 538
9.6.15A short survey of LinuxCNC program execution 539
9.6.15.1Interpreterstate. 539
9.6.15.2Task and Interpreter interaction, Queuing and Read-Ahead 539
9.6.15.3Predicting the machine position 540
9.6.15.4Queue-busters break position prediction 540
9.6.15.5How queue-busters are dealtwith 540
9.6.15.6Word order and executionorder 541
9.6.15.7Parsing e e e e e e e e e e e e e e e e e 541
9.6.15.8Execution e e e 541
9.6.15.9Procedure execution 541
9.6.15.18ow tool change currently works 541

9.6.15.1How Tx (Prepare Tool) works 542

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXViii

9.6.15.1Blow M6 (Change tool) works 542
9.6.15.1BHow M61 (Change tool number) works 543
0.6.16Status e 544
9.6.17Changes i i e e e e e e e e e e e 544
9.6.18Debugging e e e e e e e 544

9.7 Moveoff Component e e e e e e e e e e 544
9.7.1 Modifying an existing configuration oo 545

9.8 Stand Alone Interpreter e e e e e e 548
9.8.1 Usage i e e e e e e e e e e e e e 548
9.8.2 Example e e e e e e e e e e 549

9.9 External Axis Offsets L e e e e 549
9.9.1 INIFile Settings o o i i e e e e e e 549
9.9.2 HAL PINS o e 550
9.9.2.1 Per-Axis Motion HAL Pins 550

9.9.2.2 Other Motion HAL Pins i it 550

9.9.3 UsSAQe o i e e e e e e e e e e e e e 550
9.9.3.1 Offset Computation e 551

9.9.3.2 Machine-off/Machine-on 551

9.9.3.3 Soft Limits e 551

9.9.3.4 NOteS i it 552

9.9.3.5 Warning i e e e e e e e e e e e e e e e 552

9.9.4 Related HAL Components i i e e e e e e 552
9.9.4.1 eoffset per angle.ccomp 552

9.9.5 Testing i e e e e e e e e e e 552
9.9.6 Examples e e e e e e e e 553
9.9.6.1 eoffsets.ini e 553

9.9.6.2 jwp Z.ini. e 553

9.9.6.3 dynamic offsets.ini 554

9.9.6.4 opa.ini (eoffset per angle) o 554

9.10Tool Database Interface e 554
9.10.1Interface L. e e e 554
9.10.1.1INI file Settings i i e e e e e 554
9.10.1.2db_program operation (v2.1) e 555
9.10.1.3Usage v it e e e e e e e e e e e e e e e 556
9.10.1.4Example Program v v v vt e e e e e e e e e e e e e e e 557
9.10.1.5Python tooldb module 557
9.10.2Simulation configs e 558

9.10.2.INotes e e 558

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXiX

II Usage 559
10User Interfaces 560
10.1AXIS GUI . . . o o e e e e e 560
10.1.1Introduction e e e e 560
10.1.2Getting Started L e e e e 561
10.1.2.1INI settings o i e e e e e e e e e e e e e e e 561
10.1.2.2A Typical Session e e e e 562
10.1.3AXIS WINdOwW o ot e 562
10.1.3.1Menu ltems. e 563
10.1.3.2Toolbar buttons L 566
10.1.3.3Graphical Display Area e e 567
10.1.3.4Text Display Area o v i it i e e e e e e e e e e e e 569
10.1.3.5Manual Control e 569
10.1.3.6MDI 571
10.1.3.7Feed Override i e e e 572
10.1.3.8Spindle Speed Override i i 572
10.1.3.9Jog Speed e e e e e e e e e e e e 572
10.1.3.1¥ax Velocity 573
10.1.4Keyboard Controls e e e 573
10.1.4.1Feed Override Keys i i i e e e e e e e 573
10.1.5Show LinuxCNC Status (linuxcnctop) i it 574
10.1.6MDIinterface @ o i i e e e e e e e e e e e e e e e 575
10.1.7axis-remote L e e e e e 576
10.1.8Manual Tool Change @ . it e e e e e e e e 576
10.1.9Python modules e e 576
10.1.1Using AXIS in Lathe Mode e e 577
10.1.1Using AXIS in Foam Cuttingmode, 579
10.1.1Advanced Configuration e 580
10.1.12.Program Filters e e e e 581
10.1.12.Zhe X Resource Database 582
10.1.12.gwheel 582
10.1.12.4/.aXiSTC . .« v v v e 582
10.1.12.SER COMMAND FILE e e 583
10.1.12.Gser live update() e e e e 583
10.1.12.4ser hal pins()« o o v v e e e e 583
10.1.12.Bxternal Editor 583
10.1.12.Virtual Control Panel L 583

10.1.12.P6eview Control e 583

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXX

10.1.12.Tauch Off using Actual Position. 584
10.1.1AXISUL & . o e e e e e e e e e e e e e e e e e 584
10.1.1AXIS Customization Hints 585

10.1.14.The update function e 585

10.1.14.Disable the Close Dialog i ittt it 585

10.1.14.8hangethe Text Font e 585

10.1.14.Modify Rapid Rate with Keyboard Shortcuts 586

10.1.14.Bead the INIfile 586

10.1.14.Bead LinuxCNC Status i ittt 586

10.1.14.Change the current view e e 586

10.1.14.6reating new AXISUTHAL Pins 586

10.1.14.@reating new HAL Componentand Pins 587

10.1.14.$Witch Tabs with HAL Pins 587

10.1.14.Afld a GOTO Home button 587

10.1.14.AAd Button to manual frame 0oL, 588

10.1.14.R8ading Internal Variables 588

10.1.14.H4de Widgets e e e e e 590

10.1.14.Change alabel 590

10.1.14.Redirect an existing command, 590

10.1.14.Change the DRO color e 590

10.1.14.C8ange the Toolbar Buttons 590

10.1.14.Change Plotter Colors i i e e e e e 591

10.2GMOCCAPY e e e e 592
10.2.1Introduction L . e e e e 592
10.2.2Requirements L e e e e e e e e e e 593
10.2.3How to get GMOCCAPYttt e 593
10.2.4Basic Configuration e e e 594

10.2.4.1The DISPLAY Section i it 595

10.2.4.2The TRAJ Section e e e 596

10.2.4.3Macro Buttons 596

10.2.4.4Embedded Tabs and Panels 598

10.2.4.5User Created MeSSages v v v v v v i v e e e e e e e e e e e 601

10.2.4.6Preview Control 602

10.2.4.7User Command File 602

10.2.4.8User CSS File 603

10.2.4.9L0ggINg o v e e e e e e e e e e e e 603
10.2.5HAL PINS . . . o o e 604

10.2.5.1Right and Bottom Button Lists 604

10.2.5.2Velocities and Overrides e 607

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXi

10.2.5.3Jog HALPIns e 609
10.2.5.4Jog Velocities and Turtle-Jog HALPin 610
10.2.5.5Jog Increment HAL Pins i e 610
10.2.5.6Hardware Unlock Pin. L 611
10.2.5.7Error/Warning Pins 611
10.2.5.8User Created Message HAL Pins, 611
10.2.5.9Spindle Feedback Pins 612
10.2.5.1Bins to Indicate Program Progress Information 612
10.2.5.1Tool Related Pins e 612
10.2.6Auto Tool Measurement 614
10.2.6.1Provided Pins 615
10.2.6.2INI File Modifications 615
10.2.6.3Needed Files e 616
10.2.6.4Needed HAL Connections v it i, 617
10.2.7The Settings Page e e e e 617
10.2.7.1APPEATANCE v o o e 618
10.2.7.2Hardware o e e e e e e e e 623
10.2.7.3Advanced Settings e e e 625
10.2.8Icon Theme e e e e 627
10.2.8.1Custom Icon Theme e 628
10.2.8.2Symbolic Icons e 628
10.2.9Lathe Specific Section e 629
10.2.1Plasma Specific Section e 632
10.2.1Videos on YouTube e 632
10.2.11.Basic Usage o v v it e e e e e e e e e e e e e 633
10.2.11.8imulated Jog Wheels e 633
10.2.11.8ettings Page e e e e e e 633
10.2.11.8imulated Hardware Button 633
10.2.11.BserTabs 633
10.2.11. %00l Measurement Videos Lo oo 633
10.2.1Rnown Problems e e e e e e e e e e e 633
10.2.12.$trange numbers in theinfoarea, 633
10.2.12. R0t ending Macro o v i e e e e e e e e e e e e e 634
10.3The Touchy Graphical User Interface 634
10.3.1Panel Configuration e 635
10.3.1.1HAL connections i i i i ittt i e e 635
10.3.1.2Recommended forany setup 636
10.3.2S€tUD . . o o e e e e e e e e e e e e e 636

10.3.2.1Enabling Touchy e 636

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXX

10.3.2.2Preferences 636
10.3.2.3MACTOS . .« v vt e e e e e e 637
10.4GSCTEEI o o o e e e e e e e e e e e 637
10.4.1Introduction e e e 637
10.4.1.1Glade File e 642
10.4.1.2PyGTK oo 642
10.4.2GladeVCP e e e 643
10.4.2.10VeIVIEW Lo 643
10.4.2.2Build a GladeVCP Panel 644
10.4.3Building a simple clean-sheet custom screen 645
10.4.4Handler file example e e e e 647
10.4.4.1Adding Keybindings Functions, 648
10.4.4.2Linuxcnc State Status L 648
10.4.4.3Jogging Keys o e e e e e e 649
10.4.5Gscreen Start Up 0 e e e e 649
10.4.6INI Settings o o i i e e e e e e e e 651
10.4.7User Dialog MeSSages v v v v i i e e e e e e e e e e e e e e e e e 651
10.4.7.1Copy the Stock Handler/Glade File For Modification 652
10.5QtDragon GUI e e e e e e e e e e e e e e e 653
10.5.1Introduction L e e e 653
10.5.1.1QtDragon e e e e e e e e e e e e e e e 653
10.5.1.2QtDragon lathe e 654
10.5.1.3QtDragon hd 655
10.5.1.4QtDragon_hd vertical 655
10.5.2Getting Started - The INI File i 655
10.5.2.1Display 656
10.5.2.2Preferences 656
10.5.2.3L0QQING o o o e e e e e e e e e e e e e 656
10.5.2.40verride controls L 656
10.5.2.5Spindle controls e e e 656
10.5.2.6Jogging increments e e e e e e e e 657
10.5.2.7Grid Increments 657
10.5.2.8Jog speed e e e e e e 657
10.5.2.9User message dialog system e 657
10.5.2.18mbed Custom VCP Panels 658
10.5.2.1%ubroutine Paths 659
10.5.2.1Rreview Control 659
10.5.2.1Brogram Extensions/Filters o oL, 659

10.5.2.1Brobe/Touchplate/Laser Settings 660

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXiii

10.5.2.1Bbort detection 660
10.5.2. 16tartup codes e e e e e e e e e e 661
10.5.2.1Macro Buttons e 661
10.5.2.1Bost GUIT HAL File. e 661
10.5.2.1Bost GUIL HAL Command o v v ittt e et e e e e e 661
10.5.2.2BIAL Bridge 662
10.5.2.2Builtin Sample Configurations 662
10.5.3Key Bindings o e e e e e e e e e 663
10.5.4BUttons e e e e e e e 663
10.5.5Virtual Keyboard e e 663
10.5.6HAL PIns o e e e e e e 663
10.5.7HAL files o e e e e e e e e e e e e e e 665
10.5.8Manual Tool Changes i i i i e e e e e e e e 665
10.5.9Spindle L e e e e e e e e e e e e 665
10.5.18uto Raise Z Axis on Program Pause 665
10.5.1Z level compensation e e e 666
10.5.11.Using G-code Ripper for Z level Compensation 667
10.5.1Probing e e e e e e e e e 669
10.5.12.Versa Probe 670
10.5.12.Basic probe e e e e e e e e e e e e e 672
10.5.12.8ustomizing Probe Screen Widget, 675
10.5.1Fouch plate e e 675
10.5.1Auto Tool Measurement i i it i it e e e e 676
10.5.14.0VEIVIEW o it i i e e e e e e e e e 676
10.5.14. Workflow Overview e e e 676
10.5.14.Betailed Workflow Example 678
10.5.14 Work Piece Height Probing in QtDragon hd 679
10.5.14.Work Piece Height Probing 680
10.5.14.%00l Measurement Pins 681
10.5.14.Tool Measurement INI File Modifications 682
10.5.14.Bequired HAL Connections 683
10.5.1Runfrom Line e e e 684
10.5.18aser buttons L e e e e e e e e e e e e e e 684
10.5.1Tabs Description. e e 684
10.5.17.Maintab 684
10.5.17.Bile Tab 684
10.5.1708ffsets Tab 685
10.5.17 %00l Tab 685

10.5.17.Status Tab e 685

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXIV

10.5.17.Brobe Tab e 685
10.5.17.Camview Tab L 685
10.5.17.8-codes Tab e 686
10.5.17.8etup Tab 686
10.5.17.86ttings Tab 687
10.5.17.Utilities Tab L 687
10.5.17.U8er Tab e 687
10.5.18tyles o e e e e e e e e e e e e 688
10.5.1nternationalisation L. 688
10.5.2Customization 689
10.5.20.8tylesheets e 689
10.5.20.0t Designer and Pythoncode, 692
10.6NGCGUI e e e e e e e e e e e e e e 694
10.6.10VEIVIEW o v ittt e 694
10.6.2Demonstration Configurations 695
10.6.3Library Locations e e e e e e 697
10.6.4Standalone Usage i i it e e e e e e e e e e 698
10.6.4.1Standalone NGCGUI ittt ittt 698
10.6.4.2Standalone PyNGCGUI it 698
10.6.5Embedding NGCGUI ettt ettt ettt 699
10.6.5.1Embedding NGCGUIin AXIS 699
10.6.5.2Embedding PyYNGCGUI as a GladeVCP tab pageina GUI 700
10.6.5.3Additional INI File items required for NCGUI or PyNGCGUI 700
10.6.5.4Truetype Tracer i i i e e e e e e e e e e e 702
10.6.5.5INI File Path Specifications 702
10.6.5.6Summary of INI File item details for NGCGUIusage 703
10.6.6File Requirements for NGCGUI Compatibility 705
10.6.6.1Single-File Gcode (.ngc) Subroutine Requirements 705
10.6.6.2Gcode-meta-compiler (.gcmc) file requirements. 707
10.6.7DB25 Example o e e e e e e e e e e e e e e 708
10.6.8Creating a subroutine 711
10.7TKLinuxCNC GUI e e e e 712
10.7.1Introduction L e e e e e e e e e e e e e e e e e 712
10.7.2Getting Started e e e e e 712
10.7.2.1A typical session with TKLinuxCNC 712
10.7.3Elements of the TkLinuxCNC window, 713
10.7.3.1Mainbuttons 713
10.7.3.20ffset display status bar 714

10.7.3.3Coordinate Display Area e e 714

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXV

10.7.3.4TkLinuxCNC Interpreter / Automatic Program Control 714
10.7.3.5Manual Control e 714
10.7.3.6Code Entry e e e e e e 715
10.7.3.7Jog Speed e e e e e e 716
10.7.3.8Feed Override e 716
10.7.3.9Spindle speed Override e 716
10.7.4Keyboard Controls e e e e e e 716
10.8QtPlasmaC e e e e e e e 716
10.8.1Preamble e 716
10.8.2L0CeNSE L. e e e 717
10.8.3Introduction L e e e e e e e e e e e e e e e 717
10.8.4Installing LinuxCNC e e e 720
10.8.4.1If The User Does Not Have Linux Installed 721
10.8.4.2Package Installation (Buildbot) If The User Has Linux on Debian 12 (Book-
WOITIL) © ¢ v v v e 721
10.8.4.3Package Installation (Buildbot) If The User Has Linux on Debian 12 (Book-
worm) or Debian 11 (Bullseye) 721
10.8.4.4Run In Place Installation If The User Has Linux Installed 721
10.8.5Creating A QtPlasmaC Configuration 721
10.8.5.1ModeS 721
10.8.5.2Available I/Os L 722
10.8.5.3Recommended Settings: 723
10.8.5.4Configuring e e e e 724
10.8.5.5Qt Dependency Errors 729
10.8.5.6Initial Setup e e e 729
10.8.6Migrating to QtPlasmaC From PlasmaC (AXIS or GMOCCAPY) 733
10.8.70ther QtPlasmaC Setup Considerations 733
10.8.7.1Low-pass Filter e 733
10.8.7.2Contact Bounce e 733
10.8.7.3Contact Load e 734
10.8.7.4Desktop Launcher. e 735
10.8.7.5QtPlasmaC Files e e e 735
10.8.7.6INI File 736
10.8.8QtPlasmaC GUI OVerview o i i i e e e e e e e e e e e e s 738
10.8.8.1Exiting QtPlasmaC e e e 738
10.8.8.2MAINTab 738
10.8.8.3Preview VIiews e 745
10.8.8.4CONVERSATIONAL Tab 745

10.8.8.5PARAMETERS Tab 746

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXVi

10.8.8.6SETTINGS Tab 752
10.8.8.7STATISTICS Tab e 756
10.8.9Using QtPlasmaC e e e e e e 756
10.8.9.1Units Systems e e e e e e e e 757
10.8.9.2Preamble and Postamble Codes 757
10.8.9.3Mandatory Codes e e e e e 758
10.8.9.4Co00rdinates e e 758
10.8.9.5Cut Feed Rate e 758
10.8.9.6Material File e 758
10.8.9.7Manual Material Handling 760
10.8.9.8Automatic Material Handling 760
10.8.9.9Material Addition Via Magic Comments In G-code 761
10.8.9.1Material Converter i e e e 762
10.8.9.1LASER 765
10.8.9.1CAMERA 767
10.8.9.1Bath Tolerance e 768
10.8.9.1Raused Motion e e 769
10.8.9.1Bause AtEnd Of Cut 769
10.8.9.1BMultiple Tools e e e 769
10.8.9.1Velocity Reduction e 770
10.8.9.18BHC (Torch Height Controller) 771
10.8.9.1@utter Compensation 772
10.8.9.2Mhitial Height Sense (IHS) SKip 772
10.8.9.2Probing e e e e e 773
10.8.9.20ffset Probing 773
10.8.9.28ut Types o o 774
10.8.9.2Hole Cutting -Intro e 775
10.8.9.2Hole Cutting 775
10.8.9.2H0le Cutting - Automatic 777
10.8.9.28ingle Cut 778
10.8.9.28hick Materials 780
10.8.9.28lesh Mode (Expanded Metal Cutting) 780
10.8.9.3Ignore Arc OK L e e e e e e e e 781
10.8.9.3CUt Recovery i i e e e e e e e e 781
10.8.9.3Run From Line e 782
10.8.9.3Scribe 784
10.8.9.38potting e e e e e e e e e e e 786
10.8.9.3%ube Cutting 787

10.8.9.3Wirtual Keyboard Custom Layouts 787

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXVii

10.8.9.3Keyboard Shortcuts 788
10.8.9.3BIDI 789
10.8.1Conversational Shape Library 790
10.8.10.Conversational Settings e 792
10.8.10.2onversational Lines And Arcs e 792
10.8.10.8onversational Single Shape 793
10.8.10.€onversational Group Of Shapes 795
10.8.10.6onversational Block L 795
10.8.10.6onversational SavingAJob L L 796
10.8.1ETT0r MESSAFES .« . v ¢ v v o o e 797
10.8.11.Error Logging o i i e e e e e e e e e e e e e e e 797
10.8.11.Error Message Display e e e 797
10.8.11.8ritical Errors e e e e 797
10.8.11.arning MesSSages v v v v v i e e e e e e e e e e e e e e e 799
10.8.1Ppdating QtPlasmaC e e e e e 800
10.8.12.%tandard Update e 800
10.8.12.Continuous Update e 800
10.8.1B1odify An Existing QtPlasmaC Configuration 800
10.8.1€ustomizing QtPlasmaC GUI e e 800
10.8.14. Add ACustom Style e 801
10.8.14.8reate ANew Style e 801
10.8.14.Beturning To The Default Styling 802
10.8.14.€ustom Python Code e 802
10.8.14.6ustom G-code Filter 803
10.8.1@tPlasmaC Advanced TopiCS o v i v v i i e e e 804
10.8.15.Custom User Buttons e 804
10.8.15.Reripheral Offsets (Laser, Camera, Scribe, Offset Probe) 811
10.8.15.Beep Z Motion o e e e e e e e e e e 813
10.8.15.External HAL Pins 813
10.8.15.Hide Program Buttons 814
10.8.15.5uning Mode O Arc OK e 815
10.8.15.Zost Arc Delay e e e 815
10.8.15.8ero WIindow e 816
10.8.15.%uning Void Sensing e e e 816
10.8.15.Mhax Offset 816
10.8.15.Ehable Tabs During Automated Motion 816
10.8.15.0%erride Jog Inhibit ViaZ+ Jog.o oo 817
10.8.15.M8PlasmaC State Outputs 817

10.8.15.M4PlasmaC Debug Print 818

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXViii

10.8.15.Hypertherm PowerMax Communications 818
10.8.15.Moving Pierce e e e e e e e e e e e e 819
10.8.1fnternationalisation L 823
10.8.1AppendiX e e e e e e e e e e e e 824
10.8.17.Example Configurations e 824
10.8.17.BIGC Samples o e e e e e e e 825
10.8.17.@tPlasmaC Specific G-codes 825
10.8.17.@tPlasmaC G-code Examples 826
10.8.17.Mesa THCAD e e 828
10.8.17.BS485 Connections 830
10.8.17.Arc OKWith AReed Relay. 832
10.8.17.8ontact Load Schematics 834
10.8.18nown ISSues L e e 834
10.8.18.Keyboard Jogging e e e e e e 834
10.8.18.W0 FORCE HOMING ittt 835
10.8.1@ontributing Code To QtPlasmaC 835
10.8.28Upport e e e e e e e e 836
10.9MDRO GUI e e e e e e e e 836
10.9.1Introduction e e e 836
10.9.2Getting Started e e e e e 837
10.9.2.1INI File Options e e e e e e e e e e e e 837
10.9.2.2Command Line Options it 838
10.9.2.3PInso 838
10.9.3MDRO WIndow o ittt e e e e e e e e e e e e e e e e e e 838
10.9.4Index operations e e 839
10.9.5Simulation L L e e e e e e e e e e e e e 839
11 G-code Programming 840
11.1Coordinate Systems e e e e e e e e e e e 840
11.1.1Introduction e e e 840
11.1.2Machine Coordinate System e 840
11.1.2.1Machine coordinates moves: G53, 840
11.1.3Coordinate Systems e e e e 841
11.1.3.1Default Coordinate System 842
11.1.3.2Setting Coordinate System Offsets 843
11.1.4Local and Global Offsets e e e 843
11.1.4.1The G52 command o ot ittt e e e e 843
11.1.5G92 Axes Offsets e 844

11.1.5.1The G92 commandsS v v i i et e e e 844

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 XXXiX

11.1.5.2Setting G92 Values e 845
11.1.5.3G92 Persistence Cautions oo, 845
11.1.5.4G92 and G52 Interaction Cautions 846
11.1.6Sample Programs Using Offsets, 846
11.1.6.1Sample Program Using Workpiece Coordinate Offsets 846
11.1.6.2Sample Program Using G52 Offsets 847
11.2Tool Compensation e e e e e 847
11.2.1Touch Off e e e e e e e e e e 847
11.2.1.1Using G10 L1/L10/L11 o o e e e e e e e e 848
11.2.2Tool Table« o e 848
11.2.2.1Tool Table Format 849
11.2.2.2Tool IO o o 850
11.2.2.3Tool Changers i e e e e e e e e e e e 852
11.2.3Tool Length Compensation 852
11.2.4Cutter Radius Compensation 853
11.2.4.10VEIVIEW . . . o o L e e e e e e e e 854
11.2.4.2Examples e e e e e e e 856
11.3Tool Edit GUL e 857
11.3.10VEIVIEW o e e e e e e e e e e e e e e e e 857
11.3.2C0olumn Sorting e e e e e e e e e 858
11.3.3Columns Selection e e e 859
11.3.4Stand Alone Use e e e 859
11.40verview of G-Code Programming o v ittt 860
114 TOVEIVIEW . . . o vt i e e e e e e e e e e e e e e e e 860
11.4.2Formatofaline e e 860
11.4.2.1/: Block Delete e 861
11.4.2.20ptional Line Number 861
11.4.2.3Words, Parameters, Subroutines, Comments 861
11.4.24End of Line Marker 862
11.4.3Numbers e 862
11.4.4Parameters e e e e 863
11.4.4.1Numbered Parameters L 864
11.4.4.2Subroutine Codes and Parameters 866
11.4.4.3Named Parameters e 866
11.4.4.4Predefined Named Parameters 867
11.4.4.5System Parameters 869
11.45HAL pinsand INIvalues et e e e e 869
11.4.6EXPresSiOnS v i i e e e e e e e e e e e e e e e e e e 870

11.4.7Binary Operators o i i i e e e e e e e e e e e e e e e 870

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xI

11.4.8Equality and floating-pointvalues, 871
11.4.9Functions o L e e e 871
11.4.18epeated Items e e e 872
11.4.1tem order o e e e e e e 872
11.4.1Zommands and Machine Modes 873
11.4.1Bolar Coordinates o o i e e e e 873
11.4.1Mo0dal GIroUuPS v i o e 875
11.4.18omments e e e e e 876
11.4.1B0ESSAageS . & v v v v v e 877
11.4.1Probe Logging o o i e e e e e e e e e e 877
11.4.1B0gging o v o e i e 877
11.4.18Db0rt MESSages . . . v v v v e 878
11.4.20ebug MeSSages . . . v v v v i i e 878
11.4.2Print MeSsages o v v i i i e e e e e e e e e e e e 878
11.4.22omment Parameters e 878
11.4.2Bile Requirements e 879
11.42File Size o o e e e e e 879
11.4.26-code Order of Execution 879
11.4.26-code Best Practices e 880
11.4.2%inear and Rotary AXiS o o i i e e e e e 881
11.4.2680mmon Error Messages o o i i e e e e e e e e 881
11.5G-Codes o o e e e e 881
11.5.1C0onventions i e e e e e e e e e e e 881
11.5.2G-Code Quick Reference Table 882
11.5.3G0 Rapid Move e e e e e 883
11.5.3.1Rapid Velocity Rate e 883
11.5.4G1 Linear Move e e e e 884
11.5.5G2, GBATC MOVE o i i ittt e e e e e e e e e e e e e e e e e e 884
11.5.5.1Center Format Arcs e 885
11.5.5.2Center Format Examples e 887
11.5.5.3Radius Format Arcs 888
11.5.6G4A Dwell e e e e e e e e e e e 889
11.5.7G5 Cubic Spline e e e e e 889
11.5.8G5.1 Quadratic Spline e e e 890
11.5.9G5.2 G5.3 NURBS Block o o it e e 891
11.5.1G7 Lathe Diameter Mode e 892
11.5.1G8 Lathe Radius Mode i i e e 892
11.5.1510 LO Reload Tool Table Data 893

11.5.1810 L1 Set Tool Table e e 893

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xli

11.5.1610 L2 Set Coordinate System 894
11.5.1810 L10 Set Tool Table e 895
11.5.1610 L11 Set Tool Table e e e 896
11.5.1G10 L20 Set Coordinate System e 896
11.5.16817 - G19.1 Plane Select e 897
11.5.1820, G21 Units o o e e e e e e e e e e e e e 897
11.5.2(28, G28.1 Go/Set Predefined Position 897
11.5.2G30, G30.1 Go/Set Predefined Position, 898
11.5.28%33 Spindle Synchronized Motion, 898
11.5.2833.1 Rigid Tapping o o v i e e e e e e e e e e e e e e 899
11.5.2638.n Straight Probe e 900
11.5.2640 Compensation Off 902
11.5.2641, G42 Cutter Compensation i 902
11.5.2641.1, G42.1 Dynamic Cutter Compensation 903
11.5.2843 Tool Length Offset e 903
11.5.2843.1 Dynamic Tool Length Offset, 904
11.5.3343.2 Apply additional Tool Length Offset 905
11.5.3G49 Cancel Tool Length Compensation 905
11.5.3%52 Local Coordinate System Offset 906
11.5.3853 Move in Machine Coordinates, 906
11.5.3654-G59.3 Select Coordinate System 906
11.5.3661 Exact Path Mode e 907
11.5.3661.1 Exact Stop Mode e e 907
11.5.3G64 Path Blending e e e e 907
11.5.3670 Lathe finishingcycle 910
11.5.3871 G72 Lathe roughing cycles 911
11.5.4@73 Drilling Cycle with Chip Breaking 912
11.5.4G74 Left-hand Tapping Cycle withDwell 913
11.5.48%76 Threading Cycle e e e e e e e 914
11.5.4880-G89 Canned Cycles i i e e e 916

11.5.43.Common Words 917

11.5.43.3ticky Words o i e e e e e e e e e 917

11.5.43.Bepeat Cycle e 917

11.5.43. Retract Mode e 917

11.5.43.6anned Cycle Errors i e e e 917

11.5.43.Breliminary and In-Between Motion oL, 918

11.5.43.Why use a canned cycle? e 918
11.5.4680 Cancel Canned Cycle e e 920

11.5.4681 Drilling Cycle e e e e 921

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlii

11.5.4682 Drilling Cycle, Dwell e 926
11.5.4G83 Peck Drilling Cycle e e e 926
11.5.4884 Right-hand Tapping Cycle, Dwell 927
11.5.4885 Boring Cycle, Feed Out e 927
11.5.5386 Boring Cycle, Spindle Stop, Rapid Move Out 928
11.5.5G87 Back Boring CycCle e e e 928
11.5.5%88 Boring Cycle, Spindle Stop, Manual Out 928
11.5.5889 Boring Cycle, Dwell, Feed Out 928
11.5.5690, G91 Distance Mode e e 928
11.5.5690.1, G91.1 Arc Distance Mode e 929
11.5.5692 Coordinate System Offset 929
11.5.5392.1, G92.2 Reset G92 Offsets 930
11.5.5692.3 Restore G92 Offsets e 930
11.5.5893, G94, G95 Feed Rate Mode 930
11.5.6396, G97 Spindle Control Mode e 931
11.5.6G98, G99 Canned Cycle ReturnLevel 931
11.6M-Codes i e e e e e 932
11.6.1M-Code Quick Reference Table i i 932
11.6.2M0, M1 Program Pause e 932
11.6.3M2, M30 Program End e e 932
11.6.4M60 Pallet Change Pause i 933
11.6.5M3, M4, M5 Spindle Control e 933
11.6.6M6 Tool Change e e e e e e 934
11.6.6.1Manual Tool Change it ittt 934
11.6.6.2Tool Changer i i i e et e e e e e 934
11.6.7M7, M8, M9 Coolant Control 934
11.6.8M19 Orient Spindle e e e 935
11.6.9M48, M49 Speed and Feed Override Control 935
11.6.18150 Feed Override Control o it ittt it ittt 936
11.6.1M51 Spindle Speed Override Control 936
11.6.1¥M52 Adaptive Feed Control e 936
11.6.1B153 Feed Stop Control e 936
11.6.1M61 Set Current Tool e e e e e e e 936
11.6.18162 - M65 Digital Output Control 937
11.6.18166 Wait on Input e e e 937
11.6.1¥67 Analog Output, Synchronized 938
11.6.18168 Analog Output, Immediate 938
11.6.18170 Save Modal State 939

11.6.20171 Invalidate Stored Modal State 940

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xliii

11.6.2M72 Restore Modal State 940
11.6.2M73 Save and Autorestore Modal State L. 941
11.6.2B198 and M99 e e e e e e e e e 941
11.6.23.%electively Restoring Modal State, 942
11.6.2M100-M199 User Defined Commands 942
11.70 Codes . . . o o o e e 944
11.7.1Use of O-codes o o i i i e e e e 944
11.7.2Numbering o ot e e e e e e e e e e 944
11.7.3Comments e e e e e e e e e e e 944
11.7.4Subroutines e e 944
11.7.4.1Fanuc-Style Numbered Programs 945
11.7.5L00PING .« ¢ v v o o e 947
11.7.6Conditional e e 948
11.7.7Repeat e e e e e e 948
11.7.8Indirection e e e e e e 949
11.7.9Calling Files e e e e e e 949
11.7.18ubroutine return values 950
T1.7.1ETTOTS . . . o o ot e e e e e e e e e e e e e e e 950
11.80ther Codes e e e e e 950
11.8.1F: SetFeed Rate e 950
11.8.2S: Set Spindle Speed L e e 950
11.8.3T: Select Tool. L . e 951
11.9G-Code Examples e e e e e 951
11.9.1Mill Examples e e e e e e e 951
11.9.1.1Helical Hole Milling i ittt 951
11.9.1.2Slotting 952
11.9.1.3Grid Probe 952
11.9.1.4Smart Probe 953
11.9.1.5Tool Length Probe e 954
11.9.1.6Hole Probe 954
11.9.1.7Cutter Compensation e 954
11.9.2Lathe Examples e e e e 955
11.9.2.1Threading o 0 e e e e e e 955
11.10mage to G-Code e e e e e e 955
11.10.Whatisa depthmap? e 955
11.10.Entegrating image-to-gcode with the AXIS user interface 956
11.10.8sing image-to-gcode e e e e 956
11.10.@ption Reference e 956

11.104.Units o o oo 956

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xliv

11.104.Invert Image e e e e e e e e e e e 956
11.10.4.Blormalize Image i i e e e e e e e e e 956
11.10.4.Bxpand Image Border 956
11.10.4.%olerance (units) 956
11.10.4.Bixel Size (units) 957
11.10.4.Plunge Feed Rate (units perminute) 957
11.10.4.Beed Rate (units perminute) 957
11.10.4.9pindle Speed (RPM) e 957
11.10.4.%0an Pattern e e e e e e 957
11.10.4.$¢%an Direction e 957
11.10.4.D2pth (units) 957
11.10.4.88ep Over (pixels) o e e e e 958
11.10.4.Tdol Diameter e e e 958
11.10.4.88fety Height 958
11.10.4.T601 Type o o oo 958
11.10.4.1dce bounding e e e e e e 958
11.10.4.C8ntact angle e e 958
11.10.4.RBughing offset and depth perpass 959
11.1RS274/NGC Differences o i e e e e e 959
11.11.Changes from RS274/NGC e e e e e e e e 959
11.11.Additions to RS274/NGC e 960
12Virtual Control Panels 962
12.1PYVCP . . o e 962
12.1.1Introduction e e e e e e e 962
12.1.2Panel Construction e 963
12.1.3Security o o e e e e e e e e e e e e e e e 964
12.14AXIS e 964
12.1.4.1Example Panel e e 964
12.1.5Stand Alone L e e e 966
12.1.6Widgets e e e e e 967
12.1.6.1Syntax oo 967
12.1.6.2General Notes i e e e 967
12.1.6.3Label 968
12.1.6.4Multi Label 969
12.1.6.5LEDS o 969
12.1.6.6Buttons e e 970
12.1.6.7Number Displays e e e 972

12.1.6.8Number Inputs e 975

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlv

12.1.6.9Images e e e e e e e e e e e e e e e 979
12.1.6.10ontainers L. e e 981
12.2PyVCP Examples e e e e e 986
12.2.1AXIS e e e e e e e e e e e e e e e 986
12.2.2Floating Panels e e e 986
12.2.3Jog Buttons Example L e e 987
12.2.3.1Create the Widgets e 988
12.2.3.2Make Connections e 990
12.2.4Port Tester o e e e e e e e 991
12.25GS2 RPM Meter o o ot e e it e e e e e e e e e e e e e e e e e e e 994
12.2.5.1The Panel e 994
12.2.5.2The Connections. i i e 996
12.2.6Rapid to Home Button e 996
12.3GladeVCP: Glade Virtual Control Panel 998
12.3.1What is GladeVCP? e e e e e e e e e e e e 998
12.3.1.1PyVCP versus GladeVCP ataglance 998
12.3.2A Quick Tour with the Example Panel 999
12.3.2.1Exploring the example panel, 1002
12.3.2.2Exploring the User Interface description 1003
12.3.2.3Exploring the Python callback 1003
12.3.3Creating and Integrating a Glade userinterface 1003
12.3.3.1Prerequisite: Glade installation 1003
12.3.3.2Running Glade to create a new user interface 1003
12.3.3.3Testinga panel e 1004
12.3.3.4Preparing the HAL command file 1005
12.3.3.5Integrating into AXIS, like PyVCP o oL, 1005
12.3.3.6EmbeddingasaTab 1006
12.3.3.7Integrating into Touchy 1006
12.3.3.8Loading Builtin Panels 1007
12.3.4GladeVCP command lineoptions 1007
12.3.5Understanding the GladeVCP startup process 1008
12.3.6HAL Widget reference e 1009
12.3.6.1Widget and HAL pin naming, 1009
12.3.6.2Python attributes and methods of HAL Widgets 1010
12.3.6.3Setting pin and widget values 1010
12.3.6.4The hal-pin-changed signal 1011
12.3.6.5Buttons 1011
12.3.6.6Scales 1012

12.3.6.7SpinButton e e e e e e 1013

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xIVi

12.3.6.8Hal Dial e e 1013
12.3.6.9Jog Wheel e e e e e 1015
12.3.6.18peed Control e 1017
12.3.6.1Label 1019
12.3.6.1C0ntainers e e e e e e e 1019
12.3.6.1BED 1020
12.3.6.1BrogressBar e e e e e e e e 1021
12.3.6.160mboBox 1022
12.3.6.1Bars o e e 1022
12.3.6.1Feter o 1024
12.3.6.1BIAL Graph o e e 1025
12.3.6.1@remlin tool path preview for NGCfiles 1025
12.3.6.2BIAL Offset o e e 1028
12.3.6.2DRO widget 1028
12.3.6.22ombi DROwidget e 1030
12.3.6.2BonView (File Select) e 1034
12.3.6.2€@alculator widget e e 1037
12.3.6.2%o0leditor widget 1037
12.3.6.20ffsetpage e 1039
12.3.6.2AAL sourceview widget L e 1041
12.3.6.2RIDT history o e e 1042
12.3.6.28nimated function diagrams: HAL widgetsina bitmap 1043
12.3.7Action Widgets Reference 1043
12.3.7.1VCP Action Widgets e e e 1044
12.3.7.2VCP Action Python 1044
12.3.7.3VCP ToggleAction widgets e 1045
12.3.7.4The Action MDI Toggle and Action MDIwidgets 1046
12.3.7.5A simple example: Execute MDI command on button press 1046

12.3.7.6Parameter passing with Action MDI and ToggleAction MDI widgets 1046

12.3.7.7An advanced example: Feeding parameters to an O-word subroutine ... 1047

12.3.7.8Preparing for an MDI Action, and cleaning up afterwards 1047
12.3.7.9Using the LinuxCNC Stat object to deal with status changes 1048
12.3.8GladeVCP Programming i vt it e e e e e e e e e e e e 1049
12.3.8.1User Defined Actions 1049
12.3.8.2Core Library e e e e 1049
12.3.8.3An example: adding custom user callbacks in Python 1050
12.3.8.4HAL value change events, 1050
12.3.8.5Programming model e 1050

12.3.8.6Initialization sequence 1052

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xIvii

12.3.8.7Multiple callbacks with the samename 1053
12.3.8.8The GladeVCP -U <useropts>flag 1053
12.3.8.9Persistent variables in GladeVCP, 1053
12.3.8.1Using persistent variables Lo oo 1053
12.3.8.1%aving the state on GladeVCP shutdown 1054
12.3.8.13aving state when Ctrl-Cispressed 1055
12.3.8.1Band-editing INI (.ini) files 1055
12.3.8.1Adding HAL pins o o e e e e e e 1055
12.3.8.1Adding timers e e e e e e e e e 1056
12.3.8.16etting HAL widget properties programmatically 1056
12.3.8.1Value-changed callback with hal glib 1057
12.3.8.1Bxamples, and rolling your own GladeVCP application 1057
12.3.9FAQ . . . o e e e e e e 1057
12.3.1Troubleshooting e e e 1058
12.3.1Implementation note: Key handlingin AXIS 1058
12.3.1Adding Custom Widgets e e e e 1059
12.3.1Auxiliary GladeVCP Applications 1059
12.4GladeVCP Library modules e e 1060
12.4.1Inf0 . . . o e e e e e e e e e e e e e 1060
12.4.2ACH0N . . . L L L e e 1062
12.5QtVCP e e e e e e 1064
12.5.1Showease o o e e 1064
12.5.20VEIVIEW L e e e e e e e e e e e 1070
12.5.2.1QtVCP Widgets 1071
12.5.2.2INI Settings o o 1071
12.5.2.3Qt Designer UL File e e e 1072
12.5.2.4Handler Files 1072
12.5.2.5Libraries Modules L 1073
12.5.2.6Themes 1073
12.5.2.7Local Files o e 1073
12.5.2.8Modifying Stock Screens e 1074
12.5.3VCP Panels e e e e e e e e e e 1077
12.5.3.1Builtin Panels 1077
12.5.3.2Custom Panels 1081
12.5.4Build A Simple Clean-sheet Custom Screen 1083
12.5.4.10Verview 1083
12.5.4.2Get Qt Designer To Include LinuxCNC Widgets 1083
12.5.4.3Build The Screen .ui File 1084

12.5.4.4Handlerfile. e 1087

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xIviii

12.5.4.5INI Configuration e 1087
12.5.5Handler File In Detail 1087
12.5.5.10VEIVIEW e e e e e e e e e e e e e e 1088
12.5.5.2IMPORT Section e 1091
12.5.5.3INSTANTIATE LIBRARIES Section 1091
12.5.5.4HANDLER CLASS Section 1091
12.5.5.5INITIALIZE Section it 1091
12.5.5.6SPECIAL FUNCTIONS Section 1092
12.5.5.7STATUS CALLBACKS Section. 1093
12.5.5.8CALLBACKS FROM FORM Section 1093
12.5.5.9GENERAL FUNCTIONS Section 1093
12.5.5.18EY BINDING Section 1093
12.5.5.1CLOSING EVENT Section 1093
12.5.6Connecting Widgets to Python Code, 1093
12.5.6.10VEIVIEW e e e e e e e e e e e e e e e e 1094
12.5.6.2Using Qt Designertoadd Slots 1094
12.5.6.3Python Handler Changes, 1095
12.5.7More Information L 1096
12.6QtVCP Virtual Control Panels e 1096
12.6.1Builtin Virtual Control Panels 1096
12.6.1.1C0PY . . o o o e e e e e e e e 1096
12.6.1.2spindle belts e e 1097
12.6.1.3test dial 1099
12.6.1.4test button e 1100
12.6.1.50test led 1100
12.6.1.6test panel e e e e 1101
12.6.1.7cam_align 1102
12.6.1.8sim panel e e e e e e 1105
12.6.1.9tool dialog o e e 1106
12.6.2vismach 3D Simulation Panels L o o 1106
12.6.2.1QtVCP vismach mill xyz 1106
12.6.2.2QtVCP vismach router atc e 1107
12.6.2.3QtVCP vismach scara i i i i e 1108
12.6.2.4QtVCP vismach millturn. e 1109
12.6.2.5QtVCP vismach mill 5axis gantry 1110
12.6.2.6QtVCP vismach fanuc 200f 1111
12.6.3Custom Virtual Control Panels, 1112
12.6.4Embedding QtVCP Virtual Control Panels into QtVCP Screens 1113

12.6.4.1Embedding Commands e e e 1113

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 xlix
12.6.4.2Location of builtin Panels 1113
12.6.4.3Location of Custom Panels 1114
12.6.4.4Handler Programming Tips i i e 1114
12.6.4.5Designer Widget Tips« o o i i i e e e 1114
12.6.4.6Handler Patching - Subclassing Builtin Panels 1114

12.7QtVCP Widgets o o i 1115
12.7.1HAL Only Widgets o e e e e e e e e e e e 1116
12.7.1.1CheckBox Widget 1116
12.7.1.2DetachTabWidget - Container Widget With User Detachable Panels 1116
12.7.1.3DoubleScale - Spin Button Entry Widget 1116
12.7.1.4FocusOverlay - Focus Overlay Widget 1116
12.7.1.5Gauge - Round Dial Gauge Widget 1118
12.7.1.6GeneralHALInput - General Signals/Slots Input Connection Widget 1119
12.7.1.7GeneralHALOutput - General Signals/Slots Output Connection Widget . . . 1119
12.7.1.8GridLayout - Grid Layout Widget 1120
12.7.1.9HalBar - HAL Bar Level Indicator 1120
12.7.1.1BALPad - HAL Buttons Joypad 1121
12.7.1.10ALLabel - HAL Label Widget 1123
12.7.1.1RCDNumber - LCD Style Number Readout Widget 1124
12.7.1.1BED - Indicator Widget e 1124
12.7.1.1BushButton - HAL Pin Toggle Widget 1125
12.7.1.1BadioButton Widget e 1125
12.7.1.16lider - HAL Pin Value Adjusting Widget 1125
12.7.1.1TabWidget - TabWidget 1126
12.7.1.18idgetSwitcher - Multi-widget Layout View Switcher Widget 1126
12.7.1.18Embed - Program Embedding Widget 1127
12.7.2Machine Controller Widgets e 1127
12.7.2.1ActionButton - Machine Controller Action Control Widget 1127
12.7.2.2ActionToolButton - Optional Actions Menu Button Widget 1130
12.7.2.3AxisToolButton - Select and Set Axis Widget 1130
12.7.2.4BasicProbe - Simple Mill Probing Widget 1132
12.7.2.5CamView - Workpiece Alignment and Origin Setting Widget 1132
12.7.2.6DR0OLabel - Axis Position Display Widget 1132
12.7.2.7FileManager - File Loading Selector Widget. 1135
12.7.2.8GcodeDisplay - G-code Text Display Widget 1136
12.7.2.9GcodeEditor - G-code Program Editor Widget 1137
12.7.2.16CodeGraphics - G-code Graphic Backplot Widget 1138
12.7.2.13ointEnableWidget -FIXME, 1142
12.7.2.120gIncrements - Jog Increments Value Selection Widget 1142

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 |

12.7.2.1MacroTab - Special Macros Widget. 1143
12.7.2.1@peratorValuelLine - Operator Value Line Entry Widget 1145
12.7.2.1BDILine - MDI Commands Line Entry Widget 1146
12.7.2.18DIHistory - MDI Commands History Widget 1147
12.7.2.1MDITouchy - Touch Screen MDI Entry Widget 1148
12.7.2.18rigin0ffsetView - Origins View and Setting Widget 1150
12.7.2.1RadioAxisSelector -FIXME 1151
12.7.2.2RoundButton - Round Shapped ActionButton Widget 1151
12.7.2.2%tatelLabel - Controller Modes State Label Display Widget 1151
12.7.2.23tatusLabel - Controller Variables State Label Display Widget 1152
12.7.2.28tatusImageSwitcher - Controller Status Image Switcher 1154
12.7.2.28tatusStacked - Mode Status Display Switching Widget 1156
12.7.2.25creenOption - General Options Setting widget 1156
12.7.2.26tatusSlider - Controller Setting Adjustment Slider Widget 1161
12.7.2.23tateLED - Controller State LED Widget 1162
12.7.2.28tatusAdjustmentBar - Controller Value Setting Widget 1163
12.7.2.29ystemToolButton - User System Selection Widget 1164
12.7.2.38tateEnableGridlayout - Controller State Enabled Container Widget .. 1164
12.7.2.3%tatusImageSwitcher - Controller Status Image Switching Widget 1164
12.7.2.320010ffsetView - Tools Offsets View And Edit Widget 1165
12.7.2.38ersaProbe - Mill Probing Widget 1167
12.7.3Dialog Widgets e e e e e e e 1167
12.7.3.1LcncDialog - General Message Dialog Widget 1168
12.7.3.2ToolDialog - Manual Tool Change Dialog Widget 1169
12.7.3.3FileDialog - Load and Save File Chooser Dialog Widget 1170
12.7.3.40rigin0ffsetDialog - Origin Offset Setting Dialog Widget 1171
12.7.3.5Tool0ffsetDialog - Tool Offset Setting Dialog Widget 1172
12.7.3.6ToolChooserDialog - Tool Chooser Dialog Widget 1172
12.7.3.7MachinelLog - Machine Events Journal Display Widget 1173
12.7.3.8MacroTabDialog - Macro Launch Dialog Widget 1174
12.7.3.9CamViewDialog - WebCam Part Alignment Dialog Widget 1174
12.7.3.1BntryDialog - Edit Line Dialog Widget 1174
12.7.3.1CalculatorDialog - Calculator Dialog Widget 1174
12.7.3.1RunFromLine - Run-From-Line Dialog Widget 1176
12.7.3.18ersaProbeDialog - Part Touch Probing Dialog Widget 1177
12.7.3.1MachinelLogDialog - Machine and Debugging Logs Dialog Widget 1178
12.7.40ther Widgets e e e e 1178
12.7.4.1NurbsEditor - NURBS Editing Widget 1179

12.7.4.2JoyPad - 5 button D-pad Widget 1179

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 li

12.7.4.3WebWidget e 1181
12.7.5BaseClass/Mixin Widgets e 1182
12.7.5.1IndicatedPushButtons 1182
12.7.6Import-Only Widgets e e 1185
12.7.6.1Auto Height 1185
12.7.6.2G-code Utility 1185
12.7.6.3Facing 1186
12.7.6.4Hole Circle e 1186
12.7.6.5Hole Enlarge e e e e e 1187
12.7.6.6Qt NGCGUIL. 1187
12.7.6.7Qt PDF 1189
12.7.6.8Qt Vismach e 1189
12.7.6.9Hal Selection Box e 1189
12.8QtVCP Libraries modules e e e e 1189
12.8.1Status e e e e e e e 1189
12.8.1.1USage . . . v v o e e e e e e e e e e e 1190
12.8.1.2Example e e e e e e e e e 1190
12.8.2INT0 . . o e e e e e e e e e e e e e e e e 1190
12.8.2.1Available data and defaults 1191
12.8.2.2User message dialoginfo 1192
12.8.2.3Embedded programinfo L o 1192
12.8.2.4HeIpers e e e e e e e e e e 1192
12.8.2.5Usage o e e e e e e e e 1192
12.8.3Action L 1193
12.8.3.1Helpers e e e 1193
12.8.3.2Usage e e e e e e e e 1193
12.8.4Qhal e e e e e e e e e e e e 1195
12.8.4.1Attributes L 1195
12.8.4.2Constants L 1196
12.8.4.3References L 1196
12.85QPIN o e e e e e e e e e e e e e e e e e e 1196
12.8.5.1Signals 1196
12.8.5.2Attributeso 1196
12.8.5.3References L 1197
12.8.5.4Example e e e e e e e e 1197
12.8.6T00L . . . e e e e e e e e e e e e e e e e 1197
12.8.6.1Helpers e e e e e e 1197
12.8.7Path . . o e e e e e e e e e 1198

12.8.7.1Referenced Paths e 1198

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 lii

12.8.7.2Helpers e e e e e e e 1199
12.8.7.3USAgE . . . o v e e e e e e e e e e e 1200
12.8.8VCPWINAOW e e e e e e e e e e e e e 1200
12.8.8.1USAgE . . . o v i e e e e e e e e e 1200
12.8.9Aux_program loader e e e e e 1200
12.8.9.1HeIpers e e e e e e e e e e e e 1201
12.8.9.2Usage e e e e e e e e e e e 1201
12.8.1Beylookup e e e 1202
12.8.10.Wsage v i e e e e e e e e e e e e e e e 1202
12.8.10.Rey Defines o e e e e 1203
12.8.1MeSSages o o e e e e e e e e e e e e e e e e e 1205
12.8.11.Properties e e e e e e e e e e 1205
12.8.11.PIAL Pins o 1206

12.8. 11.Bxamples e e e e e e e e e e e e 1206
12.8.1Ultimessages i e e e e e e e e e e e e e e 1207
12.8.12.Properties e e e e e e e e e e e e 1207
12.8.12.BExamples e e e e e e e e 1208

12.8. 1M0tify . . . e e e e e e e e e e 1208
12.8.13.Properties e e e e e e e e e e e e e e e 1209
12.8.1Breferences e 1209
12.8.1Blayer. . . . e e e e e 1209
12.8.15.%0unds e e e 1209
12.8.15.Wsage i e e e e e e e e e 1210

12.8. 15.Bxample e e e e e e e e e 1210
12.8.1¥irtual Keyboard e 1210
12.8.1Toolbar Actions e e e 1211
12.8.17.Actions e 1211
12.8.17.3ubmenus 1211
12.8.17.SAg€ o e e e e e e e e e e e e e e e 1211
12.8.17.Bxamples e e e e e e e e e e e e e 1211
12.8.18t Vismach Machine Graphics library 1212
12.8.18.Builtin Samples 1212
12.8.18.Primitives Library e 1212
12.8.18.Tsage e e e e e e e e 1214
12.8.18.More Information 1215
12.9QtVismach e e e e e e 1215
12.9.1Introduction L e e e e e e e e e e e e e e e 1215
12.9.2Hierarchy of Machine Design e 1217

12.9.3Start the script e e 1218

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 liii

12.9.4HAL DINS. . . o o o o o e 1218
12.9.5Creating Parts e e e e 1218
12.9.5.1Import STLor OBJ Files i i i 1218
12.9.5.2Build from Geometric Primitives oL, 1219
12.9.6Moving Model Parts e e 1220
12.9.6.1Translating Model parts e 1220
12.9.6.2Rotating Model Parts 1220
12.9.7Animating Parts e e e e 1220
12.9.7.1HalTranslate e 1220
12.9.7.2HalRotate 1221
12.9.7.3HalToolCylinder e e e e e e e e 1221
12.9.7.4HalToolTriangle 0 i e e e e e e e e e 1221
12.9.7.5HAL Adjustable Primitives 1221
12.9.8Assembling themodel 1222
12.9.90ther functions e e e 1223
12.9.9.1C0lor. 1223
12.9.9.2HALColorFlip 1223
12.9.9.3HALCOolorRGB 1223
12.9.9.4Heads Up Display 0 . i i e e 1224
12.9.9.5HAL Heads Up Display i i e e e e e e e 1224
12.9.9.6HideCollection e 1224
12.9.9.7Plot Color Based on Motion Type, 1225
12.9.9.8Capture e e e e e 1225
12.9.9.9main 1225
12.9.0TIPS & . o o o e 1226
12.9.1Basic structure of a QtVismachscript, 1226
12.9.1Builtin Vismach Sample Panels 1227
12.1@tVCP: Building Custom Widgets e 1227
12.10.0VEIVIEW o o e e e e e e e e e e 1227
12.10.1.Widgets 1227
12.10.1.@t Designer e e e e e e e e e e e e e e e e 1228
12.10.1.hitialization Process 1228
12.10.1.dleanup PrOCESS v v v v e 1229
12.10.Zustom HAL Widgets e e e e e e 1229
12.10.Bustom Controller Widgets Using STATUS 1230
12.10.3.In The Imports Section e 1231
12.10.3.Ih The Instantiate Libraries Section 1232
12.10.3.;n The Custom Widget Class Definition Section 1232

12.10.€ustom Controller Widgets with Actions 1234

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 liv

12.10.Stylesheet Property Changes Based On Events 1236
12.10.Use Stylesheets To Change Custom Widget Properties 1237
12.10.Widget Plugins e e e e e 1237
12.10.7.Gridlayout Example e 1238
12.10.7.3ystemToolbutton Example, 1238
12.10.7.Making a plugin with a MenuEntry dialogbox 1239
12.10tVCP Handler File Code Snippets i it e e 1242
12.11.Preference File Loading/Saving 1242
12.11.PJse QSettings To Read/Save Variables 1242
12.11.Add A Basic Style Editor e 1243
12.11.Request Dialog Entry e 1243
12.11.Speak a Startup Greeting e 1244
12.11.800lBar Functions e e e e e e 1245
12.11.Add HAL Pins That Call Functions, 1246
12.11.Bead/Write System HAL Pins Directly, 1246
12.11.8dd A Special Max Velocity Slider Based On Percent 1247
12.11.T6ggle Continuous Jog Onand Off 1247
12.11.Class Patch The File Manager Widget 1248
12.11.Adding Widgets Programmatically, 1250
12.11.Update/Read Objects Periodically 1253
12.11.E4&ternal Control With ZMQ e e 1254
12.11.14MQ Messages Reading e 1254
12.11.14MQ Messages Writing o 0 it i it it e e e e 1255
12.11.8bnding Messages To Status Bar Or Desktop Notify Dialogs 1256
12.11.€Catch Focus Changes i i e e e 1257
12.11.Réad Command Line Load Time Options 1257
12.11.G8code to read Qt preferences 1258
12.1QEVCP Development e e e e e e e e e e e e e e e e e 1259
12.12.DVETVIEW . . v v v v o i e 1259
12.12.Builtin Locations e e e e 1259
12.12.9tVCP Startup To Shutdown 1259
12.12.3.QtVCP Startup o o e e e e e e 1260
12.12.3.QtVCP Shutdown e e 1260
12.12.2ath Information e 1260
12.12.5diosyncrasies e e e e e e e e e 1261
12.12.5.Error Code Collecting i ittt it i 1261
12.12.5 g Rate e e e e 1261
12.12.5.Beybinding e e e 1261
12.12.5.Breference File e 1262
12.12.5.Widget Special Setup Functions 1262
12.12.5.Bialogs e e e 1262

12.12.5.3tyles (Themes) e e e e e e 1262

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 Iv

13 User Interface Programming 1263

13.1Panelui 1263
13.1.1Introduction e e e e 1263
13.1.2Loading Commands 0 i e e e e e e e e e e e e e e e 1263
13.1.3panelui.ini file reference e 1264
13.1.4Internal Command reference e 1266
13.1.5ZMQ MESSAGES . « v v v v e 1269
13.1.6Handler File Extension e 1269
13.2The LinuxCNC Python module 1270
13.2.1Introduction e e e e 1270
13.2.2Usage Patterns for the LinuxCNC NML interface 1271
13.2.3Reading LinuxCNC status with the linuxcnc Python module 1271
13.2.3.1linuxcnc.stat attributes oL 1271
13.2.3.2The axis dictionary e e 1277
13.2.3.3The joint dictionary e 1277
13.2.3.4The spindle dictionary i i it 1278
13.2.4Preparing to send commands e e e e 1279
13.2.5Sending commands through linuxcnc.command 1280
13.2.5.1linuxcnc.command attributes L oo oo 1280
13.2.5.2linuxcnc.command methods: oL, 1280
13.2.6Reading the error channel 1284
13.2.7Reading INI file values e 1284
13.2.8The linuxcnc.positionloggertype 1285
13.2.8.1members 1285
13.2.8.2methods e e 1285

13.3The HAL Pythonmodule e e e 1286
13.3.1BaSIC USAGE v o e 1286
13.3.2Functions L e e e e 1286
13.4GStat Python Module e 1289
13.4.1INE10 . . . o o e e e e e e e e e e e e e e e e e e e 1289
13.4.2Sample GStat Code e e e 1290
13.4.2.1Sample HAL component code pattern. 1290
13.4.2.2GladeVCP Python extension code pattern 1291
13.4.2.3QtVCP Python extension code pattern 1291
13.4.3MESSAFES . & v v v v e 1292
13.4.4Functions e e e e e e 1299
13.4.5Known Issues e e e 1301
13.5Vismach o e e 1301

13.5.1Start the script e e e e 1303

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

Ivi

13.5.2Create the HAL pins.
13.5.3Creating Parts oo
13.5.4Moving Parts e
13.5.5Animating Parts
13.5.6Assembling themodel.
13.5.70ther functions o

13.5.8Basic structure of a Vismach script

IIT Glossary, Copyright & History
14 Overleaf
15 Glossary

16 Copyright

16.1Legal Section e
16.1.1Copyright Terms

16.1.2GNU Free Documentation License

17LinuxCNC History

17.1011gin o e e e e e e e
17.1.1Name Change,
17.1.2Additional Info,

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 1/1322

Part 1

Getting Started & Configuration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 2/1322

Chapter 1

Getting Started with LinuxCNC

1.1 About LinuxCNC

1.1.1 The Software

¢ LinuxCNC (the Enhanced Machine Control) is a software system for computer control of machine
tools such as milling machines and lathes, robots such as puma and scara and other computer
controlled machines up to 9 axes.

e LinuxCNC is free software with open source code. Current versions of LinuxCNC are entirely li-
censed under the GNU General Public License and Lesser GNU General Public License (GPL and
LGPL).

¢ LinuxCNC provides:

- easy discovery and testing without installation with the Live Image,
- easy installation from the Live Image,

- easy to use graphical configuration wizards to rapidly create a configuration specific to the ma-
chine,

- directly available as regular packages of recent releases of Debian (since Bookworm) and Ubuntu
(since Kinetic Kudu),

- a graphical user interface (actually several interfaces to choose from),

- graphical interface creation tools (Glade, Qt),

- an interpreter for G-code (the RS-274 machine tool programming language),

- a realtime motion planning system with look-ahead,

- operation of low-level machine electronics such as sensors and motor drives,

- an easy to use breadboard layer for quickly creating a unique configuration for your machine,

a software PLC programmable with ladder diagrams.

* It does not provide drawing (CAD - Computer Aided Design) or G-code generation from the drawing
(CAM - Computer Automated Manufacturing) functions.

¢ It can make coordinated moves with up to 9 axes and up to 16 extra axes can be controlled individ-
ually.

It supports a variety of hardware interfaces.

* The control can operate true servos (analog or PWM) with the feedback loop closed by the LinuxCNC
software at the computer, or open loop with step-servos or stepper motors.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 3/1322

* Motion control features include: cutter radius and length compensation, path deviation limited to
a specified tolerance, lathe threading, synchronized axis motion, adaptive feedrate, operator feed
override, and constant velocity control.

* Support for non-Cartesian motion systems is provided via custom kinematics modules. Available
architectures include hexapods (Stewart platforms and similar concepts) and systems with rotary
joints to provide motion such as PUMA or SCARA robots.

¢ LinuxCNC runs on Linux using real time extensions.

1.1.2 The Operating System

LinuxCNC is available as ready-to-use packages for Debian distributions.

1.1.3 Getting Help

1.1.3.1 Web Forum

A web forum can be found at https://forum.linuxcnc.org or by following the link at the top of the
linuxcnc.org home page.

This is quite active but the demographic is more user-biased than the mailing list. If you want to be
sure that your message is seen by the developers then the mailing list is to be preferred.

1.1.3.2 IRC

IRC stands for Internet Relay Chat. It is a live connection to other LinuxCNC users. The LinuxCNC
IRC channel is #linuxcnc on libera.chat.

The simplest way to get on the IRC is to use the embedded web client client from libera.

Some IRC etiquette

* Ask specific questions... Avoid questions like “Can someone help me?”.

e If you're really new to all this, think a bit about your question before typing it. Make sure you
give enough information so someone can answer your question or solve your problem.

* Have some patience when waiting for an answer. Sometimes it takes a while to formulate an
answer, or everyone might be busy working or something.

* Set up your IRC account with your unique name so people will know who you are. If you use
the java client, use the same name every time you log in. This helps people remember who
you are. If you have been on before, many will remember past discussions with you which will
save time on both ends.

Sharing Files
The most common way to share files on the IRC is to upload the file to one of the following or a
similar service and paste the link:

* Fortext: https://pastebin.com/, https://gist.github.com/, https://Obin.net/, https://paste.debian.net/-

» For pictures: https://imagebin.org/, https://imgur.com/, https://bayimg.com/
» For files: https://filedropper.com/, https://filefactory.com/, https://1fichier.com/

https://forum.linuxcnc.org
https://web.libera.chat/#linuxcnc
https://pastebin.com/
https://gist.github.com/
https://0bin.net/
https://paste.debian.net/
https://imagebin.org/
https://imgur.com/
https://bayimg.com/
https://filedropper.com/
https://filefactory.com/
https://1fichier.com/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 4/1322

1.1.3.3 Mailing List

An Internet Mailing List is a way to put questions out for everyone on that list to see and answer at
their convenience. You get better exposure to your questions on a mailing list than on the IRC but
answers take longer. In a nutshell you e-mail a message to the list and either get daily digests or
individual replies back depending on how you set up your account.

You can subscribe to the emc-users mailing list at: https://lists.sourceforge.net/lists/listinfo/emc-users.

1.1.3.4 Web Forum

A web forum can be found at https://forum.linuxcnc.org/ or by following the link at the top of the
https://linuxcnc.org/ home page.

This is quite active but the demographic is more user-biased than the mailing list. If you want to be
sure that your message is seen by the developers then the mailing list is to be preferred.

1.1.3.5 LinuxCNC Wiki

A Wiki site is a user maintained web site that anyone can add to or edit.

The user maintained LinuxCNC Wiki site contains a wealth of information and tips at: http://wiki.linuxcnc.or¢

1.1.3.6 Bug Reports

Report bugs on the LinuxCNC Github github bug tracker.

1.2 System Requirements

1.2.1 Minimum Requirements

The minimum system to run LinuxCNC and Debian / Ubuntu may vary depending on the exact usage.
Stepper systems in general require faster threads to generate step pulses than servo systems. You
can use the Live CD to test the software before committing to a permanent installation on a computer.
Keep in mind that the Latency Test numbers are more important than the processor speed for software
step generation. More information on the Latency Test is here. In addition, LinuxCNC needs to be run
on an operating system that uses a specially modified kernel, see Kernel and Version Requirements.

Additional information is on the LinuxCNC Wiki site: Hardware Requirements

LinuxCNC and Debian Linux should run reasonably well on a computer with the following minimum
hardware specification. These numbers are not the absolute minimum but will give reasonable per-
formance for most stepper systems.

1.2 GHz 64-bit x86 processor or Raspberry Pi 4 or better.
¢ 512 MB of RAM, 4 GB with GUI to avoid surprises
¢ No hard disk for Live CD, 8 GB or more for permanent installation

* Graphics card capable of at least 1024x768 resolution, which is not using the NVidia or ATI fglrx
proprietary drivers. Modern onboard graphic chipsets seem to generally be OK.

* Internet connection (not strictly needed, but very useful for updates and for communicating with
the LinuxCNC community)

https://lists.sourceforge.net/lists/listinfo/emc-users
https://forum.linuxcnc.org/
https://linuxcnc.org/
http://wiki.linuxcnc.org/
https:///github.com/LinuxCNC/linuxcnc/issues
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Hardware_Requirements

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 5/1322

Minimum hardware requirements change as Linux distributions evolve so check the Debian web site
for details on the Live CD you’re using. Older hardware may benefit from selecting an older version
of the Live CD when available.

If you plan not to rely on the distribution of readily executable programs (“binaries”) and/or aim at
contributing to the source tree of LinuxCNC, then there is a good chance you want a second computer
to perform the compilation. Even though LinuxCNC and your developments could likely be executed
at the same time with respect to disk space, RAM and even CPU speed, a machine that is busy will
have worse latencies, so you are unlikely to compile your source tree and produce chips at the same
time.

1.2.2 Kernel and Version requirements

LinuxCNC requires a kernel modified for realtime use to control real machine hardware. However, it
can run on a standard kernel in simulation mode for purposes such as checking G-code, testing config
files and learning the system. To work with these kernel versions there are two versions of LinuxCNC
distributed. The package names are “linuxcnc” and “linuxcnc-uspace”.

The realtime kernel options are preempt-rt, RTAI and Xenomai.
You can discover the kernel version of your system with the command:

uname -a

If you see (as above) -rt- in the kernel name then you are running the preempt-rt kernel and should
install the "uspace” version of LinuxCNC. You should also install uspace for ”"sim” configs on non-
realtime kernels.

Ifyou see -rtai- in the kernel name then you are running RTAI realtime. See below for the LinuxCNC
version to install.

1.2.2.1 Preempt-RT with linuxcnc-uspace package

Preempt-RT is the newest of the realtime systems, and is also the version that is closest to a mainline
kernel. Preempt-RT kernels are available as precompiled packages from the main repositories. The
search term "PREEMPT RT” will find them, and one can be downloaded and installed just like any
other package. Preempt-RT will generally have the best driver support and is the only option for
systems using the Mesa ethernet-connected hardware driver cards. In general preempt-rt has the
worst latency of the available systems, but there are exceptions.

1.2.2.2 RTAI with linuxcnc package

RTAI has been the mainstay of LinuxCNC distributions for many years. It will generally give the
best realtime performance in terms of low latency, but might have poorer peripheral support and not
as many screen resolutions. An RTAI kernel is available from the LinuxCNC package repository. If
you installed from the Live/Install image then switching kernel and LinuxCNC flavour is described in
[Installing-RTAI].

1.2.2.3 Xenomai with linuxcnc-uspace package

Xenomai is also supported, but you will have to find or build the kernel and compile LinuxCNC from
source to utilise it.

https://www.debian.org/releases/devel/amd64/ch02.en.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 6/1322

1.2.2.4 RTAI with linuxcnc-uspace package

It is also possible to run LinuxCNC with RTAI in user-space mode. As with Xenomai you will need to
compile from source to do this.

1.2.3 Problematic Hardware

1.2.3.1 Laptops

Laptops are not generally suited to real time software step generation. Again a Latency Test run for
an extended time will give you the info you need to determine suitability.

1.2.3.2 Video Cards

If yourinstallation pops up with 800 x 600 screen resolution then most likely Debian does not recognize
your video card or monitor. This can sometimes be worked-around by installing drivers or creating /
editing Xorg.conf files.

1.3 Getting LinuxCNC

This section describes the recommended way to download and make a fresh install of LinuxCNC.
There are also Alternate Install Methods for the adventurous. If you have an existing install that you
want to upgrade, go to the Updating LinuxCNC section instead.

Note

To operate machinery LinuxCNC requires a special kernel with real-time extensions. There are three
possibilities here: preempt-rt, RTAl or Xenomai. In addition there are two versions of LinuxCNC which
work with these kernels. See the table below for details. However for code testing and simulation it
is possible to run the linuxcnc-uspace application on a stock kernel of the distribution.

Fresh installs of LinuxCNC are most easily created using the Live/Install Image. This is a hybrid ISO
filesystem image that can be written to a USB storage device or a DVD and used to boot a computer. At
boot time you will be given a choice of booting the ”"Live” system (to run LinuxCNC without making any
permanent changes to your computer) or booting the Installer (to install LinuxCNC and its operating
system onto your computer’s hard drive).

The outline of the process looks like this:

1. Download the Live/Install Image.

2. Write the image to a USB storage device or DVD.
3. Boot the Live system to test out LinuxCNC.

4. Boot the Installer to install LinuxCNC.

1.3.1 Download the image

This section describes some methods for downloading the Live/Install image.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 7 /1322

1.3.1.1 Normal Download

Software for LinuxCNC to download is presented on the project’s Downloads page. Most users
will aim for the disk image for Intel/AMD PCs, the URL will resemble https://www.linuxcnc.org/iso/-
linuxcne 2.9.8-amd64.hybrid.iso.

For the Raspberry Pi, multiple images are provided to address differences between the RPi4 and RPi5.

Note

Do not use the regular Raspbian distribution for LinuxCNC that may have shipped with your RPi starter
kit - that will not have the real-time kernel and you cannot migrate from Raspbian to Debian’s kernel
image.

1.3.1.2 Download using zsync

zsync is a download application that efficiently resumes interrupted downloads and efficiently trans-
fers large files with small modifications (if you have an older local copy). Please note, it needs to use
the http protocol, not https. Use zsync if your download of the image using the Normal Download
method is frequently interrupted.

zsync in Linux

1. Install zsync using Synaptic or, by running the following in a terminal

sudo apt-get install zsync

2. Then run this command to download the iso to your computer
zsync https://www.linuxcnc.org/iso/linuxcnc_2.9.8-amd64.hybrid.iso

Please remember to confirm the checksum of the downloaded iso as described below, since the au-
thenticity of the server is not guaranteed with the http protocol.

zsync in Windows There is a Windows port of zsync. It works as a console application and can be
downloaded from https://www.assembla.com/spaces/zsync-windows/documents .

1.3.1.3 Verify the image

(This step is unnecessary if you used zsync)
1. After downloading, verify the checksum of the image to ensure integrity.

md5sum linuxcnc-2.9.8-amd64.1iso

or

sha256sum linuxcnc-2.9.8-amd64.iso

1. Then compare to these checksums

amde4 (PC)

md5sum: cf77d61fcba9641d7205ac33751e5138

sha256sum: 72eab92d7c34c238b0429054dc52d240df8dc5f083e769a39194cfac3e4984e8
arme4 (Pi)

md5sum: 4547e8a72433efb033f0a5cfl66a5cd2

sha256sum: ff3ba9b8dfb93bafle2232746655f8521a606bcOfab91bffc04ba74cc3bebbfO

Verify md5sum on Windows or Mac Windows does not come with an md5sum program, but there
are alternatives. More information can be found at: How To MD5SUM

https://linuxcnc.org/downloads/
https://www.linuxcnc.org/iso/linuxcnc_2.9.8-amd64.hybrid.iso
https://www.linuxcnc.org/iso/linuxcnc_2.9.8-amd64.hybrid.iso
https://www.assembla.com/spaces/zsync-windows/documents
https://help.ubuntu.com/community/HowToMD5SUM

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 8/1322

1.3.2 Write the image to a bootable device

The LinuxCNC Live/Install ISO Image is a hybrid ISO image which can be written directly to a USB
storage device (flash drive) or a DVD and used to boot a computer. The image is too large to fit on a
CD.

1.3.2.1 Raspberry Pi Image

The Raspbery Pi image is a complete SD card image and should be written to an SD card with the
[Raspberry Pi Imager Appl(https://www.raspberrypi.com/software/). Note that the imager app can
open the .zip file directly, no need to expand.

1.3.2.2 AMD-64 (x86-64, PC) Image using GUI tools

Download and install Balena Etcher from https://etcher.balena.io/#download-etcher (Linux, Windows,
Mac) and write the downloaded image to a USB drive.

If your image fails to boot then please also try Rufus. It looks more complicated but seems to be more
compatible with various BIOSes.

1.3.2.3 Command line - Linux

1. Connect a USB storage device (for example a flash drive or thumb drive type device).

2. Determine the device file corresponding to the USB flash drive. This information can be found
in the output of sudo dmesg after connecting the device. cat /proc/partitions may also be
helpful.

3. Use the dd command to write the image to your USB storage device. For example, if your storage
device showed up as /dev/sde, then use this command:

dd if=linuxcnc_2.9.8-amd64.hybrid.iso of=/dev/sde bs=4k status=progress

1.3.2.4 Command line - MacOS

1. Open a terminal and type
diskutil list

2. Insert the USB and note the name of the new disk that appears, e.g. /dev/disk5.

3. Unmount the USB. The number found above should be substituted in place of the N.
diskutil unmountDisk /dev/diskN

4. Transfer the data with dd, as for Linux above. Note that the disk name has an added "r” at the
beginning.

sudo dd if=linuxcnc_2.9.8-amd64.hybrid.iso of=/dev/rdiskN bs=1m status=progress
Writing the image to a DVD in Linux

1. Insert a blank DVD into your burner. A CD/DVD Creator or Choose Disc Type window will pop
up. Close this, as we will not be using it.

https://www.raspberrypi.com/software/
https://etcher.balena.io/#download-etcher
https://rufus.ie/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 9/1322

Browse to the downloaded image in the file browser.
Right click on the ISO image file and choose Write to Disc.
Select the write speed. It is recommended that you write at the lowest possible speed.

Start the burning process.

A T o

If a choose a file name for the disc image window pops up, just pick OK.

Writing the image to a DVD in Windows
1. Download and install Infra Recorder, a free and open source image burning program: https://infrarecor«
2. Insert a blank CD in the drive and select Do nothing or Cancel if an auto-run dialog pops up.
3. Open Infra Recorder, and select the Actions menu, then Burn image.

Writing the image to a DVD in Mac OSX

1. Download the .iso file

2. Right-click on the file in the Finder window and select “Burn to disc”. (The option to burn to disc
will only appear if the machine has an optical drive fitted or connected.)

1.3.3 Testing LinuxCNC

With the USB storage device plugged in or the DVD in the DVD drive, shut down the computer then
turn the computer back on. This will boot the computer from the Live/Install Image and choose the
Live boot option.

Note
If the system does not boot from the DVD or USB stick, it may be necessary to change the boot order
in the PC BIOS.

Once the computer has booted up you can try out LinuxCNC without installing it. You can not create
custom configurations or modify most system settings in a Live session, but you can (and should) run
the latency test.

To try out LinuxCNC: from the Applications/CNC menu pick LinuxCNC. A dialog box will open from
which you can choose one of many sample configurations. At this point it only really makes sense
to pick a ”“sim” configuration. Some of the sample configurations include onscreen 3D simulated
machines, look for ”"Vismach” to see these.

To see if your computer is suitable for software step pulse generation run the Latency Test as shown
here.

At the time of writing the Live Image is only available with the preempt-rt kernel and a matching
LinuxCNC. On some hardware this might not offer good enough latency. There is an experimental
version available using the RTAI realtime kernel which will often give better latency.

1.3.4 Installing LinuxCNC

To install LinuxCNC from the Live CD select Install (Graphical) at bootup.

https://infrarecorder.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 10/1322

1.3.5 Updates to LinuxCNC

With the normal install the Update Manager will notify you of updates to LinuxCNC when you go on
line and allow you to easily upgrade with no Linux knowledge needed. It is OK to upgrade everything
except the operating system when asked to.

Warning
Do not upgrade the operating system to a new version if prompted to do so. You should accept
OS updates however, especially security updates.

1.3.6 Install Problems

In rare cases you might have to reset the BIOS to default settings if during the Live CD install it cannot
recognize the hard drive during the boot up.

1.3.7 Alternate Install Methods

The easiest, preferred way to install LinuxCNC is to use the Live/Install Image as described above.
That method is as simple and reliable as we can make it, and is suitable for novice users and experi-
enced users alike. However, this will typically replace any existing operating system. If you have files
on the target PC that you want to keep, then use one of the methods described in this section.

In addition, for experienced users who are familiar with Debian system administration (finding install
images, manipulating apt sources, changing kernel flavors, etc), new installs are supported on fol-
lowing platforms: ("amd64” means “64-bit”, and is not specific to AMD processors, it will run on any
64-bit x86 system)

Debian Trixie amd64 & preempt-rt linuxcnc- machine
armo64 uspace control &
simulation
Debian Troxie amd64 RTAI linuxcnc machine control
Distribution Architecture Kernel Package name Typical use
Debian amd64 & arm64 | preempt-rt linuxcnc-uspace machine control
Bookworm & simulation
Debian amdo64 RTAI linuxcnc machine control
Bookworm
Debian Bullseye amd64 preempt-rt linuxcnc-uspace machine control
& simulation
Any Any Stock linuxcnc-uspace | simulation ONLY
Note

LinuxCNC v2.9 is not supported on Debian 9 or older.

Preempt-RT kernels The Preempt-rt kernels are available for Debian from the regular debian.org
archive. The package is called linux-image-rt-*. Simply install the package in the same way as any
other package from the Synaptic Package manager or with apt-get at the command-line.

RTAI Kernels The RTAI kernels are available for download from the linuxcnc.org debian archive. The
apt source is:

* Debian Trixie: deb http://linuxcnc.org trixie base

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 11/1322

* Debian Bookworm: deb http://linuxcnc.org bookworm base
* Debian Bullseye: deb http://linuxcnc.org bullseye base

* Debian Buster: deb http://linuxcnc.org buster base

LinuxCNC and the RTAI kernel are now only available for 64-bit OSes but there are very few surviving
systems that can not run a 64-bit OS.

1.3.7.1 Installing on Debian Trixie (with Preempt-RT kernel)

1. Install Debian Trixie (Debian 13), amd64 version. You can download the installer here: https://www.deb
distrib/

2. After burning the iso and booting up if you don’t want Gnome desktop select Advanced Options
> Alternative desktop environments and pick the one you like. Then select Install or Graphical
Install.

Warning
Do not enter a root password, if you do sudo is disabled and you won’t be able to complete
the following steps.

3. Run the following in a terminal to bring the machine up to date with the latest packages.

sudo apt-get update
sudo apt-get dist-upgrade

Note
It is possible to download a version of LinuxCNC directly from Debian (currently version 2.9.4)
but a more up-to-date version (2.9.8) can be installed from the LinuxCNC repository.

4. Install the Preempt-RT kernel and modules

sudo apt-get install linux-image-rt-amd64

5. Re-boot, and select the Linux 6.1.0-10-rt-amd64 kernel. The exact kernel version might be dif-
ferent, look for the ”-rt” suffix. This might be hidden in the “Advanced options for Debian Book-
worm” sub-menu in Grub. When you log in, verify that’ PREEMPT RT is reported by the following
command.

uname -v

6. Open Applications Menu > System > Synaptic Package Manager search for linux-image and right
click on the original non-rt and select Mark for Complete Removal. Reboot. This is to force the
system to boot from the RT kernel. If you prefer to retain both kernels then the other kernels
need not be deleted, but grub boot configuration changes will be needed beyond the scope of
this document.

7. Add the LinuxCNC Archive Signing Key to your apt keyring by downloading [the LinuxCNC in-
staller script](https://www.linuxcnc.org/linuxcnc-install.sh). You will need to make the script ex-
ecutable to run it:

chmod +x linuxcnc-install.sh
Then you can run the installer:

sudo ./linuxcnc-install.sh

https://www.debian.org/distrib/
https://www.debian.org/distrib/
https://www.linuxcnc.org/linuxcnc-install.sh

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 12 /1322

1.3.7.2 Installing on Debian Trixie (with experimental RTAI kernel)

1. This kernel and LinuxCNC version can be installed on top of the Live DVD install, or alternatively
on a fresh Install of Debian Trixie 64-bit as described above.

2. You can add the LinuxCNC archive signing key and repository information by downloading and
running the installer script as described above. If an RTAI kernel is detected it will stop before
installing any packages.

3. Update the package list from linuxcnc.org

sudo apt-get update

4. Remove the existing uspace version of LinuxCNC and install the new realtime kernel, RTAI and
the RTAI-version of LinuxCNC.

sudo apt-get purge linuxcnc-uspace
sudo apt-get purge linuxcnc-doc*
sudo apt-get install linuxcnc

Reboot the machine, ensuring that the system boots from the new 5.4.258-rtai kernel.

1.3.7.3 Installing on Raspbian 12

Don’t do that. The latencies are too bad with the default kernel and the PREEMPT RT (the RT is
important) kernel of Debian does not boot on the Pi (as of 1/2024). Please refer to the .iso images
provided online on the regular LinuCNC download page. You can create them yourself following the
scripts provided online.

1.4 Running LinuxCNC

1.4.1 Invoking LinuxCNC

After installation, LinuxCNC starts just like any other Linux program: run it from the terminal by
issuing the command linuxcnc, or select it in the Applications -> CNC menu.

1.4.2 Configuration Launcher

When starting LinuxCNC (from the CNC menu or from the command line without specifying an INI
file) the Configuration Selector dialog starts.

The Configuration Selector dialog allows the user to pick one of their existing configurations (My
Configurations) or select a new one (from the Sample Configurations) to be copied to their home
directory. Copied configurations will appear under My Configurations on the next invocation of the
Configuration Selector.

The Configuration Selector offers a selection of configurations organized:

* My Configurations - User configurations located in linuxcnc/configs in your home directory.

* Sample Configurations - Sample configurations, when selected, are copied to linuxcnc/configs. Once
a sample configuration was copied to your local directory, the launcher will offer it as My Configu-
rations. The names under which these local configurations are presented correspond to the names
of the directories within the configs/ directory:

https://linuxcnc.org/downloads/
https://github.com/rodw-au/rpi-img-builder-lcnc

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 13/1322

- sim - Configurations that include simulated hardware. These can be used for testing or learning
how LinuxCNC works.

- by interface - Configurations organized by GUI.
- by machine - Configurations organized by machine.

- apps - Applications that do not require starting linuxcnc but may be useful for testing or trying
applications like PyVCP or GladeVCP.

- attic - Obsolete or historical configurations.

The sim configurations are often the most useful starting point for new users and are organized around
supported GUISs:

* axis - Keyboard and Mouse GUI

e craftsman - Touch Screen GUI (no longer maintained ?7?7?)
e gmoccapy - Touch Screen GUI

e gscreen - Touch Screen GUI

* pyvcp demo - Python Virtual Control Panel

e gtaxis - Touch Screen GUI, axis lookalike

e gtdragon - Touch Screen GUI

e gtdragon hd - Touch Screen GUI, high definition

e gtplasmac - Touch Screen GUI, for plasma tables

» gttouchy - Touch Screen GUI

* tklinuxcnc - Keyboard and Mouse GUI (no longer maintained)

* touchy - Touch Screen GUI

woodpecker - Touch Screen GUI

A GUI configuration directory may contain subdirectories with configurations that illustrate special
situations or the embedding of other applications.

The by interface configurations are organized around common, supported interfaces like:

* general mechatronics
* mesa

* parport

* pico

e pluto

¢ servotogo

* vigilant

* vitalsystems

Related hardware may be required to use these configurations as starting points for a system.

The by machine configurations are organized around complete, known systems like:

¢ boss

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

14 /1322

e cooltool

¢ scortbot erlIll

¢ sherline

e smithy

¢ tormach

A complete system may be required to use these configurations.

The apps items are typically either:

1. utilities that don’t require starting linuxcnc

2. demonstrations of applications that can be used with linuxcnc

 info - creates a file with system information that may be useful for problem diagnosis.

gladevcp - Example GladeVCP applications.
halrun - Starts halrun in an terminal.
latency - Applications to investigate latency

latency-histogram-1 - histogram for single servo thread
latency-histogram - histogram

latency-test - standard test

latency-plot - stripchart

parport - Applications to test parport.
pyvep - Example pyvcp applications.
xhc-hb04 - Applications to test an xhc-hb04 USB wireless MPG

Note
Under the Apps directory, only applications that are usefully modified by the user are offered for
copying to the user’s directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 15/1322

LinuxCNC Configuration Selector
Welcome to LinuxCNC.

Select a machine configuration from the list on the left.
Details about the selected configuration will appear in the display on the right.
Click "OK' to run the selected configuration

My Configura_tions_ Sim configurations make it possible to run
=+ Sample Configurations

sim LinuxCNC without special hardware on a

axis simulated basis.
craftsman
gmoccapy

gscreen LinuxCNC supports multiple guis and there

pyvcp_demo are multiple examples for the most popular

gtaxis guis.
gtdragon

g%g[:g&gzhd The sim configurations are meant to run

gttouchy with no special hardware requirements

tklinuxcnc
touchy
woodpecker
+— by _interface
4— by_machine
— apps
F— afttic

[Create Desktop Shortcut

Figure 1.1: LinuxCNC Configuration Selector

Click any of the listed configurations to display specific information about it. Double-click a configu-
ration or click OK to start the configuration.

Select Create Desktop Shortcut and then click OK to add an icon on the Ubuntu desktop to directly
launch this configuration without showing the Configuration Selector screen.

When you select a configuration from the Sample Configurations section, it will automatically place a
copy of that config in the ~/linuxcnc/configs directory.

1.4.3 Next steps in configuration

After finding the sample configuration that uses the same interface hardware as your machine (or a
simulator configuration), and saving a copy to your home directory, you can customize it according to
the details of your machine. Refer to the Integrator Manual for topics on configuration.

1.4.4 Simulator Configurations

All configurations listed under Sample Configurations/sim are intended to run on any computer. No
specific hardware is required and real-time support is not needed.

These configurations are useful for studying individual capabilities or options. The sim configurations
are organized according to the graphical user interface used in the demonstration. The directory for
axis contains the most choices and subdirectories because it is the most tested GUI. The capabilities
demonstrated with any specific GUI may be available in other GUIs as well.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 16 /1322

1.4.5 Configuration Resources

The Configuration Selector copies all files needed for a configuration to a new subdirectory of ~/lin-
uxcnc/configs (equivalently: /home/username/linuxcnc/configs). Each created directory will include
at least one INI file (iniflename.ini) that is used to describe a specific configuration.

File resources within the copied directory will typically include one or more INI file (filename.ini)
for related configurations and a tool table file (toolfilename.tbl). Additionally, resources may include
HAL files (filename.hal, filename.tcl), a README file for describing the directory, and configuration
specific information in a text file named after a specific configuration (inifilename.txt). That latter two
files are displayed when using the Configuration Selector.

The supplied sample configurations may specify the parameter HALFILE (filename.hal) in the config-
uration INI file that are not present in the copied directory because they are found in the system HAL
file library. These files can be copied to the user configuration directory and altered as required by
the user for modification or test. Since the user configuration directory is searched first when finding
HAL files, local modifications will then prevail.

The Configuration selector makes a symbolic link in the user configuration directory (named hallib)
that points to the system HAL file library. This link simplifies copying a library file. For example, to
copy the library core sim.hal file in order to make local modifications:

cd ~/linuxcnc/configs/name of configuration
cp hallib/core sim.hal core sim.hal

1.5 Updating LinuxCNC

Updating LinuxCNC to a new minor release (ie to a new version in the same stable series, for example
from 2.9.7 to 2.9.8) is an automatic process if your PC is connected to the internet. You will see an
update prompt after a minor release along with other software updates. If you don’t have an internet
connection to your PC see Updating without Network.

1.5.1 Upgrade to the new version

This section describes how to upgrade LinuxCNC from version 2.8.x to a 2.9.y version. It assumes
that you have an existing 2.8 install that you want to update.

To upgrade LinuxCNC from a version older than 2.8, you have to first upgrade your old install to 2.8,
then follow these instructions to upgrade to the new version.

If you do not have an old version of LinuxCNC to upgrade, then you're best off making a fresh install
of the new version as described in the section Getting LinuxCNC.

Furthermore, if you are running Ubuntu Precise, Debian Wheezy or Debian Buster it is well worth
considering making a backup of the “linuxcnc” directory on removable media and performing a clean
install of a newer OS and LinuxCNC version as these releases were EOL in 2017, 2018 and 2022
respectively. If you are running on Ubuntu Lucid then you will have to do this, as Lucid is no longer
supported by LinuxCNC (it was EOL in 2013).

To upgrade major versions like 2.8 to 2.9 when you have a network connection at the machine you need
to disable the old linuxcnc.org apt sources in the file /etc/apt/sources.list and add a new linuxcnc.org
apt source for 2.9, then upgrade LinuxCNC.

The details will depend on which platform you’re running on. Open a terminal then type 1sb_release
-ic to find this information out:

lsb_release -ic
Distributor ID: Debian
Codename: Trixie

https://linuxcnc.org/docs/2.8/html/getting-started/updating-linuxcnc.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 17 /1322

You should be running on Debian Bullseye, Bookworm or Trixie or Ubuntu 20.04 ”"Focal Fossa” or
newer. LinuxCNC 2.9.y will not run on older distributions than these.

You will also need to check which realtime kernel is being used:

uname -r
6.1.0-10-rt-amd64

If you see (as above) -rt- in the kernel name then you are running the preempt-rt kernel and should
install the "uspace” version of LinuxCNC. You should also install uspace for ”"sim” configs on non-
realtime kernels.

If you see -rtai- in the kernel name then you are running RTAI realtime. See below for the LinuxCNC
version to install. RTAI packages are available for Bookworm and Buster but not currently for Bullseye.

1.5.1.1 Apt Sources Configuration

* Open the Software Sources window. The process for doing this differs slightly on the three sup-
ported platforms:
- Debian:

* Click on Applications Menu, then System, then Synaptic Package Manager.

* In Synaptic, click on the Settings menu, then click Repositories to openthe Software Sources
window.

- Ubuntu Precise:

* Click on the Dash Home icon in the top left.
* In the Search field, type ”“software”, then click on the Ubuntu Software Center icon.

* In the Ubuntu Software Center window, click on the Edit menu, then click on Software Sources...

to open the Software Sources window.
- Ubuntu Lucid:

* Click the System menu, then Administration, then Synaptic Package Manager.

* In Synaptic, click on the Settings menu, then click on Repositories to open the Software
Sources window.

e In the Software Sources window, select the Other Software tab.
¢ Delete or un-check all the old linuxcnc.org entries (leave all non-linuxcnc.org lines as they are).

e Click the Add button and add a new apt line. The line will be slightly different on the different
platforms:

Table 1.2: Tabular overview on variants of the Operating
System and the corresponding configuration of the repos-
itory. The configuration can be performed in the GUI of
the package manager or in the file /etc/apt/sources.list.

OS / Realtime Version Repository

Debian Bullseye - preempt deb https://linuxcnc.org bullseye base 2.9-uspace
Debian Bookworm - preempt deb https://linuxcnc.org bookworm base 2.9-uspace
Debian Bookworm - RTAI deb https://linuxcnc.org bookworm base 2.9-rt
Debian Trixie - preempt deb https://linuxcnc.org trixie base 2.9-uspace
Debian Trixie - RTAI deb https://linuxcnc.org trixie base 2.9-rt

https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 18 /1322

Synaptic Package Manager (as superuser)

File Edit Package Settings Help

Search Rebowe il

Reload MarkAllUpgrades Apply Properties
All S Package Installed Version Latest Version Descriptiol
Amateur Radio Repositories (as superuser)) \o) AX time :
Communication time ¢
Communication (f | Enabled Type URI time ¢
Cross Platform v deb https://www.linuxcnc.org/ _distr
Databases ® deb-src https://www.linuxcnc.org/ L ~distr
Debug - deb cdrom:[Debian GNU/Linux 12.2.0 _Bookworm_ - Official am Free
Develo ® deb http://ftp.uk.debian.org/debian/ anda
Deve cpmen.t PR : g : — |
Documentation E4] deb-src |"I|f|1|:.'l:||r||rf'|2|3l.LI|"{.[2|Ehlii['l.EZFTl;}JrEIElleiif'hIr ;J | —
Editors ® deb http://security.debian.org/debian-security/

Education _ :

Electronics Binary (deb) v
l sectiof URI: https://www.linuxcnc.org/ |
I Statyd Distribution: | bookworm |
I Origi_r Section(s): 2.9-uspace base |

Customn Fi
I usom 3 l New ‘ l Delete ‘ Cancel ‘ l OK ‘

Architecture ‘

63426 packages listed, 1590 installed, O broken. O to install/upgrade, 0 to remove

Figure 1.2: Figure with a screenshot of the repository configuration of the synaptic package manager.

e Click Add Source, then Close in the Software Sources window. If it pops up a window informing
you that the information about available software is out-of-date, click the Reload button.

1.5.1.2 Upgrading to the new version

Now your computer knows where to get the new version of the software, next we need to install it.
The process again differs depending on your platform.

Debian uses the Synaptic Package Manager.

¢ Open Synaptic using the instructions in Setting apt sources above.

¢ Click the Reload button.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 19/1322

¢ Use the Search function to search for linuxcnc.
* The package is called "linuxcnc” for RTAI kernels and “linuxcnc-uspace” for preempt-rt.

¢ Click the check box to mark the new linuxcnc and linuxcnc-doc-* packages for upgrade. The package
manager may select a number of additional packages to be installed, to satisfy dependencies that
the new linuxcnc package has.

¢ Click the Apply button, and let your computer install the new package. The old linuxcnc package
will be automatically upgraded to the new one.

1.5.1.3 Ubuntu

¢ Click on the Dash Home icon in the top left.
* In the Search field, type “update”, then click on the Update Manager icon.
Click the Check button to fetch the list of packages available.

Click the Install Updates button to install the new versions of all packages.

1.5.2 Updating without Network

To update without a network connection you need to download the .deb then install it with dpkg. The
.debs can be found in https://linuxcnc.org/dists/ .

You have to drill down from the above link to find the correct deb for your installation. Open a terminal
and type in Isb release -ic to find the release name of your OS.

> lsb_release -ic
Distributor ID: Debian
Codename: trixie

Pick the OS from the list then pick the major version you want like 2.9-rt for RTAI or 2.9-uspace for
preempt-rt.

Next pick the type of computer you have: binary-amd64 for 64-bit PC or binary-arm64 (64bit) for
Raspberry Pi.

Next pick the version you want from the bottom of the list like linuxcnc-uspace 2.9.8 amd64.deb
(choose the latest by date). Download the deb and copy it to your home directory. You can rename
the file to something a bit shorter with the file manager like linuxcnc_2.9.8.deb then open a terminal
and install it with the package manager with this command:

sudo dpkg -i linuxcnc_2.9.8.deb

1.5.3 Updating Configuration Files for 2.9

1.5.3.1 Stricter handling of pluggable interpreters

If you just run regular G-code and you don’t know what a pluggable interpreter is, then this section
does not affect you.

A seldom-used feature of LinuxCNC is support for pluggable interpreters, controlled by the undocu-
mented [TASK]INTERPRETER INI setting.

Versions of LinuxCNC before 2.9.0 used to handle an incorrect [TASK]INTERPRETER setting by auto-
matically falling back to using the default G-code interpreter.

Since 2.9.0, an incorrect [TASK] INTERPRETER value will cause LinuxCNC to refuse to start up. Fix this
condition by deleting the [TASK]INTERPRETER setting from your INI file, so that LinuxCNC will use
the default G-code interpreter.

https://linuxcnc.org/dists/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 20/1322

1.5.3.2 Canterp

If you just run regular G-code and you don’t use the canterp pluggable interpreter, then this section
does not affect you.

In the extremely unlikely event that you are using canterp, know that the module has moved from
/usr/lib/libcanterp.so to /usr/lib/linuxcnc/canterp.so, and the [TASK]INTERPRETER setting
correspondingly needs to change from libcanterp.so to canterp.so.

1.5.3.3 Spindie limits in the INI

It is now possible to add settings to the [SPINDLE] section of the INI file
MAX FORWARD VELOCITY = 20000 The maximum spindle speed (in rpm)
MIN FORWARD VELOCITY = 3000 The minimum spindle speed (in rpm)

MAX REVERSE VELOCITY = 20000 This setting will default to MAX FORWARD VELOCITY if omit-
ted.

MIN REVERSE VELOCITY = 3000 This setting is equivalent to MIN. FORWARD VELOCITY but for
reverse spindle rotation. It will default to the MIN FORWARD VELOCITY if omitted.

INCREMENT = 200 Sets the step size for spindle speed increment / decrement commands. This can
have a different value for each spindle. This setting is effective with AXIS and Touchy but note that
some control screens may handle things differently.

HOME SEARCH VELOCITY = 100 - Accepted but currently does nothing
HOME SEQUENCE = 0 - Accepted but currently does nothing

1.5.4 Updating Configuration Files for 2.10.y

Touchy: the Touchy MACRO entries should now be placed in a [MACROS] section of the INI rather
than in the [TOUCHY] section. This is part of a process of commonising the INI setting between GUIs.

1.5.5 New HAL components

1.5.5.1 Non-Realtime

mdro mqtt-publisher pi500 vfd pmx485-test qtplasmac-cfg2prefs qtplasmac-materials qtplasmac-plasmac?2c
gtplasmac-setup sim-torch svd-ps vfd

1.5.5.2 Realtime

anglejog div2 enum filter kalman flipflop homecomp limit axis mesa uart millturn scaled s32 sums
tof ton

1.5.6 New Drivers

A framework for controlling ModBus devices using the serial ports on many Mesa cards has been
introduced. http://linuxcnc.org/docs/2.9/html/drivers/mesa modbus.html

A new GPIO driver for any GPIO which is supported by the gpiod library is now included: http://linuxcnc.org/-
docs/2.9/html/drivers/hal gpio.html

http://linuxcnc.org/docs/2.9/html/drivers/mesa_modbus.html
http://linuxcnc.org/docs/2.9/html/drivers/hal_gpio.html
http://linuxcnc.org/docs/2.9/html/drivers/hal_gpio.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 21/1322

1.6 Linux FAQ

These are some basic Linux commands and techniques for new to Linux users. More complete infor-
mation can be found on the web or by using the man pages.

1.6.1 Automatic Login

1.6.1.1 Debian

Debian Stretch uses the Xfce desktop environment by default, with the lightDM display manager
lightDM. To get automatic login with Stretch:

¢ In a terminal, use the command:

$ /usr/sbin/lightdm --show-config

¢ Make a note of the absolute path to the configuration file lightdm.conf.
¢ Edit that file with a pure text editor (gedit, nano, etc), as root.
¢ Find and uncomment the lines:

#autologin-user=
#autologin-user-timeout=0

* Set autologin-user=your user name

¢ Save and reboot.

1.6.1.2 Ubuntu

When you install LinuxCNC with the Ubuntu LiveCD the default is to have to log in each time you turn
the computer on. To enable automatic login go to System > Administration > Login Window. If it is
a fresh install the Login Window might take a second or three to pop up. You will have to have your
password that you used for the install to gain access to the Login Window Preferences window. In the
Security tab check off Enable Automatic Login and pick a user name from the list (that would be you).

1.6.2 Automatic Startup

To have LinuxCNC start automatically with your config after turning on the computer go to System >
Preferences > Sessions > Startup Applications, click Add. Browse to your config and select the .ini
file. When the file picker dialog closes, add linuxcnc and a space in front of the path to your .ini file.

Example:

linuxcnc /home/mill/linuxcnc/config/mill/mill.ini

The documentation refers to your respective .ini file as INI-file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 22 /1322

1.6.3 Terminal

Many things need to be done from the terminal like checking the kernel message buffer with dmesg.
Ubuntu and Linux Mint have a keyboard shortcut Ctrl + Alt + t. Debian Stretch does not have any
keyboard shortcuts defined. It can be easily created with the Configuration Manager. Most modern
file managers support the right key to open a terminal just make sure your right clicking on a blank
area or a directory not a file name. Most OS’s have the terminal as a menu item, usually in Accessories.

1.6.4 Man Pages

A man page (short for manual page) is a form of software documentation usually found on a UNIX or
UNIX-like operating system like Linux.

To view a man page open up a terminal to find out something about the find command in the terminal
window type:

man find

Use the Page Up and Page Down keys to view the man page and the Q key to quit viewing.

Note

Viewing the man page from the terminal may not get the expected man page. For example if you
type in man abs you will get the C abs not the LinuxCNC abs. It is best to view the LinuxCNC man
pages in the HTML documents.

1.6.5 List Modules

Sometimes when troubleshooting you need to get a list of modules that are loaded. In a terminal
window type:

1smod

If you want to send the output from lsmod to a text file in a terminal window type:

lsmod > mymod.txt

The resulting text file will be located in the home directory if you did not change directories when you
opened up the terminal window and it will be named mymod.txt or what ever you named it.

1.6.6 Editing a Root File

When you open the file browser and you see the owner of the file is root you must do extra steps to edit
that file. Editing some root files can have bad results. Be careful when editing root files. Generally,
you can open and view most root files, but they will open in read only mode.

1.6.6.1 The Command Line Way

Open a terminal and type

sudo gedit

Open the file with File > Open > Edit

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 23 /1322

1.6.6.2 The GUI Way

1. Right click on the desktop and select Create Launcher.
2. Type a name in like sudo edit.
3. Type gksudo “gnome-open %u” as the command and save the launcher to your desktop.

4. Drag a file onto your launcher to open and edit.

1.6.6.3 Root Access

In Ubuntu you can become root by typing in “sudo -i” in a terminal window then typing in your pass-
word. Be careful, because you can really foul things up as root if you don’t know what you’re doing.

1.6.7 Terminal Commands

1.6.7.1 Working Directory

To find out the path to the present working directory in the terminal window, type:

pwd

1.6.7.2 Changing Directories

To change the working directory to the one one level up, i.e., the parent directory, in the terminal
window type:

cd ..

To move up two levels in the terminal window type:
cd ../..

To move directly to your home directory, in the terrminal window use the cd command with no argu-
ments:

cd

To move down to the linuxcnc/configs subdirectory in the terminal window type:

cd linuxcnc/configs

1.6.7.3 Listing files in a directory

To view a list of all the files and subdirectories in the terminal window type:

dir

or
1s

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 24 /1322

1.6.7.4 Finding a File

The find command can be a bit confusing to a new Linux user. The basic syntax is:

find starting-directory parameters actions

For example to find all the .ini files in your linuxcnc directory you first need to use the pwd command
to find out the directory.

Open a new terminal window and type:

pwd

And pwd might return the following result:

/home/joe

With this information put the command together like this:

find /home/joe/linuxcnc -name *.ini -print

The -name is the name of the file your looking for and the -print tells it to print out the result to the
terminal window. The *.ini tells find to return all files that have the .ini extension. The backslash is
needed to escape the shell meta-characters. See the find man page for more information on find.

1.6.7.5 Searching for Text

grep -irl ’text to search for' *

This will find all the files that contain the text to search for in the current directory and all the subdi-
rectories below it, while ignoring the case. The -i is for ignore case and the -r is for recursive (include
all subdirectories in the search). The -1 option will return a list of the file names, if you leave the -1 off
you will also get the text where each occurrence of the "text to search for” is found. The * is a wild
card for search all files. See the grep man page for more information.

1.6.7.6 Diagnostic Messages

To view the diagnostic messages use "dmesg” from the command window. To save the diagnostic
messages to a file use the redirection operator >, like this:

dmesg > bootmsg.txt

The contents of this file can be copied and pasted on line to share with people trying to help you
diagnose your problem.

To clear the message buffer type this:

sudo dmesg -c

This can be helpful to do just before launching LinuxCNC, so that there will only be a record of infor-
mation related to the current launch of LinuxCNC.

To find the built in parallel port address use grep to filter the information out of dmesg.
After boot up open a terminal and type:

dmesg|grep parport

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 25 /1322

1.6.8 Convenience Items

1.6.8.1 Terminal Launcher

If you want to add a terminal launcher to the panel bar on top of the screen you typically can right click
on the panel at the top of the screen and select "Add to Panel”. Select Custom Application Launcher
and Add. Give it a name and put gnome-terminal in the command box.

1.6.9 Hardware Problems

1.6.9.1 Hardware Info

To find out what hardware is connected to your motherboard in a terminal window type:

lspci -v

1.6.9.2 Monitor Resolution

During installation Ubuntu attempts to detect the monitor settings. If this fails you are left with a
generic monitor with a maximum resolution of 800x600.

Instructions for fixing this are located here:

https://help.ubuntu.com/community/FixVideoResolutionHowto

1.6.10 Paths

Relative Paths Relative paths are based on the startup directory which is the directory containing
the INI-file. Using relative paths can facilitate relocation of configurations but requires a good under-
standing of linux path specifiers.

./f0 is the same as f0, e.g., a file named f0O in the startup directory
/Tl refers to a file fl in the parent directory

/12 refers to a file f2 in the parent of the parent directory
/.. /.0 /3 etc.

https://help.ubuntu.com/community/FixVideoResolutionHowto

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 26 /1322

Chapter 2

General User Information

2.1 User Foreword

LinuxCNC is modular and flexible. These attributes lead many to see it as a confusing jumble of little
things and wonder why it is the way it is. This page attempts to answer that question before you get
into the thick of things.

LinuxCNC started at the National Institute of Standards and Technology in the USA. It grew up using
UNIX as its operating system. UNIX made it different. Among early UNIX developers there grew a
set of code writing ideas that some call the UNIX way. These early LinuxCNC authors followed those
ways.

Eric S. Raymond, in his book The Art of UNIX Programming, summarizes the UNIX philosophy as
the widely-used engineering philosophy, “Keep it Simple, Stupid” (KISS Principle). He then describes
how he believes this overall philosophy is applied as a cultural UNIX norm, although unsurprisingly
it is not difficult to find severe violations of most of the following in actual UNIX practice:

* Rule of Modularity: Write simple parts connected by clean interfaces.
* Rule of Clarity: Clarity is better than cleverness.
* Rule of Composition: Design programs to be connected to other programs.

» Rule of Separation: Separate policy from mechanism; separate interfaces from engines.!

Mr. Raymond offered several more rules but these four describe essential characteristics of the Lin-
uxCNC motion control system.

The Modularity rule is critical. Throughout these handbooks you will find talk of the interpreter or
task planner or motion or HAL. Each of these is a module or collection of modules. It’s modularity
that allows you to connect together just the parts you need to run your machine.

The Clarity rule is essential. LinuxCNC is a work in progress — it is not finished nor will it ever be. It
is complete enough to run most of the machines we want it to run. Much of that progress is achieved
because many users and code developers are able to look at the work of others and build on what they
have done.

The Composition rule allows us to build a predictable control system from the many modules avail-
able by making them connectable. We achieve connectability by setting up standard interfaces to sets
of modules and following those standards.

The Separation rule requires that we make distinct parts that do little things. By separating functions
debugging is much easier and replacement modules can be dropped into the system and comparisons
easily made.

1Found at link:https://en.wikipedia.org/wiki/Separation_of mechanism_and_policy, 2022-11-13

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 27 /1322

What does the UNIX way mean for you as a user of LinuxCNC. It means that you are able to make
choices about how you will use the system. Many of these choices are a part of machine integration,
but many also affect the way you will use your machine. As you read you will find many places where
you will need to make comparisons. Eventually you will make choices, "I’ll use this interface rather
than that” or, “I'll write part offsets this way rather than that way.”. Throughout these handbooks we
describe the range of abilities currently available.

As you begin your journey into using LinuxCNC we offer two cautionary notes:?

* Paraphrasing the words of Doug Gwyn on UNIX: “LinuxCNC was not designed to stop its users from
doing stupid things, as that would also stop them from doing clever things.”

» Likewise the words of Steven King: ”“LinuxCNC is user-friendly. It just isn’t promiscuous about
which users it’s friendly with.”

A series of videos on YouTube provide plenty of evidence a transition to LinuxCNC is possible no
matter what your regular computer operating system may be. That said, with the advent of additive
manufacturing like 3D printing there is an increasing interest by the broader IT community in CNC
machining and it should be possible to find someone with complementary skills/equipment near to
you to jointly overcome the initial hurdles.

2.2 LinuxCNC User Introduction

2.2.1 Introduction

This document is focused on the use of LinuxCNC, it is intended for readers who have already installed
and configured it. Some information on installation is given in the following chapters. The complete
documentation on installation and configuration can be found in the integrator’s manual.

2.2.2 How LinuxCNC Works

LinuxCNC is a suite of highly-customisable applications for the control of a Computer Numerically
Controlled (CNC) mills and lathes, 3D printers, robots, laser cutters, plasma cutters and other auto-
mated devices. It is capable of providing coordinated control of up to 9 axes of movement.

At its heart, LinuxCNC consists of several key components that are integrated together to form one
complete system:

* a Graphical User Interface (GUI), which forms the basic interface between the operator, the software
and the CNC machine itself;

e the Hardware Abstraction Layer (HAL), which provides a method of linking all the various internal
virtual signals generated and received by LinuxCNC with the outside world, and

» the high level controllers that coordinate the generation and execution of motion control of the CNC
machine, namely the motion controller (EMCMOT), the discrete input/output controller (EMCIO)
and the task executor (EMCTASK).

The below illustration is a simple block diagram showing what a typical 3-axis CNC mill with stepper
motors might look like:

2Found at link:https://en.wikipedia.org/wiki/Unix_philosophy, 07/06/2008

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 28 /1322

Power supply

Linux PC

Stepper Stepper
drives motors

Figure 2.1: Simple LinuxCNC Controlled Machine

A computer running LinuxCNC sends a sequence of pulses via the parallel port to the stepper drives,
each of which has one stepper motor connected to it. Each drive receives two independent signals;
one signal to command the drive to move its associated stepper motor in a clockwise or anti-clockwise
direction, and a second signal that defines the speed at which that stepper motor rotates.

While a stepper motor system under parallel port control is illustrated, a LinuxCNC system can also
take advantage of a wide variety of dedicated hardware motion control interfaces for increased speed
and I/O capabilities. A full list of interfaces supported by LinuxCNC can be found on the Supported
Hardware page of the Wiki.

In most circumstances, users will create a configuration specific to their mill setup using either the
Stepper Configuration Wizard (for CNC systems operating using the computers’ parallel port) or the
Mesa Hardware Wizard (for more advanced systems utilising a Mesa Anything I/O PCI card). Running
either wizard will create several folders on the computers’ hard drive containing a number of config-
uration files specific to that CNC machine, and an icon placed on the desktop to allow easy launching
of LinuxCNC.

For example, if the Stepper Configuration Wizard was used to create a setup for the 3-axis CNC
mill illustrated above entitled My CNC, the folders created by the wizard would typically contain the
following files:

* Folder: My CNC

- My CNC.ini
The INI file contains all the basic hardware information regarding the operation of the CNC mill,
such as the number of steps each stepper motor must turn to complete one full revolution, the
maximum rate at which each stepper may operate at, the limits of travel of each axis or the
configuration and behaviour of limit switches on each axis.

- My_CNC.hal
This HAL file contains information that tells LinuxCNC how to link the internal virtual signals to

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 29 /1322

physical connections beyond the computer. For example, specifying pin 4 on the parallel port to
send out the Z axis step direction signal, or directing LinuxCNC to cease driving the X axis motor
when a limit switch is triggered on parallel port pin 13.

- custom.hal
Customisations to the mill configuration beyond the scope of the wizard may be performed by
including further links to other virtual points within LinuxCNC in this HAL file. When starting a
LinuxCNC session, this file is read and processed before the GUI is loaded. An example may in-
clude initiating Modbus communications to the spindle motor so that it is confirmed as operational
before the GUI is displayed.

- custom_postgui.hal
The custom postgui HAL file allows further customisation of LinuxCNC, but differs from cus-
tom.HAL in that it is processed after the GUI is displayed. For example, after establishing Modbus
communications to the spindle motor in custom.hal, LinuxCNC can use the custom_postgui file to
link the spindle speed readout from the motor drive to a bargraph displayed on the GUI.

- postgui_backup.hal
This is provided as a backup copy of the custom postgui.hal file to allow the user to quickly re-
store a previously-working postgui HAL configuration. This is especially useful if the user wants
to run the Configuration Wizard again under the same My CNC name in order to modify some
parameters of the mill. Saving the mill configuration in the Wizard will overwrite the existing
custom_postgui file while leaving the postgui backup file untouched.

- tool.thl
A tool table file contains a parameterised list of any cutting tools used by the mill. These param-
eters can include cutter diameter and length, and is used to provide a catalogue of data that tells
LinuxCNC how to compensate its motion for different sized tools within a milling operation.

» Folder: nc_files
The nc files folder is provided as a default location to store the G-code programs used to drive the
mill. It also includes a number of subfolders with G-code examples.

2.2.3 Graphical User Interfaces

A graphical user interface is the part of the LinuxCNC that the machine tool operator interacts with.
LinuxCNC comes with several types of user interfaces which may be chosen from by editing certain
fields contained in the INI file:

AXIS
AXIS, the standard keyboard GUI interface. This is also the default GUI launched when a Con-
figuration Wizard is used to create a desktop icon launcher:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 30/1322

File Machine View Help

Qe o b im =z NXIY[P&

Manual Control [F3] | MDI [F51] Preview | DRO

Axis: Y Z 1 LOQoo -a-
- | +||Continuous - : L0000
Home All Touch Off : .0000 ¢

.Qoo0

Spindle: Stop %

Feed Override: 100 %
Rapid Override: 100 %
Spindle Override: 100 %
Jog Speed: 12 in/min

Max Velocity: 300 in/min

[AXIS "splash g-code" Not intended for actual milling)

[To run this code anyway you might have to Touch Off the Z axis)

[depending on your setup. As if you had some material in your mill...)

[Hint jog the Z axis down a bit then touch off)

[Also press the Toggle Skip Lines with "/" to see that part)

[If the program is too big or small for your machine, change the scale below)
[LinuxCNC 19/1/2812 2:13:51 PM)

#adepth==2.0

#<scale>==1.0

oM Mo tool Position: Relative Actual

Figure 2.2: AXIS, the standard keyboard GUI interface

Touchy
Touchy, a touch screens GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

31/1322

Relative Absolute DTG
X: 0.0000 X: 0.0000 X: 0.0000
= 0.0000 Wil 0.0000 X: 0.0000
Z: 1.2063 Z: 0.0000 Z: 0.0000
Power
Estop Reset Machine On Override Limits
Estop Machine Off
Homing
Home All Home Selected
Unhome All Unhome Selected

Startup MDI Manual Auto Status Preferences

Figure 2.3: Touchy, a touch screen GUI

Gscreen
Gscreen, a user-configurable touch screen GUI:

Handwheel

FO: 100%

SQO: 100%

MV: 100

Jogging

X
Y
Z

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 32 /1322

Unespectad realtime delay: check dmesg far details.

tain Level |Preferences | Cebug| Tosleditar ?‘Hset Estap -
age Maching of -
Marual Mode \ew - Tue, 18 Aug 2015 05:32:35 am
— .
= ©
= 1540 4
0.000% REL o o
A ipaa 2000 W= - i
0.0000:- S orem R
| |_ | -
=500 zs-m.:ll .
: ATS -v.: ¥ +
0.000¢ REL b LT
4 W 0.0
0.0000--
=
. AIE _
“] J g
0.0003% REL

0.0000:+

Igrare

Limnit= @
=
G Codes Active Status JvEmae
GR G17 G20 G40 G246 G54 GE4 Gao | OO 100% pMist @/ continucus
G390 Go1.1 GO GI7 G35 53: }EE fload G| 20.00 1M =raphies
W LG
r4C M5 M3 K48 W53 T
5 Jog mode . Launch
FO S0 WOO6D Arspead @ Keybaard

1e1ir caardir R Mt £F Flass Iricd] : ST
Mad yste Q;x l"i Ti Camtrala EELT Offsets AT {FApd 2

Figure 2.4: Gscreen, a configurable base touch screen GUI

GMOCCAPY
GMOCCAPY, a touch screen GUI based on Gscreen. GMOCCAPY is also designed to work equally

well in applications where a keyboard and mouse are the preferred methods of controlling the
GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 33/1322

'@ gmoccapy 3.5.1 for LinuxCNC 2.10.0~-pre0

A.Inc_files/f3D_Chips.ngc . 5 874

2.000

DTG 0.000

' 254.000

Jogging

- [2100 mm/min] + E %
>
Y+ L+
1.000 mm =
|4} B
- X+ 0.100 mm :
0.010 mm
¥ z ™I,
0.001 mm fﬁﬁ:&
1.2345 inch
Current Velocity Cooling Spindle
Tool info and G-codes G-code properties 0 T
Tool information Rapid Override iﬁ 0 rpm | 100%
Tool no. Diameter offsetz
0 0 0.000 i 100% i [100 %] + 3
Mo tool description available Ve=0.00 Feed Rate A
G-Code @
M5 M9 M48 M53 FO FO 100%
G8 G17 G21 G40 G49 G54 G64 G0
50 09:20:46
G90 G91.1 G94 G97 G99 ® 0 0 100000
- 100% & | |O 07.01.2026

5

A
=~
ol

T,

o W

Figure 2.5: GMOCCAPY, a touch screen GUI based on Gscreen

NGCGUI
NGCGUI, a subroutine GUI that provides wizard-style programming of G code. NGCGUI may be

run as a standalone program or embedded into another GUI as a series of tabs. The following
screenshot shows NGCGUI embedded into AXIS:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 34 /1322

Eile Machine View Help
@ U=z NIXIY[R& >
Manual Control [F3] I MDI [F5] | Preview | DRO simp I xyz |
s £ £ ngcgui-0 |mwe—:=-
—I—" =] simp - simple subroutine example - Ctrl-U to edit
| | Positional Parameters|
1/6 Radius A
2[04 |radius b
3/100 |feedrate
Create Feature
Feed Override: 100 %) I 0
Jog Speed: 16 in/min | I —
Max Velocity: 72 in/min | | |tk for Key bindings
1: [AXIS "splash g-code" Mot intended for actual milling) é
2: { To run this code anyway you might have to Touch Off the Z axis)
3. (depending on your setup. As if you had some material in your mill...)
4: [Hint jog the Z axis down a bit then touch off)
S: (Also press the Toggle Skip Lines with "/" to see that part)
{ If the program is too big or small for your machine, change the scale #3)
3. (font: fusr/share/fonts/truetype/freefont/FreeSerifBoldItalic.ttf)
J: (text: EMC2%#S*AXIS) i

ESTOP |Nu tool Position: Relative Actual

Figure 2.6: NGCGUI, a graphical interface integrated into AXIS

TKkLinuxCNC
TkLinuxCNC, another interface based on Tcl/Tk. Once the most popular interface after AXIS.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 35/1322

File View Settings Units Ulilities Scripts

MIST OFF SPINDLE OFF >

MAMUAL FLOOD OFF BRAKE ON

Tool: 0 10 d X0.0000 Y0.0000 Z0.0000 (inch)

Work Offsets: G54 X0.0000 Y0.0000 Z0.0000

X 0.0000 by
Y 0.0000 e

» world

Z continuous
. -

Linear Jog Speed (inch) /min:

Spindie speed Override:

G80 G17 G40 G20 G0 G94 G54 G49 G99 GE4 GI7 G91.1 GE M5 M3 M48 M53 MO FO S0
Program: none - Status: idle

| Open... Run Pause Resume | Step Verify | Optional Stop

Figure 2.7: TkLinuxCNC graphical interface

QtDragon
QtDragon, a touch screen GUI based on QtVCP using the PyQt5 library. It comes in two versions

QtDragon and QtDragon hd. They are very similar in features but QtDragon hd is made for
larger monitors.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

36 /1322

STATUS PROBE

User
e,

ZERC

ZERCH
MIST FLODD *
OFF OFF
ZERC

RELOAD

PROGRESS

ALL HOME R

REFX
L

REFY

-

REFZ

-

-
HOME

-
HOME

L
HOME

]

MAX VELOCITY OVERRIDE
50 ol | 100
RAFID OVERRIDE
50 me— 100
FEEDRATE OVERRIDE
50— .. 100
SPINDLE OVERRIDE

P 100

MOTION

Gate

!
k2

L

3000

INCREMENTS Continuous

SPINDLE RP# AT SPEED

12000 .

100% REV Stop |

L2000 ||| amMPs | 00 |MEBERRORS| O
FOWER 0.0 |FAULTCODE Oxd

RUN TIME 000000 TIME | OF:49:

Figure 2.8: QtDragon, a touch screen GUI based on QtVCP

QtPlasmaC

QtPlasmaC, a touch screen plasma cutting GUI based on QtVCP using the PyQtb library. It comes

in three aspect ratios, 16:9, 4:3, and 9:16.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 37 /1322

ac-metric - Q and LinuxCNC

: 3.00
;9.1 [
C

: 1.00
: 1.00

CYCLE START

® VELOCITY ANTI DIVE N
adaptive feed)

———— || ™ TORCH ON

\ ® vOID ANTI DIVE ENAE-.LE[
FEED R — al[plasmac.cut-feed-rate

1 (
AUTO VOLTS -
|) 11 (the hole)

OHMIC PROBE| ||| 12 653 GBO Z[[#<_ini[axis_z]max_
13 GBO X149.739 Y27.45
14 MB3 $0 S1 (s plasma torch
> E3 060 (ameter:4.501
EnaBLED) %149.739

[[ACTIVE @
EDIT MDI

comnlete. velm

TOOL: TORCH | G-Ct

Figure 2.9: QtPlasmaC, a touch screen plasma cutting GUI based on QtVCP

2.2.4 User Interfaces

These User interfaces are a way to interact with LinuxCNC outside of the graphical user interfaces.

halui
A HAL based user interface allowing to control LinuxCNC using buttons and switches

linuxcncrsh
A telnet based user interface allowing to send commands from remote computers.

2.2.5 Virtual Control Panels

As mentioned above, many of LinuxCNC’s GUIs may be customized by the user. This may be done to
add indicators, readouts, switches or sliders to the basic appearance of one of the GUIs for increased
flexibility or functionality. Two styles of Virtual Control Panel are offered in LinuxCNC:

PyVCP
PyVCP, a Python-based virtual control panel that can be added to the AXIS GUI. PyVCP only
utilises virtual signals contained within the Hardware Abstraction Layer, such as the spindle-at-
speed indicator or the Emergency Stop output signal, and has a simple no-frills appearance. This
makes it an excellent choice if the user wants to add a Virtual Control Panel with minimal fuss.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 38 /1322

File Machine View Help
QDA o/l +=1Z NIXIYI P& » THC Enable

THC Settings

Vel Tolerance [0.20
Volts Setting |1
Volis Tolerance 2.0

Arc Volts Status
Under OK Over

Manual Control [F3]1 | MDI [F5] Preview | DRO

Axis: I:I

AR AR Ap

I B
Spindle: € Status
Velocity Arc Offset
B B 00000
Actual Volts
Feed Override: 100 %
Jog Speed: 60 infmin

Max Velocity: 420 in/min

MDI Commands

Rapid to Home

ESTOP No tool Position: Relative Actual

Figure 2.10: PyVCP Example Embedded Into AXIS GUI

GladeVCP
GladeVCP, a Glade-based virtual control panel that can be added to the AXIS or Touchy GUIs.
GladeVCP has the advantage over PyVCP in that it is not limited to the display or control of HAL
virtual signals, but can include other external interfaces outside LinuxCNC such as window or

network events. GladeVCP is also more flexible in how it may be configured to appear on the
GUI:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 39/1322

axis.ngc = AXIS 2.5.0=pre auf Fraese Elippfeld K12 simuliert

Datel Maschine Ansicht Hife |
Do of pHuEn +=2zNx¥Y[EFE » | Spindie | Comersangle | 4z | Hole | Test |
sanuele Kentrote (73] | Moi [FS] Vorschiny | DAG | Camera GladeVCP | [Femce
S ae o G Modbus WFD onlime)
Button
- i @ @ @ e @
| Spindi APM: 0 VFDMHZ: 0.0
togiicbutton 0.0 300
oo 2000
o
: G bl perdtion
A r
; o) -
i il
— botbam
Scale (O =1 | - -
Vorschubil bvsteuerung: 100 %[| - . . L || [Ceolant . .
Schrittpeschwindigheit: 1823 mmymin I _| 000 Pump | -
Maximale Geschwindigheit: 720 mmyimin [1| -_-
1: | AXIS "splash g-cade™ Mot imtended for actual milling) -_'l- [Jerpad max jog mam/min
Z: | To run thes code anyvay you might have to Tewch Off the 7 amis) £0a
i: | depending on your sefep. As 1 yeu had sose saterzal im your mell...) __
1 | HLAT jog the 2 axid 5T 8 BiT 1BaEA TéwEh aff)
{ Ales press the Togqle Skip Lines with =/ 1o see that part] Limit vwitches
{ If the pregras 15 too big or ssall for your machime, change ihe scale #3) :H. 'l'. 2.. z'.
(font: Jusrishars/fontastrustypesd restont FressariiBeldItalic. uef)
1 (texl: EMCQARAXTS) '

Figure 2.11: GladeVCP Example Embedded Into AXIS GUI

QtvCp
QtVCP, a PyQtb5-based virtual control panel that can be added to most GUIs or run as a standalone
panel. QtVCP has the advantage over PyVCP in that it is not limited to the display or control of
HAL virtual signals, but can include other external interfaces outside LinuxCNC such as window
or network events by extending with python code. QtVCP is also more flexible in how it may be
configured to appear on the GUI with many special widgets:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 40/1322

MAIN FILE OFFSETS TOOL STATUS PROBE GCODES SETUP SETTINGS

FACING JHOLE CIRCLE] NGCGUI JWORKPIECE|Spindle Extras

Front Belts Back Belts
Belt1 Belt 5

Belt 2 Belt 6

RS485 Spindle

Is Connected
VFD Frequency
Motor Torque
Total Time on
Spindle Time On
Max Geared RPM

VFD Error Reset

Figure 2.12: QtVCP Example Embedded Into QtDragon GUI

2.2.6 Languages

LinuxCNC uses translation files to translate LinuxCNC User Interfaces into many languages including
French, German, Italian, Finnish, Russian, Romanian, Portuguese and Chinese. Assuming a transla-
tion has been created, LinuxCNC will automatically use whatever native language you log in with when
starting the Linux operating system. If your language has not been translated, contact a developer
on IRC, the mailing list or the User Forum for assistance.

2.2.7 Think Like a CNC Operator

This manual does not pretend to teach you how to use a lathe or a milling machine. Becoming an
experienced operator takes a lot of time and requires a lot of work. An author once said, We learn
by experience, if one possesses it all. Broken tools, vices attacked and the scars are evidence of
the lessons learned. A beautiful finish, tight tolerances and caution during the work are evidence of
lessons learned. No machine nor program can replace human experience.

Now that you start working with the LinuxCNC software, you have to put yourself in the shoes of an
operator. You must be in the role of someone in charge of a machine. It’s a machine that will wait
for your commands and then execute the orders that you will give it. In these pages, we will give the
explanations which will help you to become a good CNC operator with LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 41 /1322

2.2.8 Modes of Operation

When LinuxCNC is running, there are three different major modes used for inputting commands.
These are Manual, Auto, and Manual Data Input (MDI). Changing from one mode to another makes
a big difference in the way that the LinuxCNC control behaves. There are specific things that can be
done in one mode that cannot be done in another. An operator can home an axis in manual mode but
not in auto or MDI modes. An operator can cause the machine to execute a whole file full of G-codes
in the auto mode but not in manual or MDI.

In manual mode, each command is entered separately. In human terms a manual command might be
“turn on coolant” or “jog X at 25 inches per minute”. These are roughly equivalent to flipping a switch
or turning the hand wheel for an axis. These commands are normally handled on one of the graphical
interfaces by pressing a button with the mouse or holding down a key on the keyboard. In auto mode,
a similar button or key press might be used to load or start the running of a whole program of G-code
that is stored in a file. In the MDI mode the operator might type in a block of code and tell the machine
to execute it by pressing the <return> or <enter> key on the keyboard.

Some motion control commands are available concurrently and will cause the same changes in motion
in all modes. These include Abort, Emergency Stop, and Feed Rate Override. Commands like these
should be self explanatory.

The AXIS user interface hides some of the distinctions between Auto and the other modes by making
auto-commands available at most times. It also blurs the distinction between Manual and MDI, be-
cause some Manual commands like Touch Off are actually implemented by sending MDI commands. It
does this by automatically changing to the mode that is needed for the action the user has requested.

2.3 Important User Concepts

This chapter covers important user concepts that should be understood before attempting to run a
CNC machine with G-code.

2.3.1 Trajectory Control

2.3.1.1 Trajectory Planning

Trajectory planning, in general, is the means by which LinuxCNC follows the path specified by your
G-code program, while still operating within the limits of your machinery.

A G-code program can never be fully obeyed. For example, imagine you specify as a single-line pro-
gram the following move:

Gl X1 F10 (Gl is linear move, X1 is the destination, F10 is the speed)

In reality, the whole move can’t be made at F10, since the machine must accelerate from a stop, move
toward X=1, and then decelerate to stop again. Sometimes part of the move is done at F10, but for
many moves, especially short ones, the specified feed rate is never reached at all. Having short moves
in your G-code can cause your machine to slow down and speed up for the longer moves if the naive
cam detector is not employed with G64 Pn.

The basic acceleration and deceleration described above is not complex and there is no compromise
to be made. In the INI file the specified machine constraints, such as maximum axis velocity and axis
acceleration, must be obeyed by the trajectory planner.

For more information on the Trajectory Planner INI options see the Trajectory Section in the INI
chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 42 /1322

2.3.1.2 Path Following

A less straightforward problem is that of path following. When you program a corner in G-code, the
trajectory planner can do several things, all of which are right in some cases:

» It can decelerate to a stop exactly at the coordinates of the corner, and then accelerate in the new
direction.

* It can also do what is called blending, which is to keep the feed rate up while going through the
corner, making it necessary to round the corner off in order to obey machine constraints.

You can see that there is a trade off here: you can slow down to get better path following, or keep the
speed up and have worse path following. Depending on the particular cut, the material, the tooling,
etc., the programmer may want to compromise differently.

Rapid moves also obey the current trajectory control. With moves long enough to reach maximum
velocity on a machine with low acceleration and no path tolerance specified, you can get a fairly
round corner.

2.3.1.3 Programming the Planner

The trajectory control commands are as follows:

G61
(Exact Path Mode) G61 visits the programmed point exactly, even though that means it might
temporarily come to a complete stop in order to change direction to the next programmed point.

G61.1
(Exact Stop Mode) G61.1 tells the planner to come to an exact stop at every segment’s end. The
path will be followed exactly but complete feed stops can be destructive for the part or tool,
depending on the specifics of the machining.

G64

(Blend Without Tolerance Mode) G64 is the default setting when you start LinuxCNC. G64 is just
blending and the naive cam detector is not enabled. G64 and G64 PO tell the planner to sacrifice
path following accuracy in order to keep the feed rate up. This is necessary for some types of
material or tooling where exact stops are harmful, and can work great as long as the programmer
is careful to keep in mind that the tool’s path will be somewhat more curvy than the program
specifies. When using GO (rapid) moves with G64 use caution on clearance moves and allow
enough distance to clear obstacles based on the acceleration capabilities of your machine.

G64 P- Q-

(Blend With Tolerance Mode) This enables the naive cam detector and enables blending with a
tolerance. If you program G64 P0.05, you tell the planner that you want continuous feed, but at
programmed corners you want it to slow down enough so that the tool path can stay within 0.05
user units of the programmed path. The exact amount of slowdown depends on the geometry of
the programmed corner and the machine constraints, but the only thing the programmer needs to
worry about is the tolerance. This gives the programmer complete control over the path following
compromise. The blend tolerance can be changed throughout the program as necessary. Beware
that a specification of G64 PO has the same effect as G64 alone (above), which is necessary for
backward compatibility for old G-code programs. See the G64 section of the G-code chapter.

Blending without tolerance
The controlled point will touch each specified movement at at least one point. The machine
will never move at such a speed that it cannot come to an exact stop at the end of the current
movement (or next movement, if you pause when blending has already started). The distance
from the end point of the move is as large as it needs to be to keep up the best contouring feed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 43 /1322

Naive CAM Detector

Successive G1 moves that involve only the XYZ axes that deviate less than Q- from a straight
line are merged into a single straight line. This merged movement replaces the individual G1
movements for the purposes of blending with tolerance. Between successive movements, the
controlled point will pass no more than P- from the actual endpoints of the movements. The
controlled point will touch at least one point on each movement. The machine will never move
at such a speed that it cannot come to an exact stop at the end of the current movement (or
next movement, if you pause when blending has already started). On G2/3 moves in the G17
(XY) plane, when the maximum deviation of an arc from a straight line is less than the G64 Q-
tolerance, the arc is broken into two lines (from start of arc to midpoint, and from midpoint
to end). Those lines are then subject to the naive cam algorithm for lines. Thus, line-arc, arc-
arc, and arc-line cases as well as line-line benefit from the naive cam detector. This improves
contouring performance by simplifying the path.

In the following figure the blue line represents the actual machine velocity. The red lines are the
acceleration capability of the machine. The horizontal lines below each plot is the planned move.
The upper plot shows how the trajectory planner will slow the machine down when short moves are
encountered, to stay within the limits of the machines acceleration setting to be able to come to an
exact stop at the end of the next move. The bottom plot shows the effect of the Naive Cam Detector
to combine the moves and do a better job of keeping the velocity as planned.

Figure 2.13: Naive CAM Detector

2.3.1.4 Planning Moves

Make sure moves are long enough to suit your machine/material. Principally because of the rule that
the machine will never move at such a speed that it cannot come to a complete stop at the end of
the current movement, there is a minimum movement length that will allow the machine to keep up
a requested feed rate with a given acceleration setting.

The acceleration and deceleration phase each use half the INI file MAX ACCELERATION. In a blend
that is an exact reversal, this causes the total axis acceleration to equal the INI file MAX ACCELERATION.
In other cases, the actual machine acceleration is somewhat less than the INI file acceleration.

To keep up the feed rate, the move must be longer than the distance it takes to accelerate from 0 to
the desired feed rate and then stop again. Using A as 1/2 the INI file MAX ACCELERATION and F as
the feed rate in units per second, the acceleration time is t; = F/A and the acceleration distance is
d, = F*t,/2. The deceleration time and distance are the same, making the critical distance d = d, +
dg = 2 *d, = F?/A.

For example, for a feed rate of 1 inch per second and an acceleration of 10 inches/sec?, the critical
distance is 1%2/10 = 1/10 = 0.1 inches.

For a feed rate of 0.5 inch per second, the critical distance is 52/100 = 25/100 = 0.025 inches.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 44 | 1322

2.3.2 G-code

2.3.2.1 Defaults

When LinuxCNC first starts up many G- and M-codes are loaded by default. The current active G- and
M-codes can be viewed on the MDI tab in the Active G-codes: window in the AXIS interface. These
G- and M-codes define the behavior of LinuxCNC and it is important that you understand what each
one does before running LinuxCNC. The defaults can be changed when running a G-code file and left
in a different state than when you started your LinuxCNC session. The best practice is to set the
defaults needed for the job in the preamble of your G-code file and not assume that the defaults have
not changed. Printing out the G-code Quick Reference page can help you remember what each one
is.

2.3.2.2 Feed Rate

How the feed rate is applied depends on if an axis involved with the move is a rotary axis. Read and
understand the Feed Rate section if you have a rotary axis or a lathe.

2.3.2.3 Tool Radius Offset

Tool Radius Offset (G41/42) requires that the tool be able to touch somewhere along each programmed
move without gouging the two adjacent moves. If that is not possible with the current tool diameter
you will get an error. A smaller diameter tool may run without an error on the same path. This means
you can program a cutter to pass down a path that is narrower than the cutter without any errors.
See the Cutter Compensation section for more information.

2.3.3 Homing

After starting LinuxCNC each axis must be homed prior to running a program or running a MDI
command. If your machine does not have home switches a match mark on each axis can aid in homing
the machine coordinates to the same place each time. Once homed your soft limits that are set in the
INI file will be used.

If you want to deviate from the default behavior, or want to use the Mini interface, you will need to set
the option NO FORCE_HOMING = 1 in the [TRAJ] section of your INI file. More information on homing
can be found in the Integrator Manual.

2.3.4 Tool Changes

There are several options when doing manual tool changes. See the [EMCIO] section for information
on configuration of these options. Also see the G28 and G30 section of the G-code chapter.

2.3.5 Coordinate Systems

The Coordinate Systems can be confusing at first. Before running a CNC machine you must under-
stand the basics of the coordinate systems used by LinuxCNC. In depth information on the LinuxCNC
Coordinate Systems is in the Coordinate System section of this manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 45 /1322

2.3.5.1 Gb53 Machine Coordinate

When you home LinuxCNC you set the G53 Machine Coordinate System to O for each axis homed.
No other coordinate systems or tool offsets are changed by homing.

The only time you move in the G53 machine coordinate system is when you program a G53 on the
same line as a move. Normally you are in the G54 coordinate system.

2.3.5.2 Gb54-59.3 User Coordinates

Normally you use the G54 Coordinate System. When an offset is applied to a current user coordinate
system, a small blue ball with lines will be at the machine origin when your DRO is displaying Posi-
tion: Relative Actual in AXIS. If your offsets are temporary use the Zero Coordinate System from the
Machine menu or program G10 L2 P1 X0 YO Z0 at the end of your G-code file. Change the P number
to suit the coordinate system you wish to clear the offset in.

¢ Offsets stored in a user coordinate system are retained when LinuxCNC is shut down.

¢ Using the Touch Off button in AXIS sets an offset for the chosen User Coordinate System.

2.3.5.3 When You Are Lost

If you're having trouble getting 0,0,0 on the DRO when you think you should, you may have some
offsets programmed in and need to remove them.

* Move to the Machine origin with G53 G0 X0 YO Z0
e Clear any G92 offset with G92.1

* Use the G54 coordinate system with G54

* Set the G54 coordinate system to be the same as the machine coordinate system with G10 L2 P1
X0 YO0 Z0 RO.

e Turn off tool offsets with G49

e Turn on the Relative Coordinate Display from the menu

Now you should be at the machine origin X0 YO Z0 and the relative coordinate system should be the
same as the machine coordinate system.

2.3.6 Machine Configurations

The following diagram shows a typical mill showing direction of travel of the tool and the mill table and
limit switches. Notice how the mill table moves in the opposite direction of the Cartesian coordinate
system arrows shown by the Tool Direction image. This makes the tool move in the correct direction
in relation to the material.

Note also the position of the limit switches and the direction of activation of their cams. Several
combinations are possible, for example it is possible (contrary to the drawing) to place a single fixed
limit switch in the middle of the table and two mobile cams to activate it. In this case the limits will
be reversed, +X will be on the right of the table and -X on the left. This inversion does not change
anything from the point of view of the direction of movement of the tool.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 46 /1322

Tool Direction
+Z

+Y

+A

Rotary Table

Rntatinr/_‘
&

+X

Z Origin,
Home Switch &
Home Position

X Origin &

Home Switch
¥ Origin, Home Switch &
Home Position

Figure 2.14: Typical Mill Configuration

The following diagram shows a typical lathe showing direction of travel of the tool and limit switches.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 47 /1322

-Z
-
T
P
'f”
+X
W
KR
oo S
it
N Ly 52
AT - +4 il S I';h
.\,,:hk - & __.--' I
D': h\l -'".-f “ e, -
& ._J_." ~, e, Al
o e ’,.ri‘r"??;}
{{\? El'\{"\ #___/'J, ‘\’
,’L{{\B A ;
o AR +6 " e }%

Figure 2.15: Typical Lathe Configuration

2.4 Starting LinuxCNC

2.4.1 Running LinuxCNC

LinuxCNC is started with the script file linuxcnc.

linuxcnc [options] [<INI-file>]

linuxcnc script options
linuxcnc: Run LinuxCNC
Usage:

$ linuxcnc -h
This help

$ linuxcnc [Options]
Choose the configuration INI file graphically

$ linuxcnc [Options] path/to/your ini file
Name the configuration INI file using its path

$ linuxcnc [Options] -1
Use the previously used configuration INI file

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 48 /1322

Options:
-d: Turn on "debug” mode
-v: Turn on "verbose” mode
-r: Disable redirection of stdout and stderr to ~/linuxcnc_print.txt and
~/linuxcnc_debug.txt when stdin is not a tty.
Used when running linuxcnc tests non-interactively.
-1: Use the last-used INI file
-k: Continue in the presence of errors in HAL files
-t "tpmodulename [parameters]”
specify custom trajectory planning module
overrides optional INI setting [TRAJ]TPMOD
-m "homemodulename [parameters]”
specify custom homing module
overrides optional INI setting [EMCMOT]HOMEMOD
-H "dirname”: search dirname for HAL files before searching
INI directory and system library:
/home/git/linuxcnc-dev/1lib/hallib
Note:
The -H "dirname” option may be specified multiple times

If the linuxcnc script is passed an INI file it reads the INI file and starts LinuxCNC. The INI file [HAL]
section specifies the order of loading up HAL files if more than one is used. Once the HAL=xxx.hal
files are loaded then the GUI is loaded then the POSTGUI=.xxx.hal file is loaded. If you create PyVCP
or GladeVCP objects with HAL pins you must use the postgui HAL file to make any connections to
those pins. See the [HAL] section of the INI configuration for more information.

2.4.1.1 Configuration Selector

If no INI file is passed to the linuxcnc script it loads the configuration selector so you can choose and
save a sample configuration. Once a sample configuration has been saved it can be modified to suit
your application. The configuration files are saved in linuxcnc/configs directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 49 /1322

LinuxCNC Configuration Selector
Welcome to LinuxCNC.

Select a machine configuration from the list on the left.
Details about the selected configuration will appear in the display on the right.
Click "OK' to run the selected configuration

My Configura_tions_ Sim configurations make it possible to run
=+ Sample Configurations

sim LinuxCNC without special hardware on a

axis simulated basis.
craftsman
gmoccapy

gscreen LinuxCNC supports multiple guis and there

pyvcp_demo are multiple examples for the most popular

gtaxis guis.
gtdragon

g%g[:g&gzhd The sim configurations are meant to run

gttouchy with no special hardware requirements

tklinuxcnc
touchy
woodpecker
+— by _interface
4— by_machine
— apps

F— afttic

[Create Desktop Shortcut

2.5 CNC Machine Overview

This section gives a brief description of how a CNC machine is viewed from the input and output ends
of the Interpreter.

2.5.1 Mechanical Components

A CNC machine has many mechanical components that may be controlled or may affect the way in
which control is exercised. This section describes the subset of those components that interact with
the Interpreter. Mechanical components that do not interact directly with the Interpreter, such as the
jog buttons, are not described here, even if they affect control.

2.5.1.1 Axes

Any CNC machine has one or more Axes. Different types of CNC machines have different combina-
tions. For instance, a 4-axis milling machine may have XYZA or XYZB axes. A lathe typically has XZ
axes. A foam-cutting machine may have XYUV axes. In LinuxCNC, the case of a XYYZ gantry machine
with two motors for one axis is better handled by kinematics rather than by a second linear axis.

Note

If the motion of mechanical components is not independent, as with hexapod machines, the
RS274/NGC language and the canonical machining functions will still be usable, as long as the lower
levels of control know how to control the actual mechanisms to produce the same relative motion of
tool and workpiece as would be produced by independent axes. This is called kinematics.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 50/1322

Note
With LinuxCNC, the case of the XYYZ gantry machine with two motors for one axis is better handled
by the kinematics than by an additional linear axis.

.Primary Linear Axes The X, Y, and Z axes produce linear motion in three mutually orthogonal direc-
tions.

.Secondary Linear Axes The U, V, and W axes produce linear motion in three mutually orthogonal
directions. Typically, X and U are parallel, Y and V are parallel, and Z and W are parallel.

.Rotational Axes The A, B and C axes produce angular motion (rotation). Typically, A rotates around
a line parallel to X, B rotates around a line parallel to Y, and C rotates around a line parallel to Z.

2.5.1.2 Spindle

A CNC machine typically has a spindle which holds one cutting tool, probe, or the material in the case
of a lathe. The spindle may or may not be controlled by the CNC software. LinuxCNC offers support
for up to 8 spindles, which can be individually controlled and can run simultaneously at different
speeds and in different directions.

2.5.1.3 Coolant

Flood coolant and mist coolant may each be turned on independently. The RS274/NGC language turns
them off together see section M7 M8 M9.

2.5.1.4 Feed and Speed Override

A CNC machine can have separate feed and speed override controls, which let the operator specify
that the actual feed rate or spindle speed used in machining at some percentage of the programmed
rate.

2.5.1.5 Block Delete Switch

A CNC machine can have a block delete switch. See the Block Delete section.

2.5.1.6 Optional Program Stop Switch

A CNC machine can have an optional program stop switch. See the Optional Program Stop section.

2.5.2 Control and Data Components

2.5.2.1 Linear Axes

The X, Y, and Z axes form a standard right-handed coordinate system of orthogonal linear axes. Posi-
tions of the three linear motion mechanisms are expressed using coordinates on these axes.

The U, V and W axes also form a standard right-handed coordinate system. X and U are parallel, Y
and V are parallel, and Z and W are parallel (when A, B, and C are rotated to zero).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 51/1322

2.5.2.2 Rotational Axes

The rotational axes are measured in degrees as wrapped linear axes in which the direction of positive
rotation is counterclockwise when viewed from the positive end of the corresponding X, Y, or Z-axis.
By wrapped linear axis, we mean one on which the angular position increases without limit (goes
towards plus infinity) as the axis turns counterclockwise and deceases without limit (goes towards
minus infinity) as the axis turns clockwise. Wrapped linear axes are used regardless of whether or
not there is a mechanical limit on rotation.

Clockwise or counterclockwise is from the point of view of the workpiece. If the workpiece is fastened
to a turntable which turns on a rotational axis, a counterclockwise turn from the point of view of the
workpiece is accomplished by turning the turntable in a direction that (for most common machine
configurations) looks clockwise from the point of view of someone standing next to the machine. 3

2.5.2.3 Controlled Point

The controlled point is the point whose position and rate of motion are controlled. When the tool
length offset is zero (the default value), this is a point on the spindle axis (often called the gauge
point) that is some fixed distance beyond the end of the spindle, usually near the end of a tool holder
that fits into the spindle. The location of the controlled point can be moved out along the spindle axis
by specifying some positive amount for the tool length offset. This amount is normally the length of
the cutting tool in use, so that the controlled point is at the end of the cutting tool. On a lathe, tool
length offsets can be specified for X and Z axes, and the controlled point is either at the tool tip or
slightly outside it (where the perpendicular, axis-aligned lines touched by the front and side of the
tool intersect).

2.5.2.4 Coordinated Linear Motion

To drive a tool along a specified path, a machining center must often coordinate the motion of several
axes. We use the term coordinated linear motion to describe the situation in which, nominally, each
axis moves at constant speed and all axes move from their starting positions to their end positions at
the same time. If only the X, Y, and Z axes (or any one or two of them) move, this produces motion in a
straight line, hence the word linear in the term. In actual motions, it is often not possible to maintain
constant speed because acceleration or deceleration is required at the beginning and/or end of the
motion. It is feasible, however, to control the axes so that, at all times, each axis has completed the
same fraction of its required motion as the other axes. This moves the tool along same path, and we
also call this kind of motion coordinated linear motion.

Coordinated linear motion can be performed either at the prevailing feed rate, or at traverse rate, or
it may be synchronized to the spindle rotation. If physical limits on axis speed make the desired rate
unobtainable, all axes are slowed to maintain the desired path.

2.5.2.5 Feed Rate

The rate at which the controlled point moves is nominally a steady rate which may be set by the
user. In the Interpreter, the feed rate is interpreted as follows (unless inverse time feed or feed per
revolution modes are being used, in which case see section G93-G94-G95-Mode).

1. If any of XYZ are moving, F is in units per minute in the XYZ cartesian system, and all other axes
(ABCUVW) move so as to start and stop in coordinated fashion.

2. Otherwise, if any of UVW are moving, F is in units per minute in the UVW cartesian system, and
all other axes (ABC) move so as to start and stop in coordinated fashion.

3If the parallelism requirement is violated, the system builder will have to say how to distinguish clockwise from counter-
clockwise.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 52 /1322

3. Otherwise, the move is pure rotary motion and the F word is in rotary units in the ABC pseudo-
cartesian system.

2.5.2.6 Cooling

Flood or droplets cooling can be enabled separately. RS274/NGC language stops them together. See
section about cooling control.

2.5.2.7 Dwell

A machining center may be commanded to dwell (i.e., keep all axes unmoving) for a specific amount
of time. The most common use of dwell is to break and clear chips, so the spindle is usually turning
during a dwell. Regardless of the Path Control Mode (see section Path Control) the machine will stop
exactly at the end of the previous programmed move, as though it was in exact path mode.

2.5.2.8 Units

Units used for distances along the X, Y, and Z axes may be measured in millimeters or inches. Units for
all other quantities involved in machine control cannot be changed. Different quantities use different
specific units. Spindle speed is measured in revolutions per minute. The positions of rotational axes
are measured in degrees. Feed rates are expressed in current length units per minute, or degrees per
minute, or length units per spindle revolution, as described in section G93 G94 G95.

2.5.2.9 Current Position

The controlled point is always at some location called the current position, and the controller always
knows where that is. The numbers representing the current position must be adjusted in the absence
of any axis motion if any of several events take place:

1. Length units are changed.

2. Tool length offset is changed.

3. Coordinate system offsets are changed.
2.5.2.10 Selected Plane

There is always a selected plane, which must be the XY-plane, the YZ-plane, or the XZ-plane of the
machining center. The Z-axis is, of course, perpendicular to the XY-plane, the X-axis to the YZ-plane,
and the Y-axis to the XZ-plane.

2.5.2.11 Tool Carousel

Zero or one tool is assigned to each slot in the tool carousel.

2.5.2.12 Tool Change

A machining center may be commanded to change tools.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 53/1322

2.5.2.13 Pallet Shuttle

The two pallets may be exchanged by command.

2.5.2.14 Speed Override

The speed override buttons can be activated (they function normally) or rendered inoperative (they no
longer have any effect). The RS274/NGC language has a command that activates all the buttons and
another that disables them. See inhibition and activation speed correctors. See also here for further
details.

2.5.2.15 Path Control Mode

The machining center may be put into any one of three path control modes:

exact stop mode
In exact stop mode, the machine stops briefly at the end of each programmed move.

exact path mode
In exact path mode, the machine follows the programmed path as exactly as possible, slowing or
stopping if necessary at sharp corners of the path.

continuous mode
In continuous mode, sharp corners of the path may be rounded slightly so that the feed rate may
be kept up (but by no more than the tolerance, if specified).

See sections G61 and G64.

2.5.3 Interpreter Interaction with Switches

The Interpreter interacts with several switches. This section describes the interactions in more detail.
In no case does the Interpreter know what the setting of any of these switches is.

2.5.3.1 Feed and Speed Override Switches

The Interpreter will interpret RS274/NGC commands which enable M48 or disable M49 the feed and
speed override switches. For certain moves, such as the traverse out of the end of a thread during a
threading cycle, the switches are disabled automatically.

LinuxCNC reacts to the speed and feed override settings when these switches are enabled.
See the M48 M49 Override section for more information.

2.5.3.2 Block Delete Switch

If the block delete switch is on, lines of G-code which start with a slash (the block delete character)
are not interpreted. If the switch is off, such lines are interpreted. Normally the block delete switch
should be set before starting the NGC program.

2.5.3.3 Optional Program Stop Switch

If this switch is on and an M1 code is encountered, program execution is paused.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 54 /1322

2.5.4 Tool Table

A tool table is required to use the Interpreter. The file tells which tools are in which tool changer slots
and what the size and type of each tool is. The name of the tool table is defined in the INI file:

[EMCIO]
tool table file
TOOL_TABLE = tooltable.tbl

The default filename probably looks something like the above, but you may prefer to give your machine
its own tool table, using the same name as your INI file, but with a tbl extension:

TOOL TABLE = acme 300.tbl

or:
TOOL TABLE = EMC-AXIS-SIM.tbl

For more information on the specifics of the tool table format, see the Tool Table Format section.

2.5.5 Parameters

In the RS274/NGC language view, a machining center maintains an array of numerical parameters
defined by a system definition (RS274NGC_MAX PARAMETERS). Many of them have specific uses
especially in defining coordinate systems. The number of numerical parameters can increase as de-
velopment adds support for new parameters. The parameter array persists over time, even if the
machining center is powered down. LinuxCNC uses a parameter file to ensure persistence and gives
the Interpreter the responsibility for maintaining the file. The Interpreter reads the file when it starts
up, and writes the file when it exits.

All parameters are available for use in G-code programs.

The format of a parameter file is shown in the following table. The file consists of any number of
header lines, followed by one blank line, followed by any number of lines of data. The Interpreter
skips over the header lines. It is important that there be exactly one blank line (with no spaces or
tabs, even) before the data. The header line shown in the following table describes the data columns,
so it is suggested (but not required) that that line always be included in the header.

The Interpreter reads only the first two columns of the table. The third column, Comment, is not read
by the Interpreter.

Each line of the file contains the index number of a parameter in the first column and the value to
which that parameter should be set in the second column. The value is represented as a double-
precision floating point number inside the Interpreter, but a decimal point is not required in the file.
All of the parameters shown in the following table are required parameters and must be included in
any parameter file, except that any parameter representing a rotational axis value for an unused axis
may be omitted. An error will be signaled if any required parameter is missing. A parameter file may
include any other parameter, as long as its number is in the range 1 to 5400. The parameter numbers
must be arranged in ascending order. An error will be signaled if not. Any parameter included in the
file read by the Interpreter will be included in the file it writes as it exits. The original file is saved as
a backup file when the new file is written. Comments are not preserved when the file is written.

Table 2.1: Parameter File Format

Parameter Number Parameter Value Comment
5161 0.0 G28 Home X
5162 0.0 G28 Home Y

See the Parameters section for more information.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 55/1322

2.6 Lathe User Information

This chapter will provide information specific to lathes.

2.6.1 Lathe Mode

If your CNC machine is a lathe, there are some specific changes you will probably want to make to
your INI file in order to get the best results from LinuxCNC.

If you are using the AXIS display, have AXIS display your lathe tools properly. See the INI Configuration
section for more details.

To set up AXIS for Lathe Mode.
[DISPLAY]

Tell the AXIS GUI our machine is a lathe.
LATHE = TRUE

Lathe Mode in AXIS does not set your default plane to G18 (XZ). You must program that in the preamble
of each G-code file or (better) add it to your INI file, like this:

[RS274NGC]

G-code modal codes (modes) that the interpreter is initialized with
on startup
RS274NGC_STARTUP_CODE = G18 G20 G90

If your using GMOCCAPY then see the the GMOCCAPY Lathe section.

2.6.2 Lathe Tool Table

The "Tool Table” is a text file that contains information about each tool. The file is located in the
same directory as your configuration and is called “tool.tbl” by default. The tools might be in a tool
changer or just changed manually. The file can be edited with a text editor or be updated using G10
L1,L10,L11. There is also a built-in tool table editor in the AXIS display. The maximum number of
entries in the tool table is 56. The maximum tool and pocket number is 99999.

Earlier versions of LinuxCNC had two different tool table formats for mills and lathes, but since the
2.4.x release, one tool table format is used for all machines. Just ignore the parts of the tool table that
don’t pertain to your machine, or which you don’t need to use. For more information on the specifics
of the tool table format, see the Tool Table Section.

2.6.3 Lathe Tool Orientation

The following figure shows the lathe tool orientations with the center line angle of each orientation
and info on FRONTANGLE and BACKANGLE.

The FRONTANGLE and BACKANGLE are clockwise starting at a line parallel to Z+.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 56 /1322

= Position 8 270°

=3
g
P
q"l""
Frontangle 210" + - Fd Frantangle -30*
. x 1
Pasition 5 180" = = Position 7 0"
hackangle 1507 — l l\“‘- — 4~ Backangle 30°
L+ —»

positien 7 is an exception
far the frontangle degrees it
must be a minus valse,

Position 6 90° =

Figure 2.16: Lathe Tool Orientations

In AXIS the following figures show what the Tool Positions look like, as entered in the tool table.
Tool Positions 1, 2, 3 & 4

Y
X

Z+

Tool

Z+

Tool

Z+

Tool Tool
Orientation 1 Orientation 2 Orientation 3 Orie
Tool Tool Tool Toal
CL 135 deg CL 45 deg CL 315 deg Y CL 2

+

X+

X+

Tool Positions 5, 6, 7 & 8

Z+

Tool

X+

Z+

Tool

X+

Z+

X+

Tool Tool

Orientation 5 Orientation 6 Orientation 7 Orie
Tool Tool Tool Toal

Y CL 180 deg CL 90 deg CL 0 deg Y CL 2

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 57 /1322

2.6.4 Tool Touch Off

When running in lathe mode in AXIS you can set the X and Z in the tool table using the Touch Off
window. If you have a tool turret you normally have Touch off to fixture selected when setting up your
turret. When setting the material Z zero you have Touch off to material selected. For more information
on the G-codes used for tools see M6, Tn, and G43. For more information on tool touch off options in
AXIS see Tool Touch Off.

2.6.4.1 X Touch Off

The X axis offset for each tool is normally an offset from the center line of the spindle.

One method is to take your normal turning tool and turn down some stock to a known diameter. Using
the Tool Touch Off window enter the measured diameter (or radius if in radius mode) for that tool.
Then using some layout fluid or a marker to coat the part bring each tool up till it just touches the dye
and set its X offset to the diameter of the part used using the tool touch off. Make sure any tools in
the corner quadrants have the nose radius set properly in the tool table so the control point is correct.
Tool touch off automatically adds a G43 so the current tool is the current offset.

A typical session might be:

Home each axis if not homed.

Set the current tool with Tn M6 G43 where n is the tool number.

Select the X axis in the Manual Control window.

Move the X to a known position or take a test cut and measure the diameter.

Select Touch Off and pick Tool Table then enter the position or the diameter.

ok Wb oe

Follow the same sequence to correct the Z axis.

Note: if you are in Radius Mode you must enter the radius, not the diameter.

2.6.4.2 Z Touch Off

The Z axis offsets can be a bit confusing at first because there are two elements to the Z offset. There
is the tool table offset, and the machine coordinate offset. First we will look at the tool table offsets.
One method is to use a fixed point on your lathe and set the Z offset for all tools from this point. Some
use the spindle nose or chuck face. This gives you the ability to change to a new tool and set its Z
offset without having to reset all the tools.

A typical session might be:

Home each axis if not homed.

Make sure no offsets are in effect for the current coordinate system.
Set the current tool with Tn M6 G43 where n is the tool number.
Select the Z axis in the Manual Control window.

Bring the tool close to the control surface.

o 9k W e

Using a cylinder move the Z away from the control surface until the cylinder just passes between
the tool and the control surface.

7. Select Touch Off and pick Tool Table and set the position to 0.0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 58 /1322

8. Repeat for each tool using the same cylinder.

Now all the tools are offset the same distance from a standard position. If you change a tool like a
drill bit you repeat the above and it is now in sync with the rest of the tools for Z offset. Some tools
might require a bit of cyphering to determine the control point from the touch off point. For example,
if you have a 0.125” wide parting tool and you touch the left side off but want the right to be Z0, then
enter 0.125” in the touch off window.

2.6.4.3 The Z Machine Offset

Once all the tools have the Z offset entered into the tool table, you can use any tool to set the machine
offset using the machine coordinate system.

A typical session might be:

1. Home each axis if not homed.
2. Set the current tool with Tn M6 where n is the tool number.
3. Issue a G43 so the current tool offset is in effect.

4. Bring the tool to the work piece and set the machine Z offset.

If you forget to set the G43 for the current tool when you set the machine coordinate system offset,
you will not get what you expect, as the tool offset will be added to the current offset when the tool is
used in your program.

2.6.5 Spindle Synchronized Motion

Spindle synchronized motion requires a quadrature encoder connected to the spindle with one index
pulse per revolution. See the motion man page and the Spindle Control Example for more information.

Threading The G76 threading cycle is used for both internal and external threads. For more infor-
mation see the G76 Section.

Constant Surface Speed CSS or Constant Surface Speed uses the machine X origin modified by
the tool X offset to compute the spindle speed in RPM. CSS will track changes in tool offsets. The X
machine origin should be when the reference tool (the one with zero offset) is at the center of rotation.
For more information see the G96 Section.

Feed per Revolution Feed per revolution will move the Z axis by the F amount per revolution. This
is not for threading, use G76 for threading. For more information see the G95 Section.

2.6.6 Arcs

Calculating arcs can be mind challenging enough without considering radius and diameter mode on
lathes as well as machine coordinate system orientation. The following applies to center format arcs.
On a lathe you should include G18 in your preamble as the default is G17 even if you're in lathe mode,
in the user interface AXIS. Arcs in G18 XZ plane use I (X axis) and K (Z axis) offsets.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 59 /1322

2.6.6.1 Arcs and Lathe Design

The typical lathe has the spindle on the left of the operator and the tools on the operator side of the
spindle center line. This is typically set up with the imaginary Y axis (+) pointing at the floor.

The following will be true on this type of setup:

* The Z axis (+) points to the right, away from the spindle.

* The X axis (+) points toward the operator, and when on the operator side of the spindle the X values
are positive.

Some lathes with tools on the back side have the imaginary Y axis (+) pointing up.

G2/G3 Arc directions are based on the axis they rotate around. In the case of lathes, it is the imaginary
Y axis. If the Y axis (+) points toward the floor, you have to look up for the arc to appear to go in the
correct direction. So looking from above you reverse the G2/G3 for the arc to appear to go in the
correct direction.

2.6.6.2 Radius & Diameter Mode

When calculating arcs in radius mode you only have to remember the direction of rotation as it applies
to your lathe.

When calculating arcs in diameter mode X is diameter and the X offset (I) is radius even if you're in
G7 diameter mode.

2.6.7 Tool Path

2.6.7.1 Control point

The control point for the tool follows the programmed path. The control point is the intersection of a
line parallel to the X and Z axis and tangent to the tool tip diameter, as defined when you touch off the
X and Z axes for that tool. When turning or facing straight sided parts the cutting path and the tool
edge follow the same path. When turning radius and angles the edge of the tool tip will not follow the
programmed path unless cutter comp is in effect. In the following figures you can see how the control
point does not follow the tool edge as you might assume.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 60 /1322

Control Point

Tool Tip Radius

Figure 2.17: Control point

2.6.7.2 Cutting Angles without Cutter Comp

Now imagine we program a ramp without cutter comp. The programmed path is shown in the following
figure. As you can see in the figure the programmed path and the desired cut path are one and the
same as long as we are moving in an X or Z direction only.

Control Point

Programmed Path \

Tool Tip Radius

Figure 2.18: Ramp Entry

Now as the control point progresses along the programmed path the actual cutter edge does not follow
the programmed path as shown in the following figure. There are two ways to solve this, cutter comp
and adjusting your programmed path to compensate for tip radius.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 61/1322

Control Point

Programmed Path \

Actual Cut

Figure 2.19: Ramp Path

In the above example it is a simple exercise to adjust the programmed path to give the desired actual
path by moving the programmed path for the ramp to the left the radius of the tool tip.

2.6.7.3 Cutting a Radius

In this example we will examine what happens during a radius cut without cutter comp. In the next
figure you see the tool turning the OD of the part. The control point of the tool is following the
programmed path and the tool is touching the OD of the part.

Control Point

I

Programmed Path

Figure 2.20: Turning Cut

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 62 /1322

In this next figure you can see as the tool approaches the end of the part the control point still follows
the path but the tool tip has left the part and is cutting air. You can also see that even though a radius
has been programmed the part will actually end up with a square corner.

Control Point {}‘}

Programmed Path

Figure 2.21: Radius Cut

Now you can see as the control point follows the radius programmed the tool tip has left the part and
is now cutting air.

Control Point

Programmed Path

Figure 2.22: Radius Cut

In the final figure we can see the tool tip will finish cutting the face but leave a square corner instead
of a nice radius. Notice also that if you program the cut to end at the center of the part a small amount

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 63 /1322

of material will be left from the radius of the tool. To finish a face cut to the center of a part you have
to program the tool to go past center at least the nose radius of the tool.

Programmed Path

.

Control Point

Figure 2.23: Face Cut

2.6.7.4 Using Cutter Comp

L]

When using cutter comp on a lathe think of the tool tip radius as the radius of a round cutter.

L]

When using cutter comp the path must be large enough for a round tool that will not gouge into the
next line.

When cutting straight lines on the lathe you might not want to use cutter comp. For example boring
a hole with a tight fitting boring bar you may not have enough room to do the exit move.

The entry move into a cutter comp arc is important to get the correct results.

2.7 Plasma Cutting Primer for LinuxCNC Users

2.7.1 What Is Plasma?

Plasma is a fourth state of matter, an ionised gas which has been heated to an extremely high tem-
perature and ionised so that it becomes electrically conductive. The plasma arc cutting and gouging
processes use this plasma to transfer an electrical arc to the workpiece. The metal to be cut or re-
moved is melted by the heat of the arc and then blown away. While the goal of plasma arc cutting is
the separation of the material, plasma arc gouging is used to remove metals to a controlled depth and
width.

Plasma torches are similar in design to the automotive spark plug. They consist of negative and
positive sections separated by a center insulator. Inside the torch, the pilot arc starts in the gap
between the negatively charged electrode and the positively charged tip. Once the pilot arc has
ionised the plasma gas, the superheated column of gas flows through the small orifice in the torch tip,
which is focused on the metal to be cut.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 64 /1322

In a Plasma Cutting Torch a cool gas enters Zone B, where a pilot arc between the electrode and the
torch tip heats and ionises the gas. The main cutting arc then transfers to the workpiece through the
column of plasma gas in Zone C. By forcing the plasma gas and electric arc through a small orifice, the
torch delivers a high concentration of heat to a small area. The stiff, constricted plasma arc is shown
in Zone C. Direct current (DC) straight polarity is used for plasma cutting, as shown in the illustration.
Zone A channels a secondary gas that cools the torch. This gas also assists the high velocity plasma
gas in blowing the molten metal out of the cut allowing for a fast, slag - free cut.

OWE
UPPL

®

Al WORKPIECE

TYPICAL TORCH HEAD DETAIL

2.7.2 Arc Initialisation

There are two main methods for arc initialisation for plasma cutters that are designed for CNC opera-
tion. Whilst other methods are used on some machines (such as scratch start where physical contact
with the material is required), they are unsuited for CNC applications..

2.7.2.1 High Frequency Start

This start type is widely employed, and has been around the longest. Although it is older technology, it
works well, and starts quickly. But, because of the high frequency high voltage power that is required
generated to ionise the air, it has some drawbacks. It often interferes with surrounding electronic
circuitry, and can even damage components. Also a special circuit is needed to create a Pilot arc.
Inexpensive models will not have a pilot arc, and require touching the consumable to the work to
start. Employing a HF circuit also can increase maintenance issues, as there are usually adjustable
points that must be cleaned and readjusted from time to time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 65 /1322

2.7.2.2 Blowback Start

This start type uses air pressure supplied to the cutter to force a small piston or cartridge inside the
torch head back to create a small spark between the inside surface of the consumable, ionising the
air, and creating a small plasma flame. This also creates a ”pilot arc” that provides a plasma flame
that stays on, whether in contact with the metal or not. This is a very good start type that is now used
by several manufacturers. It's advantage is that it requires somewhat less circuitry, is a fairly reliable
and generates far less electrical noise.

For entry level air plasma CNC systems, the blowback style is much preferred to minimise electrical
interference with electronics and standard PCs, but the High frequency start still rules supreme in
larger machines from 200 A and up. These require industrial level PCs and electronics, and even com-
mercial manufacturers have had issues with faults because they have failed to account for electrical
noise in their designs.

2.7.3 CNC Plasma

Plasma operations on CNC machines is quite unique in comparison to milling or turning and is a bit of
an orphan process. Uneven heating of the material from the plasma arc will cause the sheet to bend
and buckle. Most sheets of metal do not come out of the mill or press in a very even or flat state.
Thick sheets (30 mm plus) can be out of plane as much as 50 mm to 100 mm. Most other CNC G-code
operations will start from a known reference or a piece of stock that has a known size and shape and
the G-code is written to rough the excess off and then finally cut the finished part. With plasma the
unknown state of the sheet makes it impossible to generate G-code that will cater for these variances
in the material.

A plasma Arc is oval in shape and the cutting height needs to be controlled to minimise bevelled edges.
If the torch is too high or too low then the edges can become excessively bevelled. It is also critical
that the torch is held perpendicular to the surface.

* Torch to work distance can impact edge bevel

ISSUE

NEGATIVE CUT ANGLE /

SQUARE CUT

POSITIVE CUT ANGLE \

* Negative cut angle: torch too low, increase torch to work distance.

* Positive cut angle: torch too high, decrease torch to work distance.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 66 /1322

Note
A slight variation in cut angles may be normal, as long as it is within tolerance.

The ability to precisely control the cutting height in such a hostile and ever changing environment is
a very difficult challenge. Fortunately there is a very linear relationship between Torch height (Arc
length) and arc voltage as this graph shows.

Plasma Cut Volts vs cut height

This graph was prepared from a sample of about 16,000 readings at varying cut height and the re-
gression analysis shows 7.53 V/mm with 99.4% confidence. In this particular instance this sample was
taken from an Everlast 50 A machine being controlled by LinuxCNC.

Torch voltage then becomes an ideal process control variable to use to adjust the cut height. Let’s
assume for simplicity that voltage changes by 10 V/mm. This can be restated to be 1 Volt per 0.1 mm
(0.004”). Major plasma machine manufacturers (eg Hypertherm, Thermal Dynamics and ESAB), pro-
duce cut charts that specify the recommended cut height and estimated arc voltage at this height as
well as some additional data. So if the arc voltage is 1V higher than the manufacturers specification,
the controller simply needs to lower the torch by 0.1 mm (0.004”) to move back to the desired cut
height. A torch height control unit (THC) is traditionally used to manage this process.

2.7.4 Choosing a Plasma Machine for CNC operations

There are a plethora of plasma machines available on the market today and not all of them are suited
for CNC use. CNC Plasma cutting is a complex operation and it is recommended that integrators
choose a suitable plasma machine. Failure to do this is likely to cause hours and hours of fruitless
trouble shooting trying to work around the lack of what many would consider to be mandatory features.

Whilst rules are made to be broken if you fully understand the reasons the rule apply, we consider a
new plasma table builder should select a machine with the following features:

* Blowback start to minimise electrical noise to simplify construction
* A Machine torch is preferred but many have used hand torches.

» A fully shielded torch tip to allow ohmic sensing
If you have the budget, a higher end machines will supply:

e Manufacturer provided cut charts which will save many hours and material waste calibrating cut
parameters

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 67 /1322

Dry Contacts for ArcOK
¢ Terminals for Arc On switch

* Raw arc voltage or divided arc voltage output

Optionally a RS485 interface if using a Hypertherm plasma cutter and want to control it from the
LinuxCNC console.

Higher duty cycles

In recent times, another class of machine which includes some of these features has become available
at around USD $550. One example is the Herocut55i available on Amazon but there is yet no feedback
from users. This Machine features a blowback torch, ArcOK output, torch start contacts and raw arc
voltage.

2.7.5 Types Of Torch Height Control

Most THC units are external devices and many have a fairly crude “bit bang” adjustment method.
They provide two signals back to the LinuxCNC controller. One turns on if the Z axis should move
up and the other turns on if the Z axis should move down. Neither signal is true if the torch is at
the correct height. The popular Proma 150 THC is one example of this type of THC. The LinuxCNC
THCUD component is designed to work with this type of THC.

With the release of the Mesa THCAD voltage to frequency interface, LinuxCNC was able to decode the
actual torch voltage via an encoder input. This allowed LinuxCNC to control the Z axis and eliminate
external hardware. Early implementations utilising the THCAD replicated the “bit bang” approach.
The LinuxCNC THC component is an example of this approach.

Jim Colt of Hypertherm is on record saying that the best THC controllers were fully integrated into the
CNC controller itself. Of course he was referring to high end systems manufactured by Hypertherm,
Esab, Thermal Dynamics and others such as Advanced Robotic Technology in Australia, little dreaming
that open source could produce systems using this approach that rival high end systems.

The inclusion of external offsets in LinuxCNC V2.8 allowed plasma control in LinuxCNC to rise to a
whole new level. External Offsets refers to the ability to apply an offset to the axis commanded position
external to the motion controller. This is perfect for plasma THC control as a method to adjust the
torch height in real time based on our chosen process control methodology. Following a number
of experimental builds, the Plasmac configuration was incorporated into LinuxCNC 2.8. QtPlasmaC
has superceded Plasmac in LinuxCNC 2.9. This has been an extremely ambitious project and many
people around the globe have been involved in testing and improving the feature set. QtPlasmaC is
unique in that its design goal was to support all THCs including the simple bit bang ones through
to sophisticated torch voltage control, if the voltage is made available to LinuxCNC via a THCAD or
some other voltage sensor. What’s more, QtPlasmaC is designed to be a stand alone system that does
not need any additional G-code subroutines and allows the user to define their own cut charts that
are stored in the system and accessible by a drop-down.

2.7.6 Arc OK Signal

Plasma machines that have a CNC interface contain a set of dry contacts (eg a relay) that close when a
valid arc is established and each side of these contacts are bought out onto pins on the CNC interface.
A plasma table builder should connect one side of these pins to field power and the other to an input
pin. This then allows the CNC controller to know when a valid arc is established and also when an
arc is lost unexpectedly. There is a potential trap here when the input is a high impedance circuit
such as a Mesa card. If the dry contacts are a simple relay, there is a high probability that the current
passing through the relay is less than the minimum current specification. Under these conditions, the
relay contacts can suffer from a buildup of oxide which over time can result in intermittent contact

./qtplasmac.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 68 /1322

operation. To prevent this from happening, a pull down resistor should be installed on the controller
input pin. Care should be taken to ensure that this resistor is selected to ensure the minimum current
passes through the relay and is of sufficient wattage to handle the power in the circuit. Finally, the
resistor should be mounted in such a way that the generated heat does not damage anything whilst
in operation.

If you have an ArcOK signal, it is recommended it is used over and above any synthesised signal to
eliminate potential build issues. A synthesised signal available from an external THC or QtPlasmaC’s
Mode 0 can’t fully replace the ArcOK circuitry in a plasma inverter. Some build issues have been
observed where misconfiguration or incompatibility with the plasma inverter has occurred from a
synthesised ArcOK signal. By and large however, a correctly configured synthesised ArcOK signal is
fine.

A simple and effective ArcOK signal can be achieved with a simple reed relay. Wrap 3 turns of one of
the plasma cutter’s thick cables, e.g. the material clamp cable, around it. Place the relay in an old
pen tube for protection and connect one side of the relay to field power and the other end to your
ArcOK input pin.

2.7.7 Initial Height Sensing

Because the cutting height is such a critical system parameter and the material surface is inherently
uneven, a Z axis mechanism needs a method to sense the material surface. There are three methods
this can be achieved:

1. Current sensing to detect increased motor torque,
2. a “float” switch and an electrical or

3. an “ohmic” sensing circuit that is closed when the torch shield contacts the material.

Current sensing is not a viable technique for DIY tables but float switches and ohmic sensing are
discussed below:

2.7.7.1 Float Switches

The torch is mounted on a sliding stage that can move up when the torch tip contacts the material
surface and trigger a switch or sensor. Often this is achieved under G-code control using the G38
commands. If this is the case, then after initial probing, it is recommended to probe away from the
surface until the probe signal is lost at a slower speed. Also, ensure the switch hysteresis is accounted
for.

Regardless of the probing method used, it is strongly recommended that float switch is implemented
so that there is a fallback or secondary signal to avoid damage to the torch from a crash.

2.7.7.2 Ohmic Sensing

Ohmic sensing relies on contact between the torch and the material acting as a switch to activate an
electrical signal that is sensed by the CNC controller. Provided the material is clean, this can be a
much more accurate method of sensing the material than a float switch which can cause deflection
of the material surface. This ohmic sensing circuit is operating in an extremely hostile environment
so a number of failsafes need to be implemented to ensure safety of both the CNC electronics and
the operator. In plasma cutting, the earth clamp attached to the material is positive and the torch is
negative. It is recommended that:

1. Ohmic sensing only be implemented where the torch has a shield that is isolated from the torch
tip that conveys the cutting arc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 69 /1322

2. The ohmic circuit uses a totally separate isolated power supply that activates an opto-isolated
relay to enable the probing signal to be transmitted to the CNC controller.

3. The positive side of the circuit should be at the torch

4. Both sides of the circuit needs to be isolated by opto-isolated relays until probing is being under-
taken

5. Blocking diodes be used to prevent arc voltage entering the ohmic sensing circuit.

The following is an example circuit that has been proven to work and is compatible with the LinuxCNC
QtPlasmaC configuration.

2.7.7.3 Hypersensing with a MESA THCAD-5

A more sophisticated method of material sensing that eliminates the relays and diodes is to use another
THCAD-5 to monitor the material sensing circuit voltage from an isolated power supply. The advantage
this has is the THCAD is designed for the hostile plasma electrical environment and totally and safely
isolates the logic side from the high voltage side.

To implement this method, a second encoder input is required.

If using a mesa card, different firmware is available to provide 2 additional Encoder A inputs on the
Encoder B and Encoder Index pins. This firmware is available for download for the 7I176E and 7196
boards from the Mesa web site on the product pages.

The THCAD is sensitive enough to see the ramp up in circuit voltage as contact pressure increases.
The ohmic.comp component included in LinuxCNC can monitor the sensing voltage and set a voltage
threshold above which it is deemed contact is made and an output is enabled. By monitoring the volt-
age, a lower “break circuit” threshold can be set to build in strong switch hysteresis. This minimises
false triggering. In our testing, we found the material sensing using this method was more sensitive
and robust as well as being simpler to implement the wiring. One further advantage is using software
outputs instead of physical I/O pins is that it frees up pins to use for other purposes. This advantage
is helpful to get the most out of the Mesa 7196 which has limited I/O pins.

The following circuit diagram shows how to implement a hypersensing circuit.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 70 /1322

Isolated 24V Power
Supaly

Torch

i}

THCAD-5
Ohmic Enable FOUT to Encoder B

Field Power Gutpt Pin
Ground +5V and GND to Stepgen power
Plasma Bit File Required

We used a 15W Mean Well HDR-15 Ultra Slim DIN Rail Supply 24 V DIN rail based isolated power
supply. This is a double insulated Isolation Class II device that will withstand any arc voltage that
might be applied to the terminals.

2.7.7.4 Example HAL Code for Hypersensing

The following HAL code can be pasted into your QtPlasmaC’s custom.hal to enable Ohmic sensing on
Encoder 2 of a 7I76E. Install the correct bit file and connect the THCAD to IDX+ and IDX-. Be sure
to change the calibration settings to agree with your THCAD-5.

--- Load the Component ---
loadrt ohmic names=ohmicsense
addf ohmicsense servo-thread

--- 7I76E ENCODER 2 SETUP FOR OHMIC SENSING- - -
setp hm2 7i76e.0.encoder.02.scale -1
setp hm2_7i76e.0.encoder.02.counter-mode 1

--- Configure the component ---

setp ohmicsense.thcad-0-volt-freq 140200
setp ohmicsense.thcad-max-volt-freq 988300
setp ohmicsense.thcad-divide 32
setp ohmicsense.thcad-fullscale 5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 7171322

setp ohmicsense.volt-divider 4.9
setp ohmicsense.ohmic-threshold 22.0
setp ohmicsense.ohmic-low 1.0

net ohmic-vel ohmicsense.velocity-in <= hm2 7i76e.0.encoder.02.velocity

--- Replace QtPlasmaC’s Ohmic sensing signal ---
unlinkp db_ohmic.in

net ohmic-true ohmicsense.ohmic-on => db ohmic.in

net plasmac:ohmic-enable => ohmicsense.is-probing

2.7.8 THC Delay

When an arc is established, arc voltage peaks significantly and then settles back to a stable voltage
at cut height. As shown by the green line in the image below.

—foE EE E = 3 03 - a n : i T Q6 6yt

It is important for the plasma controller to “wait it out” before auto sampling the torch voltage and
commencing THC control. If enabled too early, the voltage will be above the desired cut Volts and the
torch will be driven down in an attempt to address a perceived over-height condition.

In our testing this varies between machines and material from 0.5 to 1.5 seconds. Therefore a delay
of 1.5 s after a valid ArcOK signal is received before enabling THC control is a safe initial setting. If
you want to shorten this for a given material, LinuxCNC’s Halscope will allow you to plot the torch
voltage and make informed decisions about the shortest safe delay is used.

Note
If the cut velocity is not near the desired cut speed at the end of this delay, the controller should wait
until this is achieved before enabling the THC.

2.7.9 Torch Voltage Sampling

Rather than relying on the manufacturer’s cut charts to set the desired torch voltage, many people
(the writer included) prefer to sample the voltage as the THC is enabled and use that as a set point.

2.7.10 Torch Breakaway

It is recommended that a mechanism is provided to allow the torch to “break away” or fall off in the
case of impact with the material or a cut part that has tipped up. A sensor should be installed to allow
the CNC controller to detect if this has occurred and pause the running program. Usually a break
away is implemented using magnets to secure the torch to the Z axis stage.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 72 /1322

2.7.11 Corner Lock / Velocity Anti-Dive

The LinuxCNC trajectory planner is responsible for translating velocity and acceleration commands
into motion that obey the laws of physics. For example, motion will slow when negotiating a corner.
Whilst this is not a problem with milling machines or routers, this poses a particular problem for
plasma cutting as the arc voltage increases as motion slows. This will cause the THC to drive the
torch down. One of the enormous advantages of a THC control embedded within the LinuxCNC motion
controller is that it knows what is going on at all times. So it becomes a trivial matter to monitor the
current velocity (motion.current-velocity) and to hold THC operation if it falls below a set threshold
(e.g., 10% below the desired feedrate).

2.7.12 Void / Kerf Crossing

If the plasma torch passes over a void while cutting, arc voltage rapidly rises and the THC responds by
violent downward motion which can smash the torch into the material possibly damaging it. This is a
situation that is difficult to detect and handle. To a certain extent it can be mitigated by good nesting
techniques but can still occur on thicker material when a slug falls away. This is the one problem that
has yet to be solved within the LinuxCNC open source movement.

One suggested technique is to monitor the rate of change in torch Volts over time (dv/dt) because
this parameter is orders of magnitude higher when crossing a void than what occurs due to normal
warpage of the material. The following graph shows a low resolution plot of dv/dt (in blue) while
crossing a void. The red curve is a moving average of torch Volts.

So it should be possible to compare the moving average with the dv/dt and halt THC operation once
the dv/dt exceeds the normal range expected due to warpage. More work needs to be done in this
area to come up with a working solution in LinuxCNC.

2.7.13 Hole And Small Shape Cutting

It is recommended that you slow down cutting when cutting holes and small shapes.

John Moore says: “If you want details on cutting accurate small holes look up the sales sheets on
Hypertherm’s True Hole Technology also look on PlasmaSpider, user seanp has posted extensively on
his work using simple air plasma.

The generally accepted method to get good holes from 37mm dia. and down to material thickness
with minimal taper using an air plasma is:

1. Use recommended cutting current for consumables.

2. Use fixed (no THC) recommended cutting height for consumables.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 73 /1322

Cut from 60% to 70% of the recommended feed rate of consumables and materials.

3.
4. Start lead in at or near center of hole.
5. Use perpendicular lead in.

6.

No lead out, either a slight over burn or early torch off depending on what works best for you.

You will need to experiment to get exact hole size because the kerf with this method will be wider
than your usual straight cut.”

This slow down can be achieved by manipulating the feed rate directly in your post processor or by
using adaptive feed and an analog pin as input. This lets you use M67/M68 to set the percentage of
desired feed to cut at.

* Knowing The Feedrate

From the preceding discussion it is evident that the plasma controller needs to know the feed rate
set by the user. This poses a problem with LinuxCNC because the Feedrate is not saved by LinuxCNC
after the G-code is buffered and parsed. There are two approaches to work around this:

1. Remap the F command and save the commanded feedrate set in G-code via an M67/M68 com-
mand.

2. Storing the cut charts in the plasma controller and allow the current feedrate be queried by the
G-code program (as QtPlasmaC does).

A feature newly added to LinuxCNC 2.9 that is useful for plasma cutting are the state tags. This adds
a “tag” that is available to motion containing the current feed and speed rates for all active motion
commands.

2.7.14 1/0 Pins For Plasma Controllers

Plasma cutters require several additional pins. In LinuxCNC, there are no hard and fast rules about
which pin does what. In this discussion we will assume the plasma inverter has a CNC interface and
the controller card has active high inputs are in use (e.g., Mesa 7176E).

Plasma tables can be large machines and we recommend that you take the time to install separate
max/min limit switches and homing switches for each joint. The exception might be the Z axis lower
limit. When a homing switch is triggered the joint decelerates fairly slowly for maximum accuracy.
This means that if you wish to use homing velocities that are commensurate with table size, you can
overshoot the initial trigger point by 50-100 mm. If you use a shared home/limit switch, you have to
move the sensor off the trigger point with the final HOME OFFSET or you will trigger a limit switch
fault as the machine comes out of homing. This means you could lose 50 mm or more of axis travel
with shared home/limit switches. This does not happen if separate home and limit switches are used.

The following pins are usually required (note that suggested connections may not be appropriate for
a QtPlasmaC configuration):

2.7.14.1 Arc OK (input)

* Inverter closes dry contacts when a valid arc is established

Connect Field power to one Inverter ArcOK terminal.

Connect other Inverter Ok Terminal to input pin.

L]

Usually connected to one of the “motion.digital-" <nn> pins for use from G-code with M66

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 74 /1322

2.7.14.2 Torch On (output)

Triggers a relay to close the torch on switch in the inverter.

Connect the torch on terminals on the inverter to the relay output terminals.
Connect one side of the coil to the output pin.

Connect the other side of the coil to Field Power ground.

If a mechanical relay is used, connect a flyback diode (e.g., IN400x series) across the coil terminals
with the band on the diode pointing towards the output pin.

If a Solid State Relay is used, polarity may need to be observed on the outputs.

In some circumstances, the onboard spindle relay on a Mesa card can be used instead of an external
relay.

Usually connected to spindle.0.on.

Warning
It is strongly recommended that the torch cannot be enabled while this pin is false otherwise
the torch will not be extinguished when estop is pressed.

2.7.14.3 Float switch (input)

Used for surface probing. A sensor or switch that is activated if the torch slides up when it hits the
material.

Connect proximity sensor output to chosen input pin. If mechanical switches are used. Connect
one side of the switch to field power and the other side of the switch to input.

Usually connected to motion.probe-input.

2.7.14.4 Ohmic Sensor enable (output)

L]

See the ohmic sensing schematic.
Connect output pin to one side of the isolation relays and the other side to field power ground.

In a non-QtPlasmaC configuration, usually triggered by a = motion.digital-out-~ <nn> so it can be
controlled in G-code by M62/M63/M64/M65.

2.7.14.5 Ohmic Sensing (input)

Take care to follow the ohmic sensing schematic shown previously.

An isolated power supply triggers a relay when the torch shield contacts the material.
Connect field power to one output terminal and the other to the input.

Take care to observe relay polarity if opto-coupled solid State relays are used.

Usually connected to motion.probe-input and may be or’d with the float switch.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 75 /1322

As can be seen, plasma tables are pin intensive and we have already consumed about 15 inputs before
the normal estops are added. Others have other views but it is the writer’s opinion that the Mesa
7176E is preferred over the cheaper 7196 to allow for MPG'’s, scale and axis selection switch and other
features you may wish to add over time. If your table uses servos, there are a number of alternatives.
Whilst there are other suppliers, designing your machine around the Mesa ecosystem will simplify
use of their THCAD board to read arc voltage.

2.7.14.6 Torch Breakaway Sensor

* As mentioned earlier, a breakaway sensor should be installed that is triggered if the torch crashes
and falls off.

¢ Usually, this would be connected to halui.program-pause so the fault can be rectified and the
program resumed.

2.7.15 G-code For Plasma Controllers

Most plasma controllers offer a method to change settings from G-code. LinuxCNC support this via
M67/M68 for analog commands and M62-M65 for digital (on/off commands). How this is implemented is
totally arbitrary. Lets look at how the LinuxCNC QtPlasmaC configuration does this:

Select Material Settings in QtPlasmaC and Use the Feedrate for that Material.

M190 Pn

M66 P3 L3 Q1

F#< hal[plasmac.cut-feed-rate]>
M3 S1

Note
Users with a very large number of entries in the QtPlasmaC Materials Table may need to increase the
Q parameter (e.g., from Q1 to Q2).

2.7.15.1 Enable/Disable THC Operation:

M62 P2 will disable THC (synchronised with motion)
M63 P2 will enable THC (synchronised with motion)
M64 P2 will disable THC (immediately)
M65 P2 will enable THC (immediately)

Reduce Cutting Speeds: (e.g., for hole cutting)

M67 E3 Q0 would set the velocity to 100% of requested~speed
M67 E3 Q40 would set the velocity to 40% of requested~speed
M67 E3 Q60 would set the velocity to 60% of requested~speed
M67 E3 Q100 would set the velocity to 100% of requested~speed

Cutter Compensation:

G41.1 D#< hal[plasmac_run.kerf-width-f]> ; for left of programmed path
G42.1 D#< hal[plasmac_run.kerf-width-f]> for right of programmed path
G40 to turn compensation off

Note
Integrators should familiarise themselves with the LinuxCNC documentation for the various LinuxCNC
G-code commands mentioned above.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 76 /1322

2.7.16 External Offsets and Plasma Cutting

External Offsets were introduced to LinuxCNC with version 2.8. By external, it means that we can
apply an offset external to the G-code that the trajectory planner knows nothing about. It easiest
to explain with an example. Picture a lathe with an external offset being applied by a mathematical
formula to machine a lobe on a cam. So the lathe is blindly spinning around with the cut diameter set
to a fixed diameter and the external offset moves the tool in and out to machine the cam lobe via an
applied external offset. To configure our lathe to machine this cam, we need to allocate some portion
of the axis velocity and acceleration to external offsets or the tool can’t move. This is where the INI
variable OFFSET AV RATIO comes in. Say we decide we need to allocate 20% of the velocity and
acceleration to the external offset to the Z axis. We set this equal to 0.2. The consequence of this is
that your maximum velocity and acceleration for the Lathe’s Z axis is only 80% of what it could be.

External offsets are a very powerful method to make torch height adjustments to the Z axis via a
THC. But plasma is all about high velocities and rapid acceleration so it makes no sense to limit these
parameters. Fortunately in a plasma machine, the Z axis is either 100% controlled by the THC or it
isn’t. During the development of LinuxCNC’s external offsets it was recognised that Z axis motion
by G-code and by THC were mutually exclusive. This allows us to trick external offsets into giving
100 % of velocity and acceleration all of the time. We can do this by doubling the machine’s Z axis
velocity and acceleration settings in the INI file and set OFFSET AV _RATIO = 0.5. That way 100% of
the maximum velocity and acceleration will be available for both probing and THC.

Example: On a metric machine with a NEMA23 motor with a direct drive to a 5 mm ball screw, 60 mm/s
maximum velocity and 700 mm/s? acceleration were determined to be safe values without loss of steps.
For this machine, set the Z axis in the INI file as follows:

[AXIS_Z]
OFFSET AV _RATIO = 0.5
MAX_VELOCITY = 120
MAX_ACCELERATION = 1400

The joint associated with this axis would have the velocity and acceleration variables set as follows:

[JOINT n]
MAX VELOCITY = 60
MAX_ACCELERATION = 700

For further information about external offsets (for version 2.8 or later) please read the [AXIS <letter>]
Section of the INI file document and External Axis Offsets in the LinuxCNC documentation.

2.7.17 Reading Arc Voltage With The Mesa THCAD

The Mesa THCAD board is a remarkably well priced and accurate voltage to frequency converter that
is designed for the hostile noisy electrical environment associated with plasma cutting. Internally it
has a 0-10 V range. This range can be simply extended by the addition of some resistors as described
in the documentation. This board is available in three versions, the newer THCAD-5 with a 0-5V
range, the THCAD-10 with a 0-10 Volt range and the THCAD-300 which is pre-calibrated for a 300 Volt
extended range. Each board is individually calibrated and a sticker is applied to the board that states
the frequency at 0 Volts and full scale. For use with LinuxCNC, it is recommended that the 1/32
divisor be selected by the appropriate link on the board. In this case, be sure to also divide the stated
frequencies by 32. This is more appropriate for the 1 kHz servo thread and also allows more time for
the THCAD to average and smooth the output.

There is a lot of confusion around how to decode the THCAD output. So let’s consider the Mesa 7176E
and the THCAD-10 for a moment with the following hypothetical calibration data:

» Full scale [] 928 kHz (928 kHz/32 = 29 kHz)
* 0V[121.6kHz (121.6kHz/32 = 3.8 kHz)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 77 /1322

Because the full scale is 10 Volts, then the frequency per Volt is:

(29000 Hz - 3800 Hz) / 10V = 2520 Hz per Volt

So assuming we have a 5 Volt input, the calculated frequency would be:

(2520 Hz/V *5V) + 3800 Hz = 16400 Hz

So now it should be fairly clear how to convert the frequency to its voltage equivalent:
Voltage = (frequency [Hz] - 3800 Hz) / (2520 Hz/V)

2.7.17.1 THCAD Connections
On the high voltage side:

¢ Connect the divided or raw arc voltage to Iy+ and Iy-
¢ Connect the interconnect cable shield to the Shield connection.

* Connect the other Shield terminal to frame ground.

Assuming it is connected to a Mesa 7176E, connect the output to the spindle encoder input:

THCAD +5V to TB3 Pin 6 (+5 VP)
THCAD -5V to TB3 Pin 1 (GND)
THCAD FOUT+ to TB3 Pin 7 (ENC A+)
THCAD FOUT- to TB3 Pin 8 (ENC A-)

2.7.17.2 THCAD Initial Testing

Make sure you have the following lines in your INI file (assuming a Mesa 7176E):

setp hm2 _7i76e.0.encoder.00.scale -1
setp hm2 7i76e.0.encoder.00.counter-mode 1

Power up your controller and open Halshow (AXIS: Show Homing Configuration), drill down to find
the hm2 7i76e.0.encoder.00.velocity pin. With 0 Volts applied, it should be hovering around the
0 Volt frequency (3,800 in our example). Grab a 9 Volt battery and connect it to Ix+ and Iy-. For a
THCAD-10 you can now calculate the expected velocity (26,480 in our hypothetical example). If you
pass this test, then you are ready to configure your LinuxCNC plasma controller.

2.7.17.3 Which Model THCAD To Use?

The THCAD-5 is useful if you intend to use it for ohmic sensing. There is no doubt the THCAD-
10 is the more flexible device and it is easy to alter the scaling. However, there is one caveat that
can come into play with some cheaper plasma cutters with an inbuilt voltage divider. That is, the
internal resistors may be sensed by the THCAD as being part of its own external resistance and return
erroneous results. For example, the 16:1 divider on the Everlast plasma cutters needs to be treated
as 24:1 (and 50:1 becomes 75:1). This is not a problem with more reputable brands (e.g., Thermal
Dynamics, Hypertherm, ESAB etc). So if you are seeing lower than expected cutting voltages, it might
be preferable to reconfigure the THCAD to read raw arc voltage.

Remembering that plasma arc voltages are potentially lethal, here are some suggested criteria.

Pilot Arc Start Because there is not likely to be any significant EMI, you should be able to safely
install the THCAD in your control panel if you have followed our construction guidelines.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 78 /1322

e If you do not have a voltage divider, either install scaling resistors inside the plasma cutter and
install the THCAD in the control panel or follow the suggestions for HF start machines.

» If you have a voltage divider, install a THCAD-10 in your control panel. We’ve had no problems with
this configuration with a 120 A Thermal Dynamics plasma cutter.

HF Start Install the THCAD at the inverter as the frequency signal is far more immune to EMI noise.

» Ifyou do not have a voltage divider and you have room inside the plasma cutter, install a THCAD-300
inside the plasma cutter.

* If you do not have a voltage divider and you do not have room inside the plasma cutter, install a
THCAD-10 in a metal case outside the plasma cutter and install 50% of the scaling resistance on
each of the Iy+ and Iy- inside the plasma cutter case so no lethal voltages come out of the case.

» If you have a voltage divider, install a THCAD-10 in a metal case outside the plasma cutter

Raw Arc voltage presented on a connector In this case, regardless of the arc starting method,
there are probably already resistors included in the circuitry to avoid lethal shocks so a THCAD-10 is
advised so this resistance (typically 200 kQ) can be accounted for when choosing a scaling resistor as
these resistors will distort the voltage reported by the THCAD-300.

2.7.18 Post Processors And Nesting
Plasma is no different to other CNC operations in that it is:

1. Designed in CAD (where it is output as a DXF or sometimes SVG format).
2. Processed in CAM to generate final G-code that is loaded to the machine

3. Cutting the parts via CNC G-code commands.

Some people achieve good results with Inkscape and G-code tools but SheetCam is a very well priced
solution and there are a number of post processors available for LinuxCNC. SheetCam has a number
of advanced features designed for plasma cutting and for the price, is a no brainer for anybody doing
regular plasma cutting.

2.7.19 Designing For Noisy Electrical Environments

Plasma cutting is inherently an extremely hostile and noisy electrical environment. If you have EMI
problems things won’t work correctly. You might fire the torch and the computer will reboot in a more
obvious example, but you can have any number of other odd symptoms. They will pretty much all
happen only when the torch is cutting - often when it is first fired.

Therefore, system builders should select components carefully and design from the ground up to cope
with this hostile environment to avoid the impact of Electro-Magnetic Interference (EMI). Failure to
do this could result in countless hours of fruitless troubleshooting.

Choosing ethernet boards such as the Mesa 7176E or the cheaper 7196 helps by allowing the PC to be
located away from the electronics and the plasma machine. This hardware also allows the use of 24
Volt logic systems which are much more noise tolerant. Components should be mounted in a metal
enclosure connected to the mains earth. It is strongly recommended that an EMI filter is installed on
the mains power connection. The simplest way is to use a EMI filtered mains power IEC connector
commonly used on PC’s and electric appliances which allows this to be achieved with no extra work.
Plan the layout of components in the enclosure so that mains power, high voltage motor wires and

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 79 /1322

logic signals are kept as separate as possible from each other. If they do have to cross, keep them at
90 degrees.

Peter Wallace from Mesa Electronics suggests: “If you have a CNC compatible plasma source with a
voltage divider, I would mount the THCAD inside your electronics enclosure with all the other motion
hardware. If you have a manual plasma source and you are reading raw plasma voltage, I would mount
the THCAD as close to the plasma source as possible (even inside the plasma source case if it fits). In
this case, make sure that all low side THCAD connections are fully isolated from the plasma source. If
you use a shielded box for the THCAD, the shield should connect to your electronic enclosure ground,
not the plasma source ground.”

It is recommended to run a separate earth wire from motor cases and the torch back to a central star
grounding point on the machine. Connect the plasma ground lead to this point and optionally an earth
rod driven into the ground as close as possible to the machine (particularly if its a HF start plasma
machine).

External wiring to motors should be shielded and appropriately sized to handle the current passing
through the circuit. The shield should be left unconnected at the motor end and earthed at the control
box end. Consider using an additional pin on any connectors into the control box so the earth can be
extended through into the control box and earthed to the chassis right at the stepper/servo motor
controller itself.

We are aware of at least one commercial system builder who has had problems with induced electrical
noise on the ohmic sensing circuit. Whilst this can be mitigated by using ferrite beads and coiling the
cable, adding a feed through power line filter is also recommended where the ohmic sensing signal
enters the electronics enclosure.

Tommy Berisha, the master of building plasma machines on a budget says: “If on a budget, consider
using old laptop power bricks. They are very good, filtering is good, completely isolated, current
limited (this becomes very important when something goes wrong), and fitting 2 or 3 of them in series
is easy as they are isolated. Be aware that some do have the grounding wired to the negative output
terminal, so it has to be disconnected, simply done by using a power cable with no ground contacts.”

2.7.20 Water Tables

The minimum water level under the cut level of the torch should be around 40 mm, having space under
slats is nice so the water can level and escape during cutting, having a bit of water above the metal
plate being cut is really nice as it gets rid of the little bit of dust, running it submerged is the best way
but not preferable for systems with part time use as it will corrode the torch. Adding baking soda to
the water will keep the table in a nice condition for many years as it does not allow corrosion while
the slats are under water and it also reduces the smell of water vapour. Some people use a water
reservoir with a compressed air inlet so they can push the water from the reservoir up to the water
table on demand and thus allow changes in water levels.

2.7.21 Downdraft Tables

Many commercial tables utilise a down draft design so fans are used to suck air down through the
slats to capture fumes and sparks. Often tables are zoned so only a section below the torch is opened
to the outgoing vent, often using air rams and air solenoids to open shutters. Triggering these zones
is relatively straightforward if you use the axis or joint position from one of the motion pins and the
lincurve component to map downdraft zones to the correct output pin.

2.7.22 Designing For Speed And Acceleration

In plasma cutting, speed and acceleration are king. The higher the acceleration, the less the machine
needs to slow down when negotiating corners. This implies that the gantry should be as light as

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 80/1322

possible without sacrificing torsional stiffness. A 100 mm x 100 mm x 2 mm aluminium box section
has equivalent torsional stiffness to an 80 mm x 80 mm T slot extrusion yet is 62% lighter. So does the
convenience of T slots outweigh the additional construction?

2.7.23 Distance Travelled Per Motor Revolution

Stepper motors suffer from resonance and a direct drive pinion is likely to mean that the motor is
operating under unfavourable conditions. Ideally, for plasma machines a distance of around 15-25 mm
per motor revolution is considered ideal but even around 30 mm per revolutions is still acceptable. A
5 mm pitch ball screw with a 3:1 or 5:1 reduction drive is ideal for the Z axis.

2.7.24 QtPlasmaC LinuxCNC Plasma Configuration

The QtPlasmaC which is comprised of a HAL component (plasmac.hal) plus a complete configurations
for the QtPlasmaC GUI has received considerable input from many in the LinuxCNC Open Source
movement that have advanced the understanding of plasma controllers since about 2015. There has
been much testing and development work in getting QtPlasmaC to its current working state. Ev-
erything from circuit design to G-code control and configuration has been included. Additionally,
QtPlasmaC supports external THC'’s such as the Proma 150 but really comes into its own when paired
with a Mesa controller as this allows the integrator to include the Mesa THCAD voltage to frequency
converter which is purpose built to deal with the hostile plasma environment.

QtPlasmaC is designed to stand alone and includes the ability to include your cutting charts yet also
includes features to be used with a post processor like SheetCam.

The QtPlasmaC system is now included in Version 2.9 and above of LinuxCNC. It is now quite mature
and has been significantly enhanced since the first version of this guide was written. QtPlasmaC
will define LinuxCNC’s plasma support for many years to come as it includes all of the features a
proprietary high end plasma control system at an open source price.

2.7.25 Hypertherm RS485 Control

Some Hypertherm plasma cutters have a RS485 interface to allow the controller (e.g., LinuxCNC) to
set amps.pressure and mode. A number of people have used a non-realtime component written in
Python to achieve this. More recently, QtPlasmaC now supports this interface natively. Refer to the
QtPlasmaC documentation for how to use it.

The combination of a slow baud rate used by Hypertherm and the non-realtime component, make this
fairly slow to alter machine states so it generally not viable to change settings on the fly while cutting.

When selecting a RS485 interface to use at the PC end, users have reported that USB to RS485
interfaces are not reliable. Good reliable results have been achieved using a hardware based RS232
interface (e.g., PCI/PCle or motherboard port) and an appropriate RS485 converter. Some users have
reported success with a Sunix P/N: SER5037A PCI RS2322 card a generic XC4136 RS232 to RS485
converter (which may sometimes include a USB cable as well).

2.7.26 Post Processors For Plasma Cutting

CAM programs (Computer Aided Manufacture) are the bridge between CAD (Computer Aided Design)
and the final CNC (Computer Numerical Control) operation. They often include a user configurable
post processor to define the code that is generated for a specific machine or dialect of G-code.

Many LinuxCNC users are perfectly happy with using Inkscape to convert SVG vector based files to
G-code. If you are using a plasma cutter for hobby or home use, consider this option.

./qtplasmac.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 81/1322

However, if your needs are more complex, probably the best and most reasonably priced solution
is SheetCam. SheetCam supports both Windows and Linux and post processors are available for it
including the QtPlasmaC configuration. SheetCam allows you to nest parts over a full sheet of material
and allows you to configure toolsets and code snippets to suit your needs. SheetCam post processors
are text files written in the Lua programming language and are generally easy to modify to suit your
exact requirements. For further information, consult the SheetCam web site and their support forum.

Another popular post-processor is included with the popular Fusion360 package but the included
post-processors will need some customisation.

LinuxCNC is a CNC application and discussions of CAM techniques other than this introductory dis-
cussion are out of scope of LinuxCNC.

https://sheetcam.com

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 82 /1322

Chapter 3

Configuration Wizards

3.1 Stepper Configuration Wizard

3.1.1 Introduction

LinuxCNC is capable of controlling a wide range of machinery using many different hardware inter-
faces.

StepConf is a program that generates configuration files for LinuxCNC for a specific class of CNC
machine: those that are controlled via a standard parallel port, and controlled by signals of type step
& direction.

StepConf is installed when you install LinuxCNC and is in the CNC menu.

StepConf places a file in the linuxcnc/config directory to store the choices for each configuration you
create. When you change something, you need to pick the file that matches your configuration name.
The file extension is .stepconf.

The StepConf Wizard works best with at least 800 x 600 screen resolution.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 83 /1322

3.1.2 Start Page

cancer | () Start Back | Forward |

Do you wish to:
(@ Create a new configuration

() Modify a configuration already created with this program
(O Import a Mach file

If you have made modifications to this
) configuration outside this program, they will
' be lost when you select "Modify a
configuration”

[] Create a desktop shortcut (symlink) to configuration files.
[] Create a desktop launcher to start LinuxCNC with this configuration.

[] Create simulated hardware configuration.

Figure 3.1: StepConf Entry Page

The three first radio buttons are self-explanatory:

* Create New - Creates a fresh configuration.

* Modify - Modify an existing configuration. After selecting this a file picker pops up so you can select
the .stepconf file for modification. If you made any modifications to the main HAL or the INI file
these will be lost. Modifications to custom.hal and custom postgui.hal will not be changed by the
StepConf Wizard. StepConf will highlight the lastconf that was built.

* Import - Import a Mach configuration file and attempt to convert it to a LinuxCNC config file. After
the import, you will go though the pages of StepConf to confirm/modify the entries. The original
mach XML file will not be changed.

These next options will be recorded in a preference file for the next run of StepConf.

* Create Desktop Shortcut - This will place a link on your desktop to the files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 84 /1322

* Create Desktop Launcher - This will place a launcher on your desktop to start your application.

* Create Simulated Hardware - This allows you to build a config for testing, even if you don’t have
the actual hardware.

3.1.3 Basic Information

- Stepconf -Stepper Configuration Wizard + - O X
Cancel Q Base Information Back | Forward

Machine Name: | -rmill

Configuration directory: ~flinuxcnc/configs/my-mill

Axis configuration: XYZ |1Ir

Reset Default machine units: Inch |v

Driver characteristics: (Multiply by 1000 for times specified in ps or microseconds)

Driver type: Other |v |

= Driver Timing Settings

Step Time: 5000 ﬂﬂ ns
Step Space: 5000 ﬂﬂ ns
Direction Hold: |20000 =|dF|ns
Direction Setup:| 20000 ﬂﬂ ns

(@ One Parport () Two Parports

Base Period Maximum litter: 15000 ﬂﬂ ns
Test Base Min Base Period: 30000 ns
Period Jitter Max step rate: 33333 Hz

Figure 3.2: Basic Information Page

* Create Simulated Hardware - This allows you to build a config for testing, even if you don’t have
the actual hardware.

* Machine Name - Choose a name for your machine. Use only uppercase letters, lowercase letters,
digits, - and .

» Axis Configuration - Choose XYZ (Mill), XYZA (4-axis mill) or XZ (Lathe).

* Machine Units - Choose Inch or mm. All subsequent entries will be in the chosen units. Changing
this also changes the default values in the Axes section. If you change this after selecting values in
any of the axes sections, they will be over-written by the default values of the selected units.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 85 /1322

* Driver Type - If you have one of the stepper drivers listed in the pull down box, choose it. Otherwise,
select Other and find the timing values in your driver’s data sheet and enter them as nano seconds
in the Driver Timing Settings. If the data sheet gives a value in microseconds, multiply by 1000.
For example, enter 4.5 ps as 4500 ns.

A list of some popular drives, along with their timing values, is on the LinuxCNC.org Wiki under
Stepper Drive Timing.

Additional signal conditioning or isolation such as optocouplers and RC filters on break out boards
can impose timing constraints of their own, in addition to those of the driver. You may find it
necessary to add some time to the drive requirements to allow for this.

The LinuxCNC Configuration Selector has configs for Sherline already configured. * Step Time -
How long the step pulse is on in nano seconds. If your not sure about this setting a value of 20,000
will work with most drives. * Step Space - Minimum time between step pulses in nano seconds.
If your not sure about this setting a value of 20,000 will work with most drives. * Direction Hold
- How long the direction pin is held after a change of direction in nanoseconds. If your not sure
about this setting a value of 20,000 will work with most drives. * Direction Setup - How long before
a direction change after the last step pulse in nanoseconds. If your not sure about this setting a
value of 20,000 will work with most drives. * One / Two Parport - Select how many parallel port are
to be configured. * Base Period Maximum Jitter - Enter the result of the Latency Test here. To run a
latency test press the Test Base Period Jitter button. See the Latency Test section for more details.

| LinuxCNC / HAL Latency Test 4+ -0 X

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring LinuxCNC.

While the test is running, you should "abuse" the computer. Move windows
around on the screen. surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1ms): 1001058 4578 996764

Base thread (25us): 31605 6693 25001

Reset Statistics

Figure 3.3: Latency Test

* Max Step Rate - StepConf automatically calculates the Max Step Rate based on the driver charac-
teristics entered and the latency test result.

e Min Base Period - StepConf automatically determines the Min Base Period based on the driver
characteristics entered and latency test result.

The important number from the result of the Latency Test is the max jitter. In the example above,
9075 nanoseconds (ns), or 9.075 microseconds (11s), is the highest jitter. Enter the max jitter it in the
Base Period Maximum Jitter box.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 86 /1322

3.1.4 Parallel Port Setup

- Stepconf -Stepper Configuration Wizard + - 0O X
Cancel @ Parallel Port 1 Back Forward

Cutputs (PC to Mill): Invert Inputs (Mill to PC): Invert

Pin1: ESTOP Out I~ 1O Pin 10: Unused I~ O

Pin2: X Step > O Pin 11: Unused A4lm

Pin 3: X Direction I~ 1O Pin 12: Unused I~ O

Pind: Y Step I~ O Pin 13: Unused Adlm

Pin5: Y Direction I~ O Pin 15: Unused I~ O

Pin6: Z Step I~ O

PinZ: Z Direction I~ O

Pin 8: A Step |v [] Parport Base Address:

Pin 9: A Direction I~ O 0

Pin 14: Spindle CW |v [] Output pinout presets:

Pin 16: Spindle PWM |+ | . Sherline 4

Pin 17: Amplifier Enable |v [] Preset

Figure 3.4: Parallel Port Setup Page

You may specify the address as a hexadecimal (often 0x378) or as linux’s default port number (probably
0)

For each pin, choose the signal which matches your parallel port pinout. Turn on the invert check box
if the signal is inverted (0V for true/active, 5V for false/inactive).

e Output pinout presets - Automatically set pins 2 through 9 according to the Sherline standard (Di-
rection on pins 2, 4, 6, 8) or the Xylotex standard (Direction on pins 3, 5, 7, 9).

* Inputs and Outputs - If the input or output is not used set the option to Unused.

» External E-Stop - This can be selected from an input pin drop down box. A typical E-Stop chain uses
all normally closed contacts.

* Homing & Limit Switches - These can be selected from an input pin drop down box for most config-
urations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 87 /1322

* Charge Pump - If your driver board requires a charge pump signal select Charge Pump from the
drop down list for the output pin you wish to connect to your charge pump input. The charge pump
output is connected to the base thread by StepConf. The charge pump output will be about 1/2 of
the maximum step rate shown on the Basic Machine Configuration page.

* Plasma Arc Voltage - If you require a Mesa THCAD to input a plasma arc voltage then select Plasma
Arc Voltage from the list of output pins. This will enable a THCAD page during the setup procedure
for the entry of the card parameters.

3.1.5 Parallel Port 2 Setup

- Stepconf -Stepper Configuration Wizard + - 0O X
Cancel @ Parallel Port 2 Back Forward

Outputs (PC to Mill): Invert Inputs (Mill to PC): Invert
Pin 1: Unused |‘lr []

Pin10: Unused v
Pin2: Unused |' [] n 22 AUsE L
Pin3: Unused |v []
Pind: Unused |" [] Pin11: Unused « | []
Pin5: Unused |' []
Fin b: Unused |‘lr [

Pin12: Unused - | []
Pin 7: Unused |v []
Fin 8: Unused |‘lr]
Pin9: Unused |,.F [] Pin13: Unused - | []
Pin 14: Unused |‘lr |:|
: . |1
EinLE [HRlsEd |v L Pin15: Unused - |[]

Out

Pin17: Unused |‘lr |:| . |v

Figure 3.5: Parallel Port 2 Setup Page

The second Parallel port (if selected) can be configured and It’s pins assigned on this page. No step and
direction signals can be selected. You may select in or out to maximizes the number of input/output
pins that are available. You may specify the address as a hexadecimal (often 0x378) or as linux’s
default port number (probably 1).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 88 /1322

3.1.6 Axis Configuration

- Stepconf -S5tepper Configuration Wizard + - 0O X

Cancel @ Axis X Back ‘ Forward

Motor steps per revolution: IEIE 5% Test this axis
Driver Microstepping:

Bulley teeth (Motor:Leadscrew): : |1
Leadscrew Pitch: 20 rev /in
Maximum Velocity: 1 in/s
Maximum Acceleration: 30 in/fs?
Home location: 0

Table travel:] thE
Home Switch location:

Home Search velocity:

Home Latch direction: Same |'r

Time to accelerate to max speed: 0.0333 s
Distance to accelerate to max speed: 0.0167 in

Fulse rate at max speed: B0O00.0 Hz

Axis Scale: 200 x 2 x (1.0 + 1.0) x 20.000 = 8000.0 Steps/in

Figure 3.6: Axis Configuration Screen

* Motor Steps Per Revolution - The number of full steps per motor revolution. If you know how many
degrees per step the motor is (e.g., 1.8 degree), then divide 360 by the degrees per step to find the
number of steps per motor revolution.

» Driver Microstepping - The amount of microstepping performed by the driver. Enter 2 for half-
stepping.

* Pulley Ratio - If your machine has pulleys between the motor and leadscrew, enter the ratio here.
If not, enter 1:1.

* Leadscrew Pitch - Enter the pitch of the leadscrew here. If you chose Inch units, enter the number
of threads per inch. If you chose mm units, enter the number of millimeters per revolution (e.g.,
enter 2 for 2mm/rev). If the machine travels in the wrong direction, enter a negative number here
instead of a positive number, or invert the direction pin for the axis.

e Maximum Velocity - Enter the maximum velocity for the axis in units per second.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 89 /1322

e Maximum Acceleration - The correct values for these items can only be determined through exper-
imentation. See Finding Maximum Velocity to set the speed and Finding Maximum Acceleration to
set the acceleration.

* Home Location - The position the machine moves to after completing the homing procedure for this
axis. For machines without home switches, this is the location the operator manually moves the
machine to before pressing the Home button. If you combine the home and limit switches you must
move off of the switch to the home position or you will get a joint limit error.

» Table Travel - The range of travel for that axis based on the machine origin. The home location must
be inside the Table Travel and not equal to one of the Table Travel values.

e Home Switch Location - The location at which the home switch trips or releases relative to the
machine origin. This item and the two below only appear when Home Switches were chosen in the
Parallel Port Pinout. If you combine home and limit switches the home switch location can not be
the same as the home position or you will get a joint limit error.

* Home Search Velocity - The velocity to use when searching for the home switch. If the switch is
near the end of travel, this velocity must be chosen so that the axis can decelerate to a stop before
hitting the end of travel. If the switch is only closed for a short range of travel (instead of being
closed from its trip point to one end of travel), this velocity must be chosen so that the axis can
decelerate to a stop before the switch opens again, and homing must always be started from the
same side of the switch. If the machine moves the wrong direction at the beginning of the homing
procedure, negate the value of Home Search Velocity.

* Home Latch Direction - Choose Same to have the axis back off the switch, then approach it again
at a very low speed. The second time the switch closes, the home position is set. Choose Opposite
to have the axis back off the switch and when the switch opens, the home position is set.

e Time to accelerate to max speed - Time to reach maximum speed calculated from Max Acceleration
and Max Velocity.

e Distance to accelerate to max speed - Distance to reach maximum speed from a standstill.

* Pulse rate at max speed - Information computed based on the values entered above. The greatest
Pulse rate at max speed determines the BASE PERIOD. Values above 20000Hz may lead to slow
response time or even lockups (the fastest usable pulse rate varies from computer to computer)

* Axis SCALE - The number that will be used in the INI file [SCALE] setting. This is how many steps
per user unit.

» Test this axis - This will open a window to allow testing for each axis. This can be used after filling
out all the information for this axis.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 90/1322

| X Axis Test + X
Velaocity: i =|4r|in/s

Acceleration: 30.0 = |gp|in /52

w @]

Test Area: + |' |15.U =|dk|in 2% Run

Figure 3.7: Axis Test

Test this axis is a basic tester that only outputs step and direction signals to try different values for
acceleration and velocity.

Important

In order to use test this axis you have to manually enable the axis if this is required. If your
driver has a charge pump you will have to bypass it. Test this axis does not react to limit switch
inputs. Use with caution.

3.1.6.1 Finding Maximum Velocity

Begin with a low Acceleration (for example, 2 inches/s? or 50 mm/s?) and the velocity you hope to
attain. Using the buttons provided, jog the axis to near the center of travel. Take care because with
a low acceleration value, it can take a surprising distance for the axis to decelerate to a stop.

After gauging the amount of travel available, enter a safe distance in Test Area, keeping in mind that
after a stall the motor may next start to move in an unexpected direction. Then click Run. The machine
will begin to move back and forth along this axis. In this test, it is important that the combination of
Acceleration and Test Area allow the machine to reach the selected Velocity and cruise for at least
a short distance — the more distance, the better this test is. The formulad = 0.5 * v * v/a gives
the minimum distance required to reach the specified velocity with the given acceleration. If it is
convenient and safe to do so, push the table against the direction of motion to simulate cutting forces.
If the machine stalls, reduce the speed and start the test again.

If the machine did not obviously stall, click the Run button off. The axis now returns to the position
where it started. If the position is incorrect, then the axis stalled or lost steps during the test. Reduce
Velocity and start the test again.

If the machine doesn’t move, stalls, or loses steps, no matter how low you turn Velocity, verify the
following:

* Correct step waveform timings

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 91/1322

* Correct pinout, including Invert on step pins
* Correct, well-shielded cabling

* Physical problems with the motor, motor coupling, leadscrew, etc.

Once you have found a speed at which the axis does not stall or lose steps during this testing procedure,
reduce it by 10% and use that as the axis Maximum Velocity.

3.1.6.2 Finding Maximum Acceleration

With the Maximum Velocity you found in the previous step, enter the acceleration value to test. Using
the same procedure as above, adjust the Acceleration value up or down as necessary. In this test, it is
important that the combination of Acceleration and Test Area allow the machine to reach the selected
Velocity. Once you have found a value at which the axis does not stall or lose steps during this testing
procedure, reduce it by 10% and use that as the axis Maximum Acceleration.

3.1.7 Spindle Configuration

Cancel Q Spindle Back Forward
PWM Rate: Ilﬂﬂ.ﬂ Hz Enter 0 Hz for "PDM" mode
Calibration:
Speed 1: 100.0 PWM 1:10.2
Speed 2: 800.0 PWM 2:/0.8

Figure 3.8: Spindle Configuration Page

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 92 /1322

This page only appears when Spindle PWM is chosen in the Parallel Port Pinout page for one of the
outputs.

3.1.7.1 Spindle Speed Control

If Spindle PWM appears on the pinout, the following information should be entered:

e PWM Rate - The carrier frequency of the PWM signal to the spindle. Enter 0 for PDM mode, which
is useful for generating an analog control voltage. Refer to the documentation for your spindle
controller for the appropriate value.

e Speed 1 and 2, PWM 1 and 2 - The generated configuration file uses a simple linear relationship
to determine the PWM value for a given RPM value. If the values are not known, they can be
determined. For more information see Determining Spindle Calibration.

3.1.7.2 Spindle-synchronized motion

When the appropriate signals from a spindle encoder are connected to LinuxCNC via HAL, LinuxCNC
supports lathe threading. These signals are:

e Spindle Index - Is a pulse that occurs once per revolution of the spindle.

* Spindle Phase A - This is a pulse that occurs in multiple equally-spaced locations as the spindle
turns.

e Spindle Phase B (optional) - This is a second pulse that occurs, but with an offset from Spindle
Phase A. The advantages to using both A and B are direction sensing, increased noise immunity,
and increased resolution.

If Spindle Phase A and Spindle Index appear on the pinout, the following information should be en-
tered:

e Use Spindle-At-Speed - With encoder feedback one can choose to have LinuxCNC wait for the spindle
to reach the commanded speed before feed moves. Select this option and set the close enough scale.

* Speed Display Filter Gain - Setting for adjusting the stability of the visual spindle speed display.

* Cycles per revolution - The number of cycles of the Spindle A signal during one revolution of the
spindle. This option is only enabled when an input has been set to Spindle Phase A

* Maximum speed in thread - The maximum spindle speed used in threading. For a high spindle RPM
or a spindle encoder with high resolution, a low value of BASE PERIOD is required.

3.1.7.3 Determining Spindle Calibration

Enter the following values in the Spindle Configuration page:

Speed 1: 0 PWM 1: 0
Speed 2: 1000 PWM 2: 1

Finish the remaining steps of the configuration process, then launch LinuxCNC with your configura-
tion. Turn the machine on and select the MDI tab. Start the spindle turning by entering: M3 S100.
Change the spindle speed by entering a different S-number: S800. Valid numbers (at this point) range
from 1 to 1000.

For two different S-numbers, measure the actual spindle speed in RPM. Record the S-numbers and
actual spindle speeds. Run StepConf again. For Speed enter the measured speed, and for PWM enter
the S-number divided by 1000.

Because most spindle drivers are somewhat nonlinear in their response curves, it is best to:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

93/1322

* Make sure the two calibration speeds are not too close together in RPM.

* Make sure the two calibration speeds are in the range of speeds you will typically use while milling.

For instance, if your spindle will go from 0 RPM to 8000 RPM, but you generally use speeds from 400
RPM (10%) to 4000 RPM (100%), then find the PWM values that give 1600 RPM (40%) and 2800 RPM

(70%).

3.1.8 Options

Stepconf -Stepper Configuration Wizard

‘ Cancel Optiuns | Back
J

-

W s x

‘l Forward |

@ Use AXIS Screen () Use Gmoccapy Screen
Onscreen prompt for manual tool change
|| Include Halui user interface component
|| Include custom PyVCP GUI panel
<~ Set pyVCP options
Blank program

Spindle speed display _Display
snsample

=) ustom pro i
Existing custom program panel

nclude connections to HAL
|| Include Classicladder PLC
» Set Ladder Options

Figure 3.9: Advanced Options Configuration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 94 /1322

e Include Halui - This will add the Halui user interface component. See the HALUI Chapter for more
information on.

e Include PyVCP - This option adds the PyVCP panel base file or a sample file to work on. See the
PyVCP Chapter for more information.

e Include ClassicLadder PLC - This option will add the ClassicLadder PLC (Programmable Logic Con-
troller). See the ClassicLadder Chapter for more information.

* Onscreen Prompt For Tool Change - If this box is checked, LinuxCNC will pause and prompt you to
change the tool when M6 is encountered. This feature is usually only useful if you have presettable
tools.

3.1.9 Complete Machine Configuration

Click Apply to write the configuration files. Later, you can re-run this program and tweak the settings
you entered before.

3.1.10 Axis Travels and Homes

. >+

@b

|||||I||| |||||I|||||||||I|||||||||I|||||||||I||||||||| |||||||||I ||||||||I|||||||||I|||||||||I|||||
-1 0 1

! A !

(d {

Figure 3.10: Axis Travel and Home

For each axis, there is a limited range of travel. The physical end of travel is called the hard stop.

Warning
If @ mechanical hard stop were to be exceeded, the screw or the machine frame would be
damaged!

Before the hard stop there is a limit switch. If the limit switch is encountered during normal operation,
LinuxCNC shuts down the motor amplifier. The distance between the hard stop and limit switch must
be long enough to allow an unpowered motor to coast to a stop.

Before the limit switch there is a soft limit. This is a limit enforced in software after homing. If a MDI
command or G-code program would pass the soft limit, it is not executed. If a jog would pass the soft
limit, it is terminated at the soft limit.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 95/1322

The home switch can be placed anywhere within the travel (between hard stops). As long as external
hardware does not deactivate the motor amplifiers when the limit switch is reached, one of the limit
switches can be used as a home switch.

The zero position is the location on the axis that is 0 in the machine coordinate system. Usually the
zero position will be within the soft limits. On lathes, constant surface speed mode requires that
machine X=0 correspond to the center of spindle rotation when no tool offset is in effect.

The home position is the location within travel that the axis will be moved to at the end of the homing
sequence. This value must be within the soft limits. In particular, the home position should never be
exactly equal to a soft limit.

3.1.10.1 Operating without Limit Switches

A machine can be operated without limit switches. In this case, only the soft limits stop the machine
from reaching the hard stop. Soft limits only operate after the machine has been homed.

3.1.10.2 Operating without Home Switches

A machine can be operated without home switches. If the machine has limit switches, but no home
switches, it is best to use a limit switch as the home switch (e.g., choose Minimum Limit + Home X
in the pinout). If the machine has no switches at all, or the limit switches cannot be used as home
switches for another reason, then the machine must be homed by eye or by using match marks.
Homing by eye is not as repeatable as homing to switches, but it still allows the soft limits to be
useful.

3.1.10.3 Home and Limit Switch wiring options

The ideal wiring for external switches would be one input per switch. However, the PC parallel port
only offers a total of 5 inputs, while there are as many as 9 switches on a 3-axis machine. Instead,
multiple switches are wired together in various ways so that a smaller number of inputs are required.

The figures below show the general idea of wiring multiple switches to a single input pin. In each
case, when one switch is actuated, the value seen on INPUT goes from logic HIGH to LOW. However,
LinuxCNC expects a TRUE value when a switch is closed, so the corresponding Invert box must be
checked on the pinout configuration page. The pull up resistor show in the diagrams pulls the input
high until the connection to ground is made and then the input goes low. Otherwise the input might
float between on and off when the circuit is open. Typically for a parallel port you might use 47 kQ;.

olo

Pull-Up
Resistor

>

| INPUT .

olo

1

Figure 3.11: Normally Closed Switches (N/C) wiring in series (simplified diagram)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 96 /1322

}_4

o
Q

Pull-Up
Resistor

}_4

O
o

| INPUT .

P

O
Q

Figure 3.12: Normally Open Switches (N/O) wiring in parallel (simplified diagram)

The following combinations of switches are permitted in StepConf:

* Combine home switches for all axes

* Combine limit switches for all axes

* Combine both limit switches for one axis

* Combine both limit switches and the home switch for one axis

¢ Combine one limit switch and the home switch for one axis

The last two combinations are also appropriate when the type contact + home is used.

3.2 Mesa Configuration Wizard

PnCconf is made to help build configurations that utilize specific Mesa Anything I/O products.

It can configure closed loop servo systems or hardware stepper systems. It uses a similar wizard
approach as StepConf (used for software stepping, parallel port driven systems).

PnCconf is still in a development stage (Beta) so there are some bugs and lacking features. Please
report bugs and suggestions to the LinuxCNC forum page or mailing list.

There are two trains of thought when using PnCconf:

One is to use PnCconf to always configure your system - if you decide to change options, reload
PnCconf and allow it to configure the new options. This will work well if your machine is fairly standard
and you can use custom files to add non standard features. PnCconf tries to work with you in this
regard.

The other is to use PnCconf to build a config that is close to what you want and then hand edit every-
thing to tailor it to your needs. This would be the choice if you need extensive modifications beyond
PnCconf’s scope or just want to tinker with / learn about LinuxCNC.

You navigate the wizard pages with the forward, back, and cancel buttons there is also a help button
that gives some help information about the pages, diagrams and an output page.

Tip
PnCconf’s help page should have the most up to date info and has additional details.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 97 /1322

3.2.1 Step by Step Instructions

EMC2 Configuration Wizard Beta 1 Version

This program creates configuration
files for "Closed Loop Servo"
and hardware stepper
machines

Cancel l[Back] [Forward

Figure 3.13: PnCconf Splash

3.2.2 Create or Edit

This allows you to select a previously saved configuration or create a new one. If you pick Modify a
configuration and then press Next a file selection box will show. PnCconf preselects your last saved
file. Choose the config you wish to edit. If you made any changes to the main HAL or INI files PnCconf
will overwrite those files and those changes will be lost. Some files will not be over written and
PnCconf places a note in those files. It also allows you to select desktop shortcut / launcher options.
A desktop shortcut will place a folder icon on the desktop that points to your new configuration files.
Otherwise you would have to look in your home folder under linuxcnc/configs.

A Desktop launcher will add an icon to the desktop for starting your config directly. You can also
launch it from the main menu by using the Configuration Selector LinuxCNC found in CNC menu and
selecting your config name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 98 /1322

3.2.3 Basic Machine Information

Machine Basics
Machine Name: [my_EMC_machine]
Configuration directory: ~femc2/configs/my_EMC_machine

Axis configuration: | xXYZ < |

Machine units: | Inch = ‘

Computer Response Time

Actual Servo Period: 1000000 (2| ns

Recommend servo period: 1000000
1/O Control Ports/ Boards
Mesa0 PCI / Parport Card: | 5i20 S |

Test Base
Period Jitter

[[] Mesal PCl / Parport Card:

First Parport Address: | 0x0278 |lout ¢ | Add-on PCI

[] Second Parport Address: Parport
Address
[Third Parport Address: Search

GUI frontend list
@ Axis
) TKemc
 Mini
r Touchy

Help | Cancel || Back || Forward |

Figure 3.14: PnCconf Basic

Machine Basics
If you use a name with spaces PnCconf will replace the spaces with underscores (as a loose rule
Linux doesn’t like spaces in names). Picking an axis configuration selects what type of machine
you are building and what axes are available. The "Machine units” selector allows data entry of
metric or imperial units in later steps in the configuration process.

Tip
Defaults are not converted when using metric so make sure they are sane values!

Computer Response Time
The servo period sets the heart beat of the system. Latency describes the difference between
the time that the system is scheduled to perform and action and the time that it actually does

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 99 /1322

Testi

perform the action. Just like a railroad, LinuxCNC requires everything on a very tight and consis-
tent timeline or bad things happen. LinuxCNC requires and uses a real-time operating system,
which just means it has a low-latency (lateness) response time. When LinuxCNC requires and is
performing calculations, it cannot be interrupted by lower priority requests (such as user input
to screen buttons or drawing etc).

ng the latency is crucial and a key thing to check before proceeding further. Please follow the

directions on the Latency Test page before proceeding further.

Now

we are happy with the latency and must pick a servo period. In most cases a servo period of

1000000 ns is fine (that gives a 1 kHz servo calculation rate - 1000 calculations a second). If you
are building a closed loop servo system that controls torque (current) rather than velocity (voltage)

a fas

ter rate would be better - something like 200000 (5 kHz calculation rate). The problem with

lowering the servo rate is that it leaves less time available for the computer to do other things besides
LinuxCNC'’s calculations. Typically the display (GUI) becomes less responsive. You must decide on a
balance. Keep in mind that if you tune your closed loop servo system then change the servo period
you probably will need to tune them again.

I/0

Control Ports/Boards
PnCconf is capable of configuring machines that have up to two Mesa boards and three parallel
ports. Parallel ports can only be used for simple low speed (servo rate) I/0O.

Mesa

You must choose at least one Mesa board as PnCconf will not configure the parallel ports to count
encoders or output step or PWM signals. The mesa cards available in the selection box are based
on what PnCconf finds for firmware on the systems. There are options to add custom firmware
and/or blacklist (ignore) some firmware or boards using a preference file. If no firmware is found
PnCconf will show a warning and use internal sample firmware - no testing will be possible. One
point to note is that if you choose two PCI Mesa cards there currently is no way to predict which
card is 0 and which is 1 - you must test - moving the cards could change their order. If you
configure with two cards both cards must be installed for tests to function.

Parallel Port

Up to 3 parallel ports (referred to as parports) can be used as simple I/O. You must set the address
of the parport. You can either enter the Linux parallel port numbering system (0,1,or 2) or enter
the actual address. The address for an on board parport is often 0x0278 or 0x0378 (written in
hexadecimal) but can be found in the BIOS page. The BIOS page is found when you first start
your computer you must press a key to enter it (such as F2). On the BIOS page you can find
the parallel port address and set the mode such as SPP, EPP, etc on some computers this info is
displayed for a few seconds during start up. For PCI parallel port cards the address can be found
by pressing the parport address search button. This pops up the help output page with a list of
all the PCI devices that can be found. In there should be a reference to a parallel port device
with a list of addresses. One of those addresses should work. Not all PCI parallel ports work
properly. Either type can be selected as in (maximum amount of input pins) or out (maximum
amount of output pins).

GUI Front-end list

AXIS

This specifies the graphical display screens LinuxCNC will use. Each one has different option.

 fully supports lathes.

¢ is the most developed and used front-end

* is designed to be used with mouse and keyboard

* is tkinter based so integrates PyVCP (Python based virtual control panels) naturally.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 100/1322

* has a 3D graphical window.

* allows VCP integrated on the side or in center tab
TkLinuxCNC

* hi contrast bright blue screen
* separate graphics window

* no VCP integration
Touchy

* Touchy was designed to be used with a touchscreen, some minimal physical switches and a MPG
wheel.

* requires cycle-start, abort, and single-step signals and buttons

It also requires shared axis MPG jogging to be selected.

* is GTK based so integrates GladeVCP (virtual control panels) naturally.
 allows VCP panels integrated in the center Tab

* has no graphical window

* look can be changed with custom themes
QtPlasmaC

* fully featured plasmac configuration based on the QtVCP infrastructure.
* mouse/keyboard operation or touchscreen operation

* no VCP integration

3.2.4 External Configuration

This page allows you to select external controls such as for jogging or overrides.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 101 /1322

[] USB Joystick Jogging

> Details

[External Button Jogging

[* Details

External MPG Jogging

= Details
@ Shared MPG / selectable axis
() Mpg per axis
selectable MPG increments
= increments

default | 0.0000 i . i Mux options
a) 0.0001 i) i
b) |0.0005 i . i use debounce :|Sec
ab) |0.0010 i . i use gray code
c) 0.0050 i . in [ignore all inputs false
ac) 0.0100 i i
bc) 0.0500
abc) | 0.1000

[External Feed Override

[* Details

[Max Velocity Override

[> Details

[External Spindle Override
[> Details

| Help | | cancel || Back || Ec-nruard:

Figure 3.15: External Controls

If you select a Joystick for jogging, You will need it always connected for LinuxCNC to load. To use
the analog sticks for useful jogging you probably need to add some custom HAL code. MPG jogging
requires a pulse generator connected to a MESA encoder counter. Override controls can either use
a pulse generator (MPG) or switches (such as a rotary dial). External buttons might be used with a
switch based OEM joystick.

Joystick jogging
Requires a custom device rule to be installed in the system. This is a file that LinuxCNC uses to
connect to Linux’s device list. PnCconf will help to prepare this file.

e Search for device rule will search the system for rules, you can use this to find the name of
devices you have already built with PnCconf.

* Add a device rule will allow you to configure a new device by following the prompts. You will
need your device available.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 102 /1322

* test device allows you to load a device, see its pin names and check its functions with halmeter.

joystick jogging uses HALUI and hal input components.

External buttons
allows jogging the axis with simple buttons at a specified jog rate. Probably best for rapid jogging.

MPG Jogging
Allows you to use a Manual Pulse Generator to jog the machine’s axis.

MPG'’s are often found on commercial grade machines. They output quadrature pulses that can be
counted with a MESA encoder counter. PnCconf allows for an MPG per axis or one MPG shared with
all axis. It allows for selection of jog speeds using switches or a single speed.

The selectable increments option uses the mux16 component. This component has options such as
debounce and gray code to help filter the raw switch input.

Overrides
PnCconf allows overrides of feed rates and/or spindle speed using a pulse generator (MPG) or
switches (eg. rotary).

3.2.5 GUI Configuration

Here you can set defaults for the display screens, add virtual control panels (VCP), and set some
LinuxCNC options..

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

103 /1322

Frontend
GUI Options
~ General GUI Defaults

Position_offset Relative v Max Spindle Override v| %

Position feedback | Actual

<>

Min Spindle Override | %

Max Feed Override | %

[AXIS defaults
> Touchy
Virtual Control Panel
[Include custom PyVCP GUI panel

> Pyvcp Details
[Include custom GladeVCP GUI panel
> Gladevcp Details
= Defaults and Options

Require homing before MDI / Running [1 Move spindle up before tool change
Popup Toolchange Prompt [] Restore joint position after shutdown
[] Leave spindle on during tool change [Random position toolchanger

[Force individual manual homing

Help

Figure 3.16: GUI Configuration

Front-end GUI Options

Cancel Back

The default options allows general defaults to be chosen for any display screen.

AXIS defaults are options specific to AXIS. If you choose size, position or force maximize options then
PnCconf will ask if it is alright to overwrite a preference file (.axisrc). Unless you have manually added
commands to this file it is fine to allow it. Position and force max can be used to move AXIS to a second

monitor if the system is capable.

Touchy defaults are options specific to Touchy. Most of Touchy’s options can be changed while Touchy
is running using the preference page. Touchy uses GTK to draw its screen, and GTK supports themes.
Themes controls the basic look and feel of a program. You can download themes from the net or edit
them yourself. There are a list of the current themes on the computer that you can pick from. To help
some of the text to stand out PnCconf allows you to override the Themes’s defaults. The position and
force max options can be used to move Touchy to a second monitor if the system is capable.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 104 /1322

QtPlasmaC options are specific to QtPlasmac, any common options that are not required will be dis-
abled. If QtPlasmac is selected then the following screen will be a user button setup screen that is
specific to QtPlasmaC and VCP options will not be available.

VCP options
Virtual Control Panels allow one to add custom controls and displays to the screen. AXIS and
Touchy can integrate these controls inside the screen in designated positions. There are two
kinds of VCPs - PyVCP which uses Tkinter to draw the screen and GladeVCP that uses GTK to
draw the screen.

PyvCP
PyVCPs screen XML file can only be hand built. PyVCPs fit naturally in with AXIS as they both
use TKinter.

HAL pins are created for the user to connect to inside their custom HAL file. There is a sample spindle
display panel for the user to use as-is or build on. You may select a blank file that you can later add
your controls widgets to or select a spindle display sample that will display spindle speed and indicate
if the spindle is at requested speed.

PnCconf will connect the proper spindle display HAL pins for you. If you are using AXIS then the panel
will be integrated on the right side. If not using AXIS then the panel will be separate stand-alone from
the front-end screen.

You can use the geometry options to size and move the panel, for instance to move it to a second
screen if the system is capable. If you press the Display sample panel button the size and placement
options will be honored.

GladeVCP
GladeVCPs fit naturally inside of Touchy screen as they both use GTK to draw them, but by
changing GladeVCP’s theme it can be made to blend pretty well in AXIS (try Redmond).

It uses a graphical editor to build its XML files. HAL pins are created for the user to connect to, inside
of their custom HAL file.

GladeVCP also allows much more sophisticated (and complicated) programming interaction, which
PnCconf currently doesn’t leverage (see GladeVCP in the manual).

PnCconf has sample panels for the user to use as-is or build on. With GladeVCP PnCconf will allow
you to select different options on your sample display.

Under sample options select which ones you would like. The zero buttons use HALUI commands which
you could edit later in the HALUI section.

Auto Z touch-off also requires the classic ladder touch-off program and a probe input selected. It
requires a conductive touch-off plate and a grounded conductive tool. For an idea on how it works
see:

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?ClassicLadderExamples#Single button probe touchoff

Under Display Options, size, position, and force max can be used on a stand-alone panel for such
things as placing the screen on a second monitor if the system is capable.

You can select a GTK theme which sets the basic look and feel of the panel. You Usually want this to
match the front-end screen. These options will be used if you press the Display sample button. With
GladeVCP depending on the front-end screen, you can select where the panel will display.

You can force it to be stand-alone or with AXIS it can be in the center or on the right side, with Touchy
it can be in the center.

Defaults and Options

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?ClassicLadderExamples#Single_button_probe_touchoff

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 105/1322

* Require homing before MDI / Running
- If you want to be able to move the machine before homing uncheck this checkbox.
* Popup Tool Prompt

- Choose between an on screen prompt for tool changes or export standard signal names for
a User supplied custom tool changer HAL file

¢ Leave spindle on during tool change:
- Used for lathes
» Force individual manual homing
* Move spindle up before tool change
* Restore joint position after shutdown
- Used for non-trivial kinematics machines
* Random position tool changers

- Used for tool changers that do not return the tool to the same pocket. You will need to add
custom HAL code to support tool changers.

3.2.6 Mesa Configuration

The Mesa configuration pages allow one to utilize different firmwares. On the basic page you selected
a Mesa card here you pick the available firmware and select what and how many components are
available.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 106 /1322

Configuration 1/0 Ijo 1/O
P

age Connector 2 | Connector 3 = Connector 4

Click on each page tab to configure signal names for each connector port.

The spin buttons below on this page allow you to select the amounts of
different types of components. Press the button to make the tabbed pages
accept the changes.

Board name 5i20

Firmware: | SVST8_4 s |

Mesa parport address:

PWM base frequency: [20000 @Hz

PDM base frequency: [6000 E|Hz

Watchdog timeout: 10000000 %lns

Num of encoders: [4 ?

Num of pwm generators:[+ :|

Num of step generators:| 3 E| Sanity Checks

Num of GPIO:) [7i29 daughter board
Total number of pins: 72 [] 7i30 daughter board

[7i33 daughter board

Accept components
[] 7i40 daughter board

Changes

Help | Cancel || Back ||Ec-nnuard

Figure 3.17: Mesa Board Configuration

Parport address is used only with Mesa parport card, the 7i43. An on board parallel port usually uses
0x278 or 0x378 though you should be able to find the address from the BIOS page. The 7i43 requires
the parallel port to use the EPP mode, again set in the BIOS page. If using a PCI parallel port the
address can be searched for by using the search button on the basic page.

Note
Many PCI cards do not support the EPP protocol properly.

PDM PWM and 3PWM base frequency sets the balance between ripple and linearity. If using Mesa
daughter boards the docs for the board should give recommendations.

Important
It's important to follow these to avoid damage and get the best performance.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 107 /1322

The 7i33 requires PDM and a PDM base frequency of 6 MHz
The 7i29 requires PWM and a PWM base frequency of 20 kHz
The 7i30 requires PWM and a PWM base frequency of 20 kHz
The 7140 requires PWM and a PWM base frequency of 50 kHz
The 7148 requires UDM and a PWM base frequency of 24 kHz

Watchdog time out
is used to set how long the MESA board will wait before killing outputs if communication is
interrupted from the computer. Please remember Mesa uses active low outputs meaning that
when the output pin is on, it is low (approx 0 volts) and if it is off the output in high (approx 5
volts) make sure your equipment is safe when in the off (watchdog bitten) state.

Number of coders/PWM generators/STEP generators
You may choose the number of available components by deselecting unused ones. Not all com-
ponent types are available with all firmware.

Choosing less then the maximum number of components allows one to gain more GPIO pins. If using
daughter boards keep in mind you must not deselect pins that the card uses. For instance some
firmware supports two 7i33 cards, If you only have one you may deselect enough components to
utilize the connector that supported the second 7i33. Components are deselected numerically by the
highest number first then down with out skipping a number. If by doing this the components are not
where you want them then you must use a different firmware. The firmware dictates where, what and
the max amounts of the components. Custom firmware is possible, ask nicely when contacting the
LinuxCNC developers and Mesa. Using custom firmware in PnCconf requires special procedures and
is not always possible - though I try to make PnCconf as flexible as possible.

After choosing all these options press the Accept Component Changes button and PnCconf will update
the I/O setup pages. Only I/O tabs will be shown for available connectors, depending on the Mesa
board.

3.2.7 Mesa l/O Setup

The tabs are used to configure the input and output pins of the Mesa boards. PnCconf allows one to
create custom signal names for use in custom HAL files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

108 /1322

Mesa0 Configuration-Board: 5i20 firmware: SVST8 4

Configuration /0 Ijo /o
Page Connector 2 | Connector 3 Connector 4

Num function Pin Type Inv Num function Pin Type Inv
[)(Encoder l Quad Encoder-B > l (] lMuIti Hand Wheel l Quad Encoder-B =] O

1: l X Encoder

l Quad EncoderA = l O 3:

l Multi Hand Wheel

l Quad Encoder-A =] O

[Spindle Encoder

l Quad Encoder-B - l (] l Quad Encoder-B -] O

[Unused Encoder

0: l Spindle Encoder

l Quad EncoderA = l [l 2 l Quad Encoder-A =] O

l Unused Encoder

[)(Encoder

l Quad Encoder-| - l (]

[Multi Hand Wheel

l Quad Encoder-| -] (|

[Spindle Encoder

l Quad Encoderl - l [l Quad Encoder-I 5] (|

[Unused Encoder

[x Axis PWM [Pulse Width Gen-P 2] o | 3 [Unused PWM Gen [Pulse Width Gen-P | 2] O
[Spindle PWM [Pulse Width Gen-P | &] o | 2 [Unused PWM Gen [Pulse Width Gen-P | &] O
[x Axis PWM [pulse Width Gen-D | &] O [Unused PWM Gen [pulse Width Gen-D | &] O
[Spindle PWM l Pulse Width Gen-D | & l O [Unused PWM Gen [Pulse Width Gen-D. |] O
[x Axis PWM [Pulse Width Gen-E | & l O [Unused PWM Gen [Pulse Width Gen-E | &] O
[Spindle PWM [Pulse Width Gen-E | 2] O [Unused PWM Gen [Pulse Width Gen-E | 2] O

[Launch test panel l

Cancel] [Back] [Forward

Figure 3.18: Mesa I/O C2 Setup

On this tab with this firmware the components are setup for a 7i33 daughter board, usually used with
closed loop servos. Note the component numbers of the encoder counters and PWM drivers are not
in numerical order. This follows the daughter board requirements.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

Mesa0 Configuration-Board: 5i20 firmware: SVST8 4

109 /1322

Configuration 1jO 1o} /o
Page Connector 2 | Connector 3 | Connector 4
Num function Pin Type Inv Num function Pin Type Inv
024: [X Minimum Limit + Hm[GPIOInput | &] O 036 [Jog incr A [GPIO Input] 0
025: [X Maximum Limit [GPIO Input | &] O 037 [Jog incr B [GPIO Input] 0
026: [Unused Input [GPIO Input | 2] I [Jog incr C [GPIO Input] 0
027: Unused Input GPIOInput |2 |01 039 [Joint select A [GPIO Input] O
o2g;| Limits >lcPioiput |2 |01 o40: [Joint select B [GPIO Input] 0
Home
029: >Ieriomput 2|01 04w [Spindle ON [GPIO Output] 0
Limts/Home Shared >
030: GPIOInput | |1 04z: [Spindle CW [GPIO Output] 0
Digital >
031 , . celection y|GPOMput (o0 043: [Spindle CCW [GPIO Output] 0
032 overrides »[GPIoInput S| 044 unused Output | v | GPio output |2 |0
033: Spindle ylePomput ¢ |00 o4s: [Coolant Flood [GPIO Output l 0
034: Operation >lePioimput ¢ |00 o46: [Unused Output [GPIO Output l 0
035: Extemal Control >lpioimput ¢ |00 oar: [Unused Output [GPIO Output] O
Axis rapid >
X BLDC Control > | Launch test panel
Y BLDC Control >
Z BLDC Control >
A BLDC Control >
S BLDC Control >
Custom Signals
Help Cancel] [Back] [Forward

Figure 3.19: Mesa I/O C3 Setup

On this tab all the pins are GPIO. Note the 3 digit numbers - they will match the HAL pin number.
GPIO pins can be selected as input or output and can be inverted.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

Mesa0 Configuration-Board: 5i20 firmware: SVST8 4

110/1322

Configuration 1jO Ijo 1[0]
Page Connecter 2 | Connector 3 | Connector 4
Num function Pin Type Inv Num function Pin Type Inv
0: l‘rAxis StepGen Step Gen-A s | O 2: [AAxis StepGen | Step Gen-A s | O
[Y Axis StepGen v || Dir Gen-B - | O [F\ Axis StepGen ~ || Dir Gen-B - | O
050: [Unused Input [GPIOInput |2] O o62: [Unused Input [GPIOInput | &] 0
051:|Unused Input |v|ePomput ¢ |0 | o063: Unused input GPIOInput ¢ | O]
052: [Unused Input [GPIOInput |2]] 064: Umits ?>| GPio output | ¢] 0
Home
053: | Unused Input |v|cPomput e |0 oes: > [GPiooutput | ¢ |o
Limts/Home Shared >
I [ZAxis StepGen stepGen-A |2 |0 | o066y GPIO Output | &]D
.) Digital >
[Z Axis StepGen = || Dir Gen-B < | O 067: Axis Selection 3 GPIO Output | C l |
056: | Unused Input | v|ePomput ¢ |0 | o068: overrides » |GPIo output | ¢ |0
057: [Unused Input [GPIOInput | &] O | o069: B LeL
058: [Unused Input [GPIO Input | &]) | o070: Operation >| Manual spindle CW
059: [Unused Input [GPIOInput | &] O | o71: Extemal Control ?| Manual Spindle CCW
Axis rapid > Manual Spindle Stop
Launch test panel X BLDC Control ?| spindle Up-To-Speed
Y BLDC Control >
Z BLDC Control >
A BLDC Control >
S BLDC Control >
Custom Signals
l Cancel] [Back] [Forward

Figure 3.20: Mesa I/O C4 Setup

On this tab there are a mix of step generators and GPIO. Step generators output and direction pins
can be inverted. Note that inverting a Step Gen-A pin (the step output pin) changes the step timing.
It should match what your controller expects.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

111/1322

3.2.8 Parallel port configuration

First Parallel Port set for OUTPUT

Outputs (PC to Machine):

Pin 1: lDigitaI out 0

Pin 2: lMachine Is Enabled

Pin 3: l X Amplifier Enable

Pin 4: lZ Amplifier Enable

Pin 5: lUnused Output

Pin &: lUnused Output

Pin 7: lUnused Output

Pin 8: lUnused Output

Pin 9: lUnused Output

Pin 14:[Unused Output

Pin lﬁ:l Unused Output

Pin 17:[Unused Output

[Launch Test Panel

Inputs (Machine to PC):

Pin 2: lUnused Input

Pin 3: lUnused Input

Pin 4: lUnused Input

Pin 5: lUnused Input

Pin 6: lUnused Input

Pin 7: lUnused Input

Pin 8: lUnused Input

Pin 2: lUnused Input

Pin 1g:[Digital in 0

Pin 11:[Unused Input

Pin lg:l Unused Input

Pin 13:[Unused Input

Pin 1§:l Unused Input

Cancel] [Back] [Forward

The parallel port can be used for simple I/O similar to Mesa’s GPIO pins.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 112 /1322

3.2.9 Axis Configuration

Servo Info

Bias

Deadband 0.0000 || Servo
Test

["] Use Brushless Motor Control
[Details
Calculate

Rapid Speed Following Error: | 0.0050 |Zjinch ~ encoder Scale: 4000.000 -

— . Scale
Feed Speed Following Error: | 0.0005 v|ir|.ch Stepper Scale:
Invert Motor Direction Maximum Velocity: 'hnch {min

[Invert Encoder Direction Maximum Acceleration: C|inch [sec?

< Test [Tune Axis|

Help | | Cancel || Back || Forward

Figure 3.21: Axis Drive Configuration

This page allows configuring and testing of the motor and/or encoder combination. If using a servo
motor an open loop test is available, if using a stepper a tuning test is available.

Open Loop Test
An open loop test is important as it confirms the direction of the motor and encoder. The motor

should move the axis in the positive direction when the positive button is pushed and also the
encoder should count in the positive direction. The axis movement should follow the Machinery’s
Handbook ! standards or AXIS graphical display will not make much sense. Hopefully the help
page and diagrams can help figure this out. Note that axis directions are based on TOOL move-
ment not table movement. There is no acceleration ramping with the open loop test so start with
lower DAC numbers. By moving the axis a known distance one can confirm the encoder scaling.
The encoder should count even without the amp enabled depending on how power is supplied to

the encoder.
17axis nomenclature” in the chapter “Numerical Control” in the "Machinery’s Handbook” published by Industrial Press.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 113 /1322

Warning
If the motor and encoder do not agree on counting direction then the servo will run away when
using PID control.

Since at the moment PID settings can not be tested in PnCconf the settings are really for when you
re-edit a config - enter your tested PID settings.

DAC scale
DAC scaling, max output and offset are used to tailor the DAC output.

Compute DAC
These two values are the scale and offset factors for the axis output to the motor amplifiers. The
second value (offset) is subtracted from the computed output (in volts), and divided by the first
value (scale factor), before being written to the D/A converters. The units on the scale value are
in true volts per DAC output volts. The units on the offset value are in volts. These can be used
to linearize a DAC.

Specifically, when writing outputs, the LinuxCNC first converts the desired output in quasi-SI units to
raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like: The value for scale can
be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.
Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from
the sensor readings. The value for this offset is obtained by finding the value of your output which
yields 0.0 for the actuator output. If the DAC is linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the
combined effects of amplifier gain, DAC non-linearity, DAC units, etc. To do this, follow this procedure:

* Build a calibration table for the output, driving the DAC with a desired voltage and measuring the
result:

Table 3.2: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.96
1 -0.03
9 9.87
10 10.07

* Do a least-squares linear fit to get coefficients a, b such that meas=a*raw+b

* Note that we want raw output such that our measured result is identical to the commanded output.
This means

- cmd=a*raw+b
- raw=(cmd-b)/a

¢ As a result, the a and b coefficients from the linear fit can be used as the scale and offset for the
controller directly.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 114 /1322

MAX OUTPUT
The maximum value for the output of the PID compensation that is written to the motor ampli-
fier, in volts. The computed output value is clamped to this limit. The limit is applied before
scaling to raw output units. The value is applied symmetrically to both the plus and the minus
side.

Tuning Test
The tuning test unfortunately only works with stepper based systems. Again confirm the di-
rections on the axis is correct. Then test the system by running the axis back and forth, If the
acceleration or max speed is too high you will lose steps. While jogging, Keep in mind it can
take a while for an axis with low acceleration to stop. Limit switches are not functional during
this test. You can set a pause time so each end of the test movement. This would allow you to
set up and read a dial indicator to see if you are losing steps.

Stepper Timing
Stepper timing needs to be tailored to the step controller’s requirements. PnCconf supplies
some default controller timing or allows custom timing settings. See https://wiki.linuxcnc.org/-
cgi-bin/wiki.pl?Stepper Drive Timing for some more known timing numbers (feel free to add
ones you have figured out). If in doubt use large numbers such as 5000 this will only limit max
speed.

Brushless Motor Control
These options are used to allow low level control of brushless motors using special firmware and
daughter boards. It also allows conversion of HALL sensors from one manufacturer to another.
It is only partially supported and will require one to finish the HAL connections. Contact the
mail-list or forum for more help.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 115/1322

Step Motor Scale _ _
Pulley teeth (motor:Leadscrew): |1 ELIE E|

] Worm tum ratio (Input:Outputl)

Microstep Multiplication Factor: | 5 E|

[] Leadscrew Metric Pitch mm J rev

Leadscrew TPl | 5.0000 <JTe
Motor steps per revolution: | 200 E|

Calculated Scale

motor steps per unit: 10000.0000
encoder pulses per unit:

Motion Data
Calculated Axis SCALE: 10000.0 Steps / inch
Resolution: 0.0001000 inch / Step
Time to accelerate to max speed: 0.8335 sec
Distance to acheave max speed: 0.6947 inch
Pulse rate at max speed: 16.7 Khz
Motor RPM at max speed: 1000 RPM

Cancel || Apply

Figure 3.22: Axis Scale Calculation

The scale settings can be directly entered or one can use the calculate scale button to assist. Use the
check boxes to select appropriate calculations. Note that pulley teeth requires the number of teeth
not the gear ratio. Worm turn ratio is just the opposite it requires the gear ratio. If your happy with

the scale press apply otherwise push cancel and enter the scale directly.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

116 /1322

X Axis Configuration

Positive Travel Distance (Machine zero Origin to end of + travel): [B.O]
Negative Travel Distance (Machine zero Origin to end of - travel): [0.0]
Home Position location (offset from machine zero Origin): [0.0]
Home Switch location (Offset from machine zero Origin): [0.0]
Home Search Velocity: [3 l inch / min
Home Search Direction: lTowards Negative limit o]
Home latch Velocity: [1 l inch / min
Home Latch Direction: l Same -]
Home Final Velocity: [0 l inch f min
Use Encoder Index For Home: l NO <]
[] Use Compensation File: | Type 1 - filename: [xcompensation
[] Use Backlash Compensation: | E|

Cancel] [Back] [Forward

Figure 3.23: Axis Configuration

Also refer to the diagram tab for two examples of home and limit switches. These are two examples
of many different ways to set homing and limits.

@ Important
It is very important to start with the axis moving in the right direction or else getting homing

right is very difficult!

Remember positive and negative directions refer to the TOOL not the table as per the Machinists

handbook.

On a typical knee or bed mill

* when the TABLE moves out that is the positive Y direction

* when the TABLE moves left that is the positive X direction

¢ when the TABLE moves down that is the positive Z direction

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 117 /1322

¢ when the HEAD moves up that is the positive Z direction
On a typical lathe

* when the TOOL moves right, away from the chuck
e that is the positive Z direction
¢ when the TOOL moves toward the operator

 that is the positive X direction. Some lathes have X opposite (e.g., tool on back side), that will
work fine but AXIS graphical display can not be made to reflect this.

When using homing and / or limit switches LinuxCNC expects the HAL signals to be true when the
switch is being pressed / tripped. If the signal is wrong for a limit switch then LinuxCNC will think
the machine is on end of limit all the time. If the home switch search logic is wrong LinuxCNC will
seem to home in the wrong direction. What it actually is doing is trying to BACK off the home switch.

Decide on limit switch location

Limit switches are the back up for software limits in case something electrical goes wrong, e.g.,
in case of a servo runaway. Limit switches should be placed so that the machine does not hit
the physical end of the axis movement. Remember the axis will coast past the contact point if
moving fast. Limit switches should be active low on the machine, i.e., power runs through the
switches all the time - a loss of power (open switch) trips. While one could wire them the other
way, this is fail safe. This may need to be inverted so that the HAL signal in LinuxCNC in active
high - a TRUE means the switch was tripped. When starting LinuxCNC if you get an on-limit
warning, and axis is NOT tripping the switch, inverting the signal is probably the solution. (use
HALMETER to check the corresponding HAL signal eg. joint.0.pos-lim-sw-in X axis positive limit
switch)

Decide on the home switch location
If you are using limit switches You may as well use one as a home switch. A separate home switch
is useful if you have a long axis that in use is usually a long way from the limit switches or moving
the axis to the ends presents problems of interference with material. Note, a long shaft in a lathe
makes it hard to home to limits with out the tool hitting the shaft, so a separate home switch
closer to the middle may be better. If you have an encoder with index then the home switch acts
as a course home and the index will be the actual home location.

Decide on the MACHINE ORIGIN position
MACHINE ORIGIN is what LinuxCNC uses to reference all user coordinate systems from. I can
think of little reason it would need to be in any particular spot. There are only a few G-codes
that can access the MACHINE COORDINATE system.(G53, G30 and G28) If using tool-change-
at-G30 option having the origin at the tool change position may be convenient. By convention, it
may be easiest to have the ORIGIN at the home switch.

Decide on the (final) HOME POSITION
this just places the carriage at a consistent and convenient position after LinuxCNC figures out
where the ORIGIN is.

Measure / calculate the positive / negative axis travel distances
Move the axis to the origin. Mark a reference on the movable slide and the non-movable support
(so they are in line) move the machine to the end of limits. Measure between the marks that is
one of the travel distances. Move the table to the other end of travel. Measure the marks again.
That is the other travel distance. If the ORIGIN is at one of the limits then that travel distance
will be zero.

(machine) ORIGIN
The Origin is the MACHINE zero point. (not the zero point you set your cutter / material at).
LinuxCNC uses this point to reference everything else from. It should be inside the software
limits. LinuxCNC uses the home switch location to calculate the origin position (when using
home switches or must be manually set if not using home switches.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 118 /1322

Travel distance
This is the maximum distance the axis can travel in each direction. This may or may not be able
to be measured directly from origin to limit switch. The positive and negative travel distances
should add up to the total travel distance.

POSITIVE TRAVEL DISTANCE
This is the distance the Axis travels from the Origin to the positive travel distance or the total
travel minus the negative travel distance. You would set this to zero if the origin is positioned at
the positive limit. The will always be zero or a positive number.

NEGATIVE TRAVEL DISTANCE
This is the distance the Axis travels from the Origin to the negative travel distance. or the total
travel minus the positive travel distance. You would set this to zero if the origin is positioned
at the negative limit. This will always be zero or a negative number. If you forget to make this
negative PnCconf will do it internally.

(Final) HOME POSITION
This is the position the home sequence will finish at. It is referenced from the Origin so can be
negative or positive depending on what side of the Origin it is located. When at the (final) home
position if you must move in the Positive direction to get to the Origin, then the number will be
negative.

HOME SWITCH LOCATION
This is the distance from the home switch to the Origin. It could be negative or positive depending
on what side of the Origin it is located. When at the home switch location if you must move in the
Positive direction to get to the Origin, then the number will be negative. If you set this to zero
then the Origin will be at the location of the limit switch (plus distance to find index if used).

Home Search Velocity
Course home search velocity in units per minute.

Home Search Direction
Sets the home switch search direction either negative (i.e., towards negative limit switch) or
positive (i.e., towards positive limit switch).

Home Latch Velocity
Fine Home search velocity in units per minute.

Home Final Velocity
Velocity used from latch position to (final) home position in units per minute. Set to 0 for max
rapid speed.

Home latch Direction
Allows setting of the latch direction to the same or opposite of the search direction.

Use Encoder Index For Home
LinuxCNC will search for an encoder index pulse while in the latch stage of homing.

Use Compensation File
Allows specifying a Comp filename and type. Allows sophisticated compensation. See AXIS
Section of the INI chapter.

Use Backlash Compensation
Allows setting of simple backlash compensation. Can not be used with Compensation File. See
AXIS Section of the INI chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 119/1322

Help Page | Diagram | Qutput
Mill
Lathe]

Total Travel =4 4+ 6 =10

Z Home Offset = Origin to Home Switch distance = 10

Z Meg Travel Distance = Origin to neg limit distance = 0

Z Pos Travel Distance = Total Travel - neg travel distance = 10
Z Home Position = Origin to Home Position distance = 4

X axis would be similar but not shown fully for clarity.
This is just a sample reference other switch combinations are
possible.

Figure 3.24: AXIS Help Diagram

The diagram should help to demonstrate an example of limit switches and standard axis movement
directions. In this example the Z axis was two limit switches, the positive switch is shared as a home
switch. The MACHINE ORIGIN (zero point) is located at the negative limit. The left edge of the car-
riage is the negative trip pin and the right the positive trip pin. We wish the FINAL HOME POSITION
to be 4 inches away from the ORIGIN on the positive side. If the carriage was moved to the positive
limit we would measure 10 inches between the negative limit and the negative trip pin.

3.2.10 Spindle Configuration

If you select spindle signals then this page is available to configure spindle control.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 120 /1322

Tip
Many of the option on this page will not show unless the proper option was selected on previous
pages!

Servo Info

P °

| 2]

D f| Dac Output Scale:

FFO f| Dac Max Output:

FF1 f| Dac Output Offset:

FF2 j| Quad Pulses /Rev: 4000

Bias 0.0000 |2 Open
8 Loop

Deadband 0.0000 || servo
Test

[Use Brushless Motor Control
[> Details
[] Use Spindle-At-Speed

Scale: = %

Rapid Speed Following Error: rev encoder Scale: 4000.000 2| calculate
Feed Speed Following Error: rev Stepper Scale: Scale
[] Invert Motor Direction Maximum Velocity: rev / min
[Invert Encoder Direction Maximum Acceleration: rev [sec?
Test / Tune Axis
Help | Cancel | | Back | | Forward

Figure 3.25: Spindle Motor/Encoder Configuration

This page is similar to the axis motor configuration page.

There are some differences:

* Unless one has chosen a stepper driven spindle there is no acceleration or velocity limiting.
* There is no support for gear changes or ranges.

* If you picked a VCP spindle display option then spindle-at-speed scale and filter settings may be
shown.

* Spindle-at-speed allows LinuxCNC to wait till the spindle is at the requested speed before moving
the axis. This is particularly handy on lathes with constant surface feed and large speed diameter
changes. It requires either encoder feedback or a digital spindle-at-speed signal typically connected
to a VFD drive.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 121 /1322

» If using encoder feedback, you may select a spindle-at-speed scale setting that specifies how close
the actual speed must be to the requested speed to be considered at-speed.

» If using encoder feedback, the VCP speed display can be erratic - the filter setting can be used to
smooth out the display. The encoder scale must be set for the encoder count / gearing used.

» Ifyou are using a single input for a spindle encoder you must add the line: setp hm2 7i43.0.encoder.00.cou
mode 1 (changing the board name and encoder number to your requirements) into a custom HAL
file. See the Encoders Section in Hostmot2 for more info about counter mode.

3.2.11 Advanced Options

This allows setting of HALUI commands and loading of ClassicLadder and sample ladder programs.
If you selected GladeVCP options such as for zeroing axis, there will be commands showing. See the
HALUI Chapter for more info on using custom halcmds. There are several ladder program options.
The Estop program allows an external ESTOP switch or the GUI frontend to throw an Estop. It also
has a timed lube pump signal. The Z auto touch-off is with a touch-off plate, the GladeVCP touch-off
button and special HALUI commands to set the current user origin to zero and rapid clear. The serial
modbus program is basically a blank template program that sets up ClassicLadder for serial modbus.
See the ClassicLadder Chapter in the manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 122 /1322

- Include Halui user interface component / commands

cmd 1/G10 120 PO X0 |cmds | [emd 11 |
cmd 2| |cmd 7| [cmd 12| |
cmd 3| |cmds | [cmd 13| |
cmd 4| |cmd9 | [cmd 14| |
cmd 5 lcmd 10| [cmd 15| |

- Include Classicladder PLC
= Setup number of external pins

Mumber of digital (bit) in pins:
Number of digital (bit) out pins:
Number of analog (s32) in pins:
Number of analog (s32) out pins:
Number of analog (float) in pins:
Number of analog (float) out pins:

[Include modbus master support

) Blank ladder program
@ |[Estop ladder program
© Z Auta Touch off program . Edit ladder
) Serial modbus program =““program
O Existing custom program
Include connections to HAL

Cancel] [Back] [Forward

Figure 3.26: PnCconf, advanced options

3.2.12 HAL Components

On this page you can add additional HAL components you might need for custom HAL files. In this
way one should not have to hand edit the main HAL file, while still allowing user needed components.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 123 /1322

Add HAL components with this page.
Componentnumber of components

Absolute 1 [
PID CE
scale |Jl_?|
mux16 E?

=7 Custom Components Commands
Load Command Thread Command B Thread Speed
loadrt example_comp |~ laddf example_comp_calcs ||~

3 3 Servo Thread

Help Cancel Back Forward

Figure 3.27: HAL Components

The first selection is components that pncconf uses internally. You may configure pncconf to load
extra instances of the components for your custom HAL file.

Select the number of instances your custom file will need, PnCconf will add what it needs after them.

Meaning if you need 2 and PnCconf needs 1 PnCconf will load 3 instances and use the last one.

Custom Component Commands
This selection will allow you to load HAL components that PnCconf does not use. Add the loadrt
or loadusr command, under the heading loading command Add the addf command under the
heading Thread command. The components will be added to the thread between reading of
inputs and writing of outputs, in the order you write them in the thread command.

3.2.13 Advanced Usage Of PnCconf

PnCconf does its best to allow flexible customization by the user. PnCconf has support for custom
signal names, custom loading of components, custom HAL files and custom firmware.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 124 /1322

There are also signal names that PnCconf always provides regardless of options selected, for user’s
custom HAL files With some thought most customizations should work regardless if you later select
different options in PnCconf.

Eventually if the customizations are beyond the scope of PnCconf’s frame work you can use PnCconf
to build a base config or use one of LinuxCNC’s sample configurations and just hand edit it to what
ever you want.

Custom Signal Names
If you wish to connect a component to something in a custom HAL file write a unique signal name
in the combo entry box. Certain components will add endings to your custom signal name:

Encoders will add < customname > +:

* position

e count

* velocity

* index-enable

* reset

Steppers add:

enable

counts
¢ position-cmd

¢ position-fb

velocity-fb
PWM add:

¢ enable

¢ value

GPIO pins will just have the entered signal name connected to it

In this way one can connect to these signals in the custom HAL files and still have the option to move
them around later.

Custom Signal Names
The HAL Components page can be used to load components needed by a user for customization.

Loading Custom Firmware
PnCconf searches for firmware on the system and then looks for the XML file that it can convert
to what it understands. These XML files are only supplied for officially released firmware from
the LinuxCNC team. To utilize custom firmware one must convert it to an array that PnCconf
understands and add its file path to PnCconf’s preference file. By default this path searches the
desktop for a folder named custom firmware and a file named firmware.py.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 125 /1322

The hidden preference file is in the user’s home file, is named .pncconf-preferences and require one
to select show hidden files in your file manager to see and edit it or on the command line you use Is
with the -a option. The contents of this file can be seen when you first load PnCconf - press the help
button and look at the output page.

Ask on the LinuxCNC mail-list or forum for info about converting custom firmware. Not all firmware
can be utilized with PnCconf.

Custom HAL Files
There are four custom files that you can use to add HAL commands to:

e custom.hal is for HAL commands that don’t have to be run after the GUI frontend loads. It is
run after the configuration-named HAL file.

* custom_postgui.hal is for commands that must be run after AXIS loads or a standalone PyVCP
display loads.

* custom_gvcp.hal is for commands that must be run after GladeVCP is loaded.
¢ shutdown.hal is for commands to run when LinuxCNC shuts down in a controlled manner.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 126 /1322

Chapter 4

Configuration

4.1 Integrator Concepts

4.1.1 File Locations

LinuxCNC looks for the configuration and G-code files in a specific place. The location depends on
how you run LinuxCNC.

4.1.1.1 Installed

If your running LinuxCNC from the Live CD or you installed via a .deb and use the configuration picker
LinuxCNC from the menu LinuxCNC looks in the following directories:

* The LinuxCNC directory is located at /home/user-name/linuxcnc.

» The Configuration directories are located at /home/user-name/linuxcnc/configs.
- Configuration files are located at /home/user-name/linuxcnc/configs/name-of-config.

* G-code files are located at /home/user-name/linuxcnc/nc_files’.

For example for a configuration called Mill and a user name Fred the directory and file structure
would look like this.
e /home/fred/linuxcnc
* /home/fred/linuxcnc/nc files
* /home/fred/linuxcnc/configs/mill
- /home/fred/linuxcnc/configs/mill/mill.ini
- /home/fred/linuxcnc/configs/mill/mill.hal

- /home/fred/linuxcnc/configs/mill/mill.var
- /home/fred/linuxcnc/configs/mill/tool.tbl

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 127 /1322

4.1.1.2 Command Line

If you run LinuxCNC from the command line and specify the name and location of the INI file the file
locations can be in a different place. To view the options for running LinuxCNC from the command
line run linuxcnc -h.

Note

Optional locations for some files can be configured in the INI file. See the
<<sub:ini:sec:display, [DISPLAY]>> section and the <<sub:ini:sec:rs274ngc, [RS274NGC]>>
section.

4.1.2 Files

Each configuration directory requires at least the following files:

e An INI file .ini
* A HAL file .hal or HALTCL file .tcl specified in the HAL section of the INI file.

Note
Other files may be required for some GUIs.

Optionally you can also have:

¢ A Variables file .var

- If you omit a .var file in a directory but include <<sub:ini:sec:rs274ngc, [RS274NGC]>> PARAM-
ETER FILE=somefilename.var, the file will be created for you when LinuxCNC starts.

- Ifyou omit a .var file and omit the item [RS274NGC] PARAMETER FILE, a var file named rs274ngc.var
will be created when LinuxCNC starts. There may be some confusing messages if [RS274NGC]PARAME]]
is omitted.

* A Tool Table file .tbl if <<sub:ini:sec:emcmot, [EMCMOT]>> TOOL TABLE has been specified in the
INI file. Some configurations do not need a tool table.

4.1.3 Stepper Systems
4.1.3.1 Base Period

BASE PERIOD is the heartbeat of your LinuxCNC computer.! Every period, the software step genera-
tor decides if it is time for another step pulse. A shorter period will allow you to generate more pulses
per second, within limits. But if you go too short, your computer will spend so much time generating
step pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper
drive requirements affect the shortest period you can use.

Worst case latencies might only happen a few times a minute, and the odds of bad latency happening
just as the motor is changing direction are low. So you can get very rare errors that ruin a part every
once in a while and are impossible to troubleshoot.

1This section refers to using stepgen, LinuxCNC’s built-in step generator. Some hardware devices have their own step
generator and do not use LinuxCNC'’s built-in one. In that case, refer to your hardware manual.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 128 /1322

The simplest way to avoid this problem is to choose a BASE PERIOD that is the sum of the longest tim-
ing requirement of your drive, and the worst case latency of your computer. This is not always the best
choice. For example, if you are running a drive with a 20 ps direction signal hold time requirement,
and your latency test said you have a maximum latency of 11 ps, then if you set the BASE PERIOD
to 20+11 = 31 ps you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per
second in another mode.

The problem is with the 20 us hold time requirement. That plus the 11 ps latency is what forces us to
use a slow 31 ps period. But the LinuxCNC software step generator has some parameters that let you
increase the various times from one period to several. For example, if steplen ? is changed from 1 to
2, then there will be two periods between the beginning and end of the step pulse. Likewise, if dirhold
3 is changed from 1 to 3, there will be at least three periods between the step pulse and a change of
the direction pin.

If we can use dirhold to meet the 20 ps hold time requirement, then the next longest time is the 4.5 us
high time. Add the 11 ps latency to the 4.5 ps high time, and you get a minimum period of 15.5 s
. When you try 15.5us , you find that the computer is sluggish, so you settle on 16 pus . If we leave
dirhold at 1 (the default), then the minimum time between step and direction is the 16 ps period minus
the 11 ps latency = 5 pus, which is not enough. We need another 15 ps . Since the period is 16 pus , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the
step pulse to the changing direction pin is 5+16=21pns, and we don’t have to worry about the drive
stepping the wrong direction because of latency.

For more information on stepgen see the stepgen section.

4.1.3.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes impor-
tant. If the drive steps on the falling edge then the output pin should be inverted.

4.1.4 Servo Systems

4.1.4.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are
more costly and complex. Unlike stepper systems, servo systems require some type of position feed-
back device, and must be adjusted or tuned, as they don’t quite work right out of the box as a stepper
system might. These differences exist because servos are a closed loop system, unlike stepper motors
which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram
of how a servomotor system is connected.

2steplen refers to a parameter that adjusts the performance of LinuxCNC’s built-in step generator, stepgen, which is a HAL
component. This parameter adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.
3dirhold refers to a parameter that adjusts the length of the direction hold time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 129 /1322

Summing amp Power amp
input signal + Z
[command signal] SUMMer amp
- drives power amp

input fcammand) signal
and leedback signal
drive surmming amp

Power amp
clrives

feedback signal mctor

feedback device Motor

1 T1 T1 iy B
I|I III |I |I |I I'. |I |I |I I'. |I |I |I III| i
ILSRAARRARENRAYY o

L

motor drives load
and feadback device

Figure 4.1: Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the
summing amplifier drives the power amplifier, the power amplifier drives the motor, the motor drives
the load (and the feedback device), and the feedback device (and the input signal) drive the motor.
This looks very much like a circle (a closed loop) where A controls B, B controls C, C controls D, and
D controls A.

If you have not worked with servo systems before, this will no doubt seem a very strange idea at first,
especially as compared to more normal electronic circuits, where the inputs proceed smoothly to the
outputs, and never go back.* If everything controls everything else, how can that ever work, who’s
in charge? The answer is that LinuxCNC can control this system, but it has to do it by choosing one
of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is
called PID.

PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction
to the current error, the Integral value determines the reaction based on the sum of recent errors, and
the Derivative value determines the reaction based on the rate at which the error has been changing.
They are three common mathematical techniques that are applied to the task of getting a working
process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis
position and the set point is the commanded axis position.

41f it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where
what the outputs are doing now depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then
nevermind.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 130/1322

» (O Kn e(t)

t
—setpoint@—ermra- | K:JE“MT ¥ —>{ Process %nutput—r

Figure 4.2: PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action
designed for specific process requirements. The response of the controller can be described in terms
of the responsiveness of the controller to an error, the degree to which the controller overshoots the
set point and the degree of system oscillation.

4.1.4.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to
the current error value. A high proportional gain results in a large change in the output for a given
change in the error. If the proportional gain is too high, the system can become unstable. In contrast,
a small gain results in a small output response to a large input error. If the proportional gain is too
low, the control action may be too small when responding to system disturbances.

In the absence of disturbances, pure proportional control will not settle at its target value, but will
retain a steady state error that is a function of the proportional gain and the process gain. Despite
the steady-state offset, both tuning theory and industrial practice indicate that it is the proportional
term that should contribute the bulk of the output change.

4.1.4.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude
of the error and the duration of the error. Summing the instantaneous error over time (integrating
the error) gives the accumulated offset that should have been corrected previously. The accumulated
error is then multiplied by the integral gain and added to the controller output.

The integral term (when added to the proportional term) accelerates the movement of the process
towards set point and eliminates the residual steady-state error that occurs with a proportional only
controller. However, since the integral term is responding to accumulated errors from the past, it can
cause the present value to overshoot the set point value (cross over the set point and then create a
deviation in the other direction).

4.1.4.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time
(i.e., its first derivative with respect to time) and multiplying this rate of change by the derivative gain.

The derivative term slows the rate of change of the controller output and this effect is most noticeable
close to the controller set point. Hence, derivative control is used to reduce the magnitude of the
overshoot produced by the integral component and improve the combined controller-process stability.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 131/1322

4.1.4.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are
chosen incorrectly, the controlled process input can be unstable, i.e., its output diverges, with or
without oscillation, and is limited only by saturation or mechanical breakage. Tuning a control loop
is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

4.1.4.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output
of the loop oscillates, then the P should be set to be approximately half of that value for a quarter
amplitude decay type response. Then increase I until any offset is correct in sufficient time for the
process. However, too much I will cause instability. Finally, increase D, if required, until the loop
is acceptably quick to reach its reference after a load disturbance. However, too much D will cause
excessive response and overshoot. A fast PID loop tuning usually overshoots slightly to reach the set
point more quickly; however, some systems cannot accept overshoot, in which case an over-damped
closed-loop system is required, which will require a P setting significantly less than half that of the P
setting causing oscillation.

4.1.5 S-Curve Trajectory Planning

S-curve trajectory planning limits jerk (the rate of change of acceleration) to provide smoother mo-
tion. This can reduce machine vibration and improve surface finish, but requires tuning additional
parameters.

4.1.5.1 Enabling

Set in the INI file:

[TRAJ]

PLANNER TYPE = 1 # O=trapezoidal (default), 1=S-curve
MAX LINEAR JERK = 1000.0 # Machine units/s”3

[JOINT n]

MAX_JERK = 1000.0

S-curve planning is only active when PLANNER TYPE = 1 and MAX LINEAR JERK > 0.

4.1.5.2 Tuning

Start with a conservative jerk value and increase gradually:
MAX JERK b’’=b’’ 10 to 100 x MAX ACCELERATION

Typical values: 100-100,000 units/s® depending on machine rigidity and units (mm values are typically
1000x larger than inch values).

Increase MAX LINEAR JERK until motion becomes sluggish or following errors increase, then reduce
slightly. Test with coordinated moves and arcs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 132 /1322

4.1.6 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance.
The RTAI patched kernel lets you write applications with strict timing constraints. RTAI gives you the
ability to have things like software step generation which require precise timing.

4.1.6.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which
interfere with RT performance (for example: power management, CPU power down, CPU frequency
scaling, etc). The LinuxCNC kernel (and probably all RTAI-patched kernels) has ACPI disabled. ACPI
also takes care of powering down the system after a shutdown has been started, and that’s why you
might need to push the power button to completely turn off your computer. The RTAI group has been
improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

4.1.7 Computer/Machine Interface Hardware Options
4.1.7.1 litehm2/rv901t

Litehm?2 is a board-agnostic port of the HostMot2 FPGA firmware. The first board it supports is the
linsn rv901t, which was originally built as a LED controller board, but due to the available I/O it is
well suited to act as a machine controller. It offers around 80 5V-buffered I/O ports and can switch
between all input and all output. it is also easily modified to split the ports half/half between input
and output. The rv901t interfaces to the computer via Gigabit or 100Mbit Ethernet.

Litehm?2 is based on the LiteX framework which supports a wide range of FPGA boards. Currently
only the rv901t is supported, but support for more boards is under development.

More information can be found at https://github.com/sensille/litehm?2.

4.2 Latency Testing

4.2.1 What is latency?

Latency is how long it takes the PC to stop what it is doing and respond to an external request, such
as running one of LinuxCNC'’s periodic realtime threads. The lower the latency, the faster you can run
the realtime threads, and the smoother motion will be (and potentially faster, in the case of software

stepping).

Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within
10 microseconds each and every time can give better results than the latest and fastest P4 Hyper-
threading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a
number of other things can hurt the latency. The best way to find out what you are dealing with is to
run the latency test.

Generating step pulses in software has one very big advantage - it’s free. Just about every PC that
has a parallel port is capable of outputting step pulses that are generated by the software.

However, software step pulses also have some disadvantages:
¢ limited maximum step rate
e jitter in the generated pulses

¢ loads the CPU

https://github.com/sensille/litehm2

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 133/1322

4.2.2 Latency Tests

LinuxCNC includes several latency tests. They all produce equivalent information. Running these
tests will help determine if a computers is suitable for driving a CNC machine.

Note
Do not run LinuxCNC or StepConf while the latency test is running.

4.2.2.1 Latency Test

The latency test can be run a few different ways.

If you are using PnCconf to configure your machine, you can launch the Latency Test by clicking the
”Test Base Period Jitter button’ during the 2nd step of the process.

If you are using StepConf to configure your machine, you can launch the Latency Test by clicking the
”Test Base Period Jitter button’ during the 2nd step of the process.

If you want to run the test from the command line, open a terminal window (in Ubuntu, from Applica-
tions — Accessories — Terminal) and run the following command:

latency-test

This will start the latency test with a base-thread period of 25 ps and a servo-thread period of 1 ms.
The period times may be specified on the command line:

latency-test 50000 1000000

This will start the latency test with a base-thread period of 50 us and a servo-thread period of 1 ms.
For available options, on the command line enter:
latency-test -h

After starting a latency test you should see something like this:

- LinuxCNC / HAL Latency Test 4 0O X

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring LinuxCNC.

While the test is running, you should "abuse" the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1ms): 1001058 4578 996764

Base thread (25us): 31605 6693 25001

Reset Statistics

Figure 4.3: HAL Latency Test

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 134 /1322

While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are.

The important number for software stepping is the max jitter of the base thread. In the example
above, that is 6693 nanoseconds (ns), or 6.693 microseconds (11s). Record this number, and enter it
in StepConf when it is requested.

In the example above, latency-test only ran for a few seconds. You should run the test for at least sev-
eral minutes; sometimes the worst case latency doesn’t happen very often, or only happens when you
do some particular action. For instance, one Intel motherboard worked pretty well most of the time,
but every 64 seconds it had a very bad 300 ps latency. Fortunately that was fixable, see Section 4.2.3.

So, what do the results mean?

If your Max Jitter number is less than about 20,000 nanoseconds, the computer should give very nice
results with software stepping or a dedicated hardware card such as a Mesa Anything I/O card.

If the Max Jitter number is between 20,000 and 50,000 nanoseconds, you can still get good results
with software stepping, but your maximum step rate might be a little disappointing, especially if you
use microstepping or have very fine pitch leadscrews. You can, however, achieve excellent results
using a hardware card.

If the Max Jitter number is between 50,000 and 500,000 nanoseconds, you cannot use software step-
ping. You can, however, achieve acceptable results using a hardware card.

If the Max Jitter number is above 500,000 nanoseconds, you cannot use software stepping or a hard-
ware card with LinuxCNC and achieve acceptable results.

Note

If you get high numbers, there may be ways to improve them. Another PC had very bad latency
(several million nanoseconds) when using the onboard video. But a $5 used video card solved the
problem. LinuxCNC does not require bleeding-edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.

Tip
Additional command line tools are available for examining latency when LinuxCNC is not running.

4.2.2.2 Latency Plot

latency-plot makes a strip chart recording for a base and a servo thread. It may be useful to see spikes
in latency when other applications are started or used. Usage:

latency-plot --help

Usage:
latency-plot --help | -7
latency-plot --hal [Options]

Options:
--base ns (base thread interval in nanoseconds, default: 25000)
--servo ns (servo thread interval in nanoseconds, default: 1000000)
--time ms (report interval in milliseconds, default: 1000)
--relative (relative clock time (default))

--actual (actual clock time)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

135/1322

R|Pts:| 240 -|+ Latency (uSeconds) vs Time (seconds) Wall:

Figure 4.4: latency-plot Window

4.2.2.3 Latency Histogram

The application latency-histogram displays a histogram of latency (jitter) for a base and servo thread.

Usage:
latency-histogram --help | -7?
latency-histogram [Options]

Options:
--base ns base thread interval in nanoseconds, default:
--Servo ns servo thread interval in nanoseconds, default:

base bin size in nanoseconds, default: 100
servo bin size in nanoseconds, default: 100

--bbinsize ns
--sbinsize ns

25000, min:
1000000, min: 25000)

5000)

(

(

(

(
--bbins n (base bins, default: 200
--sbins n (servo bins, default: 200
--logscale 0|1 (y axis log scale, default: 1)
--text note (additional note, default: "")
- -show (show count of undisplayed bins)
--nobase (servo thread only)
--verbose (progress and debug)
--nox (no gui, display elapsed,min,max,sdev for each thread)
Note

When determining the latency, LinuxCNC and HAL should not be running, stop with halrun -U. Large
number of bins and/or small binsizes will slow updates. For single thread, specify --nobase (and
options for servo thread). Measured latencies outside the +/- bin range are reported with special end

bars. Use --show to show count for the off-chart [pos|neg] bin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 136 /1322

i Tusr/binflatency-histogram =
Date Hostname User CommandiineNote
Machine OSversion LinuxCNCversion Xdisplay
Ncores Isclcpus Vendor_id Model
Latency (uS) base thread (25.0 uSec period , binsize=0.1 uS) Latency (uS) servo thread (1000.0 uSec period , binsize=0.1 uS)
1E7
1E5
1E6
1E5 1E4
1E4 1E3
1E3
1E2
1E2
1E1
1E1
1ED 1E0
T T T T T 1 T] T T T T T T 1 T 1
20 -10 4 20 2 4 10 20 20 -10 4 20 2 4 10 20
min (us) 4.3 sdev (us): 0.3 max{us) 14.3 || min {us) | 141 sdev (us):| 0.3 max{us) | 14.8
0 =—off-chart neg bin ct offchart pos bin ct—> 0 0 =-off-chart neg bin ct off-chart pos bin ct—= 1]
Display +/-bins: — 2 — 4 10 7 20 40 © 100 ~ 200 _Display-t-f—hins: 2 4 10 20 40 100 = 200 |
Reset| ¥ ylogscale Screenshot| Glegears| 0 Elapsed Time:| 764 Exit]

Figure 4.5: latency-histogram Window

4.2.3 Latency tuning

LinuxCNC can run on many different hardware platforms and with many different realtime kernels,
and they all may benefit from tuning for optimal latency.

A primary goal in tuning the system for LinuxCNC is to reserve a CPU for the exclusive use of Lin-
uxCNC'’s realtime tasks, so that other tasks (both user programs and kernel threads) do not interfere
with LinuxCNC'’s access to that CPU.

When specific tuning options are believed to be universally helpful LinuxCNC does this tuning auto-
matically at startup, but many tuning options are machine-specific and cannot be done automatically.
The person installing LinuxCNC will need to experimentally determine the optimal tuning for their
system.

4.2.3.1 Tuning the BIOS for latency

PC BIOSes vary wildly in their latency behavior.

Tuning the BIOS is tedious because you have to reboot the computer, make one small tweak in the
BIOS, boot Linux, and run the latency test (potentially for a long time) to see what effects your BIOS
change had. Then repeat for all the other BIOS settings you want to try.

Because BIOSes are all different and non-standard, providing a detailed BIOS tuning guide is not
practical. In general, some things to try tuning in the BIOS are:

e Disable ACPI, APM, and any other power-saving features. This includes anything related to power
saving, suspending, CPU sleep states, CPU frequency scaling, etc.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 137 /1322

Disable CPU “turbo” mode.
Disable CPU hyperthreading.

Disable (or otherwise control) System Management Interrupt (SMI).

Disable any hardware you do not intend to use.

4.2.3.2 Tuning Preempt-RT for latency

The Preempt-RT kernel may benefit from tuning in order to provide the best latency for LinuxCNC.
Tuning may be done via the kernel command line, sysctl, and via files in /proc and /sys.

Some tuning parameters to look into:

Kernel command line
Details here: https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

e isolcpus: Prevent most non-LinuxCNC processes from using these CPUs, leaving more CPU
time available for LinuxCNC.

e irgaffinity: Select which CPUs service interrupts, so that the CPUs reserved for LinuxCNC
realtime don’t have to perform this task.

* rcu_nochs: Prevent RCU callbacks from running on these CPUs.
* rcu_nocb poll: Poll for RCU callbacks instead of using sleep/wake.
* nohz_full: Disable clock tick on these CPUs.

Sysctl
Details here: https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

» sysctl.kernel.sched rt runtime us: Set to -1 to remove the limit on how much time real-
time tasks may use.

4.3 Stepper Tuning

4.3.1 Getting the most out of Software Stepping

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a
parallel port that is capable of outputting step pulses that are generated by the software. However,
software step pulses also have some disadvantages:

e limited maximum step rate
e jitter in the generated pulses

¢ loads the CPU

This chapter has some steps that can help you get the best results from software generated steps.

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 138 /1322

4.3.1.1 Run a Latency Test

The CPU is not the only factor determining latency. Motherboards, graphics cards, USB ports and
many other things can degrade it. The best way to know what to expect from a PC is to run the RT
latency tests.

Run the latency test as described in the Latency Test chapter.

While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are.

The last number in the column labeled Max Jitter is the most important. Write it down - you will need
it later. It contains the worst latency measurement during the entire run of the test. In the example
above, that is 6693 nano-seconds, or 6,69 micro-seconds, which is excellent. However the example
only ran for a few seconds (it prints one line every second). You should run the test for at least several
minutes; sometimes the worst case latency doesn’t happen very often, or only happens when you do
some particular action. I had one Intel motherboard that worked pretty well most of the time, but
every 64 seconds it had a very bad 300 ps latency. Fortunately that is fixable, see Fixing SMI issues
on the LinuxCNC Wiki

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds
(15000-20000 nanoseconds), the computer should give very nice results with software stepping. If
the max latency is more like 30-50 microseconds, you can still get good results, but your maximum
step rate might be a little disappointing, especially if you use microstepping or have very fine pitch
leadscrews. If the numbers are 100 ps or more (100,000 nanoseconds), then the PC is not a good
candidate for software stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC
is not a good candidate for LinuxCNC, regardless of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. For example, one PC had very
bad latency (several milliseconds) when using the onboard video. But a $5 used video card solved the
problem - LinuxCNC does not require bleeding edge hardware.

4.3.1.2 Figure out what your drives expect

Different brands of stepper drives have different timing requirements on their step and direction
inputs. So you need to dig out (or Google for) the data sheet that has your drive’s specs.

From the Gecko G202 manual:

Step Frequency: 0 to 200 kHz

Step Pulse "0” Time: 0.5 us min (Step on falling edge)

Step Pulse "1” Time: 4.5 us min

Direction Setup: 1 ps min (20 ps min hold time after Step edge)

From the Gecko G203V manual:

Step Frequency: 0 to 333 kHz
Step Pulse "0” Time: 2.0 ps min (Step on rising edge)
Step Pulse "1” Time: 1.0 us min

Direction Setup:

200 ns (0.2 ps) before step pulse rising edge
200 ns (0.2 ps) hold after step pulse rising edge

From the Xylotex datasheet:

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 139/1322

Minimum DIR setup time before rising edge of STEP Pulse 200 ns Minimum
DIR hold time after rising edge of STEP pulse 200 ns

Minimum STEP pulse high time 2.0 us

Minimum STEP pulse low time 1.0 us

Step happens on rising edge

Once you find the numbers, write them down too - you need them in the next step.

4.3.1.3 Choose your BASE_PERIOD

BASE PERIOD is the heartbeat of your LinuxCNC computer. Every period, the software step genera-
tor decides if it is time for another step pulse. A shorter period will allow you to generate more pulses
per second, within limits. But if you go too short, your computer will spend so much time generating
step pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper
drive requirements affect the shortest period you can use, as we will see in a minute.

Let’s look at the Gecko example first. The G202 can handle step pulses that go low for 0.5 us and
high for 4.5 ps, it needs the direction pin to be stable 1 ps before the falling edge, and remain stable
for 20 ps after the falling edge. The longest timing requirement is the 20 ps hold time. A simple
approach would be to set the period at 20 ps. That means that all changes on the STEP and DIR lines
are separated by 20 ps. All is good, right?

Wrong! If there was ZERO latency, then all edges would be separated by 20 us, and everything would
be fine. But all computers have some latency. Latency means lateness. If the computer has 11 ps of
latency, that means sometimes the software runs as much as 11 ps later than it was supposed to. If
one run of the software is 11 ps late, and the next one is on time, the delay from the first to the second
is only 9 ps. If the first one generated a step pulse, and the second one changed the direction bit, you
just violated the 20 ps G202 hold time requirement. That means your drive might have taken a step
in the wrong direction, and your part will be the wrong size.

The really nasty part about this problem is that it can be very very rare. Worst case latencies might
only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you get very rare errors that ruin a part every once in a while and are impossible
to troubleshoot.

The simplest way to avoid this problem is to choose a BASE PERIOD that is the sum of the longest
timing requirement of your drive, and the worst case latency of your computer. If you are running a
Gecko with a 20 ps hold time requirement, and your latency test said you have a maximum latency of
11 ps, then if you set the BASE PERIOD to 20+11 = 31 ps (31000 nano-seconds in the ini file), you
are guaranteed to meet the drive’s timing requirements.

But there is a tradeoff. Making a step pulse requires at least two periods. One to start the pulse, and
one to end it. Since the period is 31 ps, it takes 2x31 = 62 ps to create a step pulse. That means the
maximum step rate is only 16,129 steps per second. Not so good. (But don’t give up yet, we still have
some tweaking to do in the next section.)

For the Xylotex, the setup and hold times are very short, 200 ns each (0.2 ps). The longest time is
the 2 ps high time. If you have 11 ps latency, then you can set the BASE PERIOD as low as 11+2=13
ps. Getting rid of the long 20 ps hold time really helps! With a period of 13 ps, a complete step takes
2x13 = 26 ps, and the maximum step rate is 38,461 steps per second!

But you can’t start celebrating yet. Note that 13 us is a very short period. If you try to run the step
generator every 13 ps, there might not be enough time left to run anything else, and your computer
will lock up. If you are aiming for periods of less than 25 ps, you should start at 25 ps or more, run
LinuxCNC, and see how things respond. If all is well, you can gradually decrease the period. If the
mouse pointer starts getting sluggish, and everything else on the PC slows down, your period is a
little too short. Go back to the previous value that let the computer run smoothly.

In this case, suppose you started at 25 ps, trying to get to 13 ps, but you find that around 16 ps is the
limit - any less and the computer doesn’t respond very well. So you use 16 ps. With a 16 ps period and

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 140/ 1322

11 ps latency, the shortest output time will be 16-11 = 5 ps. The drive only needs 2 s, so you have
some margin. Margin is good - you don’t want to lose steps because you cut the timing too close.

What is the maximum step rate? Remember, two periods to make a step. You settled on 16 ps for the
period, so a step takes 32 ps. That works out to a not bad 31,250 steps per second.

4.3.1.4 Use steplen, stepspace, dirsetup, and/or dirhold

In the last section, we got the Xylotex drive to a 16 ps period and a 31,250 step per second maximum
speed. But the Gecko was stuck at 31 ps and a not-so-nice 16,129 steps per second. The Xylotex
example is as good as we can make it. But the Gecko can be improved.

The problem with the G202 is the 20 ps hold time requirement. That plus the 11 us latency is what
forces us to use a slow 31 ps period. But the LinuxCNC software step generator has some parameters
that let you increase the various time from one period to several. For example, if steplen is changed
from 1 to 2, then it there will be two periods between the beginning and end of the step pulse. Likewise,
if dirhold is changed from 1 to 3, there will be at least three periods between the step pulse and a
change of the direction pin.

If we can use dirhold to meet the 20 ps hold time requirement, then the next longest time is the 4.5
ps high time. Add the 11 ps latency to the 4.5 ps high time, and you get a minimum period of 15.5
ps. When you try 15.5 ps, you find that the computer is sluggish, so you settle on 16 ps. If we leave
dirhold at 1 (the default), then the minimum time between step and direction is the 16 ps period minus
the 11 ps latency = 5 ps, which is not enough. We need another 15 ps. Since the period is 16 us, we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the
step pulse to the changing direction pin is 5+16=21 ps, and we don’t have to worry about the Gecko
stepping the wrong direction because of latency.

If the computer has a latency of 11 ps, then a combination of a 16 ps base period, and a dirhold value
of 2 ensures that we will always meet the timing requirements of the Gecko. For normal stepping (no
direction change), the increased dirhold value has no effect. It takes two periods totalling 32 us to
make each step, and we have the same 31,250 step per second rate that we got with the Xylotex.

The 11 ps latency number used in this example is very good. If you work through these examples with
larger latency, like 20 or 25 ps, the top step rate for both the Xylotex and the Gecko will be lower.
But the same formulas apply for calculating the optimum BASE PERIOD, and for tweaking dirhold or
other step generator parameters.

4.3.1.5 No Guessing!

For a fast AND reliable software based stepper system, you cannot just guess at periods and other
configuration parameters. You need to make measurements on your computer, and do the math to
ensure that your drives get the signals they need.

To make the math easier, I've created an Open Office spreadsheet Step Timing Calculator. You enter
your latency test result and your stepper drive timing requirements and the spreadsheet calculates
the optimum BASE PERIOD. Next, you test the period to make sure it won’t slow down or lock up
your PC. Finally, you enter the actual period, and the spreadsheet will tell you the stepgen parameter
settings that are needed to meet your drive’s timing requirements. It also calculates the maximum
step rate that you will be able to generate.

I've added a few things to the spreadsheet to calculate max speed and stepper electrical calculations.

4.4 INI Configuration

4.4.1 The INI File Components

A typical INI file follows a rather simple layout that includes;

https://wiki.linuxcnc.org/uploads/StepTimingCalculator.ods

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 141 /1322

e comments
e sections

e variables

Each of these elements is separated on single lines. Each end of line or newline character creates a
new element.

4.4.1.1 Comments

A comment line is started with a ; or a # mark. When the INI reader sees either of these marks at the
start a line, the rest of the line is ignored by the software. Comments can be used to describe what
an INT element will do.

; This is my mill configuration file.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different
variables.

DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone
carelessly edits a list like this and leaves two of the lines uncommented, the first one encountered will
be used.

Note that inside a variable, the "#” and ”;” characters do not denote comments:
INCORRECT = value # and a comment

Correct Comment
CORRECT = value

4.4.1.2 Sections

Related parts of an INI file are separated into sections. A section name is enclosed in brackets like
this: [THIS SECTION]. The order of sections is unimportant. Sections begin at the section name and
end at the next section name.

The following sections are used by LinuxCNC:

e [EMC] general information

e [DISPLAY] settings related to the graphical user interface

* [FILTER] settings input filter programs

* [RS274NGC] settings used by the G-code interpreter

* [EMCMOT] settings used by the real time motion controller

* [TASK] settings used by the task controller

* [HAL] specifies .hal files

e [HALUI] MDI commands used by HALUI

* [APPLICATIONS] Other applications to be started by LinuxCNC

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 142 /1322

* [TRA]J] additional settings used by the real time motion controller

[JOINT n] individual joint variables

[AXIS 1] individual axis variables

[KINS] kinematics variables

[EMCIO] settings used by the I/O Controller

4.4.1.3 Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the
first non-white space character after the = up to the end of the line is passed as the value, so you can
embed spaces in string symbols if you want to or need to. A variable name is often called a keyword.

Variable Example
MACHINE = My Machine

Avariable line may be extended to multiple lines with a terminal backslash (\) character. A maximum of
MAX EXTEND LINES (==20) are allowed. There must be no whitespace following the trailing backslash
character.

Section identifiers may not be extended to multiple lines.

Variable with Line extends Example

APP = sim pin \
ini.0.max_acceleration \
ini.1l.max_acceleration \
ini.2.max_acceleration \
ini.0.max velocity \
ini.l.max_velocity \
ini.2.max_velocity

Boolean Variables Boolean values can be on one of TRUE, YES or 1 for true/enabled and one of FALSE,
NO or 0 for false/disabled. The case is ignored.

The following sections detail each section of the configuration file, using sample values for the con-
figuration lines.

Variables that are used by LinuxCNC must always use the section names and variable names as shown.

4.4.1.4 Custom Sections and Variables

Most sample configurations use custom sections and variables to put all of the settings into one loca-
tion for convenience.

To add a custom variable to an existing LinuxCNC section, simply include the variable in that section.

Custom Variable Example, assigning the value LINEAR to the variable TYPE, and the value
16000 to the variable SCALE.

[JOINT 0]
TYPE = LINEAR

SCALE = 16000

To introduce a custom section with its own variables, add the section and variables to the INI file.

Custom Section Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 143 /1322

[PROBE]

Z FEEDRATE = 50

Z OFFSET = 12

Z SAFE_DISTANCE = -10

To use the custom variables in your HAL file, put the section and variable name in place of the value.

HAL Example

setp offset.l.offset [PROBE]Z OFFSET
setp stepgen.0.position-scale [JOINT O]SCALE

Note
The value stored in the variable must match the type specified by the component pin.

To use the custom variables in G-code, use the global variable syntax #< ini[section]variable>.
The following example shows a simple Z-axis touch-off routine for a router or mill using a probe plate.

G-code Example

G91

G38.2 Z#< ini[probelz safe distance> F#< ini[probe]z feedrate>
G90

Gl Z#5063

G10 L20 PO Z#< ini[probe]z offset>

4.4.1.5 Include Files

An INI file may include the contents of another file by using a #INCLUDE directive.
#INCLUDE Format
#INCLUDE filename

The filename can be specified as:

* a file in the same directory as the INI file
« a file located relative to the working directory
* an absolute file name (starts with a /)

¢ a user-home-relative file name (starts with a ~)

Multiple #INCLUDE directives are supported.
#INCLUDE Examples

#INCLUDE joint 0.inc

#INCLUDE ../parallel/joint 1l.inc

#INCLUDE below/joint 2.inc

#INCLUDE /home/myusername/myincludes/display.inc
#INCLUDE ~/linuxcnc/myincludes/rs274ngc.inc

The #INCLUDE directives are supported for one level of expansion only — an included file may not
include additional files. The recommended file extension is .inc. Do not use a file extension of .ini for
included files.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 144 /1322

4.4.2 INI File Sections

4.4.2.1 [EMC] Section

e VERSION = 1.1 - The format version of this configuration. Any value other than 1.1 will cause the
configuration checker to run and try to update the configuration to the new style joint axes type of
configuration.

¢ MACHINE = My Controller - This is the name of the controller, which is printed out at the top of
most graphical interfaces. You can put whatever you want here as long as you make it a single line
long.

* DEBUG = 0-Debuglevel 0 means no messages will be printed when LinuxCNC is run from a terminal.
Debug flags are usually only useful to developers. See src/emc/nml intf/debugflags.h for other
settings.

* RCS DEBUG = 1 RCS debug messages to show. Print only errors (1) by default if EMC DEBUG RCS
and EMC DEBUG _RCS bits in DEBUG are unset, otherwise print all (-1). Use this to select RCS debug
messages. See src/libnml/rcs/rcs print.hh for all MODE flags.

« RCS_DEBUG DEST = STDOUT - how to output RCS_DEBUG messages (NULL, STDOUT, STDERR, FILE,
LOGGER, MSGBOX).

* RCS_MAX ERR = -1 - Number after which RCS errors are not reported anymore (-1 = infinite).

* NML_FILE = /usr/share/linuxcnc/linuxcnc.nml - Set this if you want to use a non-default NML
configuration file.

4.4.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every
user interface. There are several interfaces, like AXIS, GMOCCAPY, Touchy, QtVCP’s QtDragon and
Gscreen. AXIS is an interface for use with normal computer and monitor, Touchy is for use with touch
screens. GMOCCAPY can be used both ways and offers also many connections for hardware controls.
Descriptions of the interfaces are in the Interfaces section of the User Manual.

e DISPLAY = axis - The file name of the executable providing the user interface to use. Prominent
valid options are (all in lower case): axis, touchy, gmoccapy, gscreen, tklinuxcnc, qtvcp, qtvcp
gtdragon or qtvcp gtplasmac.

e POSITION OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show on the DRO
when the user interface starts. The RELATIVE coordinate system reflects the G92 and G5x coordi-
nate offsets currently in effect.

e POSITION FEEDBACK = COMMANDED - The coordinate value (COMMANDED or ACTUAL) to show on the
DRO when the user interface starts. In AXIS this can be changed from the View menu. The COM-
MANDED position is the position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors if they have feedback like most servo systems. Typically the COMMANDED
value is used.

* DRO_FORMAT MM = %+08.6f - Override the default DRO formatting in metric mode (normally 3 dec-
imal places, padded with spaces to 6 digits to the left). The example above will pad with zeros,
display 6 decimal digits and force display of a + sign for positive numbers. Formatting follows
Python practice: https://docs.python.org/2/library/string.html#format-specification-mini-language
. An error will be raised if the format can not accept a floating-point value.

https://docs.python.org/2/library/string.html#format-specification-mini-language

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 145 /1322

DRO FORMAT IN = % 4.1f - Override the default DRO formatting in imperial mode (normally 4 deci-
mal places, padded with spaces to 6 digits to the left). The example above will display only one deci-
mal digit. Formatting follows Python practice: https://docs.python.org/2/library/string.html#format-
specification-mini-language . An error will be raised if the format can not accept a floating-point
value.

CONE_BASESIZE = .25 - Override the default cone/tool base size of .5 in the graphics display. Valid
values are between 0.025 and 2.0.

DISABLE CONE_SCALING = TRUE - Any non-empty value (including ”"0”) will override the default be-
havior of scaling the cone/tool size using the extents of the currently loaded G-code program in the
graphics display.

MAX FEED OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of
the programmed feed rate.

MIN SPINDLE OVERRIDE = 0.5 -The minimum spindle override the user may select. 0.5 means 50%
of the programmed spindle speed. (This is used to set the minimum spindle speed.)

MIN SPINDLE O OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means
50% of the programmed spindle speed. (This is used to set the minimum spindle speed.) On multi
spindle machine there will be entries for each spindle number. Only used by the QtVCP based user
interfaces.

MAX_SPINDLE OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means
100% of the programmed spindle speed.

MAX SPINDLE 0 OVERRIDE = 1.0 - The maximum feed override the user may select. 1.2 means
120% of the programmed feed rate. On multi spindle machine there will be entries for each spindle
number. Only used by the QtVCP based user interfaces.

DEFAULT SPINDLE SPEED = 100 - The default spindle RPM when the spindle is started in manual
mode. If this setting is not present, this defaults to 1 RPM for AXIS and 300 RPM for GMOCCAPY.

- deprecated - use the [SPINDLE n] section instead

DEFAULT SPINDLE O SPEED = 100 - The default spindle RPM when the spindle is started in manual
mode. On multi spindle machine there will be entries for each spindle number. Only used by the
QtVCP-based user interfaces.

- deprecated - use the [SPINDLE n] section instead.

SPINDLE INCREMENT = 200 - The increment used when clicking increase/decrease buttons. Only
used by the QtVCP based user interfaces.

- deprecated - use the [SPINDLE n] section instead.

MIN SPINDLE © SPEED = 1000 - The minimum RPM that can be manually selected. On multi spin-
dle machine there will be entries for each spindle number. Only used by the QtVCP-based user
interfaces.

- deprecated - use the [SPINDLE n] section instead.

MAX_SPINDLE © SPEED = 20000 - The maximum RPM that can be manually selected. On multi spin-
dle machine there will be entries for each spindle number. Only used by the QtVCP-based user
interfaces.

- deprecated - use the [SPINDLE n] section instead.

PROGRAM PREFIX = ~/linuxcnc/nc_files - The default directory for G-code files, named subrou-
tines, and user-defined M-codes. The PROGRAM PREFIX directory is searched before the directories
listed in [RS274]SUBROUTINE PATH and [RS274]JUSER M PATH.

https://docs.python.org/2/library/string.html#format-specification-mini-language
https://docs.python.org/2/library/string.html#format-specification-mini-language

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 146 /1322

e INTRO GRAPHIC = emc2.gif - The image shown on the splash screen.
e INTRO TIME

* CYCLE_TIME = 100 - Cycle time of the display GUI. Depending on the screen, this can be in seconds
or ms (ms preferred). This is often the update rate rather then sleep time between updates. If the
update time is not set right the screen can become unresponsive or very jerky. A value of 100 ms
(0.1s) is a common setting though a range of 50 - 200 ms (.05 - .2's) may be useable. An under
powered CPU may see improvement with a longer setting. Usually the default is fine.

5 - The maximum time to show the splash screen, in seconds.

e PREVIEW TIMEOUT = 5 - Timeout (in seconds) for loading graphical preview of G-code. Currently
AXIS only.

¢ HOMING PROMPT = TRUE - Any non-empty value (including “0”) will enable showing a prompt mes-
sage with homing request, when the Power On button is pressed in AXIS GUI. Pressing the "Ok”
button in prompt message is equivalent to pressing the "Home All” button(or the Ctrl-HOME key).

* FOAM W
e FOAM Z = 0 sets the foam Z height.

* GRAPHICAL MAX FILE SIZE = 20 largest size (in mega bytes) that will be displayed graphically. If
the program is bigger than this setting, a bounding box will be displayed. By default, this setting
is at 20 MB or 1/4 of the system memory, which ever is smaller. A negative value is interpreted as
unlimited.

1.5 sets the foam W height.

Note
The following [DISPLAY] items are used by GladeVCP and PyVCP, see the embedding a tab section of
the GladeVCP Chapter or the PyVCP Chapter for more information.

« EMBED TAB NAME = GladeVCP demo

e EMBED TAB COMMAND = halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID\} -u ./glad
./gladevcp/manual -example.ui

Note

Different user interface programs use different options, and not every option is supported by every
user interface. See AXIS GUI document for AXIS details. See GMOCCAPY document for GMOCCAPY
details.

e DEFAULT LINEAR VELOCITY = .25-The default velocity forlinear jogs, in machine units per second.
e MIN VELOCITY = .01 - The approximate lowest value the jog slider.

e MAX LINEAR VELOCITY
* MIN LINEAR VELOCITY

e DEFAULT ANGULAR VELOCITY = .25 - The default velocity for angular jogs, in machine units per
second.

* MIN ANGULAR VELOCITY

¢ MAX ANGULAR VELOCITY
ond.

1.0 - The maximum velocity for linear jogs, in machine units per second.

.01 - The approximate lowest value the jog slider.

.01 - The approximate lowest value the angular jog slider.

1.0 - The maximum velocity for angular jogs, in machine units per sec-

e INCREMENTS = 1 mm, .5 in, ... - Defines the increments available for incremental jogs. The IN-
CREMENTS can be used to override the default. The values can be decimal numbers (e.g., 0.1000)
or fractional numbers (e.g., 1/16), optionally followed by a unit (cm, mm, um, inch, in or mil). If
a unit is not specified the machine unit is assumed. Metric and imperial distances may be mixed:
INCREMENTS = 1inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 147 /1322

e GRIDS = 10 mm, 1 in, ... - Defines the preset values for grid lines. The value is interpreted the
same way as INCREMENTS.

* OPEN FILE = /full/path/to/file.ngc - The file to show in the preview plot when AXIS starts.
Use a blank string ”” and no file will be loaded at start up. GMOCCAPY will not use this setting, as
it offers a corresponding entry on its settings page.

e EDITOR = gedit - The editor to use when selecting File > Edit to edit the G-code from the AXIS
menu. This must be configured for this menu item to work. Another valid entry is gnome-terminal
-e vim. This entry does not apply to GMOCCAPY, as GMOCCAPY has an integrated editor.

e TOOL EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting
"File > Edit tool table...” in AXIS). Other valid entries are gedit, gnome-terminal -e vim, and
gvim. This entry does not apply to GMOCCAPY, as GMOCCAPY has an integrated editor.

* PYVCP = /filename.xml - The PyVCP panel description file. See the PyVCP Chapterfor more infor-
mation.

* PYVCP_POSITION = BOTTOM - The placement of the PyVCP panel in the AXIS user interface. If this
variable is omitted the panel will default to the right side. The only valid alternative is BOTTOM. See
the PyVCP Chapter for more information.

* LATHE = 1 - Any non-empty value (including ”"0”) causes axis to use ”“lathe mode” with a top view
and with Radius and Diameter on the DRO.

* BACK TOOL LATHE = 1 - Any non-empty value (including ”"0”) causes axis to use "back tool lathe
mode” with inverted X axis.

* FOAM = 1 - Any non-empty value (including ”0”) causes axis to change the display for foam-cutter
mode.

e GEOMETRY = XYZABCUVW - Controls the preview and backplot of motion. This item consists of a
sequence of axis letters and control characters, optionally preceded with a ”-” sign:

The letters X, Y, Z specify translation along the named coordinate.

The letters A, B, C specify rotation about the corresponding axes X, Y, Z.
The letters U, V, W specify translation along the related axes X, Y, Z.

Each letter specified must occur in [TRAJ]COORDINATES to have an effect.
A ”-” character preceding any letter inverts the direction of the operation.

The translation and rotation operations are evaluated right-to-left. So using GEOMETRY=XYZBC
specifies a C rotation followed by a B rotation followed by Z, Y, X translations. The ordering of
consecutive translation letters is immaterial.

ZER AN

7. The proper GEOMETRY string depends on the machine configuration and the kinematics used
to control it. The order of the letters is important. For example, rotating around C then B is
different than rotating around B then C.

8. Rotations are by default applied with respect to the machine origin. Example: GEOMETRY=CXYZ
first translates the control point to X, Y, Z and then performs a C rotation about the Z axis
centered at the machine origin.

9. UVW translation example: GEOMETRY=XYZUVW causes UVW to move in the coordinate system of
the tool and XYZ to move in the coordinate system of the material.

10. Foam-cutting machines (FOAM = 1) should specify "XY;UV” or leave the value blank even though

this value is presently ignored in foam-cutter mode. A future version may define what ”;” means,
but if it does "XY;UV” will mean the same as the current foam default.

11. Experimental: If the exclamation mark (!) character is included in the GEOMETRY string,
display points for A, B, C rotations respect the X, Y, Z offsets set by G5x, G92 codes. Example:
Using GEOMETRY = !CXZ for a machine with [TRAJ]COORDINATES=XZC. This provision applies
for liveplots only — G-code previews should be done with zero G5x, G92 offsets. This can be

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 148 /1322

facilitated by setting offsets in programs only when task is running as indicated by #<_ task>
== 1. If nonzero offsets exist at startup due to persistence, offsets should be zeroed and preview
reloaded.

Note
If no [DISPLAY]GEOMETRY is included in the INI file, a default is provided by the [DISPLAY]DISPLAY
GUI program (typically "XYZABCUVW").

e ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into
a number of straight lines; a semicircle is divided into ARCDIVISION parts. Larger values give
a more accurate preview, but take longer to load and result in a more sluggish display. Smaller
values give a less accurate preview, but take less time to load and may result in a faster display.
The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).

* MDI HISTORY FILE =-The name of alocal MDI history file. If this is not specified, AXIS will save the
MDI history in .axis_mdi_history in the user' s home directory. This is useful if you have multiple
configurations on one computer.

* JOG_AXES = - The order in which jog keys are assigned to axis letters. The left and right ar-
rows are assigned to the first axis letter, up and down to the second, page up/page down to the
third, and left and right bracket to the fourth. If unspecified, the default is determined from the
[TRAJ]COORDINATES, [DISPLAY]LATHE and [DISPLAY]FOAM values.

* JOG_INVERT = - For each axis letter, the jog direction is inverted. The default is "X” for lathes and
blank otherwise.

Note

The settings for JOG_AXES and JOG_INVERT apply to world mode jogging by axis coordinate letter
and are in effect while in world mode after successful homing. When operating in joint mode prior
to homing, keyboard jog keys are assigned in a fixed sequence: left/right: joint0, up/down: jointl,
page up/page down: joint2, left/right bracket: joint3

e USER COMMAND FILE = mycommands.py - The name of an optional, configuration-specific Python file
sourced by the AXIS GUI instead of the user-specific file ~/.axisrc.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

* HELP_FILE = tklinucnc.txt - Path to help file.

4.4.2.3 [FILTER] Section

AXIS and GMOCCAPY have the ability to send loaded files through a filter program. This filter can
do any desired task: Something as simple as making sure the file ends with M2, or something as
complicated as detecting whether the input is a depth image, and generating G-code to mill the shape
it defines. The [FILTER] section of the INI file controls how filters work. First, for each type of file,
write a PROGRAM _EXTENSION-line. Then, specify the program to execute for each type of file. This
program is given the name of the input file as its first argument, and must write RS274NGC code to
standard output. This output is what will be displayed in the text area, previewed in the display area,
and executed by LinuxCNC when Run.

* PROGRAM_EXTENSION = .extension Description

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 149 /1322

If your post processor outputs files in all caps you might want to add the following line:
PROGRAM EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-G-code converter included with LinuxCNC.

PROGRAM_EXTENSION = .png,.gif,.jpg # Greyscale Depth Image

png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode

An example of a custom G-code converter located in the linuxcnc directory.

PROGRAM EXTENSION = .gcode 3D Printer
gcode = /home/mill/linuxcnc/convert.py

Note

The program file associated with an extension must have either the full path to the program or be
located in a directory that is on the system path.

It is also possible to specify an interpreter:

PROGRAM _EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc_files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle. Many more G-code generators are on the LinuxCNC Wiki site
https://wiki.linuxcnc.org/.

Python filters should use the print function to output the result to AXIS.

This example program filters a file and adds a W axis to match the Z axis. It depends on there being
a space between each axis word to work.

#!/usr/bin/env python3
import sys
def main(argv):

openfile = open(argv[0], 'r’")
file in = openfile.readlines()
openfile.close()

file out = []
for line in file in:
print(line)
if line.find('Z") '= -1:
words = line.rstrip(’\n")
words = words.split(’ ')
newword = '’
for i in words:
if i[0] == 'Z":
newword = 'W'+ i[1:]
if len(newword) > 0:
words.append(newword)
newline = ' ’'.join(words)
file out.append(newline)

https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 150/1322

if name ==

else:
file out.append(line)
for item in file out:
print(”%s” % item)

”n ”

__main_ ":
main(sys.argv([1l:])

FILTER PROGRESS=%d

If the environment variable AXIS PROGRESS BAR is set, then lines written to stderr of the form
above sets the AXIS progress bar to the given percentage. This feature should be used by any filter
that runs for a long time.

4.4.2.4 [RS274NGC] Section

PARAMETER FILE = myfile.var-The filelocated in the same directory as the INI file which contains
the parameters used by the interpreter (saved between runs).

ORIENT OFFSET = 0O - A float value added to the R word parameter of an M19 Orient Spindle oper-
ation. Used to define an arbitrary zero position regardless of encoder mount orientation.

RS274NGC_STARTUP _CODE = G17 G20 G40 G49 G64 PO.001 G80 G90 G92.1 G94 G97 G98-A string
of NC codes that the interpreter is initialized with. This is not a substitute for specifying modal G-
codes at the top of each NGC file, because the modal codes of machines differ, and may be changed
by G-code interpreted earlier in the session.

SUBROUTINE PATH = ncsubroutines:/tmp/testsubs:lathesubs:millsubs - Specifies a colon (:)
separated list of up to 10 directories to be searched when single-file subroutines are specified in G-
code. These directories are searched after searching [DISPLAY]PROGRAM PREFIX (if it is specified)
and before searching [WIZARD]WIZARD ROOT (if specified). The paths are searched in the order
that they are listed. The first matching subroutine file found in the search is used. Directories are
specified relative to the current directory for the INI file or as absolute paths. The list must contain
no intervening whitespace.

G64 DEFAULT TOLERANCE = n (Default: 0) Default P value for G64 if P is not called out.

G64 DEFAULT NAIVETOLERANCE = n (Default: 0) Default Q value for G64 if Q is not called out.
CENTER_ARC RADIUS TOLERANCE INCH = n (Default: 0.00005)

CENTER ARC _RADIUS TOLERANCE MM = n (Default: 0.00127)

USER M PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separated
directories for user defined functions. Directories are specified relative to the current directory for
the INI file or as absolute paths. The list must contain no intervening whitespace.

A search is made for each possible user defined function, typically (M100-M199). The search order
is:

1. [DISPLAY]PROGRAM PREFIX (if specified)

2. If [DISPLAY]PROGRAM PREFIX is not specified, search the default location: nc_files

3. Then search each directory in the list [RS274NGCJUSER_M_PATH.
The first executable M1xx found in the search is used for each M1xx.

Note
The maximum number of USER M PATH directories is defined at compile time (typ:
USER DEFINED FUNCTION MAX DIRS == 5).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 151 /1322

e INI VARS = 1 (Default: 1)
Allows G-code programs to read values from the INI file using the format # < ini[section]name>.
See G-code Parameters.

e HAL PIN VARS = 1 (Default: 1)
Allows G-code programs to read the values of HAL pins using the format #< hal[HAL item]>. Vari-
able access is read-only. See G-code Parameters for more details and an important caveat.

e RETAIN G43 = 0 (Default: 0)
When set, you can turn on G43 after loading the first tool, and then not worry about it through the
program. When you finally unload the last tool, G43 mode is canceled.

* OWORD NARGS = 0 (Default: 0)
If this feature is enabled then a called subroutine can determine the number of actual positional
parameters passed by inspecting the #<n_args> parameter.

* NO_DOWNCASE OWORD = 0 (Default: 0)
Preserve case in O-word names within comments if set, enables reading of mixed-case HAL items
in structured comments like (debug, #< hal[MixedCaseltem]).

* OWORD WARNONLY = 0 (Default: 0)
Warn rather than error in case of errors in O-word subroutines.

* DISABLE G92 PERSISTENCE = 0 (Default: 0) Allow to clear the G92 offset automatically when config
start-up.

* DISABLE FANUC STYLE SUB = 0 (Default: 0) If there is reason to disable Fanuc subroutines set it to
1.

* PARAMETER G73 PECK CLEARANCE = .020 (default: Metric machine: 1mm, imperial machine:
.050 inches) Chip breaking back-off distance in machine units

e PARAMETER G83 PECK CLEARANCE = .020 (default: Metric machine: 1mm, imperial machine:
.050 inches) Clearance distance from last feed depth when machine rapids back to bottom of hole,
in machine units.

Note

The above six options were controlled by the FEATURES bitmask in versions of LinuxCNC prior to 2.8.
This INI tag will no longer work.

For reference:

FEATURES & 0x1 -> RETAIN G43
FEATURES & 0x2 -> OWORD NARGS
FEATURES & 0x4 -> INI VARS

FEATURES & 0x8 -> HAL PIN VARS
FEATURES & 0x10 -> NO DOWNCASE OWORD
FEATURES & 0x20 -> OWORD WARNONLY

Note
[WIZARD]WIZARD ROOT is a valid search path but the Wizard has not been fully implemented and the
results of using it are unpredictable.

* LOG _LEVEL = 0 Specify the log level (default: 0)

e LOG FILE = file-name.log
For specify the file used for log the data.

¢ REMAP=M400 modalgroup=10 argspec=Pq ngc=myprocedure See Remap Extending G-code chapter
for details.

* ON_ABORT_ COMMAND=0 <on_abort> call See Remap Extending G-code chapter for details.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 152 /1322

4.4.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values
from this section to load the motion controller. For more information on the motion controller see the
Motion section.

EMCMOT = motmod - the motion controller name is typically used here.

BASE_PERIOD = 50000 - the Base task period in nanoseconds.

SERVO PERIOD = 1000000 - This is the "Servo” task period in nanoseconds.

TRAJ PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

COMM TIMEOUT = 1.0 - Number of seconds to wait for Motion (the realtime part of the motion con-
troller) to acknowledge receipt of messages from Task (the non-realtime part of the motion con-
troller).

HOMEMOD = alternate homing module [home parms=value] The HOMEMOD variable is optional. If
specified, use a specified (user-built) module instead of the default (homemod). Module parameters
(home parms) may be included if supported by the named module. The setting may be overridden
from the command line using the -m option ($ linuxcnc -h).

4.4.2.6 [TASK] Section

TASK = milltask - Specifies the name of the task executable. The task executable does various
things, such as

- communicate with the Uls over NML,
- communicate with the realtime motion planner over non-HAL shared memory, and

- interpret G-code. Currently there is only one task executable that makes sense for 99.9% of users,
milltask.

CYCLE TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the
polling interval when waiting for motion to complete, when executing a pause instruction, and when
accepting a command from a user interface. There is usually no need to change this number.

4.4.2.7 [HAL] section

HALFILE = example.hal - Execute the file example.hal at start up.

If HALFILE is specified multiple times, the files are interpreted in the order they appear in the INI file.
HAL files are descriptive, the execution of what is described in HAL files is triggered by the threads
in which functions are embedded, not by the reading of the HAL file. Almost all configurations
will have at least one HALFILE, and stepper systems typically have two such files, i.e., one which
specifies the generic stepper configuration (core stepper.hal) and one which specifies the machine
pin out (xxx_pinout.hal).

HAL files specified in the HALFILES variable are found using a search. If the named file is found in
the directory containing the INI file, it is used. If the named file is not found in this INTI file directory,
a search is made using a system library of HAL files.

If LinuxCNC is started with the linuxcnc script using the ”-H dirname” option, the specified dirname
is prepended to the search described above so that dirname is searched first. The ”-H dirname”
option may be specified more than once, directories are prepended in order.

A HALFILE may also be specified as an absolute path (when the name starts with a / character).
Absolute paths are not recommended as their use may limit relocation of configurations.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 153 /1322

* HALFILE = texample.tcl [argl [arg2] ...] - Execute the tcl file texample.tcl at start up with argl,
arg2, etc. as argv list. Files with a .tcl suffix are processed as above but use haltcl for processing.
See the HALTCL Chapter for more information.

* HALFILE = LIB:sys example.hal - Execute the system library file sys example.hal at start up. Ex-
plicit use of the LIB: prefix causes use of the system library HALFILE without searching the INI file
directory.

* HALFILE = LIB:sys texample.tcllargl [arg2 ...]]- Execute the system library file sys texample.tcl
at start up. Explicit use of the LIB: prefix causes use of the system library HALFILE without search-
ing the INI file directory.

HALFILE items specify files that loadrt HAL components and make signal connections between com-
ponent pins. Common mistakes are

1. omission of the addf statement needed to add a component’s function(s) to a thread,

2. incomplete signal (net) specifiers.
Omission of required addf statements is almost always an error. Signals usually include one or more

input connections and a single output (but both are not strictly required). A system library file is
provided to make checks for these conditions and report to stdout and in a pop-up GUI:

HALFILE = LIB:halcheck.tcl [nopopup]

Note

The LIB:halcheck.tcl line should be the last [HALJHALFILE. Specify the nopopup option to suppress
the popup message and allow immediate starting. Connections made using a POSTGUI_HALFILE are
not checked.

* TWOPASS = ON - Use twopass processing for loading HAL components. With TWOPASS processing,
lines of files specified in [HAL]JHALFILE are processed in two passes. In the first pass (pass0), all
HALFILES are read and multiple appearances of loadrt and loadusr commands are accumulated.
These accumulated load commands are executed at the end of passO. This accumulation allows
load lines to be specified more than once for a given component (provided the names= names used
are unique on each use). In the second pass (pass1), the HALFILES are reread and all commands
except the previously executed load commands are executed.

* TWOPASS = nodelete verbose - The TWOPASS feature can be activated with any non-null string in-
cluding the keywords verbose and nodelete. The verbose keyword causes printing of details to
stdout. The nodelete keyword preserves temporary files in /tmp.

For more information see the HAL TWOPASS chapter.

¢ HALCMD = command - Execute command as a single HAL command. If HALCMD is specified multiple
times, the commands are executed in the order they appear in the INI file. HALCMD-lines are executed
after all HALFILE-lines.

e SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending
on the hardware drivers used, this may make it possible to set outputs to defined values when
LinuxCNC is exited normally. However, because there is no guarantee this file will be executed (for
instance, in the case of a computer crash), it is not a replacement for a proper physical e-stop chain
or other protections against software failure.

* POSTGUI HALFILE = example2.hal - Execute example2.hal after the GUI has created its HAL pins.
Some GUIs create HAL pins and support the use of a postgui halfile to use them. GUIs that support
postgui HAL files include Touchy, AXIS, Gscreen, and GMOCCAPY.

See section PyVCP with AXIS for more information.

¢ HALUI = halui - adds the HAL user interface pins.
For more information see the HAL User Interface chapter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 154 /1322

4.4.2.8 [HALUI] section

* MDI COMMAND = G53 GO X0 YO Z0-An MDIcommand can be executed by using halui.mdi-command-00.
Increment the number for each command listed in the [HALUI] section. It is also possible to start
subroutines. MDI COMMAND = o<yoursub> CALL [#<yourvariable>]

4.4.2.9 [APPLICATIONS] Section

LinuxCNC can start other applications before the specified GUI is started. The applications can be
started after a specified delay to allow for GUI-dependent actions (like creating GUI-specific HAL
pins).

e DELAY = value - seconds to wait before starting other applications. A delay may be needed if an
application has dependencies on [HAL]JPOSTGUI HALFILE actions or GUI-created HAL pins (default
DELAY=0).

e ‘APP =" appname [argl [arg2 ...]]" - Application to be started. This specification can be included
multiple times. The appname can be explicitly named as an absolute or tilde specified filename
(first character is / or ~), a relative filename (first characters of filename are ./), or as a file in the
INI file directory. If no executable file is found using these names, then the user search PATH is
used to find the application.

Examples:

- Simulate inputs to HAL pins for testing (using sim pin — a simple GUI to set inputs to parameters,
unconnected pins, or signals with no writers):

APP = sim pin motion.probe-input halui.abort motion.analog-in-00

- Invoke halshow with a previuosly saved watchlist. Since LinuxCNC sets the working directory to
the directory for the INI file, you can refer to files in that directory (example: my.halshow):

APP = halshow my.halshow

- Alternatively, a watchlist file identified with a full pathname could be specified:

APP = halshow ~/saved shows/spindle.halshow

- Open halscope using a previously saved configuration:

APP = halscope -i my.halscope

4.4.2.10 [TRA]] Section

Warning

The new Trajectory Planner (TP) is on by default. If you have no TP settings in your [TRAJ]
section - LinuxCNC defaults to:

ARC BLEND ENABLE =1

ARC_BLEND_ FALLBACK ENABLE =0

ARC_BLEND_OPTIMIZATION_DEPTH = 50

ARC_BLEND_GAP _CYCLES = 4
ARC_BLEND_RAMP_FREQ = 100

The [TRAJ] section contains general parameters for the trajectory planning module in motion.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 155/1322

e ARC BLEND ENABLE = 1 - Turn on new TP. If set to O TP uses parabolic blending (1 segment look
ahead) (Default: 1).

e ARC BLEND FALLBACK ENABLE = 0 - Optionally fall back to parabolic blends if the estimated speed is
faster. However, this estimate is rough, and it seems that just disabling it gives better performance
(Default: 0).

* ARC_BLEND OPTIMIZATION DEPTH = 50 - Look ahead depth in number of segments.

To expand on this a bit, you can choose this value somewhat arbitrarily. Here’s a formula to estimate
how much depth you need for a particular config:

#n=vmax / (2.0 * a max * t c)

where:

n = optimization depth

v_max = max axis velocity (UU / sec)

a max = max axis acceleration (UU / sec)
t c = servo period (seconds)

So, a machine with a maximum axis velocity of 10 IPS, a max acceleration of 100 IPS?, and a servo
period of 0.001 s would need:

10 /(2.0 * 100 * 0.001) = 50 segments to always reach maximum velocity along the fastest axis.

In practice, this number isn’t that important to tune, since the look ahead rarely needs the full depth
unless you have lots of very short segments. If during testing, you notice strange slowdowns and
can’t figure out where they come from, first try increasing this depth using the formula above.

If you still see strange slowdowns, it may be because you have short segments in the program. If
this is the case, try adding a small tolerance for Naive CAM detection. A good rule of thumb is this:

min_length ~= v req * t c

where:

v _req = desired velocity in UU / sec
t c = servo period (seconds)

If you want to travel along a path at 1 IPS = 60IPM, and your servo period is 0.001 s, then any
segments shorter than min length will slow the path down. If you set Naive CAM tolerance to
around this min length, overly short segments will be combined together to eliminate this bottle-
neck. Of course, setting the tolerance too high means big path deviations, so you have to play
with it a bit to find a good value. I'd start at 1/2 of the min length, then work up as needed. *
ARC_BLEND GAP_CYCLES = 4 How short the previous segment must be before the trajectory plan-
ner consumes it.

Often, a circular arc blend will leave short line segments in between the blends. Since the geometry
has to be circular, we can’t blend over all of a line if the next one is a little shorter. Since the
trajectory planner has to touch each segment at least once, it means that very tiny segments will
slow things down significantly. My fix to this way to “consume” the short segment by making it a
part of the blend arc. Since the line+blend is one segment, we don’t have to slow down to hit the
very short segment. Likely, you won’t need to touch this setting. * ARC_BLEND RAMP FREQ = 20 -
This is a cutoff frequency for using ramped velocity.

Ramped velocity in this case just means constant acceleration over the whole segment. This is less
optimal than a trapezoidal velocity profile, since the acceleration is not maximized. However, if
the segment is short enough, there isn’t enough time to accelerate much before we hit the next
segment. Recall the short line segments from the previous example. Since they’re lines, there’s no
cornering acceleration, so we’re free to accelerate up to the requested speed. However, if this line
is between two arcs, then it will have to quickly decelerate again to be within the maximum speed
of the next segment. This means that we have a spike of acceleration, then a spike of deceleration,
causing a large jerk, for very little performance gain. This setting is a way to eliminate this jerk for
short segments.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 156 /1322

Basically, if a segment will complete in less time than 1 / ARC BLEND RAMP FREQ, we don’t
bother with a trapezoidal velocity profile on that segment, and use constant acceleration. (Set-
ting ARC_BLEND RAMP_FREQ = 1000 is equivalent to always using trapezoidal acceleration, if the
servo loop is 1 kHz).

You can characterize the worst-case loss of performance by comparing the velocity that a trapezoidal
profile reaches vs. the ramp:

v_ripple = a max / (4.0 * f)

where:

v_ripple = average velocity "loss” due to ramping
a_max = max axis acceleration

f = cutoff frequency from INI

For the aforementioned machine, the ripple for a 20 Hz cutoff frequency is 100 / (4 * 20) = 1.25 IPS.
This seems high, but keep in mind that it is only a worst-case estimate. In reality, the trapezoidal
motion profile is limited by other factors, such as normal acceleration or requested velocity, and so
the actual performance loss should be much smaller. Increasing the cutoff frequency can squeeze
out more performance, but make the motion rougher due to acceleration discontinuities. A value in
the range 20 Hz to 200 Hz should be reasonable to start.

Finally, no amount of tweaking will speed up a tool path with lots of small, tight corners, since you're
limited by cornering acceleration.

e SPINDLES = 3 - The number of spindles to support. It is imperative that this number matches the
“num_spindles” parameter passed to the motion module.

* COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are
valid. Only axes named in COORDINATES are accepted in G-code. It is permitted to write an axis
name more than once (e.g., XYY Z for a gantry machine). For the common trivkins kinematics,
joint numbers are assigned in sequence according to the trivkins parameter coordinates=. So, for
trivkins coordinates=xz, joint0 corresponds to X and jointl corresponds to Z. See the kinematics
man page ($ man kins) for information on trivkins and other kinematics modules.

* LINEAR UNITS = <units> - Specifies the machine units for linear axes. Possible choices are mm or
inch. This does not affect the linear units in NC code (the G20 and G21 words do this).

* ANGULAR UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are
deg, degree (360 per circle), rad, radian (2*nu per circle), grad, or gon (400 per circle). This does
not affect the angular units of NC code. In RS274NGC, A-, B- and C- words are always expressed in
degrees.

e DEFAULT LINEAR VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per
second. The value shown in AXIS equals machine units per minute.

* DEFAULT LINEAR ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration
used for “teleop” (Cartesian space) jogs, in machine units per second per second.

e MAX LINEAR VELOCITY = 5.0 - The maximum velocity for any axis or coordinated move, in machine
units per second. The value shown equals 300 units per minute.

* MAX LINEAR ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis
move, in machine units per second per second.

* PLANNER TYPE = 0 - Selects the trajectory planner type: 0 = trapezoidal (default), 1 = S-curve with
jerk limiting. S-curve planning is only active when PLANNER TYPE = 1 AND MAX LINEAR JERK > 0.

e MAX LINEAR JERK = 0.0-The maximum jerk (rate of change of acceleration) for coordinated moves,
in machine units per second cubed. When set to 0 (default), jerk limiting is disabled. When greater
than 0 and PLANNER TYPE = 1, enables S-curve trajectory planning.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 157 /1322

e DEFAULT LINEAR JERK = 0.0 - The default jerk value for coordinated moves, in machine units per
second cubed. When set to 0, MAX LINEAR JERK is used.

* POSITION FILE = position.txt - If set to a non-empty value, the joint positions are stored between
runs in this file. This allows the machine to start with the same coordinates it had on shutdown.
This assumes there was no movement of the machine while powered off. If unset, joint positions are
not stored and will begin at 0 each time LinuxCNC is started. This can help on smaller machines
without home switches. If using the Mesa resolver interface this file can be used to emulate absolute
encoders and eliminate the need for homing (with no loss of accuracy). See the hostmot2 manpage
for more details.

* NO FORCE HOMING = 1-The default behavior is for LinuxCNC to force the user to home the machine
before any MDI command or a program is run. Normally, only jogging is allowed before homing. For
configurations using identity kinematics, setting NO FORCE_HOMING = 1 allows the user to make MDI
moves and run programs without homing the machine first. Interfaces using identity kinematics
without homing ability will need to have this option set to 1.

Warning
LinuxCNC will not know your joint travel limits when using NO FORCE_HOMING = 1.

*HOME = 0 0 0 0 0 0 @ 0 0 - World home position needed for kinematics modules that compute
world coordinates using kinematicsForward() when switching from joint to teleop mode. Up to nine
coordinate values (XY Z A B C UV W) may be specified, unused trailing items may be omitted. This
value is only used for machines with nontrivial kinematics. On machines with trivial kinematics
(mill, lathe, gantry types) this value is ignored. Note: The sim hexapod config requires a non-zero
value for the Z coordinate.

* TPMOD = alternate trajectory planning module [tp parms=value]
The TPMOD variable is optional. If specified, use a specified (user-built) module instead of the default
(tpmod). Module parameters (tp_parms) may be included if supported by the named module. The
setting may be overridden from the command line using the -t option ($ linuxcnc -h).

* NO PROBE JOG ERROR = 0 - Allow to bypass probe tripped check when you jog manually.
* NO PROBE HOME ERROR = 0 - Allow to bypass probe tripped check when homing is in progress.

4.4.2.11 [KINS] Section

e JOINTS = 3 - Specifies the number of joints (motors) in the system. For example, a trivkins XYZ
machine with a single motor for each axis has 3 joints. A gantry machine with one motor on each
of two of the axes, and two motors on the third axis, has 4 joints. (This config variable may be used
by a GUI to set the number of joints (num joints) specified to the motion module (motmod).)

e KINEMATICS = trivkins - Specify a kinematics module for the motion module. GUIs may use this
variable to specify the loadrt-line in HAL files for the motmod module. For more information on
kinematics modules see the manpage: $ man kins.

4.4.2.12 [AXIS_<letter>] Section
The <letter> specifiesone of: XYZABCUVW
* TYPE = LINEAR - The type of this axis, either LINEAR or ANGULAR. Required if this axis is not a default

axis type. The default axis types are X,Y,Z,U,VW = LINEAR and A,B,C = ANGULAR. This setting is
effective with the AXIS GUI but note that other GUI’s may handle things differently.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 158 /1322

e MAX VELOCITY = 1.2 - Maximum velocity for this axis in machine units per second.
e MAX ACCELERATION = 20.0-Maximum acceleration for this axis in machine units per second squared.

e MAX JERK = 0.0 - Maximum jerk for this axis in machine units per second cubed. Used when S-
curve trajectory planning is enabled. When set to 0 (default), no per-axis jerk limiting is applied.

e MIN LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion. The axis must be homed before MIN LIMIT is
in force. For a rotary axis (A,B,C typ) with unlimited rotation having no MIN LIMIT for that axis in
the [AXIS <letter>] section a value of -1€99 is used.

e MAX LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion. The axis must be homed before MAX LIMIT is
in force. For a rotary axis (A,B,C typ) with unlimited rotation having no MAX LIMIT for that axis in
the [AXIS <letter>] section a value of 1e99 is used.

* WRAPPED ROTARY = 1 - When this is set to 1 for an ANGULAR axis the axis will move 0-359.999
degrees. Positive Numbers will move the axis in a positive direction and negative numbers will
move the axis in the negative direction.

* LOCKING INDEXER JOINT = 4-This value selects a joint to use for a locking indexer for the specified
axis <letter>. In this example, the joint is 4 which would correspond to the B axis for a XYZAB
system with trivkins (identity) kinematics. When set, a GO move for this axis will initiate an unlock
with the joint.4.unlock pin then wait for the joint.4.is-unlocked pin then move the joint at
the rapid rate for that joint. After the move the joint.4.unlock will be false and motion will wait
for joint.4.is-unlocked to go false. Moving with other joints is not allowed when moving a locked
rotary joint. To create the unlock pins, use the motmod parameter:

unlock joints mask=jointmask

The jointmask bits are: (LSB)0:joint0, 1:jointl, 2:joint2, ...
Example: loadrt motmod ... unlock joints mask=0x38 creates unlock-pins for joints 3,4,5.

e OFFSET AV RATIO = 0.1 - If nonzero, this item enables the use of HAL input pins for external axis
offsets:

axis.<letter>.eoffset-enable
axis.<letter>.eoffset-count
axis.<letter>.eoffset-scale

See the chapter: External Axis Offsets for usage information.

4.4.2.13 [JOINT_<num>] Sections

The <num> specifies the joint number 0 ... (num_joints-1) The value of num_joints is set by [KINS]JOINTS=.

The [JOINT O], [JOINT 1], etc. sections contains general parameters for the individual components
in the joint control module. The joint section names begin numbering at 0, and run through the number
of joints specified in the [KINSTJOINTS entry minus 1.

Typically (for systems using trivkins kinematics, there is a 1:1 correspondence between a joint and an
axis coordinate letter):

« JOINT 0 =X
« JOINT 1=Y
« JOINT 2 =27

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 159/1322

« JOINT 3=A
« JOINT 4 =B
« JOINT 5=C
« JOINT 6 = U
« JOINT 7=V

« JOINT 8 =W

Other kinematics modules with identity kinematics are available to support configurations with partial
sets of axes. For example, using trivkins with coordinates=XZ, the joint-axes relationships are:

« JOINT 0 =X
« JOINT 1 =27

For more information on kinematics modules see the manpage kins (on the UNIX terminal type man
kins).

* TYPE = LINEAR - The type of joint, either LINEAR or ANGULAR.

UNITS = INCH-Ifspecified, this setting overrides the related [TRAJ] UNITS setting, e.g., [TRAJ]LINEAR U
if the TYPE of this joint is LINEAR, [TRAJJANGULAR UNITS if the TYPE of this joint is ANGULAR.

MAX VELOCITY = 1.2 - Maximum velocity for this joint in machine units per second.

MAX_ ACCELERATION = 20.0 - Maximum acceleration for this joint in machine units per second squared.

MAX JERK = 0.0 - Maximum jerk for this joint in machine units per second cubed. Used when S-
curve trajectory planning is enabled. When set to 0 (default), no per-joint jerk limiting is applied.

BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to
make up for small deficiencies in the hardware used to drive an joint. If backlash is added to an
joint and you are using steppers the STEPGEN MAXACCEL must be increased to 1.5 to 2 times the
MAX ACCELERATION for the joint. Excessive backlash compensation can cause an joint to jerk as it
changes direction. If a COMP_FILE is specified for a joint BACKLASH is not used.

* COMP_FILE = file.extension - The compensation file consists of map of position information for the
joint. Compensation file values are in machine units. Each set of values are are on one line separated
by a space. The first value is the nominal value (the commanded position). The second and third
values depend on the setting of COMP_FILE TYPE. Points in between nominal values are interpolated
between the two nominals. Compensation files must start with the smallest nominal and be in
ascending order to the largest value of nominals. File names are case sensitive and can contain
letters and/or numbers. Currently the limit inside LinuxCNC is for 256 triplets per joint.

If COMP_FILE is specified for a joint, BACKLASH is not used.

e COMP_FILE TYPE = 0 or 1 - Specifies the type of compensation file. The first value is the nominal
(commanded) position for both types.
A COMP_FILE TYPE must be specified for each COMP_FILE.

- Type 0: The second value specifies the actual position as the joint is moving in the positive direc-
tion (increasing value). The third value specifies the actual position as the joint is moving in the
negative direction (decreasing value).

Type 0 Example
-1.000 -1.005 -0.995

0.000 0.002 -0.003
1.000 1.003 0.998

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 160/ 1322

- Type 1: The second value specifies positive offset from nominal while traveling in the positive
direction. The third value specifies the negative offset from nominal while traveling in a negative
direction.

Type 1 Example

-1.000 0.005 -0.005
0.000 0.002 -0.003
1.000 0.003 -0.004

e MIN LIMIT = -1000 - The minimum limit for joint motion, in machine units. When this limit is
reached, the controller aborts joint motion. For a rotary joint with unlimited rotation having no
MIN LIMIT for that joint in the [JOINT N] section a the value -1€99 is used.

e MAX LIMIT = 1000 - The maximum limit for joint motion, in machine units. When this limit is
reached, the controller aborts joint motion. For a rotary joint with unlimited rotation having no
MAX LIMIT for that joint in the [JOINT N] section a the value 1e€99 is used.

Note

For identity kinematics, the [JOINT N]JMIN LIMIT/MAX LIMIT settings must equal or exceed the
corresponding (one-to-one identity) [AXIS L] limits. These settings are verified at startup when the
trivkins kinematics modules is specified.

Note

The [JOINT NJMIN LIMIT/MAX LIMIT settings are enforced while jogging in joint mode prior to hom-
ing. After homing, [AXIS L]MIN LIMIT/MAX LIMIT coordinate limits are used as constraints for axis
(coordinate letter) jogging and by the trajectory planning used for G-code moves (programs and MDI
commands). The trajectory planner works in Cartesian space (XYZABCUVW) and has no information
about the motion of joints implemented by any kinematics module. It is possible for joint limit viola-
tions to occur for G-code that obeys trajectory planning position limits when non identity kinematics
are used. The motion module always detects joint position limit violations and faults if they occur
during the execution of G-code commands. See also related GitHub issue #97.

* MIN FERROR = 0.010 - This is the value in machine units by which the joint is permitted to deviate
from commanded position at very low speeds. If MIN FERROR is smaller than FERROR, the two
produce a ramp of error trip points. You could think of this as a graph where one dimension is speed
and the other is permitted following error. As speed increases the amount of following error also
increases toward the FERROR value.

* FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the difference
between commanded and sensed position exceeds this amount, the controller disables servo calcu-
lations, sets all the outputs to 0.0, and disables the amplifiers. If MIN FERROR is present in the INI
file, velocity-proportional following errors are used. Here, the maximum allowable following error
is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJ]MAX VELOCITY, and
proportionally smaller following errors for slower speeds. The maximum allowable following error
will always be greater than MIN FERROR. This prevents small following errors for stationary axes
from inadvertently aborting motion. Small following errors will always be present due to vibration,
etc.

* LOCKING INDEXER = 1 - Indicates the joint is used as a locking indexer.

These parameters are Homing related, for a better explanation read the Homing Configuration Chap-
ter.

« HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

https://github.com/LinuxCNC/linuxcnc/issues/97

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 161 /1322

* HOME_OFFSET = 0.0 - The joint position of the home switch or index pulse, in machine units. When
the home point is found during the homing process, this is the position that is assigned to that point.
When sharing home and limit switches and using a home sequence that will leave the home/limit
switch in the toggled state, the home offset can be used define the home switch position to be other
than 0 if your HOME position is desired to be 0.

e HOME_SEARCH VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direc-
tion of travel. A value of zero means assume that the current location is the home position for the
machine. If your machine has no home switches you will want to leave this value at zero.

* HOME_LATCH VEL = 0.0 - Homing velocity in machine units per second to the home switch latch
position. Sign denotes direction of travel.

* HOME FINAL VEL = 0.0 - Velocity in machine units per second from home latch position to home
position. If left at 0 or not included in the joint rapid velocity is used. Must be a positive number.

e HOME_USE INDEX = NO - If the encoder used for this joint has an index pulse, and the motion card
has provision for this signal you may set it to yes. When it is yes, it will affect the kind of home
pattern used. Currently, you can’t home to index with steppers unless you're using StepGen in
velocity mode and PID.

* HOME_INDEX NO ENCODER RESET = NO - Use YES if the encoder used for this joint does not reset
its counter when an index pulse is detected after assertion of the joint index enable HAL pin.
Applicable only for HOME USE INDEX = YES.

e HOME IGNORE LIMITS = NO - When you use the limit switch as a home switch and the limit switch
this should be set to YES. When set to YES the limit switch for this joint is ignored when homing.
You must configure your homing so that at the end of your home move the home/limit switch is not
in the toggled state you will get a limit switch error after the home move.

* HOME IS SHARED = <n> - If the home input is shared by more than one joint set <n> to 1 to prevent
homing from starting if the one of the shared switches is already closed. Set <n> to 0 to permit
homing if a switch is closed.

 HOME ABSOLUTE ENCODER = 0] 1| 2 - Used to indicate the joint uses an absolute encoder. At a re-
quest for homing, the current joint value is set to the HOME_OFFSET value. If the HOME_ABSOLUTE_ENCODER
setting is 1, the machine makes the usual final move to the HOME value. If the HOME_ABSOLUTE_ENCODER
setting is 2, no final move is made.

* HOME_SEQUENCE = <n> - Used to define the "Home All” sequence. <n> must start at @ or 1 or -1.
Additional sequences may be specified with numbers increasing by 1 (in absolute value). Skipping
of sequence numbers is not allowed. If a HOME SEQUENCE is omitted, the joint will not be homed
by the "Home All” function. More than one joint can be homed at the same time by specifying the
same sequence number for more than one joint. A negative sequence number is used to defer the
final move for all joints having that (negative or positive) sequence number. For additional info, see:
HOME SEQUENCE.

* VOLATILE HOME = 0 - When enabled (set to 1) this joint will be unhomed if the Machine Power is
off or if E-Stop is on. This is useful if your machine has home switches and does not have position
feedback such as a step and direction driven machine.

These parameters are relevant to joints controlled by servos.

Warning

@ The following are custom INI file entries that you may find in a sample INI file or a wizard
generated file. These are not used by the LinuxCNC software. They are only there to put
all the settings in one place. For more information on custom INI file entries see the Custom
Sections and Variables subsection.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 162 /1322

The following items might be used by a PID component and the assumption is that the output is volts.

* DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine
units.

This is often set to a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict
rules. Looser (larger) settings allow less servo hunting at the expense of lower accuracy. Tighter
(smaller) settings attempt higher accuracy at the expense of more servo hunting. Is it really more
accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.

Be careful about going below 1 encoder count, since you may create a condition where there is no
place that your servo is happy. This can go beyond hunting (slow) to nervous (rapid), and even to
squealing which is easy to confuse with oscillation caused by improper tuning. Better to be a count
or two loose here at first, until you’ve been through gross tuning at least.

Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

1 revolution 1line 0.2units _ 0.200units _ 0.00005 units
1000lines = 4 pulse/line " 1revolution 4000 pulses 1 pulse

* BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is
added to the output. In most cases it should be left at zero. However, it can sometimes be useful to
compensate for offsets in servo amplifiers, or to balance the weight of an object that moves vertically.
Bias is turned off when the PID loop is disabled, just like all other components of the output.

e P = 50 - The proportional gain for the joint servo. This value multiplies the error between com-
manded and actual position in machine units, resulting in a contribution to the computed voltage
volts

for the motor amplifier. The units on the P gain are volts per machine unit, e.g., unit

e I = 0 - The integral gain for the joint servo. The value multiplies the cumulative error between
commanded and actual position in machine units, resulting in a contribution to the computed voltage
volts

for the motor amplifier. The units on the I gain are volts per machine unit second, e.g., unit second
* D = 0-The derivative gain for the joint servo. The value multiplies the difference between the cur-

rent and previous errors, resulting in a contribution to the computed voltage for the motor amplifier.
volts

The units on the D gain are volts per machine unit per second, e.g., unit second
e FFO = 0 - The 0" order feed forward gain. This number is multiplied by the commanded position,

resulting in a contribution to the computed voltage for the motor amplifier. The units on the FFO
volts

gain are volts per machine unit, e.g., unit

e FF1 = 0 - The 15 order feed forward gain. This number is multiplied by the change in commanded
position per second, resulting in a contribution to the computed voltage for the motor amplifier. The
volts

units on the FF1 gain are volts per machine unit per second, e.g., unit second
e FF2 = 0 - The 2™ order feed forward gain. This number is multiplied by the change in commanded
position per second per second, resulting in a contribution to the computed voltage for the mo-

tor amplifier. The units on the FF2 gain are volts per machine unit per second per second, e.g.,
volts

B 2
unit second

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 163 /1322

* OUTPUT SCALE = 1.000

e OUTPUT OFFSET = 0.000
These two values are the scale and offset factors for the joint output to the motor amplifiers.

The second value (offset) is subtracted from the computed output (in volts), and divided by the first
value (scale factor), before being written to the D/A converters. The units on the scale value are
in true volts per DAC output volts. The units on the offset value are in volts. These can be used to
linearize a DAC. Specifically, when writing outputs, the LinuxCNC first converts the desired output
in quasi-SI units to raw actuator values, e.g., Volts for an amplifier DAC. This scaling looks like:
output— offset

scale

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI
units]/[actuator units]. For example, on a machine with a velocity mode amplifier such that 1V
results in 250 mm/s velocity.

raw =

mm
secvolt

- mm mm ,
I Its |= (output [™™ - offset| ™™ 11/250
amplifier [volts |=(outpu |ser' offset| —oc .

Note that the units of the offset are in machine units, e.g. mm/s, and they are pre-subtracted from
the sensor readings. The value for this offset is obtained by finding the value of your output which
yields 0.0 for the actuator output. If the DAC is linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the
combined effects of amplifier gain, DAC non-linearity, DAC units, etc.

To do this, follow this procedure.

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring
the result.

3. Note that we want raw output such that our measured result is identical to the commanded
output. This means

a. command =a=raw+b
b. raw=(command—b}/a

4. As a result, the a and b coefficients from the linear fit can be used as the scale and offset for
the controller directly.

See the following table for an example of voltage measurements.

Table 4.1: Output Voltage Measurements

Raw Measured
-10 -9.93

-9 -8.83

0 -0.03

1 0.96

9 9.87

10 10.87

* MAX OUTPUT = 10 - The maximum value for the output of the PID compensation that is written to the
motor amplifier, in volts. The computed output value is clamped to this limit. The limit is applied
before scaling to raw output units. The value is applied symmetrically to both the plus and the
minus side.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 164 /1322

e INPUT SCALE = 20000 - in Sample configs
e ENCODER SCALE = 20000 - in PnCconf built configs

Specifies the number of pulses that corresponds to a move of one machine unit as set in the [TRAJ]
section. For a linear joint one machine unit will be equal to the setting of LINEAR UNITS. For an angular
joint one unit is equal to the setting in ANGULAR UNITS. A second number; if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we
have:

input scale =2000 S 4 10 v = 20000 S0
rev inch inch

These parameters are relevant to joints controlled by steppers.

Warning

@ The following are custom INI file entries that you may find in a sample INI file or a wizard
generated file. These are not used by the LinuxCNC software and meant only to put all the
settings in one place. For more information on custom INI file entries see the Custom Sections
and Variables subsection.

The following items might be used by a StepGen component.

e SCALE = 4000 - in Sample configs
* STEP_SCALE = 4000 - in PnCconf built configs

Specifies the number of pulses that corresponds to a move of one machine unit as set in the [TRAJ]
section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
joint one machine unit will be equal to the setting of LINEAR UNITS. For an angular joint one unit is
equal to the setting in ANGULAR UNITS. For servo systems, this is the number of feedback pulses per
machine unit. A second number, if specified, is ignored.

For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired
machine units of inch, we have:

2steps 360 degree +107¢__ 4000 steps

input scale= ; =
P 1.8 degrees rev inch inch

Note
Old INI and HAL files used INPUT SCALE for this value.

* ENCODER SCALE = 20000 (Optionally used in PnCconf built configs) - Specifies the number of pulses
that corresponds to a move of one machine unit as set in the [TRAJ] section. For a linear joint one
machine unit will be equal to the setting of LINEAR UNITS. For an angular joint one unit is equal to
the setting in ANGULAR UNITS. A second number, if specified, is ignored. For example, on a 2000
counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale=2000 2405 1 1012 = 20000 25
rev inch inch

e STEPGEN MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10%
larger than the joint MAX ACCELERATION. This value improves the tuning of StepGen’s "position
loop”. If you have added backlash compensation to an joint then this should be 1.5 to 2 times
greater than MAX ACCELERATION.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 165/1322

e STEPGEN MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as
well. If specified, it should also be 1% to 10% larger than the joint MAX VELOCITY. Subsequent
testing has shown that use of STEPGEN MAXVEL does not improve the tuning of StepGen’s position
loop.

4.4.2.14 [SPINDLE_<num>] Section(s)

The <num> specifies the spindle number O ... (num_spindles-1)

The value of num_spindles is set by [TRAJ]SPINDLES=.

By default maximum velocity of the spindle in forward and reverse is approximately 2147483000 RPM.
By default minimum velocity of the spindle in forward and reverse is 0 RPM.

By default the increment is 100 RPM.

You change these default by setting the following INI variables:

Note
These settings are for the motion controller component. Control screens can limit these settings
further.

e MAX FORWARD VELOCITY = 20000 The maximum spindle speed (in rpm) for the specified spindle.
Optional. This will also set MAX REVERSE VELOCITY to the negative value unless overridden.

e MIN FORWARD VELOCITY = 3000 The minimum spindle speed (in rpm) for the specified spindle. Op-
tional. Many spindles have a minimum speed below which they should not be run. Any spindle
speed command below this limit will be /increased/ to this limit.

* MAX REVERSE VELOCITY = 20000 This setting will default to MAX_ FORWARD VELOCITY if omitted. It
can be used in cases where the spindle speed is limited in reverse. Set to zero for spindles which
must not be run in reverse. In this context "max” refers to the absolute magnitude of the spindle
speed.

e MIN REVERSE VELOCITY = 3000 'This setting is equivalent to MIN FORWARD VELOCITY but for re-
verse spindle rotation. It will default to the MIN FORWARD VELOCITY if omitted.

e INCREMENT = 200 Sets the step size for spindle speed increment / decrement commands. This can
have a different value for each spindle. This setting is effective with AXIS and Touchy but note that
some control screens may handle things differently.

* HOME_SEARCH VELOCITY = 100 - FIXME: Spindle homing not yet working. Sets the homing speed
(rpm) for the spindle. The spindle will rotate at this velocity during the homing sequence until the
spindle index is located, at which point the spindle position will be set to zero. Note that it makes
no sense for the spindle home position to be any value other than zero, and so there is no provision
to do so.

* HOME SEQUENCE = 0 - FIXME: Spindle homing not yet working Controls where in the general hom-
ing sequence the spindle homing rotations occur. Set the HOME SEARCH VELOCITY to zero to avoid
spindle rotation during the homing sequence.

4.4.2.15 [EMCIO] Section

L]

TOOL TABLE

DB PROGRAM = db program-Path to an executable program that manages tool data. When a DB PROGRAL!
is specified, a TOOL TABLE entry is ignored.

tool.tbl - The file which contains tool information, described in the User Manual.

L]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 166 /1322

e TOOL CHANGE POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool
change if three digits are used. Specifies the XYZABC location when 6 digits are used. Specifies
the XYZABCUVW location when 9 digits are used. Tool Changes can be combined. For example if
you combine the quill up with change position you can move the Z first then the X and Y.

e TOOL CHANGE WITH SPINDLE ON = 1 - The spindle will be left on during the tool change when the
value is 1. Useful for lathes or machines where the material is in the spindle, not the tool.

e TOOL CHANGE QUILL UP = 1 - The Z axis will be moved to machine zero prior to the tool change
when the value is 1. This is the same as issuing a G0 G53 Z0.

e TOOL CHANGE AT G30 = 1 - The machine is moved to reference point defined by parameters 5181-
5186 for G30 if the value is 1. For more information see G-code Parameters and G-code G30-G30.1.

* RANDOM TOOLCHANGER = 1 - This is for machines that cannot place the tool back into the pocket it
came from. For example, machines that exchange the tool in the active pocket with the tool in the
spindle.

4.5 Homing Configuration

4.5.1 Overview

Homing sets the zero origin of the G53 machine coordinates. Soft limits are defined relative to the
machine origin. The soft limits automatically decelerate and stop the axes before they hit the limits
switches A properly configured and functioning machine will not move beyond soft(ware) limits and
will have the machine origin set as repeatable as the home switch/index mechanism is. Linuxcnc can
be homed by eye (alignment marks), with switches, with switches and an encoder index, or by using
absolute encoders. Homing seems simple enough - just move each joint to a known location, and set
LinuxCNC'’s internal variables accordingly. However, different machines have different requirements,
and homing is actually quite complicated.

Note
While it is possible to use LinuxCNC without homing switches/home procedures or limit switches, It
defeats the extra security of the soft limits.

4.5.2 Prerequisite
Homing relies on some fundamental machine assumptions.

» The negative and positive directions are based on Tool Movement which can be different from the
actual machine movement. I.e., on a mill typically the table moves rather then the tool.

* Everything is referenced from the G53 machine zero origin, the origin can be anywhere (even out-
side where you can move)

* The G53 machine zero origin is typically inside the soft limits area but not necessarily.
* The homing switch offset sets where the origin is, but even it is referenced from the origin.

* When using encoder index homing, the home switch offset is calculated from the encoder reference
position, after the home switch has been tripped.

¢ The negative soft(ware) limits are the most you can move in the negative direction after homing.
(but they might not be negative in the absolute sense)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 167 /1322

The positive soft(ware) limits are the most you can move in the positive direction after homing. (but
they might not be positive in the absolute sense, though it is usual to set it as a positive number)

Soft(ware) limits are inside the limit switch area.
(Final) Homed Position is inside the soft limit area

(If using switch based homing) the homing switch(es) either utilize the limit switches (shared home
/ limit switch), or when using a separate home switch, are inside the limit switch area.

If using a separate homing switch, it is possible to start homing on the wrong side of the home
switch, which combined with HOME IGNORE LIMITS option will lead to a hard crash. You can
avoid this by making the home switch toggle its state when the trip dog is on a particular side until
it returns passed the trip point again. Said another way, the home switch state must represent the
position of the dog relative to the switch (i.e. before or after the switch), and must stay that way
even if the dog coasts past the switch in the same direction.

Note

While it is possible to use LinuxCNC with the G53 machine origin outside the soft machine limits, if
you use G28 or G30 without setting the parameters it goes to the origin by default. This would trip
the limit switches before getting to position.

4.5.3 Separate Home Switch Example Layout

This example shows minimum and maximum limit switches with a separate home switch.

Figure 4.6: Demonstrative Separate Switch Layout

A is the negative soft limit

B is the G53 machine coordinate Origin
C is the home switch trip point

D is the positive soft limit

H is the final home position (HOME) = 0 units

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 168 /1322

The -L and +L are the limit switches trip points

A<->B is the negative soft limits (MIN LIMITS) = -3 units
B<->C is the home offset (HOME OFFSET) = -2.3 units
B<->D is the positive soft limits (MAX LIMITS) = 7 units
A<->D is the total travel = 10 units

The distance between the limit switches and soft limits (-L<->A and D<-+L) is magnified in this
example

Note that there is distance between the limit switches and actual physical hard contact for coasting
after the amplifier is disabled.

Note

Homing sets the G53 coordinate system, while the machine origin (zero point) can be anywhere,
setting the zero point at the negative soft limit makes all G53 coordinates positive, which is probably
easiest to remember. Do this by setting MIN_LIMIT = 0 and make sure MAX_LIMIT is positive.

4.5.4 Shared Limit/Home Switch Example Layout

This example shows a maximum limit switch and a combined minimum limit/home switch.

> >+

JA

A
®
||||||||||| it ||||||||||||||I||||‘||:|||||||||||I:|||L|||I||||||||||||:||||||||||||||||||||||||||||||||||||I|||| ||||I||||||||1||||||
-2 ?L 0 1 +L 12
b &< >0

Figure 4.7: Demonstrative Shared Switch Layout

A is the negative soft limit.

B is the G53 machine coordinate Origin.

C is the home switch trip point shared with (-L) minimum limit trip.
D is the positive soft limit.

H is the final home position (HOME) = 3 units.

The -L and +L are the limit switch trip points.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 169/1322

* A<->B is the negative soft limits (MIN LIMITS) = O units.
* B<->C is the home offset (HOME OFFSET) = -0.7 units.
* B<->D is the positive soft limits (MAX LIMITS) 10 units.
* A<->D is the total travel = 10 units.

e The distance between the limits switches and soft limits (-L<->A and D<->+L) is magnified in this
example.

* Note that there is distance between the limit switches and actual physical hard contact for coasting
after the amplifier is disabled.

4.5.5 Homing Sequence

There are four possible homing sequences defined by the sign of HOME SEARCH VEL and HOME LATCH V
along with the associated configuration parameters as shown in the following table. Two basic con-
ditions exist, HOME SEARCH VEL and HOME LATCH VEL are the same sign or they are opposite
signs. For a more detailed description of what each configuration parameter does, see the following
section.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

170 /1322

SEARCH_WEL = POSITWE HOME__OFFSET = 3000
LATCH _VEL = MEGATIVE HOME = 1000
USE__INDEX = FALSE

/=

HOME SWITCH RELEASES
HOME SWITCH TRIFS

/—D'I.-’ERSHDEIT

== &ELRCH FOR HOME SWITCH [HOME_ SEARCH_ WEL)

1006 3000

FIMAL CETECTION OF SWITCH [HOME__LATCH WEL}

G0 TO HOME POSITION [HOME __FINAL _ WEL)

SEARCH_WEL = POSITWE HOME__OFFSET = 3000
LATCH__VEL = POZITIVE HOME = 1.000
USE__INDEX = FALSE

S

HOME SWITCH RELEASES
HOME SWITCH TRIPS

SEARCH FOR HOME SWITCH [HOME_ SERRCH_ WEL)

BaCk OFF OF HOME SWITCH [HOME__SEARCH_WEL]

-

FIMAL CETECTION DF SWITCH [HOME__LATCH _ WEL}

s

1000

3000

G0 TO HOME POSITION [HOME __FINAL _ WEL)

SEARCH__VEL = POSITIVE HOME_ OFFSET = 2000
LATCH__WEL = MEGATIVE HOME = 1400
USE__INDEX = TRUE

/=

HOME %WITCH RELEASES
HOME SWITCH TRIPS

[

SEARCH FOR HOME SWITCH [HOME_ SEARCH_WEL)
FINAL DETECTION OF SWITCH AMD

"

N

1000

3'DMNDE}{ FULSES

INOE¥ PULZE {HOME__LATCH_ WEL|
GO TO HOME POSITION [HOME_ FIMAL_ WEL)

SEARCH_VEL = POSITIVE HOME__QOFFSET = 2000
LATCH__YEL = PORITWE HOME = 1000
USE__INDEX = TRUE

'

HOME SWITCH RELEASES
HOME SWITCH TRIPS

—

[

il

SEARCH FOR HOME SWITCH [HOME__SEARCH__WEL)

"

BACK OFF OF HOME SWITCH (HOME_ SEARCH_ VEL)
FINAL DETECTION OF SWITCH AMD

INOEX FUL3E (HOME__LATCH__WEL|

1000

G0 TO HOME POSITION [HOME_FINAL_ “EL)
I

3.QMNDE}{ PULSES

Figure 4.8: Homing Sequences

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 171/1322

4.5.6 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [JOINT n]
section of the INI file.

Homing Type HOME_SEARCH VWOME _ILATCH_VEHOME_USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES
Switch-only nonzero nonzero NO
Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

4.5.6.1 HOME_SEARCH_VEL

This variable has units of machine-units per second.

The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch;
the search stage of homing is skipped.

If HOME SEARCH VEL is non-zero, then LinuxCNC assumes that there is a home switch. It be-

gins by checking whether the home switch is already tripped. If tripped it backs off the switch at

HOME SEARCH VEL. The direction of the back-off is opposite the sign of HOME SEARCH VEL. Then

it searches for the home switch by moving in the direction specified by the sign of HOME SEARCH VEL,
at a speed determined by its absolute value. When the home switch is detected, the joint will stop as

fast as possible, but there will always be some overshoot. The amount of overshoot depends on the

speed. If it is too high, the joint might overshoot enough to hit a limit switch or crash into the end of

travel. On the other hand, if HOME SEARCH VEL is too low, homing can take a long time.

4.5.6.2 HOME_LATCH_VEL

This variable has units of machine-units per second.

Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination
of the home switch (if present) and index pulse location (if present). It will usually be slower than
the search velocity to maximize accuracy. If HOME SEARCH VEL and HOME LATCH VEL have the
same sign, then the latch phase is done while moving in the same direction as the search phase. (In
that case, LinuxCNC first backs off the switch, before moving towards it again at the latch velocity.)
If HOME SEARCH VEL and HOME LATCH VEL have opposite signs, the latch phase is done while
moving in the opposite direction from the search phase. That means LinuxCNC will latch the first pulse
after it moves off the switch. If HOME SEARCH VEL is zero (meaning there is no home switch), and
this parameter is nonzero, LinuxCNC goes ahead to the index pulse search. If HOME SEARCH VEL
is non-zero and this parameter is zero, it is an error and the homing operation will fail. The default
value is zero.

4.5.6.3 HOME_FINAL_VEL

This variable has units of machine-units per second.

It specifies the speed that LinuxCNC uses when it makes its move from HOME OFFSET to the HOME
position. If the HOME FINAL VEL is missing from the INI file, then the maximum joint speed is used
to make this move. The value must be a positive number.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 172 /1322

4.5.6.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether
LinuxCNC will ignore the limit switch input for this joint while homing. This setting will not ignore
limit inputs for other joints. If you do not have a separate home switch set this to YES and connect the
limit switch signal to the joint home switch input in HAL. LinuxCNC will ignore the limit switch input
for this joint while homing. To use only one input for all homing and limits you will have to block the
limit signals of the joints not homing in HAL and home one joint at a time.

4.5.6.5 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME USE INDEX = YES),
LinuxCNC will latch on the rising edge of the index pulse. If false, LinuxCNC will latch on either
the rising or falling edge of the home switch (depending on the signs of HOME SEARCH VEL and
HOME LATCH VEL). The default value is NO.

Note
HOME_USE_INDEX requires connections in your HAL file to joint.n.index-enable from the
encoder.n.index-enable.

4.5.6.6 HOME_INDEX_NO_ENCODER_RESET

Default is NO. Use YES if the encoder used for this joint does not reset its counter when an index pulse
is detected after assertion of the joint index enable HAL pin. Applicable only for HOME USE INDEX
= YES.

4.5.6.7 HOME_OFFSET

This defines the location of the origin zero point of the G53 machine coordinate system. It is the dis-
tance (offset), in joint units, from the machine origin to the home switch trip point or index pulse.
After detecting the switch trip point/index pulse, LinuxCNC sets the joint coordinate position to
HOME OFFSET, thus defining the origin, which the soft limits references from. The default value
is zero.

Note
The home switch location, as indicated by the HOME_OFFSET variable, can be inside or outside the
soft limits. They will be shared with or inside the hard limit switches.

4.5.6.8 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the
home switch or home switch then index pulse (depending on configuration), and setting the coordinate
of that point to HOME OFFSET, LinuxCNC makes a move to HOME as the final step of the homing
process. The default value is zero. Note that even if this parameter is the same as HOME OFFSET,
the joint will slightly overshoot the latched position as it stops. Therefore there will always be a
small move at this time (unless HOME SEARCH VEL is zero, and the entire search/latch stage was
skipped). This final move will be made at the joint’s maximum velocity unless HOME FINAL VEL has
been set.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 173 /1322

Note

The distinction between HOME _OFFSET and HOME is that HOME OFFSET first establishes the origin
location and scale on the machine by applying the HOME _OFFSET value to the location where home
was found, and then HOME says where the joint should move to on that scale.

4.5.6.9 HOME_IS_SHARED

If there is not a separate home switch input for this joint, but a number of momentary switches wired
to the same pin, set this value to 1 to prevent homing from starting if one of the shared switches is
already closed. Set this value to 0 to permit homing even if the switch is already closed.

4.5.6.10 HOME_ABSOLUTE_ENCODER

Use for absolute encoders. When a request is made to home the joint, the current joint position is set
to the [JOINT n]JHOME OFFSET value.

The final move to the [JOINT n]JHOME position is optional according to the HOME ABSOLUTE ENCODER
setting:

HOME ABSOLUTE_ENCODER
HOME _ABSOLUTE_ENCODER
HOME_ABSOLUTE_ENCODER

0 (Default) joint does not use an absolute encoder
1 Absolute encoder, final move to [JOINT n]HOME
2 Absolute encoder, NO final move to [JOINT n]HOME

Note
A HOME_IS SHARED setting is silently ignored.

Note
A request to rehome the joint is silently ignored.

4.5.6.11 HOME_SEQUENCE

Used to define a multi-joint homing sequence HOME ALL and enforce homing order (e.g., Z may not
be homed if X is not yet homed). A joint may be homed after all joints with a lower (absolute value)
HOME SEQUENCE have already been homed and are at the HOME OFFSET. If two joints have the
same HOME SEQUENCE, they may be homed at the same time.

Note
If HOME_SEQUENCE is not specified then the joint will not be homed by the HOME ALL sequence
(but may be homed by individual joint-specific homing commands).

The initial HOME SEQUENCE number may be 0, 1 (or -1). The absolute value of sequence num-
bers must increment by one — skipping sequence numbers is not supported. If a sequence number is
omitted, HOME ALL homing will stop upon completion of the last valid sequence number.

Negative HOME SEQUENCE values indicate that joints in the sequence should synchronize the
final move to [JOINT n]JHOME by waiting until all joints in the sequence are ready. If any joint has a
negative HOME SEQUENCE value, then all joints with the same absolute value (positive or negative)
of the HOME SEQUENCE item value will synchronize the final move.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 174 /1322

Anegative HOME SEQUENCE also applies to commands to home a single joint. Ifthe HOME SEQUENCE
value is negative, all joints having the same absolute value of that HOME SEQUENCE will be homed
together with a synchronized final move. If the HOME SEQUENCE value is zero or positive, a
command to home the joint will home only the specified joint.

Joint mode jogging of joints having a negative HOME SEQUENCE is disallowed. In common gantry
applications, such jogging can lead to misalignment (racking). Note that conventional jogging in world
coordinates is always available once a machine is homed.

Examples for a 3 joint system
Two sequences (0,1), no synchronization

[JOINT ©]HOME SEQUENCE = ©
[JOINT 1]HOME SEQUENCE = 1
[JOINT 2]HOME SEQUENCE = 1

Two sequences, joints 1

[JOINT O]HOME SEQUENCE
[JOINT 1]HOME SEQUENCE
[JOINT 2]HOME SEQUENCE

Q
5
a
N
9]
<
=
o
=
2
o
B
N
)
A

nun
1 1
= o

With mixed positive and negative values, joints 1 and 2 synchronized

[JOINT O]HOME SEQUENCE = 0
[JOINT 1]HOME SEQUENCE = -1
[JOINT 2]HOME SEQUENCE = 1

One sequence, no synchronization

[JOINT ©]HOME SEQUENCE = 0
[JOINT 1]HOME SEQUENCE = 0
[JOINT 2]HOME_SEQUENCE = 0

One sequence, all joints synchronized

[JOINT O]HOME SEQUENCE
[JOINT 1]HOME SEQUENCE
[JOINT 2]HOME SEQUENCE

I mnn
1 1 1
(RS

4.5.6.12 VOLATILE_HOME

If this setting is true, this joint becomes unhomed whenever the machine transitions into the OFF
state. This is appropriate for any joint that does not maintain position when the joint drive is off.
Some stepper drives, especially microstep drives, may need this.

4.5.6.13 LOCKING_INDEXER

If this joint is a locking rotary indexer, it will unlock before homing, and lock afterward.

4.5.6.14 Immediate Homing

If a joint does not have home switches or does not have a logical home position like a rotary joint and
you want that joint to home at the current position when the "Home All” button is pressed in the AXIS
GUI, then the following INI entries for that joint are needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 175 /1322

HOME SEARCH VEL = 0

HOME LATCH VEL = 0

HOME_USE_INDEX = NO

HOME OFFSET = 0 (Or the home position offset (HOME))
HOME SEQUENCE = 0 (or other valid sequence number)

Note

The default values for unspecified HOME_SEARCH_VEL, HOME_LATCH_VEL, HOME_USE_INDEX, HOME,
and HOME_OFFSET are zero, so they may be omitted when requesting immediate homing. A valid
HOME_SEQUENCE number should usually be included since omitting a HOME_SEQUENCE eliminates
the joint from HOME ALL behavior as noted above.

4.5.6.15 Inhibiting Homing

A HAL pin (motion.homing-inhibit) is provided to disallow homing initiation for both “Home All” and
individual joint homing.

Some systems take advantage of the provisions for synchronizing final joint homing moves as con-
trolled by negative [JOINT NJHOME SEQUENCE= INI file items. By default, the synchronization
provisions disallow joint jogging prior to homing in order to prevent joint jogs that could misalign
the machine (gantry racking for example).

System integrator can allow joint jogging prior to homing with HAL logic that switches the [JOINT NJHOME
items. This logic should also assert the motion.homing-inhibit pin to ensure that homing is not in-
advertently initiated when joint jogging is enabled.

Example: Synced joints 0,1 using negative sequence (-1) for synchronized homing with a switch (al-
low_jjog) that selects a positive sequence (1) for individual joint jogging prior to homing (partial HAL
code):

loadrt mux2 names=home_sequence mux
loadrt conv_float s32 names=home_ sequence s32
setp home_sequence mux.in@ -1

setp home sequence mux.inl 1

addf home_sequence mux servo-thread

addf home_sequence s32 servo-thread

net home seq float <= home sequence mux.out
net home seq float => home sequence s32.in
net home seq s32 <= home sequence s32.out
net home seq s32 => ini.0.home_sequence
net home seq s32 => ini.l.home_sequence

allow_jjog: pin created by a virtual panel or hardware switch
net hsequence select <= allow_jjog

net hsequence select => home sequence mux.sel

net hsequence select => motion.homing-inhibit

Note
INI HAL pins (like ini.N.home_sequence) are not available until milltask starts so execution of the
above HAL commands should be deferred using a postgui HAL file or a delayed [APPLICATION]JAPP=
script.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 176 /1322

Note

Realtime synchronization of joint jogging for multiple joints requires additional HAL connec-
tions for the Manual-Pulse-Generator (MPG) type jog pins (joint.N.enable, joint.N.scale,
joint.N.counts).

An example simulation config (gantry jjog.ini) that demonstrates joint jogging when using negative
home sequences is located in the: configs/sim/axis/gantry/ directory.

4.6 Lathe Configuration

4.6.1 Default Plane

When LinuxCNC'’s interpreter was first written, it was designed for mills. That is why the default
plane is XY (G17). A normal lathe only uses the XZ plane (G18). To change the default plane place the
following line in the INI file in the RS274NGC section.

RS274NGC_STARTUP_CODE = G18

The above can be overwritten in a G-code program so always set important things in the preamble of
the G-code file.

4.6.2 INI Settings

The following INI settings are needed for lathe mode in Axis in addition to or replacing normal settings
in the INI file. These historical settings use identity kinematics (trivkins) and three joints (0,1,2)
corresponding to coordinates x, y, z. The joint 1 for the unused y axis is required but not used in these
historical configurations. Simulated lathe configs may use these historical settings. GMOCCAPY also
uses the mentioned settings, but does offer additional settings, check the GMOCCAPY section for
details.

[DISPLAY]
DISPLAY

= axis
LATHE = 1

[KINS]

KINEMATICS = trivkins

JOINTS = 3

[TRAJ]

COORDINATES = X Z

[JOINT 0]

[JOINT 2]

[AXIS X]

[AXIS Z]

With joints axes incorporation, a simpler configuration can be made with just the two required joints
by specifying trivkins with the coordinates= parameter:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 177 /1322

[DISPLAY]
DISPLAY

= axis
LATHE = 1

[KINS]

KINEMATICS = trivkins coordinates=xz
JOINTS = 2

[TRAJ]

COORDINATES = X Z

[JOINT 0]

[JOINT 1]

[AXIS X]

[AXTS_Z]

4.7 Stepper Quickstart

This section assumes you have done a standard install from the Live CD. After installation it is rec-
ommended that you connect the computer to the Internet and wait for the update manager to pop up
and get the latest updates for LinuxCNC and Ubuntu before continuing.

4.7.1 Latency Test

The Latency Test determines how late your computer processor is in responding to a request. Some
hardware can interrupt the processing which could cause missed steps when running a CNC machine.
This is the first thing you need to do. Follow the instructions here to run the latency test.

4.7.2 Sherline

If you have a Sherline several predefined configurations are provided. This is on the main menu
CNC/EMC then pick the Sherline configuration that matches yours and save a copy.

4.7.3 Xylotex

If you have a Xylotex you can skip the following sections and go straight to the Stepper Config Wizard.
LinuxCNC has provided quick setup for the Xylotex machines.

4.7.4 Machine Information

Gather the information about each axis of your machine.

Drive timing is in nano seconds. If you're unsure about the timing many popular drives are included
in the stepper configuration wizard. Note some newer Gecko drives have different timing than the
original one. A list is also on the user maintained LinuxCNC wiki site of more drives.

https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 178 /1322
Axis Drive Type Step Time Step Space Dir. Hold Dir. Setup
(ns) (ns) (ns) (ns)
X
Y
4
4.7.5 Pinout Information
Gather the information about the connections from your machine to the PC parallel port.
Output Pin Typ. If Different Input Pin Typ. If Different
Function Function
1 E-Stop Out 10 X Limit/Home
2 X Step 11 Y Limit/Home
3 X Direction 12 Z Limit/Home
4 Y Step 13 A Limit/Home
5 Y Direction 15 Probe In
§] Z Step
7 Z Direction
8 A Step
9 A Direction
14 Spindle CW
16 Spindle PWM
17 Amplifier
Enable

Note any pins not used should be set to Unused in the drop down box. These can always be changed

later by running StepConf again.

4.7.6 Mechanical Information

Gather information on steps and gearing. The result of this is steps per user unit which is used for
SCALE in the INI file.

Axis

Steps/Rev.

Micro Steps

Motor Teeth

Leadscrew
Teeth

Leadscrew
Pitch

N = 4

* Steps per revolution - is how many stepper-motor-steps it takes to turn the stepper motor one rev-
olution. Typical is 200.

e Micro Steps - is how many steps the drive needs to move the stepper motor one full step. If mi-
crostepping is not used, this number will be 1. If microstepping is used the value will depend on
the stepper drive hardware.

* Motor Teeth and Leadscrew Teeth - is if you have some reduction (gears, chain, timing belt, etc.)
between the motor and the leadscrew. If not, then set these both to 1.

* Leadscrew Pitch - is how much movement occurs (in user units) in one leadscrew turn. If you're
setting up in inches then it is inches per turn. If you’'re setting up in millimeters then it is millimeters

per turn.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 179 /1322

The net result you're looking for is how many CNC-output-steps it takes to move one user unit (inches
or mm).

Example 4.1 Units inches

Stepper = 200 steps per revolution
Drive = 10 micro steps per step
Motor Teeth = 20
Leadscrew Teeth = 40

Leadscrew Pitch 0.2000 inches per turn

From the above information, the leadscrew moves 0.200 inches per turn. - The motor turns 2.000
times per 1 leadscrew turn. - The drive takes 10 microstep inputs to make the stepper step once. -
The drive needs 2000 steps to turn the stepper one revolution.

So the scale needed is:

200motor steps 107 terosteps 2motorrevs licadscrewrevs _ 20.000m tcrasteps
lmotorrev lmotorstep lleadscrewrewv 0. 2000 nch T trich

Example 4.2 Units mm

Stepper = 200 steps per revolution
Drive = 8 micro steps per step
Motor Teeth = 30
Leadscrew Teeth = 90

Leadscrew Pitch 5.00 mm per turn

From the above information: - The leadscrew moves 5.00 mm per turn. - The motor turns 3.000 times
per 1 leadscrew turn. - The drive takes 8 microstep inputs to make the stepper step once. - The drive
needs 1600 steps to turn the stepper one revolution.

So the scale needed is:

200 full steps . 8 microsteps . 3revs . Lleadscrew rev 960 steps
lrev 1step 1 leadscrew rev 500mm 1mm

4.8 Stepper Configuration

4.8.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See
the Stepper Configuration Wizard Chapter.

This chapter describes some of the more common settings for manually setting up a stepper based
system. These systems are using stepper motors with drives that accept step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the
motors), yet the system needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on a sample config released along with LinuxCNC. The config is called
stepper inch, and can be found by running the Configuration Picker.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 180/1322

4.8.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE PERIODs for step-
and-direction output. The maximum requested step rate is the product of an axis’ MAX VELOCITY and
its INPUT SCALE. If the requested step rate is not attainable, following errors will occur, particularly
during fast jogs and GO moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one step
is possible for each BASE PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE PERIOD (setting this too low will cause
the machine to become unresponsive or even lock up), the INPUT SCALE (if you can select different
step sizes on your stepper driver, change pulley ratios, or leadscrew pitch), or the MAX VELOCITY
and STEPGEN MAXVEL.

If no valid combination of BASE PERIOD, INPUT SCALE, and MAX VELOCITY is acceptable, then
consider using hardware step generation (such as with the LinuxCNC-supported Universal Stepper
Controller, Mesa cards, and others).

4.8.3 Pinout

One of the major flaws in EMC was that you couldn’t specify the pinout without recompiling the source
code. EMC?2 was far more flexible, and thus now in LinuxCNC (thanks to the Hardware Abstraction
Layer) you can easily specify which signal goes where. See the HAL Basics for more information on
HAL.

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside
the HAL.

Note
We are presenting one axis to keep it short, all others are similar.

The ones relevant for our pinout are:

signals: Xstep, Xdir & Xen
pins: parport.0.pin-XX-out & parport.0.pin-XX-in

Depending on what you have chosen in your INI file you are using either standard pinout.hal or xy-
lotex pinout.hal. These are two files that instruct the HAL how to link the various signals & pins.
Further on we’ll investigate the standard pinout.hal.

4.8.3.1 Standard Pinout HAL

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers
using a parport for I/0

#

first load the parport driver

loadrt hal parport cfg="0x0378"

#

next connect the parport functions to threads
read inputs first

addf parport.0.read base-thread 1

write outputs last

addf parport.0.write base-thread -1

#

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 181 /1322

finally connect physical pins to the signals
net Xstep => parport.0.pin-03-out
net Xdir => parport.0.pin-02-out
net Ystep => parport.0.pin-05-out
net Ydir => parport.0.pin-04-out
net Zstep => parport.0.pin-07-out
net Zdir => parport.0.pin-06-out

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

connect "spindle on” motion controller pin to a physical pin
net spindle-on spindle.0.on => parport.0.pin-09-out

#it#

You might use something like this to enable chopper drives when machine ON
the Xen signal is defined in core stepper.hal

#it#

net Xen => parport.0.pin-01-out

#it#
If you want active low for this pin, invert it like this:
#Hit#

setp parport.0.pin-01l-out-invert 1

#t#

A sample home switch on the X axis (axis 0). make a signal,

1ink the incoming parport pin to the signal, then link the signal
to LinuxCNC’'s axis O home switch input pin.

#it#

net Xhome parport.0.pin-10-in => joint.0.home-sw-in

#it#

Shared home switches all on one parallel port pin?

that's ok, hook the same signal to all the axes, but be sure to
set HOME IS SHARED and HOME SEQUENCE in the INI file.

Ht#

net homeswitches <= parport.0.pin-10-in
net homeswitches => joint.0.home-sw-in
net homeswitches => joint.l.home-sw-in
net homeswitches => joint.2.home-sw-in

i
Sample separate limit switches on the X axis (axis 0)
H#it#

net X-neg-limit parport.0.pin-11-in => joint.0.neg-lim-sw-in
net X-pos-limit parport.0.pin-12-in => joint.0.pos-lim-sw-in

#it#

Just like the shared home switches example, you can wire together

1imit switches. Beware if you hit one, LinuxCNC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this
extreme position to avoid a hard stop.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 182 /1322

#H##

net Xlimits parport.0.pin-13-in => joint.0.neg-lim-sw-in joint.0.pos-lim-sw-in

The lines starting with # are comments, and their only purpose is to guide the reader through the file.

4.8.3.2 Overview

There are a couple of operations that get executed when the standard pinout.hal gets executed/inter-
preted:

The Parport driver gets loaded (see the Parport Chapter for details).

The read & write functions of the parport driver get assigned to the base thread °.

The step & direction signals for axes X, Y, Z get linked to pins on the parport.

Further I/O signals get connected (estop loopback, toolchanger loopback).

A spindle-on signal gets defined and linked to a parport pin.

4.8.3.3 Changing the standard_pinout.hal

If you want to change the standard pinout.hal file, all you need is a text editor. Open the file and
locate the parts you want to change.

If you want for example to change the pin for the X-axis Step & Directions signals, all you need to do
is to change the number in the parport.0.pin-XX-out name:

net Xstep parport.0.pin-03-out

net Xdir parport.0.pin-02-out

can be changed to:

net Xstep parport.0.pin-02-out

net Xdir parport.0.pin-03-out

or basically any other out pin you like.

Hint: make sure you don’t have more than one signal connected to the same pin.

4.8.3.4 Changing polarity of a signal

If external hardware expects an “active low” signal, set the corresponding -invert parameter. For
instance, to invert the spindle control signal:

setp parport.0.pin-09-out-invert TRUE

5The fastest thread in the LinuxCNC setup, usually the code gets executed every few tens of microseconds.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 183 /1322

4.8.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd spindle.0.speed-out => pwmgen.0.value

net spindle-on spindle.0.on => pwmgen.0.enable

net spindle-pwm pwmgen.0Q.pwm => parport.0.pin-09-out

setp pwmgen.0.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

4.8.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of the
motors. For this reason there are already defined signals called Xen, Yen, Zen.

To connect them use the following example:
net Xen parport.0.pin-08-out

You can either have one single pin that enables all drives; or several, depending on the setup you

have. Note, however, that usually when one axis faults, all the other drives will be disabled as well,
so having only one enable signal / pin for all drives is a common practice.

4.8.3.7 External ESTOP button

The standard pinout.hal file assumes no external ESTOP button. For more information on an external
E-Stop see the estop latch man page.

4.9 Stepper Diagnostics

If what you get is not what you expect many times you just got some experience. Learning from the
experience increases your understanding of the whole. Diagnosing problems is best done by divide
and conquer. By this I mean if you can remove 1/2 of the variables from the equation each time you
will find the problem the fastest. In the real world this is not always the case, but it’s usually a good
place to start.

4.9.1 Common Problems

4.9.1.1 Stepper Moves One Step

The most common reason in a new installation for a stepper motor not to move is that the step and
direction signals are exchanged. If you press the jog forward and jog backward keys, alternately , and
the stepper moves one step each time, and in the same direction, there is your clue.

4.9.1.2 No Steppers Move

Many drives have an enable pin or need a charge pump to enable the output.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 184 /1322

4.9.1.3 Distance Not Correct

If you command the axis to move a specific distance and it does not move that distance, then your
scale setting is wrong.

4.9.2 Error Messages

4.9.2.1 Following Error

The concept of a following error is strange when talking about stepper motors. Since they are an open
loop system, there is no position feedback to let you know if you actually are out of range. LinuxCNC
calculates if it can keep up with the motion called for, and if not, then it gives a following error.
Following errors usually are the result of one of the following on stepper systems.

* FERROR too small

MIN FERROR too small

MAX VELOCITY too fast

* MAX ACCELERATION too fast
BASE PERIOD set too long

¢ Backlash added to an axis

Any of the above can cause the real-time pulsing to not be able to keep up the requested step rate.
This can happen if you didn’t run the latency test long enough to get a good number to plug into the
StepConf Wizard, or if you set the Maximum Velocity or Maximum Acceleration too high.

If you added backlash you need to increase the STEPGEN MAXACCEL up to double the MAX ACCELERATIO
in the AXIS section of the INI file for each axis you added backlash to. LinuxCNC uses “extra acceler-
ation” at a reversal to take up the backlash. Without backlash correction, step generator acceleration

can be just a few percent above the motion planner acceleration.

4.9.2.2 RTAPI Error

When you get this error:

RTAPI: ERROR: Unexpected realtime delay on task n

This error is generated by rtapi based on an indication from RTAI that a deadline was missed. It is
usually an indication that the BASE PERIOD in the [EMCMOT] section of the ini file is set too low. You
should run the Latency Test for an extended period of time to see if you have any delays that would
cause this problem. If you used the StepConf Wizard, run it again, and test the Base Period Jitter
again, and adjust the Base Period Maximum Jitter on the Basic Machine Information page. You might
have to leave the test running for an extended period of time to find out if some hardware causes
intermittent problems.

LinuxCNC tracks the number of CPU cycles between invocations of the real-time thread. If some
element of your hardware is causing delays or your realtime threads are set too fast you will get this
error.

Note
This error is only displayed once per session. If you had your BASE_PERIOD too low you could get
hundreds of thousands of error messages per second if more than one was displayed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 185/1322

4.9.3 Testing
4.9.3.1 Step Timing

If you are seeing an axis ending up in the wrong location over multiple moves, it is likely that you
do not have the correct direction hold times or step timing for your stepper drivers. Each direction
change may be losing a step or more. If the motors are stalling, it is also possible you have either the
MAX ACCELERATION or MAX VELOCITY set too high for that axis.

The following program will test the Z axis configuration for proper setup. Copy the program to your
\~/emc2/nc files directory and name it TestZ.ngc or similar. Zero your machine with Z = 0.000 at the
table top. Load and run the program. It will make 200 moves back and forth from 0.5 to 1”. If you
have a configuration issue, you will find that the final position will not end up 0.500” that the axis
window is showing. To test another axis just replace the Z with your axis in the GO lines.

(test program to see if Z axis loses position)
(msg, test 1 of Z axis configuration)
G20 #1000=100 (loop 100 times)
(this loop has delays after moves)
(tests acc and velocity settings)
0100 while [#1000]
GO Z1.000
G4 P0O.250
GO Z0.500
G4 P0.250
#1000 = [#1000 - 1]
0100 endwhile
(msg, test 2 of Z axis configuration S to continue)
M1 (stop here)
#1000=100 (loop 100 times)
(the next loop has no delays after moves)
(tests direction hold times on driver config and also max accel setting)
0101 while [#1000]
GO Z1.000
GO Z0.500
#1000 = [#1000 - 1]
0101 endwhile
(msg, Done...Z should be exactly .5"” above table)
M2

4.10 Filter Programs

4.10.1 Introduction

Most of LinuxCNC'’s screens have the ability to send loaded files through a filter program or use the
filter program to make G-code. Such a filter can do any desired task: Something as simple as making
sure the file ends with M2, or something as complicated as generating G-code from an image.

4.10.2 Setting up the INI for Program Filters

The [FILTER] section of the INI file controls how filters work. First, for each type of file, write a
PROGRAM EXTENSION line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write rs274ngc code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by LinuxCNC when Run. The following lines add support for the image-to-gcode converter
included with LinuxCNC:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 186 /1322

[FILTER]

PROGRAM EXTENSION = .png,.gif Greyscale Depth Image
png = image-to-gcode

gif = image-to-gcode

It is also possible to specify an interpreter:

PROGRAM EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle.

Circular Holes
Units @0 {im) hd
* e, Center ¥ 1.0
® 9 Center 0.0
Start Angle 3
Increment Angle (17.0
Radius 1.0
Haole Count a
Feed Rate g.0
Haole Depth -0.1
Ol (O=no dwell) (1.0
Retract Height 0.1
‘ Dk Cancel

Figure 4.9: Circular Holes

If the filter program sends lines to stderr of the form:
FILTER PROGRESS=10

It will set the screens progress bar to the given (10 in this case) percentage. This feature should be
used by any filter that runs for a long time.

4.10.3 Making Python Based Filter Programs

Here is a very basic example of the filtering mechanics: When run through a Linucnc screen that
offers program filtering, it will produce and write a line of G-code every 100 of a second to standard
output. It also sends a progress message out to the UNIX standard error stream. If there was an error
it would post an error message and exit with an exitcode of 1.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 187 /1322

import time
import sys

for i in range(0,100):
try:
simulate calculation time
time.sleep(.1)

output a line of G-code
print('Go X1', file=sys.stdout)

update progress

print('FILTER PROGRESS={}'.format(i), file=sys.stderr)
except:

This causes an error message

print('Error; But this was only a test’, file=sys.stderr)

raise SystemExit(1)

Here is a similar program but it actually could filter. It puts up a PyQt5 dialog with a cancel button.
Then it reads the program line by line and passes it to standard output. As it goes along, it updates
any process listening to standard error output.

#!/usr/bin/env python3

import sys
import os
import time

from PyQt5.QtWidgets import (QApplication, QDialog, QDialogButtonBox,
QVBoxLayout,QDialogButtonBox)
from PyQt5.QtCore import QTimer, Qt

class CustomDialog(QDialog):

def init (self, path):
super(CustomDialog, self). init (None)
self.setWindowFlags(self.windowFlags() | Qt.WindowStaysOnTopHint)
self.setWindowTitle(”Filter-with-GUI Test”)

QBtn = QDialogButtonBox.Cancel

self.buttonBox = QDialogButtonBox(QBtn)
self.buttonBox.rejected.connect(self.reject)

self.layout = QVBoxLayout()
self.layout.addWidget(self.buttonBox)
self.setlLayout(self.layout)

self.line = 0
self. percentDone = 0

if not os.path.exists(path):
print(”Path: '{}' doesn’t exist:”.format(path), file=sys.stderr)
raise SystemExit(1)

self.infile = open(path, "r")

self.temp = self.infile.readlines()

calculate percent update interval
self.bump = 100/float(len(self.temp))

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 188 /1322

self. timer = QTimer()
self. timer.timeout.connect(self.process)
self. timer.start(100)

def reject(self):
This provides an error message
print(’'You asked to cancel before finished.’, file=sys.stderr)
raise SystemExit(1)

def process(self):
try:
get next line of code
codeLine = self.temp[self.line]

process the line somehow

push out processed code
print(codeLine, file=sys.stdout)
self.line +=1

update progress
self. percentDone += self.bump
print('FILTER PROGRESS={}’'.format(int(self. percentDone)), file=sys.stderr)

if done end with no error/error message

if self. percentDone >= 99:
print(’FILTER PROGRESS=-1’, file=sys.stderr)
self.infile.close()
raise SystemExit(0)

except Exception as e:
This provides an error message
print(('Something bad happened:’,e), file=sys.stderr)
this signals the error message should be shown
raise SystemExit(1)
if name == " main_ ":
if (len(sys.argv)>1):
path = sys.argv[1l]
else:
path = None
app = QApplication(sys.argv)
w = CustomDialog(path=path)
w.show()
sys.exit(app.exec ())

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 189/1322

Chapter 5

HAL (Hardware Abstraction Layer)

5.1 HAL Introduction

LinuxCNC is about interacting with hardware. But few users have the same exact hardware speci-
fications - similar, but not the same. And even for the exact same hardware, there may be different
ways to use it, say for different materials or with different mills, which would require adaptations to
the control of an already running system. An abstraction was needed to make it easier to configure
LinuxCNC for a wide variety of hardware devices. At the highest level, it could simply be a way to
allow a number of building blocks to be loaded and interconnected to assemble a complex system.

This chapter introduces to that Hardware Abstraction Layer. You will see that many of the building
blocks are indeed, drivers for hardware devices. However, HAL can do more than just configure
hardware drivers.

5.1.1 HAL Overview

The Hardware Abstraction Layer (or with a reference to the 2001 Space Odyssey movie just "HAL) is
a software to

» provide the infrastructure for the communication with and between the many software and hard-
ware components of the system.

* optionally process and/or override that information as it flows from component to component.

In itself, this Middleware is agnostic about its application on CNC. An Internet search, for example,

found an astronomical application to control telescopes using LinuxCNC. Motors move the telescope

into the right position, and it needs to know how to map motor activity with the effect of that posi-

tioning with the real world. Such a synchronisation of motor positions with real-world positions is
reminiscent of what CNC machines need to do, or space craft.

Any machine controller needs to know:

¢ about its internal state and how this maps to the environment (machine coordinates, state of switch-
es/regulators),

* how actuators are expected to change that state,

* how allow for updates of the internal state by sensors (encoders, probes).

The HAL layer consists of parts (referred to as “components”) that

https://en.wikipedia.org/wiki/2001:_A_Space_Odyssey_(film)
https://en.wikipedia.org/wiki/Middleware

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 190/1322

* are connected with each other, e.g., to update position data or have the planning algorithm tell the
motors about the next step.

* may know how to communicate with hardware,
* may simply process incoming data and provide data outputs to other components,

 are always periodically executed either

- with a very high frequency of a few microseconds (ps) execution time, called base thread, e.g., to

1. give a stepper motor a trigger to step ahead, or to
2. read out the position presented by an encoder.

- with a lower frequency every millisecond (ms), e.g. to
1. adjust the planning for the next moves to complete a G-code instruction.

- as non-realtime "user-space” components that run a “main loop” just like any other software, and
may be interrupted or delayed when the rest of the system is busy or overloaded.

Taken together, HAL allows

1. to program for a machine that the programmer does not know directly, but may rely on a pro-
gramming interface with well-specified effect on the machine. That interface may be used to
* tell the machine what to do
* listen to what the machine wants to tell about the state it is in.

2. Vertical Abstractions: The human system integrator of such machine uses HAL

* to describe what the machine is looking like and how what cable controls which motor that
drives which axis.
* The description of the machine, the programmer’s interfaces and the user’s interface somehow
“"meet” in that abstract layer.
3. Horizontal Abstractions:

¢ Not all machines have all kinds of features
* Mills, Lathes and Robots share many

- features (motors, joints, ...),
- planning algorithms for their movements.

HAL has no direct interaction with the user. But multiple interfaces have been provided that allow
HAL to be manipulated

e from the command line using the “halcmd” command.

e from Python scripts and

e from within C/C++ programs,

but none of these interfaces are HAL itself.

HAL itself is not a program, it consists of one or more lists of loaded programs (the components) that
are periodically executed (in strict sequence), and an area of shared-memory that these components
use to interchange data. The main HAL script runs only once at machine startup, setting up the
realtime threads and the shared-memory locations, loading the components and setting up the data
links between them (the ”signals” and ”pins”).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 191 /1322

In principle multiple machines could share a common HAL to allow them to inter-operate, however
the current implementation of LinuxCNC is limited to a single interpreter and a single Task module.
Currently this is almost always a G-code interpreter and “milltask” (which was found to also work well
for lathes and adequately for robots) but these modules are selectable at load-time. With an increasing
interest in the control of multiple cooperating machines, to overcome this limitation is likely one of
the prime steps for the future development of LinuxCNC to address. It is a bit tricky though and the
community is still organizing its thoughts on this.

HAL lies at the core of LinuxCNC and is used and/or extended by all the parts of LinuxCNC, which
includes the GUIs. The G-code (or alternative language) interpreter knows how to interpret the G-code
and translates it into machine operations by triggering signals in HAL. The user may query HAL in
various ways to gain information about its state, which then also represents the state of the machine.
Whilst writing during the development of version 2.9, the GUIs still make bit of an exception to that
rule and may know something that HAL does not (need to) know.

5.1.2 Communication
HAL is special in that it can communicate really fast

* with other programs, but in particular

» with its components that typically run in one of the realtime threads.

And while communicating, the part of LinuxCNC that is talked to does not need to prepare for the
communication: All these actions are performed asynchronously, i.e. no component is interrupting
its regular execution to receive a signal and signals can be sent rightaway, i.e., an application may
wait until a particular message has arrived - like an enable-signal, but it does not need to prepare for
receiving that message.

The communication system

» represents and controls all the hardware attached to the system,

» starts and stops other communicating programs.

The communication with the hardware of the machine itself is performed by respective dedicated HAL
components.

The HAL layer is a shared space in which all the many parts that constitute LinuxCNC are exchanging
information. That space features pins that are identified by a name, though a LinuxCNC engineer
may prefer the association with a pin of an electronic circuit. These pins can carry numerical and
logical values, boolean, float and signed and unsigned integers. There is also a (relatively new) pin
type named hal port intended for byte streams, and a framework for exchanging more complex data
called hal stream (which uses a private shared memory area, rather than a HAL pin). These latter
two types are used relatively infrequently.

With HAL you can send a signal to that named pin. Every part of HAL can read that pin that holds that
value of the signal. That is until a new signal is sent to the same named pin to substitute the previous
value. The core message exchange system of HAL is agnostic about CNC, but HAL ships with a large
number of components that know a lot about CNC and present that information via pins. There are
pins representing

¢ static information about the machine

¢ the current state of the machine

- end switches
- positions counted by steppers or as measured by encoders

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 192 /1322

¢ recipients for instructions

- manual control of machine position (”jogging”)
- positions that stepper motors should take next

In a analogy to electronic cables, pins can be wired, so the value changing in one pin serves as input
to another pin. HAL components prepare such input and output pins and are thus automatically
triggered to perform.

HAL Components The many "expert” software parts of LinuxCNC are typically implemented as com-
ponents of HAL, conceptually also referred to as modules. These computer-implemented experts per-
petually read from HAL about a state that the machine should strive to achieve and compare that
desired state with the state the machine is in at the current moment. When there is a difference
between what should be and what the current state is then some action is performed to reduce that
difference, while perpetually writing updates of the current states back to the HAL data space.

There are components specializing on how to talk to stepper motors, and other components know how
to control servos. On a higher level, some components know how the machine’s axes are arranged
in 3D and yet others know how to perform a smooth movement from one point in space to another.
Lathes, mills and robots will differ in the LinuxCNC component that are active, i.e. that are loaded
by a HAL configuration file for that machine. Still, two machines may be looking very different since
built for very different purposes, but when they both use servo motors then they can still both use the
same HAL servo component.

Origin of the Incentive to Move On the lowest (closest to hardware) level, e.g. for stepper motors,
the description of a state of that motor is very intuitive: It is the number of steps in a particular direc-
tion. A difference between the desired position and the actual position translates into a movement.
Speeds, acceleration and other parameters may be internally limited in the component itself, or may
optionally be limited by upstream components. (For example, in most cases the moment-by-moment
axis position values sent to the step-generator components have already been limited and shaped to
suit the configured machine limits or the current feed rate.)

Any G-code line is interpreted and triggers a set of routines that in turn know how to communicate
with components that are on a middle layer, e.g., to create a circle.

Pins and Signals HAL has a special place in the heart of its programmers for the way that the data
flow between modules is represented. When traditional programmers think of variables, addresses or
I/O ports, HAL refers to “pins”. And those pins are connected or assigned values to via signals. Much
like an electrical engineer would connect wires between pins of components of a mill, a HAL engineer
establishes the data flow between pins of module instances.

The LinuxCNC GUIS (AXIS, GMOCCAPY, Touchy, etc.) will represent the states of some pins (such as
limit switches) but other graphical tools also exist for troubleshooting and configuration: Halshow,
Halmeter, Halscope and Halreport.

The remainder of this introduction presents
» the syntax of how pins of different components are connected in the HAL configuration files, and
¢ software to inspect the values of pins

- at any given moment,
- developing over time.

5.1.3 HAL System Design

.HAL is based on traditional system design techniques.

HAL is based on the same principles that are used to design hardware circuits and systems, so it is
useful to examine those principles first. Any system, including a CNC machine, consists of intercon-
nected components. For the CNC machine, those components might be the main controller, servo

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 193 /1322

amps or stepper drives, motors, encoders, limit switches, pushbutton pendants, perhaps a VFD for
the spindle drive, a PLC to run a toolchanger, etc. The machine builder must aselect, mount and wire
these pieces together to make a complete system.

component.0.pinl-in
7

pmponent.1.pinl-out

signal-red
component.l.pin3-in

component.1.pind-in

component.0

component.l

Figure 5.1: HAL Concept - Connecting like electrical circuits.

Figure one would be written in HAL code like this:

net signal-blue component.0.pinl-in component.l.pinl-out
net signal-red component.0.pin3-out component.l.pin3-in component.l.pin4-in

5.1.3.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them as
black boxes. During the design stage, he decides which parts he is going to use - steppers or servos,
which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s decisions
about which specific components to use is based on what that component does and the specifications
supplied by the manufacturer of the device. The size of a motor and the load it must drive will affect
the choice of amplifier needed to run it. The choice of amplifier may affect the kinds of feedback
needed by the amp and the velocity or position signals that must be sent to the amp from a control.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 194 /1322

In the HAL world, the integrator must decide what HAL components are needed. Usually every inter-
face card will require a driver. Additional components may be needed for software generation of step
pulses, PLC functionality, and a wide variety of other tasks.

5.1.3.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will be
interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens for a
servo drive or PLC. They need to be wired together. The motors connect to the servo amps, the limit
switches connect to the controller, and so on. As the machine builder works on the design, he creates
a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which signals
are needed, and what they should connect.

5.1.3.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired
and mounted, and then they are interconnected according to the wiring diagram. In a physical system,
each interconnection is a piece of wire that needs to be cut and connected to the appropriate terminals.

HAL provides a number of tools to help build a HAL system. Some of the tools allow you to connect
(or disconnect) a single wire. Other tools allow you to save a complete list of all the parts, wires, and
other information about the system, so that it can be rebuilt with a single command.

5.1.3.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see whether
a limit switch is working or to measure the DC voltage going to a servo motor. He may hook up an
oscilloscope to check the tuning of a drive, or to look for electrical noise. He may find a problem
that requires the wiring diagram to be changed; perhaps a part needs to be connected differently or
replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools
needed for testing and tuning a system. The same commands used to build the system can be used to
make changes as needed.

5.1.3.5 Summary

This document is aimed at people who already know how to do this kind of hardware system integra-
tion, but who do not know how to connect the hardware to LinuxCNC. See the Remote Start Example
section in the HAL UI Examples documentation.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 195/1322

Femote
Hun Btn

| halui.made, auta

and?.0.ind

halui.mode.is-auta andZ.0.in

andz.0ouf hialui.program.run

Figure 5.2: Remote Start Example (Schema)

The traditional hardware design as described above ends at the edge of the main control. Outside the
control are a bunch of relatively simple boxes, connected together to do whatever is needed. Inside,
the control is a big mystery — one huge black box that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes
device drivers and even some internal part of the controller into smaller black boxes that can be
interconnected and even replaced just like the external hardware. It allows the system wiring diagram
to show part of the internal controller, rather than just a big black box. And most importantly, it allows
the integrator to test and modify the controller using the same methods he would use on the rest of
the hardware.

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk about
using extra flexible eight conductor shielded cable to connect an encoder to the servo input board in
the computer, the reader immediately understands what it is and is led to the question, what kinds of
connectors will I need to make up each end. The same sort of thinking is essential for the HAL but
the specific train of thought may take a bit to get on track. Using HAL words may seem a bit strange
at first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If
you are comfortable with the idea of interconnecting hardware black boxes, you will probably have
little trouble using HAL to interconnect software black boxes.

5.1.4 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional glossary
because these terms are not arranged in alphabetical order. They are arranged by their relationship
or flow in the HAL way of things.

Component:: When we talked about hardware design, we referred to the individual pieces as parts,
building blocks, black boxes, etc. The HAL equivalent is a component or HAL component. This docu-
ment uses HAL component when there is likely to be confusion with other kinds of components, but
normally just uses component. A HAL component is a piece of software with well-defined inputs, out-
puts, and behavior, that can be installed and interconnected as needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 196 /1322

Many HAL Components model the behaviour of a tangible part of a machine, and a pin may indeed be
meant to be connected to a physical pin on the device to communicate with it, hence the names. But
most often this is not the case. Imagine a retrofit of a manual lathe/mill. What LinuxCNC implements
is how the machine presents itself to the outside world, and it is secondary if the implementation how
to draw a circle is implemented on the machine already or provided from LinuxCNC. And it is common
to add buttons to the imaginary retrofit that signal an action, like an emergency stop. LinuxCNC and
the machine become one. And that is through the HAL.

Parameter:: Many hardware components have adjustments that are not connected to any other com-
ponents but still need to be accessed. For example, servo amps often have trim pots to allow for tuning
adjustments, and test points where a meter or scope can be attached to view the tuning results. HAL
components also can have such items, which are referred to as parameters. There are two types of
parameters: Input parameters are equivalent to trim pots - they are values that can be adjusted by
the user, and remain fixed once they are set. Output parameters cannot be adjusted by the user - they
are equivalent to test points that allow internal signals to be monitored.

Pin:: Hardware components have terminals which are used to interconnect them. The HAL equivalent
is a pin or HAL pin. HAL pin is used when needed to avoid confusion. All HAL pins are named, and
the pin names are used when interconnecting them. HAL pins are software entities that exist only
inside the computer.

Physical Pin:: Many I/O devices have real physical pins or terminals that connect to external hard-
ware, for example the pins of a parallel port connector. To avoid confusion, these are referred to as
physical pins. These are the things that stick out into the real world.

Note

You may be wondering what relationship there is between the HAL pins, physical pins and external
elements like encoders or a STG card: we are dealing here with interfaces of data translation/con-
version type.

Signal:: In a physical machine, the terminals of real hardware components are interconnected by
wires. The HAL equivalent of a wire is a signal or HAL signal. HAL signals connect HAL pins together
as required by the machine builder. HAL signals can be disconnected and reconnected at will (even
while the machine is running).

Type:: When using real hardware, you would not connect a 24 Volt relay output to the +/-10 V analog
input of a servo amp. HAL pins have the same restrictions, which are based upon their type. Both
pins and signals have types, and signals can only be connected to pins of ffvthe same type. Currently
there are 4 types, as follows:

+ - bit - a single TRUE/FALSE or ON/OFF value - float - a 64 bit floating point value, with approxi-
mately 53 bits of resolution and over 1000 bits of dynamic range. - u32 - a 32 bit unsigned integer,
legal values are 0 to 4,294,967,295 - s32 - a 32 bit signed integer, legal values are -2,147,483,648 to
+2,147,483,647 - u64 - a 64 bit unsigned integer, legal values are 0 to 18,446,744,073,709,551,615 -
s64 - a 64 bit signed integer, legal values are -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Function:: Real hardware components tend to act immediately on their inputs. For example, if the
input voltage to a servo amp changes, the output also changes automatically. However software
components cannot act automatically. Each component has specific code that must be executed to
do whatever that component is supposed to do. In some cases, that code simply runs as part of
the component. However in most cases, especially in realtime components, the code must run in a
specific sequence and at specific intervals. For example, inputs should be read before calculations
are performed on the input data, and outputs should not be written until the calculations are done.
In these cases, the code is made available to the system in the form of one or more functions. Each
function is a block of code that performs a specific action. The system integrator can use threads to
schedule a series of functions to be executed in a particular order and at specific time intervals.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 197 /1322

Thread:: A thread is a list of functions that runs at specific intervals as part of a realtime task. When
a thread is first created, it has a specific time interval (period), but no functions. Functions can be
added to the thread, and will be executed in order every time the thread runs.

As an example, suppose we have a parport component named hal parport. That component defines
one or more HAL pins for each physical pin. The pins are described in that component’s doc section:
Their names, how each pin relates to the physical pin, are they inverted, can you change polarity,
etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It takes code to do
that, and that is where functions come into the picture. The parport component needs at least two
functions: One to read the physical input pins and update the HAL pins, the other to take data from
the HAL pins and write it to the physical output pins. Both of these functions are part of the parport
driver.

5.1.5 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that
can be installed and interconnected as needed. The section HAL Components List lists all available
components and a brief description of what each does.

5.1.6 Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon,
simply connecting two pins with a HAL-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current
flows (or stops) immediately. Other coils may change state, etc., and it all just happens. But in PLC
style ladder logic, it doesn’t work that way. Usually in a single pass through the ladder, each rung is
evaluated in the order in which it appears, and only once per pass. A perfect example is a single rung
ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and
de-energize it. That means the contacts close again, etc., etc. The relay becomes a buzzer.

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung,
then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact
feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open, and
de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate determined
by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version
of ClassicLadder exports a function to do exactly that. Meanwhile, a thread is the thing that runs the
function at specific time intervals. Just like you can choose to have a PLC evaluate all its rungs every
10 ms, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is not what the thread does - that is determined by which
functions are connected to it. The real distinction is simply how often a thread runs.

In LinuxCNC you might have a 50 ps thread and a 1 ms thread. These would be created based on
BASE PERIOD and SERVO_PERIOD, the actual times depend on the values in your INI file.

The next step is to decide what each thread needs to do. Some of those decisions are the same in
(nearly) any LinuxCNC system. For instance, motion-command-handler is always added to servo-
thread.

Other connections would be made by the integrator. These might include hooking the STG driver’s
encoder read and DAC write functions to the servo thread, or hooking StepGen'’s function to the base-
thread, along with the parport function(s) to write the steps to the port.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 198 /1322

5.2 HAL Basics

This document provides a reference to the basics of HAL.

5.2.1 HAL Commands

More detailed information can be found in the man page for halcmd: run man halecmd in a terminal
window.

To see the HAL configuration and check the status of pins and parameters use the HAL Configuration
window on the Machine menu in AXIS. To watch a pin status open the Watch tab and click on each
pin you wish to watch and it will be added to the watch window.

- HAL Configuration BiEE
Tree View
Components SHOW | waATCH
Fins
axis Component Pins:
axisui Owner Type Dir Value Name _
hal_manualtoolchange 6 hit IN FALSE parport. 0. pin-0l-out <{==
incontrol estop-out :

. 6 hit IN FALSE parport. 0. pin-02-out <{== xstep
motion 6 hit IN FALSE parport. 0. pin-03-out <{== =xdir
parport 6 hit IN FALSE parport. 0. pin-04-out <{== ystep

0 6 hit IN FALSE parport. 0. pin-05-out <{== wdir
pywrmgen 6 hit IN FALSE parport. 0. pin-06-out <{== zstep
stepgen 6 hit IN FALSE parport. 0. pin-07-out <{== =zdir

E— Parameters 6 hit IN FALSE parport. 0. pin-08-out <{== astep
- 6 hit IN FALSE parport. 0. pin-09-out <{== adir
b= Slg"a!s 6 hit OUT TRUE parport. 0. pin-10-in
&— Functions & bit OUT FALSE parport. 0. pin-10-in-not
E— Threads & bit OUT TRUE parport. 0. pin-11-in
6 hit OUT FALSE parport. 0. pin-11-in-not
6 hit OUT TRUE parport. 0. pin-12-in
6 hit OUT FALSE parport. 0. pin-12-in-not
6 hit OUT TRUE parport. 0. pin-13-in
6 hit OUT FALSE parport. 0. pin-13-in-not
6 hit IN FALSE parport. 0. pin-14-out <{==
spindle-cw
6 hit OUT TRUE parport. 0. pin-15-in
6 hit OUT FALSE parport. 0. pin-15-in-not
6 hit IN FALSE parport. 0. pin-16-out <{==
spindle-puwm
Test HAL command : Execute
Commands may be tested here but they will NOT be sawed
Figure 5.3: HAL Configuration Window
5.2.1.1 loadrt

The command loadrt loads a real time HAL component. Real time component functions need to be
added to a thread to be updated at the rate of the thread. You cannot load a non-realtime component
into the realtime space.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 199/1322

loadrt Syntax and Example

loadrt <component> <options>
loadrt mux4 count=1

5.2.1.2 addf

The addf command adds a function to a real-time thread. If the StepConf wizard was used to create
the configuration, two threads have been created (" base-thread” and " servo-thread).

addf adds function functname to thread threadname. Default is to add the function in the order they
are in the file. If position is specified, adds the function to that spot in the thread. A negative position
indicates the position with respect to the end of the thread. For example 1 is start of thread, -1 is the
end of the thread, -3 is third from the end.

For some functions it is important to load them in a certain order, like the parport read and write
functions. The function name is usually the component name plus a number. In the following example
the component or2 is loaded and show function shows the name of the or2 function.

$ halrun

halcmd: loadrt or2

halcmd: show function

Exported Functions:

Owner CodeAddr Arg FP Users Name
00004 f8bc5000 f8f950c8 NO 0 o0r2.0

You have to add a function from a HAL real time component to a thread to get the function to update at
the rate of the thread. Usually there are two threads as shown in this example. Some components use
floating point math and must be added to a thread that supports floating point math. The FP indicates
if floating point math is supported in that thread.

$ halrun

halcmd: loadrt motmod base period nsec=55555 servo period nsec=1000000 num_joints=3
halcmd: show thread

Realtime Threads:

Period FP Name (Time, Max-Time)
995976 YES servo-thread (0, 0)
55332 NO base-thread (0, 0)

* base-thread (the high-speed thread): This thread handles items that need a fast response, like
making step pulses, and reading and writing the parallel port. Does not support floating point
math.

* servo-thread (the slow-speed thread): This thread handles items that can tolerate a slower response,
like the motion controller, ClassicLadder, and the motion command handler and supports floating
point math.

addf Syntax and Example

addf <function> <thread>
addf mux4.0 servo-thread

Note
If the component requires a floating point thread that is usually the slower servo-thread.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 200/1322

5.2.1.3 loadusr

The command loadusr loads a non-realtime HAL component. Non-realtime programs are their own
separate processes, which optionally talk to other HAL components via pins and parameters. You
cannot load realtime components into non-realtime space.

Flags may be one or more of the following:

-W to wait for the component to become ready. The component is assumed to have
the same name as the first argument of the command.

-Wn <name> to wait for the component, which will have the given <name>. This only
applies if the component has a name option.

-w to wait for the program to exit
-1 to ignore the program return value (with -w)
-n name a component when it is a valid option for that component.

Syntax and Examples of loadusr

loadusr <component> <options>
loadusr halui
loadusr -Wn spindle gs2 vfd -n spindle

In English it means loadusr wait for name spindle component gs2_vfd name spindle.

5.2.1.4 net

The command net creates a connection between a signal and one or more pins. If the signal does not
exist net creates the new signal. This replaces the need to use the command newsig. The optional
direction arrows <=, => and <=> make it easier to follow the logic when reading a net command line
and are not used by the net command. The direction arrows must be separated by a space from the
pin names.

Syntax and Examples of net
net signal-name pin-name <optional arrow> <optional second pin-name>
net home-x joint.0.home-sw-in <= parport.0.pin-11-in

In the above example home-x is the signal name, joint.0.home-sw-1in is a Direction IN pin, <= is the
optional direction arrow, and parport.0.pin-11-inis a Direction OUT pin. This may seem confusing
but the in and out labels for a parallel port pin indicates the physical way the pin works not how it is
handled in HAL.

A pin can be connected to a signal if it obeys the following rules:

e An IN pin can always be connected to a signal.
* An IO pin can be connected unless there’s an OUT pin on the signal.

* An OUT pin can be connected only if there are no other OUT or IO pins on the signal.

The same signal-name can be used in multiple net commands to connect additional pins, as long as
the rules above are obeyed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 201 /1322

Signal
Source
Dir
Out
Signal
Dir Dir
* In In +
Signal Signal
Reader Reader

Figure 5.4: Signal Direction

This example shows the signal xStep with the source being stepgen.0.out and with two readers,
parport.0.pin-02-out and parport.0.pin-08-out. Basically the value of stepgen.0.out is sent to
the signal xStep and that value is then sent to parport.0.pin-02-out and parport.0.pin-08-out.

signal source destination destination
net xStep stepgen.0.out => parport.0.pin-02-out parport.0.pin-08-out

Since the signal xStep contains the value of stepgen.0.out (the source) you can use the same signal
again to send the value to another reader. To do this just use the signal with the readers on another
line.

signal destination2
net xStep => parport.0.pin-06-out

I/0 pins An I/O pin like encoder.N.index-enable can be read or set as allowed by the component.

5.2.1.5 setp

The command setp sets the value of a pin or parameter. The valid values will depend on the type of
the pin or parameter. It is an error if the data types do not match.

Some components have parameters that need to be set before use. Parameters can be set before use
or while running as needed. You cannot use setp on a pin that is connected to a signal.

Syntax and Examples of setp

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 202 /1322

setp <pin/parameter-name> <value>
setp parport.0.pin-08-out TRUE

5.2.1.6 sets

The command sets sets the value of a signal.
Syntax and Examples of sets

sets <signal-name> <value>
net mysignal and2.0.in® pyvcp.my-led
sets mysignal 1

It is an error if:

* The signal-name does not exist
» If the signal already has a writer

» If value is not the correct type for the signal

5.2.1.7 unlinkp

The command unlinkp unlinks a pin from the connected signal. If no signal was connected to the pin
prior running the command, nothing happens. The unlinkp command is useful for trouble shooting.

Syntax and Examples of unlinkp

unlinkp <pin-name>
unlinkp parport.0.pin-02-out

5.2.1.8 Obsolete Commands

The following commands are depreciated and may be removed from future versions. Any new config-
uration should use the net command. These commands are included so older configurations will still
work.

The command linksp creates a connection between a signal and one pin.
Syntax and Examples of linksp

linksp <signal-name> <pin-name>

linksp X-step parport.0.pin-02-out

The linksp command has been superseded by the net command.

The command linkps creates a connection between one pin and one signal. It is the same as linksp
but the arguments are reversed.

Syntax and Examples of linkps

linkps <pin-name> <signal-name>

linkps parport.0.pin-02-out X-Step

The linkps command has been superseded by the net command.

the command newsig creates a new HAL signal by the name <signame> and the data type of <type>.
Type must be bit, s32, u32, s64, u64 or float. Error if <signame> already exists.

Syntax and Examples of newsig

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 203 /1322

newsig <signame> <type>
newsig Xstep bit

More information can be found in the HAL manual or the man pages for halrun.

5.2.2 HAL Data
5.2.2.1 Bit
A bit value is an on or off.

¢ bit values = true or 1 and false or 0 (True, TRUE, true are all valid)

5.2.2.2 Float
A float is a floating point number. In other words the decimal point can move as needed.

« float values = a 64 bit floating point value, with approximately 53 bits of resolution and over 210 (~
1000) bits of dynamic range.

For more information on floating point numbers see:
https://en.wikipedia.org/wiki/Floating point

5.2.2.3 s32

An s32 number is a whole number that can have a negative or positive value.

* 532 values = integer numbers from -2147483648 to 2147483647

5.2.2.4 u32
A u32 number is a whole number that is positive only.

¢ u32 values = integer numbers from 0 to 4294967295

5.2.2.5 s64
An s64 number is a whole number that can have a negative or positive value.

* s64 values = integer numbers from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

5.2.2.6 u64
A u64 number is a whole number that is positive only.

* u64 values = integer numbers from 0 to 18,446,744,073,709,551,615

https://en.wikipedia.org/wiki/Floating_point

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 204 /1322

5.2.3 HAL Files

If you used the Stepper Config Wizard to generate your config you will have up to three HAL files in
your config directory.

* my-mill.hal (if your config is named my-mill) This file is loaded first and should not be changed if
you used the Stepper Config Wizard.

* custom.hal This file is loaded next and before the GUI loads. This is where you put your custom
HAL commands that you want loaded before the GUI is loaded.

» custom_postgui.hal This file is loaded after the GUI loads. This is where you put your custom HAL
commands that you want loaded after the GUI is loaded. Any HAL commands that use PyVCP
widgets need to be placed here.

5.2.4 HAL Parameter

Two parameters are automatically added to each HAL component when it is created. These parame-
ters allow you to scope the execution time of a component.

.time Time is the number of CPU cycles it took to execute the function.
. tmax Tmax is the maximum number of CPU cycles it took to execute the function.

tmax is a read/write parameter so the user can set it to 0 to get rid of the first time initialization on
the function’s execution time.

5.2.5 Basic Logic Components

HAL contains several real time logic components. Logic components follow a Truth Table that states
what the output is for any given input. Typically these are bit manipulators and follow electrical logic
gate truth tables.

For further components see HAL Components List or the man pages.

5.2.5.1 and2

The and2 component is a two input and-gate. The truth table below shows the output based on each
combination of input.

Syntax

and2 [count=N] | [names=namel[,name2...]]

Functions

and2.n

Pins

and2.N.in0® (bit, in)
and2.N.inl (bit, in)
and2.N.out (bit, out)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

205/1322

Table 5.3: Truth Table of and2

in0 inl out

False False False

True False False

False True False

True True True
5.2.5.2 not

The not component is a bit inverter.

Syntax

not [count=n] | [names=namell[,name2...

Functions

not.all
not.n

Pins

not.n.in (bit, in)
not.n.out (bit, out)

1]

Table 5.4: Truth Table of not

in out

True False

False True
5.2.5.3 or2

The or2 component is a two input or-gate.

Syntax

or2[count=n] | [names=namel[,name2...]]

Functions

or2.n

Pins

or2.n.in0® (bit, in)
or2.n.inl (bit, in)
or2.n.out (bit, out)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 206 /1322

Table 5.5: or2 Truth Table

in0 inl out

True False True

True True True

False True True

False False False
5.2.5.4 xor2

The xor2 component is a two input xor (exclusive or)-gate.
Syntax

xor2[count=n] | [names=namel[,name2...]]

Functions

Xxor2.n

Pins

xor2.n.in0® (bit, in)
xor2.n.inl (bit, in)
xor2.n.out (bit, out)

Table 5.6: xor2 Truth Table

in0 inl out
True False True
True True False
False True True
False False False

5.2.6 Logic Examples

.Example using and2

loadrt and2 count=1

addf and2.0 servo-thread

net my-siginl and2.0.in@ <= parport.0.pin-11-in
net my-sigin2 and2.0.inl <= parport.0.pin-12-in
net both-on parport.0.pin-14-out <= and2.0.out

In the above example one copy of and?2 is loaded into real time space and added to the servo thread.
Next pin-11 of the parallel port is connected to the in0 bit of the and gate. Next pin-12 is connected
to the inl bit of the and gate. Last we connect the and2 out bit to the parallel port pin-14. So following
the truth table for and2 if pin 11 and pin 12 are on then the output pin 14 will be on.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

207 /1322

5.2.7 Conversion Components

5.2.7.1 weighted_sum

The weighted sum converts a group of bits into an integer. The conversion is the sum of the weights
of the bits present plus any offset. It’s similar to binary coded decimal but with more options. The
hold bit interrupts the input processing, so that the sum value no longer changes.

Syntax for loading component weighted_sum

loadrt weighted sum wsum sizes=size[,size,...]

Creates groups of “weighted sum™s, each with the given number of input bits (size).

To update the weighted sum, the process wsums must be attached to a thread.

Add process_wsums to servo thread

addf process wsums servo-thread

Which updates the weighted sum component.

In the following example, a copy of the AXIS HAL configuration window, bits 0 and 2 are TRUE, they
have no offset. The weight (weight) of bit 0 is 1, that of bit 2 is 4, so the sum is 5.

Table 5.7: Component pins of weighted sum

Owner Type Dir Value Name

10 bit In TRUE wsum.0.bit.0. 1
10 s32 I/0 1 wsum.0.bit.0.w
10 bit In FALSE wsum.0.bit.1.1
10 s32 I/0 2 wsum.0.bit.1.w
10 bit In TRUE wsum.0.bit.2.1
10 s32 I/0 4 wsum.0.bit.2.w
10 bit In FALSE wsum.0.bit.3.1
10 s32 I/0 8 wsum.0.bit.3.w
10 bit In FALSE wsum.0.hold

10 s32 I/0 0 wsum.0.offset
10 s32 Out 5 wsum.0.sum

5.3 HAL TWOPASS

5.3.1 TWOPASS

eight
eight
eight

eight

This section describes an option to have multiple load-commands for multiple instances of the same
component at different positions in the file or among different files. Internally, this requires to read
the HAL file twice, hence the name TWOPASS. Supported since LinuxCNC version 2.5, the TWOPASS
processing of LinuxCNC configuration files helps with their modularization and readability. To recall,
LinuxCNC configuration files are specified in a LinuxCNC INI file as [HAL]HALFILE=filename.

Normally, a set of one or more LinuxCNC configuration files must use a single, unique loadrt line to
load a realtime component, which may create multiple instances of the component. For example, if
you use a two-input AND gate component (and2) in three different places in your setup, you would

need to have a single line somewhere to specify:

Example resulting in real-time components with default names and2.0, and2.1, and2.2.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 208 /1322

loadrt and2 count=3

Configurations are more readable if you specify with the names= option for components where it is
supported, e.g.:

Example load command resulting in explicitly named components aa, ab, ac.

loadrt and2 names=aa,ab,ac

It can be a maintenance problem to keep track of the components and their names, since when you
add (or remove) a component, you must find and update the single loadrt directive applicable to the
component.

TWOPASS processing is enabled by including an INI file parameter in the [HAL] section,
where “anystring” can be any non-null string.

[HAL]

TWOPASS = anystring

With TWOPASS enabled, you can have multiple specifications like:

loadrt and2 names=aa
loadrt and2 names=ab,ac

loadrt and2 names=ad

These commands can appear in different HAL files. The HAL files are processed in the order of their
appearance in the INI file, in multiple HALFILE assignments.

The TWOPASS option can be specified with options to add output for debugging (verbose) and to
prevent deletion of temporary files (nodelete). The options are separated with commas.

Example

[HAL]
TWOPASS = on,verbose,nodelete

With TWOPASS processing, all [HAL]JHALFILES are first read and multiple appearances of loadrt
directives for each module are accumulated. Non-realtime components (loadusr) are loaded in order
but no other LinuxCNC commands are executed in the initial pass.

Note
Non-realtime components should use the wait (-W) option to ensure the component is ready before
other commands are executed.

After the initial pass, the realtime modules are loaded (loadrt) automatically

* with a number equal to the total number when using the count= option or

* with all of the individual names specified when using the names= option.

A second pass is then made to execute all of the other LinuxCNC instructions specified in the HAL-
FILES. The addf commands that associate a component’s functions with thread execution are executed
in the order of appearance with other commands during this second pass.

While you can use either the count= or names= options, they are mutually exclusive — only one type
can be specified for a given module.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 209/1322

TWOPASS processing is most effective when using the names= option. This option allows you to
provide unique names that are mnemonic or otherwise relevant to the configuration. For example, if
you use a derivative component to estimate the velocities and accelerations on each (x,y,z) coordinate,
using the count= method will give arcane component names like ddt.0, ddt.1, ddt.2, etc.

Alternatively, using the names= option like:

loadrt ddt names=xvel,yvel, zvel

loadrt ddt names=xaccel,yaccel,zaccel

results in components sensibly named xvel, yvel, zvel, xaccel, yaccel, zaccel.

Many comps supplied with the distribution are created with the halcompile utility and support the
names= option. These include the common logic components that are the glue of many LinuxCNC
configurations.

User-created comps that use the halcompile utility automatically support the names= option as well.
In addition to comps generated with the halcompile utility, numerous other comps support the names=option
Comps that support names= option include: at pid, encoder, encoder ratio, pid, siggen, and sim_encoder.

Two-step processing occurs before the GUI is loaded. When using a [HAL]JPOSTGUI HALFILE, it is
convenient to place all the [HAL]JPOSTGUI HALFILE loadrt declarations for the necessary compo-
nents in a preloaded HAL file.

Example of a HAL section when using a POSTGUI_HALFILE

[HAL]

TWOPASS = on

HALFILE = core sim.hal

HALFILE = sim_spindle_encoder.hal

HALFILE = axis manualtoolchange.hal

HALFILE = simulated home.hal

HALFILE = load for postgui.hal <- loadrt lines for components in postgui.hal

POSTGUI HALFILE = postgui.hal
HALUI = halui

5.3.2 Post GUI

Some GUIs support HAL files that are processed after the GUI is started in order to connect LinuxCNC
pins that are created by the GUI. When using a postgui HAL file with TWOPASS processing, include
all loadrt items for components added by postgui HAL files in a separate HAL file that is processed
before the GUI. The addf commands can also be included in the file.

Example

[HAL]

TWOPASS = on

HALFILE = file 1.hal

HALFILE = file n.hal

HALFILE = file with all loads for postgui.hal

POSTGUI HALFILE = the postgui file.hal

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 210/1322

5.3.3 Excluding .hal files

TWOPASS processing converts .hal files to equivalent .tcl files and uses haltcl to find loadrt and addf
commands in order to accumulate and consolidate their usage. Loadrt parameters that conform to
the simple names= (or count=) parameters accepted by the HAL Component Generator (halcompile)
are expected. More complex parameter items included in specialized LinuxCNC components may not
be handled properly.

A .hal file may be excluded from TWOPASS processing by including a magic comment line anywhere in
the .hal file. The magic comment line must begin with the string: #NOTWOPASS. Files specified with this
magic comment are sourced by halcmd using the -k (keep going if failure) and -v (verbose) options.

This exclusion provision can be used to isolate problems or for loading any special LinuxCNC compo-
nent that does not require or benefit from TWOPASS processing.

Ordinarily, the loadrt ordering of realtime components is not critical, but loadrt ordering for special
components can be enforced by placing the such loadrt directives in an excluded file.

Note
While the order of loadrt directives is not usually critical, ordering of addf directives is often very
important for proper operation of servo loop components.

Excluded HAL file example

$ cat twopass excluded.hal

The following magic comment causes this file to
be excluded from twopass processing:

NOTWOPASS

debugging component with complex options:
loadrt mycomponent parml="abc def” parm2=ghi
show pin mycomponent

ordering special components
loadrt component 1
loadrt component 2

Note

Case and whitespace within the magic comment are ignored. The loading of components that use
names= or count= parameters (typically built by halcompile) should not be used in excluded files,
as that would eliminate the benefits of TWOPASS processing. The LinuxCNC commands that create
signals (net) and commands that establish execution order (addf) should not be placed in excluded
files. This is especially true for addf commands since their ordering may be important.

5.3.4 Examples

Examples of TWOPASS usage for a simulator are included in the directories:

configs/sim/axis/twopass/
configs/sim/axis/simtcl/

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 211 /1322

5.4 HAL Tutorial

5.4.1 Introduction

Configuration moves from theory to device — HAL device that is. For those who have had just a bit of
computer programming, this section is the Hello World of the HAL.

halrun can be used to create a working system. It is a command line or text file tool for configuration
and tuning. The following examples illustrate its setup and operation.

5.4.2 Halcmd

halcmd is a command line tool for manipulating HAL. A more complete man page exists for halcmd and
installed together with LinuxCNC, from source or from a package. If LinuxCNC has been compiled as
run-in-place, the man page is not installed but is accessible in the LinuxCNC main directory with the
following command:

$ man -M docs/man halcmd

5.4.2.1 Notation

For this tutorial, commands for the operating system are typically shown without the prompt provided
by the UNIX shell, i.e typically a dollar sign ($) or a hash/double cross (#). When communicating
directly with the HAL through halcmd or halrun, the prompts are shown in the examples. The terminal
window is in Applications/Accessories from the main Ubuntu menu bar.

Terminal Command Example - prompts

me@computer:~linuxcnc$ halrun
(will be shown like the following line)
halrun

(the halcmd: prompt will be shown when running HAL)
halcmd: loadrt counter
halcmd: show pin

5.4.2.2 Tab-completion

Your version of halcmd may include tab-completion. Instead of completing file names as a shell does,
it completes commands with HAL identifiers. You will have to type enough letters for a unique match.
Try pressing tab after starting a HAL command:

Tab-completion

halcmd: loa<TAB>
halcmd: load

halcmd: loadrt

halcmd: loadrt cou<TAB>
halcmd: loadrt counter

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 212 /1322

5.4.2.3 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in
realtime, and all HAL components store data in shared memory so realtime components can access it.
Regular Linux does not support realtime programming or the type of shared memory that HAL needs.
Fortunately, there are realtime operating systems (RTOS’s) that provide the necessary extensions to
Linux. Unfortunately, each RTOS does things a little differently.

To address these differences, the LinuxCNC team came up with RTAPI, which provides a consistent
way for programs to talk to the RTOS. If you are a programmer who wants to work on the internals
of LinuxCNC, you may want to study linuxcnc/src/rtapi/rtapi.h to understand the API. But if you are
a normal person, all you need to know about RTAPI is that it (and the RTOS) needs to be loaded into
the memory of your computer before you do anything with HAL.

5.4.3 A Simple Example

5.4.3.1 Loading a component

For this tutorial, we are going to assume that you have successfully installed the Live CD and, if using
a RIP !, invoke the rip-environment script to prepare your shell. In that case, all you need to do is load
the required RTOS and RTAPI modules into memory. Just run the following command from a terminal
window:

Loading HAL

cd linuxcnc
halrun
halcmd:

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the prompt is
now shown as halcmd:. This is because subsequent commands will be interpreted as HAL commands,
not shell commands.

For the first example, we will use a HAL component called siggen, which is a simple signal generator.
A complete description of the siggen component can be found in the SigGen section of this Manual.
It is a realtime component. To load the "siggen” component, use the HAL command loadrt.

Loading siggen
halcmd: loadrt siggen

5.4.3.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd, the command line tool used to config-
ure the HAL. This tutorial will introduce only a selection of halcmd features. For a more complete
description try man halcmd, or see the reference in HAL Commands section of this document. The
first halecmd feature is the show command. This command displays information about the current
state of the HAL. To show all installed components:

Show Components with halrun/halcmd

halcmd: show comp

Loaded HAL Components:

ID Type Name PID State
3 RT siggen ready
2 User halcmd2177 2177 ready

1Run In Place, when the source files have been downloaded to a user directory and are compiled and executed directly from
there.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 213 /1322

Since halcmd itself is also a HAL component, it will always show up in the list. The number after
“halcmd” in the component list is the UNIX process ID. It is possible to run more than one copy of
halcmd at the same time (in different terminal windows for example), so the PID is added to the end
of the name to make it unique. The list also shows the siggen component that we installed in the
previous step. The RT under Type indicates that siggen is a realtime component. The User under
Type indicates it is a non-realtime component.

Next, let’s see what pins siggen makes available:
Show Pins

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float 1IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0.clock
3 float OUT 0 siggen.0.cosine
3 float 1IN 1 siggen.0.frequency
3 float 1IN 0 siggen.0.offset
3 float OUT 0 siggen.0.sawtooth
3 float OUT 0 siggen.0.sine
3 float OUT 0 siggen.0.square
3 float OUT 0 siggen.0.triangle

This command displays all of the pins in the current HAL. A complex system could have dozens or
hundreds of pins. But right now there are only nine pins. Of these pins eight are floating point and
one is bit (boolean). Six carry data out of the siggen component and three are used to transfer settings
into the component. Since we have not yet executed the code contained within the component, some
the pins have a value of zero.

The next step is to look at parameters:
Show Parameters

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 0 siggen.0.update.time
3 s32 RwW © siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now, each parameter has
the default value it was given when the component was loaded. Note the column labeled Dir. The
parameters labeled -W are writable ones that are never changed by the component itself, instead
they are meant to be changed by the user to control the component. We will see how to do this
later. Parameters labeled R- are read only parameters. They can be changed only by the component.
Finally, parameter labeled RW are read-write parameters. That means that they are changed by the
component, but can also be changed by the user. Note: The parameters siggen.0.update.time and
siggen.0.update.tmax are for debugging purposes and won’t be covered in this section.

Most realtime components export one or more functions to actually run the realtime code they contain.
Let’s see what function(s) siggen exported:

Show Functions with halcimmd’
halcmd: show funct
Exported Functions:

Owner CodeAddr Arg FP Users Name
00003 f801b00O fae820b8 YES 0 siggen.0.update

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 214 /1322

The siggen component exported a single function. It requires floating point. It is not currently linked
to any threads, so users is zero 2.

5.4.3.3 Making realtime code run

To actually run the code contained in the function siggen.0.update, we need a realtime thread. The
component called threads that is used to create a new thread. Lets create a thread called "test-thread”
with a period of 1 ms (1,000 ps or 1,000,000 ns):

halcmd: loadrt threads namel=test-thread periodl=1000000

Let’s see if that worked:
Show Threads

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
999855 YES test-thread (0, 0)

It did. The period is not exactly 1,000,000 ns because of hardware limitations, but we have a thread
that runs at approximately the correct rate, and which can handle floating point functions. The next
step is to connect the function to the thread:

Add Function
halcmd: addf siggen.0.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the addf
(add function) command to actually change something in the HAL. We told halcmd to add the function
siggen.0.update to the thread test-thread, and if we look at the thread list again, we see that it
succeeded:

halcmd: show thread
Realtime Threads:
Period FP Name (Time, Max-Time)

999855 YES test-thread (0, 0)
1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the HAL
is first started, the thread(s) are not actually running. This is to allow you to completely configure the
system before the realtime code starts. Once you are happy with the configuration, you can start the
realtime code like this:

halcmd: start

Now the signal generator is running. Let’s look at its output pins:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT -0.1640929 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset

2CodeAddr and Arg fields were used during development and should probably disappear.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

215/1322

float OUT
float OUT
float OUT
float OUT

wwww

And let’s look again:

halcmd: show pin

Component Pins:
Owner Type Dir
float IN
bit OUT
float OUT
float IN
float IN
float OUT
float OUT
float OUT
float OUT

WWwWwwwwwwww

-0.4475303
0.9864449
-1
-0.1049393

Value

1

FALSE
0.0507619
1

0
-0.516165
0.9987108
-1
0.03232994

siggen.
siggen.
siggen.
siggen.

Name

siggen.
siggen.
siggen.
siggen.
siggen.
siggen.
siggen.
siggen.
siggen.

[cNcoNoNoNoNoNoNoNo)

.sawtooth
.sine
.square
.triangle

.amplitude
.clock
.cosine
.frequency
.offset
.sawtooth
.sine
.square
.triangle

We did two show pin commands in quick succession, and you can see that the outputs are no longer
zero. The sine, cosine, sawtooth, and triangle outputs are changing constantly. The square output is

also working, however it simply switches from +1.0 to -1.0 every cycle.

5.4.3.4 Changing Parameters

The real power of HAL is that you can change things. For example, we can use the setp command to
set the value of a parameter. Let’s change the amplitude of the signal generator from 1.0 to 5.0:

Set Pin

halcmd: setp siggen.Q.amplitude 5

Check the parameters and pins again

halcmd: show param

Parameters:

Owner Type Dir
3 s32 RO
3 s32 Rw

halcmd: show pin

Component Pins:
Owner Type Dir
float IN
bit ouT
float OUT
float IN
float IN
float OUT
float OUT
float OUT
float OUT

WWwwwwwww

Value
1754
16997

Value

5

FALSE
0.8515425
1

0
2.772382
-4.926954
5
0.544764

Name

siggen.
siggen.

Name

siggen.
siggen.
siggen.
siggen.
siggen.
siggen.
siggen.
siggen.
siggen.

[cNcoNoNoNoNoNoNoNo)

.update.time
.update. tmax

.amplitude
.clock
.cosine
.frequency
.offset
.sawtooth
.sine
.square
.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5, and that the pins now have

larger values.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 216 /1322

5.4.3.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show command.
However two of the commands actually changed things. As we design more complex systems with
HAL, we will use many commands to configure things just the way we want them. HAL has the memory
of an elephant, and will retain that configuration until we shut it down. But what about next time? We
don’t want to manually enter a bunch of commands every time we want to use the system.

Saving the configuration of the entire HAL with a single command.

halcmd: save

components

loadrt threads namel=test-thread periodl1=1000000
loadrt siggen

pin aliases

signals

nets

parameter values

setp siggen.0.update.tmax 14687

realtime thread/function links

addf siggen.0.update test-thread

The output of the save command is a sequence of HAL commands. If you start with an empty HAL
and run all these commands, you will get the configuration that existed when the save command was
issued. To save these commands for later use, we simply redirect the output to a file:

Save configuration to a file with halcmd

halcmd: save all saved.hal

5.4.3.6 Exiting halrun

When you’re finished with your HAL session type exit at the "halcmd:” prompt. This will return
you to the system prompt and close down the HAL session. Do not simply close the terminal window
without shutting down the HAL session.

Exit HAL

halcmd: exit

5.4.3.7 Restoring the HAL configuration

To restore the HAL configuration stored in the file “saved.hal”, we need to execute all of those HAL
commands. To do that, we use ”-f <file name> ” which reads commands from a file, and ”-I”
(upper case i) which shows the halcmd prompt after executing the commands:

Run a Saved File

halrun -I -f saved.hal

Notice that there is not a ”start” command in saved.hal. It's necessary to issue it again (or edit the
file saved.hal to add it there).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 217 /1322

5.4.3.8 Removing HAL from memory

If an unexpected shutdown of a HAL session occurs you might have to unload HAL before another
session can begin. To do this type the following command in a terminal window.

Removing HAL

halrun -U

5.4.4 Halmeter

You can build very complex HAL systems without ever using a graphical interface. However there is
something satisfying about seeing the result of your work. The first and simplest GUI tool for the HAL
is halmeter. It is a very simple program that is the HAL equivalent of the handy multimeter (or analog
meter for the old timers).

It allows to observe the pins, signals or parameters by displaying the current value of these entities.
It is very easy to use application for graphical environments. In a console type:

halmeter
Two windows will appear. The selection window is the largest and includes three tabs:

* One lists all the pins currently defined in HAL,
* one lists all the signals,

e one lists all the parameters.

Click on a tab, then click on one of the items to select it. The small window will show the name and
value of the selected item. The display is updated approximately 10 times per second. To free screen
space, the selection window can be closed with the Close button. On the little window, hidden under
the selection window at program launch, the Select button, re-opens the selection window and the
EXxit button stops the program and closes both windows.

It is possible to run several halmeters simultaneously, which makes it possible to visualize several
items at the same time. To open a halmeter and release the console by running it in the background,
run the following command:

halmeter &

It is possible to launch halmeter and make it immediately display an item. For this, add pin|sig|parfam]
name arguments on the command line. It will display the signal, pin, or parameter name as soon as
it will start. If the indicated item does not exist, it will start normally.

Finally, if an item is specified for display, it is possible add -s in front of pin|sig|param to tell halmeter
to use an even smaller window. The item name will be displayed in the title bar instead of below the
value and there will be no button. This is useful for displaying a lot of halmeters in a small space.

We will use the siggen component again to check out halmeter. If you just finished the previous
example, then you can load siggen using the saved file. If not, we can load it just like we did before:

halrun

halcmd: loadrt siggen

halcmd: loadrt threads namel=test-thread periodl=1000000
halcmd: addf siggen.0.update test-thread

halcmd: start

halcmd: setp siggen.0.amplitude 5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

218 /1322

At this point we have the siggen component loaded and running. It’s time to start halmeter.

Starting Halmeter

halcmd: loadusr halmeter

The first window you will see is the ”"Select Item to Probe” window.

m Select Item to Probe

Pins

Signals | Parameters

siggen.0.offset

siggen.0.sine
siggen.0.square
siggen.0.triangle

siggen.0.amplitude

siggen.0.frequency

siggen.0.sawtooth

s

Close

Figure 5.5: Halmeter Select Window

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one
displays all the signals, and the third displays all the parameters. We would like to look at the pin
siggen.0.cosine first, so click on it then click the "Close” button. The probe selection dialog will
close, and the meter looks something like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 219 /1322

O HallMeter =G
-0.6874131

siggen.0.cosine

Select Exit

Figure 5.6: Halmeter Window

To change what the meter displays press the ”"Select” button which brings back the ”Select Item to
Probe” window.

You should see the value changing as siggen generates its cosine wave. Halmeter refreshes its display
about 5 times per second.

To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more
halmeters. The halmeter window was intentionally made very small so you could have a lot of them
on the screen at once.

5.4.5 Stepgen Example

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow
you to load and connect a number of simple components to make up a complex system. The next
example will use two components.

Before we can begin building this new example, we want to start with a clean slate. If you just finished
one of the previous examples, we need to remove the all components and reload the RTAPI and HAL
libraries.

halcmd: exit

5.4.5.1 |Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this com-
ponent refer to the stepgen section of the Integrator Manual. In this example we will use the velocity
control type of StepGen. For now, we can skip the details, and just run the following commands.

In this example we will use the velocity control type from the stepgen component.

halrun

halcmd: loadrt stepgen step type=0,0 ctrl type=v,v

halcmd: loadrt siggen

halcmd: loadrt threads namel=fast fpl=0 periodl=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The second
command loads our old friend siggen, and the third one creates two threads, a fast one with a period
of 50 microseconds (ps) and a slow one with a period of 1 millisecond (ms). The fast thread doesn’t
support floating point functions.

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins and
parameters than before:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

220/1322

halcmd: show pin

Component Pins:

Owner Type
float
bit
float
float
float
float
float
float
float
s32
bit
bit
float
bit
float
s32
bit
bit
float
bit
float

WWwwwwuwwuwwwwwbrbrphr,rphrphrbrbhbbhrbhp

halcmd: show param

Parameters:
Owner Type
s32
s32
u32
u32
float
float
float
float
s32
u32
u32
u32
u32
float
float
float
float
s32
u32
u32
s32
s32
s32
s32
s32
s32

WWWWwwwuwwwuwwuwuwwuwuwwuwuwwwuwwwbspd

Dir
IN
ouT
ouT
IN
IN
ouT
ouT
ouT
ouT
ouT
ouT
IN
ouT
ouT
IN
ouT
ouT
IN
ouT
ouT
IN

Dir
RO
Rw
Rw
RW
RO
Rw
RwW
Rw
RO
RW
Rw
Rw
RW
RO
Rw
RW
Rw
RO
RwW
Rw
RO
RwW
RO
Rw
RO
Rw

Value

FALSE

[cNoNoNoNoNoN No]

FALSE
FALSE

FALSE

FALSE
FALSE

FALSE

Value

0

0
0x00000001
0x00000001
0

0

0

1

0
0x00000001
0x00000001
0x00000001
0x00000001
0

0

0

1

0
0x00000001
0x00000001

[cNoNoNoNoNo]

Name
siggen.0.amplitude
siggen.0.clock
siggen.0.cosine
siggen.0.frequency
siggen.0.offset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle
stepgen.0.counts
stepgen.0.dir
stepgen.0.enable
stepgen.0.position-fb
stepgen.0.step
stepgen.0.velocity-cmd
stepgen.1l.counts
stepgen.l.dir
stepgen.l.enable
stepgen.l.position-fb
stepgen.l.step
stepgen.l.velocity-cmd
Name

siggen.0.update.time
siggen.0.update. tmax

stepgen.0.dirhold
stepgen.0.dirsetup
stepgen.0.frequency
stepgen.0.maxaccel
stepgen.0.maxvel
stepgen.0.position-scale
stepgen.0.rawcounts
stepgen.0.steplen
stepgen.0.stepspace
stepgen.l.dirhold
stepgen.l.dirsetup
stepgen.l.frequency
stepgen.l.maxaccel
stepgen.1l.maxvel
stepgen.l.position-scale
stepgen.l.rawcounts
stepgen.l.steplen
stepgen.l.stepspace

stepgen.capture-position.time
stepgen.capture-position.tmax
stepgen.make-pulses.time
stepgen.make-pulses.tmax
stepgen.update-freq.time
stepgen.update-freq.tmax

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 221 /1322

5.4.5.2 Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL
signals to connect the two components. We are going to pretend that the two step pulse generators
are driving the X and Y axis of a machine. We want to move the table in circles. To do this, we will
send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen module creates the sine
and cosine, but we need wires to connect the modules together. In the HAL, wires are called signals.
We need to create two of them. We can call them anything we want, for this example they will be
X-vel and Y-vel. The signal X-vel is intended to run from the cosine output of the signal generator to
the velocity input of the first step pulse generator. The first step is to connect the signal to the signal
generator output. To connect a signal to a pin we use the net command.

net command

halcmd: net X-vel <= siggen.0.cosine

To see the effect of the net command, we show the signals again.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine

When a signal is connected to one or more pins, the show command lists the pins immediately follow-
ing the signal name. The arrow shows the direction of data flow - in this case, data flows from pin
siggen.0.cosine to signal X-vel. Now let’s connect the X-vel to the velocity input of a step pulse
generator.

halcmd: net X-vel => stepgen.0.velocity-cmd

We can also connect up the Y axis signal Y-vel. It is intended to run from the sine output of the signal
generator to the input of the second step pulse generator. The following command accomplishes in
one line what two net commands accomplished for X-vel.

halcmd: net Y-vel siggen.0.sine => stepgen.l.velocity-cmd

Now let’s take a final look at the signals and the pins connected to them.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine
==> stepgen.0.velocity-cmd
float 0 Y-vel <== siggen.0.sine

==> stepgen.l.velocity-cmd

The show sig command makes it clear exactly how data flows through the HAL. For example, the X-vel
signal comes from pin siggen.0.cosine, and goes to pin stepgen.0.velocity-cmd.

5.4.5.3 Setting up realtime execution - threads and functions

Thinking about data flowing through "wires” makes pins and signals fairly easy to understand. Threads
and functions are a little more difficult. Functions contain the computer instructions that actually get
things done. Thread are the method used to make those instructions run when they are needed. First
let’s look at the functions available to us.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 222 /1322

halcmd: show funct

Exported Functions:

Owner CodeAddr Arg FP Users Name
00004 9992000 fc731278 YES 0 siggen.0.update
00003 f998b20f fc73106b8 YES 0 stepgen.capture-position
00003 f998b00O fc7316b8 NO 0 stepgen.make-pulses
00003 f998b307 fc7310b8 YES 0 stepgen.update-freq

In general, you will have to refer to the documentation for each component to see what its functions
do. In this case, the function siggen.0.update is used to update the outputs of the signal generator.
Every time it is executed, it calculates the values of the sine, cosine, triangle, and square outputs. To
make smooth signals, it needs to run at specific intervals.

The other three functions are related to the step pulse generators.

The first one, stepgen.capture position, is used for position feedback. It captures the value of an
internal counter that counts the step pulses as they are generated. Assuming no missed steps, this
counter indicates the position of the motor.

The main function for the step pulse generator is stepgen.make pulses. Every time make pulses
runs it decides if it is time to take a step, and if so sets the outputs accordingly. For smooth step
pulses, it should run as frequently as possible. Because it needs to run so fast, make pulses is highly
optimized and performs only a few calculations. Unlike the others, it does not need floating point
math.

The last function, stepgen.update-freq, is responsible for doing scaling and some other calculations
that need to be performed only when the frequency command changes.

What this means for our example is that we want to run siggen.0.update at a moderate rate to
calculate the sine and cosine values. Immediately after we run siggen.0.update, we want to run
stepgen.update freq to load the new values into the step pulse generator. Finally we need to run
stepgen.make pulses as fast as possible for smooth pulses. Because we don’t use position feedback,
we don’t need to run stepgen.capture position at all.

We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what
threads we have available.

halcmd: show thread

Realtime Threads:

Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
49849 NO fast (0, 0)

The two threads were created when we loaded threads. The first one, slow, runs every millisec-
ond, and is capable of running floating point functions. We will use it for siggen.0.update and
stepgen.update freq. The second thread is fast, which runs every 50 microseconds (us), and does
not support floating point. We will use it for stepgen.make pulses. To connect the functions to the
proper thread, we use the addf command. We specify the function first, followed by the thread.

halcmd: addf siggen.0.update slow
halcmd: addf stepgen.update-freq slow
halcmd: addf stepgen.make-pulses fast

After we give these commands, we can run the show thread command again to see what happened.
halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 223 /1322

1 siggen.0.update
2 stepgen.update-freq

49849 NO fast (0, 0)
1 stepgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will
run.

5.4.5.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By
default, the siggen component generates signals that swing from +1 to -1. For our example that is
fine, we want the table speed to vary from +1 to -1 inches per second. However the scaling of the step
pulse generator isn’t quite right. By default, it generates an output frequency of 1 step per second
with an input of 1.0. It is unlikely that one step per second will give us one inch per second of table
movement. Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200 step
per rev stepper with 10x microstepping. So it takes 2000 steps for one revolution of the screw, and
5 revolutions to travel one inch. That means the overall scaling is 10000 steps per inch. We need
to multiply the velocity input to the step pulse generator by 10000 to get the proper output. That
is exactly what the parameter stepgen.n.velocity-scale is for. In this case, both the X and Y axis
have the same scaling, so we set the scaling parameters for both to 10000.

halcmd: setp stepgen.0.position-scale 10000
halcmd: setp stepgen.l.position-scale 10000
halcmd: setp stepgen.0.enable 1
halcmd: setp stepgen.l.enable 1

This velocity scaling means that when the pin stepgen.0.velocity-cmdis 1.0, the step generator will
generate 10000 pulses per second (10 kHz). With the motor and leadscrew described above, that will
result in the axis moving at exactly 1.0 inches per second. This illustrates a key HAL concept - things
like scaling are done at the lowest possible level, in this case in the step pulse generator. The internal
signal X-vel is the velocity of the table in inches per second, and other components such as siggen
don’t know (or care) about the scaling at all. If we changed the leadscrew, or motor, we would change
only the scaling parameter of the step pulse generator.

5.4.5.5 Run it!

We now have everything configured and are ready to start it up. Just like in the first example, we use
the start command.

halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out
step pulses, varying from 10 kHz forward to 10 kHz reverse and back again every second. Later in
this tutorial we’ll see how to bring those internal signals out to run motors in the real world, but first
we want to look at them and see what is happening.

5.4.6 Halscope

The previous example generates some very interesting signals. But much of what happens is far
too fast to see with halmeter. To take a closer look at what is going on inside the HAL, we want an
oscilloscope. Fortunately HAL has one, called halscope.

Halscope has two parts - a realtime part that reads the HAL signals, and a non-realtime part that
provides the GUI and display. However, you don’t need to worry about this because the non-realtime
part will automatically load the realtime part when needed.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 224 /1322

With LinuxCNC running in a terminal you can start halscope with the following command.
Starting Halscope

halcmd loadusr halscope

If LinuxCNC is not running or the autosave.halscope file does not match the pins available in the
current running LinuxCNC the scope GUI window will open, immediately followed by a Realtime
function not linked dialog that looks like the following figure. To change the sample rate left click on
the samples box.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 225/1322

”

o

Realtime function not linked A X

The HALSCOPE realtime sampling function
must be called from a HAL thread in to
determine the sampling rate.

Please do one of the following:
Select athread name and multiplier then click 'OK'

ar
Click 'Quit’ to exit HALSCOPE

Thread: slow
Sample Period: 1.00 ms
Sample Rate: 1.00 kHz

Thread | Period

slow 1.00 ms

fast 50.0 pus
Multiplier: 1 -+
Record Length
16000 samples (1 channel)
8000 samples (2 channels)
'ﬂ' 4000 samples (4 channels)

2000 samples (8 channels)
1000 samples (16 channels)

OK Quit

Figure 5.7: Realtime function not linked dialog

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample once
per millisecond, so click on the 1.00 ms thread slow and leave the multiplier at 1. We will also leave
the record length at 4000 samples, so that we can use up to four channels at one time. When you

select a thread and then click OK, the dialog disappears, and the scope window looks something like
the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 226 /1322

— HAL Oscilloscope A _OX
File Help
Horizontal Run Mode— Trigger
MNormal GNormaI
Zoom 500 ms 4000 samples)
) Single Auto
Pos per div at 1.00 kHz
Roll Force

Vertical
..... Gain Pos | |

1
|EE| IDLE (o] Stop Level Pos

Level

1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 Scale .
Rising

Selected Channel
Offset Source

""" None

Figure 5.8: Initial scope window

5.4.6.1 Hooking up the scope probes

At this point, Halscope is ready to use. We have already selected a sample rate and record length, so
the next step is to decide what to look at. This is equivalent to hooking virtual scope probes to the
HAL. Halscope has 16 channels, but the number you can use at any one time depends on the record
length - more channels means shorter records, since the memory available for the record is fixed at
approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button 1, and you will see the
Select Channel Source dialog as shown in the following figure. This dialog is very similar to the one
used by Halmeter. We would like to look at the signals we defined earlier, so we click on the Signals
tab, and the dialog displays all of the signals in the HAL (only two for this example).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 227 /1322

Select Channel 1 Source A X

Pins Signals Parameters

fast.time
scope.sample.time
sogenvampige |
siggen.D.clock
siggen.D.cosine
siggen.0.frequency
siggen.0.offset
siggen.0.reset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle

siggen.0.update.time

OK Cancel

Figure 5.9: Select Channel Source

To choose a signal, just click on it. In this case, we want channel 1 to display the signal X-vel. Click
on the Signals tab then click on X-vel and the dialog closes and the channel is now selected.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

228 /1322

Y-yel|

Select Channel 1 Source

Pins Signals

OK

"

Parameters

Cancel

o

Figure 5.10: Select Signal

The channel 1 button is pressed in, and channel number 1 and the name X-vel appear below the row
of buttons. That display always indicates the selected channel - you can have many channels on the

screen, but the selected one is highlighted, and the various controls like vertical position and scale
always work on the selected one.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 229 /1322

L] HAL Oscilloscope A _ O X
File Help
Horizontal Run Mode—Trigger
Za0m Normal GNUI’I’TIEH
500 ms 4000 samples .
. Single Auto
Pos per div at 1.00 kHz
. Roll Force
St
I ! —— O oP Level Pos
: Vertical

Gain Pos | |

Level
Scale -
1 /div il
Selected Channel
Offset Source
1 X-vel 0.000 None

Figure 5.11: Halscope

To add a signal to channel 2, click the 2 button. When the dialog pops up, click the Signals tab, then
click on Y-vel. We also want to look at the square and triangle wave outputs. There are no signals
connected to those pins, so we use the Pins tab instead. For channel 3, select siggen.0.triangle
and for channel 4, select siggen.0.square.

5.4.6.2 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start
the scope, click the Normal button in the Run Mode section of the screen (upper right). Since we
have a 4000 sample record length, and are acquiring 1000 samples per second, it will take halscope
about 2 seconds to fill half of its buffer. During that time a progress bar just above the main screen
will show the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we haven’t
configured one yet, it will wait forever. To manually trigger it, click the Force button in the Trigger
section at the top right. You should see the remainder of the buffer fill, then the screen will display
the captured waveforms. The result will look something like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 230/1322

- HAL Oscilloscope A _ O X
File Help
Horizontal Run Mode— Trigger
O Normal | © Normal
Zoom 500 ms 4000 samples ,
: Single Auto
Pos per div at 1.00 kHz
. Roll Farce
] TRIGGER? %tﬂp Level Pos
Vertical

R R SRR S Gain Pos | |

Level
Scale o
1 /div rIsing
Selected Channel
Offset Source
4 siggen.0.square f(-1.99800) = -1.00000 (ddt @.00000) p.000 None

Figure 5.12: Captured Waveforms

The Selected Channel box at the bottom tells you that the purple trace is the currently selected one,
channel 4, which is displaying the value of the pin siggen.0.square. Try clicking channel buttons 1
through 3 to highlight the other three traces.

5.4.6.3 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we use
the Vertical controls in the box to the right of the screen. These controls act on the currently selected
channel. When adjusting the gain, notice that it covers a huge range - unlike a real scope, this one
can display signals ranging from very tiny (pico-units) to very large (Tera-units). The position control
moves the displayed trace up and down over the height of the screen only. For larger adjustments the
offset button should be used.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 231/1322

- HAL Oscilloscope A — O X
File Help
Harizontal Run Mode— Trigger
Zoom G Normal G Normal
500 ms 4000 samples :
. Single Auto
Pos per div at 1.00 kHz
. Roll Force
. - 7 St
] TRIGGER? .Up Level Pos
; B ; i ; : N : : g \Vertical
S . S : S — wew Gain Pos | |

......... Level

0.000
. 2 3 - 5 6 7 8 9 10 1 12 || 13 || 14 || 15 || 16 Scale .
Rising

1 /div
Selected Channel
Offset Source
1 X-vel f(-0.10700) = -0.62279 (ddt 4.90358) 0.000 None

Figure 5.13: Vertical Adjustment

The large Selected Channel button at the bottom indicates that channel 1 is currently selected channel
and that it matches the X-vel signal. Try clicking on the other channels to put their traces in evidence
and to be able to move them with the Pos cursor.

5.4.6.4 Triggering

Using the Force button is a rather unsatisfying way to trigger the scope. To set up real triggering,
click on the Source button at the bottom right. It will pop up the Trigger Source dialog, which is
simply a list of all the probes that are currently connected. Select a probe to use for triggering by
clicking on it. For this example we will use channel 3, the triangle wave as shown in the following
figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 232 /1322

” !

L] Trigger Source A - X

Select a channel to use for triggering.

Chan | Source

1 X-vel
2 ¥-vel
3 siggen.0.triangle I

siggen.0.square

4
5
G _—
7
8

9 —
10 —
11 —
12 ---

Cancel

Figure 5.14: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders
in the Trigger box along the right edge. The level can be adjusted from the top to the bottom of the
screen, and is displayed below the sliders. The position is the location of the trigger point within
the overall record. With the slider all the way down, the trigger point is at the end of the record, and
halscope displays what happened before the trigger point. When the slider is all the way up, the trigger
point is at the beginning of the record, displaying what happened after it was triggered. The trigger
point is visible as a vertical line in the progress box above the screen. The trigger polarity can be
changed by clicking the button just below the trigger level display. It will then become descendant.
Note that changing the trigger position stops the scope once the position has been adjusted, you
relaunch the scope by clicking on the Normal button of Run mode the group.

Now that we have adjusted the vertical controls and triggering, the scope display looks something
like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 233/1322

- HAL Oscilloscope A — O X
File Help
Harizontal Run Mode— Trigger
Zoom G Normal G Normal
500 ms 4000 samples .
. Single Auto
Pos per div at 1.00 kHz
. Roll Farce
. - 7 St
| TRIGGER? : op Level Pos
Vertical

P . el : ; - wew Cain Pos | |
......... PR | 1

......... Level
: : : : : : : : : 0.000

. 2 3 - 5 6 7 8 9 10 11 12 || 13 || 14 || 15 || 16 Scale .
r Rising
1 /div

Selected Channel
Offset Source

1 K-vel f(-0.10700) = -0.62279 (ddt 4.90358) p.000 Chan 3

Figure 5.15: Waveforms with Triggering

5.4.6.5 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to expand the
waveforms horizontally, and the position slider to determine which part of the zoomed waveform is
visible. However, sometimes simply expanding the waveforms isn’t enough and you need to increase
the sampling rate. For example, we would like to look at the actual step pulses that are being gener-
ated in our example. Since the step pulses may be only 50 ps long, sampling at 1 kHz isn’t fast enough.
To change the sample rate, click on the button that displays the number of samples and sample rate
to bring up the Select Sample Rate dialog figure. For this example, we will click on the 50 ps thread,
fast, which gives us a sample rate of about 20 kHz. Now instead of displaying about 4 seconds worth
of data, one record is 4000 samples at 20 kHz, or about 0.20 seconds.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 234 /1322

” !

L] Select Sample Rate P

Select athread name and multiplier then click 'OK'

or
Click 'Quit' to exit HALSCOPE
Thread: fast
Sample Period: 50.0 ps
Sample Rate: 20.0 kHz

Thread | Period

slow 1.00 ms

fast 50.0 us

Multiplier: 1 4+
Record Length
16000 samples (1 channel)
8000 samples (2 channels)
'ﬂ' 4000 samples (4 channels)
2000 samples (8 channels)
1000 samples (16 channels)

OK Quit

Figure 5.16: Sample Rate Dialog

5.4.6.6 More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only 4
at a time. Before we select any more channels, we need to turn off a couple. Clicking on a selected
channel button (black border) will turn the channel off. So click on the channel 2 button, then click
again on this button and the channel will turn off. Then click twice on channel 3 and do the same
for channel 4. Even though the channels are turned off, they still remember what they are connected
to, and in fact we will continue to use channel 3 as the trigger source. To add new channels, select
channel 5, and choose pin stepgen.0.dir, then channel 6, and select stepgen.0.step. Then click run
mode Normal to start the scope, and adjust the horizontal zoom to 5 ms per division. You should see
the step pulses slow down as the velocity command (channel 1) approaches zero, then the direction
pin changes state and the step pulses speed up again. You might want toincrease the gain on channel
1 to about 20 milli per division to better see the change in the velocity command. The result should
look like the following figure.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 235/1322

- HAL Oscilloscope A O X
File Help
Horizontal Run Mode — Trigger
700m e— O Normal | © Normal
5.00ms 4000 samples !
i - Single Auto
Pos per div at 20.0 kHz
Roll Force
— TRIGGER? $t0p Level Pos
: : : : : : g /o rtical
B Gain Fos | |
Level
0.000
Scale o
20m/div | eing
Selected Channel
Offset Source
1 X-vel f(-0.00690) = -8.04397 (ddt ©.00000) 0.000 Chan 3

Figure 5.17: Step Pulses

5.4.6.7 More samples

If you want to record more samples at once, restart realtime and load halscope with a numeric argu-
ment which indicates the number of samples you want to capture.

halcmd loadusr halscope 80000

If the scope rt component was not already loaded, halscope will load it and request 80000 total sam-
ples, so that when sampling 4 channels at a time there will be 20000 samples per channel. (If scope rt
was already loaded, the numeric argument to halscope will have no effect).

5.5 HAL Examples

All of these examples assume you are starting with a StepConf-based configuration and have two
threads base-thread and servo-thread. The StepConf wizard will create an empty custom.hal and a
custom postgui.hal file. The custom.hal file will be loaded after the configuration HAL file and the
custom_postgui.hal file is loaded after the GUI has been loaded.

5.5.1 Connecting Two Outputs

To connect two outputs to an input you can use the or2 component. The or2 works like this, if either
input to or2 is on then the or2 output is on. If neither input to or2 is on the or2 output is off.

For example to have two PyVCP buttons both connected to one LED.

The .xml file to instruct PyVCP to prepare a GUI that features two buttons (named "button-1"
and “button-2”) and an LED (named ”led-1").

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 236 /1322

<pyvcp>
<button>
<halpin>"button-1"</halpin>
<text>"Button 1"</text>
</button>

<button>
<halpin>"button-2"</halpin>
<text>"Button 2"</text>
</button>

<led>
<halpin>"1led-1"</halpin>
<size>50</size>
<on color>"green”</on color>
<off_color>"red"</off_color>
</led>
</pyvcp>

The postgui.hal file, read after the GUI is set up and ports ready to accept the logic described
in HAL.

loadrt or2

addf or2.0 servo-thread

net button-1 0r2.0.in0 <= pyvcp.button-1
net button-2 o0r2.0.inl <= pyvcp.button-2
net led-1 pyvcp.led-1 <= or2.0.out

When you run this example in an axis simulator created with the StepConf Wizard, you can open a
terminal and see the pins created with loadrt or2 by typing in halcmd show pin or2 in the terminal.

Running halcmd on the UNIX command line to show the pins crafted with module or2.

$ halcmd show pin or2
Component Pins:

Owner Type Dir Value Name
22 bit IN FALSE 0r2.0.in@ <== button-1
22 bit IN FALSE o0r2.0.inl <== button-2
22 bit OUT FALSE o0r2.0.out ==> led-1

You can see from the HAL command show pin or2thatthe button-1 pinisconnectedtotheor2.0.in0
pin. From the direction arrow you can see that the button is and output and the or2.0.1in0 is an input.
The output from or2 goes to the input of the LED.

5.5.2 Manual Toolchange

In this example it is assumed that you’re rolling your own configuration and wish to add the HAL
Manual Toolchange window. The HAL Manual Toolchange is primarily useful if you have presettable
tools and you store the offsets in the tool table. If you need to touch off for each tool change then it is
best just to split up your G-code. To use the HAL Manual Toolchange window you basically have to

1. load the hal manualtoolchange component,
2. then send the iocontrol tool change to the hal manualtoolchange change and

3. send the hal manualtoolchange changed back to the iocontrol tool changed.

A pin is provided for an external input to indicate the tool change is complete.

This is an example of manual toolchange with the HAL Manual Toolchange component:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 237 /1322

loadusr -W hal manualtoolchange

net tool-change iocontrol.0.tool-change => hal manualtoolchange.change

net tool-changed iocontrol.0.tool-changed <= hal manualtoolchange.changed

net external-tool-changed hal manualtoolchange.change button <= parport.0.pin-12-in
net tool-number iocontrol.0.tool-prep-number => hal manualtoolchange.number

net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

This is an example of manual toolchange without the HAL Manual Toolchange component:

net tool-number <= iocontrol.0.tool-prep-number
net tool-change-loopback iocontrol.0.tool-change => iocontrol.0.tool-changed
net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

5.5.3 Compute Velocity

This example uses ddt, mult2 and abs to compute the velocity of a single axis. For more information
on the real time components see the man pages or the HAL Components List (Section 5.1.5).

The first thing is to check your configuration to make sure you are not using any of the real time
components all ready. You can do this by opening up the HAL Configuration window and look for the
components in the pin section. If you are then find the HAL file that they are being loaded in and
increase the counts and adjust the instance to the correct value. Add the following to your custom.hal
file.

Load the realtime components.

loadrt ddt count=1
loadrt mult2 count=1
loadrt abs count=1

Add the functions to a thread so it will get updated.

addf ddt.0 servo-thread
addf mult2.0 servo-thread
addf abs.0 servo-thread

Make the connections.

setp mult2.inl 60

net xpos-cmd ddt.0.in

net X-IPS mult2.0.in0® <= ddt.0.out
net X-ABS abs.0.in <= mult2.0.out
net X-IPM abs.0.out

In this last section we are setting the mult2.0.inl to 60 to convert the inch per second to inch per
minute (IPM) that we get from the ddt.0.out.

The xpos-cmd sends the commanded position to the ddt.0.in. The ddt computes the derivative of the
change of the input.

The ddt2.0.out is multiplied by 60 to give IPM.
The mult2.0.out is sent to the abs to get the absolute value.

The following figure shows the result when the X axis is moving at 15 IPM in the minus direction.
Notice that we can get the absolute value from either the abs.0.out pin or the X-IPM signal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

238 /1322

=

iocontrol
motion
mult2
1]
in0
inl
out
parport
pwmygen
stepgen
F— Parameters
E Signals
x
X-ABS
*-1PM
*-IPS

hal_manualtoolchange

- HAILL Configuration BiEE
Tree View
Components WATCH
Fins
ahs cldt.0.out
0 multz.0.out
in
R abs.0.out
sign H-8B5
axis H-IPM
axisui
ddt H-IPS
]
in
out

5.5.4 Soft Start Details

Figure 5.18: HAL: Velocity Example

This example shows how the HAL components lowpass, limit2 or limit3 can be used to limit how fast

a signal changes.

In this example we have a servo motor driving a lathe spindle.

If we just used the commanded

spindle speeds on the servo it will try to go from present speed to commanded speed as fast as it
can. This could cause a problem or damage the drive. To slow the rate of change we can send the
spindle.N.speed-out through a limiter before the PID, so that the PID command value changes to

new settings more slowly.

Three built-in components that limit a signal are:

* limit2 limits the range and first derivative of a signal.

* limit3 limits the range, first and second derivatives of a signal.

* lowpass uses an exponentially-weighted moving average to track an input signal.

To find more information on these HAL components check the man pages.

Place the following in a text file called softstart.hal. If you're not familiar with Linux place the file in

your home directory.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 239/1322

loadrt threads periodl1=1000000 namel=thread
loadrt siggen

loadrt lowpass

loadrt limit2

loadrt limit3

net square siggen.0.square => lowpass.0.in 1imit2.0.in 1imit3.0.in
net lowpass <= lowpass.0.out

net limit2 <= limit2.0.out

net 1imit3 <= 1imit3.0.out

setp siggen.0.frequency .1

setp lowpass.0.gain .01

setp limit2.0.maxv 2

setp limit3.0.maxv 2

setp limit3.0.maxa 10

addf siggen.0.update thread

addf lowpass.0 thread

addf 1imit2.0 thread

addf 1imit3.0 thread

start

loadusr halscope

Open a terminal window and run the file with the following command.
halrun -I softstart.hal

When the HAL Oscilloscope first starts up click OK to accept the default thread.

Next you have to add the signals to the channels. Click on channel 1 then select square from the
Signals tab. Repeat for channels 2-4 and add lowpass, limit2, and limit3.

Next to set up a trigger signal click on the Source None button and select square. The button will
change to Source Chan 1.

Next click on Single in the Run Mode radio buttons box. This will start a run and when it finishes you
will see your traces.

To separate the signals so you can see them better click on a channel then use the Pos slider in the
Vertical box to set the positions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 240 /1322

‘= HAILOscilloscope SEE)
File Help
Horizontal Run Mode- Trigger
Zoom === 200 mSec | 4000 samples © Normal | & Normal
Pos m per div at 1.00 KHz) Single | @ Auto
; : ! pLe | © Rol Force
. @ Stop || evel Pos
g \ertical I |
Gain Pos
Scale Level
1 /div +3.000
10 11 12| 13 |[14 | 15 16 Offset Rising
Selected Channel 0.000 Source
1 square f(0.97785) = 1.00000 chan off || chan 1

To see the effect of changing the set point values of any of the components you can change them in
the terminal window. To see what different gain settings do for lowpass just type the following in the
terminal window and try different settings.

setp lowpass.0.gain *.01

After changing a setting run the oscilloscope again to see the change.

When you’re finished type exit in the terminal window to shut down halrun and close the halscope.
Don’t close the terminal window with halrun running as it might leave some things in memory that
could prevent LinuxCNC from loading.

For more information on Halscope see the HAL manual and the tutorial.

5.5.5 Stand Alone HAL

In some cases you might want to run a GladeVCP screen with just HAL. For example say you had a
stepper driven device that all you need is to run a stepper motor. A simple Start/Stop interface is all
you need for your application so no need to load up and configure a full blown CNC application.

In the following example we have created a simple GladeVCP panel with one stepper.

Basic Syntax

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 241 /1322

load the winder.glade GUI and name it winder
loadusr -Wn winder gladevcp -c winder -u handler.py winder.glade

load realtime components

loadrt threads namel=fast periodl=50000 fpl=0 name2=slow period2=1000000
loadrt stepgen step type=0 ctrl type=v

loadrt hal parport cfg="0x378 out”

add functions to threads

addf stepgen.make-pulses fast

addf stepgen.update-freq slow

addf stepgen.capture-position slow
addf parport.0.read fast

addf parport.0.write fast

make HAL connections

net winder-step parport.0.pin-02-out <= stepgen.0.step
net winder-dir parport.0.pin-03-out <= stepgen.0.dir
net run-stepgen stepgen.0.enable <= winder.start button

start the threads
start

comment out the following lines while testing and use the interactive
option halrun -I -f start.hal to be able to show pins etc.

wait until the GladeVCP GUI named winder terminates
waitusr winder

stop HAL threads
stop

unload HAL all components before exiting
unloadrt all

5.6 Core Components

See also the man pages motion(9).

5.6.1 Motion

These pins and parameters are created by the realtime motmod module.
This module provides a HAL interface for LinuxCNC’s motion planner.

Basically motmod takes in a list of waypoints and generates a nice blended and constraint-limited
stream of joint positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio,
default is 4 each. The number of Spindles is set with num_spindles, default is 1.

Pin and parameter names starting with axis.L and joint.N are read and updated by the motion-controller
function.

Motion is loaded with the motmod command. A kins should be loaded before motion.

loadrt motmod base period nsec=['period’] servo period nsec=['period’]
traj period nsec=['period’] num_joints=['0-9"]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 242 /1322

num _dio=['1-64'] num _aio=['1-16"] unlock joints mask=['OxNN’]
num_spindles=['1-8"]

* base period nsec = 50000 - the Base task period in nanoseconds. This is the fastest thread in the
machine.

Note

On servo-based systems, there is generally no reason for base period nsec to be smaller than
servo_period_nsec. On machines with software step generation, the base_period_nsec determines
the maximum number of steps per second. In the absence of long step length and step space
requirements, the absolute maximum step rate is one step per base period nsec. Thus, the
base period_nsec shown above gives an absolute maximum step rate of 20,000 steps per second.
50,000 ns (50 us) is a fairly conservative value. The smallest usable value is related to the Latency
Test result, the necessary step length, and the processor speed. Choosing a base_period nsec that
is too low can lead to the "Unexpected real time delay” message, lockups, or spontaneous reboots.

* servo period nsec = 1000000 - This is the Servo task period in nanoseconds. This value will be
rounded to an integer multiple of base period nsec. This period is used even on systems based on
stepper motors.

This is the rate at which new motor positions are computed, following error is checked, PID output
values are updated, and so on. Most systems will not need to change this value. It is the update
rate of the low level motion planner.

* traj period nsec = 100000 - This is the Trajectory Planner task period in nanoseconds. This value
will be rounded to an integer multiple of servo period nsec. Except for machines with unusual
kinematics (e.g., hexapods) there is no reason to make this value larger than servo period nsec.

5.6.1.1 Options

If the number of digital I/O needed is more than the default of 4 you can add up to 64 digital I/O by
using the num dio option when loading motmod.

If the number of analog I/O needed is more than the default of 4 you can add up to 16 analog I/O by
using the num_aio option when loading motmod.

The unlock joints mask parameter is used to create pins for a joint used as a locking indexer (typically
a rotary). The mask bits select the joint(s). The LSB of the mask selects joint 0. Example:

unlock joints mask=0x38 selects joints 3,4,5

5.6.1.2 Pins
These pins, parameters, and functions are created by the realtime motmod module.

* motion.adaptive-feed - (float, in) When adaptive feed is enabled with M52 P1 , the commanded
velocity is multiplied by this value. This effect is multiplicative with the NML-level feed override
value and motion.feed-hold. As of version 2.9 of LinuxCNC it is possible to use a negative adaptive
feed value to run the G-code path in reverse.

* motion.analog-in-00 - (float, in) These pins (00, 01, 02, 03 or more if configured) are controlled by
M66.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 243 /1322

* motion.analog-out-00 - (float, out) These pins (00, 01, 02, 03 or more if configured) are controlled
by M67 or M68.

e motion.coord-error - (bit, out) TRUE when motion has encountered an error, such as exceeding a
soft limit

* motion.coord-mode - (bit, out) TRUE when motion is in coordinated mode, as opposed to teleop
mode

* motion.current-vel - (float, out) The current tool velocity in user units per second.

* motion.digital-in-00 - (bit, in) These pins (00, 01, 02, 03 or more if configured) are controlled by
M62-65.

* motion.digital-out-00 - (bit, out) These pins (00, 01, 02, 03 or more if configured) are controlled by
the M62-65.

* motion.distance-to-go - (float,out) The distance remaining in the current move.

e motion.enable - (bit, in) If this bit is driven FALSE, motion stops, the machine is placed in the
machine off state, and a message is displayed for the operator. For normal motion, drive this bit
TRUE.

e motion.feed-hold - (bit, in) When Feed Stop Control is enabled with M53 P1, and this bit is TRUE,
the feed rate is set to 0.

* motion.feed-inhibit - (bit, in) When this bit is TRUE, the feed rate is set to 0. This will be delayed
during spindle synch moves till the end of the move.

* motion.in-position - (bit, out) TRUE if the machine is in position.
* motion.motion-enabled - (bit, out) TRUE when in machine on state.
* motion.motion-type - (s32, out) These values are from src/emc/nml intf/motion types.h

- 0: Idle (no motion)
Traverse

Linear feed
Arc feed

Tool change

Probing

1
SN ~ S v

Rotary axis indexing

e motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

e motion.probe-input - (bit, in) G38.n uses the value on this pin to determine when the probe has made
contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

* motion.program-line - (s32, out) The current program line while executing. Zero if not running or
between lines while single stepping.

* motion.requested-vel - (float, out) The current requested velocity in user units per second. This
value is the F-word setting from the G-code file, possibly reduced to accommodate machine veloc-
ity and acceleration limits. The value on this pin does not reflect the feed override or any other
adjustments.

e motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated
mode

* motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect;
it could come from the tool table (G43 active), or it could come from the G-code (G43.1 active)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 244 | 1322

motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

motion.probe-input - (bit, in) G38.n uses the value on this pin to determine when the probe has made
contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

motion.program-line - (s32, out) The current program line while executing. Zero if not running or
between lines while single stepping.

motion.requested-vel - (float, out) The current requested velocity in user units per second. This
value is the F-word setting from the G-code file, possibly reduced to accommodate machine veloc-
ity and acceleration limits. The value on this pin does not reflect the feed override or any other
adjustments.

motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated
mode

motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect;
it could come from the tool table (G43 active), or it could come from the G-code (G43.1 active)

5.6.1.3 Parameters

Many of these parameters serve as debugging aids, and are subject to change or removal at any time.

motion-command-handler.time - (s32, RO)
motion-command-handler.tmax - (s32, RW)

motion-controller.time - (s32, RO)

motion-controller.tmax - (s32, RW)

motion.debug-bit-0 - (bit, RO) This is used for debugging purposes.
motion.debug-bit-1 - (bit, RO) This is used for debugging purposes.
motion.debug-float-0 - (float, RO) This is used for debugging purposes.
motion.debug-float-1 - (float, RO) This is used for debugging purposes.
motion.debug-float-2 - (float, RO) This is used for debugging purposes.
motion.debug-float-3 - (float, RO) This is used for debugging purposes.
motion.debug-s32-0 - (s32, RO) This is used for debugging purposes.
motion.debug-s32-1 - (s32, RO) This is used for debugging purposes.

motion.servo.last-period - (u32, RO) The number of CPU cycles between invocations of the servo
thread. Typically, this number divided by the CPU speed gives the time in seconds, and can be used
to determine whether the realtime motion controller is meeting its timing constraints

motion.servo.last-period-ns - (float, RO)

5.6.1.4 Functions

Generally, these functions are both added to the servo-thread in the order shown.

L]

L]

motion-command-handler - Receives and processes motion commands

motion-controller - Runs the LinuxCNC motion controller

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 245 /1322

5.6.2 Spindle

LinuxCNC can control upto eight spindles. Motion will produce the following pins: The N (integer
between 0 and 7) substitutes the spindle number.

5.6.2.1 Pins

* spindle.N.at-speed - (bit, in) Motion will pause until this pin is TRUE, under the following conditions:
before the first feed move after each spindle start or speed change; before the start of every
chain of spindle-synchronized moves; ** and if in CSS mode, at every rapid to feed transition. This
input can be used to ensure that the spindle is up to speed before starting a cut, or that a lathe spindle
in CSS mode has slowed down after a large to small facing pass before starting the next pass at the
large diameter. Many VFDs have an at speed output. Otherwise, it is easy to generate this signal
with the HAL near component, by comparing requested and actual spindle speeds. * spindle.N.brake
- (bit, out) TRUE when the spindle brake should be applied. * spindle.N.forward - (bit, out) TRUE
when the spindle should rotate forward. * spindle.N.index-enable - (bit, I/O) For correct operation of
spindle synchronized moves, this pin must be hooked to the index-enable pin of the spindle encoder.
* spindle.N.inhibit - (bit, in) When this bit is TRUE, the spindle speed is set to 0. * spindle.N.on - (bit,
out) TRUE when spindle should rotate. * spindle.N.reverse - (bit, out) TRUE when the spindle should
rotate backward * spindle.N.revs - (float, in) For correct operation of spindle synchronized moves,
this signal must be hooked to the position pin of the spindle encoder. The spindle encoder position
should be scaled such that spindle-revs increases by 1.0 for each rotation of the spindle in the clock-
wise (M3) direction. * spindle.N.speed-in - (float, in) Feedback of actual spindle speed in rotations
per second. This is used by feed-per-revolution motion (G95). If your spindle encoder driver does not
have a velocity output, you can generate a suitable one by sending the spindle position through a ddt
component. If you do not have a spindle encoder, you can loop back spindle.N.speed-out-rps. * spin-
dle.N.speed-out - (float, out) Commanded spindle speed in rotations per minute. Positive for spindle
forward (M3), negative for spindle reverse (M4). * spindle.N.speed-out-abs - (float, out) Commanded
spindle speed in rotations per minute. This will always be a positive number. * spindle.N.speed-
out-rps - (float, out) Commanded spindle speed in rotations per second. Positive for spindle forward
(M3), negative for spindle reverse (M4). * spindle.N.speed-out-rps-abs - (float, out) Commanded spin-
dle speed in rotations per second. This will always be a positive number. * spindle.N.orient-angle -
(float,out) Desired spindle orientation for M19. Value of the M19 R word parameter plus the value of
the [RS274NGC]JORIENT OFFSET INI parameter. * spindle.N.orient-mode - (s32,0out) Desired spindle
rotation mode M19. Default 0. * spindle.N.orient - (out,bit) Indicates start of spindle orient cycle. Set
by M19. Cleared by any of M3, M4, or M5. If spindle-orient-fault is not zero during spindle-orient
true, the M19 command fails with an error message. * spindle.N.is-oriented - (in, bit) Acknowledge
pin for spindle-orient. Completes orient cycle. If spindle-orient was true when spindle-is-oriented was
asserted, the spindle-orient pin is cleared and the spindle-locked pin is asserted. Also, the spindle-
brake pin is asserted. * spindle.N.orient-fault - (s32, in) Fault code input for orient cycle. Any value
other than zero will cause the orient cycle to abort. * spindle.N.lock - (bit, out) Spindle orient complete
pin. Cleared by any of M3, M4, or M5.

HAL pin usage for M19 orient spindle Conceptually the spindle is in one of the following modes:

e rotation mode (the default)
¢ searching for desired orientation mode

* orientation complete mode.

When an M19 is executed, the spindle changes to searching for desired orientation, and the spindle. N

HAL pin is asserted. The desired target position is specified by the spindle. N .orient-angle and
spindle. N .orient-fwd pins and driven by the M19 R and P parameters.

The HAL support logic is expected to react to spindle. N .orient by moving the spindle to the
desired position. When this is complete, the HAL logic is expected to acknowledge this by asserting
the spindle. N .is-oriented pin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 246 /1322

Motion then acknowledges this by deasserting the spindle. N .orient pinand assertsthe spindle.
pin to indicate orientation complete mode. It also raises the spindle. N .brake pin. The spindle
now is in orientation complete mode.

If, during spindle. N .orient being true, and spindle. N .is-oriented not yet asserted the
spindle. N _.orient-fault pin has a value other than zero, the M19 command is aborted, a mes-
sage including the fault code is displayed, and the motion queue is flushed. The spindle reverts to
rotation mode.

Also, any of the M3, M4 or M5 commands cancel either searching for desired orientation or orientation
complete mode. This is indicated by deasserting both the spindle-orient and spindle-locked pins.

The spindle-orient-mode pin reflects the M19 P word and shall be interpreted as follows:

* 0: rotate clockwise or counterclockwise for smallest angular movement
* 1: always rotate clockwise

» 2: always rotate counterclockwise

It can be used with the orient HAL component which provides a PID command value based on spindle
encoder position, spindle-orient-angle and spindle-orient-mode.

5.6.3 Axis and Joint Pins and Parameters

These pins and parameters are created by the realtime motmod module. [In trivial kinematics ma-
chines, there is a one-to-one correspondence between joints and axes.] They are read and updated by
the motion-controller function.

See the motion man page motion(9) for details on the pins and parameters.

5.6.4 iocontrol

iocontrol - accepts non-realtime I/O commands via NML, interacts with HAL.

iocontrol’s HAL pins are turned on and off in non-realtime context. If you have strict timing require-
ments or simply need more I/O, consider using the realtime synchronized I/O provided by motion
instead.

5.6.4.1 Pins

*iocontrol.0.coolant-flood (bit, out) TRUE when flood coolant is requested. * iocontrol.0.coolant-mist
(bit, out) TRUE when mist coolant is requested. * iocontrol.0.emc-enable-in (bit, in) Should be driven
FALSE when an external E-Stop condition exists. * iocontrol.0.tool-change (bit, out) TRUE when a
tool change is requested. * iocontrol.0.tool-changed (bit, in) Should be driven TRUE when a tool
change is completed. * iocontrol.0.tool-number (s32, out) The current tool number. * iocontrol.0.tool-
prep-number (s32, out) The number of the next tool, from the RS274NGC T-word. * iocontrol.0.tool-
prepare (bit, out) TRUE when a tool prepare is requested. * iocontrol.0.tool-prepared (bit, in) Should
be driven TRUE when a tool prepare is completed. * iocontrol.0.user-enable-out (bit, out) FALSE when
an internal E-Stop condition exists. * iocontrol.0.user-request-enable (bit, out) TRUE when the user
has requested that E-Stop be cleared.

5.6.5 INI settings

A number of INI settings are made available as HAL input pins.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 247 /1322

5.6.5.1 Pins

N refers to a joint number, L refers to an axis letter.

ini.N.ferror - (float, in) [JOINT N]JFERROR

ini.N.min_ferror - (float, in) [JOINT N]JMIN FERROR
ini.N.backlash - (float, in) [JOINT N]BACKLASH

ini.N.min_limit - (float, in) [JOINT N]MIN LIMIT

ini.N.max limit - (float, in) [JOINT N]JMAX LIMIT

ini.N.max velocity - (float, in) [JOINT N]JMAX VELOCITY
ini.N.max_acceleration - (float, in) [JOINT N]JMAX ACCELERATION
ini.N.home - (float, in) [JOINT NJHOME

ini.N.home offset - (float, in) [JOINT NJHOME OFFSET
ini.N.home offset - (s32, in) [JOINT NJHOME SEQUENCE
ini.L.min_limit - (float, in) [AXIS LIMIN LIMIT

ini.L.max_limit - (float, in) [AXIS LIMAX LIMIT
ini.L.max_velocity - (float, in) [AXIS L]MAX VELOCITY
ini.L.max_acceleration - (float, in) [AXIS L]IMAX ACCELERATION

Note

The per-axis min_limit and max_limit pins are honored continuously after homing. The per-axis
ferror and min_ferror pins are honored when the machine is on and not in position. The per-axis
max_velocity and max_acceleration pins are sampled when the machine is on and the motion_state
is free (homing or jogging) but are not sampled when in a program is running (auto mode) or in MDI
mode. Consequently, changing the pin values when a program is running will not have effect until
the program is stopped and the motion_state is again free.

ini.traj_arc blend enable - (bit, in) [TRAJJARC BLEND ENABLE

ini.traj_arc_blend fallback enable - (bit, in) [TRAJJARC_BLEND FALLBACK ENABLE

ini.traj arc blend gap cycles - (float, in) [TRAJJARC BLEND GAP CYCLES

ini.traj arc blend optimization _depth - (float, in) [TRAJJARC BLEND OPTIMIZATION DEPTH
ini.traj arc blend ramp freq - (float, in) [TRAJJARC BLEND RAMP FREQ

Note
The traj_arc_blend pins are sampled continuously but changing pin values while a program is running
may not have immediate effect due to queueing of commands.

ini.traj default acceleration - (float, in) [TRAJIDEFAULT ACCELERATION
ini.traj default velocity - (float, in) [TRAJ]DEFAULT VELOCITY
ini.traj max_acceleration - (float, in) [TRAJIMAX ACCELERATION

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 248 /1322

S-curve trajectory planning pins (sampled continuously, can be changed at runtime):

e ini.traj planner type - (s32, in) [TRAJIPLANNER TYPE

e ini.traj max jerk - (float, in) [TRAJIMAX LINEAR JERK

* ini.traj default jerk - (float, in) [TRAJIDEFAULT LINEAR JERK
Per-axis jerk limit pins (where L is X, V, z, a, b, c, u, v, or w):

* ini.Ljerk - (float, in) [AXIS L JMAX JERK

Per-joint jerk limit pins (where N is the joint number 0-8):

« ini.Njerk - (float, in) [JOINT N]MAX JERK

5.7 HAL Component List

5.7.1 Components

Most of the commands in the following list have their own dedicated man pages. Some will have
expanded descriptions, some will have limited descriptions. From this list you know what components
exist, and you can use man name on your UNIX command line to get additional information. To view
the information in the man page, in a terminal window type:

man axis

The one or other setup of a UNIX system may require to explicitly specify the section of the man page.
If you do not find the man page or the name of the man page is already taken by another UNIX tool
with the LinuxCNC man page residing in another section, then try to explicitly specify the section, as
inman _section-no_ axis, with section-no = 1 for non-realtime and 9 for realtime components.

Note
See also the Man Pages section of the docs main page or the directory listing. To search in the man
pages, use the UNIX tool apropos.

5.7.1.1 User Interfaces (non-realtime)

axis AXIS LinuxCNC (The Enhanced Machine Controller) GUI
axis-remote AXIS Remote Interface
gmoccapy Touchy LinuxCNC Graphical User Interface

gscreen Touchy LinuxCNC Graphical User Interface

halui Observe HAL pins and command LinuxCNC through NML

mdro manual only Digital Read Out (DRO)

ngcgui Framework for conversational G-code generation on the controller
panelui

pyngcgui Python implementation of NGCGUI

touchy AXIS - TOUCHY LinuxCNC Graphical User Interface

gladevcp Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets

../index.html
../man/man1/axis.1.html
../man/man1/axis-remote.1.html
../man/man1/gmoccapy.1.html
../man/man1/gscreen.1.html
../man/man1/halui.1.html
../man/man1/mdro.1.html
../man/man1/ngcgui.1.html
../man/man1/panelui.1.html
../man/man1/pyngcgui.1.html
../man/man1/touchy.1.html
../man/man1/gladevcp.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

gladevcp_demé&ladeVCP - used by sample configs to demonstrate Glade Virtual demo

gremlin_view
moveoff_gui
pyui

pyvcp
pyvcp_demo
qtvcp

Saxisgui
hbmgui
hexagui
lineardelta
maho600gui
max5gui
melfagui
puma560gui
pumagui
rotarydelta
scaragui
xyzac-trt-
gui
xyzbc-trt-
gui
xyzab-tdr-
gui

5.7.1.2 Motion

io
iocontrol
mdi

milltask

elbpcom
gs2_vid
hy gt_vid
hy vid
mb2hal

mitsub_vfd

monitor-
xhc-hb04
pi500_vfd
pmx485
pmx485-
test
shuttle

G-code graphical preview

GUI for the moveoff component

Utility for panelui

Virtual Control Panel for LinuxCNC

Python Virtual Control Panel demonstration component
Qt based virtual control panel

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

hexagui - Vismach Virtual Machine GUI
hexagui - Vismach Virtual Machine GUI
Vismach Virtual Machine GUI
puma560agui - Vismach Virtual Machine GUI
Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

Vismach Virtual Machine GUI

(non-realtime)

iocontrol - interacts with HAL or G-code in non-realtime

Interacts with HAL or G-code in non-realtime

Send G-code commands from the terminal to the running LinuxCNC
instance

Non-realtime task controller for LinuxCNC

5.7.1.3 Hardware Drivers

Communicate with Mesa Ethernet cards

HAL non-realtime component for Automation Direct GS2 VFDs

HAL non-realtime component for Huanyang GT-series VFDs

HAL non-realtime component for Huanyang VFDs

MB2HAL is a generic non-realtime HAL component to communicate with
one or more Modbus devices. Modbus RTU and Modbus TCP are supported.
HAL non-realtime component for Mitsubishi A500 F500 E500 A500 D700
E700 F700-series VFDs (others may work)

Monitors the XHC-HB04 pendant and warns of disconnection

Powtran PI500 modbus driver
Modbus communications with a Powermax Plasma Cutter
Modbus communications testing with a Powermax Plasma Cutter

control HAL pins with the ShuttleXpress, ShuttlePRO, and ShuttlePRO2
device made by Contour Design

249 /1322

../man/man1/gladevcp_demo.1.html
../man/man1/gremlin_view.1.html
../man/man1/moveoff_gui.1.html
../man/man1/pyui.1.html
../man/man1/pyvcp.1.html
../man/man1/pyvcp_demo.1.html
../man/man1/qtvcp.1.html
../man/man1/5axisgui.1.html
../man/man1/hbmgui.1.html
../man/man1/hexagui.1.html
../man/man1/lineardelta.1.html
../man/man1/maho600gui.1.html
../man/man1/max5gui.1.html
../man/man1/melfagui.1.html
../man/man1/puma560gui.1.html
../man/man1/pumagui.1.html
../man/man1/rotarydelta.1.html
../man/man1/scaragui.1.html
../man/man1/xyzac-trt-gui.1.html
../man/man1/xyzac-trt-gui.1.html
../man/man1/xyzbc-trt-gui.1.html
../man/man1/xyzbc-trt-gui.1.html
../man/man1/xyzab-tdr-gui.1.html
../man/man1/xyzab-tdr-gui.1.html
../man/man1/io.1.html
../man/man1/iocontrol.1.html
../man/man1/mdi.1.html
../man/man1/milltask.1.html
../man/man1/elbpcom.1.html
../man/man1/gs2_vfd.1.html
../man/man1/hy_gt_vfd.1.html
../man/man1/hy_vfd.1.html
../man/man1/mb2hal.1.html
../man/man1/mitsub_vfd.1.html
../man/man1/monitor-xhc-hb04.1.html
../man/man1/monitor-xhc-hb04.1.html
../man/man1/pi500_vfd.1.html
../man/man1/pmx485.1.html
../man/man1/pmx485-test.1.html
../man/man1/pmx485-test.1.html
../man/man1/shuttle.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

250/1322

svd-ps_vid
vidb_vfd
visl1 _vid

wj200_vid
xhc-hb04
xhc-hb04-
accels

xhc-
whb04b-6

hal ppmc
hal bb _gpio
hal parport
hm2 7i43
hm2 7i90
hm2_eth

hm2 pci

hm?2_rpspi
hm?2_spi

hostmot?2
max31855

mesa_7i65

HAL non-realtime component for SVD-P(S) VFDs

HAL non-realtime component for Delta VFD-B Variable Frequency Drives
HAL non-realtime component for Toshiba-Schneider VF-S11 Variable
Frequency Drives

Hitachi wj200 Modbus driver

Non-realtime HAL component for the xhc-hb04 pendant

Obsolete script for jogging wheel

Non-realtime jog dial HAL component for the wireless XHC WHB04B-6
USB device

5.7.1.4 Mesa and other 1/0 Cards (Realtime)

Pico Systems driver for analog servo, PWM and Stepper controller
Driver for BeagleBone GPIO pins

Realtime HAL component to communicate with one or more PC parallel
ports

Mesa Electronics driver for the 7143 EPP Anything 10 board with
HostMot2. (See the man page for more information)

LinuxCNC HAL driver for the Mesa Electronics 7190 EPP Anything IO
board with HostMot2 firmware

LinuxCNC HAL driver for the Mesa Electronics Ethernet Anything IO
boards, with HostMot2 firmware

Mesa Electronics driver for the 5120, 5122, 5123, 4165, and 4168 Anything
I/O boards, with HostMot2 firmware. (See the man page for more
information)

LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards,
with HostMot2 firmware

LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards,
with HostMot2 firmware

Mesa Electronics driver for the HostMot2 firmware.

Support for the MAX31855 Thermocouple-to-Digital converter using
bitbanged SPI

Mesa Electronics driver for the 7165 eight-axis servo card. (See the man
page for more information)

mesa_pktgyro ReESUART simple test with Microstrain 3DM-GX3-15 gyro

mesa_uart
opto_ach
pluto_servo
pluto_step
serport
setsserial
sserial

hal-
histogram
halcompile
halmeter
halcmd

An example component demonstrating how to access the Hostmot2 UART
Realtime driver for opto22 PCI-AC5 cards

Pluto-P driver and firmware for the parallel port FPGA, for servos

Pluto-P driver for the parallel port FPGA, for steppers

Hardware driver for the digital I/O bits of the 8250 and 16550 serial port
An utility for setting Smart Serial NVRAM parameters

hostmot?2 - Smart Serial LinuxCNC HAL driver for the Mesa Electronics
HostMot2 Smart-Serial remote cards

5.7.1.5 Utilities (non-realtime)

Plots the value of a HAL pin as a histogram

Build, compile and install LinuxCNC HAL components
Observe HAL pins, signals, and parameters
Manipulate the LinuxCNC HAL from the command line

halcmd_twopas#ility script used when parsing HAL files. It allows to have multiple

load-commands for multiple instances of the same component.

../man/man1/svd-ps_vfd.1.html
../man/man1/vfdb_vfd.1.html
../man/man1/vfs11_vfd.1.html
../man/man1/wj200_vfd.1.html
../man/man1/xhc-hb04.1.html
../man/man1/xhc-hb04-accels.1.html
../man/man1/xhc-hb04-accels.1.html
../man/man1/xhc-whb04b-6.1.html
../man/man1/xhc-whb04b-6.1.html
../man/man9/hal_bb_gpio.9.html
../man/man9/hal_parport.9.html
../man/man9/hm2_7i43.9.html
../man/man9/hm2_7i90.9.html
../man/man9/hm2_eth.9.html
../man/man9/hm2_pci.9.html
../man/man9/hm2_rpspi.9.html
../man/man9/hm2_spi.9.html
../man/man9/hostmot2.9.html
../man/man9/max31855.9.html
../man/man9/mesa_7i65.9.html
../man/man9/mesa_pktgyro_test.9.html
../man/man9/mesa_uart.9.html
../man/man9/opto_ac5.9.html
../man/man9/serport.9.html
../man/man9/setsserial.9.html
../man/man9/sserial.9.html
../man/man1/hal-histogram.1.html
../man/man1/hal-histogram.1.html
../man/man1/halcompile.1.html
../man/man1/halmeter.1.html
../man/man1/halcmd.1.html
../man/man1/halcmd_twopass.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 251/1322

halreport Creates a report on the status of the HAL

halrmt Remote-control interface for LinuxCNC

halrun Manipulate the LinuxCNC HAL from the command line

halsampler Sample data from HAL in realtime

halscope Software oscilloscope for viewing real time waveforms of HAL pins and
signals

halshow Show HAL parameters, pins and signals

halstreamer Stream file data into HAL in real time

haltcl Manipulates the LinuxCNC HAL from the command line using Tcl

image-to- Converts bitmap images to G-code

gcode

inivar Query an INI file

latency- Plots histogram of machine latency

histogram

latency-plot Another way to view latency numbers
latency-test Tests the realtime system latency
linuxcncmkde<kage a desktop icon for LinuxCNC
modcompile Utility for compiling Modbus drivers

motion- Log motion commands sent from LinuxCNC

logger

pncconf Configuration wizard for Mesa cards

sim_pin GUI for displaying and setting one or more HAL inputs
stepconf Configuration wizard for parallel-port based machines

update_ini Converts 2.7 format INI files to 2.8 format

debuglevel Sets the debug level for the non-realtime part of LinuxCNC
emccalib Adjust ini tuning variables on the fly with save option

hal_input Control HAL pins with any Linux input device, including USB HID devices
linuxcnc_info Collects information about the LinuxCNC version and the host
linuxcnc_modulenhellpevot access for system hardware

linuxcnc_var Retrieves LinuxCNC variables

linuxcnc LinuxCNC (The Enhanced Machine Controller)

linuxcncled LinuxCNC Graphical User Interface for LCD character display
linuxcncrsh Text-mode interface for commanding LinuxCNC over the network
linuxcncsvr Allows network access to LinuxCNC internals via NML
linuxcnctop Live LinuxCNC status description

rs274 Standalone G-code interpreter

schedrmt Telnet based scheduler for LinuxCNC

setup_designen script to configure the system for use of Qt Designer

teach-in Jog the machine to a position, and record the state

tool_mmap readcomponent of the tool database system (an alternative to the classic
tooltable)

tool_watch A component of the tool database system (an alternative to the classic
tooltable)

tooledit Tooltable editor

5.7.1.6 Signal processing (Realtime)

and2 Two-input AND gate. For out to be true both inputs must be true. (and?2)
bitwise Computes various bitwise operations on the two input values

dbounce Filter noisy digital inputs Details

debounce Filter noisy digital inputs Details description

demux Select one of several output pins by integer and/or or individual bits
edge Edge detector

estop_latch E-stop latch
flipflop D-type flip-flop

../man/man1/halreport.1.html
../man/man1/halrmt.1.html
../man/man1/halrun.1.html
../man/man1/halsampler.1.html
../man/man1/halscope.1.html
../man/man1/halshow.1.html
../man/man1/halstreamer.1.html
../man/man1/haltcl.1.html
../man/man1/image-to-gcode.1.html
../man/man1/image-to-gcode.1.html
../man/man1/inivar.1.html
../man/man1/latency-histogram.1.html
../man/man1/latency-histogram.1.html
../man/man1/latency-plot.1.html
../man/man1/latency-test.1.html
../man/man1/linuxcncmkdesktop.1.html
../man/man1/modcompile.1.html
../man/man1/motion-logger.1.html
../man/man1/motion-logger.1.html
../man/man1/pncconf.1.html
../man/man1/sim_pin.1.html
../man/man1/stepconf.1.html
../man/man1/update_ini.1.html
../man/man1/debuglevel.1.html
../man/man1/emccalib.1.html
../man/man1/hal_input.1.html
../man/man1/linuxcnc_info.1.html
../man/man1/linuxcnc_module_helper.1.html
../man/man1/linuxcnc_var.1.html
../man/man1/linuxcnc.1.html
../man/man1/linuxcnclcd.1.html
../man/man1/linuxcncrsh.1.html
../man/man1/linuxcncsvr.1.html
../man/man1/linuxcnctop.1.html
../man/man1/rs274.1.html
../man/man1/schedrmt.1.html
../man/man1/setup_designer.1.html
../man/man1/teach-in.1.html
../man/man1/tool_mmap_read.1.html
../man/man1/tool_watch.1.html
../man/man1/tooledit.1.html
../man/man9/and2.9.html
../man/man9/and2.9.html
../man/man9/bitwise.9.html
../man/man9/dbounce.9.html
../man/man9/dbounce.9.html
../man/man9/debounce.9.html
../man/man9/debounce.9.html
../man/man9/demux.9.html
../man/man9/edge.9.html
../man/man9/estop_latch.9.html
../man/man9/flipflop.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 252 /1322

logic General logic function component

lutb 5-input logic function based on a look-up table description

match8 8-bit binary match detector

multiclick Single-, double-, triple-, and quadruple-click detector

multiswitch Toggles between a specified number of output bits

not Inverter

oneshot One-shot pulse generator

or2 Two-input OR gate

reset Resets an IO signal

select8 8-bit binary match detector.

tof IEC TOF timer - delay falling edge on a signal

toggle Push-on, push-off from momentary pushbuttons

toggle2nist Toggle button to nist logic

ton IEC TON timer - delay rising edge on a signal

timedelay Equivalent of a time-delay relay.

tp IEC TP timer - generate a high pulse of defined duration on rising edge

tristate_bit Places signal on an I/O pin only when enabled, similar to a tristate buffer in
electronics

tristate_float Places signal on an I/O pin only when enabled, similar to a tristate buffer in
electronics

xor2 Two-input XOR (exclusive OR) gate

abs_s32 Computes the absolute value and sign of a integer input signal

abs_s64 Computes the absolute value and sign of a 64 bit integer input signal

abs Computes the absolute value and sign of a float input signal

biquad Biquad IIR filter

blend Perform linear interpolation between two values

comp Two input comparator with hysteresis

counter Counts input pulses (deprecated). Use the encoder component.

ddt Computes the derivative of the input function.

deadzone Returns the center if within the threshold.

div2 Quotient of two floating point inputs.

hypot Three-input hypotenuse (Euclidean distance) calculator.

ilowpass Low-pass filter with integer inputs and outputs

integ Integrator

invert Computes the inverse of the input signal.

filter kalman Unidimensional Kalman filter, also known as linear quadratic estimation
(LQE)

knob2float Converts counts (probably from an encoder) to a float value.

led_dim HAL component for dimming LEDs

lowpass Low-pass filter

limit1l Limits the output signal to fall between min and max. 3

limit2 Limits the output signal to fall between min and max. Limit its slew rate to
less than maxv per second. 4

limit3 Limit the output signal to fall between min and max. Limit its slew rate to

less than maxv per second. Limit its second derivative to less than MaxA
per second squared °.

lincurve One-dimensional lookup table

maj3 Compute the majority of 3 inputs

minmax Tracks the minimum and maximum values of the input to the outputs.
mult2 Product of two inputs.

mux16 Select from one of 16 input values (multiplexer).

mux2 Select from one of two input values (multiplexer).

mux4 Select from one of four input values (multiplexer).

mux38 Select from one of eight input values (multiplexer).

mux_generic Select one from several input values (multiplexer).

../man/man9/logic.9.html
../man/man9/lut5.9.html
../man/man9/match8.9.html
../man/man9/multiclick.9.html
../man/man9/multiswitch.9.html
../man/man9/not.9.html
../man/man9/oneshot.9.html
../man/man9/or2.9.html
../man/man9/reset.9.html
../man/man9/select8.9.html
../man/man9/tof.9.html
../man/man9/toggle.9.html
../man/man9/toggle2nist.9.html
../man/man9/ton.9.html
../man/man9/timedelay.9.html
../man/man9/tp.9.html
../man/man9/tristate_bit.9.html
../man/man9/tristate_float.9.html
../man/man9/xor2.9.html
../man/man9/abs_s32.9.html
../man/man9/abs_s64.9.html
../man/man9/abs.9.html
../man/man9/biquad.9.html
../man/man9/blend.9.html
../man/man9/comp.9.html
../man/man9/counter.9.html
../man/man9/ddt.9.html
../man/man9/deadzone.9.html
../man/man9/div2.9.html
../man/man9/hypot.9.html
../man/man9/ilowpass.9.html
../man/man9/integ.9.html
../man/man9/invert.9.html
../man/man9/filter_kalman.9.html
../man/man9/knob2float.9.html
../man/man9/led_dim.9.html
../man/man9/lowpass.9.html
../man/man9/limit1.9.html
../man/man9/limit2.9.html
../man/man9/limit3.9.html
../man/man9/lincurve.9.html
../man/man9/maj3.9.html
../man/man9/minmax.9.html
../man/man9/mult2.9.html
../man/man9/mux16.9.html
../man/man9/mux2.9.html
../man/man9/mux4.9.html
../man/man9/mux8.9.html
../man/man9/mux_generic.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 253 /1322

near Determine whether two values are roughly equal.

offset Adds an offset to an input, and subtracts it from the feedback value.
safety latch latch for error signals

sample_hold Sample and Hold.

scaled_s32_suidsm of four inputs (each with a scale)

scale Applies a scale and offset to its input.

sum?2 Sum of two inputs (each with a gain) and an offset.

time Accumulated run-time timer counts HH:MM:SS of active input.
timedelta Component that measures thread scheduling timing behavior.
updown Counts up or down, with optional limits and wraparound behavior.
wcomp Window comparator.

watchdog Monitor one to thirty-two inputs for a heartbeat.

weighted_sumConvert a group of bits to an integer.
xhc_hb04_util xhc-hb04 convenience utility

5.7.1.7 Signal generation (Realtime)

charge_pump Creates a square-wave for the charge pump input of some controller

boards.
pwmgen Software PWM/PDM generation, see description.
siggen Signal generator, see description.
sim_encoder Simulated quadrature encoder, see description.
stepgen Software step pulse generation, see description.
bin2gray Converts a number to the gray-code representation
bitmerge Converts individual input bits into an unsigned-32
bitslice Converts an unsigned-32 input into individual bits

conv_bit_float Converts from bit to float
conv_bit s32 Converts from bit to s32
conv_bit u32 Converts from bit to u32
conv_float_s32Converts from float to s32
conv_float_u32Converts from float to u32
conv_s32_bit Converts from s32 to bit
conv_s32_floatConverts from s32 to float
conv_s32 u32 Converts from s32 to u32
conv_u32_bit Converts from u32 to bit
conv_u32_floatConverts from u32 to float
conv_u32_s32 Converts from u32 to s32
conv_bit s64 Convert a value from bit to s64
conv_bit u64 Convert a value from bit to u64
conv_float_s64Convert a value from float to s64
conv_float_u64Convert a value from float to u64
conv_s32_s64 Convert a value from s32 to s64
conv_s32_u64 Convert a value from s32 to u64
conv_s64 bit Convert a value from s64 to bit
conv_s64 _floatConvert a value from s64 to float
conv_s64_s32 Convert a value from s64 to s32
conv_s64 u32 Convert a value from s64 to u32
conv_s64_u64 Convert a value from s64 to u64
conv_u32_s64 Convert a value from u32 to s64

3When the input is a position, this means that the position is limited.
4When the input is a position, this means that position and velocity are limited.
5When the input is a position, this means that position, velocity, and acceleration are limited.

../man/man9/near.9.html
../man/man9/offset.9.html
../man/man9/safety_latch.9.html
../man/man9/sample_hold.9.html
../man/man9/scaled_s32_sums.9.html
../man/man9/scale.9.html
../man/man9/sum2.9.html
../man/man9/time.9.html
../man/man9/timedelta.9.html
../man/man9/updown.9.html
../man/man9/wcomp.9.html
../man/man9/watchdog.9.html
../man/man9/weighted_sum.9.html
../man/man9/xhc_hb04_util.9.html
../man/man9/charge_pump.9.html
../man/man9/pwmgen.9.html
../man/man9/siggen.9.html
../man/man9/sim_encoder.9.html
../man/man9/stepgen.9.html
../man/man9/bin2gray.9.html
../man/man9/bitmerge.9.html
../man/man9/bitslice.9.html
../man/man9/conv_bit_float.9.html
../man/man9/conv_bit_s32.9.html
../man/man9/conv_bit_u32.9.html
../man/man9/conv_float_s32.9.html
../man/man9/conv_float_u32.9.html
../man/man9/conv_s32_bit.9.html
../man/man9/conv_s32_float.9.html
../man/man9/conv_s32_u32.9.html
../man/man9/conv_u32_bit.9.html
../man/man9/conv_u32_float.9.html
../man/man9/conv_u32_s32.9.html
../man/man9/conv_bit_s64.9.html
../man/man9/conv_bit_u64.9.html
../man/man9/conv_float_s64.9.html
../man/man9/conv_float_u64.9.html
../man/man9/conv_s32_s64.9.html
../man/man9/conv_s32_u64.9.html
../man/man9/conv_s64_bit.9.html
../man/man9/conv_s64_float.9.html
../man/man9/conv_s64_s32.9.html
../man/man9/conv_s64_u32.9.html
../man/man9/conv_s64_u64.9.html
../man/man9/conv_u32_s64.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 254 /1322

conv_u32_u64 Convert a value from u32 to u64
conv_u64_bit Convert a value from u64 to bit
conv_u64_floatConvert a value from u64 to float
conv_u64_s32 Convert a value from u64 to s32
conv_u64_s64 Convert a value from u64 to s64
conv_u64_u32 Convert a value from u64 to u32
gray2bin Converts gray-code input to binary

5.7.1.8 Kinematics (Realtime)

corexy_by hal CoreXY kinematics

differential Kinematics for a differential transmission

gantry LinuxCNC HAL component for driving multiple joints from a single axis

gantrykins Kinematics module that maps one axis to multiple joints.

genhexkins Gives six degrees of freedom in position and orientation (XYZABC). The
location of the motors is defined at compile time.

genserkins Kinematics that can model a general serial-link manipulator with up to 6
angular joints.

gentrivkins 1:1 correspondence between joints and axes. Most standard milling
machines and lathes use the trivial kinematics module.

kins Kinematics definitions for LinuxCNC.

lineardeltakin&Kinematics for a linear delta robot

matrixkins Calibrated kinematics for 3-axis machines

maxkins Kinematics for a tabletop 5 axis mill named max with tilting head (B axis)
and horizontal rotary mounted to the table (C axis). Provides UVW motion
in the rotated coordinate system.

millturn Switchable kinematics for a mill-turn machine

pentakins

pumakins Kinematics for PUMA-style robots.

rosekins Kinematics for a rose engine

rotatekins The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.
scarakins Kinematics for SCARA-type robots.

tripodkins The joints represent the distance of the controlled point from three
predefined locations (the motors), giving three degrees of freedom in
position (XYZ).

userkins Template for user-built kinematics

xyzab tdr_kinsSwitchable kinematics for 5 axis machine with rotary table A and B

xyzacb_trsrn Switchable kinematics for 6 axis machine with a rotary table C, rotary
spindle B and nutating spindle A

xyzbca_trsrn Switchable kinematics for 6 axis machine with a rotary table B, rotary
spindle C and nutating spindle A

5.7.1.9 Motion control (Realtime)

feedcomp Multiply the input by the ratio of current velocity to the feed rate.
homecomp Homing module template

limit_axis Dynamic range based axis limits
motion Accepts NML motion commands, interacts with HAL in realtime
simple_tp This component is a single axis simple trajectory planner, same as used for

jogging in LinuxCNC.
tpcomp Trajectory Planning (tp) module skeleton

../man/man9/conv_u32_u64.9.html
../man/man9/conv_u64_bit.9.html
../man/man9/conv_u64_float.9.html
../man/man9/conv_u64_s32.9.html
../man/man9/conv_u64_s64.9.html
../man/man9/conv_u64_u32.9.html
../man/man9/gray2bin.9.html
../man/man9/corexy_by_hal.9.html
../man/man9/differential.9.html
../man/man9/gantry.9.html
../man/man9/gantrykins.9.html
../man/man9/genhexkins.9.html
../man/man9/genserkins.9.html
../man/man9/gentrivkins.9.html
../man/man9/kins.9.html
../man/man9/lineardeltakins.9.html
../man/man9/matrixkins.9.html
../man/man9/maxkins.9.html
../man/man9/millturn.9.html
../man/man9/pentakins.9.html
../man/man9/pumakins.9.html
../man/man9/rosekins.9.html
../man/man9/rotatekins.9.html
../man/man9/scarakins.9.html
../man/man9/tripodkins.9.html
../man/man9/userkins.9.html
../man/man9/xyzab_tdr_kins.9.html
../man/man9/xyzacb_trsrn.9.html
../man/man9/xyzbca_trsrn.9.html
../man/man9/feedcomp.9.html
../man/man9/homecomp.9.html
../man/man9/limit_axis.9.html
../man/man9/motion.9.html
../man/man9/simple_tp.9.html
../man/man9/tpcomp.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 255/1322

5.7.1.10 Motor control (Realtime)

at_pid Proportional/integral/derivative controller with auto tuning.

bldc BLDC and AC-servo control component

clarke2 Two input version of Clarke transform

clarke3 Clarke (3 phase to Cartesian) transform

clarkeinv Inverse Clarke transform

encoder Software counting of quadrature encoder signals, see description.
pid Proportional/integral/derivative controller, description.

pwmgen Software PWM/PDM generation, see description.

stepgen Software step pulse generation, see description.

5.7.1.11 Simulation/Testing

axistest Used to allow testing of an axis. Used In PnCConf.
rtapi_app creates a simulated real time environment
sim-torch A simulated plasma torch

sim_axis_hardwar@mponent to simulate home and limit switches
sim_home_switébme switch simulator

sim_matrix_kbconvert HAL pin inputs to key codes

sim_parport A component to simulate the pins of the hal parport component
sim_spindle Simulated spindle with index pulse

simulate_probeimulate a probe input

5.7.1.12 Other (Realtime)

anglejog Jog two axes (or joints) at an angle

classicladder Realtime software PLC based on ladder logic. See ClassicLadder chapter
for more information.

charge pump Creates a square-wave for the charge pump input of some controller

boards.

encoder_ratio Electronic gear to synchronize two axes.

enum Enumerate integer values into bits

eoffset_per_an@hmpute External Offset Per Angle

gladevcp displays Virtual control Panels built with GTK / GLADE

(Realtime)

histobins Histogram bins utility for scripts/hal-histogram

joyhandle Sets nonlinear joypad movements, deadbands and scales.

latencybins Comp utility for scripts/latency-histogram

message Display a message

moveoff Component for HAL-only offsets

raster Outputs laser power based upon pre programmed rastering data

sampler Sample data from HAL in real time.

siggen Signal generator, see description.

sphereprobe Probe a pretend hemisphere.

threads Creates hard realtime HAL threads.

threadtest Component for testing thread behavior.

steptest Used by StepConf to allow testing of acceleration and velocity values for an
axis.

streamer Stream file data into HAL in real time.

supply Set output pins with values from parameters (deprecated).

../man/man9/at_pid.9.html
../man/man9/bldc.9.html
../man/man9/clarke2.9.html
../man/man9/clarke3.9.html
../man/man9/clarkeinv.9.html
../man/man9/encoder.9.html
../man/man9/pid.9.html
../man/man9/pwmgen.9.html
../man/man9/stepgen.9.html
../man/man9/axistest.9.html
../man/man1/rtapi_app.1.html
../man/man1/sim-torch.1.html
../man/man9/sim_axis_hardware.9.html
../man/man9/sim_home_switch.9.html
../man/man9/sim_matrix_kb.9.html
../man/man9/sim_parport.9.html
../man/man9/sim_spindle.9.html
../man/man1/simulate_probe.1.html
../man/man9/anglejog.9.html
../man/man9/classicladder.9.html
../man/man9/charge_pump.9.html
../man/man9/encoder_ratio.9.html
../man/man9/enum.9.html
../man/man9/eoffset_per_angle.9.html
../man/man9/gladevcp.9.html
../man/man9/gladevcp.9.html
../man/man9/histobins.9.html
../man/man9/joyhandle.9.html
../man/man9/latencybins.9.html
../man/man9/message.9.html
../man/man9/moveoff.9.html
../man/man9/raster.9.html
../man/man9/sampler.9.html
../man/man9/siggen.9.html
../man/man9/sphereprobe.9.html
../man/man9/threads.9.html
../man/man9/threadtest.9.html
../man/man9/steptest.9.html
../man/man9/streamer.9.html
../man/man9/supply.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 256 /1322

laserpower Scales laser power output based upon velocity input power and distance to

go
lcd Stream HAL data to an LCD screen
matrix_kb Convert integers to HAL pins. Optionally scan a matrix of I/O ports to

create those integers.

gearchange Select from one of two speed ranges.

orient Provide a PID command input for orientation mode based on current
spindle position, target angle and orient mode
spindle Control a spindle with different acceleration and deceleration and optional

gear change scaling
spindle_monité&pindle at-speed and underspeed detection

carousel Orient a toolchanger carousel using various encoding schemes
hal manualtodiitiange realtime component to enable manual tool changesé&.

thc Torch Height Control using a Mesa THC card or any analog to velocity input

thcud Torch Height Control Up/Down Input

ohmic LinuxCNC HAL component that uses a Mesa THCAD (A/D card) for ohmic
sensing

plasmac A plasma cutter controller

5.7.2 Not categorized (auto generated from man pages)

axis

hm2 modbus A hostmot2 driver that implements the Modbus protocol using the PktUART
portsé&.

hm?2_spix LinuxCNC HAL driver for the Mesa Electronics Anything IO boards with
SPI enabled HostMot2 firmwareé&.

joint_axis mapjemnslate faults from Joint to Axis

mesambccc Utility for compiling hm2 modbus command control description files

millturn millturn, millturngui - Vismach Virtual Machine GUI
millturngui

mqtt- send HAL pin data to MQTT broker periodically
publisher

gtplasmac- Create a plasma materials file&.

materials

gtplasmac_gcddghon script shipping with Plasmac, a Plasma cutting systemé&.
scorbot-er- to link the Intellitek Scorbot educational robot to LinuxCNC

3

sendkeys send input events based on pins or scancodes from HAL
thermistor compute temperature indicated by a thermistor

5.7.3 Without man page or broken link (auto generated from component
list)

hal ppmc
pluto_servo
pluto_step

../man/man9/laserpower.9.html
../man/man9/lcd.9.html
../man/man9/matrix_kb.9.html
../man/man9/gearchange.9.html
../man/man9/orient.9.html
../man/man9/spindle.9.html
../man/man9/spindle_monitor.9.html
../man/man9/carousel.9.html
../man/man1/hal_manualtoolchange.1.html
../man/man9/thc.9.html
../man/man9/thcud.9.html
../man/man9/ohmic.9.html
../man/man9/plasmac.9.html
../man/man9/axis.9.html
../man/man9/hm2_modbus.9.html
../man/man9/hm2_spix.9.html
../man/man9/joint_axis_mapper.9.html
../man/man1/mesambccc.1.html
../man/man1/millturn.1.html
../man/man1/millturngui.1.html
../man/man1/mqtt-publisher.1.html
../man/man1/mqtt-publisher.1.html
../man/man1/qtplasmac-materials.1.html
../man/man1/qtplasmac-materials.1.html
../man/man1/qtplasmac_gcode.1.html
../man/man1/scorbot-er-3.1.html
../man/man1/scorbot-er-3.1.html
../man/man1/sendkeys.1.html
../man/man1/thermistor.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

257 /1322

5.7.4 HAL API calls

hal add funct to thread.3
hal bit t.3

hal create thread.3
hal del funct from thread.3
hal exit.3

hal export funct.3
hal export functf.3
hal float t.3

hal get lock.3

hal init.3

hal link.3

hal malloc.3

hal param bit new.3
hal param bit newf.3
hal param float new.3
hal param float newf.3
hal param new.3

hal param s32 new.3
hal param s32 newf.3
hal param u32 new.3
hal param u32 newf.3
hal parport.3

hal pin bit new.3

hal pin bit newf.3
hal pin_ float new.3
hal pin float newf.3
hal pin new.3

hal pin s32 new.3

hal pin s32 newf.3
hal pin u32 new.3

hal pin u32 newf.3
hal ready.3

hal s32 t.3

hal set constructor.3
hal set lock.3

hal signal delete.3
hal signal new.3

hal start threads.3
hal type t.3

hal u32 t.3

hal unlink.3

hal.3

5.7.5 RTAPI calls

EXPORT FUNCTION.3
MODULE_AUTHOR. 3
MODULE_DESCRIPTION.3
MODULE_LICENSE.3
RTAPI_MP_ARRAY INT.3
RTAPI_MP_ARRAY LONG.3
RTAPI_MP_ARRAY STRING.3
RTAPI_MP_INT.3

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

258 /1322

RTAPI MP LONG.3

RTAPI MP_STRING.3
rtapi.3
rtapi app exit.3
rtapi app main.3

rtapi clock set period.3
rtapi delay.3

rtapi delay max.3
rtapi exit.3
rtapi _get clocks.3
rtapi_get msg level.3
rtapi get time.3

rtapi inb.3

rtapi init.3

rtapi module param.3
RTAPI MP_ARRAY INT.3
RTAPI MP_ ARRAY LONG.3
RTAPI MP_ARRAY STRING.3
RTAPI MP INT.3
RTAPI_MP_LONG.3
RTAPI_MP_STRING.3
rtapi_mutex.3

rtapi outb.3

rtapi print.3

rtapi prio.3
rtapi prio highest.3
rtapi_prio lowest.3
rtapi prio next higher.3
rtapi prio next lower.3
rtapi region.3

rtapi release region.3
rtapi request region.3
rtapi set msg level.3
rtapi shmem.3
rtapi shmem delete.3
rtapi_shmem getptr.3
rtapi_shmem new.3
rtapi snprintf.3
rtapi task delete.3
rtapi task new.3
rtapi task pause.3
rtapi task resume.3
rtapi task start.3
rtapi task wait.3

5.8 HAL Component Descriptions

This chapter provides details on core functionalities of LinuxCNC that demand exact timing for

* the generation of signals that is interpreted by hardware (like motors) or

» for the interpretation of signals sent by the hardware (like encoders).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 259/1322

5.8.1 StepGen

This component provides software based generation of step pulses in response to position or velocity
commands. In position mode, it has a built in pre-tuned position loop, so PID tuning is not required.
In velocity mode, it drives a motor at the commanded speed, while obeying velocity and acceleration
limits. It is a realtime component only, and depending on CPU speed, etc., is capable of maximum step
rates of 10 kHz to perhaps 50 kHz. The step pulse generator block diagram shows three block dia-
grams, each is a single step pulse generator. The first diagram is for step type 0, (step and direction).
The second is for step type 1 (up/down, or pseudo-PWM), and the third is for step types 2 through
14 (various stepping patterns). The first two diagrams show position mode control, and the third one
shows velocity mode. Control mode and step type are set independently, and any combination can be
selected.

Step Pulse Generator Block Diagram position mode
:images/stepgen-block-diag.png
Loading stepgen component

halcmd: loadrt stepgen step type=<type-array> [ctrl type=<ctrl array>]

<type-array>
is a series of comma separated decimal integers. Each number causes a single step pulse gen-
erator to be loaded, the value of the number determines the stepping type.

<ctrl_array>
is a comma separated series of p or v characters, to specify position or velocity mode.

ctrl_type
is optional, if omitted, all of the step generators will be position mode.
For example:

halcmd: loadrt stepgen step type=0,0,2 ctrl type=p,p,v

Will install three step generators. The first two use step type 0 (step and direction) and run in position
mode. The last one uses step type 2 (quadrature) and runs in velocity mode. The default value for
<config-array> is 0,0,0 which will install three type 0 (step/dir) generators. The maximum number of
step generators is 8 (as defined by MAX CHAN in stepgen.c). Each generator is independent, but all
are updated by the same function(s) at the same time. In the following descriptions, <chan> is the
number of a specific generator. The first generator is number 0.

Unloading stepgen component

halcmd: unloadrt stepgen

5.8.1.1 Pins
On the step type and control type selected.

* (float) stepgen. ~ <chan>_ .position-cmd - Desired motor position, in position units (position mode
only).

* (float) stepgen. = <chan> .velocity-cmd - Desired motor velocity, in position units per second
(velocity mode only).

* s32) stepgen. = <chan> .counts - Feedback position in counts, updated by capture position().

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 260/1322

* (float) stepgen. ~ <chan> .position-fb - Feedback position in position units, updated by cap-
ture position().

* (bit) stepgen. = <chan>_ .enable - Enables output steps - when false, no steps are generated.
* (bit) stepgen. = <chan> .step - Step pulse output (step type 0 only).

* (bit) stepgen. = <chan>_ .dir - Direction output (step type 0 only).

* (bit) stepgen. = <chan> .up - UP pseudo-PWM output (step type 1 only).

e (bit) stepgen. = <chan>_ .down - DOWN pseudo-PWM output (step type 1 only).

* (bit) stepgen. = <chan> .phase-A - Phase A output (step types 2-14 only).

* (bit) stepgen. = <chan>_ .phase-B - Phase B output (step types 2-14 only).

* (bit) stepgen. = <chan> .phase-C - Phase C output (step types 3-14 only).

* (bit) stepgen. = <chan>_ .phase-D' - Phase D output (step types 5-14 only).

* (bit) stepgen. = <chan>_ .phase-E - Phase E output (step types 11-14 only).

5.8.1.2 Parameters

* (float) stepgen. ~ <chan> .position-scale - Steps per position unit. This parameter is used for both
output and feedback. * (float) stepgen. ~ <chan> .maxvel - Maximum velocity, in position units per
second. If 0.0, has no effect. * (float) stepgen. = <chan> .maxaccel - Maximum accel/decel rate,
in positions units per second squared. If 0.0, has no effect. * (float) stepgen. = <chan>_.frequency
- The current step rate, in steps per second. * (float) stepgen. ~ <chan> .steplen - Length of a
step pulse (step type 0 and 1) or minimum time in a given state (step types 2-14), in nano-seconds.
* (float) stepgen. ~ <chan> .stepspace - Minimum spacing between two step pulses (step types
0 and 1 only), in nano-seconds. Set to 0 to enable the stepgen doublefreq function. To use double-
freq the parport reset function must be enabled. * (float) stepgen. ~ <chan> .dirsetup - Minimum
time from a direction change to the beginning of the next step pulse (step type 0 only), in nanosec-
onds. * (float) stepgen. = <chan> .dirhold - Minimum time from the end of a step pulse to a direc-
tion change (step type 0 only), in nanoseconds. * (float) stepgen. ° <chan> .dirdelay - Minimum
time any step to a step in the opposite direction (step types 1-14 only), in nano-seconds. * (s32)
stepgen. = <chan>_ .rawcounts - The raw feedback count, updated by make pulses().

In position mode, the values of maxvel and maxaccel are used by the internal position loop to avoid
generating step pulse trains that the motor cannot follow. When set to values that are appropriate for
the motor, even a large instantaneous change in commanded position will result in a smooth trape-
zoidal move to the new location. The algorithm works by measuring both position error and velocity
error, and calculating an acceleration that attempts to reduce both to zero at the same time. For more
details, including the contents of the control equation box, consult the code.

In velocity mode, maxvel is a simple limit that is applied to the commanded velocity, and maxaccel is
used to ramp the actual frequency if the commanded velocity changes abruptly. As in position mode,
proper values for these parameters ensure that the motor can follow the generated pulse train.

5.8.1.3 Step Types

Step generator supports 15 different step sequences:

Step Type O Step type 0 is the standard step and direction type. When configured for step type 0, there
are four extra parameters that determine the exact timing of the step and direction signals. In the
following figure the meaning of these parameters is shown. The parameters are in nanoseconds, but
will be rounded up to an integer multiple of the thread period for the threaed that calls make pulses().
For example, if make pulses() is called every 16 ps, and steplen is 20000, then the step pulses will be

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 261 /1322

2x 16 = 32 pslong. The default value for all four of the parameters is 1 ns, but the automatic rounding
takes effect the first time the code runs. Since one step requires steplen ns high and stepspace ns low,
the maximum frequency is 1,000,000,000 divided by (steplen + stepspace)’. If maxfreq is set higher
than that limit, it will be lowered automatically. If maxfreq is zero, it will remain zero, but the output
frequency will still be limited.

When using the parallel port driver the step frequency can be doubled using the parport reset function
together with StepGen’s doublefreq setting.

stepspace

stepspace

-‘—Steph?ﬂ-}-ﬂ—

(min) —p-q-stepIEH)-?{— (min) ﬁﬁteple&b?
dirsetup dirhold dirsetup
T‘_ {min) + "1_ {min) > ‘ {min) +

direction

))

Figure 5.19: Step and Direction Timing

Step Type 1 Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending
on the direction of travel. Each pulse is steplen ns long, and the pulses are separated by at least
stepspace ns. The maximum frequency is the same as for step type 0. If maxfreq is set higher than
the limit it will be lowered. If maxfreq is zero, it will remain zero but the output frequency will still
be limited.

Warning
Do not use the parport reset function with step types 2 - 14. Unexpected results can happen.

Step Type 2 - 14 Step types 2 through 14 are state based, and have from two to five outputs. On
each step, a state counter is incremented or decremented. The Two-and-Three-Phase, Four-Phase,
and Five-Phase show the output patterns as a function of the state counter. The maximum frequency
is 1,000,000,000 divided by steplen, and as in the other modes, maxfreq will be lowered if it is above
the limit.

Two-and-Three-Phase Step Types Step Types: Two-and-Three-Phase
Four-Phase Step Types Step Types: Four-Phase
Five-Phase Step Types Step Types: Five-Phase

5.8.1.4 Functions

The component exports three functions. Each function acts on all of the step pulse generators -
running different generators in different threads is not supported.

e (funct) stepgen.make-pulses - High speed function to generate and count pulses (no floating point).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 262 /1322

e (funct) stepgen.update-freq - Low speed function does position to velocity conversion, scaling and
limiting.

* (funct) stepgen.capture-position - Low speed function for feedback, updates latches and scales
position.

The high speed function stepgen.make-pulses should be run in a very fast thread, from 10 to 50 us
depending on the capabilities of the computer. That thread’s period determines the maximum step
frequency, since steplen, stepspace, dirsetup, dirhold, and dirdelay are all rounded up to a integer
multiple of the thread periond in nanoseconds. The other two functions can be called at a much lower
rate.

5.8.2 PWMgen

This component provides software based generation of PWM (Pulse Width Modulation) and PDM
(Pulse Density Modulation) waveforms. It is a realtime component only, and depending on CPU speed,
etc., is capable of PWM frequencies from a few hundred Hertz at pretty good resolution, to perhaps
10 kHz with limited resolution.

Loading PWMgen

loadrt pwmgen output type=<config-array>

The <config-array> is a series of comma separated decimal integers. Each number causes a single
PWM generator to be loaded, the value of the number determines the output type. The following ex-
ample will install three PWM generators. There is no default value, if <config-array> is not specified,
no PWM generators will be installed. The maximum number of frequency generators is 8 (as defined
by MAX CHAN in pwmgen.c). Each generator is independent, but all are updated by the same func-
tion(s) at the same time. In the following descriptions, <chan> is the number of a specific generator.
The first generator is number 0.

Loading PWMgen Example
loadrt pwmgen output type=0,1,2

Will install three PWM generators. The first will use an output of type 0 (PWM only), the next one will
use a type 1 output (PWM and direction) and the third will use a type 2 output (UP and DOWN). There
is no default value, if <config-array> is not not specified, no PWM generator will be installed. The
maximum number of frequency generators is 8 (as defined by MAX CHAN in pwmgen.c). Each gener-
ator is independent, but all are updated by the same function(s), at the same time. In the descriptions
that follow, <chan> is the number of specific generators. The numbering of PWM generators starts
at 0.

Unloading PWMgen

unloadrt pwmgen

5.8.2.1 Output Types
The PWM generator supports three different output types.

e Output type 0 - PWM output pin only. Only positive commands are accepted, negative values are
treated as zero (and will be affected by the parameter min-dc if it is non-zero).

e Output type 1 - PWM/PDM and direction pins. Positive and negative inputs will be output as pos-
itive and negative PWM. The direction pin is false for positive commands, and true for negative
commands. If your control needs positive PWM for both CW and CCW use the abs component to
convert your PWM signal to positive value, when a negative input is input.

../man/man9/abs.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 263 /1322

e Output type 2 - UP and DOWN pins. For positive commands, the PWM signal appears on the up
output, and the down output remains false. For negative commands, the PWM signal appears on the
down output, and the up output remains false. Output type 2 is suitable for driving most H-bridges.

5.8.2.2 Pins

Each PWM generator will have the following pins:

* (float) pwmgen. = <chan> .value - Command value, in arbitrary units. Will be scaled by the scale
parameter (see below).

* (bit) pwmgen. = <chan> .enable - Enables or disables the PWM generator outputs.
Each PWM generator will also have some of these pins, depending on the output type selected:

* (bit) pwmgen. ~ <chan>_ .pwm - PWM (or PDM) output, (output types 0 and 1 only).

(bit) pwmgen. ~ <chan> .dir - Direction output (output type 1 only).

(bit) pwmgen. ~ <chan>_ .up - PWM/PDM output for positive input value (output type 2 only).

(bit) pwmgen. = <chan>_ .down - PWM/PDM output for negative input value (output type 2 only).

5.8.2.3 Parameters

* (float) pwmgen. * <chan> .scale - Scaling factor to convert value from arbitrary units to duty cy-
cle. For example if scale is set to 4000 and the input value passed to the pwmgen. ~ <chan> .value
is 4000 then it will be 100% duty-cycle (always on). If the value is 2000 then it will be a 50% 25 Hz
square wave.

* (float) pwmgen. ~ <chan> .pwm-freq - Desired PWM frequency, in Hz. If 0.0, generates PDM
instead of PWM. If set higher than internal limits, next call of update freq() will set it to the internal
limit. If non-zero, and dither is false, next call of update freq() will set it to the nearest integer
multiple of the make pulses() function period.

* (bit) pwmgen. ~ <chan> .dither-pwm - If true, enables dithering to achieve average PWM frequen-
cies or duty cycles that are unobtainable with pure PWM. If false, both the PWM frequency and the
duty cycle will be rounded to values that can be achieved exactly.

* (float) pwmgen. = <chan> .min-dc - Minimum duty cycle, between 0.0 and 1.0 (duty cycle will go
to zero when disabled, regardless of this setting).

* (float) pwmgen. = <chan> .max-dc - Maximum duty cycle, between 0.0 and 1.0.

* (float) pwmgen. ~ <chan> .curr-dc - Current duty cycle - after all limiting and rounding (read
only).

5.8.2.4 Functions

The component exports two functions. Each function acts on all of the PWM generators - running
different generators in different threads is not supported.

* (funct) pwmgen.make-pulses - High speed function to generate PWM waveforms (no floating point).
The high speed function pwmgen.make-pulses should be run in the base (fastest) thread, from 10 to
50 ps depending on the capabilities of the computer. That thread’s period determines the maximum
PWM carrier frequency, as well as the resolution of the PWM or PDM signals. If the base thread is
50,000 ns then every 50 us the module decides if it is time to change the state of the output. At 50%
duty cycle and 25 Hz PWM frequency this means that the output changes state every (1/25)s /50 us
* 50% = 400 iterations. This also means that you have a 800 possible duty cycle values (without
dithering).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 264 /1322

¢ (funct) pwmgen.update - Low speed function to scale and limit value and handle other parameters.
This is the function of the module that does the more complicated mathematics to work out how
many base-periods the output should be high for, and how many it should be low for.

5.8.3 Encoder

This component provides software based counting of signals from quadrature (or single-pulse) en-
coders. It is a realtime component only, and depending on CPU speed, latency, etc., is capable of
maximum count rates of 10 kHz to perhaps up to 50 kHz.

The base thread should be 1/2 count speed to allow for noise and timing variation. For example if you
have a 100 pulse per revolution encoder on the spindle and your maximum RPM is 3000 the maximum
base thread should be 25 us. A 100 pulse per revolution encoder will have 400 counts. The spindle
speed of 3000 RPM = 50 RPS (revolutions per second). 400 * 50 = 20,000 counts per second or 50 pus
between counts.

The Encoder Counter Block Diagram is a block diagram of one channel of an encoder counter.
Encoder Counter Block Diagram

:images/encoder-block-diag.png

Loading Encoder

halcmd: loadrt encoder [num_chan=<counters>]

<counters> is the number of encoder counters that you want to install. If num chan is not specified,
three counters will be installed. The maximum number of counters is 8 (as defined by MAX CHAN
in encoder.c). Each counter is independent, but all are updated by the same function(s) at the same
time. In the following descriptions, <chan> is the number of a specific counter. The first counter is
number 0.

Unloading Encoder

halcmd: unloadrt encoder

5.8.3.1 Pins

e encoder. <chan> .counter-mode (bit, I/O) (default: FALSE) - Enables counter mode. When true,
the counter counts each rising edge of the phase-A input, ignoring the value on phase-B. This is
useful for counting the output of a single channel (non-quadrature) sensor. When false, it counts in
quadrature mode.

e encoder. <chan> .missing-teeth (s32, In) (default: 0) - Enables the use of missing-tooth index.
This allows a single IO pin to provide both position and index information. If the encoder wheel has
58 teeth with two missing, spaced as if there were 60(common for automotive crank sensors) then
the position-scale should be set to 60 and missing-teeth to 2. To use this mode counter-mode should
be set true. This mode will work for lathe threading but not for rigid tapping.

* encoder. <chan>_ .counts (s32, Out) - Position in encoder counts.
* encoder. <chan>_ .counts-latched (s32, Out) - Not used at this time.

* encoder. <chan> .index-enable (bit, I/O) - When True, counts and position are reset to zero on
next rising edge of Phase Z.
At the same time, index-enable is reset to zero to indicate that the rising edge has occurred. The
index-enable pinis bi-directional. If index-enable is False, the Phase Z channel of the encoder will
be ignored, and the counter will count normally. The encoder driver will never set index-enable
True. However, some other component may do so.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 265 /1322

* encoder. <chan> .latch-falling (bit, In) (default: TRUE) - Not used at this time.
e encoder. <chan> .latch-input (bit, In) (default: TRUE) - Not used at this time.
* encoder. <chan> .latch-rising (bit, In) - Not used at this time.

e encoder. <chan> .min-speed-estimate (float, in) - Determine the minimum true velocity magni-
tude, at which velocity will be estimated as nonzero and position-interpolated will be interpolated.
The units of min-speed-estimate are the same as the units of velocity. Scale factor, in counts
per length unit. Setting this parameter too low will cause it to take a long time for velocity to go to
0 after encoder pulses have stopped arriving.

e encoder. <chan> .phase-A (bit, In) - Phase A of the quadrature encoder signal.

e encoder. <chan> .phase-B (bit, In) - Phase B of the quadrature encoder signal.

* encoder. <chan> .phase-Z (bit, In) - Phase Z (index pulse) of the quadrature encoder signal.
* encoder. <chan>_ .position (float, Out) - Position in scaled units (see position-scale).

* encoder. <chan> .position-interpolated (float, Out) - Position in scaled units, interpolated be-
tween encoder counts.
The position-interpolated attempts to interpolate between encoder counts, based on the most re-
cently measured velocity. Only valid when velocity is approximately constant and above min-speed-estim:
Do not use for position control, since its value is incorrect at low speeds, during direction reversals,
and during speed changes.
However, it allows a low ppr encoder (including a one pulse per revolution encoder) to be used for
lathe threading, and may have other uses as well.

e encoder. <chan> .position-latched (float, Out) - Not used at this time.

e encoder. <chan> .position-scale (float, I/O) - Scale factor, in counts per length unit. For exam-
ple, if position-scale is 500, then 1000 counts of the encoder will be reported as a position of 2.0
units.

e encoder. <chan> .rawcounts (s32, In) - The raw count, as determined by update-counters. This
value is updated more frequently than counts and position. It is also unaffected by reset or the index
pulse.

* encoder. <chan>_.reset (bit, In) - When True, force counts and position to zero immediately.

* encoder. <chan> .velocity (float, Out) - Velocity in scaled units per second. encoder uses an
algorithm that greatly reduces quantization noise as compared to simply differentiating the position
output. When the magnitude of the true velocity is below min-speed-estimate, the velocity output
is 0.

* encoder. <chan> .x4-mode (bit, I/O) (default: TRUE) - Enables times-4 mode. When true, the
counter counts each edge of the quadrature waveform (four counts per full cycle). When false, it
only counts once per full cycle. In counter-mode, this parameter is ignored. The 1x mode is useful
for some jogwheels.

5.8.3.2 Parameters

e encoder. <chan> .capture-position.time (s32, RO)

e encoder. <chan> .capture-position.tmax (s32, RW)

encoder. <chan> .update-counters.time (s32, RO)

encoder. <chan> .update-counter.tmax (s32, RW)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 266 /1322

5.8.3.3 Functions

The component exports two functions. Each function acts on all of the encoder counters - running
different counters in different threads is not supported.

e (funct) encoder.update-counters - High speed function to count pulses (no floating point).

¢ (funct) encoder.capture-position - Low speed function to update latches and scale position.

5.8.4 PID

This component provides Proportional/Integral/Derivative control loops. It is a realtime component
only. For simplicity, this discussion assumes that we are talking about position loops, however this
component can be used to implement other feedback loops such as speed, torch height, temperature,
etc. The PID Loop Block Diagram is a block diagram of a single PID loop.

PID Loop Block Diagram
:images/pid-block-diag.png

Loading PID

halcmd: loadrt pid [num chan=<loops>] [debug=1]

<loops> is the number of PID loops that you want to install. If num_chan is not specified, one loop
will be installed. The maximum number of loops is 16 (as defined by MAX CHAN in pid.c). Each loop
is completely independent. In the following descriptions, <loopnum> is the loop number of a specific
loop. The first loop is number 0.

If debug=1is specified, the component will export a few extra pins that may be useful during debugging
and tuning. By default, the extra pins are not exported, to save shared memory space and avoid
cluttering the pin list.

Unloading PID
halcmd: unloadrt pid

5.8.4.1 Pins
The three most important pins are

* (float) pid. ~ <loopnum> .command - The desired position, as commanded by another system
component.

* (float) pid. ~ <loopnum> .feedback - The present position, as measured by a feedback device
such as an encoder.

e (float) pid. = <loopnum> .output - A velocity command that attempts to move from the present
position to the desired position.

For a position loop, .command and .feedback are in position units. For a linear axis, this could be
inches, mm, meters, or whatever is relevant. Likewise, for an angular axis, it could be degrees,
radians, etc. The units of the .output pin represent the change needed to make the feedback match
the command. As such, for a position loop .output is a velocity, in inches/s, mm/s, degrees/s, etc. Time
units are always seconds, and the velocity units match the position units. If command and feedback
are in meters, then output is in meters per second.

Each loop has two pins which are used to monitor or control the general operation of the component.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 267 /1322

¢ (float) pid.<loopnum>.error - Equals .command minus .feedback.

* (bit) pid.<loopnum>.enable - A bit that enables the loop. If .enable is false, all integrators are reset,
and the output is forced to zero. If .enable is true, the loop operates normally.

Pins used to report saturation. Saturation occurs when the output of the PID block is at its maximum
or minimum limit.

e (bit) pid.<loopnum>.saturated - True when output is saturated.
* (float) pid.<loopnum>.saturated s - The time the output has been saturated.

* (s32) pid.<loopnum>.saturated count - The time the output has been saturated.

The PID gains, limits, and other tunable features of the loop are available as pins so that they can be
adjusted dynamically for more advanced tuning possibilities.

¢ (float) pid.<loopnum=>.Pgain - Proportional gain

¢ (float) pid.<loopnum=>.Igain - Integral gain

* (float) pid.<loopnum>.Dgain - Derivative gain

* (float) pid.<loopnum>.bias - Constant offset on output

¢ (float) pid.<loopnum>.FF0 - Zeroth order feedforward - output proportional to command (position).

* (float) pid.<loopnum>.FF]1 - First order feedforward - output proportional to derivative of command
(velocity).

* (float) pid.<loopnum>.FF2 - Second order feedforward - output proportional to 2™ derivative of
command (acceleration).

* (float) pid.<loopnum>.deadband - Amount of error that will be ignored
* (float) pid.<loopnum=>.maxerror - Limit on error

* (float) pid.<loopnum>.maxerrorl - Limit on error integrator

* (float) pid.<loopnum>.maxerrorD - Limit on error derivative

* (float) pid.<loopnum>.maxcmdD - Limit on command derivative

* (float) pid.<loopnum>.maxcmdDD - Limit on command 2" derivative

* (float) pid.<loopnum>.maxoutput - Limit on output value

All max* limits are implemented so that if the value of this parameter is zero, there is no limit.

If debug=1 was specified when the component was installed, four additional pins will be exported:

* (float) pid.<loopnum>.errorl - Integral of error.
¢ (float) pid.<loopnum>.errorD - Derivative of error.
¢ (float) pid.<loopnum>.commandD - Derivative of the command.

* (float) pid.<loopnum>.commandDD - 2™ derivative of the command.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 268 /1322

5.8.4.2 Functions

The component exports one function for each PID loop. This function performs all the calculations
needed for the loop. Since each loop has its own function, individual loops can be included in different
threads and execute at different rates.

* (funct) pid.<loopnum>.do pid calcs - Performs all calculations for a single PID loop.
If you want to understand the exact algorithm used to compute the output of the PID loop, refer to

» figure PID Loop Block Diagram,
* the comments at the beginning of emc2/src/hal/components/pid.c, and of course to

¢ the code itself.

The loop calculations are in the C function calc pid().

5.8.5 Simulated Encoder

The simulated encoder is exactly that. It produces quadrature pulses with an index pulse, at a speed
controlled by a HAL pin. Mostly useful for testing.

Loading sim-encoder

halcmd: loadrt sim-encoder num_chan=<number>

<number> is the number of encoders that you want to simulate If not specified, one encoder will be
installed. The maximum number is 8 (as defined by MAX CHAN in sim_encoder.c).

Unloading sim-encoder

halcmd: unloadrt sim-encoder

5.8.5.1 Pins

(float) sim-encoder. ~ <chan-num> .speed - The speed command for the simulated shaft.

e (bit) sim-encoder. ° <chan-num> .phase-A" - Quadrature output.
* (bit) sim-encoder. ~ <chan-num>_.phase-B - Quadrature output.
* (bit) sim-encoder. ~ <chan-num>_.phase-Z - Index pulse output.

When . speed is positive, .phase-A leads .phase-B.

5.8.5.2 Parameters

* (u32) sim-encoder. *~ <chan-num> .ppr - Pulses Per Revolution.

* (float) sim-encoder. ~ <chan-num> .scale - Scale Factor for .speed. The default is 1.0, which
means that .speed is in revolutions per second. Change to 60 for RPM, to 360 for degrees per
second, 6.283185 (= 2*m) for radians per second, etc.

Note that pulses per revolution is not the same as counts per revolution. A pulse is a complete quadra-
ture cycle. Most encoder counters will count four times during one complete cycle.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 269 /1322

5.8.5.3 Functions

The component exports two functions. Each function affects all simulated encoders.
¢ (funct) sim-encoder.make-pulses - High speed function to generate quadrature pulses (no floating
point).

e (funct) sim-encoder.update-speed - Low speed function to read .speed, do scaling, and set up
.make-pulses.

5.8.6 Debounce

Debounce is a realtime component that can filter the glitches created by mechanical switch contacts.
It may also be useful in other applications where short pulses are to be rejected.

Loading debounce
halcmd: loadrt debounce cfg=<config-string>

<config-string>
Is a series of comma separated decimal integers. Each number install a group of identical de-
bounce filters, the number determines how many filters are in the group.

Loading debounce Example
halcmd: loadrt debounce cfg=1,4,2

will install three groups of filters. Group 0 contains one filter, group 1 contains four, and group 2
contains two filters. The default value for <config-string> is ”1” which will install a single group con-
taining a single filter. The maximum number of groups 8 (as defined by MAX GROUPS in debounce.c).
The maximum number of filters in a group is limited only by shared memory space. Each group is
completely independent. All filters in a single group are identical, and they are all updated by the
same function at the same time. In the following descriptions, <G> is the group number and <F> is
the filter number within the group. The first filter is group 0, filter 0.

Unloading debounce
halcmd: unloadrt debounce

5.8.6.1 Pins

Each individual filter has two pins.

* (bit) debounce. = <G> . <F> .in - Input of filter <F> in group <G>.

* (bit) debounce. =~ <G> . <F> .out - Output of filter <F> in group <G>.

5.8.6.2 Parameters

Each group of filters has one parameter®.
* (s32) debounce. = <G> .delay - Filter delay for all filters in group <G>.

The filter delay is in units of thread periods. The minimum delay is zero. The output of a zero delay
filter exactly follows its input - it doesn’t filter anything. As .delay increases, longer and longer
glitches are rejected. If .delay is 4, all glitches less than or equal to four thread periods will be
rejected.

6Each individual filter also has an internal state variable. There is a compile time switch that can export that variable as a
parameter. This is intended for testing, and simply wastes shared memory under normal circumstances.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 270 /1322

5.8.6.3 Functions

Each group of filters has one function, which updates all the filters in that group simultaneously.
Different groups of filters can be updated from different threads at different periods.

e (funct) debounce. <G> - Updates all filters in group <G>.

5.8.7 SigGen

SigGen is a realtime component that generates square, triangle, and sine waves. It is primarily used
for testing.

Loading siggen

halcmd: loadrt siggen [num_chan=<chans>]

<chans>
is the number of signal generators that you want to install. If numchan is not specified, one signal
generator will be installed. The maximum number of generators is 16 (as defined by MAX CHAN
in siggen.c). Each generator is completely independent. In the following descriptions is

<chan>
the number of a specific signal generator (the numbers start at 0).

Unloading siggen

halcmd: unloadrt siggen

5.8.7.1 Pins

Each generator has five output pins.

(float) siggen. = <chan> .sine - Sine wave output.

(float) siggen. = <chan>_.cosine - Cosine output.

(float) siggen. = <chan>_ .sawtooth - Sawtooth output.

(float) siggen. = <chan>_ .triangle - Triangle wave output.

(float) siggen. = <chan> .square - Square wave output.

All five outputs have the same frequency, amplitude, and offset.

In addition to the output pins, there are three control pins:

* (float) siggen. *~ <chan> .frequency - Sets the frequency in Hertz, default value is 1 Hz.

* (float) siggen. = <chan> .amplitude - Sets the peak amplitude of the output waveforms, default
is 1.

* (float) siggen. = <chan>_ .offset - Sets DC offset of the output waveforms, default is 0.
For example, if siggen.0.amplitude is 1.0 and siggen.0.offset is 0.0, the outputs will swing from

-1.0to +1.0. If siggen.0.amplitude is 2.5 and siggen.0.o0ffset is 10.0, then the outputs will swing
from 7.5 to 12.5.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 271 /1322

5.8.7.2 Parameters

None. 7

5.8.7.3 Functions

* (funct) siggen. ~ <chan>_ .update - Calculates new values for all five outputs.

5.8.8 1lut5
The lLut5 component is a 5 input logic component based on a look up table.
¢ lut5 does not require a floating point thread.

Loading lut5

loadrt lut5 [count=N|names=namel[,name2...]]
addf lut5.N servo-thread | base-thread
setp lut5.N.function OxN

lut> Computing Function To compute the hexadecimal number for the function starting from the
top put a 1 or O to indicate if that row would be true or false. Next write down every number in
the output column starting from the top and writing them from right to left. This will be the binary
number. Using a calculator with a program view like the one in Ubuntu enter the binary number and
then convert it to hexadecimal and that will be the value for function.

Table 5.30: lut5 Look Up Table

>

B

w

Bit 2

=

== P el P e e e e P e fe T e o=
—

Bit 0 | Outputt

R R R ool ol ool o ol ol ool o ol o o o o =
oo olo|o| g | | | | ||~ oo o ol ol o o of &

RO OO QRO O OO RO O O O

RO R OO OO O O O OO

7Prior to version 2.1, frequency, amplitude, and offset were parameters. They were changed to pins to allow control by
other components.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 272 /1322

Table 5.30: (continued)

Bit4 | Bit3 | Bit 2 | Bit 1 | Bit 0 | Output
T 0 T 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

lut5 Two Inputs Example In the following table we have selected the output state for each line that
we wish to be true.

Table 5.31: lLut5 Two Inputs Example Look Up Table

Bit4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Outpult
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1

Looking at the output column of our example we want the output to be on when Bit 0 or Bit 0 and
Bitl is on and nothing else. The binary number is b1010 (rotate the output 90 degrees CW). Enter
this number into the calculator then change the display to hexadecimal and the number needed for
function is Oxa. The hexadecimal prefix is Ox.

5.9 HAL Component Generator

5.9.1 Introduction

This section introduces to the compilation HAL components, i.e. the addition of some machinists’
knowledge on how to deal with the machine. It should be noted that such components do not nec-
essarily deal with the hardware directly. They often do, but not necessarily, e.g. there could be a
component to convert between imperial and metric scales, so this section does not require to dive
into the interaction with hardware.

Writing a HAL component can be a tedious process, most of it in setup calls to rtapi _and hal functions
and associated error checking. halcompile will write all this code for you, automatically. Compiling
a HAL component is also much easier when using halcompile, whether the component is part of the
LinuxCNC source tree, or outside it.

For instance, when coded in C, a simple component such as ”“ddt” is around 80 lines of code. The
equivalent component is very short when written using the halcompile preprocessor:

Simple Component Example

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 273 /1322

component ddt "Compute the derivative of the input function”;
pin in float in;

pin out float out;

variable double old;

option period no;

function _;

license "GPL"”; // indicates GPL v2 or later

float tmp = in;
out = (tmp - old) / fperiod;
old = tmp;

5.9.2 Installing

To compile a component, if a packaged version of LinuxCNC is used, development packages have to
be installed using either Synaptic from the main menu System -> Administration -> Synaptic package
manager or by running one of the following commands in a terminal window:

Installation of Development packages for LinuxCNC

sudo apt install linuxcnc-dev
or
sudo apt install linuxcnc-uspace-dev

Another method is using the Synaptic package manager, from the Applications menu, to install the
linuxcnc-dev or linuxcnc-uspace-dev packages.

5.9.3 Compiling

5.9.3.1 Inside the source tree
Place the .comp file in the source directory linuxcnc/src/hal/components and re-run make. Comp
files are automatically detected by the build system.

If a .comp file is a driver for hardware, it may be placed in linuxcnc/src/hal/drivers and will be
built unless LinuxCNC is configured as a non-realtime simulator.

5.9.3.2 Realtime components outside the source tree

halcompile can process, compile, and install a realtime component in a single step, placing rtexample. ko
in the LinuxCNC realtime module directory:

[sudo] halcompile --install rtexample.comp

Note
sudo (for root permission) is needed when using LinuxCNC from a deb package install. When using
a Run-In-Place (RIP) build, root privileges should not be needed.

Or, it can process and compile in one step, leaving example. ko (or example. so for the simulator) in
the current directory:

halcompile --compile rtexample.comp

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 274 /1322

Or it can simply process, leaving example. c in the current directory:

halcompile rtexample.comp

halcompile can also compile and install a component written in C, using the --install and - -compile
options shown above:

[sudo] halcompile --install rtexample2.c

man-format documentation can also be created from the information in the declaration section:

halcompile --document -o example.9 rtexample.comp

The resulting manpage, example.9 can be viewed with

man ./example.9

or copied to a standard location for manual pages.

5.9.3.3 Non-realtime components outside the source tree

halcompile can process, compile, install, and document non-realtime components:

halcompile non-rt-example.comp

halcompile --compile non-rt-example.comp

[sudo] halcompile --install non-rt-example.comp
halcompile --document non-rt-example.comp

For some libraries (for example modbus) it might be necessary to add extra compiler and linker argu-
ments to enable the compiler to find and link the libraries. In the case of .comp files this can be done
via "option” statements in the . comp file. For . c files this is not possible so the - -extra-compile-args
and --extra-link-args parameters can be used instead. As an example, this command line can be
used to compile the vfdb vfd.c component out-of-tree.

halcompile --userspace --install --extra-compile-args="-I/usr/include/modbus” --extra-link- <«
args="-1lm -lmodbus -1linuxcncini” vfdb vfd.c

Note
The effect of using both command-line and in-file extra-args is undefined.

5.9.4 Using a Component

Components need to be loaded and added to a thread before it can be employed. The provided func-
tionality can then be invoked directly and repeatedly by one of the threads or it is called by other
components that have their own respective triggers.

Example HAL script for installing a component (ddt) and executing it every millisecond.

loadrt threads namel=servo-thread periodl1=1000000
loadrt ddt
addf ddt.0 servo-thread

More information on loadrt and addf can be found in the HAL Basics.

To test your component you can follow the examples in the HAL Tutorial.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 275 /1322

5.9.5 Definitions

* component - A component is a single real-time module, which is loaded with Halcmd loadrt. One
.comp file specifies one component. The component name and file name must match.

¢ instance - A component can have zero or more instances. Each instance of a component is created
equal (they all have the same pins, parameters, functions, and data) but behave independently when
their pins, parameters, and data have different values.

» singleton - It is possible for a component to be a “singleton”, in which case exactly one instance is
created. It seldom makes sense to write a singleton component, unless there can literally only be
a single object of that kind in the system (for instance, a component whose purpose is to provide a
pin with the current UNIX time, or a hardware driver for the internal PC speaker).

5.9.6 Instance creation

For a singleton, the one instance is created when the component is loaded.

For a non-singleton, the count module parameter determines how many numbered instances are cre-
ated. If count is not specified, the names module parameter determines how many named instances
are created. If neither count nor names is specified, a single numbered instance is created.

5.9.7 Implicit Parameters

Functions are implicitly passed the period parameter which is the time in nanoseconds of the last
period to execute the component. Functions which use floating-point can also refer to fperiod which
is the floating-point time in seconds, or (period*1e-9). This can be useful in components that need the
timing information. See also option period below.

5.9.8 Syntax

A . comp file consists of a number of declarations, followed by ;; on a line of its own, followed by C
code implementing the module’s functions.

Declarations include:

» component HALNAME (DOC);

» pin PINDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (= START-
VALUE) (DOC) ;

* param PARAMDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (=
STARTVALUE) (DOC) ;

* function HALNAME (fp | nofp) (DOC);

* option OPT (VALUE);

» variable CTYPE STARREDNAME ([SIZE]);
e description DOC;

e examples DOC;

* notes DOC;

* see also DOC;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 276 /1322

e license LICENSE;
e author AUTHOR;
e include HEADERFILE;

Parentheses indicate optional items. A vertical bar indicates alternatives. Words in CAPITALS indicate
variable text, as follows:

e NAME - A standard C identifier

* STARREDNAME - A C identifier with zero or more * before it. This syntax can be used to declare
instance variables that are pointers. Note that because of the grammar, there may not be whitespace
between the * and the variable name.

* HALNAME - An extended identifier. When used to create a HAL identifier, any underscores are
replaced with dashes, and any trailing dash or period is removed, so that ”“this name ” will be
turned into ”this-name”, and if the name is ” ”, then a trailing period is removed as well, so that
“function ” gives a HAL function name like “component.<num>" instead of “component.<num=>."

If present, the prefix hal is removed from the beginning of the component name when creating
pins, parameters and functions.

In the HAL identifier for a pin or parameter, # denotes an array item, and must be used in conjunction
with a [SIZE] declaration. The hash marks are replaced with a 0-padded number with the same length
as the number of # characters.

When used to create a C identifier, the following changes are applied to the HALNAME:

wooonon

1. Any "#” characters, and any ”.”, ” ” or ”-” characters immediately before them, are removed.

Py

2. Any remaining ”.” and characters are replaced with ” .

3. Repeated ” ” characters are changed to a single ”\ " character.

» o

A trailing ”_” is retained, so that HAL identifiers which would otherwise collide with reserved names
or keywords (e.g., min) can be used.

HALNAME C Identifier HAL Identifier
Xy z Xy 2z X-y-Z

X-V.Z Xy 2z X-y.Z

Xy 2z Xy Z X-y-Z

X ##.y x y(MM) x.MM.z

X.H## x(MM) x.MM

if CONDITION - An expression involving the variable personality which is nonzero when the pin or
parameter should be created.

SIZE - A number that gives the size of an array. The array items are numbered from 0 to SIZE-1.

MAXSIZE : CONDSIZE - A number that gives the maximum size of the array, followed by an expres-
sion involving the variable personality and which always evaluates to less than MAXSIZE. When the
array is created its size will be CONDSIZE.

DOC - A string that documents the item. String can be a C-style "double quoted” string, like:

"Selects the desired edge: TRUE means falling, FALSE means rising”

or a Python-style “triple quoted” string, which may include embedded newlines and quote charac-
ters, such as:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 277 /1322

"""The effect of this parameter, also known as "the orb of zot”,
will require at least two paragraphs to explain.

Hopefully these paragraphs have allowed you to understand "zot”
better.”"””

Or a string may be preceded by the literal character r, in which case the string is interpreted like a
Python raw-string.

The documentation string is in “groff -man” format. For more information on this markup format, see
groff man(7). Remember that halcompile interprets backslash escapes in strings, so for instance to
set the italic font for the word example, write:

"\\fIexample\\fB"

In this case, r-strings are particularly useful, because the backslashes in an r-string need not be
doubled:

r”"\fIexample\fB”

e TYPE - One of the HAL types: bit, s32, u32, s64, u64 or float. The names signed and unsigned may
also be used for s32 and u32 but s32 and u32 are preferred.

PINDIRECTION - One of the following: in, out, or io. A component sets a value for an out pin, it
reads a value from an in pin, and it may read or set the value of an io pin.

PARAMDIRECTION - One of the following: r or rw. A component sets a value for a r parameter, and
it may read or set the value of a rw parameter.

STARTVALUE - Specifies the initial value of a pin or parameter. If it is not specified, then the default
is 0 or FALSE, depending on the type of the item.

HEADERFILE - The name of a header file, either in double-quotes (include "myfile.h”;) or in
angle brackets (include <systemfile.h>;). The header file will be included (using C’s #include)
at the top of the file, before pin and parameter declarations.

5.9.8.1 HAL functions

* fp - Indicates that the function performs floating-point calculations.

* nofp - Indicates that it only performs integer calculations. If neither is specified, fp is assumed.
Neither halcompile nor gcc can detect the use of floating-point calculations in functions that are
tagged nofp, but the use of such operations results in undefined behavior.

5.9.8.2 Options
The currently defined options are:

* option singleton yes - (default: no)
Do not create a count module parameter, and always create a single instance. With singleton, items
are named component-name.item-name and without singleton, items for numbered instances are
named component-name.<num>.item-name.

* option default_count number - (default: 1)
Normally, the module parameter count defaults to 1. If specified, the count will default to this value
instead.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 278 /1322

* option count_function yes - (default: no)
Normally, the number of instances to create is specified in the module parameter count; if count function
is specified, the value returned by the function int get count(void) is used instead, and the count
module parameter is not defined.

* option rtapi_app no - (default: yes)
Normally, the functions rtapi app main() and rtapi app exit() are automatically defined. With
option rtapi_app no, they are not, and must be provided in the C code. Use the following prototypes:

‘int rtapi_app_main(void); "’

‘void rtapi app exit(void);‘’

When implementing your own rtapi app main(), call the function int export(char *prefix,
long extra arg) to register the pins, parameters, and functions for prefix.

e option data TYPE - (default: none) deprecated
If specified, each instance of the component will have an associated data block of type TYPE (which
can be a simple type like float or the name of a type created with typedef). In new components,
variable should be used instead.

* option extra_setup yes - (default: no)
If specified, call the function defined by EXTRA SETUP for each instance. If using the automatically
defined rtapi app main, extra_arg is the number of this instance.

* option extra cleanup yes - (default: no)
If specified, call the function defined by EXTRA CLEANUP from the automatically defined rtapi_app exit
or, in case of a detected error, in the automatically defined rtapi app main.

* option userspace yes - (default: no)

If specified, this file describes a non-realtime (formerly known as “userspace”) component, rather
than a regular (i.e., realtime) one. A non-realtime component may not have functions defined
by the function directive. Instead, after all the instances are constructed, the C function void
user mainloop(void); is called. When this function returns, the component exits. Typically,
user _mainloop() will use FOR ALL INSTS() to perform the update action for each instance, then
sleep for a short time. Another common action in user mainloop() may be to call the event handler
loop of a GUI toolkit.

* option userinit yes - (default: no)
This option is ignored if the option userspace (see above) is set to no. If userinit is specified, the
function userinit(argc,argv) is called before rtapi app main() (and thus before the call to hal init()
). This function may process the commandline arguments or take other actions. Its return type is
void; it may call exit() if it wishes to terminate rather than create a HAL component (e.g., because
the commandline arguments were invalid).

* option extra link_args ”...” - (default: ””)
This option is ignored if the option userspace (see above) is set to no. When linking a non-realtime
component, the arguments given are inserted in the link line. Note that because compilation takes
place in a temporary directory, ”-L.” refers to the temporary directory and not the directory where
the .comp source file resides. This option can be set in the halcompile command-line with -extra-
link-args="-L.....”. This alternative provides a way to set extra flags in cases where the input file is
a .c file rather than a .comp file.

* option extra_compile args ”...” - (default: ””)
This option is ignored if the option userspace (see above) is set to no. When compiling a non-realtime
component, the arguments given are inserted in the compiler command line. If the input fileis a .c
file this option can be set in the halcompile command-line with --extra-compile-args="-I.....”. This
alternative provides a way to set extra flags in cases where the input file is a .c file rather than a
.comp file.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 279 /1322

* option homemod yes - (default: no)
Module is a custom Homing module loaded using [EMCMOT]JHOMEMOD=modulename .

* option tpmod yes - (default: no)
Module is a custom Trajectory Planning (tp) module loaded using [TRAJ]TPMOD=modulename .

* option period no - (default: yes)
Control the implicit period parameter of the function(s) defined in the component. A standard
function has an implicit parameter period. Many components do no use the period parameter and
would cause a “unused parameter” compiler warning. Setting option period no creates a function
declaration omitting the period parameter preventing the warning. Setting this option will also
prevent fperiod from being defined, as it depends on period.

If an option’s VALUE is not specified, then it is equivalent to specifying option ... yes.
The result of assigning an inappropriate value to an option is undefined.
The result of using any other option is undefined.

5.9.8.3 License and Authorship

* LICENSE - Specify the license of the module for the documentation and for the MODULE LICENSE()
module declaration. For example, to specify that the module’s license is GPL v2 or later:

‘license "GPL"; // indicates GPL v2 or later‘

For additional information on the meaning of MODULE LICENSE() and additional license identi-
fiers, see <linux/module.h> or the manual page rtapi module param(3).

This declaration is required.

* AUTHOR - Specify the author of the module for the documentation.

5.9.8.4 Per-instance data storage

* variable CTYPE STARREDNAME; + variable CTYPE STARREDNAME[SIZE]; + variable CTYPE STARRED
= DEFAULT; + variable CTYPE STARREDNAME([SIZE] = DEFAULT;

Declare a per-instance variable STARREDNAME of type CTYPE, optionally as an array of SIZE items,
and optionally with a default value DEFAULT. Items with no DEFAULT are initialized to all-bits-zero.
CTYPE is a simple one-word C type, such as float, u32, s32, int, etc. Access to array variables
uses square brackets.

If a variable is to be of a pointer type, there may not be any space between the "*” and the variable
name. Therefore, the following is acceptable:

variable int *example;

But the following are not:

variable int* badexample;
variable int * badexample;

5.9.8.5 Comments

C++-style one-line comments (//...) and C-style multi-line comments (/* ... */) are both sup-
ported in the declaration section.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 280/1322

5.9.9 Restrictions

Though HAL permits a pin, a parameter, and a function to have the same name, halcompile does not.

Variable and function names that can not be used or are likely to cause problems include:

* Anything beginning with comp.
e comp id

e fperiod

* rtapi_app_main

* rtapi_app_exit

* extra setup

* extra cleanup

5.9.10 Convenience Macros

Based on the items in the declaration section, halcompile creates a C structure called struct _ comp state.
However, instead of referring to the members of this structure (e.g., *(inst->name)), they will gen-
erally be referred to using the macros below. The details of struct _ comp state and these macros

may change from one version of halcompile to the next.

e FUNCTION(~ name_) - Use this macro to begin the definition of a realtime function, which was
previously declared with function NAME. The function includes a parameter period which is the
integer number of nanoseconds between calls to the function. See also option period above.

e EXTRA SETUP() - Use this macro to begin the definition of the function called to perform extra setup
of this instance. Return a negative UNIX errno value to indicate failure (e.g., return -EBUSY on
failure to reserve an I/O port), or O to indicate success.

* EXTRA CLEANUP() - Use this macro to begin the definition of the function called to perform extra
cleanup of the component. Note that this function must clean up all instances of the component,
not just one. The “pin name”, “parameter name”, and “data” macros may not be used here.

e pin_name or parameter name - For each pin pin_name or param parameter name there is a macro
which allows the name to be used on its own to refer to the pin or parameter. When pin_name or
parameter name is an array, the macro is of the form pin name(idx) or param name(idx), where idx
is the index into the pin array. When the array is a variable-sized array, it is only legal to refer to
items up to its condsize.

When the item is a conditional item, it is only legal to refer to it when its condition evaluated to a
nonzero value.

» variable name - For each variable variable name there is a macro which allows the name to be used
on its own to refer to the variable. When variable name is an array, the normal C-style subscript is
used: variable name[idx].

* data - If "option data” is specified, this macro allows access to the instance data.

* fperiod - The floating-point number of seconds between calls to this realtime function. See also
option period above.

e FOR ALL INSTS() {...} - For non-realtime components. This macro iterates over all the defined
instances. Inside the body of the loop, the pin name, parameter name, and data macros work as
they do in realtime functions.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 281 /1322

5.9.11 Components with one function

If a component has only one function and the string "FUNCTION” does not appear anywhere after ;;,
then the portion after ; ; is all taken to be the body of the component’s single function. See the Simple
Comp for an example of this.

5.9.12 Component Personality

If a component has any pins or parameters with an ”if condition” or “[maxsize : condsize]”, it is called a
component with personality. The personality of each instance is specified when the module is loaded.
Personality can be used to create pins only when needed. For instance, personality is used in the logic
component, to allow for a variable number of input pins to each logic gate and to allow for a selection
of any of the basic boolean logic functions and, or, and xor.

The default number of allowed personality items is a compile-time setting (64). The default applies to
numerous components included in the distribution that are built using halcompile.

To alter the allowed number of personality items for user-built components, use the --personalities
option with halcompile. For example, to allow up to 128 personality times:

[sudo] halcompile --personalities=128 --install ...

When using components with personality, normal usage is to specify a personality item for each spec-
ified component instance. Example for 3 instances of the logic component:

loadrt logic names=and4,or3,nand5, personality=0x104,0x203,0x805

Note

If a loadrt line specifies more instances than personalities, the instances with unspecified personal-
ities are assigned a personality of 0. If the requested number of instances exceeds the number of
allowed personalities, personalities are assigned by indexing modulo the number of allowed person-
alities. A message is printed denoting such assignments.

5.9.13 Examples

5.9.13.1 constant

Note that the declaration "function ” creates functions named ”constant.0”, etc. The file name must
match the component name.

component constant;

pin out float out;

param r float value = 1.0;
option period no;

function ;

license "GPL"”; // indicates GPL v2 or later

FUNCTION() { out = value; }

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 282 /1322

5.9.13.2 sincos

This component computes the sine and cosine of an input angle in radians. It has different capabilities
than the ”sine” and ”cosine” outputs of siggen, because the input is an angle, rather than running
freely based on a “frequency” parameter.

The pins are declared with the names sin_and cos_in the source code so that they do not interfere
with the functions sin() and cos(). The HAL pins are still called sincos.<num>.sin.

component sincos;

pin out float sin ;

pin out float cos_;

pin in float theta;

option period no;

function ;

license "GPL"”; // indicates GPL v2 or later

#include <rtapi math.h>

FUNCTION() { sin_ = sin(theta); cos_ = cos(theta); }

5.9.13.3 out8

This component is a driver for a fictional card called “out8”, which has 8 pins of digital output which
are treated as a single 8-bit value. There can be a varying number of such cards in the system, and they
can be at various addresses. The pin is called out because out is an identifier used in <asm/io.h>. It
illustrates the use of EXTRA SETUP and EXTRA CLEANUP to request an I/O region and then free it
in case of error or when the module is unloaded.

component out8;
pin out unsigned out_ "Output value; only low 8 bits are used”;
param r unsigned ioaddr;

function _;

option period no;
option count function;
option extra setup;
option extra cleanup;
option constructable no;

license "GPL"”; // indicates GPL v2 or later
#include <asm/io.h>

#define MAX 8
int io[MAX] = {0,};
RTAPI_MP_ARRAY INT(io, MAX, "I/0 addresses of out8 boards”);

int get count(void) {
int 1 = 0;
for(i=0; i<MAX && io[i]; i++) { /* Nothing */ }
return i;

}

EXTRA SETUP() {
if(!rtapi_request region(io[extra arg], 1, "out8”)) {
// set this I/0 port to O so that EXTRA CLEANUP does not release the IO
// ports that were never requested.
io[extra_arg] = 0;
return -EBUSY;

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

283 /1322

ioaddr = io[extra_argl;

return 0;
}
EXTRA_CLEANUP() {
int i;
for(i=0; i < MAX && io[i]; i++) {
rtapi_release region(io[i], 1);
}
}

FUNCTION() { outb(out , ioaddr); }

5.9.13.4 hal_loop

component hal loop;
pin out float example;

This fragment of a component illustrates the use of the hal prefix in a component name.

loop is a common name, and the hal prefix avoids potential name collisions with other unrelated
software. For example, on RTAI realtime systems realtime code runs in the kernel, so if the component

were named just loop it could easily conflict with the standard loop kernel module.

When loaded, halemd show comp will show a component called hal loop. However, the pin shown by

halecmd show pin will be loop.0.example, not hal-loop.0.example.

5.9.13.5 arraydemo

This realtime component illustrates use of fixed-size arrays:

component arraydemo "4-bit Shift register”;
pin in bit in;

pin out bit out-# [4];

option period no;

function nofp;

license "GPL"”; // indicates GPL v2 or later

int i;
for(i=3; i>0; i--) out(i) = out(i-1);
out(0) = in;

5.9.13.6 rand

This non-realtime component changes the value on its output pin to a new random value in the range

(0,1) about once every 1 ms.

component rand;
option userspace;

pin out float out;

license "GPL"”; // indicates GPL v2 or later

r

#include <unistd.h>

void user _mainloop(void) {

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 284 /1322

while(1l) {
usleep(1000);
FOR _ALL INSTS() out = drand48();

5.9.13.7 logic (using personality)

This realtime component shows how to use ”"personality” to create variable-size arrays and optional
pins.

component logic ”LinuxCNC HAL component providing experimental logic functions”;
pin in bit in-##[16 : personality & Oxff];

pin out bit and if personality & 0x100;

pin out bit or if personality & 0x200;

pin out bit xor if personality & 0x400;

option period no;

function _ nofp;

description """

Experimental general ’'logic function’ component. Can perform ’'and’, 'or’
and ’'xor’ of up to 16 inputs. Determine the proper value for ’'personality’
by adding:

.IP \\(bu 4

The number of input pins, usually from 2 to 16

.IP \\(bu

256 (0x100) if the ’'and’ output is desired

.IP \\(bu

512 (0x200) if the ’'or’ output is desired

.IP \\(bu

1024 (0x400) if the 'xor’ (exclusive or) output is desired”””;
license "GPL"”; // indicates GPL v2 or later

FUNCTION() {

int i, a=1, 0=0, x=0;

for(i=0; i < (personality & Oxff); i++) {
if(in(i)) { o =1; x = !x; }
else { a =0; }

}

if(personality & 0x100) and = a;

if(personality & 0x200) or g

if(personality & 0x400) xor = Xx;

]
o

A typical load line for this component might be
loadrt logic count=3 personality=0x102,0x305,0x503

which creates the following pins:

e A 2-input AND gate: logic.0.and, logic.0.in-00, logic.0.in-01

¢ 5-input AND and OR gates: logic.1.and, logic.1l.0or, logic.1.in-00, logic.1.in-01, logic.1.in-02,
logic.1.in-03, logic.1.1in-04,

e 3-input AND and XOR gates: logic.2.and, logic.2.xor, logic.2.in-00, logic.2.in-01, logic.2.in-0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 285/1322

5.9.13.8 General Functions

This example shows how to call functions from the main function. It also shows how to pass reference
of HAL pins to those functions.

component example;
pin in s32 in;

pin out bit outl;
pin out bit out2;

option period no;
function _;

license "GPL";

r

// general pin set true function
void set(hal bit t *p){

*p:l;
}

// general pin set false function
void unset(hal bit t *p){

*p=0;
}

//main function
FUNCTION() {
if (in < 0){
set(&outl);
unset(&out2);
}else if (in >0){
unset (&out2);
set(&out2);
}else{
unset (&outl);
unset(&out2);

This component uses two general function to manipulate a HAL bit pin referenced to it.

5.9.14 Command Line Usage

The halcompile man page gives details for invoking halcompile.

$ man halcompile

A brief summary of halcompile usage is given by:

$ halcompile --help

5.10 HALTCL Files

halcmd excels in specifying components and connections but these scripts offer no computational
capabilities. As a result, INI files are limited in the clarity and brevity that is possible with higher
level languages.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 286 /1322

The haltcl facility provides a means to use Tcl scripting and its features for computation, looping,
branching, procedures, etc. in INI files. To use this functionality, you use the Tcl language and the
extension .tcl for HAL files.

The .tcl extension is understood by the main script (Linuxcnc) that processes INI files. Haltcl files
are identified in the the HAL section of INI files (just like HAL files).

Example

[HAL]
HALFILE
HALFILE

conventional file.hal
tcl based file.tcl

With appropriate care, HAL and Tcl files can be intermixed.

5.10.1 Compatibility

The halcmd language used in HAL files has a simple syntax that is actually a subset of the more
powerful general-purpose Tcl scripting language.

5.10.2 Haltcl Commands

Haltcl files use the Tcl scripting language augmented with the specific commands of the LinuxCNC
hardware abstraction layer (HAL). The HAL-specific commands are:

addf, alias,
delf, delsig,
getp, gets
ptype,

stype,

help,

linkpp, linkps, linksp, list, loadrt, loadusr, lock,
net, newsig,

save, setp, sets, show, source, start, status, stop,
unalias, unlinkp, unload, unloadrt, unloadusr, unlock,
waitusr

Two special cases occur for the gets and list commands due to conflicts with Tcl builtin commands.
For haltcl, these commands must be preceded with the keyword hal:

halcmd haltcl

gets hal gets
list hal list

5.10.3 Haltcl INI-file variables

INI file variables are accessible by both halcmd and haltcl but with differing syntax. LinuxCNC INI
files use SECTION and ITEM specifiers to identify configuration items:

[SECTION A]
ITEM1 = value 1
ITEM2 = value 2

[SECTION B]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 287 /1322

The INI file values are accessible by text substitution in HAL files using the form:
[SECTION]ITEM

The same INI file values are accessible in Tcl files using the form of a Tcl global array variable:
$::SECTION(ITEM)

For example, an INTI file item like:

[JOINT 0]
MAX_VELOCITY = 4

is expressed as [JOINT O]MAX VELOCITY in HAL files for halcmd
and as $::JOINT O(MAX VELOCITY) in Tcl files for haltcl.

Because INI files can repeat the same ITEM in the same SECTION multiple times, $: : SECTION(ITEM)
is actually a Tcl list of each individual value.

When there is just one value and it is a simple value (all values that are just letters and numbers
without whitespace are in this group), then it is possible to treat $::SECTION(ITEM) as though it is
not a list.

When the value could contain special characters (quote characters, curly-brace characters, embedded
whitespace, and other characters that have special meaning in Tcl) then it is necessary to distinguish
between the list of values and the initial (and possibly only) value in the list.

In Tcl, this is written [lindex $::SECTION(ITEM) 0O].
For example: given the following INI values

[HOSTMOT2]

DRIVER=hm2 eth

IPADDR="10.10.10.10"

BOARD=7192

CONFIG="num encoders=0 num pwmgens=0 num_ stepgens=6"

And this loadrt command:
loadrt $::HOSTMOT2(DRIVER) board ip=$::HOSTMOT2(IPADDR) config=$::HOSTMOT2(CONFIG)

Here is the actual command that is run:

loadrt hm2_eth board ip={"10.10.10.10"} config={"num_encoders=0 num_pwmgens=0 num_stepgens <«
=6"}

This fails because loadrt does not recognize the braces.

So to get the values just as entered in the INI file, re-write the loadrt line like this:

loadrt $::HOSTMOT2(DRIVER) board ip=[lindex $::HOSTMOT2(IPADDR) 0] config=[lindex <«
$: :HOSTMOT2 (CONFIG) 0]

5.10.4 Converting HAL files to Tcl files

Existing HAL files can be converted to Tcl files by hand editing to adapt to the differences mentioned
above. The process can be automated with scripts that convert using these substitutions.

[SECTION]ITEM ---> $::SECTION(ITEM)
gets ---> hal gets
list ---> hal list

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 288 /1322

5.10.5 Haltcl Notes

In haltcl, the value argument for the sets and setp commands is implicitly treated as an expression in
the Tcl language.

Example

set gain to convert deg/sec to units/min for JOINT O radius
setp scale.0.gain 6.28/360.0*$::JOINT O(radius)*60.0

Whitespace in the bare expression is not allowed, use quotes for that:

setp scale.0.gain ”6.28 / 360.0 * $::JOINT O(radius) * 60.0"

In other contexts, such as loadrt, you must explicitly use the Tcl expr command ([expr {}]) for com-
putational expressions.

Example
loadrt motion base period=[expr {500000000/%::TRAJ(MAX PULSE RATE)}]

5.10.6 Haltcl Examples

Consider the topic of stepgen headroom. Software stepgen runs best with an acceleration constraint
that is ”a bit higher” than the one used by the motion planner. So, when using halcmd files, we force
INI files to have a manually calculated value.

[JOINT 0]
MAXACCEL = 10.0
STEPGEN MAXACCEL = 10.5

With haltcl, you can use Tcl commands to do the computation and eliminate the STEPGEN MAXACCEL
INI file item altogether:

setp stepgen.0.maxaccel $::JOINT O(MAXACCEL)*1.05

Another haltcl feature is looping and testing. For example, many simulator configurations use
“core_sim.hal” or “core sim9.hal” HAL files. These differ because of the requirement to connect more
or fewer axes. The following haltcl code would work for any combination of axes in a trivkins machine.

Create position, velocity and acceleration signals for each axis
set ddt 0
for {set jnum 0} {$jnum < $::KINS(JOINTS)} {incr jnum} {
'list pin’' returns an empty list if the pin doesn’t exist
if {[hal list pin joint.${jnum}.motor-pos-cmd] == {}} {
continue
}
net ${jnum}pos joint.${jnum}.motor-pos-cmd => joint.$axno.motor-pos-fb \
=> ddt.$ddt.in
net ${axis}vel <= ddt.$ddt.out
incr ddt
net ${axis}vel => ddt.$ddt.in
net ${axis}acc <= ddt.$ddt.out
incr ddt
}
puts [show sig *vell
puts [show sig *acc]

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 289 /1322

5.10.7 Haltcl Interactive

The halrun command recognizes haltcl files. With the -T option, haltcl can be run interaactively as a
Tcl interpreter. This capability is useful for testing and for standalone HAL applications.

Example
$ halrun -T haltclfile.tcl

5.10.8 Haltcl Distribution Examples (sim)

The configs/sim/axis/simtcl directory includes an INI file that uses a .tcl file to demonstrate a haltcl
configuration in conjunction with the usage of twopass processing. The example shows the use of Tcl
procedures, looping, the use of comments and output to the terminal.

5.11 HAL User Interface

5.11.1 Introduction

Halui is a HAL based user interface for LinuxCNC, it connects HAL pins to NML commands. Most of
the functionality (buttons, indicators etc.) that is provided by a traditional GUI (AXIS, GMOCCAFY,
QtDragon, etc.), is provided by HAL pins in Halui.

The easiest way to add halui is to add the following to the [HAL] section of the INI file:

[HAL]
HALUI = halui

An alternate way to invoke it (specially if you generate the configuration with StepConf) is to include
the following in your custom.hal file.
Make sure you use the correct path to your INI file.

loadusr halui -ini /path/to/inifile.ini

5.11.2 MDI

Sometimes the user wants to add more complicated tasks to be performed by the activation of a HAL
pin. This is possible by adding MDI commands to the INI file in the [HALUI] section. Example:

[HALUI]

MDI COMMAND = GO X0
MDI COMMAND = GO G53 Z0
MDI COMMAND = G28

= o<mysub>call

MDI_COMMAND

When halui starts it will read the MDI COMMAND fields in the INI and export pins from 00 to the number
of MDI COMMAND ’s found in the INI, up to a maximum of 64 commands. These pins can be connected
like any HAL pins. A common method is to use buttons provided by virtual control panels like shown
in the example Example for MDI COMMAND connections.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 290/1322

Example 5.1 Example for MDI COMMAND connections

HAL file

net quill-up halui.mdi-command-00 <= pyvcp.quillup

net reference-pos halui.mdi-command-01 <= pyvcp.referencepos
net call-mysub halui.mdi-command-02 <= pyvcp.callmysub

Nets connecting the halui.mdi-command-NN pins provided by halui.

$ halcmd show pin halui.mdi

Component Pins:

Owner Type Dir Value Name
10 bit IN FALSE halui.mdi-command-00 <== quill-up
10 bit IN FALSE halui.mdi-command-01 <== reference-pos
10 bit IN FALSE halui.mdi-command-02 <== call-mysub

When a halui MDI pin is set (pulsed) true, halui will send the MDI command defined in the INI. This
will not always succeed depending on the current operating mode (e.g., while in AUTO halui can’t
successfully send MDI commands).

5.11.3 Example Configuration

An example sim config (configs/sim/axis/halui pyvcp/halui.ini) is included in the distribution.

5.11.4 Halui Pin Reference

All halui pins are also documented in the halui man page:

$ man halui

Or see http://linuxcnc.org/docs/devel/html/man/manl/halui.1.html

5.11.4.1 Abort

halui.abort (bit, in) - pin to send an abort message (clears out most errors)

5.11.4.2 E-Stop

halui.estop.activate (bit, in) - pin for requesting E-Stop

halui.estop.is-activated (bit, out) - indicates E-stop reset

halui.estop.reset (bit, in) - pin for requesting E-Stop reset

5.11.4.3 Feed Override

halui.feed-override.count-enable (bit, in) - must be true for counts or direct-value to work.

halui.feed-override.counts (s32, in) - counts * scale = FO percentage. Can be used with an encoder
or direct-value.

halui.feed-override.decrease (bit, in) - pin for decreasing the FO (-=scale)

http://linuxcnc.org/docs/devel/html/man/man1/halui.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 291 /1322

* halui.feed-override.increase (bit, in) - pin for increasing the FO (+=scale)
* halui.feed-override.reset (bit, in) - pin for resetting the FO (scale=1.0)

* halui.feed-override.direct-value (bit, in) - false when using encoder to change counts, true when
setting counts directly.

* halui.feed-override.scale (float, in) - pin for setting the scale for increase and decrease of feed-
override.

e halui.feed-override.value (float, out) - current FO value

5.11.4.4 Mist

* halui.mist.is-on (bit, out) - indicates mist is on
* halui.mist.off (bit, in) - pin for requesting mist off

e halui.mist.on (bit, in) - pin for requesting mist on

5.11.4.5 Flood

* halui.flood.is-on (bit, out) - indicates flood is on
* halui.flood.off (bit, in) - pin for requesting flood off

* halui.flood.on (bit, in) - pin for requesting flood on

5.11.4.6 Homing

* halui.home-all (bit, in) - pin for requesting all axis to home. This pin will only be there if HOME SEQUENCE
is set in the INI file.

5.11.4.7 Machine

e halui.machine.units-per-mm (float out) - pin for machine units-per-mm (inch:1/25.4, mm:1) accord-
ing to inifile setting: [TRAJJLINEAR UNITS

* halui.machine.is-on (bit, out) - indicates machine on
* halui.machine.off (bit, in) - pin for requesting machine off

* halui.machine.on (bit, in) - pin for requesting machine on

5.11.4.8 Max Velocity

The maximum linear velocity can be adjusted from 0 to the MAX VELOCITY that is set in the [TRAJ]
section of the INI file.

* halui.max-velocity.count-enable (bit, in) - must be true for counts or direct-value to work.

* halui.max-velocity.counts (s32, in) - counts * scale = MV percentage. Can be used with an encoder
or direct-value.

* halui.max-velocity.direct-value (bit, in) - false when using encoder to change counts, true when
setting counts directly.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 292 /1322

* halui.max-velocity.decrease (bit, in) - pin for decreasing max velocity
* halui.max-velocity.increase (bit, in) - pin for increasing max velocity

e halui.max-velocity.scale (float, in) - the amount applied to the current maximum velocity with each
transition from off to on of the increase or decrease pin in machine units per second.

* halui.max-velocity.value (float, out) - is the maximum linear velocity in machine units per second.

5.11.4.9 MDI

* halui.mdi-command-<nn> (bit, in) - halui will try to send the MDI command defined in the INIL.
<nn> is a two digit number starting at 00.
If the command succeeds then it will place LinuxCNC in the MDI mode and then back to Manual
mode.
If no [HALUIIMDI COMMAND variables are set in the ini file, no halui.mdi-command-<nn> pins
will be exported by halui.

* halui.halui-mdi-is-running (bit, out) - execution status of MDI commands sent by halui. The status is
active even during mode switching. If no [HALUIIMDI COMMAND variables are set in the ini file,
this pins will not be exported by halui.

5.11.4.10 Joint

N = joint number (0 ... num joints-1)
Example:

e halui.joint.N.select (bit in) - pin for selecting joint N

* halui.joint.N.is-selected (bit out) - status pin that joint N is selected

* halui,joint.N.has-fault (bit out) - status pin telling that joint N has a fault
* halui joint.N.home (bit in) - pin for homing joint N

e halui.joint.N.is-homed (bit out) - status pin telling that joint N is homed

* halui.joint.N.on-hard-max-limit (bit out) - status pin telling that joint N is on the positive hardware
limit

* halui.joint.N.on-hard-min-limit (bit out) - status pin telling that joint N is on the negative hardware
limit

¢ halui.joint.N.on-soft-max-limit (bit out) - status pin telling that joint N is on the positive software
limit

* halui.joint.N.on-soft-min-limit (bit out) - status pin telling that joint N is on the negative software
limit

* halui joint.N.override-limits (bit out) - status pin telling that joint N’s limits are temporarily over-
ridden

* halui,joint.N.unhome (bit in) - pin for unhoming joint N

* halui joint.selected (u32 out) - selected joint number (0 ... num _joints-1)
* halui.joint.selected.has-fault (bit out) - status pin selected joint is faulted
* halui,joint.selected.home (bit in) - pin for homing the selected joint

e halui.joint.selected.is-homed (bit out) - status pin telling that the selected joint is homed

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 293 /1322

* halui.joint.selected.on-hard-max-limit (bit out) - status pin telling that the selected joint is on the
positive hardware limit

* halui.joint.selected.on-hard-min-limit (bit out) - status pin telling that the selected joint is on the
negative hardware limit

* halui.joint.selected.on-soft-max-limit (bit out) - status pin telling that the selected joint is on the
positive software limit

* halui,joint.selected.on-soft-min-limit (bit out) - status pin telling that the selected joint is on the
negative software limit

* halui.joint.selected.override-limits (bit out) - status pin telling that the selected joint’s limits are
temporarily overridden

* halui.joint.selected.unhome (bit in) - pin for unhoming the selected joint

5.11.4.11)oint Jogging
N = joint number (0 ... num joints-1)

* halui.joint jog-deadband (float in) - pin for setting jog analog deadband (jog analog inputs smaller/s-
lower than this - in absolute value - are ignored)
* halui.joint jog-speed (float in) - pin for setting jog speed for plus/minus jogging.

* halui.joint.N.analog (float in) - pin for jogging the joint N using a float value (e.g. joy-stick). The
value, typically set between 0.0 and *+1.0, is used as a jog-speed multiplier.

* halui joint.N.increment (float in) - pin for setting the jog increment for joint N when using increment-
plus/minus

* halui.joint.N.increment-minus (bit in) - a rising edge will will make joint N jog in the negative direc-
tion by the increment amount

* halui joint.N.increment-plus (bit in) - a rising edge will will make joint N jog in the positive direction
by the increment amount

* halui joint.N.minus (bit in) - pin for jogging joint N in negative direction at the halui.joint.jog-speed
velocity

e halui.joint.N.plus (bit in) - pin for jogging joint N in positive direction at the halui.joint.jog-speed
velocity

* halui.joint.selected.increment (float in) - pin for setting the jog increment for the selected joint when
using increment-plus/minus

* halui joint.selected.increment-minus (bit in) - a rising edge will will make the selected joint jog in
the negative direction by the increment amount

* halui.joint.selected.increment-plus (bit in) - a rising edge will will make the selected joint jog in the
positive direction by the increment amount

¢ halui.joint.selected.minus (bit in) - pin for jogging the selected joint in negative direction at the
halui.joint.jog-speed velocity

* halui.joint.selected.plus (bit in) - pin for jogging the selected joint in positive direction at the halui.joint.jog-
speed velocity

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 294 /1322

5.11.4.12 Axis
L = axis letter (xyzabcuvw)

* halui.axis.L.select (bit) - pin for selecting axis by letter

e halui.axis.L.is-selected (bit out) - status pin that axis L is selected

¢ halui.axis.L.pos-commanded (float out) - Commanded axis position in machine coordinates
* halui.axis.L.pos-feedback float out) - Feedback axis position in machine coordinates

* halui.axis.L.pos-relative (float out) - Feedback axis position in relative coordinates

5.11.4.13 Axis Jogging
L = axis letter (xyzabcuvw)

* halui.axis.jog-deadband (float in) - pin for setting jog analog deadband (jog analog inputs smaller/s-
lower than this (in absolute value) are ignored)

* halui.axis jog-speed (float in) - pin for setting jog speed for plus/minus jogging.

* halui.axis.L.analog (float in) - pin for jogging the axis L using an float value (e.g. joystick). The
value, typically set between 0.0 and =1.0, is used as a jog-speed multiplier.

* halui.axis.L.increment (float in) - pin for setting the jog increment for axis L when using increment-
plus/minus

e halui.axis.L.increment-minus (bit in) - a rising edge will will make axis L jog in the negative direction
by the increment amount

* halui.axis.L.increment-plus (bit in) - a rising edge will will make axis L jog in the positive direction
by the increment amount

e halui.axis.L.minus (bit in) - pin for jogging axis L in negative direction at the halui.axis.jog-speed
velocity

* halui.axis.L.plus (bit in) - pin for jogging axis L in positive direction at the halui.axis.jog-speed ve-
locity

* halui.axis.selected (u32 out) - selected axis (by index: 0:x 1:y 2:z 3:a 4:b 5:cr 6:u 7:v 8:w)

* halui.axis.selected.increment (float in) - pin for setting the jog increment for the selected axis when
using increment-plus/minus

* halui.axis.selected.increment-minus (bit in) - a rising edge will will make the selected axis jog in the
negative direction by the increment amount

* halui.axis.selected.increment-plus (bit in) - a rising edge will will make the selected axis jog in the
positive direction by the increment amount

e halui.axis.selected.minus (bit in) - pin for jogging the selected axis in negative direction at the
halui.axis.jog-speed velocity

* halui.axis.selected.plus (pin in) - for jogging the selected axis bit in in positive direction at the
halui.axis.jog-speed velocity

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 295/1322

5.11.4.14 Mode

e halui.mode.auto (bit, in) - pin for requesting auto mode

¢ halui.mode.is-auto (bit, out) - indicates auto mode is on

e halui.mode.is-joint (bit, out) - indicates joint by joint jog mode is on
* halui.mode.is-manual (bit, out) - indicates manual mode is on

* halui.mode.is-mdi (bit, out) - indicates MDI mode is on

e halui.mode.is-teleop (bit, out) - indicates coordinated jog mode is on
e halui.mode joint (bit, in) - pin for requesting joint by joint jog mode
¢ halui.mode.manual (bit, in) - pin for requesting manual mode

¢ halui.mode.mdi (bit, in) - pin for requesting MDI mode

¢ halui.mode.teleop (bit, in) - pin for requesting coordinated jog mode

5.11.4.15 Program

* halui.program.block-delete.is-on (bit, out) - status pin telling that block delete is on
e halui.program.block-delete.off (bit, in) - pin for requesting that block delete is off

e halui.program.block-delete.on (bit, in) - pin for requesting that block delete is on

* halui.program.is-idle (bit, out) - status pin telling that no program is running

e halui.program.is-paused (bit, out) - status pin telling that a program is paused

* halui.program.is-running (bit, out) - status pin telling that a program is running

e halui.program.optional-stop.is-on (bit, out) - status pin telling that the optional stop is on
e halui.program.optional-stop.off (bit, in) - pin requesting that the optional stop is off
e halui.program.optional-stop.on (bit, in) - pin requesting that the optional stop is on
e halui.program.pause (bit, in) - pin for pausing a program

e halui.program.resume (bit, in) - pin for resuming a paused program

e halui.program.run (bit, in) - pin for running a program

e halui.program.step (bit, in) - pin for stepping in a program

¢ halui.program.stop (bit, in) - pin for stopping a program

5.11.4.16 Rapid Override

* halui.rapid-override.count-enable (bit in (default: TRUE)) - When TRUE, modify Rapid Override
when counts changes.

e halui.rapid-override.counts (s32 in) - counts X scale = Rapid Override percentage. Can be used
with an encoder or direct-value.

* halui.rapid-override.decrease (bit in) - pin for decreasing the Rapid Override (-=scale)

e halui.rapid-override.direct-value (bit in) - pin to enable direct value Rapid Override input

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 296 /1322

* halui.rapid-override.increase (bit in) - pin for increasing the Rapid Override (+=scale)
* halui.rapid-override.scale (float in) - pin for setting the scale on changing the Rapid Override
* halui.rapid-override.value (float out) - current Rapid Override value

* halui.rapid-override.reset (bit, in) - pin for resetting the Rapid Override value (scale=1.0)

5.11.4.17 Spindle Override

e halui.spindle.N.override.count-enable (bit, in) - must be true for counts or direct-value to work.

e halui.spindle.N.override.counts (s32, in) - counts * scale = SO percentage. Can be used with an
encoder or direct-value.

* halui.spindle.N.override.decrease (bit, in) - pin for decreasing the SO (-=scale)

* halui.spindle.N.override.direct-value (bit, in) - false when using encoder to change counts, true
when setting counts directly.

* halui.spindle.N.override.increase (bit, in) - pin for increasing the SO (+=scale)
* halui.spindle.N.override.scale (float, in) - pin for setting the scale on changing the SO
e halui.spindle.N.override.value (float, out) - current SO value

* halui.spindle.N.override.reset (bit, in) - pin for resetting the SO value (scale=1.0)

5.11.4.18 Spindle

* halui.spindle.N.brake-is-on (bit, out) - indicates brake is on

e halui.spindle.N.brake-off (bit, in) - pin for deactivating spindle/brake

* halui.spindle.N.brake-on (bit, in) - pin for activating spindle-brake

* halui.spindle.N.decrease (bit, in) - decreases spindle speed

e halui.spindle.N.forward (bit, in) - starts the spindle with CW motion

e halui.spindle.N.increase (bit, in)- increases spindle speed

* halui.spindle.N.is-on (bit, out) - indicates spindle is on (either direction)

e halui.spindle.N.reverse (bit, in)- starts the spindle with a CCW motion

e halui.spindle.N.runs-backward (bit, out) - indicates spindle is on, and in reverse
e halui.spindle.N.runs-forward (bit, out) - indicates spindle is on, and in forward
e halui.spindle.N.start (bit, in) - starts the spindle

e halui.spindle.N.stop (bit, in) - stops the spindle

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 297 /1322

5.11.4.19 Tool

* halui.tool.length-offset.a (float out) - current applied tool length offset for the A axis
* halui.tool.length-offset.b (float out) - current applied tool length offset for the B axis
* halui.tool.length-offset.c (float out) - current applied tool length offset for the C axis
e halui.tool.length-offset.u (float out) - current applied tool length offset for the U axis
* halui.tool.length-offset.v (float out) - current applied tool length offset for the V axis
e halui.tool.length-offset.w (float out) - current applied tool length offset for the W axis
e halui.tool.length-offset.x (float out) - current applied tool length offset for the X axis
e halui.tool.length-offset.y (float out) - current applied tool length offset for the Y axis
e halui.tool.length-offset.z (float out) - current applied tool length offset for the Z axis
* halui.tool.diameter (float out) - Current tool diameter, or 0 if no tool is loaded.

e halui.tool.number (u32, out) - indicates current selected tool

5.12 Halui Examples

For any Halui examples to work you need to add the following line to the [HAL] section of the INI file.
HALUI = halui

5.12.1 Remote Start

To connect a remote program start button to LinuxCNC you use the halui.program. run pin and the
halui.mode.auto pin. You have to ensure that it is OK to run first by using the halui.mode.is-auto
pin. You do this with an and2 component. The following figure shows how this is done. When the
Remote Run Button is pressed it is connected to both halui.mode.auto and and2.0.in0. If it is OK
for auto mode the pin halui.mode.is-auto will be on. If both the inputs to the and2.0 component
are on the and2.0.out will be on and this will start the program.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 298 /1322

Femote
Hun Btn

| halui.made, auta

and?.0.ind

halui.mode.is-auta andZ.0.in

andz.0ouf hialui.program.run

Figure 5.20: Remote Start Example

The hal commands needed to accomplish the above are:

net program-start-btn halui.mode.auto and2.0.in® <= <your input pin>
net program-run-ok and2.0.inl <= halui.mode.is-auto
net remote-program-run halui.program.run <= and2.0.out

Notice on line one that there are two reader pins, this can also be split up to two lines like this:

net program-start-btn halui.mode.auto <= <your input pin>
net program-start-btn and2.0.in0

5.12.2 Pause & Resume

This example was developed to allow LinuxCNC to move a rotary axis on a signal from an external
machine. The coordination between the two systems will be provided by two Halui components:

e halui.program.is-paused

e halui.program.resume

In your customized HAL file, add the following two lines that will be connected to your I/O to turn on
the program pause or to resume when the external system wants LinuxCNC to continue.

net ispaused halui.program.is paused => "your output pin”
net resume halui.program.resume <= "your input pin”

Your input and output pins are connected to the pins wired to the other controller. They may be
parallel port pins or any other I/O pins that you have access to.

This system works in the following way. When an MO is encountered in your G-code, the halui.program.is-|
signal goes true. This turns on your output pin so that the external controller knows that LinuxCNC
is paused.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 299 /1322

To resume the LinuxCNC G-code program, when the external controller is ready it will make its output
true. This will signal LinuxCNC that it should resume executing G-code.

Difficulties in timing

* The "resume” input return signal should not be longer than the time required to get the G-code
running again.

* The ”is-paused” output should no longer be active by the time the “resume” signal ends.

These timing problems could be avoided by using ClassicLadder to activate the ”is-paused” output via
a monostable timer to deliver one narrow output pulse. The “resume” pulse could also be received
via a monostable timer.

5.13 Creating Non-realtime Python Components

This section explains principles behind the implementation of HAL components with the Python pro-
gramming language.

5.13.1 Basic usage example

A non-realtime component begins by creating its pins and parameters, then enters a loop which will
periodically drive all the outputs from the inputs. The following component copies the value seen on
its input pin (passthrough.in) to its output pin (passthrough.out) approximately once per second.

#!/usr/bin/env python3
import hal, time
h = hal.component(”passthrough”)
h.newpin(”in”, hal.HAL FLOAT, hal.HAL IN)
h.newpin(”out”, hal.HAL FLOAT, hal.HAL OUT)
h.ready()
try:
while 1:
time.sleep(1)
h['out’] = h['in"]
except KeyboardInterrupt:
raise SystemExit

Copy the above listing into a file named ”"passthrough”, make it executable (chmod +x), and place it
on your $PATH. Then try it out:

Screen copy with details on the execution of the newly created passthrough HAL module.
$ halrun

halcmd: loadusr passthrough
halcmd: show pin

Component Pins:

Owner Type Dir Value Name
03 float IN 0 passthrough.in
03 float OUT 0 passthrough.out

halcmd: setp passthrough.in 3.14

halcmd: show pin

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 300/1322

Component Pins:

Owner Type Dir Value Name
03 float IN 3.14 passthrough.in
03 float OUT 3.14 passthrough.out

5.13.2 Non-realtime components and delays

If you typed “show pin” quickly, you may see that passthrough.out still had its old value of 0. This is
because of the call to time.sleep(1), which makes the assignment to the output pin occur at most once
per second. Because this is a non-realtime component, the actual delay between assignments can be
much longer if the memory used by the passthrough component is swapped to disk, as the assignment
could be delayed until that memory is swapped back in.

Thus, non-realtime components are suitable for user-interactive elements such as control panels (de-
lays in the range of milliseconds are not noticed, and longer delays are acceptable), but not for sending
step pulses to a stepper driver board (delays must always be in the range of microseconds, no matter
what).

5.13.3 Create pins and parameters

h = hal.component(”passthrough”)

The component itself is created by a call to the constructor hal.component. The arguments are the
HAL component name and (optionally) the prefix used for pin and parameter names. If the prefix is
not specified, the component name is used.

h.newpin(”in”, hal.HAL FLOAT, hal.HAL IN)

Then pins are created by calls to methods on the component object. The arguments are: pin name suf-
fix, pin type, and pin direction. For parameters, the arguments are: parameter name suffix, parameter
type, and parameter direction.

Table 5.33: HAL Option Names

Pin and Parameter Types: HAL BIT HAL FLOAT | HAL S32 HAL U32
HAL_S64 HAL Uo64 Pin HAL IN HAL OUT
Directions:
HAL_IO Parameter
Directions:
HAL RO HAL RW
The full pin or parameter name is formed by joining the prefix and the suffix with a ”.”, so in the

example the pin created is called passthrough.in.

h.ready()

Once all the pins and parameters have been created, call the .ready() method.

5.13.3.1 Changing the prefix

The prefix can be changed by calling the .setprefix() method. The current prefix can be retrieved by
calling the .getprefix() method.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 301/1322

5.13.4 Reading and writing pins and parameters

For pins and parameters which are also proper Python identifiers, the value may be accessed or set
using the attribute syntax:

h.out = h.in

For all pins, whether or not they are also proper Python identifiers, the value may be accessed or set
using the subscript syntax:

h[{’'out’] = h["in"]

To see all pins with their values, getpins returns all values in a dictionary of that component.

h.getpins()
>>>{'in’': 0.0, 'out’: 0.0}

5.13.4.1 Driving output (HAL_OUT) pins

Periodically, usually in response to a timer, all HAL. OUT pins should be “driven” by assigning them a
new value. This should be done whether or not the value is different than the last one assigned. When
a pin is connected to a signal, its old output value is not copied into the signal, so the proper value
will only appear on the signal once the component assigns a new value.

5.13.4.2 Driving bidirectional (HAL_IO) pins

The above rule does not apply to bidirectional pins. Instead, a bidirectional pin should only be driven
by the component when the component wishes to change the value. For instance, in the canonical
encoder interface, the encoder component only sets the index-enable pin to FALSE (when an index
pulse is seen and the old value is TRUE), but never sets it to TRUE. Repeatedly driving the pin FALSE
might cause the other connected component to act as though another index pulse had been seen.

5.13.5 Exiting

A halcmd unload request for the component is delivered as a KeyboardInterrupt exception. When an
unload request arrives, the process should either exit in a short time, or call the .exit() method on
the component if substantial work (such as reading or writing files) must be done to complete the
shutdown process.

5.13.6 Helpful Functions

See Python HAL Interface for an overview of available functions.

5.13.7 Constants
Use these to specify details rather then the value they hold.

« HAL BIT
« HAL FLOAT
« HAL S32

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

302/1322

« HAL U32

« HAL S64
 HAL U64

« HAL IN

« HAL OUT

« HAL RO

« HAL RW

« MSG_NONE
« MSG_ALL

« MSG DBG
« MSG_ERR
« MSG_INFO
« MSG_WARN

5.13.8 System Information

Read these to acquire information about the realtime system.

 is kernelspace
e is 1t
e is sim

* is userspace

5.14 Canonical Device Interfaces

5.14.1 Introduction

The following sections show the pins, parameters, and functions that are supplied by ”“canonical de-
vices”. All HAL device drivers should supply the same pins and parameters, and implement the same

behavior.

Note that only the <io-type> and <specific-name> fields are defined for a canonical device. The
_<device-name>, <device-num> , and <chan-num>_fields are set based on the characteristics of

the real device.

5.14.2 Digital Input

The canonical digital input (I/O type field: digin) is quite simple.

5.14.2.1 Pins

(bit) in:: State of the hardware input. (bit) in-not:: Inverted state of the input.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 303/1322

5.14.2.2 Parameters

None

5.14.2.3 Functions

(funct) read:: Read hardware and set in and in-not HAL pins.

5.14.3 Digital Output

The canonical digital output (I/O type field: digout) is also very simple.

5.14.3.1 Pins

(bit) out:: Value to be written (possibly inverted) to the hardware output.

5.14.3.2 Parameters

(bit) invert:: If TRUE, out is inverted before writing to the hardware.

5.14.3.3 Functions

(funct) write:: Read out and invert, and set hardware output accordingly.

5.14.4 Analog Input

The canonical analog input (I/O type: adcin). This is expected to be used for analog to digital con-
verters, which convert e.g. voltage to a continuous range of values.

5.14.4.1 Pins

(float) value:: The hardware reading, scaled according to the scale and offset parameters.
value = ((input reading, in hardware-dependent units) * scale) - offset

5.14.4.2 Parameters

(float) scale:: The input voltage (or current) will be multiplied by scale before being output to value.
(float) offset:: This will be subtracted from the hardware input voltage (or current) after the scale
multiplier has been applied. (float) bit_weight:: The value of one least significant bit (LSB). This is
effectively the granularity of the input reading. (float) hw_offset:: The value present on the input
when 0 Volts is applied to the input pin(s).

5.14.4.3 Functions

(funct) read:: Read the values of this analog input channel. This may be used for individual channel
reads, or it may cause all channels to be read.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 304 /1322

5.14.5 Analog Output

The canonical analog output (I/O Type: adcout). This is intended for any kind of hardware that can
output a more-or-less continuous range of values. Examples are digital to analog converters or PWM
generators.

5.14.5.1 Pins

(float) value:: The value to be written. The actual value output to the hardware will depend on the
scale and offset parameters. (bit) enable:: If false, then output O to the hardware, regardless of the
value pin.

5.14.5.2 Parameters

(float) offset:: This will be added to the value before the hardware is updated. (float) scale:: This
should be set so that an input of 1 on the value pin will cause the analog output pin to read 1 volt.
(float) high_limit (optional):: When calculating the value to output to the hardware, if value + off-
set is greater than high_limit, then high_limit will be used instead. (float) low_limit (optional)::
When calculating the value to output to the hardware, if value + offset is less than low_limit, then
low_limit will be used instead. (float) bit_weight (optional):: The value of one least significant bit
(LSB), in volts (or mA, for current outputs). (float) hw_offset (optional):: The actual voltage (or cur-
rent) that will be output if O is written to the hardware.

5.14.5.3 Functions

(funct) write:: This causes the calculated value to be output to the hardware. If enable is false, then
the output will be 0, regardless of value, scale, and offset. The meaning of “0” is dependent on the
hardware. For example, a bipolar 12-bit A/D may need to write 0x1FF (mid scale) to the D/A get O
volts from the hardware pin. If enable is true, read scale, offset and value and output to the adc (scale
* value) + offset. If enable is false, then output 0.

5.15 HAL Tools

5.15.1 Halcmd

halcmd is a command line tool for manipulating the HAL. There is a rather complete man page for
halcmd, which will be installed if you have installed LinuxCNC from either source or a package. The
manpage provides usage info:

man halcmd

If you have compiled LinuxCNC for "run-in-place”, you must source the rip-environment script to make
the man page available:

cd toplevel directory for rip build
. scripts/rip-environment
man halcmd

The HAL Tutorial has a number of examples of halcmd usage, and is a good tutorial for halcmd.

../man/man1/halcmd.1.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 305/1322

5.15.2 Halmeter

Halmeter is a voltmeter for the HAL. It lets you look at a pin, signal, or parameter, and displays the
current value of that item. It is pretty simple to use. Start it by typing halmeter in an X windows
shell. Halmeter is a GUI application. It will pop up a small window, with two buttons labeled ”"Select”
and "Exit”. Exit is easy - it shuts down the program. Select pops up a larger window, with three tabs.
One tab lists all the pins currently defined in the HAL. The next lists all the signals, and the last tab
lists all the parameters. Click on a tab, then click on a pin/signal/parameter. Then click on "OK”. The
lists will disappear, and the small window will display the name and value of the selected item. The
display is updated approximately 10 times per second. If you click “Accept” instead of "OK”, the small
window will display the name and value of the selected item, but the large window will remain on the
screen. This is convenient if you want to look at a number of different items quickly.

You can have many halmeters running at the same time, if you want to monitor several items. If
you want to launch a halmeter without tying up a shell window, type halmeter & to run it in the
background. You can also make halmeter start displaying a specific item immediately, by adding
pin|sig|par[am] _<name> tothe command line. It will display the pin, signal, or parameter <name>
as soon as it starts - if there is no such item, it will simply start normally. And finally, if you specify an
item to display, you can add -s before the pin|sig|param to tell halmeter to use a small window. The
item name will be displayed in the title bar instead of under the value, and there will be no buttons.
Useful when you want a lot of meters in a small amount of screen space.

Refer to Halmeter Tutorial section for more information.

halmeter can be loaded from a terminal or from AXIS. halmeter is faster than halshow at displaying
values. halmeter has two windows, one to pick the pin, signal, or parameter to monitor and one that
displays the value. Multiple ~halmeter"s can be open at the same time. If you use a script to open
multiple “halmeter s you can set the position of each one with -g X Y relative to the upper left corner
of your screen. For example:

loadusr halmeter pin hm2.0.stepgen.00.velocity-fb -g 0 500

See the man page for more options and the section Halmeter.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 306 /1322

- Select Item to Probe

Pins Signals Parameters
=R AT iy #1010 [&
axis.0.index-enable
axis.0.,jog-counts
axis.0.jog-enable
axis.0.jog-scale
axis.0.jog-vel-mode
axis.0.joint-pos-cmd
axis.0 . joint-pos-fb
axis.0 joint-vel-cmd
axis.0.kb-jog-active
axis.0.motor-pos-cmd
axis.0.motor-pos-fb
axis.0.neg-hard-limit
axis.0.neg-lim-sw-in
axis.0.pos-hard-limit
axis.0.pos-lim-sw-in
axis.0.wheel-jog-active
axis.l.active
axis.l.amn-enable-out

£l

Close

Figure 5.21: Halmeter selection window

- Hal'Meter i

1.010344

axis.0.motor-pos-cmd

— ST 1] - |

..

Figure 5.22: Halmeter watch window

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 307 /1322

5.15.3 Halshow

halshow (complete usage description) can be started from the command line to show details for se-
lected components, pins, parameters, signals, functions, and threads of a running HAL. The WATCH
tab provides a continuous display of selected pin, parameters, and signal items. The File menu pro-
vides buttons to save the watch items to a watch list and to load an existing watch list. The watch list
items can also be loaded automatically on startup. For command line usage:

halshow --help

Usage:
halshow [Options] [watchfile]
Options:
--help (this help)
--fformat format string for float
--iformat format string for int
Notes:

Create watchfile in halshow using: 'File/Save Watch List’'.
LinuxCNC must be running for standalone usage.

my.halshow - HAL Show P o[BS
File Tree View Watch ‘
Components " syow WATCH
Pins
axis Iy
base-thread 0 halui.max-velocity.counts
charge-pump 33.33334 halui.max-velocity.value
Elt.jatssmladder @ halui.mode.auto set][CIr
gmoaccapy @ halui.mode.manual
hal_manualtoolchan| | @ halui.mode.mdi sef][Clr
hzlgén P halui.program.is-idle
axis @ halui.program.is-paused
estop @ halui.program.is-running
?;ggﬁ:;ted @ halui.program.pause
reset] halui.program.resume
feed-override] halui.program.run set|[CIr
Egr?]de—all] halui.program.stop set|[CIr
joint P iocontrol.0.emc-enable-in
IUbeh' @ parport.0.pin-01-out
machine =
e i @ parport.t}.p!n 02-out
mist @ parport.0.pin-03-out =
mode :
Test HAL command : Execute
Commands may be tested here but they will NOT be saved

Figure 5.23: Halshow Watch Tab

A watchfile created using the File/Save Watch List menu item is formatted as a single line with tokens

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 308/1322

] » o

"pin+”, "param+”, “sig=+", followed by the appropriate pin, param, or signal name. The token-name
pairs are separated by a space character.

Single Line Watchfile Example

pin+joint.0.pos-hard-limit pin+joint.1l.pos-hard-limit sig+estop-loop

A watchfile created using the File/Save Watch List (multiline) menu item is formatted with separate
lines for each item identified with token-name pairs as described above.

Separated Lines Watchfile Example

pin+joint.0.pos-hard-limit
pin+joint.1l.pos-hard-1limit
sig+estop-loop

When loading a watchfile with the File/Load Watch List menu item, the token-name pairs may appear
as single or multiple lines. Blank lines and lines beginning with a # character are ignored.

5.15.4 Halscope

Halscope is an oscilloscope for the HAL. It lets you capture the value of pins, signals, and parameters
as a function of time. Complete operating instructions should be located here eventually. For now,
refer to section Halscope in the tutorial chapter, which explains the basics.

The halscope ”File” menu selector provides buttons to save a configuration or open a previously
saved configuration. When halscope is terminated, the last configuration is saved in a file named
autosave.halscope.

Configuration files may also be specified when starting halscope from the commandline. Commandline
help (-h) usage:

halscope -h
Usage:
halscope [-h] [-i infile] [-o0 outfile] [num samples]

5.15.5 Sim Pin

sim pin is a command line utility to display and update any number of writable pins, parameters or
signals.

sim_pin Usage

Usage:
sim pin [Options] namel [name2 ...] &

Options:
--help (this text)
--title title string (window title, default: sim pin)

Note: LinuxCNC (or a standalone HAL application) must be running
A named item can specify a pin, param, or signal
The item must be writable, e.g.:
pin: IN or I/0 (and not connected to a signal with a writer)
param: RW
signal: connected to a writable pin

HAL item types bit,s32,u32,float are supported.

When a bit item is specified, a pushbutton is created

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

309/1322

to manage the item in one of three manners specified

by radio buttons:

toggle: Toggle value when button pressed

pulse:
hold:

Pulse item to 1 once when button pressed
Set to 1 while button pressed
The bit pushbutton mode can be specified on the command

line by formatting the item name:
namei/mode=[toggle | pulse | hold]

If the mode begins with an uppercase letter, the radio

buttons for selecting other modes are not shown

For complete information, see the man page:

man sim pin

sim_pin Example (with LinuxCNC running)

halcmd loadrt mux2 names=example; halcmd net sig example example.in@

sim pin example.sel example.inl sig _example &

5.15.6 Simulate Probe

example.sel
Tﬂg_g le I

Initial=0 Current=0
" OnePulse
* ToggleValue
™ 1 WhilePressed

example.inl

Set | Reset |

Initial=0 Current=0

sig_example

Set | Reset |

Initial=0 Current=0

Figure 5.24: sim pin Window

simulate probe is a simple GUI to simulate activation of the pin motion.probe-input. Usage:

simulate probe &

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 310/ 1322

B simulate probe - O X

Push to simulate
Probe touch

[~ Pulse

Figure 5.25: simulate probe Window

5.15.7 HAL Histogram

hal-histogramis a command line utility to display histograms for HAL pins.
Usage:

hal-histogram --help | -7
or
hal-histogram [Options] [pinname]

Table 5.34: Options:

Option Value Description

--minvalue minvalue minimum bin, default: 0

--binsize binsize binsize, default: 100

--nbins nbins number of bins, default: 50

--logscale 0/1 y axis log scale, default: 1

--text note text display, default: ””

--show show count of undisplayed
nbins, default off

--verbose progress and debug, default
off

Notes:

. LinuxCNC (or another HAL application) must be running.

. If no pinname is specified, default is: motion-command-handler.time.

1

2

3. This app may be opened for 5 pins.

4. Pintypes float, s32, u32, bit are supported.
5

. The pin must be associated with a thread supporting floating point. For a base thread, this may
require using loadrt motmod ... base thread fp=1.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

311/1322

i fusr/bin/hal-histogram (histo_s32-0)

Pin: motion-command-handler.time Sig: hhs-0 (histo s32-0)
Date LinuxCNC: Version 05: Version Hostname
Commandline Note Text

1E5

1E4

1E3

1E2

1E1

[[[
0 4000 10000

Bins: | 20 Minvalue: | 0 Maxvalue:| me]t]| Update

Restart| v ylogscale Screenshot Elapsed Time: 993 %

Figure 5.26: hal-histogram Window

5.15.8 Halreport

halreport is a command-line utility that generates a report about HAL connections for a running
LinuxCNC (or other HAL) application. The report shows all signal connections and flags potential
problems. Information included:

© N o U s e

System description and kernel version.

Signals and all connected output, io, and input pins.

Each pin’s component function, thread, and addf-order.
Non-realtime component pins having non-ordered functions.
Identification of unknown functions for unhandled components.
Signals with no output.

Signals with no inputs.

Functions with no addf.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 312 /1322

9. Warning tags for components marked as deprecated/obsolete in docs.

10. Real names for pins that use alias names.

The report can be generated from the command line and directed to an output file (or stdout if no
outfilename is specified):

halreport Usage

Usage:

halreport -h | --help (this help)
or

halreport [outfilename]

To generate the report for every LinuxCNC startup, include halreport and an output filename as an
[APPLICATIONS]APP entry in the INI file.

halreport Example

[APPLICATIONS]
APP = halreport /tmp/halreport.txt

The function addf-ordering can be important for servo loops where the sequence of the functions
computed at each servo period is important. Typically, the order is:

1. Read input pins,
2. do the motion command-handler and motion-controller functions,
3. perform pid calculations, and finally
4. write output pins.
For each signal in a critical path, the addf-order of the output pin should be numerically lower than

the addf-order of the critical input pins that it connects to.

For routine signal paths that handle switch inputs, non-realtime pins, etc., the addf-ordering is often
not critical. Moreover, the timing of non-realtime pin value changes cannot be controlled or guaran-
teed at the intervals typically employed for HAL threads.

Example report file excerpts showing a pid loop for a hostmot2 stepgen operated in velocity mode on
a trivkins machine with joint.0 corresponding to the X axis coordinate:

SIG: pos-fb-0
ouT: h.00.position-fb hm2 7i92.0.read servo-thread 001
(=hm2_7i92.0.stepgen.00.position-fb)
IN: X _pid.feedback X pid.do-pid-calcs servo-thread 004
IN: joint.0.motor-pos-fb motion-command-handler servo-thread 002
.................... motion-controller servo-thread 003
SIG: pos-cmd-0
OUT: joint.0@.motor-pos-cmd motion-command-handler servo-thread 002
..................... motion-controller servo-thread 003
IN: X _pid.command X pid.do-pid-calcs servo-thread 004
SIG: motor-cmd-0
OUT: X pid.output X pid.do-pid-calcs servo-thread 004
IN: h.00.velocity-cmd hm2_7192.0.write servo-thread 008

(=hm2_7i192.0.stepgen.00.velocity-cmd)

In the example above, the HALFILE uses halcmd aliases to simplify pin names for an hostmot2 FPGA
board with commands like:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 313 /1322

alias pin hm2 7i92.0.stepgen.00.position-fb h.00.position-fb

Note
Questionable component function detection may occur for

1. unsupported (deprecated) components,
2. user-created components that use multiple functions or unconventional function naming, or

3. GUI-created non-realtime components that lack distinguishing characteristics such as a prefix
based on the GUI program name.

Questionable functions are tagged with a question mark "?"”.

Note
Component pins that cannot be associated with a known thread function report the function as "Un-

known”.

halreport generates a connections report (without pin types, and current values) for a running HAL
application to aid in designing and verifying connections. This helps with the understanding what the
source of a pin value is. Use this information with applications like halshow, halmeter, halscope or
the halcmd show command in a terminal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 314 /1322

Chapter 6

Hardware Drivers

6.1 Parallel Port Driver

The hal parport component is a driver for the traditional PC parallel port. The port has a total of
17 physical pins. The original parallel port divided those pins into three groups: data, control, and
status. The data group consists of 8 output pins, the control group consists of 4 pins, and the status
group consists of 5 input pins.

In the early 1990s, the bidirectional parallel port was introduced, which allows the data group to be
used for output or input. The HAL driver supports the bidirectional port, and allows the user to set
the data group as either input or output. If configured as out, a port provides a total of 12 outputs
and 5 inputs. If configured as in, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an
external gate. On a board with open collector control pins. If configured as x, it provides 8 outputs,
and 9 inputs.

In some parallel ports, the control group has push-pull drivers and cannot be used as an input.

HAL and Open Collectors

HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors (OC).
If they are not, they cannot be used as inputs, and attempting to drive them LOW from an external
source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no device
attached, HAL should read the pin as TRUE. Next, insert a 470 Q resistor from one of the control pins
to GND. If the resulting voltage on the control pin is close to 0V, and HAL now reads the pin as FALSE,
then you have an OC port. If the resulting voltage is far from 0V, or HAL does not read the pin as
FALSE, then your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates, e.g. 74LS05.
On some computers, BIOS settings may affect whether x mode can be used. SPP mode is most likely
to work.

No other combinations are supported, and a port cannot be changed from input to output once the
driver is installed.

The parport driver can control up to 8 ports (defined by MAX PORTS in hal parport.c). The ports are
numbered starting at zero.

6.1.1 Loading

The hal parport driver is a real time component so it must be loaded into the real time thread with
loadrt. The configuration string describes the parallel ports to be used, and (optionally) their types.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 315/1322

If the configuration string does not describe at least one port, it is an error.

loadrt hal parport cfg="port [type] [port [type] ...1"

Specifying the Port Numbers below 16 refer to parallel ports detected by the system. This is the
simplest way to configure the hal parport driver and cooperates with the Linux parport pc driver if
it is loaded. A port of 0 is the first parallel port detected on the system, 1 is the next and so on.

Basic configuration This will use the first parallel port Linux detects:

loadrt hal parport cfg="0"

Using the Port Address Instead, the port address may be specified using the hex notation with the
Ox prefix.

The config string represents the hexadecimal address of the port, optionally followed by a direction,
all repeated for each port. The directions are in, out, or x, and determine the direction of the physical
pins 2 to 9 of the D-Sub 25 connector. If the direction is not specified, the data group will by default
be configured as outputs. For example:

Command to load the real-time module hal partport with the additional <config-string> to
specify the port at which the parallel-port card is expected.

loadrt hal parport cfg="0x278 0x378 in 0x20A0 out”

This example installs the drivers for a port 0x0278, with pins 2 to 9 as outputs (by default, since
neither in nor out is specified), a port 0x0378, with pins 2 to 9 as inputs and a 0x20A0 port, with pins
2 to 9 explicitly specified as outputs. Note that you must know the base address of the parallel ports
to configure the drivers correctly. For ISA bus ports, this is usually not a problem, since the ports
are almost always at a well-known address, such as 0x278 or 0x378 which are typically configured
in the BIOS. The addresses of PCI bus cards are usually found with lspci -v in an I/O ports line, or
in a kernel message after running sudo modprobe -a parport pc. There is no default address, so if
<config-string> does not contain at least one address, it is an error.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 316 /1322

parpart.0 parport.0
pI|-I=-I|| -i. ‘
T
T SR P

% T MRl %
e By i@ S awaa &
LIH:QD LHeg| =< o)
== 8 T | %@
[T ¥ = jD_l @ T < @
— . [Comemtims I—JD_l @ ¢ pntiena | ‘ '1 @
[Gy o < o)
Comm | e =N
\Ch=g

LI_;, [D ®// IWHD

pn-I7-0u | dn 17l

__ IR g [mI [CFmmm

pin-1%-0u- warl

Iml—jD n e D

Figure 6.1: Parport block diagram

Type For each parallel port handled by the hal parport driver, a type can optionally be specified. The
type is one of in, out, epp, or x.

Table 6.1: Parallel Port Direction

Pin in out/epp X
1 out out in
2 in out out
3 in out out
4 in out out
5 in out out
§] in out out
7 in out out
8 in out out
9 in out out

10 in in in
11 in in in
12 in in in
13 in in in

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 317 /1322

Table 6.1: (continued)

Pin in out/epp X
14 out out in
15 in in in
16 out out in
17 out out in

If the type is not specified, the default is out.

A type of epp is the same as out, but the hal parport driver requests that the port switch into EPP
mode. The hal parport driver does not use the EPP bus protocol, but on some systems EPP mode
changes the electrical characteristics of the port in a way that may make some marginal hardware
work better. The Gecko G540’s charge pump is known to require this on some parallel ports.

See the Note above about mode x.

Example with two parallel ports This will enable two system-detected parallel ports, the first in
output mode and the second in input mode:

loadrt hal parport cfg="0 out 1 in”

Parport R/W Functions You must also direct LinuxCNC to run the read and write functions.

addf parport.0.read base-thread
addf parport.0.write base-thread

6.1.2 PCI Port Address

One good PCI parport card is made with the Netmos 9815 chipset. It has good +5V signals, and can
come in a single or dual ports.

To find the I/O addresses for PCI cards open a terminal window and use the list pci command:

lspci -v

Look for the entry with "Netmos” in it. Example of a 2-port card:

0000:01:0a.0 Communication controller: \

Netmos Technology PCI 9815 Multi-I/0 Controller (rev 01)
Subsystem: LSI Logic / Symbios Logic 2P0S (2 port parallel adapter)
Flags: medium devsel, IRQ 5
I/0 ports at b800 [size=8]

I/0 ports at bc@O [size=8]
I/0 ports at c000 [size=8]
I/0 ports at c400 [size=8]
I/0 ports at c800 [size=8]
I/0 ports at ccO0 [size=16]

From experimentation, I've found the first port (the on-card port) uses the third address listed (c000),
and the second port (the one that attaches with a ribbon cable) uses the first address listed (b800).
The following example shows the onboard parallel port and a PCI parallel port using the default out
direction.

loadrt hal parport cfg="0x378 0xc0600”

Please note that your values will differ. The Netmos cards are Plug-N-Play, and might change their
settings depending on which slot you put them into, so if you like to get under the hood and re-arrange
things, be sure to check these values before you start LinuxCNC.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 318 /1322

6.1.3 Pins

e parport.<p>.pin- ~ <n> -out (bit) Drives a physical output pin.

e parport.<p>.pin- = <n> -in (bit) Tracks a physical input pin.

e parport.<p>.pin- = <n> -in-not (bit) Tracks a physical input pin, but inverted.

For each pin, <p> is the port number, and <n> is the physical pin number in the 25 pin D-shell
connector.

For each physical output pin, the driver creates a single HAL pin, for example: parport.0.pin-14-out.

For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin-12-in and
parport.0.pin-12-in-not.

The -in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The -in-not
HAL pin is inverted and is FALSE if the physical pin is high.

6.1.4 Parameters

e parport. = <p> .pin- <n> -out-invert (bit) Inverts an output pin.

e parport. = <p> .pin- <n> -out-reset (bit) (only for -out pins) TRUE if this pin should be reset
when the -reset function is executed.

e parport. = <p> .reset-time (U32) The time (in nanoseconds) between a pin is set by -write and
reset by the -reset function if it is enabled.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL -out pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL -out pin TRUE will drive the physical pin low.

6.1.5 Functions

e parport. = <p> .read (funct) Reads physical input pins of port number <p> and updates HAL
-in and -in-not pins.

e parport.read-all (funct) Reads physical input pins of all ports and updates HAL -in and -in-not
pins.

e parport. = <p> .write (funct) Reads HAL -out pins of port number <p> and updates that port’s
physical output pins.

e parport.write-all (funct) Reads HAL -out pins of all ports and updates all physical output pins.

e parport. = <p> .reset (funct) Waits until reset-time has elapsed since the associated write,
then resets pins to values indicated by -out-invert and -out-invert settings. reset must be later
in the same thread as write. If -reset is TRUE, then the reset function will set the pin to the value
of -out-invert. This can be used in conjunction with stepgen’s doublefreq to produce one step per
period. The stepgen stepspace for that pin must be set to 0 to enable doublefreq.

The individual functions are provided for situations where one port needs to be updated in a very fast
thread, but other ports can be updated in a slower thread to save CPU time. It is probably not a good
idea to use both an -all function and an individual function at the same time.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 319/1322

6.1.6 Common problems

If loading the module reports

insmod: error inserting '/home/jepler/emc2/rtlib/hal parport.ko’:
-1 Device or resource busy

then ensure that the standard kernel module parport pc is not loaded ! and that no other device in
the system has claimed the I/O ports.

If the module loads but does not appear to function, then the port address is incorrect.

6.1.7 Using DoubleStep

To setup DoubleStep on the parallel port you must add the function parport.n.reset after parport.n.write
and configure stepspace to 0 and the reset time wanted. So that step can be asserted on every period in
HAL and then toggled off by parport after being asserted for time specified by parport. ~ n_ .reset-
time .

For example:

loadrt hal parport cfg="0x378 out”

setp parport.0.reset-time 5000

loadrt stepgen step type=0,0,0

addf parport.0.read base-thread

addf stepgen.make-pulses base-thread

addf parport.0.write base-thread

addf parport.0.reset base-thread

addf stepgen.capture-position servo-thread

setp stepgen.0.steplen 1
setp stepgen.0.stepspace 0

More information on DoubleStep can be found on the wiki.

6.1.8 probe_parport

In today’s PCs, parallel ports may require a plug and play (PNP) configuration before they can be
used. The kernel module probe parport configures all PNP ports present. It must be loaded before
hal parport. On machines without a PNP port, it can be loaded but will have no effect.

6.1.8.1 Installing probe_parport

If, when parport pc kernel module is loaded with command:

sudo modprobe -a parport pc; sudo rmmod parport pc

Linux kernel outputs a message similar to:
parport: PnPBIOS parport detected.

Then use of this module will probably be necessary.
Finally, HAL parport components should be loaded:

loadrt probe parport
loadrt hal parport ...

1In the LinuxCNC packages for Ubuntu, the file /etc/modprobe.d/emc2 generally prevents parport_pc from being automat-
ically loaded.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?TweakingSoftwareStepGeneration

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 320/ 1322

6.2 AX5214H Driver

The Axiom Measurement & Control AX5214H is a 48 channel digital I/O board. It plugs into an ISA
bus, and resembles a pair of 8255 chips. In fact it may be a pair of 8255 chips, but I'm not sure.
If/when someone starts a driver for an 8255 they should look at the ax5214 code, much of the work is
already done.

6.2.1 Installing

loadrt hal ax5214h cfg="<config-string>"

The config string consists of a hex port address, followed by an 8 character string of ”I” and “O” which
sets groups of pins as inputs and outputs. The first two character set the direction of the first two 8
bit blocks of pins (0-7 and 8-15). The next two set blocks of 4 pins (16-19 and 20-23). The pattern
then repeats, two more blocks of 8 bits (24-31 and 32-39) and two blocks of 4 bits (40-43 and 44-47).
If more than one board is installed, the data for the second board follows the first. As an example, the
string “0x220 IIIOIIO0O 0x300 OIOOIOIO” installs drivers for two boards. The first board is at address
0x220, and has 36 inputs (0-19 and 24-39) and 12 outputs (20-23 and 40-47). The second board is
at address 0x300, and has 20 inputs (8-15, 24-31, and 40-43) and 28 outputs (0-7. 16-23, 32-39, and
44-47). Up to 8 boards may be used in one system.

6.2.2 Pins

e (bit) ax5214.<boardnum>.out-<pinnum> — Drives a physical output pin.
e (bit) ax5214.<boardnum>.in-<pinnum> — Tracks a physical input pin.
* (bit) ax5214.<boardnum>.in-<pinnum>-not — Tracks a physical input pin, inverted.

For each pin, <boardnum> is the board number (starts at zero), and <pinnum> is the I/O channel
number (0 to 47).

Note that the driver assumes active LOW signals. This is so that modules such as OPTO-22 will work
correctly (TRUE means output ON, or input energized). If the signals are being used directly without
buffering or isolation the inversion needs to be accounted for. The in- HAL pin is TRUE if the physical
pin is low (OPTO-22 module energized), and FALSE if the physical pin is high (OPTO-22 module off).
The in-<pinnum>-not HAL pin is inverted — it is FALSE if the physical pin is low (OPTO-22 module
energized). By connecting a signal to one or the other, the user can determine the state of the input.

6.2.3 Parameters
e (bit) ax5214.<boardnum>.out-<pinnum=>-invert — Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is
FALSE, setting the HAL out- pin TRUE drives the physical pin low, turning ON an attached OPTO-22
module, and FALSE drives it high, turning OFF the OPTO-22 module. If -invert is TRUE, then setting
the HAL out- pin TRUE will drive the physical pin high and turn the module OFF.

6.2.4 Functions

* (funct) ax5214.<boardnum>.read — Reads all digital inputs on one board.

e (funct) ax5214.<boardnum>.write — Writes all digital outputs on one board.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 321/1322

6.3 General Mechatronics Driver

General Mechatronics GM6-PCI card based motion control system
For detailed description, please refer to the System integration manual.

The GMG6-PCI motion control card is based on an FPGA and a PCI bridge interface ASIC. A small
automated manufacturing cell can be controlled, with a short time system integration procedure. The
following figure demonstrating the typical connection of devices related to the control system:

» It can control up to six axis, each can be stepper or CAN bus interface or analogue servo.
* GPIO: Four time eight I/O pins are placed on standard flat cable headers.

* RS485 I/O expander modules: RS485 bus was designed for interfacing with compact DIN-rail
mounted expander modules. An 8-channel digital input, an 8-channel relay output and an analogue
I/O (4x +/-10 Volts output and 8x +/-5 Volts input) modules are available now. Up to 16 modules
can be connected to the bus altogether.

* 20 optically isolated input pins: Six times three for the direct connection of two end switch and one
homing sensor for each joint. And additionally, two optically isolated E-stop inputs.

Analogue

¢ End/f
L homing

Incremental
servo system

Analogue I/0

PLC functions

Digital input

Installing:

loadrt hal gm

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel
log, which can be viewed with dmesg.

Up to 3 boards may be used in one system.

The following connectors can be found on the GM6-PCI card:

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 322 /1322

RS485 4x8 GPIO CAN-bus 6x Axis
(RJ12) {2x5pin header) :rmz: {RJ50)
| u:ln u:lrz | m:ﬁ
1 f 1] 11] ' '
L — 0
_ Eigaﬂ__w”;] HIH i I:Hl= HE='H=I"IE",u'
ppady gl "_'Eﬁﬂ- - uﬂ'nu —11
®sags | | - i - [::3m Sa0 = :Fﬂ
CEMC) 0 % —2
- _ : ol
- w5 o 3
0 e o Fs 0 —
M 1) e
LEDs | | O o ° 0 28y —
Dl 2w G,
Ceemicanasman o o —15
| ” D??un ﬂi]“
@ | L]]
{ End SW & Homing
for 6 axis

;l (2x13 pin header)
Figure 6.2: GM6-PCI card connectors and LEDs

6.3.1 1/0 connectors

Figure 6.3: Pin numbering of GPIO connectors

Table 6.2: Pinout of GPIO connectors

9 7 5 3 1
10x/7 | 10x/5 | 10%/3 | 10x/1 | VCC

10 8 6 4 2
GND | I0x/6 | I0x/4 | I0x/2 | I0x/0

Each pin can be configured as digital input or output. GM6-PCI motion control card has 4 general
purpose I/O (GPIO) connectors, with eight configurable I/O on each. Every GPIO pin and parameter
name begins as follows:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 323 /1322

gm.<card no>.gpio.<gpio_con_no>

where <gpio _con_no> is from 0 to 3.
State of the first pin of the first GPIO connector on the GM6-PCI card.
gm.0.gpio.0.in-0

HAL pins are updated by function

gm.<card _no>.read

6.3.1.1 Pins
Table 6.4: GPIO pins
Pins Type and Pin description
direction
.in-<0-7> (bit, Out) Input pin
.in-not-<0-7> (bit, Out) Negated input pin
.out-<0-7> (bit, In) Output pin. Used only when GPIO is
set to output.

6.3.1.2 Parameters

Table 6.5: GPIO parameters

Pins Type and Parameter description
direction
.is-out-<0-7> (bit, R/W) When True, the corresponding GPIO is

set to totem-pole output, other wise
set to high impedance input.
.invert-out-<0-7>| (bit, R/W) When True, pin value will be inverted.
Used when pin is configured as output.

6.3.2 AXxis connectors

Figure 6.4: Pin numbering of axis connectors

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 324 /1322

Table 6.6: Pinout of axis connectors

Encoder A

+5 Volt (PC)
Encoder B
Encoder Index
Fault

Power Enabled
Step/CCW/B
Direction/CW/A
Ground (PC)
DAC serial line

o ©| 0o < o U1l il Lo N =

6.3.2.1 Axis interface modules

Small sized DIN rail mounted interface modules gives easy way of connecting different types of servo
modules to the axis connectors. Seven different system configurations are presented in the System in-
tegration manual for evaluating typical applications. Also the detailed description of the Axis modules
can be found in the System integration manual.

For evaluating the appropriate servo-drive structure the modules have to be connected as the following
block diagram shows:

RJ:lﬁ
| SK10P Enco
RsO| L
oo
————— 24V i s ——— - _———_— ————
PCl Card! E_llso “«—TTL—»/ RIS s 4 ar [1 Enc 1
| Isolator [

| Axis connectar UART-DAG

1 S
i BERVO SERVO &
[y [SK10P ==+i- 10V output-p= AnRel |
————— —SVins sk | RJSD «-TTLk RSO | _°°'_""_°' o _ '_'OB_"'"EI-_W —>! Drve | E:‘":"_) Ana'og"e
RME -7
| SK10P E
0 \—— - Differential output
U ercms —— e P ——— ———— - Encoder feedback
[A RS0 —TTL—p RSO R4S 3 I g422 Step/Dir | e ol Enc. Enc Jorovon
- v Schaor R150 e TTL-! Relso | Line Driver SK:GP‘_DHe-enhaI_-ch'?;'wm Dnlwe L m]'e Encoder |
et L a L oD Incremental
RMS R
e SK;G") fneader - TTL output
oo - m———— - Encoder feedback
S eicad oL = r= e - B —=emmy
I dods " RJE0 T L= RJE] | RJ4E RM5 Step/Dir SERVO. Enc. Enc. SERVO &
! [Isalator . | Breakout SK10P 'I—TTL—FCW@CWm | | E
DRRRNS —en{xl R0 T e L O Incremental
- Differential output
T . ———— === - Without encoder feedback
i Em I Otronta e s S‘f@ssmjr Iy E’|'° servos 1|
connesior — = ereniia AB |mnu"[m—rmm i ' t '
[— = L —_—=) ncremenia
_____ _ o o o - TTL output
[RJa5 1 [Step/Dir | Enc. l«—] Enc 1 - Wi
I[s comacter "> < S s i 4> o JEEEL o T oseos Without encoder feedback
T TTL—» RJS0 o A MO Drive d
L ol __2) L |00 Incremental
S CAN = e - Encoder feedback
lr_ Pei Cardill - |- an | SERVO ﬂ';""’ " °"|‘"° SERVOE |
Axis — MODUL Encoder
Soooow T Absolut - CAN bus

Figure 6.5: Servo axis interfaces

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 325/1322

6.3.2.2 Encoder
The GM6-PCI motion control card has six encoder modules. Each encoder module has three channels:

¢ Channel-A
¢ Channel-B

¢ Channel-I (index)

It is able to count quadrature encoder signals or step/dir signals. Each encoder module is connected
to the inputs of the corresponding RJ50 axis connector.

Every encoder pin and parameter name begins as follows:

gm.<card no>.encoder.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.encoder.0.position refers to the position of
encoder module of axis 0.

The GM6-PCI card counts the encoder signal independently from LinuxCNC. HAL pins are updated
by function:

gm.<card no>.read

Table 6.7: Encoder pins

Pins Type and Pin description
direction

.reset (bit, In) When True, resets counts and position
to zero.

.rawcounts (s32, Out) The raw count is the counts, but
unaffected by reset or the index pulse.

.counts (s32, Out) Position in encoder counts.

.position (float, Out) Position in scaled units
(=.counts/.position-scale).

.index-enabled (bit, I0) When True, counts and position are

rounded or reset (depends on
index-mode) on next rising edge of
channel-I. Every time position is reset
because of Index, the index-enabled
pin is set to 0 and remains 0 until
connected HAL pin does not set it.
.velocity (float, Out) | Velocity in scaled units per second.
GM encoder uses high frequency
hardware timer to measure time
between encoder pulses in order to
calculate velocity. It greatly reduces
quantization noise as compared to
simply differentiating the position
output. When the measured velocity is
below min-speed-estimate, the
velocity output is 0.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

326 /1322

Table 6.8: Encoder parameters

Parameters

Type and
Read/Write

Parameter description

.counter-mode

(bit, R/W)

When True, the counter counts each
rising edge of the channel-A input to
the direction determined by
channel-B. This is useful for counting
the output of a single channel
(non-quadrature) or step/dir signal
sensor. When false, it counts in
quadrature mode.

.1ndex-mode

(bit, R/W)

When True and .index-enabled is also
true, .counts and .position are
rounded (based on .counts-per-rev) at
rising edge of channel-I. This is useful
to correct few pulses error caused by
noise. In round mode, it is essential to
set .counts-per-rev parameter
correctly. When .index-mode is False
and .index-enabled is true, .counts and
.position are reset at channel-I pulse.

.counts-per-rev

(s32, R/V)

Determine how many counts are
between two index pulses. It is used
only in round mode, so when both
.index-enabled and .index-mode
parameters are True. GM encoder
process encoder signal in 4x mode, so
for example in case of a 500 CPR
encoder it should be set to 2000. This
parameter can be easily measured by
setting .index-enabled True and
.index-mode False (so that .counts
resets at channel-I pulse), than move
axis by hand and see the maximum
magnitude of .counts pin in halmeter.

.index-invert

(bit, R/W)

When True, channel-I event (reset or
round) occur on falling edge of
channel-I signal, otherwise on rising
edge.

.min-speed-estimat

te (float, R/W)

Determine the minimum measured
velocity magnitude at which .velocity
will be set as nonzero. Setting this
parameter too low will cause it to take
a long time for velocity to go to zero
after encoder pulses have stopped
arriving.

.position-scale

(float, R/W)

Scale in counts per length unit.
.position=.counts/.position-scale. For
example, if position-scale is 2000, then
1000 counts of the encoder will
produce a position of 0.5 units.

Setting encoder module of axis 0 to receive 500 CPR quadrature encoder signal and use

reset to round position.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 327 /1322

setp gm.0.encoder.0.counter-mode 0 # 0: quad, 1: stepDir

setp gm.0.encoder.0.index-mode 1 # 0: reset pos at index, 1l:round pos at index

setp gm.0.encoder.0.counts-per-rev 2000 # GM process encoder in 4x mode, 4x500=2000

setp gm.0.encoder.0.index-invert 0 #

setp gm.0.encoder.0.min-speed-estimate 0.1 # in position unit/s

setp gm.0.encoder.0.position-scale 20000 # 10 encoder rev cause the machine to move one <+

position unit (10x2000)

Connect encoder position to LinuxCNC joint position feedback

net Xpos-fb gm.0.encoder.0.position => joint.0.motor-pos-fb

6.3.2.3 StepGen module

The GMG6-PCI motion control card has six StepGen modules, one for each joint. Each module has two
output signals. It can produce Step/Direction, Up/Down or Quadrature (A/B) pulses. Each StepGen
module is connected to the pins of the corresponding RJ50 axis connector.

Every StepGen pin and parameter name begins as follows:

gm.<card no>.stepgen.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.stepgen.0.position-cmd refers to the position
command of StepGen module of axis 0 on card 0.

The GMG6-PCI card generates step pulses independently from LinuxCNC. HAL pins are updated by
function

gm.<card no>.write

Table 6.9: StepGen module pins

Pins Type and Pin description
direction

.enable (bit, In) StepGen produces pulses only when this pin
is true.

.count-fb (s32, Out) Position feedback in counts unit.

.position-fb (float, Out) Position feedback in position unit.

.position-cmd (float, In) Commanded position in position units. Used
in position mode only.

.velocity-cmd (float, In) Commanded velocity in position units per
second. Used in velocity mode only.

Table 6.10: StepGen module parameters

Parameters Type and Parameter description
Read/Write
.step-type (u32, R/W) When 0, module produces Step/Dir signal.

When 1, it produces Up/Down step signals.
And when it is 2, it produces quadrature
output signals.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 328 /1322

Table 6.10: (continued)

Parameters Type and Parameter description
Read/Write
.control-type (bit, R/W) When True, .velocity-cmd is used as

reference and velocityvcontrol calculate
pulse rate output. When False,
.position-cmd is used as reference and
position control calculate pulse rate output.

.invert-stepl (bit, R/W) Invert the output of channel 1 (Step signal
in StepDir mode)

.invert-step2 (bit, R/W) Invert the output of channel 2 (Dir signal in
StepDir mode)

.maxvel (float, R/W) Maximum velocity in position units per
second. If it is set to 0.0, .maxvel parameter
is ignored.

.maxaccel (float, R/W) Maximum acceleration in position units per

second squared. mf it is set to 0.0,
.maxaccel parameter is ignored.

.position-scale (float, R/W) Scale in steps per length unit.

.steplen (u32, R/W) Length of step pulse in nano-seconds.

.stepspace (u32, R/W) Minimum time between two step pulses in
nano-seconds.

.dirdelay (u32, R/W) Minimum time between step pulse and

direction change in nanoseconds.

For evaluating the appropriate values see the timing diagrams below:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

329/1322

Step ’ \

Staplan DirDeday DirDalay
Direction |
Step/Dir type reference
S A Y R
Staplen |StepSpace DirDalay
Down Il ‘ ' N
Up/Down count (CW/CCW) reference
| A [_
Steplen Steplen_| Stepleq Steplen+DirDelay _ . Steplen

|

B J \

Quadrant (A/B) type reference

Figure 6.6: Reference signal timing diagrams

Setting StepGen module of axis 0 to generate 1000 step pulse per position unit

setp
setp
setp
setp
setp

setp
setp

setp
setp

gm.
gm.
gm.
gm.
gm.

gm.
gm.

gm.
gm.

0.stepgen.
0.stepgen.
0.
0
0

stepgen

.stepgen.
.stepgen.

.stepgen.
.stepgen.

.stepgen.
.stepgen.

0
0
@
0
0

[ocNoNo]

.maxvel

.step-type 0

.control-type 0
invert-stepl 0
.invert-step2 0

0

.maxaccel 0

.position-scale 1000
.steplen 1000
.stepspacelO00

* H#

0O:stepDir, 1:UpDown, 2:Quad
0:Pos. control, 1:Vel. Control

do not set maxvel for step

generator, let interpolator control it.

do not set max acceleration for

step generator, let interpolator control it.
1000 step/position unit

1000 ns 1 us

1000 ns 1 ps

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 330/1322

setp gm.0.stepgen.0.dirdelay 2000 # 2000 ns = 2 pus

Connect StepGen to axis 0 position reference and enable pins

net Xpos-cmd joint.0.motor-pos-cmd => gm.0.stepgen.0.position-cmd
net Xen joint.0.amp-enable-out => gm.0.stepgen.0.enable

6.3.2.4 Enable and Fault signals

The GM6-PCI motion control card has one enable output and one fault input HAL pins, both are
connected to each R]J50 axis connector and to the CAN connector.
HAL pins are updated by function:

gm.<card no>.read

Table 6.11: Enable and Fault signal pins

Pins Type and Pin description
direction
gm.<card no>.powdr- (bit, In) If this pin is True,
enable * and Watch Dog Timer is not expired

* and there is no power fault

then power enable pins of axis- and
CAN connectors are set to high,
otherwise set to low.

gm.<card no>.powdr- (bit, Out) Power fault input.

fault

6.3.2.5 Axis DAC

The GM6-PCI motion control card has six serial axis DAC driver modules, one for each joint. Each
module is connected to the pin of the corresponding RJ50 axis connector. Every axis DAC pin and
parameter name begins as follows:

gm.<card no>.dac.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.dac.0.value refers to the output voltage of DAC
module of axis 0.

HAL pins are updated by function:

gm.<card no>.write

Table 6.12: Axis DAC pins

Pins Type and Pin description
direction
.enable (bit, In) Enable DAC output. When enable is
false, DAC output is 0.0 V.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 331/1322

Table 6.12: (continued)

Pins Type and Pin description
direction
.value (float, In) Value of DAC output in Volts.

Table 6.13: Axis DAC parameters

Parameters Type and Parameter description
direction

.0offset (float, R/W) | Offset is added to the value before the
hardware is updated.

.high-limit (float, R/W) | Maximum output voltage of the
hardware in Volts.

.low-limit (float, R/W) | Minimum output voltage of the
hardware in Volts.

.invert-serial (float, R/W) | GM6-PCI card is communicating with

DAC hardware via fast serial
communication to highly reduce time
delay compared to PWM. DAC module
is recommended to be isolated which
is negating serial communication line.
In case of isolation, leave this
parameter to default (0), while in case
of none-isolation, set this parameter to
1.

6.3.3 CAN-bus servo amplifiers

The GM6-PCI motion control card has CAN module to drive CAN servo amplifiers. Implementation of
higher level protocols like CANopen is further development. Currently GM produced power amplifiers
has upper level driver which export pins and parameters to HAL. They receive position reference and
provide encoder feedback via CAN bus.

The frames are standard (11 bit) ID frames, with 4 byte data length. The baud rate is 1 Mbit/s.
The position command IDs for axis 0..5 are 0x10..0x15. The position feedback IDs for axis 0..5 are
0x20..0x25.

These configuration can be changed with the modification of hal gm.c and recompiling LinuxCNC.
Every CAN pin and parameter name begins as follows:

gm.<card no>.can-gm.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.can-gm.0.position refers to the output position
of axis 0 in position units.

HAL pins are updated by function:

gm.<card no>.write

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 332 /1322

6.3.3.1 Pins
Table 6.14: CAN module pins
Pins Type and Pin description
direction
.enable (bit, In) Enable sending position references.
.position-cmd (float, In) Commanded position in position units.
.position-fb (float, In) Feed back position in position units.

6.3.3.2 Parameters

Table 6.15: CAN module parameters

Parameters Type and Parameter description
direction

.position-scale (float, R/W) | Scale in per length unit.

6.3.4 Watchdog timer

Watchdog timer resets at function:

gm.<card no>.read

6.3.4.1 Pins

Table 6.16: Watchdog pins

Pins Type and Pin description
direction

gm.<card no>.watchdog-egpit, exit) Indicates that watchdog timer is expired.

Watchdog timer overrun causes the set of power-enable to low in hardware.

6.3.4.2 Parameters

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 333/1322

Table 6.17: Watchdog parameters

Parameters Type and Parameter description
direction
gm.<card no>.watchdog-efablB/W) Enables watchdog timer.

It is strongly recommended to enable the
watchdog timer, because it can disable all
the servo amplifiers by pulling down all
enable signals in case of a PC error.
gm.<card no>.watchdqg- thoeh R N3 Time interval in within the

gm.<card no>.read function must be
executed. The gm.<card no>.read is
typically added to servo-thread, so watch
timeout is typically set to 3 times of the
servo period.

6.3.5 End-, homing- and E-stop switches

GNDY|

V' f:::amn
Gossssasessk |

'
3

3

@ /|l

lag V25 1/ 2

Figure 6.7: Pin numbering of homing & end switch connector

Table 6.18: End- and homing switch connector pinout

25 | 23 21 19 17 15 13 11 9 7 5 3 1
E-
GND 1/End- 2/End+ 2/Homr 3/End- 4/End+ 4/Hom; 5/End- 6/End+ 6/Homr Stop V+
ing ing ing 5 (Ext.)
26 | 24 22 20 18 16 14 12 10 8 6 4 2
E-
GND 1/End+ 1/Hom; 2/End- 3/End+ 3/Hom: 4/End- 5/End+ 5/Hom; 6/End- Stop V+
ing ing ing 1 (Ext.)

The GM6-PCI motion control card has two limit- and one homing switch input for each joint. All the
names of these pins begin as follows:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

334 /1322

gm.<card no>.joint.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.joint.0.home-sw-in indicates the state of the

axis 0 home switch.

HAL pins are updated by function:

gm.<card no>.read

6.3.5.1 Pins
Table 6.20: End- and homing switch pins
Pins Type and Pin description
direction
.home-sw-in (bit, Out) Home switch input
.home-sw-in-not (bit, Out) Negated home switch input
.neg-lim-sw-1in (bit, Out) Negative limit switch input

.neg-lim-sw-in-not (bit, Out)

Negated negative limit switch input

.pos-lim-sw-1in

(bit, Out)

Positive limit switch input

.pos-lim-sw-in-not (bit, Out)

Negated positive limit switch input

6.3.5.2 Parameters

Table 6.21: E-stop switch parameters

Parameters Type and Parameter description
direction

gm.0.estop.0.1in (bit, Out) Estop O input

gm.0.estop.0.in-not (bit, Out) Negated Estop 0 input

gm.0.estop.1l.in (bit, Out) Estop 1 input

gm.0.estop.1.in-not (bit, Out) Negated Estop 1 input

6.3.6 Status LEDs

6.3.6.1 CAN

Color: Orange

* Blink, during data communication.

* On, when any of the buffers are full - communication error.

¢ Off when no data communication.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

335/1322

6.3.6.2 RS485
Color: Orange

e Blink, during initialization of modules on the bus
¢ On, when the data communication is up between all initialized modules.

* Off, when any of the initialized modules dropped off because of an error.

6.3.6.3 EMC
Color: White

e Blink, when LinuxCNC is running.

¢ Otherwise off.

6.3.6.4 Boot
Color: Green

* On, when system booted successfully.

¢ Otherwise off.
6.3.6.5 Error

Color: Red

¢ Off, when there is no fault in the system.
¢ Blink, when PCI communication error.

* On, when watchdog timer overflowed.

6.3.7 RS485 1/0 expander modules

These modules were developed for expanding the I/O and function capability along an RS485 line of

the GM6-PCI motion control card.

Available module types:

e 8-channel relay output module - gives eight NO-NC relay output on a three pole terminal connector

for each channel.

* 8-channel digital input module - gives eight optical isolated digital input pins.

* 8 channel ADC and 4-channel DAC module - gives four digital-to-analogue converter outputs and
eight analogue-to-digital inputs. This module is also optically isolated from the GM6-PCI card.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 336/1322

Automatic node recognizing Each node connected to the bus was recognized by the GM6-PCI card
automatically. During starting LinuxCNC, the driver export pins and parameters of all available mod-
ules automatically.

Fault handling If a module does not answer regularly the GM6-PCI card drops down the module. If
a module with output do not gets data with correct CRC regularly, the module switch to error state
(green LED blinking), and turns all outputs to error state.

Connecting the nodes The modules on the bus have to be connected in serial topology, with termi-
nation resistors on the end. The start of the topology is the PCI card, and the end is the last module.

_— — — ——— —— —— — — —

[First node1 | [MNode N | [Last Node

\Riz| iz \{R12 [Rut2
7 N

PCI Card/ _ 1
| Rs485 connector| RJ12 | End |
|_ R Resistors

Figure 6.8: Connecting the RS485 nodes to the GM6-PCI card

Addressing Each node on the bus has a 4 bit unique address that can be set with a red DIP switch.
Status LED A green LED indicates the status of the module:

¢ Blink, when the module is only powered, but not jet identified, or when module is dropped down.
* Off, during identification (computer is on, but LinuxCNC not started)

¢ On, when it communicates continuously.

6.3.7.1 Relay output module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>

where <module ID> is from 00 to 15.

Table 6.22: Relay output module pins

Pins Type and Pin description
direction
.relay-<0-7> (bit, Out) Output pin for relay

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

337 /1322

Table 6.23: Relay output module parameters

Parameters Type and Parameter description
direction
.invert-relay-<0-7> (bit, R/W) Negate relay output pin

HAL example

gm.0.rs485.0.relay-0

First relay of the node.

Identifies the first GM6-PCI motion control card (PCI card +«

gm.0

address = 0)
.rs485.0
#

Selects node with address 0 on the RS485 bus

.relay-0 # Selects the first relay

6.3.7.2 Digital input module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.

All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>

where <module ID> is from 00 to 15.

Table 6.24: Digital input output module pins

Pins Type and Pin description
direction

.1n-<0-7> (bit, Out) Input pin

.in-not-<0-7> (bit, Out) Negated input pin

HAL example

gm.0.rs485.0.in-0

gm.0

= 0)
.rs485.0
#

First input of the node.

Identifies the first GM6-PCI motion control card (PCI card address

Selects node with address 0 on the RS485 bus

.in-0 # Selects the first digital input module

o

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 338/1322

6.3.7.3 DAC & ADC module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.

All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>
where <module ID> is from 00 to 15.

Table 6.25: DAC & ADC module pins

Pins Type and Pin description
direction
.adc-<0-7> (float, Out) Value of ADC input in Volts.
.dac-enable-<0-3> (bit, In) Enable DAC output. When enable is false then
DAC output is set to 0.0 V.
.dac-<0-3> (float, In) Value of DAC output in Volts.

Table 6.26: DAC & ADC module parameters

Parameters Type and Parameter description
direction

.adc-scale-<0-7> (float, R/W) The input voltage will be multiplied by scale
before being output to .adc- pin.

.adc-offset-<0-7> (float, R/W) Offset is subtracted from the hardware input
voltage after the scale multiplier has been
applied.

.dac-offset-<0-3> (float, R/W) Offset is added to the value before the hardware
is updated.

.dac-high-limit-<0-3> (float, R/W) Maximum output voltage of the hardware in Volts.

.dac-low-limit-<0-3> (float, R/W) Minimum output voltage of the hardware in Volts.

HAL example

gm.0.rs485.0.adc-0 # First analogue channel of the node.
gm.0 # Identifies the first GM6-PCI motion control card (PCI card address «
= 0)
.rs485.0 # Selects node with address 0 on the RS485 bus
.adc-0 # Selects the first analogue input of the module

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 339/1322

6.3.7.4 Teach Pendant module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.

All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>

where <module ID> is from 00 to 15. Note that on the Teach Pendant module it cannot be changed,
and pre-programmed as zero. Upon request it can be delivered with firmware pre-programmed dif-
ferent ID.

Table 6.27: Teach Pendant module pins

Pins Type and Pin description
direction

.adc-<0-5> (float, Out) Value of ADC input in Volts.

.enc-reset (bit, In) When True, resets counts and position to zero.

.enc-counts (s32, Out) Position in encoder counts.

.enc-rawcounts (s32, Out) The raw count is the counts, but unaffected by
reset.

.enc-position (float, Out) Position in scaled units
(=.enc-counts/.enc-position-scale).

.in-<@-7> (bit, Out) Input pin

.in-not-<0-7> (bit, Out) Negated input pin

Table 6.28: Teach Pendant module parameters

Parameters Type and Parameter description
direction

.adc-scale-<0-5> (float, R/W) The input voltage will be multiplied by scale
before being output to .adc- pin.

.adc-offset-<0-5> (float, R/W) Offset is subtracted from the hardware input
voltage after the scale multiplier has been
applied.

.enc-position-scale (float, R/W) Scale in per length unit.

HAL example

gm.0.rs485.0.adc-0 # First analogue channel of the node.
gm.0 # Identifies the first GM6-PCI motion control card (PCI card address <«
= 0)
.rs485.0 # Selects node with address 0 on the RS485 bus
.adc-0 # Selects the first analogue input of the module

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 340/ 1322

6.3.8 Errata

6.3.8.1 GM6-PCI card Errata

The revision number in this section refers to the revision of the GM6-PCI card device.
Rev. 1.2

e Error: The PCI card do not boot, when Axis 1. END B switch is active (low). Found on November
16, 2013.

* Reason: This switch is connected to a boot setting pin of FPGA

¢ Problem fix/workaround: Use other switch pin, or connect only normally open switch to this switch
input pin.

6.4 GS2 VFD Driver

This is a non-realtime HAL program for the GS2 series of VFDs at Automation Direct. 2
This component is loaded using the halcmd ”loadusr” command:

loadusr -Wn spindle-vfd gs2 vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component gs2 vfd, named spindle-vfd.
The HAL loadusr command is described in the loadusr chapter.

6.4.1 Command Line Options

e -b or --bits <n> (default: 8) Set number of data bits to n, where n must be from 5 to 8 inclusive.
e -d or --device <path> (default: /dev/ttyS0) Set the file path to the serial device node to use.

e -g or --debug Turn on debugging messages. This will also set the verbose flag. Debug mode will
cause all modbus messages to be printed in hex on the terminal.

* -nor--name <string> (default: gs2 vfd) Set the name of the HAL module. The HAL comp name will
be set to <string>, and all pin and parameter names will begin with <string>.

e -p or --parity {even,odd,none} (default: odd) Set serial parity to even, odd, or none.

e -r or --rate <n> (default: 38400) Set baud rate to n. It is an error if the rate is not one of the
following: 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.

e -s or --stopbits {1,2} (default: 1) Set serial stop bits to 1 or 2

e -t or --target <n> (default: 1) Set MODBUS target (slave) number. This must match the device
number you set on the GS2.

* -v or --verbose Turn on debug messages.
e -A or --accel-seconds <n> (default: 10.0) Seconds to accelerate the spindle from 0 to max. RPM.

e -D or --decel-seconds <n> (default: 0.0) Seconds to decelerate the spindle from max. RPM to 0. If
set to 0.0 the spindle will be allowed to coast to a stop without controlled deceleration.

2In Europe the equivalent can be found under the brand name Omron.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

341/1322

* -R or --braking-resistor This argument should be used when a braking resistor is installed on the
GS2 VFD (see Appendix A of the GS2 manual). It disables deceleration over-voltage stall prevention
(see GS2 modbus Parameter 6.05), allowing the VFD to keep braking even in situations where the
motor is regenerating high voltage. The regenerated voltage gets safely dumped into the braking

resistor.

Note

That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

6.4.2 Pins

With <name> being “gs2 vfd” or the name given during loading with the -n option:

<name>.DC-bus-volts (float, out) DC bus voltage of the VFD
<name>.at-speed (bit, out) when drive is at commanded speed
<name>.err-reset (bit, in) reset errors sent to VFD
<name>.firmware-revision (s32, out) from the VFD
<name>.frequency-command (float, out) from the VFD
<name>.frequency-out (float, out) from the VFD
<name>.is-stopped (bit, out) when the VFD reports 0 Hz output
<name>.load-percentage (float, out) from the VFD
<name>.motor-RPM (float, out) from the VFD
<name>.output-current (float, out) from the VFD
<name>.output-voltage (float, out) from the VFD
<name>.power-factor (float, out) from the VFD

<name>.scale-frequency (float, out) from the VFD

<name>.speed-command (float, in) speed sent to VFD in RPM It is an error to send a speed faster

than the Motor Max RPM as set in the VFD.

<name>.spindle-fwd (bit, in) 1 for FWD and 0 for REV sent to VFD
<name>.spindle-rev (bit, in) 1 for REV and 0 if off
<name>.spindle-on (bit, in) 1 for ON and 0 for OFF sent to VFD

<name>.status-1 (s32, out) Drive Status of the VFD (see the GS2 manual)

<name>.status-2 (s32, out) Drive Status of the VFD (see the GS2 manual)

Note

The status value is a sum of all the bits that are on. So a 163 which means the drive is in the run

mode is the sum of 3 (run) + 32 (freq set by serial) + 128 (operation set by serial).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 342 /1322

6.4.3 Parameters
With <name> being gs2 vfd or the name given during loading with the -n option:

e <name>.error-count (s32, RW)

¢ <name>.loop-time (float, RW) how often the modbus is polled (default: 0.1)

¢ <name>.nameplate-HZ (float, RW) Nameplate Hz of motor (default: 60)

¢ <name>.nameplate-RPM (float, RW) Nameplate RPM of motor (default: 1730)
¢ <name>.retval (s32, RW) the return value of an error in HAL

e <name>.tolerance (s32, RW) speed tolerance (default: 0.01)

e <name>.ack-delay (s32, RW) number of read/write cycles before checking at-speed (default 2)

For an example of using this component to drive a spindle see the GS2 Spindle example.

6.5 HAL Driver for Raspberry Pi GPIO pins

Note: This driver will not be compiled into images aimed at non-ARM CPUS. It is only really intended
to work on the Raspberry Pi. It may, or may not, work on similar boards or direct clones.

6.5.1 Purpose

This driver allows the use of the Rapberry Pi GPIO pins in a way analogous to the parallel port driver
on x86 PCs. It can use the same step generators, encoder counters and similar components.

6.5.2 Usage

loadrt hal pi gpio dir=0x13407 exclude=0x1F64BF8

The ”dir” mask determines whether the pins are inputs and outputs, the exclude mask prevents the
driver from using the pins (and so allows them to be used for their normal RPi purposes such as SPI
or UART).

The mask can be in decimal or hexadecimal (hex may be easier as there will be no carries).

To determine the value of the masks, add up the hex/decimal values for all pins that should be con-
figured as output, and analogously for all pins that should be excluded according to the following
table.

Table 6.29: GPIO masks - mapping of GPIO numbers
(leftmost column) to physical pin numbers as printed on
the Raspberry Pi board (rightmost column) and the dec-
imal/hexadecimal values that contribute to the value of

the mask.
GPIO Num Decimal Hex Pin Num
2 1 | 0x00000001 3
3 2 | 0x00000002 5
4 4 | 0x00000004 7

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 343 /1322
Table 6.29: (continued)
GPIO Num Decimal Hex Pin Num
5 8 | 0x00000008 29
6 16 | 0x00000010 31
7 32 | 0x00000020 26
8 64 | 0x00000040 24
9 128 | 0x00000080 21
10 256 | 0x00000100 19
11 512 | 0x00000200 23
12 1024 | 0x00000400 32
13 2048 | 0x00000800 33
14 4096 | 0x00001000 8
15 8192 | 0x00002000 10
16 16384 | 0x00004000 36
17 32768 | 0x00008000 11
18 65536 | 0x00010000 12
19 131072 | 0x00020000 35
20 262144 | 0x00040000 38
21 524288 | 0x00080000 40
22 1048576 | 0x00100000 15
23 2097152 | 0x00200000 16
24 4194304 | 0x00400000 18
25 8388608 | 0x00800000 22
26 16777216 | 0x01000000 37
27 33554432 | 0x02000000 13

Note: In the calculation of the individual pin’s mask value its GPIO numbers are used, the value being
derived as 27 (GPIO number - 2), whereas in the naming of the HAL pins it is the Raspberry Pi header
pin numbers.

So, for example, if you enable GPIO 17 as an output (dir=0x8000) then that output will be controlled
by the hal pin hal pi_gpio.pin-11-out.

6.5.3 Pins

* hal pi gpio.pin-NN-out
* hal pi gpio.pin-NN-in

Depending on the dir and exclude masks.

6.5.4 Parameters
Only the standard timing parameters which are created for all components exist:

* hal pi gpio.read.tmax
e hal pi gpio.read.tmax-increased
* hal pi gpio.write.tmax

* hal pi gpio.write.tmax-increased

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 344 /1322

For unknown reasons the driver also creates HAL pins to indicate timing:

* hal pi gpio.read.time

* hal pi gpio.write.time

6.5.5 Functions

* hal pi gpio.read - Add this to the base thread to update the HAL pin values to match the physical
input values.

* hal pi gpio.write - Add this to the base thread to update the physical pins to match the HAL
values.

Typically the read function will be early in the call list, before any encoder counters and the write
function will be later in the call list, after stepgen.make-pulses.

6.5.6 Pin Numbering

The GPIO connector and the pinout has been consistent since around 2015. These older Pi models
are probably a poor choice for LinuxCNC anyway. However, this driver is designed to work with them,
and will detect and correctly configure for the two alternative pinouts.

The current pinout mapping between GPIO numbers and connector pin numbers is included in the
table above.

Note that the config string uses GPIO numbers, but once the driver is loaded the HAL pin names refer
to connector pin numbers.

This may be more logical than it first appears. When setting up you need to configure enough pins
of each type, whilst avoiding overwriting any other functions that your system needs. Then once the
driver is loaded, in the HAL layer you just want to know where to connect the wires for each HAL pin.

6.5.7 Known Bugs

At the moment (2023-07-16) this driver only seems to work on Raspbian as the generic Debian image
does not set up the correct interfaces in /dev/gpiomem and restricts access to the /sys/mem interface.

6.6 Generic driver for any GPIO supported by gpiod.

This driver has been tested on the Raspberry Pi, and should also work on Banana Pi, BeagleBone,
Pine64 (et al.) and other single board computers, and potentially on other platforms.

6.6.1 Purpose

This driver allows the use of GPIO pins in a way analogous to the parallel port driver on x86 PCs. It
can use the same step generators, encoder counters and similar components.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 345 /1322

6.6.2 Usage

loadrt hal gpio inputs=GPIO05,GPI06,GPI012,GPI013,GPI016,GPI017,GPI018,GPI019 \
outputs=GPI020,GPI021,GPI022,GPI023,GPI024,GPI025,GPI026, <+
GPIO027 \
invert=GPI020,GPI027 \
reset=GPI021,GPI022

This driver relies on the libgpiod-dev library and the gpiod package, which contains a number of
utilities for configuring and querying GPIO. The GPIO pin names in the "loadrt” line of the HAL given
above should be the names given by the gpioinfo command.

Sample output (truncated):

$ gpioinfo
gpiochip® - 54 lines:
line 0: "ID SDA" unused input active-high
line 1: "ID SCL” unused input active-high
line 2: "SDA1” unused input active-high
line 3: "SCL1” unused input active-high
line 4: "GPIO GCLK” unused input active-high
line 5: "GPIO5” unused input active-high
line 6: "GPI06"” unused input active-high
line 7: "SPI CE1 N” unused input active-high
line 8: "SPI CEO N” unused input active-high
line 9: "SPI_MISO” unused input active-high
line 10: "SPI_MOSI” unused input active-high
line 11: "SPI_ SCLK” unused input active-high
line 12: "GPIO12"” unused input active-high
line 13: "GPIO13"” unused input active-high
line 14: "TXD1"” unused input active-high
line 15: "RXD1"” unused input active-high
line 16: "GPIO016"” unused input active-high
line 17: "GPIO17"” unused input active-high
line 18: "GPI018"” unused input active-high
line 19: "GPI019” unused input active-high
line 20: "GPI1020" unused output active-high

A list of input and/or output pins should be specified as shown in the sample above. The \ character is
used for line continuation in HAL, and is used to improve readability. The pin names are case-sensitive
and there must be no spaces in the strings, neither between the comma-separated pins lists nor the
"=" signs.

Additional modifiers are

invert
(valid for outputs only). Inverts the sense of the physical pin relative to the value in HAL.

reset

(valid for outputs only). If any pins are allocated to the “"reset” list then a HAL parameter
hal_gpio.reset_ns will be created. This will have no effect unless the hal_gpio.reset func-
tion is added to a realtime thread. This should be placed after the hal_gpio.write function
and must be in the same thread. The behaviour of this function is equivalent to the same
function in the hal parport driver, and it allows a step pulse every thread cycle. If the
hal_gpio.reset_ns time is set longer than 1/4 of the period of the thread that it is added to,
then the value will be reduced to 1/4 the thread period. There is a lower limit to how long
the pulse can be. With 8 pins in the output list the pulse width can not reduce lower than
5000 ns on an RPi4, for example.

https://tracker.debian.org/pkg/libgpiod

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 346 /1322

The following functions are accepted in all versions, but are only effective if a version of libgpiod dev
>= 1.6 is installed. They should be used in the same way as the parameters described above, and will
alter the electrical parameters of the GPIO pins if this is supported by the hardware.

opendrain
opensource
biasdisable
pulldown
pullup

The version of libgpiod-dev installed can be determined by the command gpioinfo -v

6.6.3 Pins

* hal gpio.NAME-in - HAL OUT The value of an input pin presented in to HAL
* hal gpio.NAME-in-not - HAL. OUT An inverted version of the above, for convenience

* hal gpio.NAME-out - HAL IN use this pin to transfer a HAL bit value to a physical output

6.6.4 Parameters

* hal gpio.reset ns - HAL RW - "setp” this parameter to control the pulse length of pins added to the
"reset” list. The value will be limited between 0 and thread-period / 4.

6.6.5 Functions

* hal gpio.read - Add this to the base thread to update the HAL pin values to match the physical input
values.
* hal gpio.write - Add this to the base thread to update the physical pins to match the HAL values.

* hal gpio.reset - Only exported if there are pins defined in the reset list. This should be placed after
the "write” function, and should be in the same thread.

Typically, the read function will be early in the call list, before any encoder counters and the write
function will be later in the call list, after stepgen.make-pulses.

6.6.6 Pin ldentification

Use the pin names returned by the gpioinfo utility. This uses the device-tree data. If the installed
OS does not have a device-tree database then the pins will all be called “unnamed” (or similar) and
this driver can not be used.

A further update to this driver might allow access by index number, but this is not currently supported.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 347 /1322

6.6.7 Troubleshooting permissions problems.

If "access denied” messages are returned on loading the driver, try the following recipe: (Should not
be needed for Raspbian, and will need to be modified to match the actual GPIO chip name on non-Pi
platforms)

1. Create a new group gpio with the command

sudo groupadd gpio

2. Then to setup permissions for the “gpio” group, create a file called 90-gpio-access in the
/etc/udev/rules.d/ directory with the following contents (this is copied from the Raspbian
install)

SUBSYSTEM=="bcm2835-gpiomem”, GROUP="gpio”, MODE="0660"
SUBSYSTEM=="gpio”, GROUP="gpio”, MODE="0660"
SUBSYSTEM=="gpio*"”, PROGRAM="/bin/sh -c ’\
chown -R root:gpio /sys/class/gpio &% chmod -R 770 /sys/class/gpio;\
chown -R root:gpio /sys/devices/virtual/gpio &&\
chmod -R 770 /sys/devices/virtual/gpio;\
chown -R root:gpio /sys$devpath & chmod -R 770 /sys$devpath\

SUBSYSTEM=="pwm*"”, PROGRAM="/bin/sh -c '\
chown -R root:gpio /sys/class/pwm && chmod -R 770 /sys/class/pwm;\
chown -R root:gpio /sys/devices/platform/soc/*.pwm/pwm/pwmchip* &&\
chmod -R 770 /sys/devices/platform/soc/*.pwm/pwm/pwmchip*\

3. Add the user who runs LinuxCNC to the gpio group with

sudo usermod -aG gpio <username>

6.6.8 Author

Andy Pugh

6.6.9 Known Bugs

None at this time.

6.7 Mesa HostMot2 Driver

6.7.1 Introduction

HostMot2 is an FPGA configuration developed by Mesa Electronics for theirline of Anything I/O motion
control cards. The firmware is open source, portable and flexible. It can be configured (at compile-
time) with zero or more instances (an object created at runtime) of each of several Modules: encoders
(quadrature counters), PWM generators, and step/dir generators. The firmware can be configured (at
run-time) to connect each of these instances to pins on the I/O headers. I/O pins not driven by a Module
instance revert to general-purpose bi-directional digital I/O.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 348 /1322

6.7.2 Firmware Binaries

50 Pin Header FPGA cards Several pre-compiled HostMot2 firmware binaries are available for the
different Anything I/O boards. This list is incomplete, check the hostmot2-firmware distribution for
up-to-date firmware lists.

e 3x20 (144 I/O pins): using hm2 pci module

- 24-channel servo
- 16-channel servo plus 24 step/dir generators

e 5122 (96 I/O pins): using hm2 pci module

- 16-channel servo
- 8-channel servo plus 24 step/dir generators

* 5120, 5123, 4165, 4168 (72 I/O pins): using hm?2 pci module

- 12-channel servo
- 8-channel servo plus 4 step/dir generators
- 4-channel servo plus 8 step/dir generators

e 7143 (48 1I/O pins): using hm2 7i43 module

- 8-channel servo (8 PWM generators & 8 encoders)
- 4-channel servo plus 4 step/dir generators

DB25 FPGA cards The 5125 Superport FPGA card is preprogrammed when purchased and does not
need a firmware binary.

6.7.3 Installing Firmware

Depending on how you installed LinuxCNC you may have to open the Synaptic Package Manager from
the System menu and install the package for your Mesa card. The quickest way to find them is to do a
search for hostmot2 in the Synaptic Package Manager. Mark the firmware for installation, then apply.

6.7.4 Loading HostMot2

The LinuxCNC support for the HostMot2 firmware is split into a generic driver called hostmot2 and
two low-level I/O drivers for the Anything I/O boards. The low-level I/O drivers are hm2 7i43 and
hm2 pci (for all the PCI- and PC-104/Plus-based Anything I/O boards). The hostmot2 driver must be
loaded first, using a HAL command like this:

loadrt hostmot2

See the hostmot2(9) man page for details.

The hostmot2 driver by itself does nothing, it needs access to actual boards running the HostMot2
firmware. The low-level I/O drivers provide this access. The low-level I/O drivers are loaded with
commands like this:

loadrt hm2 pci config="firmware=hm2/5i20/SVST8 4.BIT
num_encoders=3 num_pwmgens=3 num_stepgens=1"

The config parameters are described in the hostmot2 man page.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 349 /1322

6.7.5 Watchdog

The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it.

The watchdog must be petted by LinuxCNC periodically or it will bite. The hm?2 write function (see
below) pets the watchdog.

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and
become high-impedance inputs (pulled high). The state of the HostMot2 firmware modules is not
disturbed (except for the configuration of the I/O Pins). Encoder instances keep counting quadrature
pulses, and pwm- and step-generators keep generating signals (which are not relayed to the motors,
because the I/O Pins have become inputs).

Resetting the watchdog resets the I/O pins to the configuration chosen at load-time.

If the firmware includes a watchdog, the following HAL objects will be exported:

6.7.5.1 Pins

* has bit - (bit i/o) True if the watchdog has bit, False if the watchdog has not bit. If the watchdog
has bit and the has bit bit is True, the user can reset it to False to resume operation.

6.7.5.2 Parameters

» timeout ns - (u32 read/write) Watchdog timeout, in nanoseconds. This is initialized to 5,000,000
(5 milliseconds) at module load time. If more than this amount of time passes between calls to the
hm?2 write function, the watchdog will bite.

6.7.6 HostMot2 Functions

* hm2 <BoardType>.<BoardNum>.read - Read all inputs, update input HAL pins.
* hm2 <BoardType>.<BoardNum>.write - Write all outputs.

* hm2 <BoardType>.<BoardNum>.read gpio - Read the GPIO input pins only. (This function is not
available on the 7143 due to limitations of the EPP bus.)

* hm2 <BoardType>.<BoardNum>.write gpio - Write the GPIO control registers and output pins
only. (This function is not available on the 7143 due to limitations of the EPP bus.)

Note

The above read _gpio and write_gpio functions should not normally be needed, since the GPIO bits are
read and written along with everything else in the standard read and write functions above, which
are normally run in the servo thread.

The read _gpio and write_gpio functions were provided in case some very fast (frequently updated)
I/0 is needed. These functions should be run in the base thread. If you have need for this, please
send an email and tell us about it, and what your application is.

6.7.7 Pinouts

The hostmot2 driver does not have a particular pinout. The pinout comes from the firmware that the
hostmot2 driver sends to the Anything I/O board. Each firmware has different pinout, and the pinout
depends on how many of the available encoders, pwmgens, and stepgens are used. To get a pinout
list for your configuration after loading LinuxCNC in the terminal window type:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 350/1322

dmesg > hm2.txt

The resulting text file will contain lots of information as well as the pinout for the HostMot2 and any
error and warning messages.

To reduce the clutter by clearing the message buffer before loading LinuxCNC type the following in
the terminal window:

sudo dmesg -c

Now when you run LinuxCNC and then do a dmesg > hm2.txt in the terminal only the info from the
time you loaded LinuxCNC will be in your file along with your pinout. The file will be in the current
directory of the terminal window. Each line will contain the card name, the card number, the 1/O
Pin number, the connector and pin, and the usage. From this printout you will know the physical
connections to your card based on your configuration.

An example of a 5120 configuration:

[HOSTMOT2]

DRIVER=hm2 pci

BOARD=5120

CONFIG="firmware=hm2/5i20/SVST8 4.BIT num_encoders=1 num_pwmgens=1 num stepgens=3"

The above configuration produced this printout.

1141.053386] hm2/hm2 5i20.0: 72 I/0 Pins used:
1141.053394] hm2/hm2_5i20.0: I0 Pin 000 (P2-01):
1141.053397] hm2/hm2_5i20.0: I0 Pin 001 (P2-03):
1141.053401] hm2/hm2_5i20.0: I0 Pin 002 (P2-05):
1141.053405] hm2/hm2 5i20.0: I0 Pin 003 (P2-07): Encoder #0, pin A (Input)
1141.053408] hm2/hm2_5i20.0: I0 Pin 004 (P2-09): IOPort

): IOPort

)
)
)
)

1141.053411] hm2/hm2_5120.0: I0 Pin 005 (P2-11): Encoder #0, pin Index (Input)

)
)
)
)

IOPort
Encoder #0, pin B (Input)

1141.053415] hm2/hm2 5i20.0: I0 Pin 006 (P2-13): IOPort

1141.053418] hm2/hm2 5i20.0: I0 Pin 007 (P2-15): PWMGen #0, pin Out® (PWM or Up) (Output)

1141.053422] hm2/hm2_5i20. I0 Pin 008 (P2-17): IOPort

1141.053425] hm2/hm2_5i20. IO Pin 009 (P2-19): PWMGen #0, pin Outl (Dir or Down) (<«
Output)

[1141.053429] hm2/hm2_5i20.

[1141.053432] hm2/hm2_5i20.

<snip>...

[1141.053589] hm2/hm2_5i20.

[1141.053593] hm2/hm2_5i20.

[1141.053597] hm2/hm2_5i20.

[1141.053601] hm2/hm2_5i20.

[1141.053605] hm2/hm2_5i20.

[1141.053609] hm2/hm2_5i20.

[1141.053613] hm2/hm2_5i20.

[1141.053616] hm2/hm2_5i20.

[

[

[

[

[

[

[cNcNoNoNoNoNoNoNoNoNo)

I0 Pin 010 (P2-21): IOPort
IO Pin 011 (P2-23): PWMGen #0, pin Not-Enable (Output)

[oN o]

: I0 Pin 060 (P4-25):
: I0 Pin 061 (P4-27):
: I0 Pin 062 (P4-29):
: I0 Pin 063 (P4-31):
: I0 Pin 064 (P4-33

): StepGen #2, pin Step (Output)
): StepGen #2, pin Direction (Output)
): StepGen #2, pin (unused) (Output)
): StepGen #2, pin (unused) (Output)
): StepGen #2, pin (unused) (Output)

: I0 Pin 065 (P4-35): StepGen #2, pin (unused) (Output)

: I0 Pin 066 (P4-37): IOPort

: I0 Pin 067 (P4-39): IOPort

: I0 Pin 068 (P4-41): IOPort

: I0 Pin 069 (P4-43): IOPort

: I0 Pin 070 (P4-45): IOPort

: I0 Pin 071 (P4-47): IOPort

: registered

itialized AnyIO board at 0000:02:02.0

1141.053619] hm2/hm2_5i20.
1141.053621] hm2/hm2_51i20.
1141.053624] hm2/hm2_5i20.
1141.053627] hm2/hm2_5i20.
1141.053811] hm2/hm2_51i20.
1141.053815] hm2 5i20.0: i

=NoNoNoNoNoNoNoNoNoNoNoNoNol

Note

That the 1/0O Pin nnn will correspond to the pin number shown on the HAL Configuration screen for
GPIOs. Some of the StepGen, Encoder and PWMGen will also show up as GPIOs in the HAL Configu-
ration screen.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 351/1322

6.7.8 PIN Files

The default pinout is described in a .PIN file (human-readable text). When you install a firmware
package the .PIN files are installed in

/usr/share/doc/hostmot2-firmware-<board>/

6.7.9 Firmware

The selected firmware (.BIT file) and configuration is uploaded from the PC motherboard to the Mesa
mothercard on LinuxCNC startup. If you are using Run In Place, you must still install a hostmot2-
firmware-<board> package. There is more information about firmware and configuration in the Con-
figurations section.

6.7.10 HAL Pins

The HAL pins for each configuration can be seen by opening up Show HAL Configuration from the
Machine menu. All the HAL pins and parameters can be found there. The following figure is of the
5120 configuration used above.

HAL Configuration

Components [T SHOW | waTCH
Fins

axis Component Pins:
axisul Dwner e Dir Value Name

= oUT 0 km2 5120.0. encoder. 00. count

kit I/0 FALSE hm? 5i20 0. encoder. 00, index-enzble

0
1]
float OUT 0 hm2 5i20_ 0. der. 00. it
e a i : encoder position
0
0

gpio
prmgen
slepgen
watchdog
oControl
miotion
E Paramelers
axis
hmZ_Si20
(1]
encoder
gpio
i0_error
pet_watchidog
pusmigen
el

=32 OUT 0 kmZ 5i20.0. encoder. 00. rawcounts
bit IN FALSE hmZZEiEﬂ. cencoder. 00 reset
float OUT 0 bhm2 5120.0. encoder. O0. velocity

==l el] =]) -

read_gpio
stepgen

wiatchdog Test HAL command : | Execute
write - 1

wirite_gpio Commands may be tested here but they will NOT be sawed
o— motion-cammand-hand|

f— motion-coniroller

£
s

Figure 6.9: 5120 HAL Pins

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 352 /1322

6.7.11 Configurations

The Hostmot2 firmware is available in several versions, depending on what you are trying to accom-
plish. You can get a reminder of what a particular firmware is for by looking at the name. Let’s look
at a couple of examples.

In the 7143 (two ports), SV8 (Servo 8) would be for having 8 servos or fewer, using the classic 7133
4-axis (per port) servo board. So 8 servos would use up all 48 signals in the two ports. But if you
only needed 3 servos, you could say num _encoders=3 and num_pwmgens=3 and recover 5 servos at
6 signals each, thus gaining 30 bits of GPIO.

Or, in the 5122 (four ports), SVST8 24 (Servo 8, Stepper 24) would be for having 8 servos or fewer
(7133 x2 again), and 24 steppers or fewer (7147 x2). This would use up all four ports. If you only
needed 4 servos you could say num_encoders=4 and num_pwmgens=4 and recover 1 port (and save
a 7133). And if you only needed 12 steppers you could say num_stepgens=12 and free up one port
(and save a 7147). So in this way we can save two ports (48 bits) for GPIO.

Here are tables of the firmwares available in the official packages. There may be additional firmwares
available at the Mesanet.com website that have not yet made it into the LinuxCNC official firmware
packages, so check there too.

3x20 (6-port various) Default Configurations (The 3x20 comes in 1M, 1.5M, and 2M gate versions. So
far, all firmware is available in all gate sizes.)

Firmware Encoder PWMGen StepGen GPIO
Sv24 24 24 0 0
SVST16 24 16 16 24 0

5122 (4-port PCI) Default Configurations (The 5122 comes in 1M and 1.5M gate versions. So far, all
firmware is available in all gate sizes.)

Firmware Encoder PWM StepGen GPIO
SVie 16 16 0 0
SVST2 4 7147 | 4 2 4 72
SVSTS8 8 8 8 8 0
SVSTS8 24 8 8 24 0

5123 (3-port PCI) Default Configurations (The 5123 has 400k gates.)

Firmware Encoder PWM StepGen GPIO
SVi12 12 12 0 0
SVST2 8 2 2 8 (tblb) 12
SVST2 4 7147 | 4 2 4 48
SV12 2X7148 72 12 12 0 24
SV12IM 2X7148| 12 (+IM) 12 0 12
SVST4 8 4 4 8 (tbl5) 0
SVST8 4 8 8 4 (tbl5) 0
SVST8 4IM?2 8 (+IM) 8 4 8
SVST8 8IM?2 8 (+IM) 8 8 0
SVTP6 7139 6 0 (6 BLDC) 0 0

5120 (3-port PCI) Default Configurations (The 5120 has 200k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2 8 2 2 8 (tblb) 12

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

353/1322

Firmware Encoder PWM StepGen GPIO
SVST2 4 7147 | 4 2 4 48
SV12 2X7148 72 12 12 0 24
SV12IM 2X7148| 12 (+IM) 12 0 12
SVSTS8 4 8 8 4 (tbl5) 0
SVST8 4IM2 8 (+IM) 8 4 8
4168 (3-port PC/104) Default Configurations (The 4168 has 400k gates.)
Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2 4 7147 | 4 2 4 48
SVST4 8 4 4 8 0
SVSTS8 4 8 8 4 0
SVST8 4IM2 8 (+IM) 8 4 8
SVST8 8IM2 8 (+IM) 8 8 0
4165 (3-port PC/104) Default Configurations (The 4165 has 200k gates.)
Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVSTS8 4 8 8 4 0
SVST8 4IM2 8 (+IM) 8 4 8
7143 (2-port parallel) 400k gate versions, Default Configurations
Firmware Encoder PWM StepGen GPIO
Sv8 8 8 0 0
SVST4 4 4 4 4 (tbl5) 0
SVST4 6 4 4 6 (tbl3) 0
SVST4 12 4 4 12 0
SVST2 4 7147 | 4 2 4 24
7143 (2-port parallel) 200k gate versions, Default Configurations
Firmware Encoder PWM StepGen GPIO
SV8 8 8 0 0
SVST4 4 4 4 4 (tbl5) 0
SVST4 6 4 4 6 (tbl3) 0
SVST2 4 7147 | 4 2 4 24

Even though several cards may have the same named .BIT file you cannot use a .BIT file that is not for
that card. Different cards have different clock frequencies so make sure you load the proper .BIT file
for your card. Custom hm?2 firmwares can be created for special applications and you may see some
custom hm?2 firmwares in the directories with the default ones.

When you load the board-driver (hm?2 pcior hm?2 7i43), you can tell it to disable instances of the three
primary modules (pwmgen, stepgen, and encoder) by setting the count lower. Any I/O pins belonging
to disabled module instances become GPIOs.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 354 /1322

6.7.12 GPIO

General Purpose I/O pins on the board which are not used by a module instance are exported to HAL as
full GPIO pins. Full GPIO pins can be configured at run-time to be inputs, outputs, or open drains, and
have a HAL interface that exposes this flexibility. I/O pins that are owned by an active module instance
are constrained by the requirements of the owning module, and have a restricted HAL interface.

GPIOs have names like hm2 <BoardType>.<BoardNum>.gpio.<IONum>. IONum is a three-digit
number. The mapping from IONum to connector and pin-on-that-connector is written to the syslog
when the driver loads, and it’s documented in Mesa’s manual for the Anything I/O boards.

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the
Canonical Device Interface (part of the HAL General Reference document).

GPIO pins default to input.

6.7.12.1 Pins

e in - (Bit, Out) Normal state of the hardware input pin. Both full GPIO pins and I/O pins used as
inputs by active module instances have this pin.

* in_not - (Bit, Out) Inverted state of the hardware input pin. Both full GPIO pins and I/O pins used
as inputs by active module instances have this pin.

* out - (Bit, In) Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins
have this pin.

6.7.12.2 Parameters

* invert output - (Bit, RW) This parameter only has an effect if the is output parameter is true. If this
parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL pin.
Only full GPIO pins and I/O pins used as outputs by active module instances have this parameter.
To invert an active module pin you have to invert the GPIO pin not the module pin.

* is opendrain - (Bit, RW) This parameter only has an effect if the is output parameter is true. If this
parameter is false, the GPIO behaves as a normal output pin: the I/O pin on the connector is driven
to the value specified by the out HAL pin (possibly inverted), and the value of the in and in_not HAL
pins is undefined. If this parameter is true, the GPIO behaves as an open-drain pin. Writing O to the
out HAL pin drives the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance
state. In this high-impedance state the I/O pin floats (weakly pulled high), and other devices can
drive the value; the resulting value on the I/O pin is available on the in and in_not pins. Only full
GPIO pins and I/O pins used as outputs by active module instances have this parameter.

* is output - (Bit, RW) If set to 0, the GPIO is an input. The I/O pin is put in a high-impedance state
(weakly pulled high), to be driven by other devices. The logic value on the I/O pin is available in the
in and in_not HAL pins. Writes to the out HAL pin have no effect. If this parameter is set to 1, the
GPIO is an output; its behavior then depends on the is opendrain parameter. Only full GPIO pins
have this parameter.

6.7.13 StepGen

StepGens have names like hm2 <BoardType>.<BoardNum>.stepgen.<Instance>. Instance is a two-
digit number that corresponds to the HostMot2 stepgen instance number. There are num_stepgens
instances, starting with 00.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 355/1322

Each stepgen allocates 2-6 I/O pins (selected at firmware compile time), but currently only uses two:
Step and Direction outputs. 3

The StepGen representation is modeled on the stepgen software component. StepGen default is active
high step output (high during step time low during step space). To invert a StepGen output pin you
invert the corresponding GPIO pin that is being used by StepGen. To find the GPIO pin being used for
the StepGen output run dmesg as shown above.

Each StepGen instance has the following pins and parameters:

6.7.13.1 Pins

* control-type - (Bit, In) Switches between position control mode (0) and velocity control mode (1).
Defaults to position control (0).

e counts - (s32, Out) Feedback position in counts (number of steps).

* enable - (Bit, In) Enables output steps. When false, no steps are generated.

* position-cmd - (Float, In) Target position of stepper motion, in user-defined position units.

* position-fb - (Float, Out) Feedback position in user-defined position units (counts / position scale).

* velocity-cmd - (Float, In) Target velocity of stepper motion, in user-defined position units per second.
This pin is only used when the stepgen is in velocity control mode (control-type=1).

e velocity-fb - (Float, Out) Feedback velocity in user-defined position units per second.

6.7.13.2 Parameters

e dirhold - (u32, RW) Minimum duration of stable Direction signal after a step ends, in nanoseconds.

e dirsetup - (u32, RW) Minimum duration of stable Direction signal before a step begins, in nanosec-
onds.

¢ maxaccel - (Float, RW) Maximum acceleration, in position units per second per second. If set to O,
the driver will not limit its acceleration.

¢ maxvel - (Float, RW) Maximum speed, in position units per second. If set to 0, the driver will choose
the maximum velocity based on the values of steplen and stepspace (at the time that maxvel was
set to 0).

* position-scale - (Float, RW) Converts from counts to position units. position = counts / position_scale

* step type - (u32, RW) Output format, like the step type modparam to the software stegen(9) compo-
nent. 0 = Step/Dir, 1 = Up/Down, 2 = Quadrature. In Quadrature mode (step type=2), the stepgen
outputs one complete Gray cycle (00 -> 01 -> 11 -> 10 -> 00) for each step it takes.

» steplen - (u32, RW) Duration of the step signal, in nanoseconds.

* stepspace - (u32, RW) Minimum interval between step signals, in nanoseconds.

3At present, the firmware supports multi-phase stepper outputs, but the driver doesn’t. Interested volunteers are solicited.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 356 /1322

6.7.13.3 Output Parameters

The Step and Direction pins of each StepGen have two additional parameters. To find which I/O pin
belongs to which step and direction output run dmesg as described above.

* invert output - (Bit, RW) This parameter only has an effect if the is output parameter is true. If this
parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL pin.

* is opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: the
I/O pin on the connector is driven to the value specified by the out HAL pin (possibly inverted). If
this parameter is true, the GPIO behaves as an open-drain pin. Writing O to the out HAL pin drives
the I/0O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance state. In this
high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and I/O
pins used as outputs by active module instances have this parameter.

6.7.14 PWMGen

PWMgens have names like hm2 <BoardType>.<BoardNum>.pwmgen.<Instance>. Instance is a two-
digit number that corresponds to the HostMot2 pwmgen instance number. There are num _pwmgens
instances, starting with 00.

In HM?2, each pwmgen uses three output I/O pins: Not-Enable, Out0, and Outl. To invert a PWMGen
output pin you invert the corresponding GPIO pin that is being used by PWMGen. To find the GPIO
pin being used for the PWMGen output run dmesg as shown above.

The function of the OutO and Outl I/O pins varies with output-type parameter (see below).

The hm?2 pwmgen representation is similar to the software pwmgen component. Each pwmgen in-
stance has the following pins and parameters:

6.7.14.1 Pins

enable - (Bit, In) If true, the pwmgen will set its Not-Enable pin false and output its pulses. If enable
is false, pwmgen will set its Not-Enable pin true and not output any signals.

value - (Float, In) The current pwmgen command value, in arbitrary units.

6.7.14.2 Parameters

* output-type - (s32, RW) This emulates the output type load-time argument to the software pwmgen
component. This parameter may be changed at runtime, but most of the time you probably want
to set it at startup and then leave it alone. Accepted values are 1 (PWM on OutO and Direction on
Outl), 2 (Up on Out0 and Down on Outl), 3 (PDM mode, PDM on OutO and Dir on Outl), and 4
(Direction on OutO0 and PWM on Outl, for locked antiphase).

* scale - (Float, RW) Scaling factor to convert value from arbitrary units to duty cycle: dc = value /
scale. Duty cycle has an effective range of -1.0 to +1.0 inclusive, anything outside that range gets
clipped.

* pdm_frequency - (u32, RW) This specifies the PDM frequency, in Hz, of all the pwmgen instances
running in PDM mode (mode 3). This is the pulse slot frequency; the frequency at which the pdm
generator in the Anything I/O board chooses whether to emit a pulse or a space. Each pulse (and
space) in the PDM pulse train has a duration of 1/pdm frequency seconds. For example, setting
the pdm_frequency to 2*10° Hz (2 MHz) and the duty cycle to 50% results in a 1 MHz square wave,
identical to a 1 MHz PWM signal with 50% duty cycle. The effective range of this parameter is

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 357 /1322

from about 1525 Hz up to just under 100 MHz. Note that the max frequency is determined by the
ClockHigh frequency of the Anything I/O board; the 5120 and 7143 both have a 100 MHz clock,
resulting in a 100 MHz max PDM frequency. Other boards may have different clocks, resulting in
different max PDM frequencies. If the user attempts to set the frequency too high, then it will be
clipped to the max supported frequency of the board.

* pwm_frequency - (u32, RW) This specifies the PWM frequency, in Hz, of all the pwmgen instances
running in the PWM modes (modes 1 and 2). This is the frequency of the variable-duty-cycle wave.
Its effective range is from 1 Hz up to 193 kHz. Note that the max frequency is determined by the
ClockHigh frequency of the Anything I/O board; the 5i20 and 7i43 both have a 100 MHz clock,
resulting in a 193 kHz max PWM frequency. Other boards may have different clocks, resulting in
different max PWM frequencies. If the user attempts to set the frequency too high, then it will be
clipped to the max supported frequency of the board. Frequencies below about 5 Hz are not terribly
accurate, but above 5 Hz they are pretty close.

6.7.14.3 Output Parameters

The output pins of each PWMGen have two additional parameters. To find which I/O pin belongs to
which output run dmesg as described above.

e invert output - (Bit, RW) This parameter only has an effect if the is output parameter is true. If
this parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL
pin.

e is opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: The
I/O pin on the connector is driven to the value specified by the out HAL pin (possibly inverted). If
this parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the out HAL pin drives
the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance state. In this
high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in not pins. Only full GPIO pins and
I/O pins used as outputs by active module instances have this parameter.

6.7.15 Encoder

Encoders have names like hm2 <BoardType>.<BoardNum>.encoder.<Instance>.. Instance is a two-
digit number that corresponds to the HostMot2 encoder instance number. There are num_encoders
instances, starting with 00.

Each encoder uses three or four input I/O pins, depending on how the firmware was compiled. Three-
pin encoders use A, B, and Index (sometimes also known as Z). Four-pin encoders use A, B, Index, and
Index-mask.

The hm?2 encoder representation is similar to the one described by the Canonical Device Interface
(in the HAL General Reference document), and to the software encoder component. Each encoder
instance has the following pins and parameters:

6.7.15.1 Pins

e count - (s32, Out) Number of encoder counts since the previous reset.

¢ index-enable - (Bit, I/O) When this pin is set to True, the count (and therefore also position) are
reset to zero on the next Index (Phase-Z) pulse. At the same time, index-enable is reset to zero to
indicate that the pulse has occurred.

e position - (Float, Out) Encoder position in position units (count / scale).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 358/1322

* rawcounts - (s32, Out) Total number of encoder counts since the start, not adjusted for index or
reset.

e reset - (Bit, In) When this pin is TRUE, the count and position pins are set to 0. The value of the
velocity pin is not affected by this. The driver does not reset this pin to FALSE after resetting the
count to 0, that is the user’s job.

* velocity - (Float, Out) Estimated encoder velocity in position units per second.

6.7.15.2 Parameters

e counter-mode - (Bit, RW) Set to False (the default) for Quadrature. Set to True for Up/Down or for
single input on Phase A. Can be used for a frequency to velocity converter with a single input on
Phase A when set to true.

e filter - (Bit, RW) If set to True (the default), the quadrature counter needs 15 clocks to register
a change on any of the three input lines (any pulse shorter than this is rejected as noise). If set to
False, the quadrature counter needs only 3 clocks to register a change. The encoder sample clock
runs at 33 MHz on the PCI Anything I/O cards and 50 MHz on the 7143.

e index-invert - (Bit, RW) If set to True, the rising edge of the Index input pin triggers the Index
event (if index-enable is True). If set to False, the falling edge triggers.

e index-mask - (Bit, RW) If set to True, the Index input pin only has an effect if the Index-Mask input
pin is True (or False, depending on the index-mask-invert pin below).

e index-mask-invert - (Bit, RW) If set to True, Index-Mask must be False for Index to have an effect.
If set to False, the Index-Mask pin must be True.

* scale - (Float, RW) Converts from count units to position units. A quadrature encoder will normally
have 4 counts per pulse so a 100 PPR encoder would be 400 counts per revolution. In . counter-mode
a 100 PPR encoder would have 100 counts per revolution as it only uses the rising edge of A and
direction is B.

¢ vel-timeout - (Float, RW) When the encoder is moving slower than one pulse for each time that the
driver reads the count from the FPGA (in the hm2 read() function), the velocity is harder to estimate.
The driver can wait several iterations for the next pulse to arrive, all the while reporting the upper
bound of the encoder velocity, which can be accurately guessed. This parameter specifies how long
to wait for the next pulse, before reporting the encoder stopped. This parameter is in seconds.

6.7.16 5125 Configuration

6.7.16.1 Firmware

The 5125 firmware comes preloaded for the daughter card it is purchased with. So the firmware=xxx.BIT
is not part of the hm2 pci configuration string when using a 5125.

6.7.16.2 Configuration

Example configurations of the 5125/7176 and 5125/7177 cards are included in the Configuration Selec-
tor.

If you like to roll your own configuration the following examples show how to load the drivers in the
HAL file.

5125 + 7176 Card

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 359/1322

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2 pci config="num encoders=1 num_stepgens=5 sserial port 0=0XXX"

5125 + 7177 Card

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2 pci config="num_encoders=6 num_ pwmgens=6 sserial port 0=0XXX"

6.7.16.3 SSERIAL Configuration

The sserial port 0=0XXX configuration string sets some options for the smart serial daughter card.
These options are specific for each daughter card. See the Mesa manual for more information on the
exact usage (typically in the section called SOFTWARE PROCESS DATA MODES) or see the manual
page of SSERIAL(9).

6.7.16.4 7177 Limits

The minlimit and maxlimit are bounds on the pin value (in this case the analog out value) fullscalemax
is the scale factor.

These are by default set to the analog in or analog range (most likely in Volts).
So for example on the 7177 +-10V analog outputs, the default values are:

minlimit: -10
maxlimit: +10
maxfullscale: 10

If you wanted to say scale the analog out of a channel to IPS for a velocity mode servo (say 24 IPS
max) you could set the limits like this:

minlimit: -24
maxlimit: +24
maxfullscale: 24

If you wanted to scale the analog out of a channel to RPM for a 0 to 6000 RPM spindle with 0-10V
control you could set the limits like this:

minlimit: 0

maxlimit: 6000

maxfullscale: 6000

(this would prevent unwanted negative output voltages from being set)

6.7.17 Example Configurations

Several example configurations for Mesa hardware are included with LinuxCNC. The configurations
are located in the hm2-servo and hm2-stepper sections of the Configuration Selector. Typically you
will need the board installed for the configuration you pick to load. The examples are a good place to
start and will save you time. Just pick the proper example from the LinuxCNC Configuration Selector

../man/man9/sserial.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 360/1322

and save a copy to your computer so you can edit it. To see the exact pins and parameters that your
configuration gave you, open the Show HAL Configuration window from the Machine menu, or do
dmesg as outlined above.

6.8 MB2HAL

6.8.1 Introduction

MB2HAL is a generic non-realtime HAL component to communicate with one or more Modbus devices.
So far, there are two options to communicate with a Modbus device:

1. One option is to create a HAL component as a driver see VFD Modbus.
2. Another option is to use Classic Ladder which has Modbus built in, see ClassicLadder.

3. Now there is a third option that consists of a “generic” driver configured by text file, this is called
MB2HAL.

Why MB2HAL? Consider using MB2HAL if:

* You have to write a new driver and you don’t know anything about programming.
* You need to use Classic Ladder “only” to manage the Modbus connections.

* You have to discover and configure first time the Modbus transactions. MB2HAL have debug levels
to facilitate the low level protocol debug.

* You have more than one device to connect. MB2HAL is very efficiently managing multiple devices,
transactions and links. Currently I am monitoring two axis drivers using a Rs232 port, a VFD driver
using another Rs232 port, and a remote I/O using TCP/IP.

* You want a protocol to connect your Arduino to HAL. Look the included sample configuration file,
sketch and library for Arduino Modbus.

6.8.2 Usage

a. Create a config file from the example below

1. Set component name (optional)
Set HAL MODULE NAME=mymodule (default HAL MODULE NAME=mb2hal)

2. Load the modbus HAL non-realtime component

b. Default component name: loadusr -W mb2hal config=config file.ini
c. Custom component name: loadusr -Wn mymodule mb2hal config=config file.ini
6.8.3 Options

6.8.3.1 Init Section

[MB2HAL INIT]

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?VFD_Modbus

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 361 /1322

Value
INIT DEBUG

Required
No

Description

Debug level of init and INI file parsing.

0 = silent

1 = error messages (default)

2 = OK confirmation messages

3 = debugging messages

4 = maximum debugging messages (only in transactions)

Type
Integer

No
No
No

Version number in the format N.N[NN]. Defaults to 1.0.
HAL module (component) name. Defaults to “mb2hal”.
Insert a delay of "FLOAT seconds” between transactions in
order to not to have a lot of logging and facilitate the
debugging. Useful when using DEBUG=3 (NOT

INIT DEBUG=3). It affects ALL transactions. Use ”0.0” for
normal activity.

The number of total Modbus transactions. There is no
maximum.

VERSION String
HAL MODULE_NAMEng
SLOWDOWN Float

TOTAL TRANSACHOENS| Yes

6.8.3.2 Transaction Sections

One transaction section is required per transaction, starting at [TRANSACTION 00] and counting up
sequentially. If there is a new link (not transaction), you must provide the REQUIRED parameters 1st
time. Warning: Any OPTIONAL parameter not specified are copied from the previous transaction.

Value Type Required | Description
LINK TYPE String | Yes You must specify either a "serial” or “tcp” link for the first
transaction. Later transactions will use the previous
transaction link if not specified.
TCP_IP IP ad- | If The Modbus slave device IP address. Ignored if
dress | LINK TYPE=td¢INK TYPE=serial.
TCP_PORT Integer| No The Modbus slave device TCP port. Defaults to 502.
Ignored if LINK TYPE=serial.
SERIAL PORT| String | If The serial port. For example ”/dev/ttyS0”. Ignored if
LINK TYPE=s&dINKL TYPE=tcp.
SERIAL BAUD| Integer| If The baud rate. Ignored if LINK TYPE=tcp.
LINK TYPE=serial
SERIAL BITS| Integer| If Data bits. One of 5, 6, 7, 8. Ignored if LINK TYPE=tcp.
LINK TYPE=serial
SERIAL PARI[T®tring | If Data parity. One of: even, odd, none. Ignored if
LINK TYPE=s&dINKL TYPE=tcp.
SERIAL STOP| Integer| If Stop bits. One of 1, 2. Ignored if LINK TYPE=tcp.
LINK TYPE=serial
SERIAL DELAYINfeger| If Serial port delay between transactions of this section only.
LINK TYPE=sdnimk. Defaults to 0. Ignored if LINK TYPE=tcp.
MB SLAVE ID| Integer| Yes Modbus slave number.
FIRST ELEMENInteger| Yes The first element address.
NELEMENTS | Integer| Unless The number of elements. It is an error to specify both
PIN NAMES | NELEMENTS and PIN NAMES. The pin names will be
is sequential numbers, e.g. mb2hal.plcin.01.
specified
PIN NAMES List Unless A list of element names. These names will be used for the
NELEMENTS | pin names, e.g. mb2hal.plcin.cycle start.
is NOTE: There must be no white space characters in the list.
specified Example: PIN NAMES=cycle start,stop,feed hold

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 362 /1322

Value Type Required | Description

MB_TX CODE | String | Yes Modbus transaction function code (see specifications):
* fnct 01 read coils

e fnct 02 read discrete inputs

» fnct 03 read holding registers

* fnct 04 read input registers

» fnct 05 write single coil

» fnct 06 write single register

» fnct 15 write multiple coils

e fnct 16 write multiple registers

MB_RESPONSE| TAMERIT N6 Response timeout for this transaction. In ms. Defaults to
500 ms. This is how much to wait for 1st byte before raise
an error.

MB BYTE TIMEDbTedts| No Byte timeout for this transaction. In ms. Defaults to 500
ms. This is how much to wait from byte to byte before raise
an error.

HAL TX NAME| String | No Instead of giving the transaction number, use a name.
Example: mb2hal.00.01 could become mb2hal.plcin.0Ql.
The name must not exceed 28 characters. NOTE: when
using names be careful that you don’t end up with two
transactions using the same name.

MAX_UPDATE_REI&at | No Maximum update rate in Hz. Defaults to 0.0 (0.0 = as soon
as available = infinite). NOTE: This is a maximum rate and
the actual rate may be lower. If you want to calculate it in
ms use (1000 / required ms). Example: 100 ms =

MAX UPDATE_RATE=10.0, because 1000.0 ms / 100.0 ms =
10.0 Hz.

DEBUG String | No Debug level for this transaction only. See INIT DEBUG
parameter above.

6.8.3.3 Error codes

While debugging transactions, note the returned “ret[]” value correspond to:

Modbus protocol exceptions:

0x01 - ILLEGAL FUNCTION - the FUNCTION code received in the query is not allowed or invalid.

0x02 - ILLEGAL DATA ADDRESS - the DATA ADDRESS received in the query is not an allowable
address for the slave or is invalid.

0x03 - ILLEGAL DATA VALUE - a VALUE contained in the data query field is not an allowable value
or is invalid.

0x04 - SLAVE DEVICE FAILURE - SLAVE (or MASTER) device unrecoverable FAILURE while at-
tempting to perform the requested action.

0x04 - SERVER FAILURE - (see above).

0x05 - ACKNOWLEDGE - This response is returned to PREVENT A TIMEOUT in the master. A long
duration of time is required to process the request in the slave.

0x06 - SLAVE DEVICE BUSY - The slave (or server) is BUSY. Retransmit the request later.
0x06 - SERVER BUSY - (see above).

0x07 - NEGATIVE ACKNOWLEDGE - Unsuccessful programming request using function code 13 or
14.

https://modbus.org/specs.php

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 363 /1322

* 0x08 - MEMORY PARITY ERROR - SLAVE parity error in MEMORY.
* 0x0A (-10) - GATEWAY PROBLEM PATH - Gateway path(s) not available.

* 0x0B (-11) - GATEWAY PROBLEM TARGET - The target device failed to respond (generated by
master, not slave).

Program or connection:

* 0x0C (-12) - COMM _TIME OUT

* 0x0D (-13) - PORT SOCKET FAILURE

* OxOE (-14) - SELECT FAILURE

* 0xOF (-15) - TOO MANY DATAS

* 0x10 (-16) - INVALID CRC

* 0x11 (-17) - INVALID EXCEPTION CODE

6.8.4 Example config file

Click here to download.

#This .INI file is also the HELP, MANUAL and HOW-TO file for mb2hal.

#Load the Modbus HAL userspace module as the examples below,

#change to match your own HAL MODULE NAME and INI file name

#Using HAL MODULE NAME=mb2hal or nothing (default): loadusr -W mb2hal config=config file. «+
ini

#Using HAL MODULE NAME=mymodule: loadusr -Wn mymodule mb2hal config=config file.ini

b

Common section
#
[MB2HAL INIT]

#OPTIONAL: Debug level of init and INI file parsing.

0 = silent.

1 = error messages (default).

2 = OK confirmation messages.

3 = debugging messages.

4 = maximum debugging messages (only in transactions).
INIT DEBUG=3

#OPTIONAL: Set to 1.1 to enable the new functions:

- fnct 01 read coils

- fnct 05 write single coil

- changed pin names (see https://linuxcnc.org/docs/2.9/html/drivers/mb2hal.html# pins).
VERSION=1.1

#OPTIONAL: HAL module (component) name. Defaults to "mb2hal”.
HAL MODULE NAME=mb2hal

#OPTIONAL: Insert a delay of "FLOAT seconds” between transactions in order
#to not to have a lot of logging and facilitate the debugging.

#Useful when using DEBUG=3 (NOT INIT DEBUG=3)

#It affects ALL transactions.

#Use "0.0"” for normal activity.

SLOWDOWN=0.0

mb2hal_HOWTO.ini

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 364 /1322

#REQUIRED: The number of total Modbus transactions. There is no maximum.
TOTAL_TRANSACTIONS=9

+++++++++

Transactions

#

#0ne transaction section is required per transaction, starting at 00 and counting up <+
sequentially.

#If there is a new link (not transaction), you must provide the REQUIRED parameters 1lst <
time.

#wWarning: Any OPTIONAL parameter not specified are copied from the previous transaction.

[TRANSACTION 00]

#REQUIRED: You must specify either a "serial” or "tcp” link for the first transaction.
#lLater transaction will use the previous transaction link if not specified.
LINK TYPE=tcp

#if LINK TYPE=tcp then REQUIRED (only 1st time): The Modbus slave device ip address.
#if LINK TYPE=serial then IGNORED
TCP_IP=192.168.2.10

#if LINK TYPE=tcp then OPTIONAL.

#if LINK TYPE=serial then IGNORED

#The Modbus slave device tcp port. Defaults to 502.
TCP_PORT=502

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#The serial port.

SERIAL PORT=/dev/ttySoO

#1if LINK TYPE=serial then REQUIRED (only 1st time).
#1f LINK TYPE=tcp then IGNORED

#The baud rate.

SERIAL BAUD=115200

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#Data bits. One of 5,6,7,8.

SERIAL BITS=8

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#Data parity. One of: even, odd, none.

SERIAL PARITY=none

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#Stop bits. One of 1, 2.

SERIAL STOP=2

#if LINK TYPE=serial then OPTIONAL:

#if LINK TYPE=tcp then IGNORED

#Serial port delay between for this transaction only.
#In ms. Defaults to 0.

SERIAL DELAY MS=10

#REQUIRED (only 1st time).
#Modbus slave number.
MB SLAVE ID=1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 365/1322

#REQUIRED: The first element address (decimal integer).
FIRST ELEMENT=0

#REQUIRED unless PIN NAMES is specified: The number of elements.
#It is an error to specify both NELEMENTS and PIN NAMES

#The pin names will be sequential numbers e.g mb2hal.plcin.01l
#NELEMENTS=4

#REQUIRED unless NELEMENTS is specified: A list of element names.

#these names will be used for the pin names, e.g mb2hal.plcin.cycle start
#NOTE: there must be no white space characters in the list

PIN NAMES=cycle start,stop,feed hold

#REQUIRED: Modbus transaction function code (see www.modbus.org specifications).

fnct 01 read coils (01 = 0x01) (new in 1.1)
fnct 02 read discrete inputs (02 = Ox02)
fnct 03 read holding registers (63 = 0x03)
fnct 04 read input registers (04 = 0x04)
fnct 05 write single coil (05 = 0x05) (new in 1.1)
fnct 06 write single register (06 = 0x06)
fnct 15 write multiple coils (15 = OxO0F)
fnct 16 write multiple registers (16 = 0x10)

Created pins:

fnct 01 read coils:

fnct 02 read discrete inputs:
mb2hal.m.n.bit (output)
mb2hal.m.n.bit-inv (output)

fnct 03 read holding registers:

fnct 04 read input registers:
mb2hal.m.n.float (output)

mb2hal.m.n.int (output)
fnct 05 write single coil:
mb2hal.m.n.bit (input)

NELEMENTS needs to be 1 or PIN NAMES must contain just one name.
fnct 06 write single register:
mb2hal.m.n.float (input)
mb2hal.m.n.int (input)
NELEMENTS needs to be 1 or PIN NAMES must contain just one name.
Both pin values are added and limited to 65535 (UINT16 MAX). Normally use one and let <+
the other open (read as 0).
fnct 15 write multiple coils:
mb2hal.m.n.bit (input)
fnct 16 write multiple registers:
mb2hal.m.n.float (input)
mb2hal.m.n.int (input)
Both pin values are added and limited to 65535 (UINT16 _MAX). Normally use one and let <«
the other open (read as 0).

HHHBHFHHFHHFHHFHBFHEHFHRHFHH KRR

HoH oH OH W R

H# H

m = HAL TX NAME or transaction number if not set, n = element number (NELEMENTS) or name <«
from PIN_ NAMES
Example: mb2hal.00.01.<type> (transaction=00, second register=01 (00 is the first one))
mb2hal.TxName.01l.<type> (HAL TX NAME=TxName, second register=01 (00 is the first «
one))
MB TX CODE=fnct 03 read holding registers

#OPTIONAL: Response timeout for this transaction. In INTEGER ms. Defaults to 500 ms.
#This is how much to wait for 1lst byte before raise an error.
MB_RESPONSE_TIMEOUT MS=500

#0OPTIONAL: Byte timeout for this transaction. In INTEGER ms. Defaults to 500 ms.
#This is how much to wait from byte to byte before raise an error.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 366 /1322

MB_BYTE_TIMEOUT MS=500

#OPTIONAL: Instead of giving the transaction number, use a name.

#Example: mb2hal.00.01 could become mb2hal.plcin.01

#The name must not exceed 28 characters.

#NOTE: when using names be careful that you dont end up with two transactions
#using the same name.

HAL TX NAME=remoteIOcfg

#OPTIONAL: Maximum update rate in HZ. Defaults to 0.0 (0.0 = as soon as available = <+
infinite).

#NOTE: This is a maximum rate and the actual rate may be lower.

#If you want to calculate it in ms use (1000 / required ms).

#Example: 100 ms = MAX UPDATE RATE=10.0, because 1000.0 ms / 100.0 ms = 10.0 Hz

MAX_UPDATE_RATE=0.0

#OPTIONAL: Debug level for this transaction only.
#See INIT DEBUG parameter above.
DEBUG=2

#While DEBUGGING transactions note the returned "ret[]” value correspond to:
#/* Modbus protocol exceptions */

#ILLEGAL FUNCTION -0x01 the FUNCTION code received in the query is not allowed or <«
invalid.

#ILLEGAL DATA ADDRESS -0x02 the DATA ADDRESS received in the query is not an allowable <+
address for the slave or is invalid.

#ILLEGAL DATA VALUE -0x03 a VALUE contained in the data query field is not an <+
allowable value or is invalid.

#SLAVE DEVICE FAILURE -0x04 SLAVE (or MASTER) device unrecoverable FAILURE while <+
attempting to perform the requested action.

#SERVER FAILURE -0x04 (see above).

#ACKNOWLEDGE -0x05 This response is returned to PREVENT A TIMEOUT in the master «

A long duration of time is required to process the request <«
in the slave.

#SLAVE DEVICE BUSY -0x06 The slave (or server) is BUSY. Retrasmit the request later.

#SERVER BUSY -0x06 (see above).

#NEGATIVE ACKNOWLEDGE -0x07 Unsuccessful programming request using function code 13 or <«
14.

#MEMORY_PARITY_ ERROR -0x08 SLAVE parity error in MEMORY.

#GATEWAY PROBLEM PATH -0x0A (-10) Gateway path(s) not available.

#GATEWAY_ PROBLEM TARGET -0x0B (-11) The target device failed to respond (generated by <«
master, not slave).
#/* Program or connection */

#COMM_TIME OUT -0x0C (-12)
#PORT SOCKET FAILURE -0x0D (-13)
#SELECT_FAILURE -OXOE (-14)
#T00_MANY_DATAS -OXOF (-15)
#INVALID CRC -0x10 (-16)
#INVALID EXCEPTION CODE -0x11 (-17)

[TRANSACTION 01]

MB TX CODE=fnct 01 read coils
FIRST ELEMENT=1024
NELEMENTS=24

HAL TX NAME=remoteIOin

MAX UPDATE RATE=0.0

DEBUG=1

[TRANSACTION 02]
MB TX CODE=fnct 02 read discrete inputs
FIRST ELEMENT=1280

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

367 /1322

NELEMENTS=8
HAL TX NAME=readStatus
MAX_UPDATE_RATE=0.0

[TRANSACTION 03]

MB TX CODE=fnct 05 write single coil
FIRST ELEMENT=100

NELEMENTS=1

HAL TX NAME=setEnableout

MAX UPDATE RATE=0.0

[TRANSACTION 04]

MB TX CODE=fnct 15 write multiple coils
FIRST ELEMENT=150

NELEMENTS=10

HAL TX NAME=remoteIOout

MAX UPDATE RATE=0.0

[TRANSACTION 05]

LINK TYPE=serial
SERIAL_PORT=/dev/ttyS0
SERIAL BAUD=115200
SERIAL BITS=8

SERIAL PARITY=none
SERIAL STOP=2

SERIAL DELAY MS=50

MB SLAVE ID=1

MB_TX CODE=fnct 03 read holding registers
FIRST ELEMENT=1
NELEMENTS=2

HAL TX NAME=XDrive01l
MAX UPDATE RATE=0.0
DEBUG=1

[TRANSACTION 06]

MB TX CODE=fnct 04 read input registers
FIRST ELEMENT=12

NELEMENTS=3

HAL TX NAME=XDrive02

MAX UPDATE RATE=10.0

DEBUG=1

[TRANSACTION 07]

MB TX CODE=fnct 06 write single register
FIRST ELEMENT=20

NELEMENTS=1

HAL TX NAME=XDrive03

MAX UPDATE RATE=0.0

DEBUG=1

[TRANSACTION 08]

MB TX CODE=fnct 16 write multiple registers
FIRST ELEMENT=55

NELEMENTS=8

HAL TX NAME=XDrive04

MAX_UPDATE_RATE=10.0

DEBUG=1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 368/1322

6.8.5 Pins

Note

Yellow = New in MB2HAL 1.1 (LinuxCNC 2.9) To use these new features you have to set VERSION =
1.1.

m = Value of HAL_TX NAME if set or transaction number

n = Element number (NELEMENTS) or name from PIN NAMES

Example:

* mb2hal.00.01.int (TRANSACTION 00, second register)
* mb2hal.readStatus.01.bit (HAL TX NAME=readStatus, first bit)

6.8.5.1 fnct_01_read_coils

mb2hal.m.n.bit bit out

mb2hal.m.n.bit-inv bit out

6.8.5.2 fnct_02 read _discrete_inputs

L]

mb2hal.m.n.bit bit out

mb2hal.m.n.bit-inv bit out

6.8.5.3 fnct_03_read_holding_registers

mb2hal.m.n.float float out

L]

mb2hal.m.n.int s32 out

6.8.5.4 fnct_04_read_input_registers

mb2hal.m.n.float float out

mb2hal.m.n.int s32 out

6.8.5.5 fnct_05_write_single_coil

mb2hal.m.n.bit bit in

NELEMENTS needs to be 1 or PIN_NAMES must contain just one name.

6.8.5.6 fnct_06_write_single_register

 mb2hal.m.n.float float in

e mb2hal.m.n.int s32 in

NELEMENTS needs to be 1 or PIN_NAMES must contain just one name. Both pin values are added and
limited to 65535 (UINT16 MAX). Use one and let the other open (read as 0).

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 369/1322

6.8.5.7 fnct_15_write_multiple_coils

e mb2hal.m.n.bit bit in

6.8.5.8 fnct_16_write_multiple_registers
e mb2hal.m.n.float float in
e mb2hal.m.n.int s32 in

Both pin values are added and limited to 65535 (UINT16_MAX). Use one and let the other open (read
as 0).

6.9 Mitsub VFD Driver

This is a non-realtime HAL program, written in Python, to control VFDs from Mitsubishi.
Specifically the A500 F500 E500 A500 D700 E700 F700 series - others may work.
mitsub vfd supports serial control using the RS485 protocol.

Conversion from USB or serial port to RS485 requires special hardware.

Note

Since this is a non-realtime program it can be affected by computer loading and latency. It is possible
to lose control of the VFDs. It is optional to set the VFD to stop if it loses communication if that
is desirable. One should always have an Estop circuit that kills the power to the unit in case of
emergency.

This component is loaded using the halcmd “loadusr” command:

loadusr -Wn coolant mitsub vfd spindle=02 coolant=01

The above command says:

loadusr, wait for coolant pins to be ready, component mitsub vfd, with 2 slaves named spindle (slave
#2) and coolant (slave #1)

6.9.1 Command Line Options
The command line options are:

e -b or --baud <rate> : set the baud rate - all networked VFDs must be the same
e -p or --port <device path> : sets the port to use such as /dev/ttyUSBO

* <name>=<slave#> : sets the HAL component/pin name and slave number.

Debugging can be toggled by setting the debug pin true.

Note
Turning on debugging will result in a flood of text in the terminal.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 370 /1322

6.9.2 Pins
Where <n> is mitsub vfd or the name given during loading.

e <n>.fwd (bit, in) True sets motion forward, False sets reverse.

e <n>.run (bit, in) True sets the VFD in motion based on the .fwd pin.

* <n>.debug (bit, in) Prints debug info to the terminal.

e <n>.alarm (bit, out) signals an alarm state of VFD.

e <n>.up-to-speed (bit, out) when drive is at commanded speed (speed-tolerance is set on vfd)

e <n>.monitor (bit, in) some models (eg E500) cannot monitor status - set the monitor pin to false in
this case pins such as up-to-speed, amps, alarm and status bits are not updated.

e <n>.motor-cmd (float, in) commanded speed to the VFD (scaled to hertz by default).

* <n>.motor-fb (float, out) feedback speed from the VFD (scaled to hertz by default).

e <n>.motor-amps (float, out) Current amperage output of motor.

e <n>.motor-power (float, out) Current power output of motor.

* <n>.scale-cmd (float, in) Scales the motor-cmd pin to arbitrary units. default 1 = Hertz.

* <n>.scale-fb (float, in) Scales the motor-fb pin to arbitrary units. default 1 = Hertz.

* <n>.scale-amps (float, in) Scales the motor-amps pin to arbitrary units. default 1 = amps.
e <n>.scale-power (float, in) Scales the motor-power pin to arbitrary units. default 1 = .

e <n>.estop (bit, in) puts the VFD into emergency-stopped status.

* <n>.status-bit-N (bit, out) N = 0 to 7, status bits are user configurable on the VFD. Bit 3 should be
set to at speed and bit 7 should be set to alarm. Others are free to be set as required.

6.9.3 HAL example

#
example usage of the Mitsubishi VFD driver
#
1

oadusr -Wn coolant mitsub vfd spindle=02 coolant=01

FORRRROKRROR ROk ROk ok ok Spindle VFD Setup SlaVe 2 RRKkSRokkok ok ok Kok ok kokok kok ok

net spindle-vel-cmd spindle.motor-cmd
net spindle-cw spindle. fwd

net spindle-on spindle. run

net spindle-at-speed spindle.up-to-speed
net estop-out spindle.estop

cmd scaled to RPM

setp spindle.scale-cmd .135

feedback is in rpm

setp spindle.scale-fb 7.411

allows us to see status

setp spindle.monitor 1

net spindle-speed-indicator spindle.motor-fb gladevcp.spindle-speed

FORRRROKRROKk ROk ROk ok ok coolant Vfd Setup Slave 3 RokRokoKkkok koK kok kok Kok Kok Kok ok ok

net coolant-flood coolant.run
net coolant-is-on coolant.up-to-speed gladevcp.coolant-on-led

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37

37171322

net estop-out coolant.estop
cmd and feedback scaled to hertz

setp coolant.scale-cmd 1

setp coolant.scale-fb 1

command full speed
setp coolant.motor-cmd 60
allows us to see status

setp coolant.monitor 1

6.9.4 Configuring the Mitsubishi VFD for serial usage

6.9.4.1 Connecting the Serial Port

The Mitsubishi VFDs have an RJ-45 jack for serial communication.
Since they use RS485 protocol, they can be networked together point to point.
This driver was tested using the Opto22 AC7A to convert from RS232 to RS485.

6.9.4.2 Modbus setup

Referenced manuals:

communication option reference manual and A500 technical manual for 500 series.
Fr-A700 F700 E700 D700 technical manual for the 700 series

The VFD must have PR settings adjusted manually for serial communication.
One must power cycle the VFD for some of these to register eg PR 79

e PR 77 set to 1 -to unlock other PR modification.

* PR 79 set to 1 or O -for communication thru serial.

* PR 117 set to 0-31 -slave number, driver must reference same number.

* PR 118 tested with 96 -baud rate (can be set to 48,96,192) if driver is also set.
* PR 119 set to 0 -stop bit/data length (8 bits, two stop)

* PR 120 set to 0 -no parity

e PR 121 set to 1-10 -if 10 (maximum) COM errors then VFD faults.
e PR 122 tested with 9999 -if communication is lost VFD will not error.
e PR 123 set to 9999 -no wait time is added to the serial data frame.

* PR 124 set to 0 -no carriage return at end of line.

6.10 Motenc Driver

Vital Systems Motenc-100 and Motenc-LITE

The Vital Systems Motenc-100 and Motenc-LITE are 8- and 4-channel servo control boards. The
Motenc-100 provides 8 quadrature encoder counters, 8 analog inputs, 8 analog outputs, 64 (687?)
digital inputs, and 32 digital outputs. The Motenc-LITE has only 4 encoder counters, 32 digital inputs
and 16 digital outputs, but it still has 8 analog inputs and 8 analog outputs. The driver automatically

identifies the installed board and exports the appropriate HAL objects.

Installing:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 372 /1322

loadrt hal motenc

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel
log, which can be viewed with dmesg.

Up to 4 boards may be used in one system.

6.10.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the board, so it may be non-zero even if there is only one board.

* (s32) motenc.<board>.enc-<channel>-count - Encoder position, in counts.
* (float) motenc.<board>.enc-<channel>-position - Encoder position, in user units.
e (bit) motenc.<board>.enc-<channel>-index - Current status of index pulse input.

* (bit) motenc.<board>.enc-<channel>-idx-latch - Driver sets this pin true when it latches an index
pulse (enabled by latch-index). Cleared by clearing latch-index.

* (bit) motenc.<board>.enc-<channel>-latch-index - If this pin is true, the driver will reset the counter
on the next index pulse.

* (bit) motenc.<board>.enc-<channel>-reset-count - If this pin is true, the counter will immediately
be reset to zero, and the pin will be cleared.

* (float) motenc.<board>.dac-<channel>-value - Analog output value for DAC (in user units, see -gain
and -offset)

* (float) motenc.<board>.adc-<channel>-value - Analog input value read by ADC (in user units, see
-gain and -offset)

* (bit) motenc.<board>.in-<channel> - State of digital input pin, see canonical digital input.

* (bit) motenc.<board>.in-<channel>-not - Inverted state of digital input pin, see canonical digital
input.

* (bit) motenc.<board>.out-<channel> - Value to be written to digital output, seen canonical digital
output.

* (bit) motenc.<board>.estop-in - Dedicated estop input, more details needed.
* (bit) motenc.<board>.estop-in-not - Inverted state of dedicated estop input.

* (bit) motenc.<board>.watchdog-reset - Bidirectional, - Set TRUE to reset watchdog once, is auto-
matically cleared.

6.10.2 Parameters

(float) motenc.<board>.enc-<channel>-scale - The number of counts / user unit (to convert from
counts to units).

(float) motenc.<board>.dac-<channel>-offset - Sets the DAC offset.

(float) motenc.<board>.dac-<channel>-gain - Sets the DAC gain (scaling).

(float) motenc.<board>.adc-<channel>-offset - Sets the ADC offset.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 373 /1322

* (float) motenc.<board>.adc-<channel>-gain - Sets the ADC gain (scaling).
* (bit) motenc.<board>.out-<channel>-invert - Inverts a digital output, see canonical digital output.

* (u32) motenc.<board>.watchdog-control - Configures the watchdog.
The value may be a bitwise OR of the following values:

Bit # Value Meaning
0 1 Timeout is 16ms if set, 8ms if unset
1 2
2 4 Watchdog is enabled
3 8
4 16 Watchdog is automatically reset by DAC writes (the HAL
dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 20 (8ms watchdog enabled, cleared by dac-
write).

* (u32) motenc.<board>.led-view - Maps some of the I/O to onboard LEDs.

6.10.3 Functions

(funct) motenc.<board>.encoder-read - Reads all encoder counters.

(funct) motenc.<board>.adc-read - Reads the analog-to-digital converters.

(funct) motenc.<board>.digital-in-read - Reads digital inputs.

(funct) motenc.<board>.dac-write - Writes the voltages to the DACs.

(funct) motenc.<board>.digital-out-write - Writes digital outputs.

(funct) motenc.<board>.misc-update - Updates misc stuff.

6.11 Opto22 Driver

PCI AC5 ADAPTER CARD / HAL DRIVER

6.11.1 The Adapter Card

This is a card made by Opto22 for adapting the PCI port to solid state relay racks such as their standard
or G4 series. It has 2 ports that can control up to 24 points each and has 4 on board LEDs. The ports
use 50 pin connectors the same as Mesa boards. Any relay racks/breakout boards that work with
Mesa Cards should work with this card with the understanding any encoder counters, PWM, etc.,
would have to be done in software. The AC5 does not have any smart logic on board, it is just an
adapter.

See the manufacturer’s website for more info:
https://www.opto22.com/site/pr details.aspx?cid=4&item=PCI-AC5

I would like to thank Opto22 for releasing info in their manual, easing the writing of this driver!

https://www.opto22.com/site/pr_details.aspx?cid=4&item=PCI-AC5

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 374 /1322

6.11.2 The Driver

This driver is for the PCI AC5 card and will not work with the ISA AC5 card. The HAL driver is a
realtime module. It will support 4 cards as is (more cards are possible with a change in the source
code). Load the basic driver like so:

loadrt opto_ach

This will load the driver which will search for max 4 boards. It will set I/O of each board’s 2 ports to
a default setting. The default configuration is for 12 inputs then 12 outputs. The pin name numbers
correspond to the position on the relay rack. For example the pin names for the default I/O setting of
port 0 would be:

* opto_ac5.0.port0.in-00 - They would be numbered from 00 to 11
* opto ac5.0.port0.out-12 - They would be numbered 12 to 23 port 1 would be the same.

6.11.3 Pins

opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER] OUT bit -

* opto ac5.[BOARDNUMBER].portf PORTNUMBER].in-[PINNUMBER]-not OUT bit - Connect a HAL
bit signal to this pin to read an I/O point from the card. The PINNUMBER represents the position in
the relay rack. Eg. PINNUMBER 0 is position 0 in a Opto22 relay rack and would be pin 47 on the
50 pin header connector. The -not pin is inverted so that LOW gives TRUE and HIGH gives FALSE.

e opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER] IN bit - Connect a HAL bit
signal to this pin to write to an I/O point of the card. The PINNUMBER represents the position in
the relay rack.Eg. PINNUMBER 23 is position 23 in a Opto22 relay rack and would be pin 1 on the
50 pin header connector.

* opto_ac5.[BOARDNUMBER].Ied[NUMBER] OUT bit - Turns one of the 4 onboard LEDs on/off. LEDs
are numbered 0 to 3.

BOARDNUMBER can be 0-3 PORTNUMBER can be 0 or 1. Port 0 is closest to the card bracket.

6.11.4 Parameters

* opto _ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER]-invert W bit - When TRUE,
invert the meaning of the corresponding -out pin so that TRUE gives LOW and FALSE gives HIGH.

6.11.5 FUNCTIONS

* opto_ac5.0.digital-read - Add this to a thread to read all the input points.
* opto_ac5.0.digital-write - Add this to a thread to write all the output points and LEDs.

For example the pin names for the default I/O setting of port 0 would be:

opto _ac5.0.port0.in-00

They would be numbered from 00 to 11
opto_ac5.0.port0.out-12

They would be numbered 12 to 23 port 1 would be the same.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 375/1322

6.11.6 Configuring 1/O Ports

To change the default setting load the driver something like so:
loadrt opto_ac5 portconfig0@=0xffff portconfigl=0xff0000

Of course changing the numbers to match the I/O you would like. Each port can be set up different.

Here’s how to figure out the number: The configuration number represents a 32 bit long code to tell
the card which I/O points are output vrs input. The lower 24 bits are the I/O points of one port. The 2
highest bits are for 2 of the on board LEDs. A one in any bit position makes the I/O point an output.
The two highest bits must be output for the LEDs to work. The driver will automatically set the two
highest bits for you, we won’t talk about them.

The easiest way to do this is to fire up the calculator under APPLICATIONS/ACCESSORIES. Set it to
scientific (click view). Set it BINARY (radio button Bin). Press 1 for every output you want and/or zero
for every input. Remember that HAL pin 00 corresponds to the rightmost bit. 24 numbers represent
the 24 I/0 points of one port. So for the default setting (12 inputs then 12 outputs) you would push 1
twelve times (that’s the outputs) then 0 twelve times (that’s the inputs). Notice the first I/O point is
the lowest (rightmost) bit. (that bit corresponds to HAL pin 00 .looks backwards) You should have 24
digits on the screen. Now push the Hex radio button. The displayed number (fff000) is the configport
number (put a Ox in front of it designating it as a HEX number).

Another example: To set the port for 8 outputs and 16 inputs (the same as a Mesa card). Here is the
24 bits represented in a BINARY number. Bit 1 is the rightmost number:

16 zeros for the 16 inputs and 8 ones for the 8 outputs
000000000000000011111111

This converts to FF on the calculator, so 0xff is the number to use for portconfig0 and/or portconfigl
when loading the driver.

6.11.7 Pin Numbering

HAL pin 00 corresponds to bit 1 (the rightmost) which represents position 0 on an Opto22 relay rack.
HAL pin 01 corresponds to bit 2 (one spot to the left of the rightmost) which represents position 1 on
an Opto22 relay rack. HAL pin 23 corresponds to bit 24 (the leftmost) which represents position 23
on an Opto22 relay rack.

HAL pin 00 connects to pin 47 on the 50 pin connector of each port. HAL pin 01 connects to pin 45
on the 50 pin connector of each port. HAL pin 23 connects to pin 1 on the 50 pin connector of each
port.

Note that Opto22 and Mesa use opposite numbering systems: Opto22 position 23 = connector pin
1, and the position goes down as the connector pin number goes up. Mesa Hostmot2 position 1 =
connector pin 1, and the position number goes up as the connector pin number goes up.

6.12 Pico Drivers

Pico Systems has a family of boards for doing analog servo, stepper, and PWM (digital) servo control.
The boards connect to the PC through a parallel port working in EPP mode. Although most users
connect one board to a parallel port, in theory any mix of up to 8 or 16 boards can be used on a
single parport. One driver serves all types of boards. The final mix of I/O depends on the connected
board(s). The driver doesn’t distinguish between boards, it simply numbers I/O channels (encoders,
etc) starting from 0 on the first board. The driver is named hal ppmc.ko The analog servo interface is
also called the PPMC for Parallel Port Motion Control. There is also the Universal Stepper Controller,
abbreviated the USC. And the Universal PWM Controller, or UPC.

Installing:

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 376 /1322

loadrt hal ppmc port addr=<addrl>[,<addr2>[,<addr3>...]]

The port _addr parameter tells the driver what parallel port(s) to check. By default, <addrl> is
0x0378, and <addr2> and following are not used. The driver searches the entire address space
of the enhanced parallel port(s) at port addr, looking for any board(s) in the PPMC family. It then
exports HAL pins for whatever it finds. During loading (or attempted loading) the driver prints some
useful debugging messages to the kernel log, which can be viewed with dmesg.

Up to 3 parport buses may be used, and each bus may have up to 8 (or possibly 16 PPMC) devices on
it.

6.12.1 Command Line Options

There are several options that can be specified on the loadrt command line. First, the USC and UPC
can have an 8-bit DAC added for spindle speed control and similar functions. This can be specified
with the extradac=0xnn[,0xmm] parameter. The part enclosed in [] allows you to specify this option
on more than one board of the system. The first hex digit tells which EPP bus is being referred to,
it corresponds to the order of the port addresses in the port addr parameter, where <addrl> would
be zero here. So, for the first EPP bus, the first USC or UPC board would be described as 0x00,
the second USC or UPC on the same bus would be 0x02. (Note that each USC or UPC takes up two
addresses, so if one is at 00, the next would have to be 02.)

Alternatively, the 8 digital output pins can be used as additional digital outputs, it works the same
way as above with the syntax : extradout=0xnn’. The extradac and extradout options are mutually
exclusive on each board, you can only specify one.

The UPC and PPMC encoder boards can timestamp the arrival of encoder counts to refine the deriva-
tion of axis velocity. This derived velocity can be fed to the PID hal component to produce smoother D
term response. The syntax is : timestamp=0xnn[,0xmm], this works the same way as above to select
which board is being configured. Default is to not enable the timestamp option. If you put this option
on the command line, it enables the option. The first n selects the EPP bus, the second one matches
the address of the board having the option enabled. The driver checks the revision level of the board
to make sure it has firmware supporting the feature, and produces an error message if the board does
not support it.

The PPMC encoder board has an option to select the encoder digital filter frequeency. (The UPC has
the same ability via DIP switches on the board.) Since the PPMC encoder board doesn’t have these
extra DIP switches, it needs to be selected via a command-line option. By default, the filter runs at
1 MHz, allowing encoders to be counted up to about 900 kHz (depending on noise and quadrature
accuracy of the encoder.) The options are 1, 2.5, 5 and 10 MHz. These are set with a parameter of
1,2,5 and 10 (decimal) which is specified as the hex digit "A”. These are specified in a manner similar
to the above options, but with the frequency setting to the left of the bus/address digits. So, to set 5
MHz on the encoder board at address 3 on the first EPP bus, you would write: enc_clock="0x503".

It was recently discovered that some parallel port chips would not work with the ppmc driver. Espe-
cially, the Oxford OXPCIe952 chip on the SIIG PCle parallel port cards had this trouble. The ppmc
driver in all LinuxCNC versions starting from 2.7.8 have been corrected for this problem by default.
However, this possibly could cause problems with really old EPP parallel port hardware, so there is
a command line option to go back to the previous behavior. The new behavior is set by default, or
by adding the parameter epp dir=0 on the command line. To get the old behavior, add epp dir=1 to
the command line. All parallel ports I have here work with the new default behavior. As on the other
parameters, it is possible to give a list, like epp dir=1,0,1 to set different settings for each of up to 3
parallel ports.

6.12.2 Pins

In the following pins, parameters, and functions, <port> is the parallel port ID. According to the
naming conventions the first port should always have an ID of zero. All the boards have some method

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 377 /1322

of setting the address on the EPP bus. USC and UPC have simple provisions for only two addresses, but
jumper foil cuts allow up to 4 boards to be addressed. The PPMC boards have 16 possible addresses.
In all cases, the driver enumerates the boards by type and exports the appropriate HAL pins. For
instance, the encoders will be enumerated from zero up, in the same order as the address switches
on the board specify. So, the first board will have encoders 0 — 3, the second board would have
encoders 4 — 7. The first column after the bullet tells which boards will have this HAL pin or parameter
associated with it. All means that this pin is available on all three board types. Option means that
this pin will only be exported when that option is enabled by an optional parameter in the loadrt HAL
command. These options require the board to have a sufficient revision level to support the feature.

e (All s32 output) ppmc.<port>.encoder.<channel>.count - Encoder position, in counts.

* (All s32 output) ppmc.<port>.encoder.<channel>.delta - Change in counts since last read, in raw
encoder count units.

* (All float output) ‘ppmc.<port>.encoder.<channel>.velocity - Velocity scaled in user units per sec-
ond. On PPMC and USC this is derived from raw encoder counts per servo period, and hence is
affected by encoder granularity. On UPC boards with the 8/21/09 and later firmware, velocity es-
timation by timestamping encoder counts can be used to improve the smoothness of this velocity
output. This can be fed to the PID HAL component to produce a more stable servo response. This
function has to be enabled in the HAL command line that starts the PPMC driver, with the times-
tamp=0x00 option.

* (All float output) ppmc.<port>.encoder.<channel>.position - Encoder position, in user units.

e (All bit bidir) ppmc.<port>.encoder.<channel>.index-enable - Connect to joint.#.index-enable for
home-to-index. This is a bidirectional HAL signal. Setting it to true causes the encoder hardware
to reset the count to zero on the next encoder index pulse. The driver will detect this and set the
signal back to false.

e (PPMC float output) ppmc.<port>.DAC.<channel>.value - sends a signed value to the 16-bit Digital
to Analog Converter on the PPMC DAC16 board commanding the analog output voltage of that DAC
channel.

e (UPC bit input) ppmc.<port>.pwm.<channel>.enable - Enables a PWM generator.

* (UPC float input) ppmc.<port>.pwm.<channel>.value - Value which determines the duty cycle of
the PWM waveforms. The value is divided by pwm.<channel>.scale, and if the result is 0.6 the duty
cycle will be 60%, and so on. Negative values result in the duty cycle being based on the absolute
value, and the direction pin is set to indicate negative.

* (USC bit input) ppmc.<port>.stepgen.<channel>.enable - Enables a step pulse generator.

* (USC float input) ppmc.<port>.stepgen.<channel>.velocity - Value which determines the step fre-
quency. The value is multiplied by stepgen.<channel>.scale , and the result is the frequency in
steps per second. Negative values result in the frequency being based on the absolute value, and
the direction pin is set to indicate negative.

e (All bit output) ppmc.<port>.din.<channel>.in - State of digital input pin, see canonical digital
input.

e (All bit output) ppmc.<port>.din.<channel>.in-not - Inverted state of digital input pin, see canonical
digital input.

e (All bit input) ppmc.<port>.dout.<channel>.out - Value to be written to digital output, see canonical
digital output.

* (Option float input) ppmc.<port>.DAC8-<channel>.value - Value to be written to analog output,
range from 0 to 255. This sends 8 output bits to J8, which should have a Spindle DAC board con-
nected to it. 0 corresponds to zero Volts, 255 corresponds to 10 Volts. The polarity of the output
can be set for always minus, always plus, or can be controlled by the state of SSR1 (plus when on)
and SSR2 (minus when on). You must specify extradac = 0x00 on the HAL command line that loads
the PPMC driver to enable this function on the first USC ur UPC board.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 378 /1322

e (Option bit input) ppmc.<port>.dout.<channel>.out - Value to be written to one of the 8 extra digital
output pins on J8. You must specify extradout = 0x00 on the HAL command line that loads the ppmc
driver to enable this function on the first USC or UPC board. extradac and extradout are mutually
exclusive features as they use the same signal lines for different purposes. These output pins will
be enumerated after the standard digital outputs of the board.

6.12.3 Parameters

e (All float) ppmc.<port>.encoder.<channel>.scale - The number of counts / user unit (to convert
from counts to units).

e (UPC float) ppmc.<port>.pwm.<channel-range>.freq - The PWM carrier frequency, in Hz. Applies
to a group of four consecutive PWM generators, as indicated by <channel-range>. Minimum is 610
Hz, maximum is 500 kHz.

e (PPMC float) ppmc.<port>.DAC.<channel>.scale - Sets scale of DAC16 output channel such that
an output value equal to the 1/scale value will produce an output of + or - value Volts. So, if the
scale parameter is 0.1 and you send a value of 0.5, the output will be 5.0 Volts.

* (UPC float) ppmc.<port>.pwm.<channel>.scale - Scaling for PWM generator. If scale is X, then the
duty cycle will be 100% when the value pin is X (or -X).

e (UPC float) ppmc.<port>.pwm.<channel>.max-dc - Maximum duty cycle, from 0.0 to 1.0.
e (UPC float) ppmc.<port>.pwm.<channel>.min-dc - Minimum duty cycle, from 0.0 to 1.0.

e (UPC float) ppmc.<port>.pwm.<channel>.duty-cycle - Actual duty cycle (used mostly for trou-
bleshooting.)

* (UPC bit) ppmc.<port>.pwm.<channel>.bootstrap - If true, the PWM generator will generate a
short sequence of pulses of both polarities when E-stop goes false, to reset the shutdown latches
on some PWM servo drives.

e (USC u32) ppmc.<port>.stepgen.<channel-range>.setup-time - Sets minimum time between direc-
tion change and step pulse, in units of 100 ns. Applies to a group of four consecutive step generators,
as indicated by <channel-range>. Values between 200 ns and 25.5 ps can be specified.

* (USC u32) ppmc.<port>.stepgen.<channel-range>.pulse-width - Sets width of step pulses, in units
of 100 ns. Applies to a group of four consecutive step generators, as indicated by <channel-range>.
Values between 200 ns and 25.5 ps may be specified.

e (USC u32) ppmc.<port>.stepgen.<channel-range>.pulse-space-min - Sets minimum time between
pulses, in units of 100 ns. Applies to a group of four consecutive step generators, as indicated by
<channel-range>. Values between 200 ns and 25.5 ps can be specified. The maximum step rate is:

100ns *(pulsewidth+ pulsespacemin)

* (USC float) ppmc.<port>.stepgen.<channel>.scale - Scaling for step pulse generator. The step
frequency in Hz is the absolute value of velocity * scale.

e (USC float) ppmc.<port>.stepgen.<channel>.max-vel - The maximum value for velocity. Com-
mands greater than max-vel will be clamped. Also applies to negative values. (The absolute value
is clamped.)

e (USC float) ppmc.<port>.stepgen.<channel>.frequency - Actual step pulse frequency in Hz (used
mostly for troubleshooting.)

* (Option float) ppmc.<port>.DAC8.<channel>.scale - Sets scale of extra DAC output such that an
output value equal to scale gives a magnitude of 10.0 V output. (The sign of the output is set by
jumpers and/or other digital outputs.)

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 379 /1322

* (Option bit) ppmc.<port>.dout.<channel>.invert - Inverts a digital output, see canonical digital
output.

* (Option bit) ppmc.<port>.dout.<channel>.invert - Inverts a digital output pin of J8, see canonical
digital output.

6.12.4 Functions

* (All funct) ppmc.<port>.read - Reads all inputs (digital inputs and encoder counters) on one port.
These reads are organized into blocks of contiguous registers to be read in a block to minimize CPU
overhead.

e (All funct) ppmc.<port>.write - Writes all outputs (digital outputs, stepgens, PWMs) on one port.
These writes are organized into blocks of contiguous registers to be written in a block to minimize
CPU overhead.

6.13 Pluto P Driver

6.13.1 General Info

The Pluto-P is a FPGA board featuring the ACEX1K chip from Altera.

6.13.1.1 Requirements

1. A Pluto-P board

2. An EPP-compatible parallel port, configured for EPP mode in the system BIOS or a PCI EPP
compatible parallel port card.

Note

The Pluto P board requires EPP mode. Netmos98xx chips do not work in EPP mode. The Pluto P board
will work on some computers and not on others. There is no known pattern to which computers work
and which don’t work.

For more information on PCI EPP compatible parallel port cards see the LinuxCNC Supported Hard-
ware page on the wiki.

6.13.1.2 Connectors

e The Pluto-P board is shipped with the left connector presoldered, with the key in the indicated
position. The other connectors are unpopulated. There does not seem to be a standard 12-pin IDC
connector, but some of the pins of a 16P connector can hang off the board next to QA3/QZ3.

* The bottom and right connectors are on the same .1” grid, but the left connectoris not. If OUT2...0UT9
are not required, a single IDC connector can span the bottom connector and the bottom two rows
of the right connector.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 380/1322

6.13.1.3 Physical Pins

* Read the ACEX1K datasheet for information about input and output voltage thresholds. The pins
are all configured in LVITL/LVCMOS mode and are generally compatible with 5V TTL logic.

* Before configuration and after properly exiting LinuxCNC, all Pluto-P pins are tristated with weak
pull-ups (20 kQ min, 50 kQ max). If the watchdog timer is enabled (the default), these pins are also
tristated after an interruption of communication between LinuxCNC and the board. The watchdog
timer takes approximately 6.5 ms to activate. However, software bugs in the pluto_servo firmware
or LinuxCNC can leave the Pluto-P pins in an undefined state.

* In pwm+dir mode, by default dir is HIGH for negative values and LOW for positive values. To
select HIGH for positive values and LOW for negative values, set the corresponding dout-NN-invert
parameter TRUE to invert the signal.

* The index input is triggered on the rising edge. Initial testing has shown that the QZx inputs are
particularly noise sensitive, due to being polled every 25 ns. Digital filtering has been added to filter
pulses shorter than 175 ns (seven polling times). Additional external filtering on all input pins, such
as a Schmitt buffer or inverter, RC filter, or differential receiver (if applicable) is recommended.

e The IN1...IN7 pins have 22 Q series resistors to their associated FPGA pins. No other pins have any
sort of protection for out-of-spec voltages or currents. It is up to the integrator to add appropriate
isolation and protection. Traditional parallel port optoisolator boards do not work with pluto_servo
due to the bidirectional nature of the EPP protocol.

6.13.1.4 LED

* When the device is unprogrammed, the LED glows faintly. When the device is programmed, the
LED glows according to the duty cycle of PWMO (LED = UPO xor DOWNQO) or STEPGENO (LED =
STEPO xor DIRO0).

6.13.1.5 Power

¢ A small amount of current may be drawn from VCC. The available current depends on the unregu-
lated DC input to the board. Alternately, regulated +3.3VDC may be supplied to the FPGA through
these VCC pins. The required current is not yet known, but is probably around 50mA plus 1I/O
current.

* The regulator on the Pluto-P board is a low-dropout type. Supplying 5V at the power jack will allow
the regulator to work properly.

6.13.1.6 PC interface

L]

Only a single pluto servo or pluto step board is supported.

6.13.1.7 Rebuilding the FPGA firmware

The src/hal/drivers/pluto_servo_firmware/ and src/hal/drivers/pluto step firmware/ subdirectories con-
tain the Verilog source code plus additional files used by Quartus for the FPGA firmwares. Altera’s
Quartus II software is required to rebuild the FPGA firmware. To rebuild the firmware from the .hdl
and other source files, open the .gpf file and press CTRL-L. Then, recompile LinuxCNC.

Like the HAL hardware driver, the FPGA firmware is licensed under the terms of the GNU General
Public License.

The gratis version of Quartus II runs only on Microsoft Windows, although there is apparently a paid
version that runs on Linux.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 381/1322

6.13.1.8 For more information

Some additional information about it is available from KNJC LLC and from the developer’s blog.

6.13.2 Pluto Servo

The pluto servo system is suitable for control of a 4-axis CNC mill with servo motors, a 3-axis mill
with PWM spindle control, a lathe with spindle encoder, etc. The large number of inputs allows a full
set of limit switches.

This driver features:
* 4 quadrature channels with 40 MHz sample rate. The counters operate in 4x mode. The maximum

useful quadrature rate is 8191 counts per LinuxCNC servo cycle, or about 8 MHz for LinuxCNC'’s
default 1 ms servo rate.

* 4 PWM channels, up/down or pwm+dir style. 4095 duty cycles from -100% to +100%, including 0%.
The PWM period is approximately 19.5 kHz (40 MHz / 2047). A PDM-like mode is also available.

* 18 digital outputs: 10 dedicated, 8 shared with PWM functions. (Example: A lathe with unidirec-
tional PWM spindle control may use 13 total digital outputs)

* 20 digital inputs: 8 dedicated, 12 shared with Quadrature functions. (Example: A lathe with index
pulse only on the spindle may use 13 total digital inputs.)

* EPP communication with the PC. The EPP communication typically takes around 100 ps on machines
tested so far, enabling servo rates above 1 kHz.

6.13.2.1 Pinout

e UPx - The up (up/down mode) or pwm (pwm+direction mode) signal from PWM generator X. May be
used as a digital output if the corresponding PWM channel is unused, or the output on the channel
is always negative. The corresponding digital output invert may be set to TRUE to make UPx active
low rather than active high.

* DNx - The down (up/down mode) or direction (pwm+direction mode) signal from PWM generator
X. May be used as a digital output if the corresponding PWM channel is unused, or the output on
the channel is never negative. The corresponding digital output invert may be set to TRUE to make
DNx active low rather than active high.

* QAx, QBx - The A and B signals for Quadrature counter X. May be used as a digital input if the
corresponding quadrature channel is unused.

* QZx - The Z (index) signal for quadrature counter X. May be used as a digital input if the index
feature of the corresponding quadrature channel is unused.

* INx - Dedicated digital input #x

e OUTx - Dedicated digital output #x
* GND - Ground

* VCC - +3.3V regulated DC

.Pluto-Servo Pinout Pluto-Servo Pinout

https://www.knjn.com/FPGA-Parallel.html
http://emergent.unpy.net/01165081407

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 382 /1322

Table 6.41: Pluto-Servo Alternate Pin Functions

Primary function Alternate Function Behavior if both
functions used
UPO PWMO When pwm-0-pwmdir is
TRUE, this pin is the PWM
output
OUT10 XOR’d with UPO or PWMO
UP1 PWM1 When pwm-1-pwmdir is
TRUE, this pin is the PWM
output
OuT12 XOR’d with UP1 or PWM1
UP2 PWM?2 When pwm-2-pwmdir is
TRUE, this pin is the PWM
output
OouT14 XOR’d with UP2 or PWM2
UP3 PWM3 When pwm-3-pwmdir is
TRUE, this pin is the PWM
output
OUT16 XOR’d with UP3 or PWM3
DNO DIRO When pwm-0-pwmdir is
TRUE, this pin is the DIR
output
OUT11 XOR’d with DNO or DIRO
DN1 DIR1 When pwm-1-pwmdir is
TRUE, this pin is the DIR
output
OUT13 XOR’d with DN1 or DIR1
DN2 DIR2 When pwm-2-pwmdir is
TRUE, this pin is the DIR
output
OUT15 XOR’d with DN2 or DIR2
DN3 DIR3 When pwm-3-pwmdir is
TRUE, this pin is the DIR
output
OuUT17 XOR’d with DN3 or DIR3
QZ0 IN8 Read same value
Q71 IN9 Read same value
Qz2 IN10 Read same value
QZ3 IN11 Read same value
QA0 IN12 Read same value
QA1 IN13 Read same value
QA2 IN14 Read same value
QA3 IN15 Read same value
QBO IN16 Read same value
OB1 IN17 Read same value
QB2 IN18 Read same value
QB3 IN19 Read same value

6.13.2.2 Input latching and output updating

* PWM duty cycles for each channel are updated at different times.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 383/1322

* Digital outputs OUTO through OUT9 are all updated at the same time. Digital outputs OUT10
through OUT17 are updated at the same time as the pwm function they are shared with.

* Digital inputs INO through IN19 are all latched at the same time.

¢ Quadrature positions for each channel are latched at different times.

6.13.2.3 HAL Functions, Pins and Parameters

A list of all loadrt arguments, HAL function names, pin names and parameter names is in the manual
page, pluto_servo.9.

6.13.2.4 Compatible driver hardware

A schematic for a 2A, 2-axis PWM servo amplifier board is available from the (the software developer).
The L298 H-Bridge can be used for motors up to 4A (one motor per L298) or up to 2A (two motors per
L298) with the supply voltage up to 46V. However, the L298 does not have built-in current limiting,
a problem for motors with high stall currents. For higher currents and voltages, some users have
reported success with International Rectifier’s integrated high-side/low-side drivers.

6.13.3 Pluto Step

Pluto-step is suitable for control of a 3- or 4-axis CNC mill with stepper motors. The large number of
inputs allows for a full set of limit switches.

The board features:

* 4 step+direction channels with 312.5 kHz maximum step rate, programmable step length, space,
and direction change times

* 14 dedicated digital outputs
* 16 dedicated digital inputs

¢ EPP communication with the PC

6.13.3.1 Pinout

STEPx - The step (clock) output of stepgen channel x

DIRx - The direction output of stepgen channel x

e INx - Dedicated digital input #x

OUTx - Dedicated digital output #x
GND - Ground
VCC - +3.3V regulated DC

While the extended main connector has a superset of signals usually found on a Step & Direction DB25
connector—4 step generators, 9 inputs, and 6 general-purpose outputs—the layout on this header is
different than the layout of a standard 26-pin ribbon cable to DB25 connector.

http://emergent.unpy.net/projects/01148303608

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 384 /1322

AN AN

v ool 7 Parallel Port Connector

-

R
W e

L o | Jack >

|

N3 ING |
|

- |

NS N6 ACEX FPGA |
NT |
|

|

MO GM I COINID INTZ INTL INTS

IM& W11 INT3

Figure 6.10: Pluto-Step Pinout

6.13.3.2 Input latching and output updating

Step frequencies for each channel are updated at different times.

Digital outputs are all updated at the same time.

Digital inputs are all latched at the same time.

Feedback positions for each channel are latched at different times.

6.13.3.3 Step Waveform Timings

The firmware and driver enforce step length, space, and direction change times. Timings are rounded
up to the next multiple of 1.6ps, with a maximum of 49.6pus. The timings are the same as for the soft-
ware stepgen component, except that dirhold and dirsetup have been merged into a single parameter
dirtime which should be the maximum of the two, and that the same step timings are always applied
to all channels.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 385/1322

dirtime dirtime

stepspace sheplen | stepspace

STEP

DIRECTION

Figure 6.11: Pluto-Step Timings

6.13.3.4 HAL Functions, Pins and Parameters

A list of all loadrt arguments, HAL function names, pin names and parameter names is in the manual
page, pluto step.9.

6.14 Powermax Modbus Driver

This is a non-realtime HAL program, written in python, to control Hypetherm Powermax plasma cut-
ters using the Modbus ASCII protocol over RS485.

Note

Since this is a non-realtime program it can be affected by computer loading and latency. Itis possible
to lose communications which will be indicated by a change in the status output. One should always
have an Estop circuit that kills the power to the unit in case of emergency.

This component is loaded using the halcmd ”loadusr” command:
loadusr -Wn pmx485 pmx485 /dev/ttyUSBO

This will load the pmx485 component using the /dev/ttyUSBO port and wait for it to become ready.

It is necessary to name the port to use for communications.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 386 /1322

6.14.1 Pins

* pmx485.mode-set (bit, in) # set cutting mode

* pmx485.current-set (bit, in) # set cutting current
 pmx485.pressure-set (bit, in) # set gas pressure
 pmx485.enable (bit, in) # enable the component

« pmx485.mode (bit, out) # cut mode feedback

« pmx485.current (bit, out) # cutting current feedback

« pmx485.pressure (bit, out) # gas pressure feedback
 pmx485.fault (bit, out) # powermax fault code

« pmx485.status (bit, out) # connection status

« pmx485.current-min (bit, out) # minimum allowed current
« pmx485.current-max (bit, out) # maximum allowed current
* pmx485.pressure-min (bit, out) # minimum allowed gas pressure

 pmx485.pressure-max (bit, out) # maximum allowed gas pressure

6.14.2 Description

To communicate with a Powermax, the component must first be enabled via the enable pin and it may
then initiate a request to the Powermax by writing a valid string to the following pins:

* mode-set
e current-set

¢ pressure-set

Note
A pressure-set value of zero is valid, the Powermax will then calculate the required pressure inter-
nally.

Communications may be validated from the Powermax display or the status pin. While in remote
mode, the mode, current and pressure may be changed as needed.

To terminate the communications, do one of the following:

¢ Set all set pins to zero: mode-set, current-set, and pressure-set.

* Disconnect the Powermax power supply from its power source for approximately 30 seconds. When
you power the system back ON, it will no longer be in remote mode.

6.14.3 Reference:

e Hypertherm Application Note #807220
"Powermax4b5 XP/65/85/105/125® Serial Communication Protocol”

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 387 /1322

6.15 Servo To Go Driver

The Servo-To-Go (STG) is one of the first PC motion control cards supported by LinuxCNC. It is an
ISA card and it exists in different flavors (all supported by this driver). The board includes up to 8
channels of quadrature encoder input, 8 channels of analog input and output, 32 bits digital I/O, an
interval timer with interrupt and a watchdog.

Note

We have had reports that the opamps on the Servo To Go card do not work with newer ATX power
supplies that use modern switch mode DC-DC converters. The failure mode is that STG card outputs
a constant voltage regardless of what the driver is commanding it to do. Older ATX power supplies
with linear voltage regulators do not have this problem, and work fine with the STG cards.

6.15.1 Installing

loadrt hal stg [base=<address>] [num chan=<nr>] [dio="<dio-string>"] \
[model=<model>]

The base address field is optional; if it’s not provided the driver attempts to autodetect the board.
The num chan field is used to specify the number of channels available on the card, if not used the
8 axis version is assumed. The digital inputs/outputs configuration is determined by a config string
passed to insmod when loading the module. The format consists of a four character string that sets
the direction of each group of pins. Each character of the direction string is either “I” or "O”. The
first character sets the direction of port A (Port A - DIO.0-7), the next sets port B (Port B - DI0.8-15),
the next sets port C (Port C - DIO.16-23), and the fourth sets port D (Port D - DIO.24-31). The model
field can be used in case the driver doesn’t autodetect the right card version.

HINT: after starting up the driver, dmesg can be consulted for messages relevant to the driver (e.g.
autodetected version number and base address). For example:

loadrt hal stg base=0x300 num chan=4 dio="I0I0"

This example installs the STG driver for a card found at the base address of 0x300, 4 channels of
encoder feedback, DACs and ADCs, along with 32 bits of I/O configured like this: the first 8 (Port A)
configured as Input, the next 8 (Port B) configured as Output, the next 8 (Port C) configured as Input,
and the last 8 (Port D) configured as Output

loadrt hal stg

This example installs the driver and attempts to autodetect the board address and board model, it
installs 8 axes by default along with a standard I/O setup: Port A & B configured as Input, Port C & D
configured as Output.

6.15.2 Pins

* stg.<channel>.counts - (s32) Tracks the counted encoder ticks.

* stg.<channel>.position - (float) Outputs a converted position.

* stg.<channel>.dac-value - (float) Drives the voltage for the corresponding DAC.

* stg.<channel>.adc-value - (float) Tracks the measured voltage from the corresponding ADC.

* stg.in-<pinnum> - (bit) Tracks a physical input pin.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 388/1322

* stg.in-<pinnum=>-not - (bit) Tracks a physical input pin, but inverted.
* stg.out-<pinnum> - (bit) Drives a physical output pin
For each pin, <channel> is the axis number, and <pinnum> is the logic pin number of the STG if

II00 is defined, there are 16 input pins (in-00 .. in-15) and 16 output pins (out-00 .. out-15), and they
correspond to PORTs ABCD (in-00 is PORTA.O, out-15 is PORTD.7).

The in-<pinnum> HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low.
The in-<pinnum>-not HAL pin is inverted — it is FALSE if the physical pin is high. By connecting a
signal to one or the other, the user can determine the state of the input.

6.15.3 Parameters

stg.<channel>.position-scale - (float) The number of counts / user unit (to convert from counts to
units).

* stg.<channel>.dac-offset - (float) Sets the offset for the corresponding DAC.

* stg.<channel>.dac-gain - (float) Sets the gain of the corresponding DAC.

* stg.<channel>.adc-offset - (float) Sets the offset of the corresponding ADC.

e stg.<channel>.adc-gain - (float) Sets the gain of the corresponding ADC.

* stg.out-<pinnum>-invert - (bit) Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is

FALSE, setting the HAL out- pin TRUE drives the physical pin high, and FALSE drives it low. If -invert
is TRUE, then setting the HAL out- pin TRUE will drive the physical pin low.

6.15.4 Functions

stg.capture-position - Reads the encoder counters from the axis <channel>.
» stg.write-dacs - Writes the voltages to the DACs.
* stg.read-adcs - Reads the voltages from the ADCs.

* stg.di-read - Reads physical in- pins of all ports and updates all HAL in-<pinnum> and in-<pinnum>-
not pins.

* stg.do-write - Reads all HAL out-<pinnum> pins and updates all physical output pins.

6.16 Shuttle

6.16.1 Description

Shuttle is a non-realtime HAL component that interfaces Contour Design’s ShuttleXpress, ShuttlePRO,
and ShuttlePRO2 devices with LinuxCNC’s HAL.

If the driver is started without command-line arguments, it will probe all /dev/hidraw* device files for
Shuttle devices, and use all devices found. If it is started with command-line arguments, it will only
probe the devices specified.

The ShuttleXpress has five momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 389/1322

The ShuttlePRO has 13 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

The ShuttlePRO2 has 15 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

Warning

The Shuttle devices have an internal 8-bit counter for the current jog-wheel position. The

shuttle driver can not know this value until the Shuttles device sends its first event. When the
® first event comes into the driver, the driver uses the device’s reported jog-wheel position to

initialize counts to 0.

This means that if the first event is generated by a jog-wheel move, that first move will be lost.

Any user interaction with the Shuttle device will generate an event, informing the driver of the

jog-wheel position. So if you (for example) push one of the buttons at startup, the jog-wheel

will work fine and notice the first click.

6.16.2 Setup

The shuttle driver needs read permission to the /dev/hidraw* device files. This can be accomplished
by adding a file /etc/udev/rules.d/99-shuttle.rules, with the following contents:

SUBSYSTEM=="hidraw”, ATTRS{idVendor}=="0b33", ATTRS{idProduct}=="0020", MODE="0444"
SUBSYSTEM=="hidraw”, ATTRS{idVendor}=="05f3", ATTRS{idProduct}=="0240", MODE="0444"
SUBSYSTEM=="hidraw”, ATTRS{idVendor}=="0b33", ATTRS{idProduct}=="0030", MODE="0444"

The LinuxCNC Debian package installs an appropriate udev file automatically, but if you are building
LinuxCNC from source and are not using the Debian packaging you’ll need to install this file by hand.
If you install the file by hand you’ll need to tell udev to reload its rules files by running udevadm
control --reload-rules.

6.16.3 Pins

All HAL pin names are prefixed with shuttle followed by the index of the device (the order in which
the driver found them), for example shuttle.0 or shuttle.2.

<Prefix>.button-<ButtonNumber> (bit out)
These pins are True (1) when the button is pressed.

<Prefix> .button-<ButtonNumber>-not (bit out)
These pins have the inverse of the button state, so they’re True (1) when the button is not pressed.

<Prefix>.counts (s32 out)
Accumulated counts from the jog wheel (the inner wheel).

<Prefix>.spring-wheel-s32 (s32 out)
The current deflection of the spring-wheel (the outer wheel). It’s 0 at rest, and ranges from -7 at
the counter-clockwise extreme to +7 at the clockwise extreme.

<Prefix>.spring-wheel-f (float out)
The current deflection of the spring-wheel (the outer wheel). It’s 0.0 at rest, -1.0 at the counter-
clockwise extreme, and +1.0 at the clockwise extreme. The Shuttle devices report the spring-
wheel position as an integer from -7 to +7, so this pin reports only 15 discrete values in it’s
range.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 390/1322

6.17 VFS11 VFD Driver

This is a non-realtime HAL program to control the S11 series of VFDs from Toshiba.

vfs11 vfd supports serial and TCP connections. Serial connections may be RS232 or RS485. RS485 is
supported in full- and half-duplex mode. TCP connections may be passive (wait for incoming connec-
tion), or active outgoing connections, which may be useful to connect to TCP-based devices or through
a terminal server.

Regardless of the connection type, vfsl1 vfd operates as a Modbus master.
This component is loaded using the halcmd ”loadusr” command:

loadusr -Wn spindle-vfd vfsll vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component vfs11 vfd, named spindle-vfd

6.17.1 Command Line Options
vfs11 vfd is mostly configured through INI file options. The command line options are:

e -n or --name <halname> : set the HAL component name

e -I or —-ini <inifilename> : take configuration from this INI file. Defaults to environment variable
INI FILE NAME.

* -S or --section <section name> : take configuration from this section in the INI file. Defaults to
VFS11.

* -d or --debug enable debug messages on console output.
* -m or --modbus-debug enable modbus messages on console output

e -ror--report-device report device properties on console at startup

Debugging can be toggled by sending a USR1 signal to the vfs11 vfd process. Modbus debugging can
be toggled by sending a USR2 signal to vfs11_vfd process (example: kill -USR1 pidof vfsll vfd).

Note
That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

6.17.2 Pins
Where <n> is vfsll vfd or the name given during loading with the -n option.

e <n>.acceleration-pattern (bit, in) when true, set acceleration and deceleration times as defined in
registers F500 and F501 respectively. Used in PID loops to choose shorter ramp times to avoid
oscillation.

e <n>.alarm-code (s32, out) non-zero if drive is in alarmed state. Bitmap describing alarm informa-
tion (see register FC91 description). Use err-reset (see below) to clear the alarm.

e <n>.at-speed (bit, out) when drive is at commanded speed (see speed-tolerance below)

e <n>.current-load-percentage (float, out) reported from the VFD

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 391/1322

e <n>.dc-brake (bit, in) engage the DC brake. Also turns off spindle-on.

e <n>.enable (bit, in) enable the VFD. If false, all operating parameters are still read but control is
released and panel control is enabled (subject to VFD setup).

e <n>.err-reset (bit, in) reset errors (alarms a.k.a Trip and e-stop status). Resetting the VFD may
cause a 2-second delay until it’s rebooted and Modbus is up again.

* <n>.estop (bit, in) put the VFD into emergency-stopped status. No operation possible until cleared
with err-reset or powercycling.

* <n>.frequency-command (float, out) current target frequency in Hz as set through speed-command
(which is in RPM), from the VFD

* <n>.frequency-out (float, out) current output frequency of the VFD
* <n>.inverter-load-percentage (float, out) current load report from VFD

* <n>.is-e-stopped (bit, out) the VFD is in emergency stop status (blinking "E” on panel). Use err-
reset to reboot the VFD and clear the e- stop status.

* <n>.is-stopped (bit, out) true when the VFD reports 0 Hz output

e <n>.max-rom (float, R) actual RPM limit based on maximum frequency the VFD may generate,
and the motors nameplate values. For instance, if nameplate-HZ is 50, and nameplate-RPM _ is
1410, but the VFD may generate up to 80 Hz, then max-rpm would read as 2256 (80*1410/50). The
frequency limit is read from the VFD at startup. To increase the upper frequency limit, the UL and
FH parameters must be changed on the panel. See the VF-S11 manual for instructions how to set
the maximum frequency.

* <n>.modbus-ok (bit, out) true when the Modbus session is successfully established and the last 10
transactions returned without error.

* <n>.motor-RPM (float, out) estimated current RPM value, from the VFD
e <n>.output-current-percentage (float, out) from the VFD

e <n>.output-voltage-percentage (float, out) from the VFD

e <n>.output-voltage (float, out) from the VFD

* <n>.speed-command (float, in) speed sent to VFD in RPM. It is an error to send a speed faster than
the Motor Max RPM as set in the VFD

e <n>.spindle-fwd (bit, in) 1 for FWD and 0 for REV, sent to VFD
* <n>.spindle-on (bit, in) 1 for ON and 0 for OFF sent to VFD, only on when running
* <n>.spindle-rev (bit, in) 1 for ON and 0 for OFF, only on when running

e <n>,jog-mode (bit, in) 1 for ON and O for OFF, enables the VF-S11 jog mode. Speed control is
disabled, and the output frequency is determined by register F262 (preset to 5 Hz). This might be
useful for spindle orientation. In normal mode, the VFD shuts off if the frequency drops below 12
Hz.

e <n>.status (s32, out) Drive Status of the VFD (see the TOSVERT VF-S11 Communications Function
Instruction Manual, register FD01). A bitmap.

e <n>.trip-code (s32, out) trip code if VF-S11 is in tripped state.
e <n>.error-count (s32, out) number of Modbus transactions which returned an error

* <n>.max-speed (bit, in) ignore the loop-time parameter and run Modbus at maximum speed, at the
expense of higher CPU usage. Suggested use during spindle positioning.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 392 /1322

6.17.3 Parameters

Where <n> is vfsll vfd or the name given during loading with the -n option.

<n>.frequency-limit (float, RO) upper limit read from VFD setup.
<n>.loop-time (float, RW) how often the Modbus is polled (default interval 0.1 seconds)

<n>.nameplate-HZ (float, RW) Nameplate Hz of motor (default 50). Used to calculate target fre-
quency (together with nameplate-RPM) for a target RPM value as given by speed-command.

<n>.nameplate-RPM (float, RW) Nameplate RPM of motor (default 1410)
<n>.rpm-limit (float, RW) do-not-exceed soft limit for motor RPM (defaults to nameplate-RPM).

<n>.tolerance (float, RW) speed tolerance (default 0.01) for determining whether spindle is at speed
(0.01 meaning: Output frequency is within 1% of target frequency)

6.17.4 INI file configuration

This lists all options understood by vfsl1 vfd. Typical setups for RS-232, RS-485 and TCP can be
found in src/hal/user comps/vfs11 vfd/*.ini.

[VFS11]
serial connection
TYPE=rtu

serial port
DEVICE=/dev/ttyS0O

TCP server - wait for incoming connection
TYPE=tcpserver

tcp portnumber for TYPE=tcpserver or tcpclient
PORT=1502

TCP client - active outgoing connection
TYPE=tcpclient

destination to connect to if TYPE=tcpclient
TCPDEST=192.168.1.1

#o-- - meaningful only if TYPE=rtu -------
serial device detail

#5678

BITS= 5

even odd none
PARITY=none

110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
BAUD=19200

#1 2
STOPBITS=1

#rs232 rs485
SERIAL_MODE=rs485

up down none
this feature might not work with a stock Ubuntu

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 393/1322

libmodbus5/1ibmodbus-dev package, and generate a warning
execution will continue as if RTS MODE=up were given.
RTS_MODE=up

modbus timers in seconds
inter-character timer
BYTE TIMEOUT=0.5

packet timer

RESPONSE TIMEOUT=0.5

target modbus ID
TARGET=1

on I/0 failure, try to reconnect after sleeping
for RECONNECT DELAY seconds
RECONNECT DELAY=1

misc. parameters
DEBUG=10

MODBUS DEBUG=0
POLLCYCLES=10

6.17.5 HAL example

#

example usage of the VF-S11 VFD driver

#

#

loadusr -Wn spindle-vfd vfsll vfd -n spindle-vfd

connect the spindle direction pins to the VFD
net vfsll-fwd spindle-vfd.spindle-fwd <= spindle.0.forward
net vfsll-rev spindle-vfd.spindle-rev <= spindle.0.reverse

connect the spindle on pin to the VF-S11
net vfsll-run spindle-vfd.spindle-on <= spindle.0.on

connect the VF-S11 at speed to the motion at speed
net vfsll-at-speed spindle.0.at-speed <= spindle-vfd.at-speed

connect the spindle RPM to the VF-S11
net vfsll-RPM spindle-vfd.speed-command <= spindle.0.speed-out

connect the VF-S11 DC brake

since this draws power during spindle off, the dc-brake pin would

better be driven by a monoflop which triggers on spindle-on falling edge
#net vfsll-spindle-brake spindle.N.brake => spindle-vfd.dc-brake

to use the VFS11l jog mode for spindle orient
see orient.9 and motion.9
net spindle-orient spindle.0.orient spindle-vfd.max-speed spindle-vfd.jog-mode

take precedence over control panel
setp spindle-vfd.enable 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 394 /1322

6.17.6 Panel operation

The vfs11 vfd driver takes precedence over panel control while it is enabled (see enable pin), effec-
tively disabling the panel. Clearing the enable pin re-enables the panel. Pins and parameters can still
be set, but will not be written to the VFD untile the enable pin is set. Operating parameters are still
read while bus control is disabled. Exiting the vfsl1 vfd driver in a controlled way will release the
VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the
Toshiba VFDs, see the "TOSVERT VF-S11 Communications Function Instruction Manual” (Toshiba
document number E6581222) and the "TOSVERT VF-S11 Instruction manual” (Toshiba document
number E6581158).

6.17.7 Error Recovery

vfsll vfd recovers from I/O errors as follows: First, all HAL pins are set to default values, and the
driver will sleep for RECONNECT DELAY seconds (default 1 second).

e Serial (TYPE=rtu) mode: on error, close and reopen the serial port.

e TCP server (TYPE=tcpserver) mode: on losing the TCP connection, the driver will go back to listen
for incoming connections.

e TCP client (TYPE=tcpclient) mode: on losing the TCP connection, the driver will reconnect to
TCPDEST:PORTNO.

6.17.8 Configuring the VFS11 VFD for Modbus usage

6.17.8.1 Connecting the Serial Port

The VF-S11 has an RJ-45 jack for serial communication. Unfortunately, it does not have a standard
RS-232 plug and logic levels. The Toshiba-recommended way is: connect the USB001Z USB-to-serial
conversion unit to the drive, and plug the USB port into the PC. A cheaper alternative is a homebrew
interface (hints from Toshiba support, circuit diagram).

Note: the 24V output from the VFD has no short-circuit protection.

Serial port factory defaults are 9600/8/1/even, the protocol defaults to the proprietary “Toshiba In-
verter Protocol”.

6.17.8.2 Modbus setup

Several parameters need setting before the VF-S11 will talk to this module. This can either be done
manually with the control panel, or over the serial link - Toshiba supplies a Windows application called
PCMO001Z which can read/set parameters in the VFD. Note - PCM001Z only talks the Toshiba inverter
protocol. So the last parameter which you’d want to change is the protocol - set from Toshiba Inverter
Protocol to Modbus; thereafter, the Windows app is useless.

To increase the upper frequency limit, the UL and FH parameters must be changed on the panel. I
increased them from 50 to 80.

See dump-params.mio for a description of non-standard VF-S11 parameters of my setup. This file is
for the modio Modbus interactive utility.

https://git.mah.priv.at/gitweb/vfs11-vfd.git/blob_plain/refs/heads/f12-prod:/VFS11-RJ45_e.pdf
https://git.mah.priv.at/gitweb/vfs11-vfd.git/blob_plain/refs/heads/f12-prod:/vfs11-rs232.pdf
https://git.mah.priv.at/gitweb/modio.git

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 395/1322

6.17.9 Programming Note
The vfs11 vfd driver uses the libmodbus version 3 library which is more recent than the version 2
code used in gs2 vfd.

The Ubuntu libmodbus5 and libmodbus-dev packages are only available starting from Ubuntu 12
(Precise Pengolin). Moreover, these packages lack support for the MODBUS RTS MODE * flags.
Therefore, building vfs11 vfd using this library might generate a warning if RTS MODE-= is specified
in the INI file.

To use the full functionality on lucid and precise:

* remove the libmodbus packages: sudo apt-get remove libmodbus5 libmodbus-dev

¢ build and install libmodbus version 3 from source as outlined here.

Libmodbus does not build on Ubuntu Hardy, hence vfs11 vfd is not available on Hardy.

https://www.libmodbus.org
https://github.com/stephane/libmodbus/blob/master/README.rst

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 396 /1322

Chapter 7

Hardware Examples

7.1 PCI Parallel Port

When you add a second parallel port to your PCI bus you have to find out the address before you can
use it with LinuxCNC.

To find the address of your parallel port card open a terminal window and type

lspci -v

You will see something similar to this as well as info on everything else on the PCI bus:

0000:00:10.0 Communication controller: \
NetMos Technology PCI 1 port parallel adapter (rev 01)
Subsystem: LSI Logic / Symbios Logic: Unknown device 0010
Flags: medium devsel, IRQ 11
I/0 ports at a800 [size=8]
I/0 ports at ac00 [size=8]
I/0 ports at bOOO [size=8]
I/0 ports at b400 [size=8]
I/0 ports at b800 [size=8]
I/0 ports at bc0OO [size=16]

In my case the address was the first one so I changed my .hal file from

loadrt hal parport cfg=0x378

to
loadrt hal parport cfg="0x378 0xa800 in”

(Note the double quotes surrounding the addresses.)
and then added the following lines so the parport will be read and written:

addf parport.l.read base-thread
addf parport.l.write base-thread

After doing the above then run your config and verify that the parallel port got loaded in Machine/Show
HAL Configuration window.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 397 /1322

7.2 Spindle Control

LinuxCNC can control up to 8 spindles. The number is set in the INI file. The examples below all
refer to a single-spindle config with spindle control pins with names like spindle.0... In the case of a
multiple spindle machine all that changes is that additional pins exist with names such as spindle.6...

7.2.1 0-10 Volt Spindle Speed

If your spindle speed is controlled by an analog signal, (for example, by a VFD with a 0 Vto 10 V
signal) and you’re using a DAC card like the m5i20 to output the control signal:

First you need to figure the scale of spindle speed to control signal, i.e. the voltage. For this example
the spindle top speed of 5000 RPM is equal to 10 Volts.

10Volts _ 0.002 Volts
5000 RPM 1RPM

We have to add a scale component to the HAL file to scale the spindle.N.speed-out to the 0 to 10
needed by the VFD if your DAC card does not do scaling.

loadrt scale count=1

addf scale.0 servo-thread

setp scale.0.gain 0.002

net spindle-speed-scale spindle.0.speed-out => scale.0.in
net spindle-speed-DAC scale.0.out => <your DAC pin name>

7.2.2 PWM Spindle Speed

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd spindle.0.speed-out => pwmgen.0.value
net spindle-on spindle.0.on => pwmgen.0.enable

net spindle-pwm pwmgen.0Q.pwm => parport.0.pin-09-out

Set the spindle’s top speed in RPM

setp pwmgen.0.scale 1800

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

7.2.3 Spindle Enable

If you need a spindle enable signal, link your output pin to spindle.0.on. To link these pins to a
parallel port pin put something like the following in your .hal file, making sure you pick the pin that
is connected to your control device.

net spindle-enable spindle.0.on => parport.0.pin-14-out

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 398/1322

7.2.4 Spindle Direction

If you have direction control of your spindle, then the HAL pins spindle.N.forward and spindle.N.reverse
are controlled by the G-codes M3 and M4. Spindle speed Sn must be set to a positive non-zero value
for M3/M4 to turn on spindle motion.

To link these pins to a parallel port pin, put something like the following in your .hal file making sure
you pick the pin that is connected to your control device.

net spindle-fwd spindle.@.forward => parport.0.pin-16-out
net spindle-rev spindle.0.reverse => parport.0.pin-17-out

7.2.5 Spindle Soft Start

If you need to ramp your spindle speed command and your control does not have that feature it can
be done in HAL. Basically you need to hijack the output of spindle.N.speed-out and run it through a
limit2 component with the scale set so it will ramp the rpm from spindle.N.speed-out to your device
that receives the rpm. The second part is to let LinuxCNC know when the spindle is at speed so motion
can begin.

In the 0-10 Volt example the line

net spindle-speed-scale spindle.0.speed-out => scale.0.in

is changed as shown in the following example:

Intro to HAL components limit2 and near In case you have not run across them before, here’s a
quick introduction to the two HAL components used in the following example.

* Alimit2 is a HAL component (floating point) that accepts an input value and provides an output that
has been limited to a max/min range, and also limited to not exceed a specified rate of change.

* A near is a HAL component (floating point) with a binary output that says whether two inputs are
approximately equal.

More info is available in the documentation for HAL components, or from the man pages, just say man
limit2 or man near in a terminal.

load the real time modules limit2 and near with names so it is easier to follow their <«
connections

loadrt 1imit2 names=spindle-ramp

loadrt near names=spindle-at-speed

add the functions to a thread
addf spindle-ramp servo-thread
addf spindle-at-speed servo-thread

set the parameter for max rate-of-change
(max spindle accel/decel in units per second)
setp spindle-ramp.maxv 60

hijack the spindle speed out and send it to spindle ramp in
net spindle-cmd <= spindle.0.speed-out => spindle-ramp.in

the output of spindle ramp is sent to the scale in
net spindle-ramped <= spindle-ramp.out => scale.0.in

to know when to start the motion we send the near component
(named spindle-at-speed) to the spindle commanded speed from

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 399/1322

the signal spindle-cmd and the actual spindle speed

provided your spindle can accelerate at the maxv setting.
net spindle-cmd => spindle-at-speed.inl

net spindle-ramped => spindle-at-speed.in2

the output from spindle-at-speed is sent to spindle.0.at-speed
and when this is true motion will start
net spindle-ready <= spindle-at-speed.out => spindle.0.at-speed

7.2.6 Spindle Feedback

7.2.6.1 Spindle Synchronized Motion

Spindle feedback is needed by LinuxCNC to perform any spindle coordinated motions like threading
and constant surface speed. LinuxCNC can perform synchronized motion and CSS with any of up to
8 spindles. Which spindles are used is controlled from G-code. CSS is possible with several spindles
simultaneously.

The StepConf Wizard can perform the connections for a single-spindle configuration for you if you
select Encoder Phase A and Encoder Index as inputs.

Hardware assumptions for this example:

* An encoder is connected to the spindle and puts out 100 pulses per revolution on phase A.
e The encoder A phase is connected to the parallel port pin 10.

* The encoder index pulse is connected to the parallel port pin 11.

Basic Steps to add the components and configure them: ! 2 3

Add the encoder to HAL and attach it to threads.
loadrt encoder num chan=4

addf encoder.update-counters base-thread

addf encoder.capture-position servo-thread

Set the HAL encoder to 100 pulses per revolution.
setp encoder.3.position-scale 100

Set the HAL encoder to non-quadrature simple counting using A only.
setp encoder.3.counter-mode true

Connect the HAL encoder outputs to LinuxCNC.

net spindle-position encoder.3.position => spindle.0.revs

net spindle-velocity encoder.3.velocity => spindle.0.speed-in

net spindle-index-enable encoder.3.index-enable <=> spindle.0.index-enable

Connect the HAL encoder inputs to the real encoder.

net spindle-phase-a encoder.3.phase-A <= parport.0.pin-10-in
net spindle-phase-b encoder.3.phase-B

net spindle-index encoder.3.phase-Z <= parport.0.pin-11-in

11n this example, we will assume that some encoders have already been issued to axes/joints 0, 1, and 2. So the next encoder
available for us to attach to the spindle would be number 3. Your situation may differ.

2The HAL encoder index-enable is an exception to the rule in that it behaves as both an input and an output, see the Encoder
Section for details

31t is because we selected non-quadrature simple counting... above that we can get away with quadrature counting without
having any B quadrature input.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 400/1322

7.2.6.2 Spindle At Speed

To enable LinuxCNC to wait for the spindle to be at speed before executing a series of moves, the
spindle.N.at-speed needs to turn true at the moment the spindle is at the commanded speed. To
achieve this you need spindle feedback from an encoder. Since the feedback and the commanded
speed are not usually exactly the same you should to use the near component to determine that the
two numbers are close enough.

The connections needed are from the spindle velocity command signal to near.n.inl and from the
spindle velocity from the encoder to near.n.in2. Then the near.n.out is connected to spindle.N.at-
speed. The near.n.scale needs to be set to say how close the two numbers must be before turning on
the output. Depending on your setup you may need to adjust the scale to work with your hardware.

The following is typical of the additions needed to your HAL file to enable Spindle At Speed. If you
already have near in your HAL file then increase the count and adjust code to suit. Check to make
sure the signal names are the same in your HAL file.

load a near component and attach it to a thread
loadrt near
addf near.0 servo-thread

connect one input to the commanded spindle speed
net spindle-cmd => near.0.inl

connect one input to the encoder-measured spindle speed
net spindle-velocity => near.0.in2

connect the output to the spindle-at-speed input
net spindle-at-speed spindle.0.at-speed <= near.0.out

set the spindle speed inputs to agree if within 1%
setp near.0.scale 1.01

7.3 MPG Pendant

This example is to explain how to hook up the common MPG pendants found on the market today.
This example uses an MPG3 pendant and a C22 pendant interface card from CNC4PC connected to a
second parallel port plugged into the PCI slot. This example gives you 3 axes with 3 step increments
of 0.1, 0.01, 0.001

In your custom.hal file or jog.hal file add the following, making sure you don’t have mux4 or an encoder
already in use. If you do just increase the counts and change the reference numbers. More information
about mux4 and encoder can be found in the HAL manual or the man page.

See the INI HAL Section of the documentation for more information on adding a HAL file. Jog manage-
ment pins are provided for each joint and all coordinate letters. This example uses the axis jog pins for
jogging in world mode. Machines with non-identity kinematics may need use additional connections
for jogging in joint mode.

jog.hal

Jog Pendant

loadrt encoder num chan=1

loadrt mux4 count=1

addf encoder.capture-position servo-thread
addf encoder.update-counters base-thread
addf mux4.0 servo-thread

If your MPG outputs a quadrature signal per click set x4 to 1

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 401 /1322

If your MPG puts out 1 pulse per click set x4 to 0
setp encoder.0.x4-mode 0

For velocity mode, set to 1

In velocity mode the axis stops when the dial is stopped
even if that means the commanded motion is not completed,

For position mode (the default), set to 0

In position mode the axis will move exactly jog-scale

units for each count, regardless of how long that might take,
setp axis.x.jog-vel-mode 0

setp axis.y.jog-vel-mode 0

setp axis.z.jog-vel-mode 0

HOoH oW W R H

This sets the scale that will be used based on the input to the mux4
setp mux4.0.in0 0.1

setp mux4.0.inl 0.01

setp mux4.0.in2 0.001

The inputs to the mux4 component
net scalel mux4.0.sel@ <= parport.l.pin-09-in
net scale2 mux4.0.sell <= parport.l.pin-10-in

The output from the mux4 is sent to each axis jog scale
net mpg-scale <= mux4.0.out

net mpg-scale => axis.x.jog-scale

net mpg-scale => axis.y.jog-scale

net mpg-scale => axis.z.jog-scale

The MPG inputs
net mpg-a encoder.0.phase-A <= parport.l.pin-02-in
net mpg-b encoder.0.phase-B <= parport.l.pin-03-in

The Axis select inputs

net mpg-x axis.x.jog-enable <= parport.l.pin-04-in
net mpg-y axis.y.jog-enable <= parport.l.pin-05-in
net mpg-z axis.z.jog-enable <= parport.l.pin-06-in

The encoder output counts to the axis. Only the selected axis will move.
net encoder-counts <= encoder.0.counts
net encoder-counts => axis.X.jog-counts
net encoder-counts => axis.y.jog-counts
net encoder-counts => axis.z.jog-counts

If the machine is capable of high acceleration to smooth out the moves for each click of the MPG use
the ilowpass component to limit the acceleration.

jog.hal with ilowpass

loadrt encoder num chan=1

loadrt mux4 count=1

addf encoder.capture-position servo-thread
addf encoder.update-counters base-thread
addf mux4.0 servo-thread

loadrt ilowpass
addf ilowpass.0@ servo-thread

setp ilowpass.0.scale 1000
setp ilowpass.0.gain 0.01

If your MPG outputs a quadrature signal per click set x4 to 1
If your MPG puts out 1 pulse per click set x4 to 0

../man/man9/ilowpass.9.html

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 402 /1322

setp encoder.0.x4-mode 0

For velocity mode, set to 1

In velocity mode the axis stops when the dial is stopped
even if that means the commanded motion is not completed,

For position mode (the default), set to 0

In position mode the axis will move exactly jog-scale

units for each count, regardless of how long that might take,
setp axis.x.jog-vel-mode 0

setp axis.y.jog-vel-mode 0

setp axis.z.jog-vel-mode 0

HoH oHOH W R

This sets the scale that will be used based on the input to the mux4
The scale used here has to be multiplied by the ilowpass scale

setp mux4.0.in0 0.0001

setp mux4.0.inl 0.00001

setp mux4.0.in2 0.000001

The inputs to the mux4 component
net scalel mux4.0.sel@ <= parport.l.pin-09-in
net scale2 mux4.0.sell <= parport.l.pin-10-in

The output from encoder counts is sent to ilowpass
net mpg-out ilowpass.0.in <= encoder.0.counts

The output from the mux4 is sent to each axis jog scale
net mpg-scale <= mux4.0.out

net mpg-scale => axis.x.jog-scale

net mpg-scale => axis.y.jog-scale

net mpg-scale => axis.z.jog-scale

The MPG inputs
net mpg-a encoder.0.phase-A <= parport.l.pin-02-in
net mpg-b encoder.0.phase-B <= parport.l.pin-03-in

The Axis select inputs

net mpg-x axis.x.jog-enable <= parport.l.pin-04-in
net mpg-y axis.y.jog-enable <= parport.l.pin-05-in
net mpg-z axis.z.jog-enable <= parport.l.pin-06-in

The output from the ilowpass is sent to each axis jog count
Only the selected axis will move.

net encoder-counts <= ilowpass.0.out

net encoder-counts => axis.x.jog-counts

net encoder-counts => axis.y.jog-counts

net encoder-counts => axis.z.jog-counts

7.4 GS2 Spindle

7.4.1 Example

This example shows the connections needed to use an Automation Direct GS2 VFD to drive a spindle.
The spindle speed and direction is controlled by LinuxCNC.

Using the GS2 component involves very little to set up. We start with a StepConf Wizard generated
config. Make sure the pins with "Spindle CW” and ”"Spindle PWM” are set to unused in the parallel
port setup screen.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 403 /1322

In the custom.hal file we place the following to connect LinuxCNC to the GS2 and have LinuxCNC
control the drive.

GS2 Example

load the non-realtime component for the Automation Direct GS2 VFDs
loadusr -Wn spindle-vfd gs2 vfd -r 9600 -p none -s 2 -n spindle-vfd

connect the spindle direction pin to the GS2
net gs2-fwd spindle-vfd.spindle-fwd <= spindle.N.forward

connect the spindle on pin to the GS2
net gs2-run spindle-vfd.spindle-on <= spindle.N.on

connect the GS2 at speed to the motion at speed
net gs2-at-speed spindle.N.at-speed <= spindle-vfd.at-speed

connect the spindle RPM to the GS2
net gs2-RPM spindle-vfd.speed-command <= spindle.N.speed-out

Note

The transmission speed might be able to be faster depending on the exact environment. Both the
drive and the command line options must match. To check for transmission errors add the -v com-
mand line option and run from a terminal.

On the GS2 drive itself you need to set a couple of things before the modbus communications will work.
Other parameters might need to be set based on your physical requirements but these are beyond the
scope of this manual. Refer to the GS2 manual that came with the drive for more information on the
drive parameters.

¢ The communications switches must be set to RS-232C.
¢ The motor parameters must be set to match the motor.

* P3.00 (Source of Operation Command) must be set to Operation determined by RS-485 interface,
03 or 04.

* P4.00 (Source of Frequency Command) must be set to Frequency determined by RS232C/RS485
communication interface, 05.

* P9.01 (Transmission Speed) must be set to 9600 baud, 01.

* P9.02 (Communication Protocol) must be set to "Modbus RTU mode, 8 data bits, no parity, 2 stop
bits”, 03.

A PyVCP panel based on this example is here.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 404 /1322

Chapter 8

ClassicLadder

8.1 ClassicLadder Introduction

8.1.1 History

ClassicLadder is a free implementation of a ladder interpreter, released under the LGPL. It was written
by Marc Le Douarain.

He describes the beginning of the project on his website:

I decided to program a ladder language only for test purposes at the start, in February 2001.
It was planned, that I would have to participate to a new product after leaving the enterprise
in which I was working at that time. And I was thinking that to have a ladder language in
those products could be a nice option to considerate. And so I started to code the first lines
for calculating a rung with minimal elements and displaying dynamically it under Gtk, to
see if my first idea to realize all this works.

And as quickly I've found that it advanced quite well, I've continued with more complex
elements: timer, multiples rungs, etc...

Voila, here is this work... and more: I've continued to add features since then.
— Marc Le Douarain, from ”"Genesis” at the ClassicLadder website

ClassicLadder has been adapted to work with LinuxCNC’s HAL, and is currently being distributed
along with LinuxCNC. If there are issues/problems/bugs please report them to the LinuxCNC project.

8.1.2 Introduction

Ladder logic or the Ladder programming language is a method of drawing electrical logic schematics.
It is now a graphical language very popular for programming Programmable Logic Controllers (PLCs).
It was originally invented to describe logic made from relays. The name is based on the observation
that programs in this language resemble ladders, with two vertical rails and a series of horizontal
rungs between them. In Germany and elsewhere in Europe, the style is to draw the rails horizontally
along the top and bottom of the page while the rungs are drawn vertically from left to right.

A program in ladder logic, also called a ladder diagram, is similar to a schematic for a set of relay
circuits. Ladder logic is useful because a wide variety of engineers and technicians can understand
and use it without much additional training because of the resemblance.

Ladder logic is widely used to program PLCs, where sequential control of a process or manufacturing
operation is required. Ladder logic is useful for simple but critical control systems, or for reworking

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 405/1322

old hardwired relay circuits. As programmable logic controllers became more sophisticated it has
also been used in very complex automation systems.

Ladder logic can be thought of as a rule-based language, rather than a procedural language. A rung in
the ladder represents a rule. When implemented with relays and other electromechanical devices, the
various rules execute simultaneously and immediately. When implemented in a programmable logic
controller, the rules are typically executed sequentially by software, in a loop. By executing the loop
fast enough, typically many times per second, the effect of simultaneous and immediate execution is
obtained.

Ladder logic follows these general steps for operation.

* Read Inputs
¢ Solve Logic

¢ Update Outputs

8.1.3 Example

The most common components of ladder are contacts (inputs), these usually are either NC (normally
closed) or NO (normally open), and coils (outputs).

¢ the NO contact
¢ the NC contact

 the coil (output)
Of course there are many more components to a full ladder language, but understanding these will
help you grasp the overall concept.

The ladder consists of one or more rungs. These rungs are horizontal traces (representing wires),
with components on them (inputs, outputs and other), which get evaluated left to right.

This example is the simplest rung:

B0 0

= | o

The input on the left, BO, a normally open contact, is connected to the coil (output) on the right, QO.
Now imagine a voltage gets applied to the leftmost end, because the input BO turns true (e.g. the
input is activated, or the user pushed the NO contact). The voltage has a direct path to reach the coil
(output) on the right, Q0. As a consequence, the QO coil (output) will turn from O/off/false to 1/on/true.
If the user releases B0, the QO output quickly returns to 0/off/false.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 406 /1322

8.1.4 Basic Latching On-Off Circuit

Building on the above example, suppose we add a switch that closes whenever the coil QO is active.
This would be the case in a relay, where the coil can activate the switch contacts; or in a contactor,
where there are often several small auxiliary contacts in addition to the large 3-phase contacts that
are the primary feature of the contactor.

Since this auxiliary switch is driven from coil QO in our earlier example, we will give it the same
number as the coil that drives it. This is the standard practice followed in all ladder programming,
although it may seem strange at first to see a switch labeled the same as a coil. So let’s call this
auxiliary contact QO and connect it across the BO pushbutton contact from our earlier example.

Let’s take a look at it:

B0 a1

= | (o
=0
_|

As before, when the user presses pushbutton BO, coil Q0 comes on. And when coil Q0 comes on, switch
QO comes on. Now the interesting part happens. When the user releases pushbutton BO, coil Q0 does
not stop as it did before. This is because switch QO of this circuit is effectively holding the user’s
pushbutton pressed. So we see that switch QO is still holding coil QO on after the start pushbutton
has been released.

This type of contact on a coil or relay, used in this way, is often called a holding contact, because it
holds on the coil that it is associated with. It is also occasionally called a seal contact, and when it is
active it is said that the circuit is sealed.

Unfortunately, our circuit so far has little practical use, because, although we have an on or start
button in the form of pushbutton BO, we have no way to shut this circuit off once it is started. But
that’s easy to fix. All we need is a way to interrupt the power to coil Q0. So let’s add a normally-closed
(NC) pushbutton just ahead of coil QO.

Here’s how that would look:

Bl @0

B0
= | N
i
_|

Now we have added off or stop pushbutton B1. If the user pushes it, contact from the rung to the coil is
broken. When coil QO loses power, it drops to O/off/false. When coil QO goes off, so does switch QO, so
the holding contact is broken, or the circuit is unsealed. When the user releases the stop pushbutton,
contact is restored from the rung to coil QO, but the rung has gone dead, so the coil doesn’t come
back on.

This circuit has been used for decades on virtually every machine that has a three-phase motor con-
trolled by a contactor, so it was inevitable that it would be adopted by ladder/PLC programmers. It is
also a very safe circuit, in that if start and stop are both pressed at the same time, the stop function
always wins.

This is the basic building block of much of ladder programming, so if you are new to it, you would do
well to make sure that you understand how this circuit operates.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 407 / 1322

8.2 ClassicLadder Programming

8.2.1 Ladder Concepts

ClassicLadder is a type of programming language originally implemented on industrial PLCs (it’s
called Ladder Programming). It is based on the concept of relay contacts and coils, and can be used
to construct logic checks and functions in a manner that is familiar to many systems integrators.
Ladder consists of rungs that may have branches and resembles an electrical circuit. It is important
to know how ladder programs are evaluated when running.

It seems natural that each line would be evaluated left to right, then the next line down, etc., but it
doesn’t work this way in ladder logic. Ladder logic scans the ladder rungs 3 times to change the state
of the outputs.

e the inputs are read and updated
* the logic is figured out

¢ the outputs are set

This can be confusing at first if the output of one line is read by the input of a another rung. There
will be one scan before the second input becomes true after the output is set.

Another gotcha with ladder programming is the “Last One Wins” rule. If you have the same output in
different locations of your ladder the state of the last one will be what the output is set to.

8.2.2 Languages

The most common language used when working with ClassicLadder is ladder. ClassicLadder also
supports Sequential Function Chart (Grafcet).

8.2.3 Components
There are two components to ClassicLadder.

* The realtime module classicladder rt

* The non-realtime module (including a GUI) classicladder

8.2.3.1 Files

Typically ClassicLadder components are placed in the custom.hal file if your working from a StepConf
generated configuration. These must not be placed in the custom postgui.hal file or the Ladder Editor
menu will be grayed out.

Note
Ladder files (.clp) must not contain any blank spaces in the name.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 408 /1322

8.2.3.2 Realtime Module

Loading the ClassicLadder real time module (classicladder rt) is possible from a HAL file, or directly
using a halcmd instruction. The first line loads real time the ClassicLadder module. The second line
adds the function classicladder.0.refresh to the servo thread. This line makes ClassicLadder update
at the servo thread rate.

loadrt classicladder rt
addf classicladder.0.refresh servo-thread

The speed of the thread that ClassicLadder is running in directly affects the responsiveness to inputs
and outputs. If you can turn a switch on and off faster than ClassicLadder can notice it then you may
need to speed up the thread. The fastest that ClassicLadder can update the rungs is one millisecond.
You can put it in a faster thread but it will not update any faster. If you put it in a slower than one
millisecond thread then ClassicLadder will update the rungs slower. The current scan time will be
displayed on the section display, it is rounded to microseconds. If the scan time is longer than one
millisecond you may want to shorten the ladder or put it in a slower thread.

8.2.3.3 Variables

It is possible to configure the number of each type of ladder object while loading the ClassicLadder
real time module. If you do not configure the number of ladder objects ClassicLadder will use the
default values.

Table 8.1: Default Variable Count

Object Name Variable Name Default
Value
Number of rungs (numRungs) 100
Number of bits (numBits) 20
Number of word variables (numWords) 20
Number of timers (numTimers) 10
Number of timers IEC (numTimerslec) 10
Number of monostables (numMonostables) 10
Number of counters (numCounters) 10
Number of HAL inputs bit pins (numPhysInputs) 15
Number of HAL output bit pins (numPhysOutputs) 15
Number of arithmetic expressions (numArithmExpr) 50
Number of Sections (numSections) 10
Number of Symbols (numSymbols) Auto
Number of S32 inputs (numS32in) 10
Number of S32 outputs (numS32out) 10
Number of Float inputs (numFloatIn) 10
Number of Float outputs (numFloatOut) 10

Objects of most interest are numPhysInputs, numPhysOutputs, numS32in, and numS32out.

Changing these numbers will change the number of HAL bit pins available. numPhysInputs and
numPhysOutputs control how many HAL bit (on/off) pins are available. numS32in and numS32out
control how many HAL signed integers (+- integer range) pins are available.

For example (you don’t need all of these to change just a few):

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 409 /1322

loadrt classicladder rt numRungs=12 numBits=100 numWords=10
numTimers=10 numMonostables=10 numCounters=10 numPhysInputs=10
numPhysOutputs=10 numArithmExpr=100 numSections=4 numSymbols=200
numS32in=5 numS32out=5

To load the default number of objects:

loadrt classicladder rt

8.2.4 Loading the ClassicLadder non-realtime module

ClassicLadder HAL commands must executed before the GUI loads or the menu item Ladder Editor
will not function. If you used the Stepper Config Wizard place any ClassicLadder HAL commands in
the custom.hal file.

To load the non-realtime module:

loadusr classicladder

Note
Only one .clp file can be loaded. If you need to divide your ladder then use sections.

To load a ladder file:

loadusr classicladder myladder.clp
ClassicLadder Loading Options

* --nogui - (loads without the ladder editor) normally used after debugging is finished.
e --modbus_port=port - (loads the modbus port number)

e --modmaster - (initializes MODBUS master) should load the ladder program at the same time or the
TCP is default port.

* --modslave - (initializes MODBUS slave) only TCP

To use ClassicLadder with HAL without EMC:

loadusr -w classicladder

The -w tells HAL not to close down the HAL environment until ClassicLadder is finished.

If you first load ladder program with the --nogui option then load ClassicLadder again with no options
the GUI will display the last loaded ladder program.

In AXIS you can load the GUI from File/Ladder Editor...

8.2.5 ClassicLadder GUI

If you load ClassicLadder with the GUI it will display two windows: Section display, and section man-
ager.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 410/1322

8.2.5.1 Sections Manager

When you first start up ClassicLadder you get an empty Sections Manager window.

Sections Manager

Section Name Language Type debug
Ladder Main F=0, L=0, P=

|Add section || Delete section || Mowve Up || Mowve Down |

Figure 8.1: Sections Manager Default Window

This window allows you to name, create or delete sections and choose what language that section
uses. This is also how you name a subroutine for call coils.

8.2.5.2 Section Display

When you first start up ClassicLadder you get an empty Section Display window. Displayed is one
empty rung.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 411/1322

e

- Display of custom.clp =@ &)
Display symbols

L
b
Sl

GUI reloaded with existing ladder program

| Mew || Load ” Save || Save As || Reset || Stop ” Vars |

| Editor || Symbols ” Cnnﬁ.g ” Preview || Print ” About || Quit |

Figure 8.2: Section Display Default Window

Most of the buttons are self explanatory:

The Vars button is for looking at variables, toggle it to display one, the other, both, then none of the
windows.

The Config button is used for modbus and shows the max number of ladder elements that was loaded
with the real time module.

The Symbols button will display an editable list of symbols for the variables (hint you can name the
inputs, outputs, coils etc).

The Quit button will shut down the non-realtime program, i.e. Modbus and the display. The realtime
ladder program will still run in the background.

The check box at the top right allows you to select whether variable names or symbol names are
displayed

You might notice that there is a line under the ladder program display that reads ”"Project failed to
load...”. That is the status bar that gives you info about elements of the ladder program that you
click on in the display window. This status line will now display HAL signal names for variables %I,
%Q and the first %W (in an equation). You might see some funny labels, such as (103) in the rungs.
This is displayed (on purpose) because of an old bug- when erasing elements older versions sometimes
didn’t erase the object with the right code. You might have noticed that the long horizontal connection
button sometimes did not work in the older versions. This was because it looked for the free code but
found something else. The number in the brackets is the unrecognized code. The ladder program will
still work properly, to fix it erase the codes with the editor and save the program.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 412 /1322

8.2.5.3 The Variable Windows

This are two variable windows: the Bit Status Window (boolean) and the Watch Window (signed in-
teger). The Vars button is in the Section Display Window, toggle the Vars button to display one, the
other, both, then none of the variable windows.

" Bit status wil (=) =) %]
5 Jo o |
[]%B5 [] %I0 [] %QO0
%B6 [| %Il [%01
[%B7 [| %2 [| %02
[]%B8 [] %I3 [] %Q3
L] %B9 [] %14 [] %04
[] %B10 [%IS [] %Q5
[] %Bl1ll1 [| %l6 [] %Q6
(] %B12 [| %I7 [] %Q7
[%B13[] %I8 [] %Q8
(] %Bl1l4 | %I9 [] %0Q9
[] %B15 [| %110 [| %Q10
[%B16 [%I11[] %Q11
(] %B17 [| %l12 [] %Q12
[] %B18 [| %I13 [| %Q13
[%B19 [%I14[] %Q14

Figure 8.3: Bit Status Window

The Bit Status Window displays some of the boolean (on/off) variable data. Notice all variables start
with the % sign. The %I variables represent HAL input bit pins. The %Q represents the relay coil
and HAL output bit pins. The %B represents an internal relay coil or internal contact. The three edit
areas at the top allow you to select what 15 variables will be displayed in each column. For instance,
if the %B Variable column were 15 entries high, and you entered 5 at the top of the column, variables
%B5 to %B19 would be displayed. The check boxes allow you to set and unset %B variables manually
as long as the ladder program isn’t setting them as outputs. Any Bits that are set as outputs by the
program when ClassicLadder is running can not be changed and will be displayed as checked if on
and unchecked if off.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 413 /1322

Memory YaW0O 0 Dec | w
Bit In Pin %all 0 Dec | w

Bit Out Pin (%02 0 Dec | v
532in Pin YalW3 0 Dec | w
S3Z2out Pin |%QW4 0 Dec | v
Bit Memory |%BS 0 Dec | w
IEC Timer %TMO.G 0 Dec | v
IEC Timer YaTMO W 0 Dec | w
IEC Timer Y% TMO.P 10 Dec | w
Counter %C0.D 0 Dec | w
Counter % CO0.E o Dec | w
Counter %CO.F 0 Dec | w
Counter Y CON o Dec | w
Counter Y%CO0.P 0 Dec | w
YED o Dec | w

Figure 8.4: Watch Window

The Watch Window displays variable status. The edit box beside it is the number stored in the variable
and the drop-down box beside that allow you to choose whether the number to be displayed in hex,
decimal or binary. If there are symbol names defined in the symbols window for the word variables
showing and the display symbols checkbox is checked in the section display window, symbol names
will be displayed. To change the variable displayed, type the variable number, e.g. %W2 (if the
display symbols check box is not checked) or type the symbol name (if the display symbols checkbox
is checked) over an existing variable number/name and press the Enter Key.

LinuxCNC V2.10.0-pre0-5497-g4a6916ab37 414 /1322

8.2.5.4 Symbol Window

‘= names EEE)
variable Symbol name HAL signal/Comment
%al0 %al0 no signal connected
%all %all no signal connected
%l2 %l2 no signal connected
%13 %13 no signal connected
%4 %4 no signal connected
%15 %15 no signal connected
%al6 %al6 no signal connected
%l7 %l7 no signal connected
%18 %18 no signal connected
%419 %419 no signal connected [+

Figure 8.5: Symbol Names window

This is a list of symbol names to use instead of variable names to be displayed in the section window
when the display symbols check box is checked. You add the variable name (remember the % symbol
and capital letters), symbol name. If the variable can have a HAL signal connected to it (%I, %Q, and
%W-if you have loaded s32 pin with the real time module) then the comment section will show the
current HAL signal name or lack thereof. Symbol names should be kept short to display better. Keep