LINUXCNC(1) LinuxCNC Documentation LINUXCNC(1)

NAME
linuxcne — LinuxCNC (The Enhanced Machine Controller)

SYNOPSIS
linuxene [-4] [-v] [-d] [-7] [-1] [-k] [—t <tpmodulename> [parameters]] [-m <homemodulename>
[parameters]] [-H <dirname>] [INI file]

DESCRIPTION
linuxenc is used to start LinuxCNC (The Enhanced Machine Controller). It starts the realtime system and
then initializes a number of LinuxCNC components (I0, Motion, GUI, HAL, etc). The most important
parameter is INI file, which specifies the configuration name you would like to run. If INI file is not
specified, the linuxcnc script presents a graphical wizard to let you choose one.

OPTIONS
-h
Shows the help

Be a little bit verbose. This causes the script to print information as it works.

Print lots of debug information. All executed commands are echoed to the screen. This mode is useful
when something is not working as it should.

-r
Disable redirection of stdout and stderr to “/linuxcnc_print.txt and /linuxcnc_debug.txt when stdin is
not a tty. Used when running linuxcnc tests non—interactively.

Use the last—used INI file without prompting. This is often a good choice for a shortcut command or
startup item.

-k
Continue in the presence of errors in HAL files

—t <tpmodulename> [parameters]
Specify custom trajectory_planning_module overrides optional INI setting [TRAJ][TPMOD

—m <homemodulename> [parameters]
Specify custom homing_module overrides optional INI setting [EMCMOT]HOMEMOD

-H <dirname>
Search dirname for HAL files before searching INI directory and system library: $HALLIB_DIR

<INIFILE>
The INI file is the main piece of a LinuxCNC configuration. It is not the entire configuration; there are
various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the most
important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tells linuxene which other files to load and use.

There are several ways to specify which config to use:

Specify the absolute path to an INI, e.g., linuxenc /usr/local/linuxcnc/configs/sim/sim.ini

Specify a relative path from the current directory, e.g. linuxcenc configs/sim/sim.ini

Otherwise, in the case where the INIFILE is not specified, the behavior will depend on whether you
configured LinuxCNC with ——enable—run—in—place. If so, the LinuxCNC config chooser will search only
the configs directory in your source tree. If not (or if you are using a packaged version of LinuxCNC), it

may search several directories. The config chooser is currently set to search the path:

“/linuxcnc/configs:/var/lib/buildbot/workers/docs—testing/20—docs/build/configs

LinuxCNC 01/04/2026 1

LINUXCNC(1) LinuxCNC Documentation LINUXCNC(1)

EXAMPLES

linuxcne
linuxenc configs/sim/sim.ini

linuxenc /etc/linuxcnc/sample—configs/stepper/stepper_mm.ini

SEE ALSO
halemd(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

Web: https://www.linuxcnc.org/

User forum: https://forum.linuxcnc.org/

BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC Enhanced Machine Controller project.

REPORTING BUGS
Please report any bugs at https://github.com/LinuxCNC/linuxcnc.

COPYRIGHT
Copyright © 2003 The LinuxCNC authors.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2 01/04/2026 LinuxCNC

S5AXISGUI(1) LinuxCNC Documentation SAXISGUI(1)

NAME
Saxisgui — Vismach Virtual Machine GUI

DESCRIPTION
Saxisgui is one of the sample Vismach GUIs for LinuxCNC.

SEE ALSO

linuxcne(1)

See the main LinuxCNC documentation for more details at
https://linuxcnc.org/docs/html/gui/vismach.html.

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 3

AXIS-REMOTE(1) LinuxCNC Documentation

NAME

axis-remote — AXIS Remote Interface

SYNOPSIS
axis—remote OPTIONS|FILENAME

DESCRIPTION

axis—remote is a small script that triggers commands in a running AXIS GUIL

Use axis—remote ——help for further information.

OPTIONS
——ping, -p
Check whether AXIS is running.

——reload, -r
Make AXIS reload the currently loaded file.

——clear, —c
Make AXIS clear the backplot.
——quit, —q
Make AXIS quit.
——help, -h, -?
Display a list of valid parameters for axis—remote.

——mdi COMMAND, -m COMMAND
Run the MDI command COMMAND.

FILENAME
Load the G—code file FILENAME.

SEE ALSO

axis(1)

AXIS-REMOTE(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,

found at /usr/share/doc/linuxcnc/.

BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2007 Alex Joni.

This is free software; see the source for copying conditions. There is NO warranty; not even for

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

4 01/04/2026

LinuxCNC

AXIS(1) LinuxCNC Documentation AXIS(1)

NAME
axis — AXIS LinuxCNC Graphical User Interface
SYNOPSIS
axis —ini INIFILE
DESCRIPTION
axis is one of the Graphical User Interfaces (GUI) for LinuxCNC. It gets run by the runscript usually.
OPTIONS
INIFILE
The INI file is the main piece of an LinuxCNC configuration. It is not the entire configuration; there
are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2007 Alex Joni.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 5

DEBUGLEVEL(1) LinuxCNC Documentation DEBUGLEVEL(1)

NAME
debuglevel — sets the debug level for the non—realtime part of LinuxCNC

SYNOPSIS
debuglevel —ini INIFILE

DESCRIPTION
debuglevel displays a checkbox GUI to select the current debug level of some parts of LinuxCNC.

SEE ALSO

halemd(1) — debug subcommand linuxenc(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

6 01/04/2026 LinuxCNC

ELBPCOM(1) LinuxCNC Documentation ELBPCOM (1)

NAME

elbpcom — Communicate with Mesa ethernet cards

SYNOPSIS
Common options
elbpcom [——ip=IP] [-—port=PORT] [——timeout=TIMEOUT] [-—space=MEMSPACE]
[——size=TRANSFER_SIZE]

Reading data
elbpcom [common options] [-—info] ——address=ADDRESS ——read=LENGTH

Writing data
elbpcom [common options] ——address=ADDRESS ——write=HEXDATA

Read and decode memory space info area
elbpcom [——space=MEMSPACE] ——read—info

Sending arbitrary packets
elbpcom [common options] HEXDATA

DESCRIPTION

Read or write data from a Mesa ethernet card that uses the LBP16 protocol, such as the 7180. This can be
useful for performing certain low—level tasks.

For more information about the meaning of each address space, see the card documentation. Incorrect use
of this utility can have negative effects such as changing the board’s IP address or even corrupting the
FPGA bitfile in the EEPROM. For some tasks, such as updating FPGA bitfiles and setting IP addresses,
mesaflash(1) is a more appropriate tool.

If not specified, the default values are
——ip=192.168.1.121 ——port=27181 ——timeout=.2 ——space=0 ——size=0

If the ——size argument TRANSFER_SIZE is 0, elbpcom will look up the preferred transfer size of the space
in the space’s info area.

This example demonstrates reading the HOSTMOT?2 identifying string from the IDROM in space O:

$ elbpcom ——address 0x104 ——read 8
> 82420401
< 484£53544d4£5432

HOSTMOT?2

First the request is shown in hex. Then the response (if any) is shown in hex. Finally, the response is shown
in ASCII, with "." replacing any non—ASCII characters. This is similar to the following invocations of
mesaflash:

$ /mesaflash ——device 7i80 ——rpo 0x104
54534F48
$ /mesaflash ——device 7i80 —rpo 0x108
32544F4D

Notice its different treatment of byte order.

SEE ALSO
mesaflash(1), hostmot2(9), hm2_eth(9), Mesa’s documentation for the Anything I/O boards.

LinuxCNC 01/04/2026 7

EMCCALIB(1) LinuxCNC Documentation EMCCALIB(1)

NAME

emccalib — Adjust ini tuning variables on the fly with save option

SYNOPSIS

emccalib.tcl [options]

DESCRIPTION
The Calibration assistant. This tool Reads the HAL file and for every sefp that uses a variable from the INI
file that is in an [AXIS_L], [JOINT_N], [SPINDLE_S], or [TUNE] section it creates an entry that can be
edited and tested.

USAGE

The calibration/tuning tool supports the following stanzas:
[JOINT_N]J, [AXIS_L], [SPINDLE_S], [TUNE]

where N is a joint number (0 .. ([KINS]JJOINTS-1)), L is an axis coordinate letter (X,Y,Z,A,B,C,U,V,W),
and S is a spindle number (0 .. 9).
Note

The number of allowed spindles is 8 but legacy configurations may include a stanza [SPINDLE_9]
unrelated to an actual spindle number.

Note

The [TUNE] stanza may be used for specifying tunable items not relevant to the other supported
stanzas.

EXIT STATUS

Return exit code 1 if the ini file is incompatible with the current version of emccalib.

SEE ALSO

linuxcne(1)

AUTHOR
Original version by Petter Reinholdtsen as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

COPYRIGHT
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

8 01/04/2026 LinuxCNC

GLADEVCP(1) LinuxCNC Documentation GLADEVCP(1)

NAME
gladevcp — Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets
SYNOPSIS
gladevep [-g WxH+X+Y] [-¢ component—name] [—u handler] [-U useroption] [-H HAL—file] [-d]
myfile.ui
OPTIONS

-g WxH+X+Y
This sets the initial geometry of the root window. Use WxH for just size, +X+Y for just position, or
WxH+X+Y for both. Size / position use pixel units. Position is referenced from top left.

—c component—name
Use component—name as the HAL component name. If the component name is not specified, the
basename of the Ul file is used.

—u handler
Instructs GladeVCP to inspect the Python script handler for event handlers, and connect them to
signals in the UI file.

U useroption
GladeVCP collects all useroption strings and passes them to the handler init() method as a list of
strings without further inspection.

—x XID
Reparent GladeVCP into an existing window XID instead of creating a new top level window.

—H halfile
GladeVCP runs HAL file — a list of HAL commands — by executing halcmd —c filename after the HAL
component is finalized.
—d
enable debug output.
—R gtkrcfile
explicitly load a gtkrc file.

—t THEME
set gtk theme. Default is the system theme. Different panels can have different themes.

-m MAXIMUM
force panel window to maximize. Together with the —g geometry option one can move the panel to a
second monitor and force it to use all of the screen

-R
explicitly deactivate workaround for a GTK bug which makes matches of widget and widget_class
matches in GTK theme and gtkrc files fail. Normally not needed.

SEE ALSO
GladeVCP in the LinuxCNC documentation for a description of GladeVCP’s capabilities and the associated
HAL widget set, along with examples.

LinuxCNC 01/04/2026 9

GLADEVCP_DEMO(1) LinuxCNC Documentation GLADEVCP_DEMO(1)

NAME

gladevcp_demo — used by sample configs to deonstrate Glade Virtual_demo

SYNOPSIS

gladevcp_demo Control Panels

DESCRIPTION
gladevep_demo is a sample GladeVCP handler

SEE ALSO
linuxcnc(1), https://linuxcnc.org/docs/html/gui/gladevep.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

10 01/04/2026 LinuxCNC

GMOCCAPY(1) LinuxCNC Documentation GMOCCAPY(1)

NAME
gmoccapy — TOUCHY LinuxCNC Graphical User Interface
SYNOPSIS
gmoccapy —ini <INI file>
DESCRIPTION
GMOCCAPY is one of the Graphical User Interfaces (GUI) for LinuxCNC. It gets run by the runscript
usually.
OPTIONS
INI file
The INI file is the main piece of an LinuxCNC configuration. It is not the entire configuration; there
are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 11

GREMLIN_VIEW(1)

NAME

gremlin_view — G—code graphical preview

SYNOPSIS

gremlin_view

DESCRIPTION

gremlin_view is a Python wrapper for the gremlin G—code graphical preview.

LinuxCNC Documentation

GREMLIN_VIEW (1)

PGremlinView for gremlin with buttons for simpler embedding Standalone functionality if linuxcnc
running A default ui file (gremlin_view.ui) is provided for a default button arrangement but a user may

provide their own by supplying the glade_file argument. The following objects are mandatory:

gremlin_view_window
toplevel window

gremlin_view_hal_gremlin
hal_gremlin

gremlin_view_box
HBox or VBox containing hal_gremlin

Optional radiobutton group names:

select_p_view
select_x_view
select_y_view
select_z_view

select_z2 view

Optional checkbuttons names:

Callbacks are provided for the following button actions:

12

enable_dro
show_machine_speed
show_distance_to_go
show_limits
show_extents
show_tool

show_metric

on_clear_live_plotter_clicked
on_enable_dro_clicked
on_zoomin_pressed
on_zoomout_pressed
on_pan_x_minus_pressed
on_pan_x_plus_pressed
on_pan_y_minus_pressed

on_pan_y_plus_pressed

01/04/2026

LinuxCNC

GREMLIN_VIEW (1) LinuxCNC Documentation GREMLIN_VIEW (1)

¢ on_show_tool_clicked

¢ on_show_metric_clicked

¢ on_show_extents_clicked

* on_select_p_view_clicked

¢ on_select_x_view_clicked

* on_select_y_view_clicked

e on_select_z view_clicked

e on_select_z2 view_clicked

* on_show_distance_to_go_clicked
* on_show_machine_speed_clicked
¢ on_show_limits_clicked

SEE ALSO

linuxcnc(1), https://wiki.linuxcnc.org/cgi—bin/wiki.pl?Gremlin

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 13

GS2_VFD(1) LinuxCNC Documentation GS2_VFD(1)

NAME
gs2_vfd — HAL non-realtime component for Automation Direct GS2 VFDs

SYNOPSIS
gs2_vfd [OPTIONS]

DESCRIPTION
This manual page explains the gs2_vfd component. This component reads and writes to the GS2 via a
modbus connection.

gs2_vfd is for use with LinuxCNC.

OPTIONS
—b, ——bits n
Set number of data bits to n, where n must be from 5 to 8 inclusive (default 8).

—d, ——device path
Set the path to the file representing the serial device to use (default /dev/ttyS0).

—v, —verbose
Turn on verbose mode.

—g, ——debug
Turn on debug messages. Note that if there are serial errors, this may become annoying. Debug mode
will cause all modbus messages to be printed in hex on the terminal.

—n, ——hame string
Set the name of the HAL module. The HAL comp name will be set to string, and all pin and parameter
names will begin with string (default gs2_vfd).

—p, ——parity [even,odd,none]
Set serial parity to even, odd, or none (default odd).

-1, ——rate n
Set baud rate to n. It is an error if the rate is not one of the following: 110, 300, 600, 1200, 2400, 4800,
9600, 19200, 38400, 57600, 115200 (default 38400).

—s, ——stopbits [1,2]
Set serial stop bits to 1 or 2 (default 1).

—t, ——target n
Set MODBUS target (slave) number. This must match the device number you set on the GS2 (default
1).

—A, ——accel-seconds n
Seconds to accelerate the spindle from 0 to Max RPM (default 10.0).

—-D, ——decel-seconds n
Seconds to decelerate the spindle from Max RPM to 0. If set to 0.0 the spindle will be allowed to coast
to a stop without controlled deceleration (default 0.0).

—R, —braking-resistor
This argument should be used when a braking resistor is installed on the GS2 VFD (see Appendix A
of the GS2 manual). It disables deceleration over—voltage stall prevention (see GS2 modbus Parameter
6.05), allowing the VFD to keep braking even in situations where the motor is regenerating high
voltage. The regenerated voltage gets safely dumped into the braking resistor.

PINS
<name>.DC-bus—volts (float, out)
from the VFD

<name>.at—speed (bit, out)
when drive is at commanded speed

<name>.err—reset (bit, in)

14 01/04/2026 LinuxCNC

GS2_VFD(1) LinuxCNC Documentation GS2_VFD(1)

reset errors sent to VFD

<name>.firmware—revision (s32, out)
from the VFD

<name>.frequency—command (float, out)
from the VFD

<name>.frequency—out (float, out)
from the VFD

<name>.is—stopped (bit, out)
when the VFD reports 0 Hz output

<name>.load—percentage (float, out)
from the VFD

<name>.motor—RPM (float, out)
from the VFD

<name>.output—current (float, out)
from the VFD

<name>.output—voltage (float, out)
from the VFD

<name>.power—factor (float, out)
from the VFD

<name>.scale—frequency (float, out)
from the VFD

<name>.speed—command (float, in)
speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in the
VED.

<name>.spindle—fwd (bit, in)

1 for FWD and O for REV sent to VFD
<name>.spindle—on (bit, in)

1 for ON and O for OFF sent to VFD, only on when running
<name>.spindle—rev (bit, in)

1 for ON and 0 for OFF, only on when running

<name>.status—1 (s32, out)
Drive Status of the VFD (see the GS2 manual)

<name>.status—2 (s32, out)
Drive Status of the VFD (see the GS2 manual) Note that the value is a sum of all the bits that are on.
So a 163 which means the drive is in the run mode is the sum of 3 (run) + 32 (freq set by serial) + 128
(operation set by serial).

PARAMETERS
<name>.error—count (s32, RW), <name>.loop—time (float, RW)
how often the modbus is polled (default 0.1)

<name>.nameplate-HZ (float, RW)
Nameplate Hz of motor (default 60)

<name>.nameplate—RPM (float, RW)
Nameplate RPM of motor (default 1730)

<name>.retval (s32, RW)
the return value of an error in HAL

<name>.tolerance (float, RW)

LinuxCNC 01/04/2026 15

GS2_VFD(1) LinuxCNC Documentation GS2_VFD(1)

speed tolerance (default 0.01)

<name>.ack—delay (s32, RW)
number of read/write cycles before checking at—speed (default 2)

SEE ALSO
GS2 Driver in the LinuxCNC documentation for a full description of the GS2 syntax

GS2 Examples in the LinuxCNC documentation for examples using the GS2 component

AUTHOR

John Thornton

LICENSE
GPL

16 01/04/2026 LinuxCNC

GSCREEN(1) LinuxCNC Documentation GSCREEN(1)

NAME
gscreen — TOUCHY LinuxCNC Graphical User Interface

SYNOPSIS
gscreen —ini INIFILE

DESCRIPTION
gscreen is one of the Graphical User Interfaces (GUI) for LinuxCNC. It gets run by the runscript usually.

OPTIONS
INIFILE
The INI-file is the main piece of an LinuxCNC configuration. It is not the entire configuration; there
are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tells LinuxCNC which other files to load and use.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 17

HAL-HISTOGRAM(1) LinuxCNC Documentation HAL-HISTOGRAM (1)

NAME

hal-histogram — plots the value of a HAL pin as a histogram

SYNOPSIS

hal-histogram

DESCRIPTION
hal-histogram represents the values of a HAL pin graphically.

Details: https://linuxcnc.org/docs/html/hal/tools.html#_hal_histogram
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

18 01/04/2026 LinuxCNC

HAL_INPUT (1) LinuxCNC Documentation HAL_INPUT (1)

NAME

hal_input — control HAL pins with any Linux input device, including USB HID devices
SYNOPSIS

loadusr hal_input [-KRAL] inputspec ...
DESCRIPTION

hal_input is an interface between HAL and any Linux input device, including USB HID devices. For each
device named, hal_input creates pins corresponding to its keys, absolute axes, and LEDs. At a fixed rate of
approximately 10 ms, it synchronizes the device and the HAL pins.

INPUT SPECIFICATION

The inputspec may be in one of several forms:

A string S
A substring or shell—-style pattern match will be tested against the "name" of the device, the "phys"
(which gives information about how it is connected), and the "id", which is a string of the form
"Bus=... Vendor=... Product=... Version=...". You can view the name, phys, and id of attached devices
by executing 'less /proc/bus/input/devices'. Examples:

* SpaceBall
¢ "Vendor=001f Product=0001"
e serio*/inputQ

A number N
This opens /dev/input/eventN. Except for devices that are always attached to the system, this number
may change over reboots or when the device is removed. For this reason, using an integer is not
recommended.

When several devices are identified by the same string, add ":N" where N is the index of the desired device.
For example, if Mouse matches input3 and inputl0, then Mouse and Mouse:0 select input3. Specifying
mouse:1 selects input10.

For devices that appear as multiple entries in /dev/input, these indices are likely to stay the same every time.
For multiple identical devices, these indices are likely to depend on the insertion order, but stay the same
across reboots as long as the devices are not moved to different ports or unplugged while the machine is
booted.

If the first character of the inputspec is a "+", then hal_input requests exclusive access to the device. The
first device matching an inputspec is used. Any number of inputspecs may be used.

A subset option may precede each inputspec. The subset option begins with a dash. Each letter in the subset
option specifies a device feature to include. Features that are not specified are excluded. For instance, to
export keyboard LEDs to HAL without exporting keys, use

hal_input —L keyboard ...

DEVICE FEATURES SUPPORTED
 EV_KEY (buttons and keys). Subset —K

* EV_ABS (absolute analog inputs). Subset —A
e EV_REL (relative analog inputs). Subset —R
e EV_LED (LED outputs). Subset —L

HAL PINS AND PARAMETERS

For buttons
input.N.btn—name bit out

input.N.btn—name—not bit out

LinuxCNC 01/04/2026 19

HAL_INPUT (1) LinuxCNC Documentation HAL_INPUT (1)

20

Created for each button on the device.

For keys
input.N.key—-name

inputN.key—name—not
Created for each key on the device.

For absolute axes
input.N.abs—name—counts s32 out

input.N.abs—name—position float out
input.N.abs—name—scale parameter float rw
input.N.abs—name—offset parameter float rw
input.N.abs—name—fuzz parameter s32 rw
input.N.abs—name—flat parameter s32 rw

input.N.abs—name—min parameter s32 r

input.N.abs—name—max parameter s32 r
Created for each absolute axis on the device. Device positions closer than flat to offset are reported as
offset in counts, and counts does not change until the device position changes by at least fuzz. The
position is computed as position = (counts — offset) / scale. The default value of scale and offset map
the range of the axis reported by the operating system to [—1,1]. The default values of fuzz and flat are
those reported by the operating system. The values of min and max are those reported by the
operating system.

For relative axes
input.N.rel-name—counts s32 out

input.N.rel-name—position float out
input.N.rel-name—-reset bit in
input.N.rel-name—scale parameter float rw
input.N.rel-name—absolute parameter s32 rw

input.N.rel-name—precision parameter s32 rw

input.N.rel-name-last parameter s32 rw

Created for each relative axis on the device. As long as reset is true, counts is reset to zero regardless
of any past or current axis movement. Otherwise, counts increases or decreases according to the
motion of the axis. counts is divided by position—scale to give position. The default value of position
is 1. There are some devices, notably scroll wheels, which return signed values with less resolution
than 32 bits. The default value of precision is 32. precision can be set to 8 for a device that returns
signed 8 bit values, or any other value from 1 to 32. absolute, when set true, ignores duplicate events
with the same value. This allows for devices that repeat events without any user action to work
correctly. last shows the most recent count value returned by the device, and is used in the
implementation of absolute.

For LEDs
input.N.led—name bit out

input.N.led—name—invert parameter bit rw

01/04/2026 LinuxCNC

HAL_INPUT (1) LinuxCNC Documentation HAL_INPUT (1)

Created for each LED on the device.
PERMISSIONS AND UDEV

By default, the input devices may not be accessible to regular users — hal_input requires read—write
access, even if the device has no outputs.

Different versions of udev have slightly different, incompatible syntaxes. For this reason, it is not possible
for this manual page to give an accurate example. The udev(7) manual page documents the syntax used on
your Linux distribution. To view it in a terminal, the command is man 7 udev.

BUGS
The initial state of keys, buttons, and absolute axes are erroneously reported as FALSE or O until an event is
received for that key, button, or axis.

SEE ALSO
udev(8), udev(7)

LinuxCNC 01/04/2026 21

HAL_MANUALTOOLCHANGE(1) LinuxCNC Documentation HAL_MANUALTOOLCHANGE(1)

NAME

hal_manualtoolchange — HAL non-realtime component to enable manual tool changes.

SYNOPSIS

loadusr hal_manualtoolchange

DESCRIPTION

hal_manualtoolchange is a LinuxCNC non-realtime component that allows users with machines lacking
automatic tool changers to make manual tool changes. In use when a M6 tool change is encountered, the
motion component will stop the spindle and pause the program. The hal_manualtoolchange component will
then receive a signal from the motion component causing it to display a tool change window prompting the
user which tool number to load based on the last T— number programmed. The dialog will stay active until
the "continue" button is pressed. When the "continue" button is pressed, hal_manualtoolchange will then
signal the motion component that the tool change is complete thus allowing motion to turn the spindle back
on and resume program execution.

Additionally, the hal_manualtoolchange component includes a hal pin for a button that can be connected to
a physical button to complete the tool change and remove the window prompt
(hal_manualtoolchange.change_button).

hal_manualtoolchange can be used even when AXIS is not used as the GUI. This component is most useful
if you have presettable tools and you use the tool table.

PINS
hal_manualtoolchange.number s32 in
Receives last programmed T— number.
hal_manualtoolchange.change bit in
Receives signal to do tool change.
hal_manualtoolchange.changed bit out
Signifies that the tool change is complete.
hal_manualtoolchange.change_button bit in
Pin to allow an external switch to signify that the tool change is complete.
USAGE
Normal usage is to load the component in your HAL file and net the appropriate pins from the motion and
io components. The following lines are typical in a HAL file when using the hal_manualtoolchange
non-realtime component.
loadusr —W hal_manualtoolchange
This will load the hal_manualtoolchange non—realtime component waiting for the component to be
ready before continuing.
net tool-change iocontrol.0.tool-change => hal_manualtoolchange.change
When an M6 code is run, motion sets iocontrol.0.tool—change to high indicating a tool change. This
pin should be netted to hal_manualtoolchange.change. This causes the Tool change dialog to be
displayed on screen and wait for the user to either click the continue button on the dialog or press an
externally connected button.
net tool-changed iocontrol.0.tool-changed <= hal_manualtoolchange.changed
When the Tool change dialog’s continue button is pressed, it will set the
hal_manualtoolchange.changed pin to high, this should be netted to the iocontrol.0.tool—changed pin,
indicating to the motion controller that the tool change has been completed and can continue with the
execution of the G—code program.
net tool-number iocontrol.).tool-prep—number => hal_manualtoolchange.number
When a 7- command is executed in a G—code program, the tool number will held in the
iocontrol.0.tool—prep—number. This pin should be netted to hal_manualtoolchange.number. The
value of this pin, the tool number is displayed in the tool change dialog to let the user know which tool
22 01/04/2026 LinuxCNC

HAL_MANUALTOOLCHANGE(1) LinuxCNC Documentation HAL_MANUALTOOLCHANGE(1)

should be loaded.

net tool-prepare—loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared
The iocontrol.0.tool—prepare pin will go true when a Tn tool prepare is requested. Since there is not
automated tool changer this pin should be netted to iocontrol.0.tool—prepared to indocate that the tool
has been prepared.

If you wish to use an external button to signal the hal_manualtoolchange component that the tool change is
complete simply bring the button into HAL (via a parport input pin or a hostmot2 gpio input or similar),
and wire it directly to the hal_manualtoolchange.change_button pin. For Example:

net tool-changed—btn hal_manualtoolchange.change_button <= parport.0.pin—15-in

SEE ALSO

motion(1), iocontrol(1), halemd(1).

LinuxCNC 01/04/2026 23

HALCMD(1) LinuxCNC Documentation HALCMD(1)

NAME

halemd — manipulate the LinuxCNC HAL from the command line

SYNOPSIS

halemd [OPTIONS] [COMMAND [ARG]]

DESCRIPTION

The tool halemd is used to manipulate the HAL (Hardware Abstraction Layer) from the command line.
halemd can optionally read commands from a file, allowing complex HAL configurations to be set up with
a single command.

If the readline library is available when LinuxCNC is compiled, then halemd offers commandline editing
and completion when running interactively. Use the up arrow to recall previous commands, and press tab to
complete the names of items such as pins and signals.

OPTIONS

-1
Before tearing down the realtime environment, run an interactive halcmd. halrun only. If —I is used,
it must precede all other commandline arguments.

—f [<file>]
Ignore commands on command line, take input from file instead. If file is not specified, take input from
stdin.
—i <INI file>
Use variables from the specified INI file for substitutions. See SUBSTITUTION below.
-k
Keep going after failed command(s). The default is to stop and return failure if any command fails.
—-q
display errors only (default)
-Q

display nothing, execute commands silently

-
Script—friendly mode. In this mode, show will not output titles for the items shown. Also, module
names will be printed instead of ID codes in pin, param, and funct listings. Threads are printed on a
single line, with the thread period, FP usage and name first, followed by all of the functions in the
thread, in execution order. Signals are printed on a single line, with the type, value, and signal name
first, followed by a list of pins connected to the signal, showing both the direction and the pin name.

Release the HAL mutex. This is useful for recovering when a HAL component has crashed while
holding the HAL mutex.

display results of each command
-V
display lots of debugging junk

—h [command]
display a help screen and exit, displays extended help on command if specified

COMMANDS

24

Commands tell halemd what to do. Normally halemd reads a single command from the command line and
executes it. If the —f option is used to read commands from a file, halemd reads each line of the file as a
new command. Anything following # on a line is a comment.

loadrt modname
(short for "load realtime module") Loads a realtime HAL module called modname. halemd looks for

01/04/2026 LinuxCNC

HALCMD(1) LinuxCNC Documentation HALCMD(1)

the module in a directory specified at compile time.

In systems with kernel-based realtime support (e.g. RTAI), halemd calls the linuxenc_module_helper to
load realtime modules. linuxenc_module_helper is a setuid program and is compiled with a whitelist of
modules it is allowed to load. This is currently just a list of LinuxCNC-related modules. The
linuxenc_module_helper execs insmod, so return codes and error messages are those from insmod.
Administrators who wish to restrict which users can load these LinuxCNC—related kernel modules can do
this by setting the permissions and group on linuxcnc_module_helper appropriately.

In systems with userspace—based realtime support (e.g. Preempt—RT) and in systems without realtime
support halemd calls the rtapi_app which creates the realtime environment (simulated realtime, on
systems with no userspace realtime support) if it did not yet exist, and then loads the requested component
with a call to dlopen(3).

unloadrt modname
(unload realtime module) Unloads a realtime HAL module called modname. If modname is "all", it
will unload all currently loaded realtime HAL modules. unloadrt also works by execing
linuxene_module_helper or rtapi_app, just like loadrt.

loadusr [flags] UNIX-command
(load Userspace component) Executes the given UNIX—command, usually to load a non—realtime
component. [flags] may be one or more of:

e —W to wait for the component to become ready. The component is assumed to have the same
name as the first argument of the command.

* —Wn name to wait for the component, which will have the given name.
* —w to wait for the program to exit
* —itoignore the program return value (with —w)

waitusr name
(wait for Userspace component) Waits for non—realtime component name to disconnect from HAL
(usually on exit). The component must already be loaded. Useful near the end of a HAL file to wait
until the user closes some user interface component before cleaning up and exiting.

unloadusr compname
(unload Userspace component) Unloads a non—realtime component called compname. If compname is
"all", it will unload all non—realtime components. unloadusr works by sending SIGTERM to all
non-realtime components.

unload compname
Unloads a non-realtime component or realtime module. If compname is "all", it will unload all
non-realtime components and realtime modules.

newsig signame type
(OBSOLETE - use net instead) (new signal) Creates a new HAL signal called signame that may later
be used to connect two or more HAL component pins. fype is the data type of the new signal, and
must be one of "bit", "s32", "u32", or "float". Fails if a signal of the same name already exists.

delsig signame
(delete signal) Deletes HAL signal signame. Any pins currently linked to the signal will be unlinked.
Fails if signame does not exist.

sets signame value
(set signal) Sets the value of signal signame to value. Fails if signame does not exist, if it already has a
writer, or if value is not a legal value. Legal values depend on the signals’s type.

stype name
(signal type) Gets the type of signal name. Fails if name does not exist as a signal.

LinuxCNC 01/04/2026 25

HALCMD(1) LinuxCNC Documentation HALCMD(1)

26

gets signame
(get signal) Gets the value of signal signame. Fails if signame does not exist.

linkps pinname [arrow] signame
(OBSOLETE - use net instead) (link pin to signal) Establishes a link between a HAL component pin
pinname and a HAL signal signame. Any previous link to pinname will be broken. arrow can be
"=>""<=", "<=>", or omitted. halemd ignores arrows, but they can be useful in command files to
document the direction of data flow. Arrows should not be used on the command line since the shell
might try to interpret them. Fails if either pinname or signame does not exist, or if they are not the
same type type.

linksp signame [arrow] pinname
(OBSOLETE - use net instead) (/ink signal to pin) Works like linkps but reverses the order of the
arguments. halemd treats both link commands exactly the same. Use whichever you prefer.

linkpp pinnamel [arrow] pinname2
(OBSOLETE - use net instead) (/ink pin to pin) Shortcut for linkps that creates the signal (named like
the first pin), then links them both to that signal. halemd treats this just as if it were: halemd newsig
pinnamel halemd linksp pinnamel pinnamel halemd linksp pinnamel pinname?2

net signame pinname ...
Create signname to match the type of pinname if it does not yet exist. Then, link signame to each
pinname in turn. Arrows may be used as in linkps. When linking a pin to a signal for the first time, the
signal value will inherit the pin’s default value.

unlinkp pinname
(unlink pin) Breaks any previous link to pinname. Fails if pinname does not exist. An unlinked pin will
retain the last value of the signal it was linked to.

setp name value
(set parameter or pin) Sets the value of parameter or pin name to value. Fails if name does not exist as
a pin or parameter, if it is a parameter that is not writable, if it is a pin that is an output, if it is a pin
that is already attached to a signal, or if value is not a legal value. Legal values depend on the type of
the pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

paramname = value, pinname = value
Identical to setp. This alternate form of the command may be more convenient and readable when
used in a file.

ptype name
(parameter or pin type) Gets the type of parameter or pin name. Fails if name does not exist as a pin or
parameter. If a pin and a parameter both exist with the given name, the parameter is acted on.

getp name
(get parameter or pin) Gets the value of parameter or pin name. Fails if name does not exist as a pin or
parameter. If a pin and a parameter both exist with the given name, the parameter is acted on.

addf functname threadname
(add function) Adds function functname to realtime thread threadname. functname will run after any
functions that were previously added to the thread. Fails if either functname or threadname does not
exist, or if they are incompatible.

delf functname threadname
(delete function) Removes function functname from realtime thread threadname. Fails if either
Sfunctname or threadname does not exist, or if functname is not currently part of threadname.

start
Starts execution of realtime threads. Each thread periodically calls all of the functions that were added
to it with the addf command, in the order in which they were added.

stop

01/04/2026 LinuxCNC

HALCMD(1) LinuxCNC Documentation HALCMD(1)

Stops execution of realtime threads. The threads will no longer call their functions.

show [item]
Prints HAL items to stdout in human readable format. ifem can be one of "comp" (components),
"pin", "sig" (signals), "param" (parameters), "funct" (functions), "thread", or "alias". The type "all"
can be used to show matching items of all the preceding types. If item is omitted, show will print

everything.

save [item]
Prints HAL items to stdout in the form of HAL commands. These commands can be redirected to a
file and later executed using halemd —f to restore the saved configuration. ifem can be one of the
following:

"comp" generates a loadrt command for realtime component.
"alias" generates an alias command for each pin or parameter alias pairing

"sig" (or "signal") generates a mewsig command for each signal, and "sigu" generates a newsig
command for each unlinked signal (for use with netl and netla).

"link" and "linka" both generate linkps commands for each link. (linka includes arrows, while link
does not.)

"net" and "neta" both generate one newsig command for each signal, followed by linksp commands
for each pin linked to that signal. (neta includes arrows.)

"netl" generates one net command for each linked signal, and "netla" (or "netal") generates a similar
command using arrows.

"param" (or "parameter) "generates one setp command for each parameter.
"thread" generates one addf command for each function in each realtime thread.
"unconnectedinpins” generates a setp command for each unconnected HAL input pin.

If item is allu, save does the equivalent of comp, alias, sigu, netla, param, thread, and
unconnectedinpins.

If item is omitted (or all), save does the equivalent of comp, alias, sigu, netla, param, and thread.

source filename.hal
Executes the commands from filename.hal.

alias rype name alias
Assigns "alias" as a second name for the pin or parameter "name". For most operations, an alias
provides a second name that can be used to refer to a pin or parameter, both the original name and the
alias will work. "type" must be pin or param. "name" must be an existing name or alias of the
specified type. Note that the "show" command will only show the aliased name, but the original name
is still valid to use in HAL. The original names can still be seen with "show all" or "show alias"
Existing nets will be preserved when a pin name is aliased.

unalias type alias
Removes any alias from the pin or parameter alias. "type" must be pin or param "alias" must be an
existing name or alias of the specified type.

list type [pattern]
Prints the names of HAL items of the specified type. fype is comp, pin, sig, param, funct, or thread.
If pattern is specified it prints only those names that match the pattern, which may be a shell glob. For

LinuxCNC 01/04/2026 27

HALCMD(1) LinuxCNC Documentation HALCMD(1)

sig, pin and param, the first pattern may be —tdatatype where datatype is the data type (e.g., floar) in
this case, the listed pins, signals, or parameters are restricted to the given data type Names are printed
on a single line, space separated.
print [message]
Prints the filename, linenumber and an optional message. wrap the message in quotes if it has spaces.
lock [all|tune|none]

Locks HAL to some degree. none — no locking done. tune — some tuning is possible (setp & such). all
— HAL completely locked.

unlock [all|tune]
Unlocks HAL to some degree. tune — some tuning is possible (setp & such). all - HAL completely
unlocked.

status [type]
Prints status info about HAL. type is lock, mem, or all. If 7rype is omitted, it assumes all.

debug [level]
Sets the rtapi messaging level (see man3 rtapi_set_msg_level).

help [command]
Give help information for command. If command is omitted, list command and brief description.

SUBSTITUTION

After a command is read but before it is executed, several types of variable substitution take place.

Environment Variables
Environment variables have the following formats:

$ENVVAR followed by end—of-line or whitespace

$(ENVVAR)

INI file variables
INI file variables are available only when an INI file was specified with the halemd —i flag. They have the
following formats:

[SECTION]VAR followed by end—of-line or whitespace

[SECTION](VAR)
LINE CONTINUATION

The backslash character (\) may be used to indicate the line is extended to the next line. The backslash
character must be the last character before the newline.

BUGS

None known at this time.

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Now includes major contributions by
several members of the project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2003 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

28 01/04/2026 LinuxCNC

HALCMD(1) LinuxCNC Documentation HALCMD(1)

SEE ALSO
halrun(1) — a convenience script to start a realtime environment, process a HAL or a .tcl file, and
optionally start an interactive command session using halemd (described here) or haltcl(1).

LinuxCNC 01/04/2026 29

HALCMD_TWOPASS(1) LinuxCNC Documentation HALCMD_TWOPASS(1)

NAME

halemd_twopass — short description

SYNOPSIS

{name}

DESCRIPTION
halemd_twopass is an utility script used when parsing HAL files. It is of little relevance to normal users
and is used internally by the system.

SEE ALSO
linuxcnc(1), https://linuxcnc.org/docs/html/hal/twopass.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

30 01/04/2026 LinuxCNC

HALCOMPILE(1) LinuxCNC Documentation HALCOMPILE(1)

NAME
halcompile — Build, compile and install LinuxCNC HAL components

SYNOPSIS

halcompile [-—compile|-—preprocess|-—document|——adoc|-—view—doc] compfile...
sudo halcompile [-—install|-—install-doc] compfile...

halcompile ——compile ——userspace cfile...

sudo halcompile ——install ——userspace cfile...

sudo halcompile ——install ——userspace pyfile...

When personalities are used in a comp file, HAL instances are exported sequentially (typically by the
mutually exclusive count= or names= parameters). If the number of exports exceeds the maximum number
of personalities, subsequent personalities are assigned modulo the maximum number of personalities
allowed.

By default, the maximum number of personalities is 64. To alter this limit, use the ——personalities= option
with halcompile. For example, to set the maximum of personality items to 4: [sudo] halcompile
——personalities=4 ——install ...

Do not use [sudo] for RIP installation.

OPTIONS
—a, ——adoc
Extract only asciidoc format documentation from the component.
—c, ——compile
Compile a component or C—source module.
—d, ——document

Extract man—page format documentation from the component (builds asciidoc and then converts to
manpage). This option requires asciidoctor(1) or a2x(1) to be installed on your system.

—h, -?, —help
Show a brief usage message and exit.

—i, ——install
Build and install a component.

-J, ——view—-doc
Deprecated. Live view the manpage of the component (builds asciidoc, converts to manpage and runs
man(1)). This option requires asciidoctor(1) or a2x(1) to be installed on your system.

—j, ——install-doc
Install the man—page documentation in us#/share/manl or usr/share/man9, depending whether this is a
userspace or realtime component.

-k file, ——keep—adoc=file
Keep the generated asciidoc file when generating manpage documentation. The file is saved to file.
You cannot specify multiple input files when using this option and it has no effect when only asciidoc
formatted documentation is requested using the —a or ——adoc option.

-1, ——require-license
Obsolete. The component is always required to have a licence tag.

-0 file, ——outfile=file
Write output to file. Can only be used with ——preprocess, ——adoc and ——document processing.

—P int, ——personalities=inz (default: 64)

LinuxCNC 01/04/2026 31

HALCOMPILE(1) LinuxCNC Documentation HALCOMPILE(1)

Set the maximum number of personalities in the component.

—p, ——preprocess
Only generate a C—file from the component file.

-U, ——unix
Require the source to have unix—style NL—only line endings.

—u, ——userspace
Create a userspace C—source (non—realtime). Default is to build realtime components.

——extra—compile—args=args
Extra arguments passed to the C—compiler.

——extra-link—args=args
Extra arguments passed to the linker.

DESCRIPTION

halcompile performs many different functions:

SEE ALSO

32

Compile .comp and .c files into .so or .ko HAL realtime components (the ——compile flag)
Compile .comp and .c files into HAL non-realtime components (the ——compile ——userspace flag)
Preprocess .comp files into .c files (the ——preprocess flag)

Extract documentation from .comp files into asciidoc or manpage section 1 or 9 files (the ——adoc
and ——document flags)

Display documentation from .comp files onscreen (the ——view—doc flag)

Compile and install .comp and .c files into the proper directory for HAL realtime components (the
——install flag), which may require sudo to write to system directories.

Install .c and .py files into the proper directory for HAL non-realtime components (the ——install
——userspace flag), which may require sudo to write to system directories.

Extract documentation from .comp files into .1 or .9 manpage files in the proper system directory
(the —install flag), which may require sudo to write to system directories.

Preprocess .comp files into .c files (the ——preprocess flag)

Halcompile HAL Component Generator in the LinuxCNC documentation for a full description of
the .comp syntax, along with examples

pydoc, HAL and Creating Non—realtime Python Components in the LinuxCNC documentation for
documentation on the Python interface to HAL components

01/04/2026 LinuxCNC

HALMETER(1) LinuxCNC Documentation HALMETER(1)

NAME

halmeter — observe HAL pins, signals, and parameters
SYNOPSIS

halmeter [—s] [pin|sig|param name] [-g X—position Y-position [Width]]
DESCRIPTION

The tool halmeter is used to observe HAL (Hardware Abstraction Layer) pins, signals, or parameters. It
serves the same purpose as a multimeter does when working on physical systems. It is an self—contained
application and connects independently to HAL.

OPTIONS
pin name
Display the HAL pin name.

sig name
Display the HAL signal name.

param name
Display the HAL parameter name.

If neither pin, sig, or param are specified, the window starts out blank and the user must select an item to
observe:

-
Small window. Non—interactive, must be used with pin, sig, or param to select the item to display.
The item name is displayed in the title bar instead of the window, and there are no "Select" or "Exit"
buttons. Handy when you want a lot of meters in a small space.

Geometry position. Allows one to specify the initial starting position and optionally the width of the
meter. Referenced from top left of screen in pixel units. Handy when you want to load a lot of meters
in a script with out them displaying on top of each other.

USAGE
Unless \-s is specified, there are two buttons, "Select" and "Exit". "Select" opens a dialog box to select the
item (pin, signal, or parameter) to be observed. "Exit" does what you expect.

The selection dialog has "OK", "Apply", and "Cancel" buttons. OK displays the selected item and closes
the dialog. "Apply" displays the selected item but keeps the selection dialog open. "Cancel" closes the
dialog without changing the displayed item.

EXAMPLE
halmeter
Opens a meter window, with nothing initially displayed. Use the "Select" button to choose an item to
observe. Does not return until the window is closed.

halmeter &
Open a meter window, with nothing initially displayed. Use the "Select" button to choose an item.
Runs in the background leaving the shell free for other commands.

halmeter pin parport.0.pin—03-out &
Open a meter window, initially displaying HAL pin parport.0.pin—03—out. The "Select" button can be
used to display other items. Runs in background.

halmeter —s pin parport.0.pin—03—-out &
Open a small meter window, displaying HAL pin parport.0.pin—03—out. The displayed item cannot be
changed. Runs in background.

halmeter —s pin parport.0.pin—03—out —g 100 500 &
Open a small meter window, displaying HAL pin parport.0.pin—03—out. places it 100 pixels to the left
and 500 pixels down from top of screen. The displayed item cannot be changed. Runs in background.

LinuxCNC 01/04/2026 33

HALMETER(1) LinuxCNC Documentation HALMETER(1)

halmeter —s pin parport.0.pin—03—out —g 100 500 400 &
Open a small meter window, displaying HAL pin parport.0.pin—03—out. places it 100 pixels to the left
and 500 pixels down from top of screen. The width will be 400 pixels (270 is default) The displayed
item cannot be changed. Runs in background.

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2003 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

34 01/04/2026 LinuxCNC

HALREPORT (1) LinuxCNC Documentation HALREPORT (1)

NAME
halreport — creates a report on the status of the HAL

SYNOPSIS

halreport [outfilename]

DESCRIPTION
halreport

1. Supports components made by halcompile and numerous legacy components.
2. Known unhandled components:

at_pid
naming conflicts with pid, seldom used

boss_plc
no manpage or docs (any users?)

watchdog
seldom used (no users in—tree)

3. Deprecated/obsolete components:

e counter
e supply

Identification of functions used according to pin name. Default handling works for components that:
1. use names=|count= (.comp components created with halcompile)

2. have a single function

Full docs: https:/linuxcnc.org/docs/html/hal/tools.html#_halreport
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 35

HALRMT (1) LinuxCNC Documentation HALRMT (1)

NAME

halrmt — remote—control interface for LinuxCNC

SYNOPSIS

halrmt [——port <port number>] [-—name <server name>] [-—connectpw <password>] [-—enablepw
<password>] [——sessions <max sessions>] [—ini <INI file>]

OPTIONS

——port port
Waits for socket connections (telnet) on specified socket, without port specification it uses default port
5006. (Note: linuxcncrsh uses 5007 as default.)

——name server_name
Sets the server name to specified name for Hello.

——connectpw password
Sets the connection password to password. Default: EMC.

——enablepw password
Sets the enable password to password. Default EMCTOOQO.

——sessions <max sessions>

Sets the maximum number of simultaneous connextions to max sessions. Default is no limit (-1).
—ini <INI file>

Uses the specified INI file instead of the default emc.ini.

DESCRIPTION

36

The application halrmt supports six commands that are meant to be sent to an instance of HAL that is
running on another machine. Of these, the commands sef and get contain HAL specific sub—commands that
are based on the commands supported by halcmd.

Commands and most parameters are not case sensitive. The exceptions are passwords, file paths and text
strings. The supported commands are as follows:

Hello <password> <client> <version>
If a valid password was entered the server will respond with "HELLO ACK <Server Name> <Server
Version>" where server name and server version are looked up from the implementation. If an invalid
password or any other syntax error occurs then the server responds with "HELLO NAK".

Get
The get command includes one of the HAL sub—commands, described below and zero or more
additional parameters.

Set
The set command inclides one of the HAL sub—commands, described below and one or more
additional parameters.
Quit
The quit command disconnects the associated socket connection.
Shutdown
The shutdown command tells LinuxCNC to shut down before quitting the connection. This command

may only be issued if the Hello has been successfully negotiated and the connection has control of the
CNC (see enable sub—command below). This command has no parameters.

Help
The help command will return help information in text format over the telnet connection. If no
parameters are specified, it will itemize the available commands. If a command is specified, it will
provide usage information for the specified command. Help will respond regardless of whether a
"Hello" has been successfully negotiated.

HAL sub—commands:

01/04/2026 LinuxCNC

HALRMT (1) LinuxCNC Documentation HALRMT (1)

echo on | off
With get will return the current echo state, with set, sets the echo state. When echo is on, all
commands will be echoed upon receipt. This state is local to each connection.

verbose on | off
With get will return the current verbose state, with set, sets the verbose state. When in verbose mode is
on, all set commands return positive acknowledgement in the form SET <COMMAND> ACK. In
addition, text error messages will be issued when in verbose mode. This state is local to each
connection.

enable <pwd> | off
With get will return On or Off to indicate whether the current connection is enabled to perform control
functions. With set and a valid password, the current connection is enabled for control functions.
"OFF" may not be used as a password and disables control functions for this connection.

config [TBD] comm_mode ascii | binary
With get, will return the current communications mode. With set, will set the communications mode to
the specified mode. The binary protocol is TBD.

comm_prot <version no>
With get, returns the current protocol version used by the server, with set, sets the server to use the
specified protocol version, provided it is lower than or equal to the highest version number supported
by the server implementation.

Comps [<substring>]
Get only, returns all components beginning with the specified substring. If no substring is specified
then it returns all components.

Pins [<substring>]
Get only, returns all information about all pins beginning with the specified substring. If no substring
is specified then it returns all pins.

PinVals [<substring>]
Get only, returns only value information about all pins beginning with the specified substring. If no
substring is specified then it returns all pins.

Signals [<substring>]
Get only, returns all information about all signals beginning with the specified substring. If no
substring is specified then it returns all signals.

SigVals [<substring>]

Get only, returns only value information about all signals beginning with the specified substring. If no
substring is specified then it returns all pins.

Params [<substring>]
Get only, returns all information about all parameters beginning with the specified substring. If no
substring is specified then it returns all parameters.

ParamVals [<substring>]
Get only, returns only value information about all parameters beginning with the specified substring. If
no substring is specified then it returns all pins parameters.

Functs [<substring>]
Get only, returns all information about all functions beginning with the specified substring. If no
substring is specified then it returns all functions.

Threads
Get only, returns all information about all functions.

Comp <name>
Get only, returns the component matching the specified name.

Pin <name>

LinuxCNC 01/04/2026 37

HALRMT (1) LinuxCNC Documentation HALRMT (1)

38

Get only, returns all information about the pin matching the specified name.

PinVal <name>
Get only, returns the value of the pin matching the specified name.

Sig <name>
Get only, returns all information about the pin matching the specified name.

SigVal <name>
Get only, returns just the value of the signal matching the specified name.

Param <name>
Get only, returns all information about the parameter matching the specified name.

ParamVal <name>
Get only, returns just the value of the parameter matching the specified name.

Funct <name>
Get only, returns all information about the parameter matching the specified name.

Thread <name>
Get only, returns all information about the thread matching the specified name.

LoadRt <name>
Set only, loads the real time executable specified by name.

Unload <name>
Set only, unloads the executable specified by name.

LoadUsr <name>
Set only, loads the user executable specified by name.

Linkps <pin name> <signal name>
Set only, links the specified pin to the specified signal.

Linksp <signal name> <pin name>
Set only, links the specified signal to the specified pin.

Linkpp <pin name 1> <pin name 2>
Set only, links the pin specified by pin 1 with the pin specified by pin 2.

Net <net list>
Set only, nets the specified net list.

Unlinkp <pin name 1> <pin name 2>
Set only, unlinks the specified pins.

Lock

Unlock

NewSig <name> <type>
Set only, creates the signal specified by name and of type specified by type.

DelSig <name>
Set only, deletes the signal specified by name.

SetP <name> <value>
Set only, sets the parameter specified by name to the value specified by value.

SetS <name> <value>
Set only, sets the signal specified by name to the value specified by value.

AddF <name> <thread> [<parameters>]
Set only, adds the function specified by name, to the thread specified by thread, with the optional
parameters specified by parameters.

01/04/2026 LinuxCNC

HALRMT (1) LinuxCNC Documentation HALRMT (1)

DelF <name>
Set only, deletes the function specified by name.

Save
Start

Stop
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

It is not known if this interface currently works.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 39

HALRUN(1) LinuxCNC Documentation HALRUN(1)

NAME

halrun — manipulate the LinuxCNC HAL from the command line
SYNOPSIS

halrun -h

halrun [-1] [halemd_opts] [filename[.hal|.tcl]]
halrun T [halemd_opts] [filename[.hal).tcl]]

halrun -U
DESCRIPTION

The convenience script halrun can manipulate the HAL (Hardware Abstraction Layer) from the command
line. When invoked, halrun:

* Sets up the realtime environment.
* Executes a command interpreter (halemd or haltcl).
* (Optionally) runs an interactive session.

e Tears down the realtime environment.

If no filename is specified, an interactive session is started. The session will use halemd(1) unless -T is
specified in which case haltel(1) will be used.

If a filename is specified and neither the —I nor the —T option is included, the filename will be processed by
the command interpreter corresponding to the filename extension (halemd or haltel). After processing, the
realtime environment will be torn down.

If a filename is specified and the —I or —T option is included, the file is processed by the appropriate
command interpreter and then an interactive session is started for halemd or haltel according to the —I or
—T option.

OPTIONS
halecmd_opts
When a .hal file is specified, the halemd_opts are passed to halemd. See the man page for halemd(1).
When a .tcl file is specified, the only valid options are: —i <INI file> —f <filename[.tcl|-hal]> (alternate
means of specifying a file).

Run an interactive halemd session
Run an interactive haltcl session.

Forcibly cause the realtime environment to exit. It releases the HAL mutex, requests that all HAL
components unload, and stops the realtime system. —U must be the only commandline argument.

Display a brief help screen and exit.

BUGS

None known at this time.

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC Enhanced Machine Controller project. Now
includes major contributions by several members of the project.

40 01/04/2026 LinuxCNC

HALRUN(1) LinuxCNC Documentation HALRUN(1)

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2003 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO
halemd(1), haltcl(1)

LinuxCNC 01/04/2026 41

HALSAMPLER(1) LinuxCNC Documentation HALSAMPLER(1)

NAME

halsampler — sample data from HAL in realtime
SYNOPSIS

halsampler [options]
DESCRIPTION

sampler(9) and halsampler are used together to sample HAL data in real time and store it in a file.
sampler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then
begins sampling data from the HAL and storing it to the FIFO. halsampler is a non—realtime program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS
—-c CHAN
instructs halsampler to read from FIFO CHAN. FIFOs are numbered from zero, and the default value
is zero, so this option is not needed unless multiple FIFOs have been created.

—-n COUNT
instructs halsampler to read COUNT samples from the FIFO, then exit. If —n is not specified,
halsampler will read continuously until it is killed.

—t
instructs halsampler to tag each line by printing the sample number in the first column.

FILENAME
instructs halsampler to write to FILENAME instead of to stdout.

USAGE
A FIFO must first be created by loading sampler(9) with halemd loadrt or a loadrt command in a HAL
file. Then halsampler can be invoked to begin printing data from the FIFO to stdout.

Data is printed one line per sample. If —t was specified, the sample number is printed first. The data
follows, in the order that the pins were defined in the config string. For example, if the sampler config
string was "ffbs" then a typical line of output (without —t) would look like:

123.5533.40-12

halsampler prints data as fast as possible until the FIFO is empty, then it retries at regular intervals, until it
is either killed or has printed COUNT samples as requested by —n. Usually, but not always, data printed by
halsampler will be redirected to a file or piped to some other program.

The FIFO size should be chosen to absorb samples captured during any momentary disruptions in the flow
of data, such as disk seeks, terminal scrolling, or the processing limitations of subsequent program in a
pipeline. If the FIFO gets full and sampler is forced to overwrite old data, halsampler will print overrun
on a line by itself to mark each gap in the sampled data. If —t was specified, gaps in the sequential sample
numbers in the first column can be used to determine exactly how many samples were lost.

The data format for halsampler output is the same as for halstreamer(1) input, so waveforms captured
with halsampler can be replayed using halstreamer. The —t option should not be used in this case.

EXIT STATUS

If a problem is encountered during initialization, halsampler prints a message to stderr and returns failure.

Upon printing COUNT samples (if —n was specified) it will shut down and return success. If it is terminated
before printing the specified number of samples, it returns failure. This means that when —n is not specified,
it will always return failure when terminated.

SEE ALSO

sampler(9), streamer(9), halstreamer(1)

42 01/04/2026 LinuxCNC

HALSAMPLER(1) LinuxCNC Documentation HALSAMPLER(1)

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2006 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 43

HALSCOPE(1) LinuxCNC Documentation HALSCOPE(1)

NAME

halscope — short description

SYNOPSIS

halscope

DESCRIPTION
halscope Software oscilloscope for LinuxCNC/HAL

Digital oscilloscope for viewing real time waveforms of HAL pins and signals

SEE ALSO

linuxcne(1)

Find more information in the HAL tutorial:
https://linuxcnc.org/docs/html/hal/tutorial.html#sec:tutorial-halscope. More information about LinuxCNC
and HAL is available in the LinuxCNC and HAL User Manuals, found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

44 01/04/2026 LinuxCNC

HALSHOW(1) LinuxCNC Documentation HALSHOW(1)

NAME

halshow — Show HAL parameters, pins and signals

SYNOPSIS
halshow [options] [watchfile]

OPTIONS
——help
Displays the help

——fformat format_string_for_float
Float format string

——iformat format_string_for_int
Integer format string

For format see https://www.tcl.tk/man/tcl8.6.11/TclCmd/format.html

Example: "%.5f" displays a float with 5 digits right of the decimal point.

——noprefs
Don’t use preference file to save settings.

DESCRIPTION

The program halshow creates a GUI interface to view and interact with a running HAL session.

SEE ALSO

linuxcne(1)

Halshow is documented in the PDF and HTML documentation much more completely than is possible in a
manpage: https://linuxcnc.org/docs/html/hal/halshow.html

HISTORY
LinuxCNC 2.9

* Added buttons for pin/parameter/signal manipulation.

¢ Added menu entries for setting update interval, adding manually.

* Added right—click menu for copy, set, unlink pin and remove from view.
* Added button to expand/collapse the tree view.

* Added search entry.
BUGS

None known at this time.

AUTHOR
Raymond E. Henry

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 45

HALSTREAMER(1) LinuxCNC Documentation HALSTREAMER(1)

NAME

halstreamer — stream file data into HAL in real-time
SYNOPSIS

halstreamer [options]
DESCRIPTION

The HAL component streamer(9) and the program halstreamer are used together to stream data from a
file into the HAL in real—time. In real—time, streamer exports HAL pins and creates a FIFO (first in, first
out queue) in shared memory. The non—realtime program halstreamer copies data from stdin into the
FIFO, so that streamer can write it to the HAL pins.

OPTIONS
—c CHAN
Instructs halstreamer to write to FIFO CHAN. FIFOs are numbered from zero, and the default value
is zero, so this option is not needed unless multiple FIFOs have been created.

FILENAME
Instructs halsampler to read from FILENAME instead of from stdin.

USAGE
A FIFO must first be created by loading streamer(9) with halemd loadrt or a loadrt command in a HAL
file. Then halstreamer can be invoked to begin writing data into the FIFO.

Data is read from stdin, and is almost always either redirected from a file or piped from some other
program, since keyboard input would be unable to keep up with even slow streaming rates.

Each line of input must match the pins that are attached to the FIFO, for example, if the streamer config
string was "ffbs" then each line of input must consist of two floats, a bit, and a signed integer, in that order
and separated by whitespace. Floats must be formatted as required by strtod(3), signed and unsigned
integers must be formatted as required by strtol(3) and strtoul(3), and bits must be either 0 or /.

Input lines that begin with # will be treated as comments and silently skipped.

halstreamer transfers data to the FIFO as fast as possible until the FIFO is full, then it retries at regular
intervals, until it is either killed or reads EOF from stdin. Data can be redirected from a file or piped from
some other program.

The FIFO size should be chosen to ride through any momentary disruptions in the flow of data, such as disk
seeks. If the FIFO is big enough, halstreamer can be restarted with the same or a new file before the FIFO
empties, resulting in a continuous stream of data.

The data format for halstreamer input is the same as for halsampler(1) output, so waveforms captured
with halsampler can be replayed using halstreamer.

EXIT STATUS

If a problem is encountered during initialization, halstreamer prints a message to stderr and returns failure.

If a badly formatted line is encountered while writing to the FIFO, it prints a message to stderr, skips the
line, and continues (this behavior may be revised in the future).

Upon reading EOF from the input, it returns success. If it is terminated before the input ends, it returns
failure.

SEE ALSO

streamer(9), sampler(9), halsampler(1)

46 01/04/2026 LinuxCNC

HALSTREAMER(1) LinuxCNC Documentation HALSTREAMER(1)

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2006 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 47

HALTCL(1) LinuxCNC Documentation HALTCL(1)

NAME

haltcl — manipulate the LinuxCNC HAL from the command line using a Tcl interpreter.

SYNOPSIS
haltcl [-i <INI file>] [filename]

DESCRIPTION
Tcl is a scripting language from the 90s that is very easy to extend. Haltcl extends the regular Tcl
interpreter with a set of commands to interact with HAL, i.e. it allows to manipulate the HAL (Hardware
Abstraction Layer) from the command line using a Tcl interpreter. haltel can optionally read commands
from a file (filename), allowing complex HAL configurations to be set up with a single command.

OPTIONS
—i <INMI file>
If specified, the INI file is read and used to create Tcl global variable arrays. An array is created for
each SECTION of the INI file with elements for each ITEM in the section.

For example, if the INI file contains:

[SECTION_A]
ITEM_1=1
[SECTION_A]
ITEM_ 2=2
[SECTION_B]
ITEM_1=10

The corresponding Tcl variables are:

SECTION_A(ITEM_1)=1
SECTION_A(ITEM_2) =2
SECTION_B{TEM_1) =10
—ini <IN file>
Declining usage, use —i <INI file>
filename

If specified, the Tcl commands of filename are executed. If no filename is specified, haltcl opens an
interactive session.

COMMANDS
The executable haltel includes the commands of a Tcl interpreter augmented with commands for the hal
language as described for halemd(1). The augmented commands can be listed with the command:

haltcl: hal ——commands+

addf alias delf delsig getp gets ptype stype help linkpp linkps linksp list loadrt loadusr lock net newsig save
setexact_for_test_suite_only setp sets show source start status stop unalias unlinkp unload unloadrt
unloadusr unlock waitusr

Two of the augmented commands, /ist and gets, require special treatment to avoid conflict with Tcl built—in
commands having the same names. To use these commands, precede them with the keyword hal:

hal list
hal gets

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

48 01/04/2026 LinuxCNC

HALTCL(1) LinuxCNC Documentation HALTCL(1)

COPYRIGHT
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO
halemd(1), halrun(1)

LinuxCNC 01/04/2026 49

HALUI(1) LinuxCNC Documentation HALUI(1)

NAME
halui — observe HAL pins and command LinuxCNC through NML

SYNOPSIS
halui [—ini <path—to—INI>]
DESCRIPTION

The program halui is used to build a User Interface using hardware knobs and switches. It exports a big
number of pins, and acts accordingly when these change.

OPTIONS
—ini filename
Use the filename as the configuration file. Note: halui must find the nml file specified in the INI,
usually that file is in the same folder as the INI, so it makes sense to run halui from that folder.

USAGE
When run, halui will export a large number of pins. A user can connect those to his physical knobs &
switches & leds, and when a change is noticed halui triggers an appropriate event.

Caveat, halui expects the signals to be debounced, so if needed (bad knob contact) connect the physical
button to a HAL debounce filter first.

PINS
Abort
halui.abort bit in
pin for clearing most errors

Tool
halui.tool.length—offset.a float out
current applied tool length offset for the A axis

halui.tool.length—offset.b float out
current applied tool length offset for the B axis

halui.tool.length—offset.c float out
current applied tool length offset for the C axis

halui.tool.length—offset.u float out
current applied tool length offset for the U axis

halui.tool.length—offset.v float out
current applied tool length offset for the V axis

halui.tool.length—offset.w float out
current applied tool length offset for the W axis

halui.tool.length—offset.x float out
current applied tool length offset for the X axis

halui.tool.length—offset.y float out
current applied tool length offset for the Y axis

halui.tool.length—offset.z float out
current applied tool length offset for the Z axis

halui.tool.diameter float out
Current tool diameter, or O if no tool is loaded.

halui.tool.number u32 out
current selected tool
Spindle
halui.spindle.N.brake—is—on bit out
status pin that tells us if brake is on

50 01/04/2026 LinuxCNC

HALUI(1) LinuxCNC Documentation HALUI(1)

halui.spindle.N.brake—off bit in
pin for deactivating the spindle brake

halui.spindle.N.brake—on bit in
pin for activating the spindle brake

halui.spindle.N.decrease bit in
arising edge on this pin decreases the current spindle speed by 100

halui.spindle.N.forward bit in
arising edge on this pin makes the spindle go forward

halui.spindle.N.increase bit in
arising edge on this pin increases the current spindle speed by 100

halui.spindle.N.is—on bit out
status pin telling if the spindle is on

halui.spindle.N.reverse bit in
arising edge on this pin makes the spindle go reverse

halui.spindle.N.runs—backward bit out
status pin telling if the spindle is running backward

halui.spindle.N.runs—forward bit out
status pin telling if the spindle is running forward

halui.spindle.N.start bit in
arising edge on this pin starts the spindle

halui.spindle.N.stop bit in
arising edge on this pin stops the spindle

Spindle Override
(SO = spindle override. FO = feed override), halui.spindle.N.override.count—enable bit in (default:
TRUE)
When TRUE, modify spindle override when counts changes.

halui.spindle.N.override.counts s32 in
counts X scale = spindle override percentage

halui.spindle.N.override.decrease bit in
pin for decreasing the SO (—=scale)

halui.spindle.N.override.direct—value bit in
pin to enable direct spindle override value input

halui.spindle.N.override.increase bit in
pin for increasing the SO (+=scale)

halui.spindle.N.override.reset bit in
pin for resetting the scale SO value (scale=1.0)

halui.spindle.N.override.scale float in
pin for setting the scale of counts for SO

halui.spindle.N.override.value float out
current FO value

Program
halui.program.block—delete.is—on bit out
status pin telling that block delete is on

halui.program.block—delete.off bit in
pin for requesting that block delete is off

halui.program.block—delete.on bit in

LinuxCNC 01/04/2026 51

HALUI(1) LinuxCNC Documentation

52

pin for requesting that block delete is on

halui.program.is—idle bit out
status pin telling that no program is running

halui.program.is—paused bit out
status pin telling that a program is paused

halui.program.is—running bit out
status pin telling that a program is running

halui.program.optional—stop.is—on bit out
status pin telling that the optional stop is on

halui.program.optional—stop.off bit in
pin requesting that the optional stop is off

halui.program.optional—stop.on bit in
pin requesting that the optional stop is on

halui.program.pause bit in
pin for pausing a program

halui.program.resume bit in
pin for resuming a program

halui.program.run bit in
pin for running a program

halui.program.step bit in
pin for stepping in a program

halui.program.stop bit in

pin for stopping a program (note: this pin does the same thing as halui.abort)
Mode

halui.mode.auto bit in
pin for requesting auto mode

halui.mode.is—auto bit out
pin for auto mode is on

halui.mode.is—joint bit out
pin showing joint by joint jog mode is on

halui.mode.is—manual bit out
pin for manual mode is on

halui.mode.is—mdi bit out
pin for MDI mode is on

halui.mode.is—teleop bit out
pin showing coordinated jog mode is on

halui.mode.joint bit in
pin for requesting joint by joint jog mode

halui.mode.manual bit in
pin for requesting manual mode

halui.mode.mdi bit in
pin for requesting MDI mode

halui.mode.teleop bit in
pin for requesting coordinated jog mode

01/04/2026

HALUI(1)

LinuxCNC

HALUI(1) LinuxCNC Documentation HALUI(1)

MDI (optional)
halui.mdi—command-XX bit in
halui looks for INI variables named [HALUI]MDI_COMMAND, and exports a pin for each
command it finds. When the pin is driven TRUE, halui runs the specified MDI command. XX is a two
digit number starting at 00. If no [HALUI]MDI_COMMAND variables are set in the INI file, no
halui.mdi—command—XX pins will be exported by halui.

Mist coolant
halui.mist.is—on bit out
pin for mist is on

halui.mist.off bit in
pin for stopping mist

halui.mist.on bit in
pin for starting mist

Max-velocity
halui.max-velocity.count—enable bit in (default: TRUE)
When True, modify max velocity when halui.max—velocity.counts changes.

halui.max-velocity.counts s32 in
When .count—enable is True, halui changes the max velocity in response to changes to this pin. It’s
usually connected to an MPG encoder on an operator’s panel or jog pendant. When .count—enable is
False, halui ignores this pin.

halui.max-velocity.direct—value bit in
When this pin is True, halui commands the max velocity directly to (.counts * .scale). When this pin is
False, halui commands the max velocity in a relative way: change max velocity by an amount equal to
(change in .counts * .scale).

halui.max-velocity.increase bit in
A positive edge (a False to True transition) on this pin increases the max velocity by the value of the
.scale pin. (Note that halui always responds to this pin, independent of the .count—enable pin.)

halui.max-velocity.decrease bit in
A positive edge (a False to True transition) on this pin decreases the max velocity by the value of the
.scale pin. (Note that halui always responds to this pin, independent of the .count—enable pin.)

halui.max-velocity.scale float in
This pin controls the scale of changes to the max velocity. Each unit change in .counts, and each
positive edge on .increase and .decrease, changes the max velocity by .scale. The units of the .scale pin
are machine—units per second.

halui.max-velocity.value float out
Current value for maximum velocity, in machine—units per second.

Machine
halui.machine.units—per—mm float out

pin for machine units—per—mm (inch:1/25.4, mm:1) according to INI file setting: [TRAJ]
LINEAR_UNITS

halui.machine.is—on bit out
pin for machine is On/Off

halui.machine.off bit in
pin for setting machine Off

halui.machine.on bit in
pin for setting machine On

LinuxCNC 01/04/2026 53

HALUI(1) LinuxCNC Documentation

Joint
N = joint number (0 ... num_joints—1)

halui.joint.N.select bit in
pin for selecting joint N

halui.joint.NV.is—selected bit out
status pin that joint N is selected

halui.joint.N.has—fault bit out
status pin telling that joint NV has a fault

halui.joint.N.home bit in
pin for homing joint N

halui.joint.N.is—homed bit out
status pin telling that joint N is homed

halui.joint.N.on—hard-max-limit bit out
status pin telling that joint N is on the positive hardware limit

halui.joint.N.on—hard-min-limit bit out
status pin telling that joint NV is on the negative hardware limit

halui.joint.N.on—soft—-max-limit bit out
status pin telling that joint NV is on the positive software limit

halui.joint.N.on—soft—min-limit bit out
status pin telling that joint N is on the negative software limit

halui.joint.N.override-limits bit out
status pin telling that joint N's limits are temporarily overridden

halui.joint.N.unhome bit in
pin for unhoming joint N

halui.joint.selected u32 out
selected joint number (0 ... num_joints—1)

halui.joint.selected.has—fault bit out
status pin selected joint is faulted

halui.joint.selected.home bit in
pin for homing the selected joint

halui.joint.selected.is—homed bit out
status pin telling that the selected joint is homed

halui.joint.selected.on—hard—max-limit bit out
status pin telling that the selected joint is on the positive hardware limit

halui.joint.selected.on—hard—min-limit bit out
status pin telling that the selected joint is on the negative hardware limit

halui.joint.selected.on—soft—max—limit bit out
status pin telling that the selected joint is on the positive software limit

halui.joint.selected.on—soft—min-limit bit out
status pin telling that the selected joint is on the negative software limit

halui.joint.selected.override—limits bit out
status pin telling that the selected joint’s limits are temporarily overridden

halui.joint.selected.unhome bit in
pin for unhoming the selected joint

54 01/04/2026

HALUI(1)

LinuxCNC

HALUI(1) LinuxCNC Documentation HALUI(1)

Joint jogging (N = joint number (0 ... num_joints—1))

Axis

Axis

halui.joint.jog—deadband float in
pin for setting jog analog deadband (jog analog inputs smaller/slower than this (in absolute value) are
ignored).

halui.joint.jog—speed float in
pin for setting jog speed for plus/minus jogging.

halui.joint.N.analog float in

pin for jogging the joint N using an float value (e.g. joystick). The value, typically set between 0.0 and
*1.0, is used as a jog—speed multiplier.

halui.joint.N.increment float in
pin for setting the jog increment for joint N when using increment—plus/minus

halui.joint.N.increment—minus bit in
arising edge will will make joint N jog in the negative direction by the increment amount

halui.joint.N.increment—plus bit in
arising edge will will make joint N jog in the positive direction by the increment amount

halui.joint.N.minus bit in

pin for jogging joint N in negative direction at the halui.joint.jog—speed velocity
halui.joint.N.plus bit in

pin for jogging joint N in positive direction at the halui.joint.jog—speed velocity
halui.joint.selected.increment float in

pin for setting the jog increment for the selected joint when using increment—plus/minus

halui.joint.selected.increment—minus bit in
arising edge will will make the selected joint jog in the negative direction by the increment amount

halui.joint.selected.increment—plus bit in
arising edge will will make the selected joint jog in the positive direction by the increment amount

halui.joint.selected.minus bit in
pin for jogging the selected joint in negative direction at the halui.joint.jog—speed velocity

halui.joint.selected.plus bit in
pin for jogging the selected joint bit in in positive direction at the halui.joint.jog—speed velocity

L = axis letter (xyzabcuvw)

halui.axis.L.select bit in
pin for selecting axis by letter

halui.axis.L.is—selected bit out
status pin that axis L is selected

halui.axis.L.pos—commanded float out
Commanded axis position in machine coordinates

halui.axis.L.pos—feedback float out
Feedback axis position in machine coordinates

halui.axis.L.pos—relative float out
Commanded axis position in relative coordinates

Jogging
L = axis letter (xyzabcuvw)
halui.axis.jog—deadband float in

pin for setting jog analog deadband (jog analog inputs smaller/slower than this (in absolute value) are
ignored)

LinuxCNC 01/04/2026 55

HALUI(1) LinuxCNC Documentation HALUI(1)

56

halui.axis.jog—speed float in
pin for setting jog speed for plus/minus jogging.

halui.axis.L.analog float in
pin for jogging the axis L using an float value (e.g. joystick). The value, typically set between 0.0 and
*1.0, is used as a jog—speed multiplier.

halui.axis.L.increment float in
pin for setting the jog increment for axis L when using increment—plus/minus

halui.axis.L.increment—minus bit in
arising edge will will make axis L jog in the negative direction by the increment amount

halui.axis.L.increment—plus bit in
arising edge will will make axis L jog in the positive direction by the increment amount

halui.axis.L.minus bit in
pin for jogging axis L in negative direction at the halui.axis.jog—speed velocity

halui.axis.L.plus bit in

pin for jogging axis L in positive direction at the halui.axis.jog—speed velocity
halui.axis.selected u32 out

selected axis (by index: 0:x 1:y 2:z 3:a 4:b S:cr 6:u 7:v 8:w)

halui.axis.selected.increment float in
pin for setting the jog increment for the selected axis when using increment—plus/minus

halui.axis.selected.increment-minus bit in
arising edge will will make the selected axis jog in the negative direction by the increment amount

halui.axis.selected.increment—plus bit in
arising edge will will make the selected axis jog in the positive direction by the increment amount

halui.axis.selected.minus bit in
pin for jogging the selected axis in negative direction at the halui.axis.jog—speed velocity

halui.axis.selected.plus bit in
pin for jogging the selected axis bit in in positive direction at the halui.axis.jog—speed velocity

Flood coolant

halui.flood.is—on bit out
pin for flood is on

halui.flood.off bit in
pin for stopping flood

halui.flood.on bit in
pin for starting flood

Feed Override

halui.feed—override.count—enable bit in (default: TRUE)
When TRUE, modify feed override when counts changes.

halui.feed—override.counts s32 in
counts X scale = feed override percentage

halui.feed—override.decrease bit in
pin for decreasing the FO (—=scale)

halui.feed—override.direct—value bit in
pin to enable direct value feed override input

halui.feed—override.increase bit in
pin for increasing the FO (+=scale)

halui.feed—override.reset bit in

01/04/2026 LinuxCNC

HALUI(1) LinuxCNC Documentation

pin for resetting the FO (scale=1.0)

halui.feed—override.scale float in
pin for setting the scale on changing the FO

halui.feed—override.value float out
current feed override value

Rapid Override
halui.rapid—-override.count—enable bit in (default: TRUE)
When TRUE, modify rapid override when counts changes.

halui.rapid—-override.counts s32 in
counts X scale = rapid override percentage

halui.rapid—override.decrease bit in
pin for decreasing the rapid override (—=scale)

halui.rapid—-override.direct—value bit in
pin to enable direct value rapid override input

halui.rapid—override.increase bit in
pin for increasing the rapid override (+=scale)

halui.rapid—override.reset bit in
pin for resetting the rapid override (scale=1.0)

halui.rapid—override.scale float in
pin for setting the scale on changing the rapid override

halui.rapid-override.value float out
current rapid override value
E—-stop
halui.estop.activate bit in
pin for setting E—stop (LinuxCNC internal) On

halui.estop.is—activated bit out
pin for displaying E—stop state (LinuxCNC internal) On/Off

halui.estop.reset bit in
pin for resetting E—stop (LinuxCNC internal) Off

Homing
halui.home-all bit in
pin for requesting home—all (only available when a valid homing sequence is specified)

SEE ALSO
axis(1), iocontrol(1)
BUGS

None known at this time.

AUTHOR
Written by Alex Joni, as part of the LinuxCNC project. Updated by John Thornton

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2006 Alex Joni.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026

HALUI(1)

57

HBMGUI(1) LinuxCNC Documentation HBMGUI(1)

NAME
hbmgui — Vismach Virtual Machine GUI

DESCRIPTION

The hbmgui is one of the sample Vismach GUIs for LinuxCNC, simulating a Horizontal Boring Machine.
See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

58 01/04/2026 LinuxCNC

HEXAGUI(1) LinuxCNC Documentation HEXAGUI(1)

NAME
hexagui — Vismach Virtual Machine GUI

DESCRIPTION

The hexagui is one of the sample Vismach GUIs for LinuxCNC, simulating a Horizontal Boring Machine.
See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 Andy Pugh. This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 59

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

NAME

hy_gt_vfd — HAL non-realtime component for Huanyang GT-series VFDs

SYNOPSIS

hy_gt_vfd [OPTIONS]

DESCRIPTION

The hy_gt_vfd component interfaces a Huanyang GT—series VFD to the LinuxCNC HAL. The VFD is
connected via RS—485 serial to the LinuxCNC computer.

HARDWARE SETUP

At least some Huanyang GT VFDs must be physically modified to enable Modbus communication.

The circuit board location marked "SW1" is identified in the manual as "Switch of terminal resistor for
RS485 communication”. On the only VFD I have experience with, the circuit board contained no switch at
that location, instead holding a pair of crossed jumper wires (top—left pad connected to bottom-right pad,
top—right to bottom—left). In this configuration, no Modbus communication is possible. We had to desolder
the two crossed jumper wires and re—solder them parallel to each other (top—left to bottom—left, top—right
to bottom-right).

FIRMWARE SETUP

60

The Huanyang GT VFD must be configure via the faceplate to talk Modbus with LinuxCNC. Consult the
Operation section of the Huanyang GT—series Inverter Manual for details. Set the following parameters:

P0.01 =2
Set Run Command Source to Modbus serial port.

P0.03
Set Maximum Frequency to the maximum frequency you want the VFD to output, in Hz.

P0.04
Set Upper Frequency Limit to the maximum frequency you want the VFD to output, in Hz. This
should be the same as the value in P0.03.

P0.05
Set Lower Frequency Limit to the minimum frequency you want the VFD to output, in Hz.

P0.07 =7

Set Frequency A Command Source to Modbus serial port.
P2.01=1727?

Set Motor Rated Power to the motor’s power rating in kW.
P2.02 =777

Set Motor Rated Frequency to the motor’s max frequency in Hz.
P2.03 =177?

Set Motor Rated Speed to the motor’s speed in RPM at its rated maximum frequency.
P2.04 =777

Set Motor Rated Voltage to the motor’s maximum voltage, in Volts.
P2.05=177?

Set Motor Rated Current to the motor’s maximum current, in Amps.
PC.00=1

Set Local Address to 1. This matches the default in the hy_gt_vfd driver, change this if your setup has
special needs.

PC.01=5
Set baud rate selection to 5 (38400 bps). This matches the default in the hy_gt_vfd driver, change this
if your setup has special needs.

0=12001=24002 =4800 3 =9600 4 = 19200 5 = 38400

01/04/2026 LinuxCNC

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

PC.02=0
Set Data Format (8n1 RTU). This matches the default in the hy_gt_vfd driver, change this if your setup
has special needs.

PC.03=1
Set Communication Delay Time to 1 ms. This is expected by the hy_gt_vfd driver.
OPTIONS
-b, —bits N
(default 8) For Modbus communication. Set number of data bits to N. N must be between 5 and 8
inclusive.

—p, ——parity [Even,0Odd,None]
(default None) For Modbus communication. Set serial parity to Even, Odd, or None.

-r, —rate N
(default 38400) For Modbus communication. Set baud rate to N. It is an error if the rate is not one of
the following: 1200, 2400, 4800, 9600, 19200, 38400

—s, ——stopbits [1,2]
(default 1) For Modbus communication. Set serial stop bits to 1 or 2.

—t, ——target N
(default 1) For Modbus communication. Set Modbus target (slave) number. This must match the
device number you set on the Huanyang GT VFD.

—d, ——device PATH
(default /dev/ttySO) For Modbus communication. Set the name of the serial device node to use.

—v, ——verbose
Turn on verbose mode.

—S, ——motor-max-speed RPM
The motor’s max speed in RPM. This must match the motor speed value configured in VFD register
P2.03.

-F, ——max—frequency HZ
This is the maximum output frequency of the VFD in Hz. It should correspond to the motor’s rated
max frequency, and to the maximum and upper limit output frequency configured in VFD register
P0.03 and P0.04.

—f, ——min—frequency HZ
This is the minimum output frequency of the VFD in Hz. It should correspond to the minimum output
frequency configured in VFD register P0.05.

PINS
hy_gt_vfd.period (float, in)
The period for the driver’s update cycle, in seconds. This is how frequently the driver will wake up,
check its HAL pins, and communicate with the VFD. Must be between 0.001 and 2.000 seconds.
Default: 0.1 seconds.

hy_gt_vfd.speed—cmd (float, in)
The requested motor speed, in RPM.

hy_gt_vfd.speed—fb (float, out)
The motor’s current speed, in RPM, reported by the VFD.

hy_gt_vfd.at—speed (bit, out)
True when the drive is on and at the commanded speed (within 2%), False otherwise.

hy_gt_vfd.freq—cmd (float, out)
The requested output frequency, in Hz. This is set from the .speed—cmd value, and is just shown for
debugging purposes.

hy_gt_vfd.freq—fb (float, out)

LinuxCNC 01/04/2026 61

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

The current output frequency of the VFD, in Hz. This is reported from the VFD to the driver.

hy_gt_vfd.spindle—on (bit, in)
Set this pin True to command the spindle on, at the speed requested on the .speed—cmd pin. Set this
pin False to command the spindle off.

hy_gt_vfd.output—voltage (float, out)
The voltage that the VFD is current providing to the motor, in Volts.

hy_gt_vfd.output—current (float, out)
The current that the motor is currently drawing from the VFD, in AmpA Tes.

hy_gt_vfd.output—power (float, out)
The power that the motor is currently drawing from the VFD, in Watts.

hy_gt_vfd.dc-bus—volts (float, out)
The current voltage of the VFD’s internal DC power supply, in Volts.

hy_gt_vfd.modbus—errors (u32, out)
A count of the number of modbus communication errors between the driver and the VFD. The driver
is resilient against communication errors, but a large or growing number here indicates a problem that
should be investigated.

hy_gt_vfd.input—terminal (float, out)
The VFD’s input terminal register.

hy_gt_vfd.output—terminal (float, out)
The VFD’s output terminal register.

hy_gt_vfd.AIl (float, out)
The VFD’s All register.

hy_gt_vfd.AI2 (float, out)
The VFD’s AI2 register.

hy_gt_vfd.HDI-frequency (float, out)
The VFD’s HDI—frequency register.

hy_gt_vfd.external-counter (float, out)
The VFD’s external counter register.

hy_gt_vfd.fault—info (float, out)
The VFD’s fault info register in floating point representation. This is kept for backwards compatibility
with existing setups and will be removed in the future.

hy_gt_vfd.fault—info—code (u32, out)
The VFD’s fault code register value. Introduced in LinuxCNC version 2.10. 0x00 if no fault is
detected, see GT Series Inverter Manual page 87 for list of fault codes.

ISSUES

62

The VFD produces the output frequency that it sends to the motor by adding a manually specified offset to
the frequency command it gets over modbus.

The manual offset is controlled by pressing the Up/Down arrows on the faceplate while the VFD is turning
the motor.

If you command a speed on the .speed—cmd pin and get a different speed reported on the .speed—fb pin,
first verify that the VFD registers listed in the FIRMWARE SETUP section above and the driver’s
command-line arguments all agree with the info on the motor’s name plate. If you still aren’t getting the
speed you expect, zero the VFD’s frequency offset by starting the motor running, then pressing the
Up/Down buttons to zero the offset.

01/04/2026 LinuxCNC

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

AUTHOR

Sebastian Kuzminsky

LICENSE
GPL-2.0+

LinuxCNC 01/04/2026 63

HY_VFD(1) LinuxCNC Documentation HY_VFD(1)

NAME

hy_vfd — HAL non—realtime component for Huanyang VFDs

SYNOPSIS

hy_vfd [OPTIONS]

DESCRIPTION

64

This component connects the Huanyang VFED to the LinuxCNC HAL via a serial (RS—485) connection.

The Huanyang VFD must be configured via the face plate user interface to accept serial communications:

PD001 =2
Set register PD001 (source of run commands) to 2 (communication port).

PD002 =2
Set register PD002 (source of operating frequency) to 2 (communication port).

PD004
Set register PD004 (Base Frequency) according to motor specs. This is the rated frequency of the
motor from the motor’s name plate, in Hz.

PD005
Set register PD005 (max frequency) according to motor specs. This is the maximum frequency of the
motor’s power supply, in Hz.

PDO11
Set register PDO11 (min frequency) according to motor specs. This is the minimum frequency of the
motor’s power supply, in Hz.

PD141
Set register PD141 (rated motor voltage) according to motor name plate. This is the motor’s maximum
voltage, in Volts.

PD142
Set register PD142 (rated motor current) according to motor name plate. This is the motor’s maximum
current, in Ampere.

PD143
Set register PD143 (Number of Motor Poles) according to motor name plate.

PD144
Set register PD144 (rated motor revolutions) according to motor name plate. This is the motor’s speed
in RPM at 50 Hz. Note: This is not the motor’s max speed (unless the max motor frequency happens
to be 50 Hz)!

PD163 =1
Set register PD163 (communication address) to 1. This matches the default in the hy_vfd driver,
change this if your setup has special needs.

PD164 =2
Set register PD164 (baud rate) to 2 (19200 bps). This matches the default in the hy_vfd driver, change
this if your setup has special needs.

PD165=3
Set register PD165 (communication data method) to 3 (8n1 RTU). This matches the default in the
hy_vfd driver, change this if your setup has special needs. Note that the hy_vfd driver only supports
RTU communication, not ASCII.

Consult the Huanyang instruction manual for details on using the face plate to program the VFDs registers,
and alternative values for the above registers.

Access to devices such as /dev/ttyUSBO is restricted to members of the "dialout" group. If you see error
messages such as open: Permission denied ERROR Can’t open the device /dev/ttyUSBO0 (errno 13)

01/04/2026 LinuxCNC

HY_VFD(1) LinuxCNC Documentation HY_VFD(1)

Check your groups membership with the command groups Then add your user to the dialout group with
sudo addgroup your—username dialout You will need to log out and back in again for this to take effect.

OPTIONS
—d, ——device <path>
Set the name of the serial device node to use (defaults to /dev/ttyS0).

—g, ——debug
Turn on debug messages. Note that if there are serial errors, this may become annoying. Debug mode
will cause all serial communication messages to be printed in hex on the terminal.

-y, —regdump
Print the current value of all registers as soon as the VFD is enabled.

—n, ——hame string
Sets the name of the HAL module. The HAL comp name will be set to string, and all pin and
parameter names will begin with string (defaults to hy_vfd).

—b, ——bits n
Set number of data bits to n, where n must be from 5 to 8 inclusive. This must match the setting in
register PD165 of the Huanyang VFD (defaults to 8).

—p, ——parity [even,odd,none]
Set serial parity to even, odd, or none. This must match the setting in register PD165 of the Huanyang
VED (default odd).

-1, ——rate n
Set baud rate to n. It is an error if the rate is not one of the following: 110, 300, 600, 1200, 2400, 4800,
9600, 19200, 38400, 57600, 115200. This must match the setting in register PD164 of the Huanyang
VFD (defaults to 38400).

—s, ——stopbits [1,2]
Set serial stop bits to 1 or 2. This must match the setting in register PD165 of the HuanyangVFD
(defaults to 1).

—t, ——target n
Set HYCOMM target (slave) number. This must match the device number you set on the Hyanyang
VED in register PD163 (defaults to 1).

—F, ——max—frequency n
If specified, program register PD005 of the VFD with the specified max frequency of n Hz (and use
the same max frequency in the hy_vfd driver). If not specified, read the max frequency to use from
register PD00S5 of the VFD (default: read from VFD).

—f, ——min—frequency n
If specified, program register PDO11 of the VFD with the specified minimum frequency of <n> Hz
(and use the same minimum frequency in the hy_vfd driver). If not specified, read the minimum
frequency to use from register PDO11 of the VFD (default: read from VFD).

—V, ——motor—voltage n
If specified, program register PD141 of the VFD with the specified max motor voltage of n Volts. If
not specified, read the max motor voltage from register PD141 of the VFD (default: read from VFD).

—I, ——motor—current n
If specified, program register PD142 of the VFD with the specified max motor current of n Amps. If
not specified, read the max motor current from register PD142 of the VFD (default: read from VFD).

—S, ——motor—speed n
(default: compute from value read from VFD P144) This command-line argument is the motor’s max
speed. If specified, compute the motor’s speed at 50 Hz from this argument and from the motor’s max
frequency (from the ——max—frequency argument or from PO11 if ——max—frequency is not specified)
and program register PD144 of the VFD. If not specified, read the motor’s speed at 50 Hz from
register P144 of the VFD, and use that and the max frequency to compute the motor’s max speed.

LinuxCNC 01/04/2026 65

HY_VFD(1)

PINS

66

—P, ——motor—poles n

LinuxCNC Documentation

HY_VFD(1)

(default: read value from VFD P143) This command—line argument is the number of poles in the
motor. If specified, this value is sent to the VFD’s register PD143. If not specified, the value is read

from PD143 and reported on the corresponding HAL pin.

—x, ——register PDnnn=mmm n

Set a specific register to a new value. Can be used to set up to 10 registers. Parameters will "stick" (but
only after hy_vfd.enable has been set true) so to set more than ten parameters it is possible to
repeatedly load the driver with a set of registers to set then enable (setp hy_vfd.enable 1) and unload

(unload hy_vfd) the driver at a halrun(1) prompt. For example:

loadusr —W hy_vfd —d /ttyUSBO —register PD014=30 —register PD015=30

Will set both ramp1 times to 3 seconds. The values should be scaled according to the manual data. The
example above uses values with a resolution of 0.1 seconds, so the numbers are 10x larger than the

required value.

<name> .enable (bit, in)

Enable communication from the hy_vfd driver to the VED. <name>.SetF (float, out)

<name>.0OutF (float, out)
<name>.OutA (float, out)
<name> Rott (float, out)
<name>.DCV (float, out)
<name>.ACV (float, out)
<name>.Cont (float, out)
<name>.Tmp (float, out)

<name > .spindle—forward (bit, in)
<name> .spindle—reverse (bin, in)
<name> .spindle—on (bin, in)
<name>.CNTR (float, out)
<name>.CNST (float, out)
<name>.CNST-run (bit, out)
<name>.CNST—jog (bit, out)
<name>.CNST—command-rf (bit, out)
<name>.CNST-running (bit, out)
<name>.CNST—jogging (bit, out)

<name>.CNST-running—rf (bit, out)

01/04/2026

LinuxCNC

HY_VFD(1) LinuxCNC Documentation HY_VFD(1)

<name>.CNST-bracking (bit, out)
<name>.CNST-track—start (bit, out)

<name > .speed—command (float, in)

<name > .spindle—speed—fb (float, out)
Current spindle speed as reported by Huanyang VFD (rpm).

<name > .spindle—speed—fb—rps (float, out)
Current spindle speed as reported by Huanyang VFD (rps).

<name > .spindle—at—speed—tolerance (float, in)
Spindle speed error tolerance. If the actual spindle speed is within .spindle—at—speed—tolerance of the
commanded speed, then the .spindle—at—speed pin will go True. The default
.spindle—at—speed—tolerance is 0.02, which means the actual speed must be within 2% of the
commanded spindle speed.

<name > .spindle—at—speed (bit, out)
True when the current spindle speed is within .spindle—at—speed—tolerance of the commanded speed.

<name> frequency—command (float, out)
<name>.max—freq (float, out)

<name> base—freq (float, out)

<name> freq—lower—limit (float, out)
<name > rated—motor—voltage (float, out)
<name> .rated—motor—current (float, out)
<name> .rated—motor—rev (float, out)
<name>.motor—poles (u32, out)
<name>.hycomm-—ok (bit, out)

<name> .error—count (s32, RO)

<name> retval (u32, RO)
AUTHOR

Sebastian Kuzminsky

LICENSE
GPL

LinuxCNC 01/04/2026 67

IMAGE-TO-GCODE(1) LinuxCNC Documentation IMAGE-TO-GCODE(1)

NAME

image-to-gcode — converts bitmap images to G—code
SYNOPSIS
image—to—gcode

DESCRIPTION
image—to—gcode converts a bitmap image to G—code inteerpreting the brightness of each pixel as a
Z—-height.

SEE ALSO

linuxcne(1)
Detailed docs: https://linuxcnc.org/docs/devel/html/gui/image—to—gcode.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

68 01/04/2026 LinuxCNC

INIVAR(1) LinuxCNC Documentation INIVAR(1)

NAME
inivar — Query an INI file
SYNOPSIS
inivar —var variable [-sec section] [-num occurrence_number] [—-tildeexpand] [—ini FILE]
DESCRIPTION
Prints to stdout the INI file result of a variable—in—section search, useful for scripts that want to pick things
out of INI files.

Uses emc.ini as default filename. variable needs to be supplied. If section is omitted, first instance of
variable will be looked for in any section. Otherwise, only a match of the variable in section will be
returned.

OPTIONS
—var variable
The variable to search for, if multiple matches exists and —num is not specified, the first match is
returned.

—sec section
The section to search in, if omitted, all sections are searched.

—num occurrence_number
The occurrence number specifies which instance of the variable within the FILE, and section if
provided, should be returned. If omitted, the first matching occurrence is returned.

—tildeexpand
Replace the tilde (*) with the home directory path (equivalent to $(HOME)) in the value obtained from
variable in FILE.
—ini FILE
The INI file to search in, defaults to emc.ini.
EXIT STATUS

0
Success.

variable was not found.
-1
Failure.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright (c) 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 69

10(1)

NAME

LinuxCNC Documentation 10(1)

10, iocontrol — interacts with HAL or G—code in non-realtime

SYNOPSIS

[EMCIO] EMCIO =io

DESCRIPTION

PINS

70

I/O control handles I/O tasks like coolant, toolchange and E—stop. The signals are turned on and off in
non-realtime with G—code or in the case of E—stop in HAL.

The following pins are created by the non—realtime IO controller, usually found in
$LINUXCNC_HOME/bin/io.

iocontrol is a non—realtime process — if you have strict timing requirements or simply need more I/O,
consider using the realtime synchronized I/O provided by motion(9) instead.

The INI file is searched for in the directory from which halcmd was run, unless an absolute path is
specified.

iocontrol.0.coolant-flood (Bit, Out)
TRUE when flood coolant is requested.

iocontrol.0.coolant-mist (Bit, Out)
TRUE when mist coolant is requested.

iocontrol.).emc—enable—in (Bit, In)
Should be driven FALSE when an external E—stop condition exists.

iocontrol.0.tool-change (Bit, Out)
TRUE when a tool change is requested.

iocontrol.0.tool-changed (Bit, In)
Should be driven TRUE when a tool change is completed.

iocontrol.0.tool-number (s32, Out)
Current tool number.

iocontrol.0.tool-prep—number (s32, Out)
The number of the next tool, from the RS274NGC T-word.

iocontrol.0.tool—prep—pocket (s32, Out)
This is the pocket number (location in the tool storage mechanism) of the tool requested by the most
recent T-word.

iocontrol.0.tool-prepare (Bit, Out)
TRUE when a Tn tool prepare is requested.

iocontrol.0.tool-prepared (Bit, In)
Should be driven TRUE when a tool prepare is completed.

iocontrol.0.user—enable—out (Bit, Out)
FALSE when an internal E-stop condition exists.

iocontrol.0.user-request—enable (Bit, Out)
TRUE when the user has requested that E—stop be cleared.

iocontrol.0.tool-prep—index (s32, Out)
10’s internal array index of the prepped tool requested by the most recent T-word. 0 if no tool is
prepped. On Random toolchanger machines this is the tool’s pocket number (i.e., the same as the
tool—-prep—pocket pin), on Non—random toolchanger machines this is a small integer corresponding to
the tool’s location in the internal representation of the tool table. This parameter returns to O after a
successful tool change (M6).

01/04/2026 LinuxCNC

10(1) LinuxCNC Documentation

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

AUTHOR
Derived from a work by Fred Proctor & Will Shackleford.

COPYRIGHT
Copyright © 2004 the LinuxCNC project.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026

10(1)

71

LATENCY-HISTOGRAM(1) LinuxCNC Documentation LATENCY-HISTOGRAM(1)

NAME

latency-histogram — plot a histogram of machine latency

SYNOPSIS
latency—histogram [—?|—-help] [-—base ns] [-—servo ns] [-—bbinsize ns] [--sbinsize ns] [-—bbins 7s]
[——sbins ns] [--logscale 0|1] [-—text nore] [-—show] [-—nobase] [--verbose] [-—nox]

DESCRIPTION
The latency test is important when configuring a LinuxCNC system. An adjunct to the standard latency—test
latency—histogram plots the distribution of latency. This can be useful to get a feel for how frequent the
high latency excursions are.

LinuxCNC and HAL should not be running, stop with halrun —U. Large number of bins and/or small
binsizes will slow updates. For single thread, specify ——nobase (and options for servo thread). Measured
latencies outside of the +/— bin range are reported with special end bars. Use ——show to show count for the
off—chart [pos|neg] pin.

More details: https://linuxcnc.org/docs/html/install/latency—test.html
OPTIONS
-2, —help
Show options and exit.

——base ns_
base thread interval, default: 25000, min: 5000

*——gervo*_ ns_
servo thread interval, default: 1000000, min: 25000

——bbinsize ns_
base bin size, default: 100

*——gsbinsize*_ ns_
servo bin size, default: 100

*——bbins*_ns_
base bins, default: 200

*——gsbins*_ns_

servo bins, default: 200
*——Jogscale*_ 0|1_

y axis log scale, default: 1

——text _note_
additional note, default:

——show
show count of undisplayed bins

——nobase
servo thread only

——verbose
progress and debug

——nox
no GUI, display elapsed, min, max, sdev for each thread

SEE ALSO
latency—plot(1), latency—test(1), linuxcnc(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

72 01/04/2026 LinuxCNC

LATENCY-HISTOGRAM(1) LinuxCNC Documentation LATENCY-HISTOGRAM(1)

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 73

LATENCY-PLOT (1) LinuxCNC Documentation LATENCY-PLOT (1)

NAME

latency-plot — another way to view latency numbers

SYNOPSIS
latency—plot [-? | —help] [-H | —hal] [-b | ——base ns] [—s | ——servo ns] [-t | ——time ms] [
——relative | [——actual |

DESCRIPTION
latency—plot makes a strip chart recording for a base and a servo thread. It may be useful to see spikes in
latency when other applications are started or used. Mainly superseded by latency—histogram.

LinuxCNC and HAL should not be running, stop with halrun —U.

More details: https://linuxcnc.org/docs/html/install/latency—test.html

OPTIONS
—-?, —help
Show options and exit.

-H, —hal, -b, ——base ns
base thread interval in nanoseconds, default: 25000

—S, ——Servo ns
servo thread interval in nanoseconds, default: 1000000

—t, ——time ms
report interval in milliseconds, default: 1000, min: 100, max: 10000

——relative
relative clock time (default)

——actual
actual clock time

SEE ALSO

latency-histogram(1), latency—test(1), linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

74 01/04/2026 LinuxCNC

LATENCY-TEST (1) LinuxCNC Documentation LATENCY-TEST (1)

NAME

latency-test — test the realtime system latency
SYNOPSIS

latency—test [——help] [base—period [servo—period]]
DESCRIPTION

latency—test runs a simple latency test.

Use latency—test ——help for a description of available options.

SEE ALSO

linuxcne(1)
https://linuxcnc.org/docs/html/install/latency—test.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 75

LINEARDELTA(1) LinuxCNC Documentation LINEARDELTA(1)

NAME
lineardelta — Vismach Virtual Machine GUI

DESCRIPTION
lineardelta is one of the sample Vismach GUIs for LinuxCNC, simulating a delta robot with linear
actuators.

SEE ALSO

linuxcne(1)

See the main LinuxCNC documentation for more details. https://linuxcnc.org/docs/html/gui/vismach.html

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

76 01/04/2026 LinuxCNC

LINUXCNC_INFO(1) LinuxCNC Documentation LINUXCNC_INFO(1)

NAME

linuxcnc_info — collects information about the LinuxCNC version and the host

SYNOPSIS

linuxcenc_info

DESCRIPTION
linuxenc_info supplies information about the LinuxCNC version and system info. It creates a text file and
opens it in the default text editor.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

It appears to hang until the text editor is closed.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 77

LINUXCNC_MODULE_HELP(1) LinuxCNC Documentation LINUXCNC_MODULE_HELP(1)

NAME

linuxcnc_module_helper — controls root access for system hardware

SYNOPSIS

linuxcne_module_helper

DESCRIPTION

This module exists to give root access to system hardware for LinuxCNC. It is not directly useful to users.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

78 01/04/2026 LinuxCNC

LINUXCNC_VAR(1) LinuxCNC Documentation LINUXCNC_VAR(1)

NAME

linuxcnc_var — retrieves LinuxCNC variables

SYNOPSIS

linuxenc_var [varname | all |

DESCRIPTION
FIXME: missing

OPTIONS

Option all returns varname=value for all supported varnames

Varnames supported: LINUXCNCVERSION LINUXCNC_AUX_GLADEVCP
LINUXCNC_AUX_EXAMPLES REALTIME RTS HALLIB_DIR

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 79

LINUXCNCLCD(1) LinuxCNC Documentation LINUXCNCLCD(1)

NAME

linuxcncled — LinuxCNC Graphical User Interface for LCD character display
SYNOPSIS

linuxencled —ini <IN file>
DESCRIPTION

linuxcencled is one of the Graphical User Interfaces (GUI) for LinuxCNC. It gets typically run by the
runscript. Linuxcncled is designed to run on a 4 x 20 LCD character display. It is not clear if it has ever
worked.

OPTIONS
INI file
The INI file is the main piece of an LinuxCNC configuration. It is not the entire configuration; there
are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tells LinuxCNC which other files to load and use.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

80 01/04/2026 LinuxCNC

LINUXCNCMKDESKTOP(1) LinuxCNC Documentation LINUXCNCMKDESKTOP(1)

NAME

linuxcncmkdesktop — create a desktop icon for LinuxCNC

SYNOPSIS

linuxcnemkdesktop

DESCRIPTION
linuxenemkdesktop Script used by pickconfig to create a desktop icon for LinuxCNC.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 81

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

NAME

linuxcncrsh — text—mode interface for commanding LinuxCNC over the network

SYNOPSIS

linuxcnersh [OPTIONS] [-—— LINUXCNC_OPTIONS]

DESCRIPTION

The command linuxcnersh is a fully—functional text—based user interface for LinuxCNC. Instead of
popping up a GUI window like AXIS(1) and Touchy(1) do, it processes text—-mode commands that it
receives via the network. A human (or a program) can interface with linuxcncrsh using telnet(1), nc(1) or
similar programs.

It cannot be stressed enough that all features of LinuxCNC are available via the linuxcnersh interface. It
can substitute a graphical Ul or be started in addition to it. If your environment needs to control/monitor
more than one machine from a single location, this text interface may raise your interest. Also, a speech to
text interface may be easier to adapt to this text—based interface than to a graphical one.

OPTIONS

—p,——port PORT_NUMBER
Specify the port for linuxcncrsh to listen on. Defaults to 5007 if omitted.

—n,—name SERVER_NAME
Sets the server name that linuxcncrsh will use to identify itself during handshaking with a new client.
Defaults to EMCNETSVR if omitted.

—-w,——connectpw PASSWORD
Specify the connection password to use during handshaking with a new client. Note that the password
is sent in the clear, so it can be read by anyone who can read packets on the network between the
server and the client. Defaults to EMC if omitted.

—e,——enablepw PASSWORD
Specify the password required to enable LinuxCNC via linuxcncrsh. Note that the password is sent in
the clear, so it can be read by anyone who can read packets on the network between the server and the
client. Defaults to EMCTOO if omitted.

—s,——sessions MAX_SESSIONS
Specify the maximum number of simultaneous connections. Defaults to —1 (no limit) if not specified.

In addition to the options listed above, linuxcncrsh accepts an optional special LINUXCNC_OPTION
at the end:

—ini LINUXCNC_INI_FILE
LinuxCNC INI file to use. The —ini option must be preceded by two dashes: "——". Defaults to emc.ini
if omitted.

STARTING LINUXCNCRSH

82

To use linuxcnersh instead of a normal LinuxCNC GUI like AXIS or Touchy, specify it in your INI file
like this:

[DISPLAY]
DISPLAY=linuxcncrsh

To use linuxcncrsh in addition to a normal GUI, you can either 1. start it at the end of your HAL file, or 2.
run it by hand in a terminal window.

To start it from HAL, add a line like this to the end of your HAL file:

loadusr linuxcnersh [OPTIONS] [-— LINUXCNC_OPTIONS]

01/04/2026 LinuxCNC

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

To start it from the terminal, run linuxcncrsh manually like this:

linuxcnersh [OPTIONS] [-—— LINUXCNC_OPTIONS]
CONNECTING

Once LinuxCNC is up and linuxcenersh is running, you can connect to it using telnet or nc or similar:

telnet HOST PORT
HOST is the hostname or IP address of the computer running linuxcncrsh, and PORT is the port it’s
listening on (5007 if you did not give linuxcncrsh the —port option).

NETWORK PROTOCOL

linuxcncrsh accepts TCP connections on the port specified by the ——port option, or 5007 if not specified.

The client sends requests, and the linuxcncrsh server returns replies. Requests consist of a command word
followed by optional command—specific parameters. Requests and most request parameters are case
insensitive. The exceptions are passwords, file paths and text strings.

Requests to linuxcncrsh are terminated with line endings, any combination of one or more \r and \n
characters. Replies from linuxcncrsh are terminated with the sequence \r\n.

The supported commands are as follows:

hello <password> <client> <version>
<password> must match linuxcncrsh’s connect password, or "EMC" if no ——connectpw was supplied.
The three arguments may not contain whitespace. If a valid password was entered the server will
respond with:

HELLO ACK <ServerName> <ServerVersion>
If an invalid password or any other syntax error occurs then the server responds with:

HELLO NAK

get <subcommand> [<parameters>]
The get command takes one of the LinuxCNC sub—commands (described in the section LinuxCNC
Subcommands, below) and zero or more additional subcommand—specific parameters.

set <subcommand> <parameters>
The set command takes one of the LinuxCNC sub—commands (described in the section LinuxCNC
Subcommands, below) and one or more additional parameters.

quit
The quit command disconnects the associated socket connection.

shutdown
The shutdown command tells LinuxCNC to shutdown and disconnect the session. This command may
only be issued if the Hello has been successfully negotiated and the connection has control of the CNC
(see enable subcommand in the LinuxCNC Subcommands section, below).

help
The help command will return help information in text format over the connection. If no parameters
are specified, it will itemize the available commands. If a command is specified, it will provide usage
information for the specified command. Help will respond regardless of whether a "Hello" has been
successfully negotiated.

LINUXCNC SUBCOMMANDS

Subcommands for get and set are:

echo {on|off}
With get, any on/off parameter is ignored and the current echo state is returned. With set, sets the echo

LinuxCNC 01/04/2026 83

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

84

state as specified. Echo defaults to on when the connection is first established. When echo is on, all
commands will be echoed upon receipt. This state is local to each connection.

verbose {on|off}
With get, any on/off parameter is ignored and the current verbose state is returned. With set, sets the
verbose state as specified. When verbose mode is on all set commands return positive
acknowledgement in the form

SET <COMMAND> ACK

and text error messages will be issued (FIXME: I don’t know what this means). The verbose state is
local to each connection, and starts out OFF on new connections.

enable { <passwd> | off }
The session’s enable state indicates whether the current connection is enabled to perform control
functions. With get, any parameter is ignored, and the current enable state is returned. With set and a
valid password matching linuxcncrsh’s —enablepw (EMCTOO if not specified), the current
connection is enabled for control functions. "OFF" may not be used as a password and disables control
functions for this connection.

config [TBD]
Unused, ignore for now.

comm_mode { ascii | binary }
With get, any parameter is ignored and the current communications mode is returned. With set, will set
the communications mode to the specified mode. The ASCII mode is the text request/reply mode, the
binary protocol is not currently designed or implemented.

comm_prot <version>
With get, any parameter is ignored and the current protocol version used by the server is returned.
With set, sets the server to use the specified protocol version, provided it is lower than or equal to the
highest version number supported by the server implementation.

inifile
Not currently implemented! With get, returns the string emc.ini. Should return the full path and file
name of the current configuration INI file. Setting this does nothing.

plat
With get, returns the string Linux.

ini <var> <section>
Not currently implemented, do not use! Should return the string value of <var> in section <section>
of the INI file.

debug <value>
With get, any parameter is ignored and the current integer value of EMC_DEBUG is returned. Note
that the value of EMC_DEBUG returned is the from the UI’s INI file, which may be different than
emc’s INI file. With set, sends a command to the EMC to set the new debug level, and sets the
EMC_DEBUG global here to the same value. This will make the two values the same, since they
really ought to be the same.

wait_mode { received | done }
The wait_mode setting controls the wait after receiving a command. It can be "received" (after the
command was sent and received) or "done" (after the command was done). With get, any parameter is
ignored and the current wait_mode setting is returned. With set, set the wait_mode setting to the
specified value.

wait { received | done }
With set, force a wait for the previous command to be received, or done.

set_timeout <timeout>
With set, set the timeout for commands to return to <timeout> seconds. timeout is a real number. If

01/04/2026 LinuxCNC

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

it’s 4 0.0, it means wait forever. Default is 0.0, wait forever.

update { none | auto }
The update mode controls whether to return fresh or stale values for "get" requests. When the update

mode is "none" it returns stale values, when it’s "auto" it returns fresh values. Defaults to "auto" for
new connections. Set this to "none" if you like to be confused.

error
With get, returns the current error string, or "ok" if no error.

operator_display
With get, returns the current operator display string, or "ok" if none.

operator_text
With get, returns the current operator text string, or "ok" if none.

time
With get, returns the time, in seconds, from the start of the epoch. This starting time depends on the
platform.

estop { on | off }
With get, ignores any parameters and returns the current estop setting as "on" or "off". With set, sets
the estop as specified. E—stop "on" means the machine is in the estop state and won’t run.

machine { on | off }
With get, ignores any parameters and returns the current machine power setting as "on" or "off". With
set, sets the machine on or off as specified.

mode { manual | auto | mdi }
With get, ignores any parameters and returns the current machine mode. With set, sets the machine
mode as specified.

mist { on | off }
With get, ignores any parameters and returns the current mist coolant setting. With set, sets the mist
setting as specified.

flood { on | off }
With get, ignores any parameters and returns the current flood coolant setting. With set, sets the flood
setting as specified.

spindle { forward | reverse | increase | decrease | constant | off } { <spindle>}
With get, any parameter is ignored and the current spindle state is returned as "forward", "reverse",
"increase", "decrease", or "off". With set, sets the spindle as specified. Note that "increase" and
"decrease" will cause a speed change in the corresponding direction until a "constant”" command is
sent. If <spindle> is omitted, spindle 0 is selected. If —1, all spindles are selected.

brake { on | off } { <spindle>}
With get, any parameter is ignored and the current brake setting is returned. With set, the brake is set
as specified. If <spindle> is omitted, spindle O is selected. If —1, all spindles are selected.

tool
With get, returns the id of the currently loaded tool.

tool_offset
With get, returns the currently applied tool length offset.

load_tool_table <file>
With set, loads the tool table specified by <file>.

home {0[1]2|...} | -1
With set, homes the indicated joint or, if —1, homes all joints.

jog_stop joint_number|axis_letter With set, stop any in—progress jog on the specified joint or axis. If
TELEOP_ENABLE is OFF, use joint_number. If TELEOP_ENABLE is ON, use axis_letter.

LinuxCNC 01/04/2026 85

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

jog joint_number | axis_letter <speed>
With set, jog the specified joint or axis at <speed>; sign of speed is direction. If TELEOP_ENABLE
is OFF, use joint_number; If TELEOP_ENABLE is ON, use axis_letter.

jog_incr jog_number | axis_letter <speed> <incr>
With set, jog the indicated joint or axis by increment <incr> at the <speed>; sign of speed is
direction. If TELEOP_ENABLE is OFF, use joint_number. If TELEOP_ENABLE is ON, use
axis_letter.

feed_override <percent>
With get, any parameter is ignored and the current feed override is returned (as a percentage of
commanded feed). With set, sets the feed override as specified.

spindle_override <percent> { <spindle>}
With get, any parameter is ignored and the current spindle override is returned (as a percentage of
commanded speed). With set, sets the spindle override as specified. If spindle is omitted, spindle O is
selected. If —1, all spindles are selected.

abs_cmd_pos [{0[1]...}]

With get, returns the specified axis' commanded position in absolute coordinates. If no axis is
specified, returns all axes' commanded absolute position.

abs_act_pos [{0[1]...}]
With get, returns the specified axis' actual position in absolute coordinates. If no axis is specified,
returns all axes' actual absolute position.

rel_cmd_pos [{0[1]...}]
With get, returns the specified axis' commanded position in relative coordinates, including tool length
offset. If no axis is specified, returns all axes' commanded relative position.

rel_act_pos [{0[1]...}]
With get, returns the specified axis' actual position in relative coordinates, including tool length offset.
If no axis is specified, returns all axes' actual relative position.

joint_pos [{O[1]...}]
With get, returns the specified joint’s actual position in absolute coordinates, excluding tool length
offset. If no joint is specified, returns all joints' actual absolute position.

pos_offset [{X|Y|Z|R|P|W}]
With get, returns the position offset associated with the world coordinate provided.

joint_limit [{0[1]...}]
With get, returns limit status of the specified joint as "ok", "minsoft", "minhard", "maxsoft", or
"maxhard". If no joint number is specified, returns the limit status of all joints.

joint_fault [{0[1]...}]
With get, returns the fault status of the specified joint as "ok" or "fault". If no joint number is specified,
returns the fault status of all joints.

joint_homed [{0[1]...}]
With get, returns the homed status of the specified joint as "homed" or "not". If no joint number is
specified, returns the homed status of all joints.

mdi <string>
With set, sends <string> as an MDI command.

task_plan_init
With set, initializes the program interpreter.

open <filename>
With set, opens the named file. The <filename> is opened by linuxcnc, so it should either be an

absolute path or a relative path starting in the LinuxCNC working directory (the directory of the active
INI file).

86 01/04/2026 LinuxCNC

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

run [<StartLine>]
With set, runs the opened program. If no StartLine is specified, runs from the beginning. If a StartLine
is specified, start line, runs from that line. A start line of —1 runs in verify mode.

pause
With set, pause program execution.

resume
With set, resume program execution.

abort
With set, abort program or MDI execution.

step
With set, step the program one line.

program
With get, returns the name of the currently opened program, or "none".

program_line
With get, returns the currently executing line of the program.

program_status
With get, returns "idle", "running", or "paused".

program_codes
With get, returns the string for the currently active program codes.

joint_type [<joint>]
With get, returns "linear”, "angular”, or "custom" for the type of the specified joint (or for all joints if
none is specified).

joint_units [<joint>]
With get, returns "inch", "mm", "cm", or "deg", "rad", "grad", or "custom", for the corresponding
native units of the specified joint (or for all joints if none is specified). The type of the axis (linear or
angular) is used to resolve which type of units are returned. The units are obtained heuristically, based
on the EMC_AXIS_STAT::units numerical value of user units per mm or deg. For linear joints,
something close to 0.03937 is deemed "inch", 1.000 is "mm", 0.1 is "cm", otherwise it’s "custom". For
angular joints, something close to 1.000 is deemed "deg", PI/180 is "rad", 100/90 is "grad", otherwise
it’s "custom".

program_units
Synonym for program_linear_units.

program_linear_units
With get, returns "inch", "mm", "cm", or "none", for the corresponding linear units that are active in
the program interpreter.

program_angular_units
With get, returns "deg", "rad", "grad", or "none" for the corresponding angular units that are active in
the program interpreter.

user_linear_units
With get, returns "inch", "mm", "cm", or "custom", for the corresponding native user linear units of the
LinuxCNC trajectory level. This is obtained heuristically, based on the
EMC_TRAIJ_STAT::linearUnits numerical value of user units per mm. Something close to 0.03937 is

LN

deemed "inch", 1.000 is "mm", 0.1 is "cm", otherwise it’s "custom".

user_angular_units
Returns "deg", "rad", "grad", or "custom" for the corresponding native user angular units of the
LinuxCNC trajectory level. Like with linear units, this is obtained heuristically.

display_linear_units
With get, returns "inch", "mm", "cm", or "custom", for the linear units that are active in the display.

LinuxCNC 01/04/2026 87

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

This is effectively the value of linearUnitConversion.

display_angular_units
With get, returns "deg", "rad", "grad", or "custom", for the angular units that are active in the display.
This is effectively the value of angularUnitConversion.

linear_unit_conversion { inch | mm | cm | auto }
With get, any parameter is ignored and the active unit conversion is returned. With set, sets the unit to
be displayed. If it’s "auto", the units to be displayed match the program units.

angular_unit_conversion { deg | rad | grad | auto }
With get, any parameter is ignored and the active unit conversion is returned. With set, sets the units to
be displayed. If it’s "auto", the units to be displayed match the program units.

probe_clear
With set, clear the probe tripped flag.

probe_tripped
With get, return the probe state — has the probe tripped since the last clear?

probe_value
With get, return the current value of the probe signal.

probe <x> <y> <z>
With set, move toward a certain location. If the probe is tripped on the way stop motion, record the
position and raise the probe tripped flag.

teleop_enable [on | off]
With get, any parameter is ignored and the current teleop mode is returned. With set, sets the teleop
mode as specified.

kinematics_type
With get, returns the type of kinematics functions used (identity=1, serial=2, parallel=3, custom=4).

override_limits { on | off }
With get, any parameter is ignored and the override_limits setting is returned. With set, the
override_limits parameter is set as specified. If override_limits is on, disables end of travel hardware
limits to allow jogging off of a limit. If parameters is off, then hardware limits are enabled.

optional_stop {0]1}

With get, any parameter is ignored and the current "optional stop on M1" setting is returned. With set,
the setting is set as specified.

EXAMPLE SESSION

88

This section shows an example session to the local machine (localhost). Bold items are typed by you,
non-bold is machine output. Default values are shown for ——port PORT_NUMBER (5007), ——conectpw
PASSWORD (EMC), and —enablepw PASSWORD (EMCTOO).

The user connects to linuxcncrsh, handshakes with the server (hello), enables machine commanding from
this session (set enable), brings the machine out of E—stop (set estop off) and turns it on (set machine on),
homes all the axes, switches the machine to mdi mode, sends an MDI G—code command, then disconnects
and shuts down LinuxCNC.

> *telnet localhost 5007* +

Trying 127.0.0.1... +

Connected to 127.0.0.1 +

Escape character is "]'". +

hello EMC user—typing—at—telnet 1.0% +
HELLO ACK EMCNETSVR 1.1 +

set enable EMCTOO +

set enable EMCTOO +

set mode manual +

01/04/2026 LinuxCNC

LINUXCNCRSH(1) LinuxCNC Documentation LINUXCNCRSH(1)

set mode manual +

set estop off +

set estop off +

set machine on +

set machine on +

set home 0 +

set home O +

set home 1 +

set home 1 +

set home 2 +

set home 2 +

set mode mdi +

set mode mdi +

set mdi gOx1 +

set mdi gOx1 +

help +

help +

Available commands: Hello <password> <client name> <protocol version>
Get <emc command> Set <emc command> Shutdown Help <command> +
help get +

help get +

Usage: Get <emc command> Get commands require that a hello has been
successfully negotiated. Emc command may be one of: Abs_act_pos
Abs_cmd_pos +

¥ EE

*shutdown™® +

shutdown +

Connection closed by foreign host.

LinuxCNC 01/04/2026 89

LINUXCNCSVR(1) LinuxCNC Documentation LINUXCNCSVR(1)

NAME

linuxcnesvr — Allows network access to LinuxCNC internals via NML

SYNOPSIS

linuxcnesvr

DESCRIPTION
FIXME: Missing

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

90 01/04/2026 LinuxCNC

LINUXCNCTOP(1) LinuxCNC Documentation LINUXCNCTOP(1)

NAME

linuxcnctop — live LinuxCNC status description

SYNOPSIS
linuxcnctop —ini INIFILE

DESCRIPTION

linuxcenctop displays much of the LinuxCNC state in a live format similar to the Linux "top" command.

It is more fully documented in the AXIS GUI documentation but can be run standalone or with other GUIs.

SEE ALSO

linuxcne(1)
https://linuxcnc.org/docs/html/gui/axis.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 91

MAHOG600GUI(1) LinuxCNC Documentation MAHOG600GUI(1)

NAME
maho600gui — Vismach Virtual Machine GUI

DESCRIPTION
maho600gui is one of the sample Vismach GUIs for LinuxCNC, simulating a Maho 600 CNC Milling
Machine.

See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

92 01/04/2026 LinuxCNC

MAXS5GUI(1) LinuxCNC Documentation MAXS5GUI(1)

NAME
max5gui — Vismach Virtual Machine GUI

DESCRIPTION
maxSgui is one of the sample Vismach GUIs for LinuxCNC, simulating a 5 axis CNC Milling Machine.

See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 93

MB2HAL(1) LinuxCNC Documentation MB2HAL(1)

NAME

mb2hal — HAL non-realtime component for Modbus

SYNOPSIS

Default component name
loadusr —W mb2hal config=config_file.ini

Custom component name
loadusr —Wn mymodule mb2hal config=config_file.ini

DESCRIPTION

MB2HAL is a generic non—realtime HAL component to communicate with one or more Modbus devices. It
supports Modbus RTU and Modbus TCP.

See https://linuxcnc.org/docs/html/drivers/mb2hal.html for more information.

PINS

94

fnct_01_read_coils:
mb2hal.m.n.bit bit out mb2hal.m.n.bit—inv bit out

fnct_02_read_discrete_inputs:
mb2hal.m.n.bit bit out mb2hal.m.n.bit—inv bit out

fnct_03_read_holding_registers:
mb2hal.m.n.float float out mb2hal.m.n.int s32 out

fnct_04_read_input_registers:
mb2hal.m.n.float float out mb2hal.m.n.int s32 out

fnct_05_write_single_coil:
mb2hal.m.n.bit bit in
NELEMENTS needs to be 1 or PIN_NAMES must contain just one name.

fnct_06_write_single_register:
mb2hal.m.n.float float in

mb2hal.m.n.int s32 in
NELEMENTS needs to be 1 or PIN_NAMES must contain just one name.

Both pin values are added and limited to 65535 (UINT16_MAX). Use one and let the other open (read
as 0).

fnct_15_write_multiple_coils:
mb2hal.m.n.bit bit in

fnct_16_write_multiple_registers:
mb2hal.m.n.float float in

mb2hal.m.n.int s32 in
Both pin values are added and limited to 65535 (UINT16_MAX). Use one and let the other open (read
as 0).

Each transaction
mb2hal.m.num_errors u32 in
Error counter
m = HAL_TX_NAME or transaction number if not set n = element number (NELEMENTYS)

Example:

mb2hal.00.01.int (TRANSACTION_00, second register)
mb2hal.readStatus.01.bit (HAL_TX_NAME-=readStatus, first bit)

01/04/2026 LinuxCNC

MB2HAL(1) LinuxCNC Documentation MB2HAL(1)

AUTHOR

Victor Rocco

LICENSE
GPL

LinuxCNC 01/04/2026 95

MDI(1) LinuxCNC Documentation MDI(1)

NAME
mdi — Send G—code commands from the terminal to the running LinuxCNC instance

SYNOPSIS

mdi

DESCRIPTION
mdi sends G—code commands to LinuxCNC. The command starts an envirmonemt in which G—code
commands are sent to the interpreter and machine feedback is displayed.

USAGE

send a single command and exit:
mdi m2 s1400
interactive session

$mdi

MDI> m3 s1000
MDI> GO X100
MDI>“ "Z
$stopped

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

96 01/04/2026 LinuxCNC

MDRO(1) LinuxCNC Documentation MDRO(1)

NAME
mdro — manual only Digital Read Out (DRO)

SYNOPSIS
mdro [-V] [-p point_size] [-m] [-] file.var] [axes]

DESCRIPTION
mdro is a manual only DRO providing functionality similar to a traditional manual DRO. It is most useful
for manual machines converted to CNC. It allows the user to manually control the machine while
continuing to use the DRO scales on the axes. The GUI can be sized to match the user’s screen. It is
mouse—only and touchscreen friendly.

OPTIONS
These command line options are normally used when mdro is started in a HAL file. See below for the
corresponding .ini file options.

v
Turn on verbose debug prints. —vv is even more verbose.

P point_size
Set the point size for the text in the application. This option controls the overall size of the window on
the screen. Default is 20. Typical values range from 20 to 30.

Set this if the DRO scales provide data scaled in millimeters.

1 file.var
Load G54 through G57 coordinates from file.var.

axes
This option is used to specify the names of the axes handled by the program. The default is "XYZ". A
four axis mill would use "XYZA", and a lathe with a two axis DRO might use "XZ".

SCREEN CONFIGURATION
The top of the screen includes a row for each axis specified in axes. Data in these rows are derived from
signals on the mdro.axis.n pins that are instantiated when mdro is started. Each row includes buttons that
allow the value to be be zeroed, to be halved or a new value to be entered. There is also a button that
enables the index zero process for that axis.

The screen includes buttons that allow the selection of one of four different coordinate systems. The
machine coordinate system can also be selected though it cannot be changed.

The screen includes a keypad that can be used with a mouse or a touch screen to enter coordinate data.

Finally, buttons on the screen allow the selection of inch or mm data display.

USAGE
mdro is normally started from the [DISPLAY] entry in a dedicated mdro.ini file. The INI file and the
associated HAL files should include the pins and signals that support the DRO scales. The HAL
connections to mdro must be done in the POSTGUI_HALFILE referenced in the INI file.

Other [DISPLAY] section options

GEOMETRY = axes
Names the coordinate axes used in the program. For example, "XYZ" for a 3 axis mill or "XZ"
for a lathe, Default is "XYZ".

MDRO_VAR_FILE = file.var
Preload a VAR file. This is typically the VAR file used by the operational code.

POINT SIZE=n
This option sets the size of the font used which sets the overall size of the window. The default
point size is 20, Typical sizes are 20 to 30.

LinuxCNC 01/04/2026 97

MDRO(1) LinuxCNC Documentation MDRO(1)

MM =1
Set this if the DRO scales provide data scaled in millimeters.

EXAMPLE

Using an example of "XYZA" for an axes argument, these pins will be created when mdro starts:

mdro.axis.0 mdro.axis.1 mdro.axis.2 mdro.axis.3 mdro.index—enable.0 mdro.index—enable.1
mdro.index—enable.2 mdro.index—enable.3

In this example, the first row will be labeled "X" and will show the data associated with pin mdro.axis.0. In
many configurations, mdro.axis.0 can be connected directly to x—pos—fb in the POSTGUI-HAL file. The
index pins should be connected to the corresponding index—enable pins from the DRO.

mdro can also be started via a "loadusr" command in a HAL file for a trial. Here’s an example of a sim
setup:

loadusr —W mdro -1 sim.var XYZ net x—pos—fb a4 mdro.axis.0 net y—pos—fb & mdro.axis.1 net z—pos—fb a
mdro.axis.2

AUTHOR
Robert Bond

COPYRIGHT
Copyright © 2022 Robert Bond

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

98 01/04/2026 LinuxCNC

MELFAGUI(1) LinuxCNC Documentation MELFAGUI(1)

NAME
melfagui — Vismach Virtual Machine GUI

DESCRIPTION

melfagui is one of the sample Vismach GUIs for LinuxCNC, simulating a Mitsubishi serial manipulator.

SEE ALSO

linuxcne(1)
https://linuxcnc.org/docs/html/gui/vismach.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 99

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

NAME

mesambccc — Utility for compiling hm2_modbus command control description files

SYNOPSIS

mesambcece [—h|——help] [-v|-—verbose] [-o file|-—outpur=file] <filename.source.mbccs>

DESCRIPTION
The mesambccc utility is used to compile hm2_modbus driver command control description files for
running Modbus devices with Mesa cards using the PktUARTSs. The MBCCS source file is an XML
formatted document which describes the devices connected, pins to create and commands to issue to the
PktUART port using the Modbus protocol. See MBCCS FILE FORMAT below.

OPTIONS
—h, —help
Show a brief help message and exit.
—o file, ——output=file

Save the compiled output to file. The file name mesamodbus.output.mbccb is used if no file is specified
on the command line.

—v, ——verbose
Output a verbose list of configuration parameters, devices, Modbus messages and HAL pins.

MBCCS FILE FORMAT
The Modbus command control source file (mbccs file) is an XML formatted document describing the
communication parameters, connected devices, HAL pins and command functions to be sent over Modbus.
The overall layout is as follows:

<?7xml version="1.0" encoding="UTF-8"?>
<mesamodbus [attributes...]>
<devices>...</devices>
<initlist>...</initlist>
<commands>...</commands>
</mesamodbus>

The <devices> tag must be defined before either <initlist> or <commands> are defined.

ATTRIBUTE VALUES
Attribute values are generally case insensitive, except for the name attributes, which should always be lower
case.

Boolean attributes accept values "false" and "0" for false and "true" and "1" for true. Integer numerical
values can be entered in decimal, hexadecimal, octal or binary form. The latter three require the value to be
prefixed with "0x", "00" or "Ob" respectively. Floating point values follow standard rules for floating point
values.

All values are checked to be within an acceptable range. Errors and warnings are emitted when values are
out of bounds. In case of a warning they may be clamped to the acceptable range.

MODBUS FUNCTIONS
A subset of the Modbus functions is supported (with function number in parentheses):

e R_COILS (1): Maps to 1..2000 HAL output pins of type HAL_BIT.

e R_INPUTS (2): Maps to 1..2000 HAL output pins of type HAL_BIT.

e R_REGISTERS (3): Maps to 1..125 HAL output pins depending haltype and scale attributes.
e R_INPUTREGS (4): Maps to 1..125 HAL output pins depending haltype and scale attributes.

100 01/04/2026 LinuxCNC

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

W_COIL (5): Maps to single HAL input pin of type HAL_BIT.

W_REGISTER (6): Maps to single HAL input pins depending haltype and scale attributes.
W_COILS (15): Maps to 1..2000 HAL input pins of type HAL_BIT.

W_REGISTERS (16): Maps to 1..125 HAL input pins depending haltype and scale attributes.

You can use the function’s symbolic name or numerical value in <command> in the function attribute (as in
function="W_REGISTERS" or function="16").

MODBUS TYPES
The modbustype attribute declares the interpretation of values to or from a Modbus device’s registers. They
can be a signed integer (S), unsigned integer (U) or a floating point value (F). The size of the value can be
16-bit, 32—bit or 64-bit and the byte—ordering must be specified. The Modbus default, when speaking in
"register" quantities, is an unsigned 16-bit value in big—endian (U_AB).

Modbus devices may implement other interpretations covering multiple consecutive registers to create
larger or other types. In doing so, multiple device vendors have created some different interpretations of the
data that needs to be covered. Differences are primarily byte—ordering.

The byte—ordering is specified with one of the following suffixes:
« A, B
« _AB, BA
 _ABCD, BADC, _CDAB, DCBA

 _ABCDEFGH, _BADCFEHG, _CDABGHEF, _DCBAHGFE, _EFGHABCD, _FEHGBADC,
_GHEFCDAB, _HGFEDCBA

Modbus standard byte—ordering is big—endian, which is the first in each list (_AB, _ABCD and
_ABCDEFGH). Little—endian is the last in each list. The user may use any of the byte—orderings necessary
and required because some device vendors have not paid attention to the proper on—wire ordering.

The orderings _A and _B are single byte values from a modbus register. A single byte will be taken from
the register value. You cannot access successive bytes from the same register using these types. (You
require a second component that de—multiplexes the HAL value(s) into individual bytes from the data
stream using the hm2_modbus presented pin values.) The ordering _A will use the the least significant byte
(LSB), with respect to the default big endian order for Modbus. Ordering _B will use the most significant
byte (MSB). Note that there is no floating point type when only using sizes of one single byte. Single byte
values have the additional restriction that they cannot be wused as data values in
<initlist>/<command>/<data>.

The byte—ordering suffix is prefixed with S (signed), U (unsigned) or F (float) to complete the modbustype
attribute value. For example, a 32—-bit float in big—endian is named F_ABCD. A 64-bit signed integer value
in little—endian is S_ HGFEDCBA.

The types have following ranges and will be clamped to the min/max values if the clamp attribute is set in
the <command>:

e 8-bit:
* signed integer [-128..+127] (S_A, S_B)
* unsigned integer [0..255] (U_A, U_B)

e 16-bit:

LinuxCNC 01/04/2026 101

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

102

e floatl6 [-65504.0..465504.0] (F_AB, F_BA)
* signed integer [-32768..+32767] (S_AB, S_BA)
* unsigned integers [0..65535] (U_AB, U_BA)
e 32-bit:
o float [-3.4e38..+3.4e38] (F_ABCD...F_DCBA)
¢ signed integer [-2147483648..42147483647] (S_ABCD...S_DCBA)
* unsigned integer [0..4294967296] (U_ABCD...U_DCBA)

* 64-bit:
* double [-1.7e308..+1.7e308] (F_ABCDEFGH...F_HGFEDCBA)
* signed integer [-9223372036854775808..9223372036854775807]

(S_ABCDEFGH...S_HGFEDCBA)
* unsigned integer [0..18446744073709551615] (U_ABCDEFGH...U_HGFEDCBA)

<mesamodbus>

The main enclosing tag <mesamodbus> contains the communication parameters and other setup values as
attributes:

baudrate [1200..1000000]
Communication speed. Any speed over 460800 will result in side—effects because the internal
hardware timers may overflow to keep track of the Modbus protocol requirements. Default 9600.

drivedelay [auto, 1..31]
The delay, in bit—times, before transmission begins after enabling the transmitter hardware output
driver. Default auto.

duplex [full, half]
Whether 2—wire (half duplex) or 4-wire (full duplex) communication is set. Default half.

icdelay [auto, 1..255]
The maximum allowed inter—character delay between two received characters in bit—times. Default:
auto.

interval [0..3600000000]
The default command repeat interval in micro—seconds. This is effectively the time between repeating
the <commands> list (sending writes and receiving reads from the Modbus devices). An interval
shorter than the time it takes to work through the <commands> list will just repeat the <commands>
list as fast as possible.

The interval may be overridden in the individual <commands> <command> instructions. Default 0.

parity [N, O, E]
Communication parity none (N), odd (O) or even (E). Default E.

rxdelay, txdelay [auto, 1..1020]
Inter frame delay between packets sent/received. The value is in bit—times. The appropriate value will
be calculated automatically when this attribute is omitted. If set manually, the txdelay value should
generally be larger than rxdelay value. The value is limited to [1..255] for PktUART V2. Default auto.

stopbits [1, 2]
Communication number of stopbits. This attribute requires PktUART V3+ to have any effect. Default
1.

suspend [Boolean]
Start with suspended communication when set. This enables you to setup pin, scale and offset values
in the HAL file(s) using setp/sets commands before data is written to any Modbus device. Default
false.

01/04/2026 LinuxCNC

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

timeout [auto, 10000..10000000]
The standard time a command may take in micro—seconds (send request plus handling plus receive
reply) before the command is deemed lost. The special value of auto will calculate an appropriate
timeout value from the request and reply sizes. The timeout value can be overridden in the
<command> definitions. Default auto.

writeflush [Boolean]
Set to true when the first round of write commands must synchronize the internal state to the pin state.
The writes are calculated but not sent to the Modbus device (i.e. flushed). This flush happens either
once when the module starts, each time when the module comes out of suspend, or specifically for a
command when it gets re—enabled.

The write flush is necessary when you need to ensure proper and correct pin data is present before the
Modbus commands start sending potentially harmful or invalid data because the pins have not yet been
initialized to their proper values. When set, only pin values that are changed from their initial values
are propagated in Modbus write commands.

This value represents the global default used buy the individual commands from the <commands>
section and can be overridden in the individual <command> instructions. Default true.

The default parameters, without any attributes defined in <mesamodbus>, are half duplex serial setup using
8E1@9600 and running all commands as fast as possible. Timeouts and other timing parameters are
calculated automatically.

<devices>
Each connected device to the physical bus must be declared in a <device> tag with a name and an address
attribute. A device with name broadcast is implicitly added with address zero (0). Device entries may
include a <description> tag, which serves as a user’s comment.

<devices>
<device address="0x01" name="binbox" />
<device address="0x02" name="vroom">
<description>Round and round and round...</description>
</device>
<device address="0x66" name="clickies">
<description>Many, many relays</description>
</device>
</devices>

Recognized <devices>/<device> attributes:

address [1..247]
The Modbus slave device ID. The Modbus reserved address range 248..255 is accepted, but a warning
is emitted.

name
The name of the device. The name must be in lower case ASCII and adhere to the HAL specification
comprising of letters and numbers with optional dash and period. It is strongly advised to use letters
only in a descriptive word. The device’s name is used to construct the HAL pin names.
<initlist>
The <initlist> tag contains a list of <command> tags that are only sent once at the startup of the system.
The commands can be used to initialize any devices on the bus prior to normal operation. Commands can
be both read and write functions. Write functions must have data defined to be sent. Each <command>
entry may include a <description> tag, which serves as a user’s comment.

Note: if the driver starts in suspended mode (supend="true" in <mesamodbus>), then the <initlist>

LinuxCNC 01/04/2026 103

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

104

commands are first sent when the driver comes out of suspend.

<initlist>
<command device="scd30" function="W_REGISTER" address="0x0034">
<description>Soft reset</description>
<data value="1" />
</command>
<command device="relay" function="W_COILS" address="0">
<data value="0" />
<data value="1" />
<data value="1" />
<data value="0" />
<description>Four relays set to off-on—on—off</description>
</command>
<command device="boombox" function="W_COIL" address="0">
<data value="0xff00" />
<description>Single output set to on to hear the boombox </description>
</command>
<command delay="2000000">
<description>Wait for reset to finish</description>
</command>
<command device="fltbox" function="W_REGISTERS" address="0xcafe">
<data modbustype="F_ABCD" value="0.53" />
<data modbustype="F_ABCD" value="99.999" />
<description>Send four 16—-bit words: 0x3f07 Oxael4 0x42c7 0xff7d
(floats in binary, big—endian)</description>
</command>
</initlist>

A <command> is either a delay instruction, a communication parameter change or a Modbus transaction to
perform. Only the delay attribute is supported in case of a delay instruction and all activity is suspended
during the specified delay. A communication parameter change can use any communication related
attribute from the <mesamodbus> tag and must revert to the defaults set in the <mesamodbus> tag at the
end on the <initlist>.

Modbus write functions must include one or more <data> tags to encapsulate the data to send. The <dara>
tag has a mandatory attribute value to capture the value to send. An optional modbustype attribute models
the data to send to the format of the modbustype. The default is U_AB if the type is not specified.

The write coils Modbus function W_COILS (15) further restrict the value to zero (0) or one (1). The write
coil W_COIL (5) has a fixed type of U_AB and expects a value of 0x0000 or 0xff00. Other values may be
given, but a warning will then be emitted.

The Modbus read functions R_COILS (1), R_INPUTS (2), R_REGISTERS (3) and R_INPUTREGS (4)
are supported in the <initlist>/<command> but the returned data is ignored and discarded. Read functions
are supported because some devices require a read function as a trigger.

Recognized <initlist>/<command> attributes when sending Modbus commands:

address [0..65535]
The Modbus coil/input/register starting address.

bcanswer [Boolean]
Set to true if a device sends an answer on broadcast, which must be ignored. Default false.

count [1..2000]/[1..125]

01/04/2026 LinuxCNC

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

Modbus read functions R_COILS (1), R_INPUTS (2), R_REGISTERS (3) and R_INPUTREGS (4)
must specify the number of coils, inputs, registers or inputregs to read. Write functions do not require
the count attribute because the <data> tags dictate the size of the packet to send.

device
The Modbus device to communicate with. The device attribute references <device>[name].

The device name broadcast will send the command to all devices on the bus.

function [see MODBUS FUNCTIONS]
The attribute value is one of the supported Modbus functions.

noanswer [Boolean]
Set to true if a device does not return a reply to a command. This can be intentional if you send a
command to a non—existing device. Default false.

timeout [auto, 1..60000000]
The override timeout of <mesamodbus>[timeout] for this command in micro—seconds (send request
plus handling plus receive reply) before the command is deemed lost. See also timeoutbits below.
Default <mesamodbus> [timeout].

timeoutbits [0..1000000]
The override timeout of <mesamodbus>[timeout] for this command in bit times (send request plus
handling plus receive reply) before the command is deemed lost. The actual timeout is automatically
calculated and scaled by the <mesamodbus>[baudrate] setting. See also timeout above. Default use
timeout attribute.

timesout [Boolean]
Set to true if the command is known to (periodically) timeout and no error should be emitted when it
does. This differs from noanswer in that a reply may be expected within the timeout period but not
after the timeout expires. This may be required for flaky devices. Default false.

Delay instruction

Recognized <initlist>/<command> attributes in delay commands:

delay [0..60000000]
Communication will be suspended by delay micro—seconds.

Communication parameter change

Communication parameters may be temporarily changed to perform live setup of Modbus
devices to change their own communication parameters. Some devices will start with a fixed
rate and must be reprogrammed at start to change to a different rate. The default setup from
<mesamodbus> must be restored if one or more parameters were changed or a warning will
be emitted.

Recognized <initlist>/<command> attributes in communication parameter change
commands. Attributes not specified will be taken from the <mesamodbus> tag’s attributes:

baudrate [1200..1000000]
Communication speed override.

drivedelay [auto, 1..31]
The TX driver delay override.

icdelay [auto, 1..255]
The inter—character delay override.

parity [N, O, E]
Communication parity override.

LinuxCNC 01/04/2026 105

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

106

rxdelay, txdelay [auto, 1..1020]
Inter frame delay override.

stopbits [1, 2]
Communication number of stopbits override.

Initialization data

Recognized <initlist>/<command>/<data> attributes:

modbustype [see MODBUS TYPES]
The destination format and translation of the value attribute.

value
The numerical value of the data to send. The format defaults to unsigned 16-bit integer but
depends on the modbustype attribute and the range of acceptable values depends on the Modbus
function.

HAL TYPES

A <command> in the <commands> section maps to one or more HAL pins with specific type using the
haltype attribute. Recognized are:

e HAL BIT

e HAL FLOAT
* HAL §32

* HAL U32

* HAL 564

* HAL U64

The types are also recognized without the HAL_ prefix. Note that coil and binary input functions R_COILS
(1), R_INPUTS (2), W_COIL (5) and W_COILS (15) can only map to HAL_BIT and do so implicitly.

The HAL_BIT, HAL_U32 and HAL_U64 types always map to one single HAL pin.

The HAL_FLOAT, HAL_S32 and HAL_S64 types can generate one single pin or can generate multiple pins
with offset and scale. Output pins with R_REGISTERS (3) and R_INPUTREGS (4) can add a scaled pin to
the set.

Mapping HAL pins to commands requires a modbustype attribute to encode the format and necessary
conversions. Register functions R_REGISTERS (3), R_INPUTREGS (4), W_REGISTER (6) and
W_REGISTERS (16) may map to HAL_BIT only when using unsigned modbustype where a value of zero
(0) is false and any other value is true for write functions or one (1) for read functions.

<commands>

The <commands> section defines one or more <command> tags to describe the Modbus function(s) to
execute in a periodical way. Each <command> tag maps to one or more HAL pins and specifies data
conversion between device data and HAL pin data.

A delay command may be added using the delay attribute causing the communication to be suspended for
the specified time. This may be required in broadcast situations where the Modbus devices must have time
for internal processing before the next data is sent or requested.

The <command> entries may include a <description> child—tag, which serves as a user’s comment.

Additionally, the <command> tag may have one or more <pin> child—tags to create user—defined HAL pin
names. Each <pin> tag may again include a <description> child—tag.

01/04/2026 LinuxCNC

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

Modbus read functions R_COILS (1), R_INPUTS (2), R_REGISTERS (3) and R_INPUTREGS (4) will
always be sent at the specified interval. However, the Modbus write functions W_COIL (5), W_REGISTER
(6), W_COILS (15) and W_REGISTERS (16) are only sent when the source data (pin value) changed. You
must specify the resend attribute to force repeated writes at the specified interval.

<commands>
<command device="wavebox" function="R_COILS" address="0x0000" count="4" name="state" />
<description>Type is implicit HAL_BIT, will become HAL pins:
— (out) hm2_modbus.0.wavebox.state—00
— (out) hm2_modbus.0.wavebox.state—01
— (out) hm2_modbus.0.wavebox.state—02
— (out) hm2_modbus.0.wavebox.state—03
</description>
</command>
<command device="scd30" modbustype="F_ABCD" haltype="HAL_FLOAT" function="R_REGISTERS"
address="0x0028" scale="0">
<pin name="co02"><description>Too much will kill you...</description></pin>
<pin name="temperature" />
<pin name="humidity" />
<description>Will become HAL pins:
— (out) hm2_modbus.0.scd30.co2
— (out) hm2_modbus.0.scd30.temperature
— (out) hm2_modbus.0.scd30.humidity
Count will automatically be calculated (6 Modbus 16-bit registers).
</description>
</command>
<command device="broadcast" function="W_COILS" address="0x1234" count="2"
name="anyandall" bcanswer="1">
<description>Will create HAL_BIT pins:
— (in) hm2_modbus.0.anyandall-00
— (in) hm2_modbus.0.anyandall-01
The bcanswer flag signifies that a device erroneously sends a reply on
broadcast (oopsie), which needs to be ignored .
</description>
</command>
<!— A delay is suggested after a broadcast to allow devices to handle the data —>
<command delay="10000" />
<command device="watcher" function="W_REGISTER" haltype="HAL_U32" modbustype="U_AB"
address="0x1lee7" noanswer="1" resend="1">
<pin name="watcher" />
<description>Will create a HAL_U32 pin
— (in) hm2_modbus.0.watcher
The 'count' is implicit 1. The data is mapped to U_AB and is clamped.
The data is sent every time (resend=1), regardless whether the HAL pin
changed. No answer is expected to be received (noanswer=1). This
command generates a (valid) Modbus packet on the bus and nothing more.
You must be sure that no reply is sent from the device or errors will
occur (for example silent watchdog).
</description>
</command>
</commands>

Recognized <commands>/<command> attributes:
address [0..65535]

LinuxCNC 01/04/2026 107

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

The Modbus coil/input/register starting address.

bcanswer [Boolean]
Set to true if a device sends an answer on broadcast, which must be ignored. Default false.

clamp [Boolean]
Conversion from larger to smaller types are automatically clamped to their maximum/minimum
values. It works in both ways: read 4 HAL—out and write 8 HAL—in. Setting this to false can result in
truncated values. Default is true.

count [1..2000]/[1..125)/[1..62]/[1..31]
The count specifies the number of HAL pins to create. The data from these pins is read from or written
to the Modbus device. Alternatively, you can specify the HAL pins using the <pin> child—tags. If both
count and <pin> are specified and count is larger than the number of <pin> tags, then additional HAL
pins will be created to match the count.

(the range depends on haltype and modbustype)

delay [0..60000000]
Suspend activity and delay the next <command> by delay micro—seconds.

device
The Modbus device to communicate with. The device attribute references <device>[name].

The device name broadcast will send the command to all devices on the bus.

disabled [Boolean]
Start the command in disabled state when set, preventing it from being executed. Using the disabled
flag is a fine grain per command control. In contrast, suspend works on the entire state machine and
controls operation of all commands in an all-or-nothing way. A command in the disabled state can be
enabled by toggling the reset pin of the command. Using disable can be particularly useful when you
need to delay one particular command while others may already be run. The writeflush setting is
honored when coming out of the disabled state. Default false.

function [see MODBUS FUNCTIONS]
The attribute value is one of the supported Modbus functions.

haltype [see HAL TYPES]
The HAL pin type for interactions. You do not need to specify this attribute for the Modbus functions
read/write coil(s) or inputs, R_COILS (1), R_INPUTS (2), W_COIL (5) and W_COILS (15), as these
always use the HAL_BIT type.

interval [once,0..3600000000]
The command repeat interval in micro—seconds. This is the time between repeating this <command>.
An interval shorter than the time it takes to work through the <commands> list will just repeat this
<command> as fast as possible.

A special value of once will run this command only once. However, it will be retried is an error
occurred. You normally do not need the value once and it may be better to use an entry in the
<initlist>. But sometimes you need to have other periodic commands before a once marked command
that cannot be achieved in the <initlist> sequence. Default <mesamodbus > [interval].

modbustype [see MODBUS TYPES]
The Modbus data mapping from/to register(s) for Modbus functions read/write register(s)
R_REGISTERS (3), R_INPUTREGS (4), W_REGISTER (6) and W_REGISTERS (16). The default
is U_AB if not specified.

name
The name for HAL pin names.

Example: if count="2" and name="myname", then the pins will have names myname—00 and

108 01/04/2026 LinuxCNC

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

myname—01, unless one or more <pin> tags override the name.

noanswer [Boolean]
Set to true if a device does not return a reply to a command. This can be intentional if you send a
command to a non—existing device. Default false.

resend [Boolean]
Resend Modbus write command even though no HAL pin change (data to send change) was detected.
Normally, only data changes are sent using Modbus write commands. Some devices require a constant
"reminder” (like watchdogs) and you need to send the data regularly. Default false.

scale [Boolean]
Add scaling HAL pins. Modbus read functions R_REGISTERS (3) and R_INPUTREGS (4) add extra
HAL pins pin.name.offset (in, 64-bit haltype), pin.name.scale (in, HAL_FLOAT) and
pin.name.scaled (out, HAL_FLOAT).

The Modbus write functions W_REGISTER (6) and W_REGISTERS (16) create extra HAL pins
pin.name.offset (in, 64—bit haltype) and pin.name.scale (in, HAL_FLOAT).

The scale attribute is only supported for HAL_FLOAT, HAL_S32 and HAL_S64. Default is true for
HAL_FLOAT and false for others. The scale pin is initialized to one (1.0) and the offset pin is
initialized to zero (0).

Scaling is always multiplicative to prevent division—by—zero. The offset is always subtracted before
scaling. The scaling action performed and subject to clamping is:

e read: pin.name = "readvalue"
¢ read: pin.name.scaled = ("readvalue" — pin.name.offset) * pin.name.scale
* write: "sendvalue" = (pin.name — pin.name.offset) * pin.name.scale

timeout [auto, 1..60000000]
The override timeout of <mesamodbus>[timeout] for this command in micro—seconds (send request
plus handling plus receive reply) before the command is deemed lost. See also timeoutbits below.
Default <mesamodbus> [timeout].

timeoutbits [0..1000000]
The override timeout of <mesamodbus>[timeout] for this command in bit times (send request plus
handling plus receive reply) before the command is deemed lost. The actual timeout is automatically
calculated and scaled by the <mesamodbus>[baudrate] setting. See also timeout above. Default
<mesamodbus> [timeout].

timesout [Boolean]
Set to true if the command is known to (periodically) timeout and no error should be emitted when it
does. This differs from noanswer in that a reply may be expected within the timeout period but not
after the timeout expires. This may be required for flaky devices. Default false.

unaligned [Boolean]
Set to true to suppress the alignment warning in multi—register reads or writes where 32-bit or 64—bit
values are not aligned to their natural Modbus address boundaries. This is useful for devices that do
not care about alignment or do not use Modbus addresses in conventional ways.

Setting unaligned is purely a cosmetic attribute to suppress console clutter when compiling the mbccs
file. It has no functional effect on the communication with the device. Default false.

writeflush [Boolean]
The override the writeflush value. See <mesamodbus>[writeflush] for details. Default
<mesamodbus> [writeflush].

Pins

LinuxCNC 01/04/2026 109

MESAMBCCC(1) LinuxCNC Documentation

110

MESAMBCCC(1)

Defining <pin> tags allows for custom naming schemes and allows reducing read and write
function overhead. Using <pin> tags enables you to combine different modbustype and
haltype values to be read or written to or from consecutive addresses. A warning is emitted if
32-bit and 64-bit values are not aligned to their native boundary (it may be an error,
depending device). The attributes of the <command> tag set the defaults for the <pin> tag

attributes and can be overridden by adding them to the <pin> tag.

<command device="booboo"
function="R_REGISTERS"
address="0x0240"
haltype="HAL_FLOAT"
modbustype="F_ABCD"
scale="1">
<!—— addr: 0x0240-0x0241; disable scaling pins ——>
<pin name="speed" scale="0" />
<!—— addr:0x0242; one register to bit—>
<pin name="ping" haltype="HAL_BIT" modbustype="U_AB" />
<!—— Align the next value —>
<pin skip="1" />
<!—— addr: 0x0244—-0x0245; use defaults from this command ——>
<pin name="afloat" />
<!—

The above <command><pin> tags read 6 registers and generate pins:

hm?2_modbus.0.speed HAL_FLOAT (out)
hm2_modbus.0.ping HAL_BIT (out)
hm2_modbud.0.afloat HAL_FLOAT (out)
hm2_modbud.0.afloat.offset HAL_FLOAT (in)
hm2_modbud.0.afloat.scale HAL_FLOAT (in)
hm2_modbud.0.afloat.scaled HAL_FLOAT (out)

—_—>

</command>

Recognized <commands>/<command>/<pin> attributes:

clamp [Boolean]
The clamp setting override for this pin.

haltype [see HAL TYPES]
The HAL type override for this pin.

modbustype [see MODBUS TYPES]
The Modbus type override for this pin.

name

Specifies the pin name overriding the default <command>[name]—xx sequence. This makes the

HAL names more human readable.

scale [Boolean]
The scale setting override for this pin.

skip [0..24]

Skip a number of registers ignoring them for read functions and writing zero (0) for write

functions. There can not be other attributes if the skip attribute is used.

Using a skip value larger than 11 will emit a warning. Large skips make the transfers less
efficient and skipping 12+ registers may be better off by splitting the function in two commands.
An exception may be atomicity where the device allows access to the intermediate (unused)
register addresses and only guarantees atomicity in a single read/write transaction.

01/04/2026

LinuxCNC

MESAMBCCC(1) LinuxCNC Documentation MESAMBCCC(1)

Beware that the skipped registers must be readable or writable (depending function). The
skipped values must be transferred in the Modbus transaction and the target device must allow
read or write access to the skipped register addresses.

Beware: using skip in write commands writes value zero (0) to the skipped registers.

SEE ALSO

linuxcne(1), hm2_modbus(9).

https://linuxcnc.org/docs/devel/html/drivers/mesa_modbus.html

AUTHOR
This man page written by B.Stultiens, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2025 B.Stultiens

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 111

MILLTASK (1) LinuxCNC Documentation MILLTASK (1)

NAME

milltask — Non-realtime task controller for LinuxCNC

DESCRIPTION
The internal process milltask of LinuxCNC is generally not invoked directly but by an INI file setting:
[TASK]TASK=milltask ‘. The milltask process creates the ini.* HAL pins listed below and owned by the
inihal component. These pins may be modified while LinuxCNC is running to alter values that are typically
specified statically in an INI file.

The inihal pins are sampled in every task cycle, however, commands affected by their values typically use
the value present at the time when the command is processed. Such commands include all codes handled by
the interpreter (G—code programs and MDI commands) and NML jogging commands issued by a GUI
(including halui). Wheel jogging is implemented in the realtime motion module so inihal pin changes
(e.g., ini.*.max_velocity, ini.*.max_acceleration) may be honored as soon as altered values are propagated
to the motion module.

PINS
Per—joint pins (N == joint number)
ini.N.backlash
Allows adjustment of [JOINT_N]BACKLASH

ini.NV.ferror
Allows adjustment of [JOINT_N]JFERROR

ini.N.min_ferror

Allows adjustment of [JOINT_NJMIN_FERROR
ini.N.min_limit

Allows adjustment of [JOINT_NJMIN_LIMIT

ini.N.max_limit
Allows adjustment of [JOINT_N]MAX_LIMIT

ini.N.max_velocity
Allows adjustment of [JOINT_N]JMAX_VELOCITY

ini.N.max_acceleration
Allows adjustment of [JOINT_N]MAX_ACCELERATION

ini.N.home
Allows adjustment of [JOINT_NJHOME

ini.N.home_offset
Allows adjustment of [JOINT_NJHOME_OFFSET

ini.N.home_offset
Allows adjustment of [JOINT_NJHOME_SEQUENCE

Per-axis pins (L. == axis letter)
ini.L.min_limit
Allows adjustment of [AXIS_L]MIN_LIMIT

ini.L.max_limit
Allows adjustment of [AXIS_LIMAX_LIMIT

ini.L.max_velocity
Allows adjustment of [AXIS_L]MAX_VELOCITY

ini.L.max_acceleration
Allows adjustment of [AXIS_L]MAX_ACCELERATION

Global pins
ini.traj_default_acceleration
Allows adjustment of [TRAJ]DEFAULT_ACCELERATION

112 01/04/2026 LinuxCNC

MILLTASK (1) LinuxCNC Documentation MILLTASK (1)

ini.traj_default_velocity
Allows adjustment of [TRAJ]DEFAULT_VELOCITY

ini.traj_max_acceleration
Allows adjustment of [TRAJJMAX_ACCELERATION

ini.traj_max_velocity
Allows adjustment of [TRAJJMAX_VELOCITY

Global pins (arc_blend trajectory planner)

ini.traj_arc_blend_enable
Allows adjustment of [TRAJJARC_BLEND_ENABLE

ini.traj_arc_blend_fallback_enable
Allows adjustment of [TRAJJARC_BLEND_FALLBACK_ENABLE

ini.traj_arc_blend_gap_cycles
Allows adjustment of [TRAJJARC_OPTIMIZATION_DEPTH

ini.traj_arc_blend_optimization_depth
Allows adjustment of [TRAJJARC_BLEND_GAP_CYCLES

ini.traj_arc_blend_ramp_freq
Allows adjustment of [TRAJJARC_BLEND_RAMP_FREQ

NOTES

The inihal pins cannot be linked or set in a HAL file that is specified by an INI file [HAL]JHALFILE item
because they are not created until milltask is started. The inihal pin values can be altered by independent
halemd programs specified by [APPLICATION]APP items or by GUISs that support a
[HAL]JPOSTGUI_HALFILE.

The INI file is not automatically updated with values altered by inihal pin settings but can be updated using
the calibration program (emccalib.tcl) when using a [HAL]POSTGUI_HALFILE.

LinuxCNC 01/04/2026 113

MILLTURN (1) LinuxCNC Documentation MILLTURN(1)

NAME

millturn, millturngui — Vismach Virtual Machine GUI

DESCRIPTION

millturngui is one of the sample Vismach GUIs for LinuxCNC, simulating a Mill-Turn machine.
See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

114 01/04/2026 LinuxCNC

MITSUB_VFD(1) LinuxCNC Documentation MITSUB_VFD(1)

NAME
mitsub_vfd — HAL non-realtime component for Mitsubishi A500 F500 E500 A500 D700 E700
F700-series VFDs (others may work) This uses the COMPUTER LINK protocol _not_ MODBUS. The
connection is made through the PU connector.

SYNOPSIS

loadrt mitsub_vfd [-—baud baudrate] [-—port devicename] namel=numberI[,name2=number2...]

namel
is user selectable (usually a description of the controlled device).

numberl
is the slave number that was set on the VFD. Must be two digits (Parameter 117).

nameN=numberN
can be repeated for multiple VFD’s connected together.

——baud baudrate
is optional as it defaults to 9600, all networked vfds must be set to the same baudrate.

——port devicename
is optional as it defaults to ttySO, a common alternative is /dev/ttyUSBO.

DESCRIPTION
The mitsub_vfd component interfaces a Mitsubishi VFD to LinuxCNC. The VFD is connected via RS—485
serial to the computer’s USB or serial port using a RS—232/RS—-485 converter.

HARDWARE SETUP
reference manual communication option reference manual and A500 technical manual for 500 series.
Fr—A700 F700 E700 D700 technical manual for the 700 series. The inverter must be set manually for
communication (you may have to set PR 77 to 1 to unlock PR modification). You must power cycle the
inverter for some of these, e.g. 79.

VFD INTERNAL PARAMETERS:

PARAMETER 79
lor0

PARAMETER 117
Station number — 1

(can be optionally set 0 — 31) if component is also set

PARAMETER 118
Communication speed 96

(can be optionally set 48, 96, 192 if component is also set)

PARAMETER 119
Stop bit/data length — 1

(8 bits, two stop — don’t change)

PARAMETER 120
Parity — 0

(no parity — don’t change)

PARAMETER 121
COM tries — 10

(if maximum 10 COM errors then inverter faults— can change.)

LinuxCNC 01/04/2026 115

MITSUB_VFD(1) LinuxCNC Documentation

PARAMETER 122
COM check time interval 9999

(never check — if communication is lost inverter will not know (can change))

PARAMETER 123
Wait time — 9999

No wait time is added to the serial data frame (don’t change).

PARAMETER 124
CR selection — 0

Don’t change.

PARAMETER 549
Communication protocol — 0

Computer link protocol — don’t change — (not all VFDs have this)
NOTES

This driver assumes certain other VFD settings:
* That the motor frequency status is set to show Hertz.
* That the status bit 3 is up to speed.
* That the status bit 7 is alarm.

MITSUB_VFD(1)

Some models, e.g. the E500, cannot monitor status. You must set set the monitor pin to false. In this case

pins such as up—to—speed, amps, alarm and status bits are not useful.

PINS
VFD_NAME .fwd (bit, in)
Forward/reverse pin

VFD_NAME.run (bit, in)
Run/stop pin

VFD_NAME.debug (bit, in)
Set debug mode pin. This will print many messages to the terminal.

VFD_NAME.monitor (bit, in)

Set monitor mode pin. If false, request—status command will not be sent to VFD. Status, amps, power,

motor—feedback, and alarm would then not be useful.

VFD_NAME.estop (bit, in)

Set E-stop mode pin. This will stop the VFD. Restarting requires the run pin to cycle.

VFD_NAME .fwd (bit, out)

Up-to—speed status pin. Motor is at requested speed within VFD’s settings tolerance.

VFD_NAME.alarm (bit, out)
Alarm status pin

VFD_NAME.motor—cmd (float, in)
The requested motor speed, in Hertz (Hz)

VFD_NAME.motor—fb (float, out)
The motor feedback speed (from VFD) in Hertz (Hz)

VFD_NAME.motor—amps (float, out)
The motor current, in amperes (A)

VFD_NAME.motor—power (float, out)

116 01/04/2026

LinuxCNC

MITSUB_VFD(1) LinuxCNC Documentation MITSUB_VFD(1)

The motor power

VFD_NAME.scale-cmd (float, in)
Motor command’s scale setting defaults to 1

VFD_NAME.scale-cmd (float, in)
Motor command’s scale setting defaults to 1

VFD_NAME.scale-cmd (float, in)
Motor command’s scale setting defaults to 1

VFD_NAME.stat-bit—0 (bit, out)
Raw status bit

VFD_NAME.stat-bit—1 (bit, out)
Raw status bit

VFD_NAME.stat-bit-2 (bit, out)
Raw status bit

VFD_NAME .stat-bit-3 (bit, out)
Raw status bit. Configure the VFD so that the function Up to frequency or motor—at—speed is
assigned to status bit 3 (parameter 191 for 700 series).

VFD_NAME.stat-bit—4 (bit, out)
Raw status bit

VFD_NAME.stat-bit-5 (bit, out)
Raw status bit

VFD_NAME.stat-bit—6 (bit, out)
Raw status bit

VFD_NAME .stat—bit—7 (bit, out)
Raw status bit. Configure the VFD so that the function alarm is assigned to status bit 7 (parameter 195
for 700 series).

SAMPLE HAL
loadusr —Wn coolant mitsub_vfd —port /dev/ttyUSBO spindle=02 coolant=01
skoskeoskeoskeoskeoskokoskokokokokokokoskosk Splndle VFD setup SlaVe 2 st sk sk sk sk skoskoskokokoskokokokokok
net spindle—vel—-cmd spindle.motor—cmd
net spindle—cw spindle.fwd
net spindle—on spindle.run
net spindle—at—speed spindle.up—to—speed
net estop—out spindle.estop
cmd scaled to RPM (belt/gearbox driven)
setp spindle.scale—cmd .135
feedback is in rpm (recipicale of command)
setp spindle.scale—fb 7.411
turn on monitoring so feedback works
setp spindle.monitor 1
net spindle—speed—indicator spindle.motor—fb
skoskeoskeoskoskoskokoskokokokoskoskoskosk COOlant VFD setup SlaVe 1 sheoskeoskeosteosteoskoskokokokoskoskoskoskoskokok
net coolant—flood coolant.run
net coolant—is—on coolant.up—to—speed
cmd and feedback scaled to hertz
setp coolant.scale-—cmd 1
setp coolant.scale—fb 1
command full speed
setp coolant.motor—cmd 60
allows us to see status
setp coolant.monitor 1

LinuxCNC 01/04/2026 117

MITSUB_VFD(1) LinuxCNC Documentation MITSUB_VFD(1)

net estop—out coolant.estop

ISSUES
Some models, e.g. E500, cannot monitor status, so set the monitor pin to false. In this case, pins such as
up—to—speed, amps, alarm and status bits are not useful.

118 01/04/2026 LinuxCNC

MODCOMPILE(1) LinuxCNC Documentation MODCOMPILE(1)

NAME

modcompile — Utility for compiling Modbus drivers

SYNOPSIS

modcompile —h
modcompile [-K] [-n] [-v] all

modcompile [-k] [-n] [-v] module.mod ...

DESCRIPTION
The modcompile utility is used to compile modbus drivers that use the PkKtUART interface of Mesa cards.

See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/devel/html/drivers/mesa_modbus.html
OPTIONS
—h, —help
Brief help message.
-k, ——Kkeep
Keep the temporary files. The program will print a line where these are located. You will be
responsible for deleting them.

—n, ——noinstall
Do not run the install step for the compiled module. This option is probably only useful if you also use
the ——keep option.

—v, ——verbose
Do a verbose build, showing all steps detailed while being performed.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 119

MONITOR-XHC—-HBO04(1) LinuxCNC Documentation MONITOR-XHC-HB04(1)

NAME

monitor-xhc-hb04 — monitors the XHC-HBO04 pendant and warns of disconnection

SYNOPSIS
monitor—xhc-hb04

DESCRIPTION
monitor—xhc—hb04 is included to monitor disconnects and reconnects of the pendant. This script runs in
the background and will pop up a message when the pendant is disconnected or reconnected.

Usage is optional; if used it is specified with INI file entry:

[APPLICATIONS]
APP = monitor—xhc—hb04

SEE ALSO
xhc—hb04(1), linuxcnc(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

120 01/04/2026 LinuxCNC

MOTION-LOGGER(1) LinuxCNC Documentation MOTION-LOGGER(1)

NAME

motion-logger — log motion commands sent from LinuxCNC's Task module

SYNOPSIS

motion—logger

DESCRIPTION
motion—logger is a test program to log motion commands sent from LinuxCNC’s Task module to the
Motion module.

It is largely used by the regression tests and is poorly documented.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 121

MOVEOFF_GUI(1) LinuxCNC Documentation

NAME

moveoff_gui — a GUI for the moveoff component

SYNOPSIS

moveoff_gui [-—help | — -h | *-?]

moveoff_gui [options]

DESCRIPTION
Moveoff_gui is a sample graphical user interface (GUI) for controlling a HAL moveoff component to
implement HAL—only offsets. See the manpage (man moveoff) for IMPORTANT limitations and

warnings.

Supported configurations must use a known kinematics module with KINEMATICS_TYPE =
KINEMATICS_IDENTITY. The modules currently supported are: trivkins

OPTIONS

122

—help |-? | —-h
Show options and exit.

—mode onpause | always
onpause: popup GUI to control offsets when program paused

always: show GUI to control offsets always

Default: onpause

—axes axis—names
Letters from setof {xyzabcuvw}.

Examples: —axes X, —axes Xyz, —axes Xz (no spaces)

Default: xyz

—inc incrementvalue
Specify one increment value per —inc (up to 4).

Defaults: * 0.001 0.01 0.10 1.0*

—size integer
Overall gui size is based on font size, typically 8 — 20.

Default: 14

—loc center | +x+y
Initial location on screen.

Examples: —loc center, —loc +20+100

Default: center

—autoresume
Resume program when move—enable deasserted.

Default: notused

—delay delay secs
Delay for autoresume (allow time to restore spindle speed etc).

Default: 5

01/04/2026

MOVEOFF_GUI(1)

LinuxCNC

MOVEOFF_GUI(1) LinuxCNC Documentation MOVEOFF_GUI(1)

OTHER OPTIONS

These options are available for special cases:

—noentry
Disables creation of entry widgets.

Default: notused

—no_resume_inhibit
Disable use of resume—inhibit to controlling gui.

Default: notused

—no_pause_requirement
Disable check for halui.program.is—paused.

Default: notused

—no_cancel_autoresume
Useful for retracting offsets with simple external controls.

Default: notused

—no_display
Use when both external controls and external displays are in use.

Default: notused

NOTES

LinuxCNC must be running.
Halui must be loaded, typical INI file setting:

[HAL]
HALUI = halui

The moveoff component must be loaded with the name mv as: loadrt moveoff names=myv
personality=_number_of _axes

If the pin mv.motion—enable is not connected when moveoff_gui is started, controls will be provided to
enable offsets and set offset values. If the pin is connected, only a display of offsets is shown and control
must be made by external HAL connections.

If a pin named *.resume—inhibit exists and is not connected, it will be set while offsets are applied. This pin
may be provided by the controlling LinuxCNC GUI in use. Use of the pin may be disabled with the option
—no_resume_inhibit.

The —autoresume option uses halui.program.resume to automatically resume program execution when the
move—enable pin is deactivated and all offsets are removed. The resume pin is not activated until an
additional interval (—delay delay_secs) elapses. This delay interval may be useful for restarting related
equipment (a spindle motor for example). While timing the delay, a popup is offered to cancel the
automatic program resumption.

USAGE
The INI file in the configuration directory must provide HALFILEs to loadrt the moveoff component,
connect its pins, and addf its read and write functions in the proper order. These steps can be done at
runtime using an existing configuration INI file and specifying a system library HALFILE
hookup_moveoff.tcl as illustrated below:

LinuxCNC 01/04/2026 123

MOVEOFF_GUI(1) LinuxCNC Documentation MOVEOFF_GUI(1)

[HAL]

HALUI = halui

HALFILE = user_halfile 1

etc ...

HALFILE = user_halfile_n
HALFILE = LIB:hookup_moveoff.tcl

The hookup_moveoff.tcl HAL file will use INI file settings for the moveoff component control pins:

[OFFSET]

EPSILON =
WAYPOINT_SAMPLE_SECS =
WAYPOINT_THRESHOLD =
BACKTRACK_ENABLE =

The hookup_moveoff.tcl will use INI file settings for the moveoff per—axis limits:

[AXIS_m]
OFFSET_MAX_VELOCITY =
OFFSET_MAX_ACCELERATION =
OFFSET_MAX_LIMIT =
OFFSET_MIN_LIMIT =

The moveoff_gui program should be specified in the APPLICATIONS stanza of the INI file, for example:
[APPLICATIONS]

DELAY = delay_in_secs_to_allow_hal_connections
APP = moveoff_gui —optionl —option?2 ...

SEE ALSO

124

Simulation configurations that demonstrate the moveoff_gui and the moveoff component are located in:
configs/sim/axis/moveoff (axis—ui) configs/sim/touchy/ngcgui (touchy—ui)

See also moveoff(9) for details on the component.

01/04/2026 LinuxCNC

MQTT-PUBLISHER(1) LinuxCNC Documentation MQTT-PUBLISHER(1)

NAME
mgqtt-publisher — send HAL pin data to MQTT broker periodically

SYNOPSIS
loadusr —W mqtt—publisher [options] keys=pinl[,pin2...]

DESCRIPTION
mgqtt—publisher is a non—realtime program that reads HAL values periodically and passes the values to a
MQTT broker.

When specifying the MQTT settings in the INI file, this is the recommended setup:
HAL file:

loadusr —W mgqtt—publisher [MQTT]DRYRUN —mgqtt—broker=[MQTT]BROKER \
——mgqtt—user=[MQTT]JUSERNAME ——mgqtt—password=[MQTT]PASSWORD keys=halui.estop.is—activated

INI file:

[MQTT]

DRYRUN = ——dryrun
BROKER = broker.local
USERNAME = username
PASSWORD = password

This component need the Paho python library installed to function. On debian this is available from the
python3—paho—mqtt package.
OPTIONS
keys=pinl/[,pin2,...]
The name of HAL pins, signals and other values to publish using MQTT. The names are also used as
the JSON keys in the MQTT message published with the broker. If multiple "keys=" options are
specified, the lists are merged.

——dryrun

Do not set up MQTT connection, only print message to stdout. Useful for debugging and testing.
——mqtt—-broker=FQDN

The fully qualified DNS name of the MQTT broker. The default broker name is "localhost".

——mgqtt—port=PORTNUMBER
The port to use of the MQTT broker. The default port is 1883.

——mgqtt—user=USERNAME
The user name to use when connecting to the MQTT broker.

——mqtt—password=PASSWORD
The password to use when connecting to the MQTT broker.

——mqtt—prefix=PREFIX
The MQTT prefix/topic to use when publishing to the MQTT broker. The default prefix is
"devices/linuxcnc/machine".

FUNCTIONS
mgqtt—publisher
The loop reading HAL values and publishing MQTT messages.

PINS
mgqtt—publisher.enable bit input
When TRUE, publish messages to MQTT broker. When FALSE, do not publish messages. Default is
TRUE.

LinuxCNC 01/04/2026 125

MQTT-PUBLISHER(1) LinuxCNC Documentation MQTT-PUBLISHER(1)

mgqtt—publisher.period u32 input
The number of seconds to sleep between publishing MQTT messages to the broker. Default is 10
seconds.

mgqtt—publisher.lastpublish u32 output
When the last MQTT publication was published in number of seconds since EPOC. If no publication
has taken place, the value is zero.

EXAMPLE
Any set of HAL pins and signals can be published. This setup might be a useful starting point:

loadusr —W mgqtt—publisher \

[MQTT]DRYRUN \

——mgqtt—broker=[MQTT]BROKER

——mgqtt—user=[MQTTJUSERNAME \

——mgqtt—password=[MQTT]PASSWORD \

keys=halui.axis.a.pos—feedback,halui.axis.b.pos—feedback,\
halui.axis.c.pos—feedback,halui.axis.u.pos—feedback,\
halui.axis.v.pos—feedback,halui.axis.w.pos—feedback,\
halui.axis.x.pos—feedback,halui.axis.y.pos—feedback,\
halui.axis.z.pos—feedback,halui.estop.is—activated,\
halui.joint.0.is—homed,halui.joint.1.is—homed,halui.joint.2.is—homed,\
halui.joint.3.is—homed,halui.joint.4.is—homed,halui.joint.5.is—homed,\
halui.joint.6.is—homed,halui.joint.7.is—homed,halui.joint.8.is—homed,\
halui.machine.is—on,halui.max—velocity.value,halui.mode.is—auto,\
halui.mode.is—manual,halui.mode.is—mdi,halui.mode.is—teleop,\
halui.program.is—running

Note: It is recommended to use the line continuation character "\" as shown here to improve readability. But
note that spaces must be left in to delimit options, and must not be included (including at the beginning of a
line) inside a single option.

SEE ALSO
hal(3)

AUTHOR

Component and documentation created by Petter Reinholdtsen, as part of the LinuxCNC project.

COPYRIGHT
Copyright © 2023 Petter Reinholdtsen.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

126 01/04/2026 LinuxCNC

NGCGUI(1) LinuxCNC Documentation NGCGUI(1)

NAME

ngcgui — a framework for conversational G—code generation on the controller
SYNOPSIS

ngcgui
DESCRIPTION

ngcgui details: https://linuxcnc.org/docs/html/gui/ngcgui.html

SEE ALSO

linuxcne(1)*

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 127

PANELUI(1) LinuxCNC Documentation PANELUI(1)

NAME
panelui — interface buttons to LinuxCNC or HAL

SYNOPSIS

panelui

DESCRIPTION
The non—realtime component panelui interfaces buttons to LinuxCNC or HAL. It decodes MESA 7173
style key—scan codes and calls the appropriate routine. It gets input from a realtime component — sampler.
Sampler gets it’s input from either the MESA 7i73 or sim_matrix_kb component. Panelui is configurable
using an INI style text file to define button types, HAL pin types, and/or commands.

Full documentation can be found in the HTML or PDF docs:
https://linuxcnc.org/docs/html/gui/panelui.html

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

128 01/04/2026 LinuxCNC

PI500_VFD(1) LinuxCNC Documentation PI500_VFD(1)

NAME
pi500_vfd — Powtran PIS00 Modbus driver
SYNOPSIS
pi5S00_vfd
PINS
pi500-vfd.N.commanded—frequency float in
Frequency of vfd
pi500-vfd.N.run bit in
run the vfd

pi500-vfd.N.enable bit in
1 to enable the vfd. O will remote trip the vfd, thereby disabling it.

pi500-vfd.N.is—running bit out
1 when running

pi500-vfd.N.is—at—speed bit out
1 when running at assigned frequency

pi500-vfd.N.is—ready bit out
1 when vfd is ready to run

pi500-vfd.N.is—alarm bit out
1 when vfd alarm is set

pi500-vfd.N.motor—current float out
Output current in amps

pi500-vfd.N.heatsink—temp float out
Temperature of drive heatsink

pi500-vfd.N.watchdog—out bit out
Alternates between 1 and 0 after every update cycle. Feed into a watchdog component to ensure vfd
driver is communicating with the vfd properly.

PARAMETERS
pi500-vfd.N.mbslaveaddr u32 rw
Modbus slave address

LICENSE
GPLV?2 or greater

LinuxCNC 01/04/2026 129

PMX485-TEST(1) LinuxCNC Documentation PMX485-TEST (1)

NAME

pmx485-test — Modbus communications testing with a Powermax Plasma Cutter

SYNOPSIS
pmx485—test

DESCRIPTION
pmx485 is a python script for testing communications with a Hypertherm Powermax plasma cutter using
the Modbus ASCII protocol over RS485.

USAGE

Select the correct port from the list of available ports.
Check RS485 to establish communications.

Changing MODE, CURRENT, or PRESSURE will change the corresponding value on the Powermax and
the new value will be reported back to the test panel.

Check PANEL to end communication.

AUTHOR
Phillip Carter & Gregory D Carl

LICENSE
GPL

130 01/04/2026 LinuxCNC

PMX485(1) LinuxCNC Documentation PMX485(1)

NAME

pmx485 — Modbus communications with a Powermax Plasma Cutter.

SYNOPSIS
loadusr —Wn pmx485 pmx485 /dev/ttyUSBO

DESCRIPTION

pmx485 is a non—realtime HAL component to communicate with a Hypertherm Powermax plasma cutter
using the Modbus ASCII protocol over RS485.

SEE ALSO

See the Drivers section of the LinuxCNC Documentation for more information on pmx485.

AUTHOR
Phillip Carter & Gregory D Carl

LICENSE
GPL

LinuxCNC 01/04/2026 131

PNCCONF (1) LinuxCNC Documentation PNCCONF (1)

NAME

pncconf — configuration wizard for Mesa cards

SYNOPSIS

pncconf

DESCRIPTION

pncconf is used to configure systems that use Mesa cards.

Details: https://linuxcnc.org/docs/html/config/pnccont.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

132 01/04/2026 LinuxCNC

PUMAS60GUI(1) LinuxCNC Documentation PUMAS560GUI(1)

NAME
puma560gui — Vismach Virtual Machine GUI

DESCRIPTION

pumaS60gui is one of the sample Vismach GUIs for LinuxCNC, simulating a Puma 560 robot arm.
See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 133

PUMAGUI(1) LinuxCNC Documentation PUMAGUI(1)

NAME
pumagui — Vismach Virtual Machine GUI

DESCRIPTION

pumagui is one of the sample Vismach GUIs for LinuxCNC, simulating a generic Puma style robot arm.
See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

134 01/04/2026 LinuxCNC

PYNGCGUI(1) LinuxCNC Documentation PYNGCGUI(1)

NAME
pyngcgui — Python implementation of NGCGUI
SYNOPSIS
pyngcgui
DESCRIPTION
pyngcgui is an alternative implenentation of NGCGUI: https://linuxcnc.org/docs/html/gui/ngcgui.html

SEE ALSO

ngcgui(1), linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 135

PYUI(1) LinuxCNC Documentation PYUI(1)

NAME
pyui — utility for panelui
SYNOPSIS

loadusr pyui

DESCRIPTION

pyui validates panelui.ini files.

This will read, try to correct, then save the panelui.ini file. It will print errors to the terminal if found.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

136 01/04/2026 LinuxCNC

PYVCP(1) LinuxCNC Documentation PYVCP(1)

NAME

pyvep — Virtual Control Panel for LinuxCNC
SYNOPSIS

pyvep [-g WxH+X+Y] [-¢ component—name] myfile.xml
OPTIONS

—-g WxH+X+Y
This sets the initial geometry of the root window. Use WxH for just size, +X+Y for just position, or
WxH+X+Y for both. Size / position use pixel units. Position is referenced from top left.

—c component—name
Use component—name as the HAL component name. If the component name is not specified, the
basename of the XML file is used.

SEE ALSO
Python Virtual Control Panel in the LinuxCNC documentation for a description of the xml syntax, along
with examples.

LinuxCNC 01/04/2026 137

PYVCP_DEMO(1) LinuxCNC Documentation PYVCP_DEMO(1)

NAME

pyvep_demo — Python Virtual Control Panel demonstration component

SYNOPSIS
pyvep_demo

DESCRIPTION

pyvep_demo is mainly used by sample configurations.

USAGE

pyvep_demo filenamel.xml filename?2.hal [compname]

If not provided, use compname == pyvcp

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

138 01/04/2026 LinuxCNC

QTPLASMAC-MATERIALS(1) LinuxCNC Documentation QTPLASMAC-MATERIALS(1)

NAME

gtplasmac-materials — Create a plasma materials file.

SYNOPSIS

qtplasmac—-materials

DESCRIPTION

qtplasmac—materials is a Python script for creating a materials file.

The file can be created by text entry or by importing text from a CAM tool file.
SEE ALSO

See the QtPlasmaC section of the LinuxCNC Documentation for more information.

https://linuxcnc.org/docs/devel/html/plasma/qtplasmac.html#_material_converter

AUTHOR
Phillip Carter & Gregory D Carl

LICENSE
GPL

LinuxCNC 01/04/2026 139

QOTPLASMAC_GCODE(]) LinuxCNC Documentation OTPLASMAC_GCODE(1)

NAME

qtplasmac_gcode — Python script shipping with Plasmac, a Plasma cutting system.

DESCRIPTION

qtplasmac_gcode is used by qtplasmac and is not intended to be used standalone.

See the QtPlasmaC section of the LinuxCNC Documentation for more information.
https://linuxcnc.org/docs/devel/html/plasma/qtplasmac.html

SEE ALSO

linuxcne(1)*

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

140 01/04/2026 LinuxCNC

QTVCP(1) LinuxCNC Documentation QTVCP(1)

NAME

qtvep — Qt—based virtual control panels

SYNOPSIS
qtvep [OPTIONS] myfile.ui

DESCRIPTION
QtVCP is a system for creating user interfaces for LinuxCNC.

Full documentation at https://linuxcnc.org/docs/html/gui/qtvcep.html
OPTIONS
—h, —help
Show this help message and exit.
—c [<NAME>]
Set component name to NAME. Default is basename of Ul file.
-a
Set the window to always be on top.

Enable debug output.
-v
Enable verbose debug output.
—-q
Enable only error debug output.
—g [<GEOMETRY >]
Set geometry WIDTHXxHEIGHT+XOFFSET+YOFFSET. Values are in pixel units,

XOFFSET/YOFFSET is referenced from top left of screen. Use —g WIDTHxHEIGHT for just setting
size or —g +XOFFSET+YOFFSET for just position.

Example: —g 200x400+0+100

—-H [<FILE>]
Execute HAL statements from FILE with halemd after the component is set up and ready.
—i
Enable info output.
-m
Force panel window to maximize.
—f
Force panel window to fullscreen.

—t [<THEME>]
Set Qt style. Default is system theme.

—X [<XID>]
Reparent QtVCP into an existing window XID instead of creating a new top level window.

——push_xid
Reparent window into a plug add push the plug xid number to standardout.

—u [KUSERMOD>]
File path of user defined handler file.

-0 [<USEROPTS>]
Pass USEROPTS strings to handler under self.w.USEROPTIONS_ list variable.

LinuxCNC 01/04/2026 141

QTVCP(1) LinuxCNC Documentation QTVCP(1)

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

142 01/04/2026 LinuxCNC

ROTARYDELTA(1) LinuxCNC Documentation ROTARYDELTA(1)

NAME
rotarydelta — Vismach Virtual Machine GUI

DESCRIPTION
rotarydelta is one of the sample Vismach GUIs for LinuxCNC, simulating a delta robot with rotary
actuators

See the main LinuxCNC documentation for more details. https://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 143

RS274(1) LinuxCNC Documentation RS274(1)
NAME

rs274 — standalone G—code interpreter
SYNOPSIS

rs274 [-p interp.so] [—t tool.tbl] [-v var—file.var] [-n 0]|1|2] [-b] [-s] [-g] [input_file [output_file]]
DESCRIPTION

rs274 Standalone G—code interpreter interface

Usage: rs274 [—p interp.so] [t tool.tbl] [—v var—file.var] [-n 0|1|2] [-b] [-s] [—g] [input file [output file]]
OPTIONS

~p
Specify the pluggable interpreter to use

-t
Specify the .tbl (tool table) file to use

-V
Specify the .var (parameter) file to use

-n
Specify the continue mode:

0: continue
1: enter MDI mode

2: stop (default)

Toggle the block delete flag (default: OFF)

Toggle the print stack flag (default: OFF)
-8

Toggle the go (batch mode) flag (default: OFF)

—i

specify the .ini file (default: no ini file)
-T

call task_init()
-1

specify the log_level (default: —1)

EXAMPLE

To see the output of a loop for example we can run rs274 on the following file and see that the loop never

144

ends. To break out of the loop use Ctrl Z. The following two files are needed to run the example.

FIXME: Some good soul please fix the whitespace for the examples below

test.ngc

#<test> = 123.352 0101 while [[#<test> MOD 60] NE 0]
(debug, #<test>) #<test> = [#<test> + 1] 101 endwhile M2

test.tbl

T1P17Z0.511 D0.125 ;1/8 end mill

01/04/2026

LinuxCNC

RS274(1) LinuxCNC Documentation RS274(1)

T2 P2 Z0.1 D0.0625 ;1/16 end mill
T3 P3 Z1.273 D0.201 ;#7 tap drill

command

rs274 —g test.ngc —t test.tbl
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 145

RTAPI _APP(1) LinuxCNC Documentation RTAPI_APP(1)

NAME

rtapi_app — creates a simulated real time environment
SYNOPSIS

rtapi_app
DESCRIPTION

rtapi_app Creates a simulated real time environment.

Used for loading real time modules on systems without real time (for simulation).

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

146 01/04/2026 LinuxCNC

SCARAGUI(1) LinuxCNC Documentation SCARAGUI(1)

NAME
scaragui — Vismach Virtual Machine GUI

DESCRIPTION
scaragui is one of the sample Vismach GUIs for LinuxCNC, simulating a SCARA style robot arm.

See the main LinuxCNC documentation for more details.

https://linuxcnc.org/docs/html/gui/vismach.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 147

SCHEDRMT (1) LinuxCNC Documentation SCHEDRMT (1)

NAME
schedrmt — telnet based scheduler for LinuxCNC
SYNOPSIS
schedrmt {—— ——port <port number> ——name <server name> ——connectpw <password> ——enablepw
<password> ——sessions <max sessions> ——path <path> —ini <INI file> }
DESCRIPTION
With — ——port

148

Waits for socket connections (Telnet) on specified socket, without port uses default port 5007.

With — ——name <server name>
Sets the server name to specified name for Hello.

With — ——connectpw <password>
Sets the connection password to password. Default EMC.
With — ——enablepw <password>
Sets the enable password to password. Default EMCTOO.
With — ——sessions <max sessions>
Sets the maximum number of simultaneous connextions to max sessions. Default is no limit (-1).
With — ——path

Sets the base path to program (G—Code) files, default is "../../nc_files/". Make sure to include the final
slash (/).

With — —ini <INI file>
Uses specified INI file instead of default emc.ini.

There are six commands supported, for which the commands set and get contain LinuxCNC—specific
sub—commands based on the commands supported by emcsh, but where the "emc_" prefix is omitted.
Commands and most parameters are not case—sensitive. The exceptions are passwords, file paths and text
strings.

The supported commands are as follows: =34 HELLO a=:: Hello <password> <client> <version> If a valid
password was entered the server will respond with HELLO ACK <Server Name> <Server Version>, here
server name and server version are looked up from the implementation. If an invalid password or any other
syntax error occurs then the server responds with: HELLO NAK. =4 Get 4=:: The get command includes
one of the emc sub—commands, described below and zero or more additional parameters. =4 Set a=:: The
set command inclides one of the emc sub—commands, described below and one or more additional
parameters. =4 Quit 4=:: The quit command disconnects the associated socket connection. =4 Shutdown
a=:: The shutdown command tells EMC to shutdown before quitting the connection. This command may
only be issued if the Hello has been successfully negotiated and the connection has control of the CNC (see
enable sub—command below). This command has no parameters. =a Help 4= The help command will return
help information in text format over the telnet connection. If no parameters are specified, it will itemize the
available commands. If a command is specified, it will provide usage information for the specified
command. Help will respond regardless of whether a "Hello" has been successfully negotiated.

EMC sub—commands:

echo on | off
With get will return the current echo state, with set, sets the echo state. When echo is on, all
commands will be echoed upon receipt. This state is local to each connection.

verbose on | off
With get will return the current verbose state, with set, sets the verbose state. When in verbose mode is
on, all set commands return positive acknowledgement in the form SET <COMMAND> ACK. In
addition, text error messages will be issued when in verbose mode. This state is local to each
connection.

01/04/2026 LinuxCNC

SCHEDRMT (1) LinuxCNC Documentation SCHEDRMT (1)

enable <pwd> | off
With get will return On or Off to indicate whether the current connection is enabled to perform control
functions. With set and a valid password, the current connection is enabled for control functions. OFF
may not be used as a password and disables control functions for this connection.

config
TBD

comm_mode ascii | binary
With get, will return the current communications mode. With set, will set the communications mode to
the specified mode. The binary protocol is TBD.

comm_prot <version no>
With get, returns the current protocol version used by the server. With set, sets the server to use the
specified protocol version, provided it is lower than or equal to the highest version number supported
by the server implementation.

INIFILE
Returns the path and file name of the current configuration INI file.

plat
Returns the platform for which this was compiled, e.g., linux_2_0_36

ini <var> <section>
Returns the string value of <var> in section <section>, in EMC_INIFILE.

debug { <new value>}
With get, returns the integer value of EMC_DEBUG, in the EMC. Note that it may not be true that the
local EMC_DEBUG variable here (in emcsh and the GUIs that use it) is the same as the
EMC_DEBUG value in the EMC. This can happen if the EMC is started from one INI file, and the
GUI is started with another that has a different value for DEBUG. With set, sends a command to the
EMC to set the new debug level, and sets the EMC_DEBUG global here to the same value. This will
make the two values the same, since they really ought to be the same.

QMode <mode> stop | run | pause | resume (Set only) | error (Get only)

non

With no arg, returns the program queue status as "stop"”, "run", "pause” or "error". Otherwise, sends a

command to set the current mode to "stop", "run" or "pause”.

QStatus <Queue Size> <First Tag 1d> <Last Tag Id> <Queue CRC> (Get only)
Returns then number of programs in queue (Queue Size), the Tag id of the first program in the queue,
the Tag id of the last program in the queue, and the CRC of all of the Tag Ids in the queue. The actual
calculation of the CRC is not important, the purpose is to be able to compare the current CRC with the
previous CRC. If they differ, then there has been a change to the size or order of the programs in
queue.

AutoTagld <Start I1d>
With get, returns the next autoincremented unique tag id to associate with a queue record. With set,
resets auto tag generation to begin at the specified value.

PgmAdd <priority> <tag id> <x> <y> <z> <zone> <file name> <feed override> <spindle override>
<tool>
With set, adds a program to the queue with priority of the program, a unique tag identifying the
program, the x, y and z offsets or zone for the origin of the program, the path + file name, the feed and
spindle overrides to apply, and the default tool to use. If tag id is zero, the tag id will be generated
automatically. If zone is zero, then the x, y, and z offsets will be used, otherwise zones 1 to 9
correspond to G54 to G59.3 respectively.

PgmByld <tag id> [priority] [tag id] [x] [y] [z] [zone] [file name] [feed override] [spindle override] [tool]
With get, returns the queue entry matching the specified tag id, including the priority, tag id, X, y, and z
coordinates, the zone, file name, feed and spindle overrides and the default tool.

PgmBylndex <_index_> [priority] [tag id] [x] [y] [z] [zone] [file name] [feed override] [spindle override]

LinuxCNC 01/04/2026 149

SCHEDRMT (1) LinuxCNC Documentation SCHEDRMT (1)

[tool]
With get, returns the queue entry matching the specified index into the queue, including the priority,
tag id, x, y, and z coordinates, the zone, file name, feed and spindle overrides and the default tool.

PgmAll
With get, performs effectively a PemByIndex for every entry in the queue. Each result will be returned
in the form: "PGMBYINDEX ..." with cr If at the end of each record.

PriorityByld <_tag id_> <_priority_>
With get, returns the priority of the queue entry matching the specified tag. With set, changes the
priority of the queue entry to the specified priority.

PriorityByIndex <_tag id_> <_priority_>
With get, returns the priority of the queue entry matching the specified index into the queue. With set,
changes the priority of the queue entry to the specified priority.

DeleteByld <_tag id_>
With set, deletes the queue entry matching the specified tag id.

DeleteByIndex <_index_>
With set, deletes the queue entry matching the specified index into the queue.

PollRate <_rate >
With set, sets the rate at which the scheduler polls for information. The default is 1.0 or one second.
With get, returns the current poll rate.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

150 01/04/2026 LinuxCNC

SCORBOT-ER-3(1) LinuxCNC Documentation SCORBOT-ER-3(1)

NAME
scorbot-er-3 — to link the Intellitek Scorbot educational robot to LinuxCNC

DESCRIPTION
scorbot—er-3 is a non—realtime component that interfaces the control box of a Scorbot ER-3 robot arm to
the LinuxCNC HAL.

Joint 0
rotation around the base

Joint 1
shoulder

Joint 2
elbow

Joint 3
wrist (+ is wrist up & rotate hand)

Joint 4
wrist (+ is wrist down & rotate hand)

Joint 5
unused

Joint 6
unused

Joint 7
hand open/close (+ is close)

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 151

SENDKEYS(1) LinuxCNC Documentation SENDKEYS(1)

NAME

sendkeys — send input events based on pins or scancodes from HAL

SYNOPSIS
loadusr sendkeys config=s8t5, 16, t12

DESCRIPTION
This component is intended as a partner component to matrix_kb or the hostmot2 7i73 driver. It accepts the
key—up and key—down event codes from either of these and converts them to keystrokes sent from a virtual
keyboard.

It also allows for keystrokes to be generated by individual HAL pins.

The config parameter to the loadusr HAL command defines how many scancodes will be supported and
how many individual pins are created. config=s16 would support the 16 scancodes of a 4x4 matrix.
config=t10 would create 10 individual HAL pin triggers. config=s16t10 would create one instance with
both the above.

Multiple configs separated by commas will create multiple instances of the component. The accepted codes
can be seen in the extract from the linux headers here: https://wiki.linuxcnc.org/cgi—bin/wiki.pl?Scancodes

The component requires the user to have write permissions to /dev/uinput which is not available by default.
To give access perform the following:

1. Create the uinput group and add the LinuxCNC user to it:
sudo groupadd —f uinput
sudo gpasswd —a username uinput

2. Create a new entry in .B/etc/udev/rules.d/99—input.rules

sudo echo KERNEL=="uinput", GROUP="uinput", MODE:="0660" | sudo tee /etc/udev/rules.d/88—input.rules
3. Reboot the machine. You can test that is has worked:

Is -1 /dev/uinput
crw—rw———— 1 root uinput 10, 223 Nov 11 15:35 /dev/uinput

It is possible to link the 7i73 codes to both the matrix_kb comp and this comp, so that some codes operate
HAL pins and some send keystrokes. Where the option exists it is MUCH better to use HAL pins for things
like jogging and machine control. This component should really be used only for text entry and GUI
operations.

Each key on the matrix is allocated a scan code. The simplest way to configure the component is to load the
component and open a halmeter showing sendkeys.0.current—event. Note the code for each physical key. (If
keys do not give consistent results then you probably need to toggle the value of the
matrix_kb.0.negative—logic pin and/or invert io pins).

Then edit the HAL file to assign a key event to each scancode. For example:

setp sendkeys.0.scan—event—21 34

To set a button to type the letter "G". The key events related to each physical key need to be set up prior to
the component activating, but after the component is loaded.

To achieve this there is a pin sendkeys.N.init which should be set to "true" once the events to be sent for
each scancode and pin have been set up.

152 01/04/2026 LinuxCNC

SENDKEYS(1) LinuxCNC Documentation SENDKEYS(1)

To generate keystrokes from other sources note that a keydown is simply 0xCO & keycode and keyup is
0x80 & keycode.

PINS
sendkeys.N.keycode u32 in
Connect to scancode generator.

sendkeys.N.current—event s32 out
Shows the current scancode without keyup / keydown markers.

sendkeys.N.init bit in
Set this pin TRUE once all the event parameters have been set.

PARAMETERS
sendkeys.N.scan—event—MM u32 in
Assign the uinput event codes associated with each scancode.

sendkeys.N.pin—event—MM u32 in
Assign the uinput codes associated with each HAL bit pin.

EXAMPLE
loadusr —W sendkeys config=16t2
net scancodes hm2_7i73.0.0.keycode => sendkeys.0.keycode

setp sendkeys.0.scan—event—00 34 # Key G
setp sendkeys.0.scan—event—01 2 # Key 1
setp sendkeys.0.scan—event—02 3 # Key 2
setp sendkeys.0.scan—event—03 4 # Key 3
setp sendkeys.0.scan—event—04 50 # Key M
setp sendkeys.0.scan—event—05 05 # Key 4
setp sendkeys.0.scan—event—06 06 # Key 5
setp sendkeys.0.scan—event—07 07 # Key 6
setp sendkeys.0.scan—event—08 31 # Key S
setp sendkeys.0.scan—event—09 8 # Key 7
setp sendkeys.0.scan—event—10 9 # Key 8
setp sendkeys.0.scan—event—11 10 # Key 9
setp sendkeys.0.scan—event—12 20 # Key T
setp sendkeys.0.scan—event—13 11 # Key 0
setp sendkeys.0.scan—event—14 52 # Key Dot
setp sendkeys.0.scan—event—15 14 # Backspace
setp sendkeys.0.pin—event—00 29 # Left Ctrl
setp sendkeys.0.pin—event—01 57 # Space
setp sendkeys.0.init 1

#Send Ctl + Space from one trigger
net clear—errors parport.0.pin.00.in sendkeys.0.trigger—00 sendkeys.0.trigger—01

AUTHOR
Andy Pugh

LICENSE
GPL-2.0+

LinuxCNC 01/04/2026 153

SETUP_DESIGNER(1) LinuxCNC Documentation SETUP_DESIGNER(1)

NAME

setup_designer — A script to configure the system for use of Qt Designer

DESCRIPTION

Run the script setup_designer to prepare your system for custom GUI creation using the Qt toolset.

See the QtVCP documentation for more details.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

154 01/04/2026 LinuxCNC

SHUTTLE(1) LinuxCNC Documentation SHUTTLE(1)

NAME

shuttle — control HAL pins with the ShuttleXpress, ShuttlePRO, and ShuttlePRO2 device made by Contour
Design

SYNOPSIS

loadusr shuttle [DEVICE ...]

DESCRIPTION

UDEV

Shuttle is a non—realtime HAL component that interfaces Contour Design’s ShuttleXpress, ShuttlePRO,
and ShuttlePRO2 devices with LinuxCNC’s HAL.

If the driver is started without command-line arguments, it will probe all /dev/hidraw* device files for
Shuttle devices, and use all devices found. If it is started with command-line arguments, it will only probe
the devices specified.

The ShuttleXpress has five momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15—position spring—loaded outer wheel that returns to center when released.

The ShuttlePRO has 13 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15—position spring—loaded outer wheel that returns to center when released.

The ShuttlePRO2 has 15 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15—position spring—loaded outer wheel that returns to center when released.

The shuttle driver needs read permission to the Shuttle devices' /dev/hidraw* device files. This can be
accomplished by adding a file /etc/udev/rules.d/99—shuttle.rules, with the following contents:

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0b33",
ATTRS{idProduct}=="0020", MODE="0444"

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="05f3",
ATTRS{idProduct}=="0240", MODE="0444"

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0b33",
ATTRS{idProduct}=="0030", MODE="0444"

The LinuxCNC Debian package installs an appropriate udev file automatically, but if you are building
LinuxCNC from source and are not using the Debian packaging, you’ll need to install this file by hand. If
you install the file by hand you’ll need to tell udev to reload its rules files by running udevadm control
——reload—rules.

A WARNING ABOUT THE JOG WHEEL

PINS

The Shuttle devices have an internal 8—bit counter for the current jog—wheel position. The shuttle driver
can not know this value until the Shuttle device sends its first event. When the first event comes into the
driver, the driver uses the device’s reported jog—wheel position to initialize counts to 0. This means that if
the first event is generated by a jog—wheel move, that first move will be lost.

Any user interaction with the Shuttle device will generate an event, informing the driver of the jog—wheel
position. So if you (for example) push one of the buttons at startup, the jog—wheel will work fine and notice
the first click.

All HAL pin names are prefixed with shuttle followed by the index of the device (the order in which the
driver found them), for example shuttle.O or huttle.2.

(prefix).button—(number) (bit out), (prefix).button—(number)—not (bit out)
The momentary buttons. "(number)" identifies which button corresponds to the HAL pin. The

LinuxCNC 01/04/2026 155

SHUTTLE(1) LinuxCNC Documentation SHUTTLE(1)

"button—(number)" pins are True when the button is pushed, the "button—(number)—not" pins are True
when the button is not pushed.

(prefix).counts (s32 out)
Accumulated counts from the jog wheel (the inner wheel).

(prefix).spring—wheel—s32 (s32 out)
The current deflection of the spring—wheel (the outer wheel). It’s O at rest, and ranges from —7 at the
counter—clockwise extreme to +7 at the clockwise extreme.

(prefix).spring—wheel—f (float out)
The current deflection of the spring—wheel (the outer wheel). It’s 0.0 at rest, —1.0 at the
counter—clockwise extreme, and +1.0 at the clockwise extreme. (The Shuttle devices report the
spring—wheel position as an integer from —7 to +7, so this pin reports only 15 discrete values in its
range.)

156 01/04/2026 LinuxCNC

SIM-TORCH (1) LinuxCNC Documentation SIM-TORCH (1)

NAME

sim-torch — A simulated plasma torch

SYNOPSIS

loadusr Wn sim—torch sim—torch

DESCRIPTION

PINS

A simulated plasma torch for arc—ok testing.

VERSION: 0.1

sim—torch-rt.cut—noise—in float in (default: 0.75)
the maximum amount of noise during cutting (volts)

sim—torch-rt.cycles—in s32 in*
the number of cycles that the arc voltage overshoots the cut voltage (cycles) (default: 200)

sim—torch-rt.on—delay—in s32 in*
the time from turn on until overshoot begins (cycles) (default: 70)

sim—torch—rt.offset—in float in
the cut voltage offset(volts)

sim—torch-rt.overshoot—in s32 in
the percentage of the cut voltage that the arc voltage overshoots (percent) (default: 50)

sim—torch—-rt.ramp-noise—in float in (default: 5)*
the maximum amount of noise during overshoot (volts)

sim—torch—-rt.ramp—up—in s32 in (default: 80)
percent of cycles_in that the arc voltage ramps up (percent)

sim—torch—rt.start bit in
start the arc

sim—torch-rt.voltage—in float in
the cut voltage (volts) (default: 700)

sim—torch-rt.voltage—out float out
output voltage (volts)

AUTHOR

Phillip A Carter & Gregory D Carl

LICENSE

GPLV?2 or greater

LinuxCNC 01/04/2026

157

SIM_PIN(1) LinuxCNC Documentation SIM_PIN(1)

NAME

sim_pin — GUI for displaying and setting one or more HAL inputs

SYNOPSIS

sim_pin [Options] namel [name2 [name3 ...]1
Options: —help (shows help text) ——title title_string

For bit items, the name may include a /mode= specifier: namei*/mode=[*pulse | toggle | hold] (default is
toggle)

DESCRIPTION

HAL boolean items (bit) and numerical items (u32, s32, float) are supported.
If the named input is a numerical type, the GUI displays:

Entry Entry widget for value or a valid Tcl expression. Set Pushbutton to set new value from Entry (or use
<RETURN?>). Reset Pushbutton to reset to the value present on initiation If the input is a bit type, the GUI
shows a single pushbutton that is controlled by radio—button selectors:

mode=pulse Pulse input to 1 for each pushbutton press. mode=toggle Toggle input for each pushbutton
press. mode=hold Set input to 1 while pushbutton pressed.

If the bit item mode begins with an uppercase letter, the radio buttons for selecting other modes are not
shown

NOTES

LinuxCNC or a standalone HAL application must be running
A named item can specify a pin, param, or signal. The named item must be writable:

pin IN or I/O (and not connected to a signal with a writer) param RW signal connected to a writable pin

USAGE
sim_pin can be used interactively from a shell command line or started automatically from a configuration
INI file.

EXAMPLE
Example for INI file usage:

[APPLICATIONS] DELAY =5 APP = sim_pin \ halui.machine.off/mode=pulse \
ini.traj_arc_blend_enable \ motion—command—handler—tmax

158 01/04/2026 LinuxCNC

SIMULATE_PROBE(1) LinuxCNC Documentation SIMULATE_PROBE(1)

NAME

simulate_probe — simulate a probe input

SYNOPSIS

simulate_probe

DESCRIPTION
simulate_probe Creates an on—screen GUI button to simulate touch probe input. Typically used in sim
configs or debugging.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 159

STEPCONF(1) LinuxCNC Documentation STEPCONF (1)

NAME

stepconf — A configuration wizard for parallel—port based machines.

SYNOPSIS

stepconf

DESCRIPTION

stepconf aids in the configuration of machines using the parallel port interface.

Detailed docs: https://linuxcnc.org/docs/html/config/stepconf.html
SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

160 01/04/2026 LinuxCNC

SVD—-PS_VFD(1) LinuxCNC Documentation SVD-PS_VFD(1)

NAME

svd-ps_vfd — HAL non-realtime component for SVD—P(S) VFDs
SYNOPSIS

svd—ps_vfd [OPTIONS]
DESCRIPTION

The svd—ps_vfd component interfaces a Soyan Power SVD—P(S) VFD to the LinuxCNC HAL. The VFD is
connected via RS—485 to the LinuxCNC computer.

The SVD-P(S) VFDs are also sold under the LAPOND brand.

HARDWARE SETUP
The SVD-P(S) VFDs do not come with a Modbus daughterboard by default, it needs to be purchased
separately.

FIRMWARE SETUP
The sad—ps_vfd component uses standard Modbus protocol communication, which requires that one
parameter be changed from the default settings:

PD-05 =1 (Standard Modbus protocol)

The following settings have been tested successfully and are the default per Soyans documentation:
PD-00 = 6005 (9600 baud)

PD-01 =0 (8N2)

PD-02 =1 (Slave address)

PD-03 =2 (Response delay)

PD-04 = 0 (Communication timeout)

PD-06 = 0 (Current resolution)

OPTIONS
—b, ——Dbits N
For Modbus communication, set number of data bits to N. N must be between 5 and 8 inclusive.
(default 8) —p, ——parity [Even,0Odd,None] For Modbus communication, set serial parity to Even, Odd,
or None. (default None)

-r, —rate N
For Modbus communication, set baud rate to N. It is an error if the rate is not one of the following:
1200, 2400, 4800, 9600, 19200, 38400 (default 9600)

—s, ——stopbits [1,2]
For Modbus communication set serial stop bits to 1 or 2. (default 2)

—t, ——target N
For Modbus communication, set Modbus target (slave) number. This must match the device number
you set on the Huanyang GT VFD. (default 1)

—d, ——device PATH
For Modbus communication, set the name of the serial device node to use. (default /dev/ttyS0)

—v, ——verbose
Turn on verbose mode.

—-S, ——motor-max-speed RPM
The motor’s max speed in RPM.

LinuxCNC 01/04/2026 161

SVD—-PS_VFD(1) LinuxCNC Documentation SVD-PS_VFD(1)

—-F, ——max—frequency HZ
This is the maximum output frequency of the VFD in Hz.

—f, ——min—frequency HZ
This is the minimum output frequency of the VFD in Hz.

PINS
svd—ps_vfd.period (float, in)
The period for the driver’s update cycle, in seconds. This is how frequently the driver will wake up,
check its HAL pins, and communicate with the VFD. Must be between 0.001 and 2.000 seconds.
Default: 0.1 seconds.

svd—ps_vfd.speed—cmd (float, in)
The requested motor speed, in RPM.

svd—ps_vfd.speed—fb (float, out)
The motor’s current speed, in RPM, reported by the VFD.

svd—ps_vfd.at—speed (bit, out)
True when the drive is on and at the commanded speed (within 2%), False otherwise.

svd—ps_vfd.freq—emd (float, out)
The requested output frequency, in Hz. This is set from the .speed—cmd value, and is just shown for
debugging purposes.

svd—ps_vfd.freq—fb (float, out)
The current output frequency of the VFD, in Hz. This is reported from the VFD to the driver.

svd—ps_vfd.spindle—on (bit, in)
Set this pin True to command the spindle on, at the speed requested on the .speed—cmd pin. Set this
pin False to command the spindle off.

svd—ps_vfd.output—voltage (float, out)
The voltage that the VFD is current providing to the motor, in Volts.

svd—ps_vfd.output—current (float, out)
The current that the motor is currently drawing from the VFD, in Amperes.

hsvd-ps_vfd.output—power (float, out)
The power that the motor is currently drawing from the VFD, in Watts.

svd—ps_vfd.dc-bus—voltage (float, out)
The current voltage of the VFD’s internal DC power supply, in Volts.

svd—ps_vfd.modbus—errors (u32, out)
A count of the number of modbus communication errors between the driver and the VFD. The driver
is resilient against communication errors, but a large or growing number here indicates a problem that
should be investigated.

svd—ps_vfd.input—terminal (float, out)
The VFD’s input terminal register.

svd—ps_vfd.AIl (float, out)
The VFD’s All register.

svd—ps_vfd.AI2 (float, out)
The VFD’s AI2 register.

AUTHOR

Tinic Uro

LICENSE
GPL-2.0+

162 01/04/2026 LinuxCNC

TEACH-IN(1) LinuxCNC Documentation TEACH-IN(1)

NAME

teach-in — jog the machine to a position, and record the state
SYNOPSIS

teach—in [> outfile]
DESCRIPTION

teach—in is a script to learn set positions for later use by a script.

A dialog box is shown with options to choose the coordinate system. Each press of the "Learn" button
outputs a line of text to stdout or the file chosen at load time.

Line format: line—no X Y Z flood mist spindle

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 163

THERMISTOR(1) LinuxCNC Documentation THERMISTOR(1)

NAME

thermistor — compute temperature indicated by a thermistor

SYNOPSIS

thermistor

DESCRIPTION
This component computes the temperature indicated by a thermistor in a voltage—divider ladder. It uses the
Beta—parameter variant of the Steinhart—Hart equation, described here:

http://en.wikipedia.org/wiki/Thermistor
PINS

thermistor.N.t0—c float in
Reference temperature of the thermistor, in degrees Celsius (typically 25 C). This must be set before
the component can compute the thermistor temperature. The reference temperature information is
supplied by the thermistor manufacturer.

thermistor.N.r0 float in
Resistance of the thermistor at the reference temperature. This must be set before the component can
compute the thermistor temperature. The reference resistance information is supplied by the thermistor
manufacturer.

thermistor.N.beta float in
Beta parameter of the thermistor (sometimes just called B). This must be set before the component can
compute the thermistor temperature. The Beta parameter is supplied by the thermistor manufacturer.

thermistor.N.r—other float in
Resistance of the other resistor in the voltage—divider ladder. This must be set before the component
can compute the thermistor temperature.

thermistor.N.v—total float in
Supply voltage of the voltage—divider ladder.

thermistor.N.v—thermistor float in
Voltage drop across the termistor.

thermistor.N.temperature—c float out
Temperature sensed by the thermistor, in degrees Celsius.

thermistor.N.temperature—k float out
Temperature sensed by the thermistor, in Kelvins.

thermistor.N.temperature—f float out
Temperature sensed by the thermistor, in degrees Fahrenheit.

thermistor.N.resistance float out
Computed resistance of the thermistor.

LICENSE
GPL

164 01/04/2026 LinuxCNC

TOOL_MMAP_READ(1) LinuxCNC Documentation TOOL_MMAP_READ(1)

NAME

tool_mmap_read — A component of the tool database system (an alternative to the classic tooltable)

DESCRIPTION

tool_mmap_read is not intended to be invoked by the user.

SEE ALSO

linuxcne(1)*

See the Tool Database Interface section of the LinuxCNC Documentation for more information at
https://linuxcnc.org/docs/devel/html/tooldatabase/tooldatabase.html.

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 165

TOOL_WATCH(1) LinuxCNC Documentation TOOL_WATCH(1)

NAME

tool_watch — A component of the tool database system (an alternative to the classic tooltable)

DESCRIPTION

tool_watch is not intended to be invoked by the user.

See the Tool Database Interface section of the LinuxCNC Documentation for more information.
https://linuxcnc.org/docs/devel/html/tooldatabase/tooldatabase.html

SEE ALSO

linuxcne(1)*

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

166 01/04/2026 LinuxCNC

TOOLEDIT (1) LinuxCNC Documentation TOOLEDIT (1)

NAME

tooledit — tool table editor

SYNOPSIS
tooledit

DESCRIPTION
tooledit a graphical tool table editor

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 167

TOUCHY (1) LinuxCNC Documentation TOUCHY (1)

NAME
touchy — TOUCHY LinuxCNC Graphical User Interface
SYNOPSIS
touchy —ini <INI file>
DESCRIPTION
touchy is one of the Graphical User Interfaces (GUI) for LinuxCNC. It gets run by the runscript usually.
OPTIONS
INI file
The INI file is the main piece of an LinuxCNC configuration. It is not the entire configuration; there
are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

168 01/04/2026 LinuxCNC

UPDATE_INI(1) LinuxCNC Documentation UPDATE_INI(1)

NAME
update_ini — converts 2.7 format INI files to 2.8 format
SYNOPSIS
update_ini [-f] [-d] <INI file>_
DESCRIPTION
update_ini is run automatically by the "linuxcnc" script when an INI file in the pre—joints—axes format is
opened.
—d causes a dialog box to be shown asking if the script should be run.
—f is designed for auto—conversion and will not create the backup files.
SEE ALSO
linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 169

VFDB_VFD(1) LinuxCNC Documentation VFDB_VFD(1)

NAME
vfdb_vfd — HAL non-realtime component for Delta VFD—B Variable Frequency Drives

SYNOPSIS
vidb_vfd [OPTIONS]

DESCRIPTION
This manual page explains the vfdb_vfd component. This component reads and writes to the VFD-B
device via a Modbus connection.

vidb_vfd is for use with Linux CNC.

QUICK START
The VFD-B ships in a configuration that can not talk to this driver. The VFD—B must be reconfigured via
the face plate by the integrator before it will work. This section gives a brief description of what changes
need to be made, consult your Delta VFD—-B manual for more details.

Switch the VFD-B to Modbus RTU frame format
Switch parameter 09—04 from the factory default of O (Ascii framing) to 3, 4, or 5 (RTU framing). The
setting you choose will determine several serial parameters in addition to the Modbus framing
protocol.

Set the frequency control source to be Modbus, not the keypad
Switch parameter 02—00 from factory default of 00 (keypad control) to 5 (control from RS—-485).

Set the run/stop control source to be Modbus, not the keypad
Switch parameter 02—01 from the factory default of O (control from keypad) to 3 (control from
Modbus, with Stop enabled on the keypad).

OPTIONS

—n ——name <halname>
set the HAL component name

—d ——debug
Turn on debugging messages. Also toggled by sending a USR1 signal to the vfdb_vfd process.

—m ——modbus—debug
Turn on Modbus debugging messages. This will cause all Modbus messages to be printed in hex on
the terminal. Also toggled by sending a USR2 signal to the vfdb_vfd process.

—I ——ini <INI file>
take configuration from this /NI file. Defaults to environment variable INI_FILE_ NAME. Most
vfdb_vfd configuration comes from the INI file, not from command-line arguments.

—S ——section <section name>
take configuration from this section in the INI file. Defaults to VFD—-B.
—r —report—device
report device propertiers on console at startup
INI CONFIG VARIABLES

DEBUG
Set to a non—zero value to enable general debug output from the VFD-B driver. Optional.

MODBUS_DEBUG
Set to a non—zero value to enable modbus debug output from the VFD-B driver. Optional.

DEVICE
Serial port device file to use for Modbus communication with the VFD—B. Defaults to /dev/ttySO0.

BAUD
Modbus baud rate. Defaults to 19200.

BITS
Modbus data bits. Defaults to 8.

170 01/04/2026 LinuxCNC

VFDB_VFD(1) LinuxCNC Documentation VFDB_VFD(1)

PINS

PARITY
Modbus parity. Defaults to Even. Accepts Even, Odd, or None.

STOPBITS
Modbus stop bits. Defaults to 1.

TARGET
Modbus target number of the VFD—-B to speak to. Defaults to 1.

POLLCYCLES
Only read the less important variables from the VFD-B once in this many poll cycles. Defaults to 10.

RECONNECT_DELAY
If the connection to the VFD-B is broken, wait this many seconds before reconnecting. Defaults to 1.

MOTOR_HZ, MOTOR_RPM
The frequency of the motor (in Hz) and the corresponding speed of the motor (in RPM). This
information is provided by the motor manufacturer, and is generally printed on the motor’s name plate.

<name>.at—speed (bit, out)
True when drive is at commanded speed (see speed—tolerance below)

<name>.enable (bit, in)
Enable the VFED. If False, all operating parameters are still read but control is released and panel
control is enabled (subject to VFD setup).

<name>.frequency—command (float, out)
Current target frequency in HZ as set through speed—command (which is in RPM), from the VFD.

<name>.frequency—out (float, out)
Current output frequency of the VFD.

<name>.inverter—load—percentage (float, out)
Current load report from VED.

<name>.is—e—stopped (bit, out)
The VFD is in emergency stop status (blinking "E" on panel).

<name>.is—stopped (bit, out)
True when the VFD reports 0 Hz output.

<name>.jog—mode (bit, in)
1 for ON and O for OFF, enables the VFD—-B jog mode. Speed control is disabled. This might be useful
for spindle orientation.

<name>.max—rpm (float, out)
Actual RPM limit based on maximum frequency the VFD may generate, and the motors nameplate
values. For instance, if nameplate—HZ is 50, and nameplate—RPM is 1410, but the VFD may generate
up to 80Hz, then max—rpm would read as 2256 (80*1410/50). The frequency limit is read from the
VED at startup. To increase the upper frequency limit, the UL and FH parameters must be changed on
the panel. See the VFD—B manual for instructions how to set the maximum frequency.

<name>.modbus—ok (bit, out)
True when the Modbus session is successfully established and the last 10 transactions returned without
erTor.

<name>.motor—RPM (float, out)
Estimated current RPM value, from the VFD.

<name>.motor—RPS (float, out)
Estimated current RPS value, from the VED.

<name>.output—voltage (float, out)
From the VFD.

LinuxCNC 01/04/2026 171

VFDB_VFD(1) LinuxCNC Documentation VFDB_VFD(1)

<name>.output—current (float, out)
From the VFD.

<name>.speed—command (float, in)
Speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in the
VED.

<name>.spindle—on (bit, in)
1 for ON and O for OFF sent to VFD, only on when running.

<name>.max—speed (bit, in)
Ignore the loop—time parameter and run Modbus at maximum speed, at the expense of higher CPU
usage. Suggested use during spindle positioning.

<name>.status (s32, out)
Drive Status of the VFD (see the VFD manual). A bitmap.

<name>.error—count (s32, out)
Total number of transactions returning a Modbus error.

<name>.error—code (s32, out)
Most recent Error Code from VFD.

<name>.frequency—limit (float, out)
Upper limit read from VFD setup.

PARAMETERS
<name>.loop—time (float, RW)
How often the Modbus is polled (default interval 0.1 seconds).

<name>.nameplate-HZ (float, RW)
Nameplate Hz of motor (default 50). Used to calculate target frequency (together with
nameplate—RPM) for a target RPM value as given by speed—command.

<name>.nameplate—RPM (float, RW)
Nameplate RPM of motor (default 1410)

<name>.rpm-limit (float, RW)
Do—not—exceed soft limit for motor RPM (defaults to nameplate—RPM).

<name>.tolerance (float, RW)
Speed tolerance (default 0.01) for determining whether spindle is at speed (0.01 meaning: output
frequency is within 1% of target frequency).

USAGE
The vfdb_vfd driver takes precedence over panel control while it is enabled (see .enable pin), effectively
disabling the panel. Clearing the .enable pin re—enables the panel. Pins and parameters can still be set, but
will not be written to the VFD untile the .enable pin is set. Operating parameters are still read while bus
control is disabled.

Exiting the vfdb_vfd driver in a controlled way will release the VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the Delta
VFD-B, see the VFD manual.

AUTHOR
Yishin Li; based on vfd11_vfd by Michael Haberler.

LICENSE
GPL

172 01/04/2026 LinuxCNC

VFSI11_VFD(1) LinuxCNC Documentation VFSI11_VFD(1)

NAME

vfs11_vfd — HAL non-realtime component for Toshiba—Schneider VF-S11 Variable Frequency Drives
SYNOPSIS

vis11_vfd [OPTIONS]
DESCRIPTION

This manual page explains the vfs11_vfd component. This component reads and writes to the vfs11 via a
Modbus connection.

vfs11_vfd is for use with LinuxCNC.
OPTIONS

—n ——name <halname>
set the HAL component name

—d ——debug
Turn on debugging messages. Also toggled by sending a USR1 signal to the vfs11_vfd process.

—m ——modbus—debug
Turn on Modbus debugging messages. This will cause all Modbus messages to be printed in hex on
the terminal. Also toggled by sending a USR2 signal to the vfs11_vfd process.

—I —ini <INI file>
takes configuration from this INI file. Defaults to environment variable INI_FILE_NAME.

—S ——section <section name>
take configuration from this section in the INI file. Defaults to VFS11.

—r —report—device
Reports device propertiers on console at startup.

PINS
<name>.acceleration—pattern (bit, in)
when true, set acceleration and deceleration times as defined in registers F500 and F501 respectively.
Used in PID loops to choose shorter ramp times to avoid oscillation.

<name>.alarm—code (s32, out)
non-zero if drive is in alarmed state. Bitmap describing alarm information (see register FC91
description). Use err—reset (see below) to clear the alarm.

<name>.at—speed (bit, out)
when drive is at commanded speed (see speed—tolerance below)

<name>.current—load—percentage (float, out)
Reported from the VFD.

<name>.dc—brake (bit, in)
Engage the DC brake. Also turns off spindle—on.

<name>.enable (bit, in)
Enable the VFED. If false, all operating parameters are still read but control is released and panel
control is enabled (subject to VFD setup).

<name>.err—reset (bit, in)
Reset errors (alarms a.k.a Trip and e—stop status). Resetting the VFD may cause a 2—second delay
until it’s rebooted and Modbus is up again.

<name>.estop (bit, in)
Put the VFD into emergency—stopped status. No operation possible until cleared with err—reset or
powercycling.

<name>.frequency—command (float, out)
Current target frequency in Hz as set through speed—command (which is in RPM), from the VFD.

LinuxCNC 01/04/2026 173

VFSI11_VFD(1) LinuxCNC Documentation VFSI11_VFD(1)

<name>.frequency—out (float, out)
Current output frequency of the VFD.

<name>.inverter—load—percentage (float, out)
Current load report from VFED.

<name>.is—e—stopped (bit, out)
The VFD is in emergency stop status (blinking "E" on panel). Use err—reset to reboot the VFD and
clear the e—stop status.

<name>.is—stopped (bit, out)
True when the VFD reports 0 Hz output

<name>.jog—mode (bit, in)
1 for ON and O for OFF, enables the VF-S11 jog mode. Speed control is disabled, and the output
frequency is determined by register F262 (preset to 5 Hz). This might be useful for spindle orientation.

<name>.max—rpm (float, R)
Actual RPM limit based on maximum frequency the VFD may generate, and the motors nameplate
values. For instance, if nameplate—HZ is 50, and nameplate—RPM__ is 1410, but the VFD may
generate up to 80Hz, then max—rpm would read as 2256 (80%1410/50). The frequency limit is read
from the VFD at startup. To increase the upper frequency limit, the UL and FH parameters must be
changed on the panel. See the VF—S11 manual for instructions how to set the maximum frequency.

<name>.modbus—ok (bit, out)
True when the Modbus session is successfully established and the last 10 transactions returned without
error.

<name>.motor—RPM (float, out)
Estimated current RPM value, from the VFD.

<name>.output—current—percentage (float, out)
from the VFD

<name>.output—voltage—percentage (float, out)
from the VFD

<name>.output—voltage (float, out)
from the VFD

<name>.speed—command (float, in)
Speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in the
VED.

<name>.spindle—fwd (bit, in)
1 for FWD and O for REYV, sent to VED.
<name>.spindle—on (bit, in)
1 for ON and O for OFF sent to VFD, only on when running.
<name>.spindle—rev (bit, in)
1 for ON and O for OFF, only on when running.
<name>.max—speed (bit, in)
Ignore the loop—time parameter and run Modbus at maximum speed, at the expense of higher CPU
usage. Suggested use during spindle positioning.

<name>.status (s32, out)
Drive Status of the VFD (see the TOSVERT VF-S11 Communications Function Instruction Manual,
register FDO1). A bitmap.

<name>.trip—code (532, out)
Trip code if VF=S11 is in tripped state.

<name>.error—count (s32, RW)

174 01/04/2026 LinuxCNC

VFSI11_VFD(1) LinuxCNC Documentation VFSI11_VFD(1)

Total number of transactions returning a Modbus error.

PARAMETERS
<name>.frequency—limit (float, RO)
Upper limit read from VFD setup.

<name>.loop—time (float, RW)
How often the Modbus is polled (default interval 0.1 seconds)

<name>.nameplate—HZ (float, RW)
Nameplate Hz of motor (default 50). Used to calculate target frequency (together with
nameplate—RPM) for a target RPM value as given by speed—command.

<name>.nameplate—RPM (float, RW)
Nameplate RPM of motor (default 1410)

<name>.rpm-limit (float, RW)
Do—not—exceed soft limit for motor RPM (defaults to nameplate—RPM).

<name>.tolerance (float, RW)
Speed tolerance (default 0.01) for determining whether spindle is at speed (0.01 meaning: output
frequency is within 1% of target frequency).

USAGE
The vfs11_vfd driver takes precedence over panel control while it is enabled (see _.enable* pin), effectively
disabling the panel. Clearing the .enable pin re—enableds the panel. Pins and parameters can still be set, but
will not be written to the VFD untile the .enable pin is set. Operating parameters are still read while bus
control is disabled.

Exiting the vfs11_vfd driver in a controlled will release the VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the
Toshiba VFDs, see the "TOSVERT VF-S11 Communications Function Instruction Manual" (Toshiba
document number E6581222) and the "TOSVERT VF-S11 Instruction manual" (Toshiba document
number E6581158).

AUTHOR
Michael Haberler; based on gs2_vfd by Steve Padnos and John Thornton.

LICENSE
GPL

LinuxCNC 01/04/2026 175

WJ200_VFD(1) LinuxCNC Documentation WJ200_VFD(1)

NAME
wj200_vfd — Hitachi wj200 modbus driver

SYNOPSIS
wj200_vfd
PINS

wj200-vfd.N.commanded—frequency float in
Frequency of vfd (scaled to RPM)

wj200-vfd.N.motor—frequency float out
Motor’s actual frequency (scaled to RPM)

wj200—vfd.N.motor-reverse bit out
1 when actually turning in reverse

wj200—vfd.N.reverse bit in
1 when reverse 0 when forward

wj200—vfd.N.run bit in
run the vfd

wj200—vfd.N.enable bit in
1 to enable the vfd. O will remote trip the vfd, thereby disabling it.

wj200—vfd.N.is—running bit out
1 when running

wj200-vfd.N.is—at—speed bit out
1 when running at assigned frequency

wj200—vfd.N.is—stopped bit out
1 when stopped

wj200—vfd.N.is—ready bit out
1 when vfd is ready to run

wj200-vfd.N.is—alarm bit out
1 when vfd alarm is set

wj200—vfd.N.motor—current float out
Output current in amps

wj200—vfd.N.heatsink—temp float out
Temperature of drive heatsink

wj200-vfd.N.watchdog—out bit out
Alternates between 1 and 0 after every update cycle. Feed into a watchdog component to ensure vfd
driver is communicating with the vfd properly.

PARAMETERS
wj200—vfd.N.mbslaveaddr u32 rw
Modbus slave address

wj200-vfd.N.frequency—scale float rw (default: /)
RPM / frequency, default 1

LICENSE
GPLV?2 or greater

176 01/04/2026 LinuxCNC

XHC-HB0O4-ACCELS(1) LinuxCNC Documentation XHC-HB04-ACCELS(1)

NAME
xhc-hb04-accels — Obsolete script for jogging wheel

SYNOPSIS
xhc—hb04-accels

DESCRIPTION

xhc—hb04-accels Obsolete script, xhc—hb04.tcl now controls reduced wheel jogging accels.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 177

XHC-HBO04(1) LinuxCNC Documentation XHC-HBO04(1)

NAME
xhc-hb04 — HAL non-realtime component for the xhc—hb04 pendant.

DESCRIPTION
The xhc—hb04 component supports a common USB pendant that provides a number of pushbuttons, a
manual pulse generator (mpg or jog wheel), and a selector switch for the wheel.

There are at least two hardware versions — one with 16 buttons and a more common one with 18 buttons.
The information herein is based on the 18 button device with a USB Vendor:Product code of 10CE:EB70.

In addition to buttons, the pendant provides an LCD display for the current stepsize multiplier (from a set
of available integer values), position (absolute and relative, labeled MC and WC respectively), feedrate
(override percent and value in units per minute), and spindle speed (override percent and value in
revolutions per minute (RPM)). The display is managed by a rotary switch that selects one of four axes for
wheel positioning, feed override, spindle override, or OFF.

The pendant display, its rotary selector switch, and the component pin names use designators X,y,z,a. While
this arrangement presumes a machine configured as XYZA, the pins can be assigned independently as
required in a HAL configuration.

UDEV
The xhc—hb04 executable needs permission for reading the pendant’s USB device. Debian package installs
(debs) handle this automatically but Run—In—Place (RIP) builds may need a udev rules file. This file should
be created (using sudo and a text editor) as:

/etc/udev/rules.d/99—xhc—hb04.rules with the single line:

ATTR{idProduct}=="eb70", ATTR {idVendor}=="10ce", MODE="0666", OWNER="root", GROUP="plugdev"
STANDALONE USAGE

The xhc—hb04 program can be run from the command line without LinuxCNC to test a pendant in a
simulation mode. This standalone mode is used to identify the button codes produced for each button press
and to verify proper counting of the jog wheel. The identified button codes can be used to create a
button—cfg—file. When a button—cfg—file exists, pendant operation can be verified using the —I option to
specify the file.

Usage:

xhc—hb04 [options]

OPTIONS
-h
list command line options and exit

—I button—cfg—file
see below for file format

-H
run in real-time HAL mode (simulation mode is default)

wait for pendant detection before creating HAL pins.

-sn
n is one of the following stepsize sequences

1: 1,10,100,1000 (default) 2: 1,5,10,20 3: 1,10,100 4: 1,5,10,20,50,100 5: 1,10,50,100,1000

The stepsize selected is always multiplied by 0.001.

178 01/04/2026 LinuxCNC

XHC-HBO04(1) LinuxCNC Documentation XHC-HBO04(1)

BUTTON-CFG-FILE FORMAT

Standard configuration files are provided in the distribution for known button configurations:

/usr/share/linuxcnc/hallib/xhc—hb04—-layoutl.cfg
/usr/share/linuxcnc/hallib/xhc—hb04—-layout2.cfg
or for a RIP build:
rip_base_dir/lib/hallib/xhc-hb04—-layout1.cfg
rip_base_dir/lib/hallib/xhc—hb04—-layout2.cfg

layout] describes the 16 button pendant, layout2 describes the more common 18 button pendant.
The button configuration file follows the same format as INI files but should use a file suffix of .cfg.

File format:
[XHC-HBO04]
BUTTON=X1:button—thename1
BUTTON=X2:button—thename?2
BUTTON=X3:button—thename3
etc.

XN is the code reported for a button press and button—thenameN is the name to be assigned to the pin
created for the button.

HAL USAGE
Use the —H option to specify HAL mode and other options as required:

loadusr =W xhc—hb04 —H [options]

Example: loadusr —W xhc-hb04-H —I path_to_cfg_file —s 2

INPUT PINS (CONTROL)
xhc—hb04.stepsize—up (bit in)
A 1 pulse on this pin changes the stepsize to the next higher stepsize in the stepsize sequence specified
in the xhc—hb04 (loadusr) command.

xhc—hb04.stepsize—down (bit in)
A 1 pulse on this pin changes the stepsize to the next lower stepsize in the stepsize sequence specified
in the xhc—hb04 (loadusr) command.

INPUT PINS (TO THE PENDANT LCD DISPLAY)
xhc—hb04.[xyza].pos—absolute (float in)
Absolute position display. The LCD display for pos—absolute is fixed format with a sign, 4 number
digits and 3 fraction digits (+XXXX.XXX), require: —9999.999 a value 4 9999.999 (typically connect
to: halui.axis.N.pos—feedback).

xhc—hb04.[xyza].pos—relative (float in)
Relative position display (typically connect to: halui.axis.N.pos—relative). The LCD display for
pos—relative is fixed format with a sign, 4 number digits and 3 fraction digits (+XXXX.XXX), require:
—9999.999 & value 4 9999.999.

xhc—hb04.feed—override (float in)
Feed—override value. The float value is converted to a 16 bit integer and multiplied by 100 in order to
display as percent, require: 0 4 pinvalue a 655 (typically connect to: halui.feed—override.value).

xhc—hb04.feed—value (float in)
Current Feed—value (units/sec). The float value is converted to a 16 bit integer and multiplied by 60 in
order to display as units—per—minute, require: 0 a pinvalue 4 1092 (65520 units—per—minute)
(typically connect to: motion.current—vel).

LinuxCNC 01/04/2026 179

XHC-HBO04(1) LinuxCNC Documentation XHC-HBO04(1)

xhc—hb04.spindle—override (float in)

Spindle—override value. The float value is converted to a 16 bit integer and multiplied by 100 in order
to display as percent, require: 0 & pinvalue & 655) (typically connect to: halui.spindle—override.value).

xhc—hb04.spindle—rps (float in)

Spindle speed in RPS (revolutions per second). The float value is converted to a 16 bit integer and
multiplied by 60 in order to display as RPMs, require: O 4 pinvalue 4 1092 (65520 RPM) (typically
connect to: spindle.N.speed—out—rps—abs).

xhc—hb04.inch—icon (bit in)

Use inch icon (default is mm):

OUTPUT PINS (STATUS)

xhc—hb04.sleeping (bit out)

True when the driver receives a pendant inactive (sleeping) message.

xhc—hb04.jog.enable—off (bit out)

True when the pendant rotary selector switch is in the OFF position or when the pendant is sleeping.

xhc—hb04.enable—[xyza] (bit out)

True when the pendant rotary selector switch is in the [xyza] position and not sleeping.

xhc—hb04.enable—spindle—override (bit out)

True when the pendant rotary selector switch is in the Spindle position and not sleeping (typically
connect to: halui.spindle—override—count—enable).

xhc—hb04.enable—feed—override (bit out)

True when the pendant rotary selector switch is in the feed position and not sleeping (typically connect
to: halui.feed—override—count—enable).

xhc—hb04.connected (bit out)

True when connection to the pendant is established over the USB interface.

xhc—hb04.require_pendant (bit out)

True if driver started with the —x option.

xhc—hb04.stepsize (s32 out)

Current stepsize in the stepsize sequence as controlled by the stepsize—up and/or stepsize—down pins.

OUTPUT PINS (FOR JOGGING USING AXIS.N.JOG-COUNTS)

xhc—hb04.jog.counts (s32 out)

Number of counts of the wheel since start—up (50 counts per wheel revolution) (typically connect to
axis.N.jog—counts (lowpass filtering may be helpful)).

xhc—hb04.jog.counts—neg (s32 out)

The value of the xhc—hb04.jog.counts multiplied by —1.

xhc—hb04.jog.scale (float out)

Value is the current stepsize multiplied by 0.001 (typically connect to axis.N.jog—scale).

EXPERIMENTAL: PINS FOR HALUI PLUS/MINUS JOGGING.

180

These pins provide some support for non—trivkins, world mode jogging.

xhc—hb04.jog.max—velocity (float in)

Connect to halui.max—velocity.value.

xhc—hb04.jog.velocity (float out)

Connect to halui.jog—speed.

xhc—hb04.jog.plus—[xyza] (bit out)

Connect to halui.jog.N.plus.

xhc—hb04.jog.minus—[xyza] (bit out)

Connect to halui.jog.N.minus.

xhc—hb04.jog.increment (float out)

01/04/2026 LinuxCNC

XHC-HBO04(1) LinuxCNC Documentation XHC-HBO04(1)

Debug pin — abs(delta_pos).

BUTTON OUTPUT PINS (FOR THE 18 BUTTON, LAYOUT2 PENDANT)
The output bit type pins are TRUE when the button is pressed.

ROW 1
(bit out) xhc—hb04.button—reset
(bit out) xhc—hb04.button—stop

ROW 2
(bit out) xhc—hb04.button—goto—zero
(bit out) xhc—hb04.button—rewind
(bit out) xhc—hb04.button—start—pause
(bit out) xhc—hb04.button—probe—z

ROW 3
(bit out) xhc—hb04.button—spindle
(bit out) xhc—hb04.button—half
(bit out) xhc—hb04.button—zero
(bit out) xhc—hb04.button—safe—z

ROW 4
(bit out) xhc—hb04.button—home
(bit out) xhc—hb04.button—macro—1
(bit out) xhc—hb04.button—-macro—2
(bit out) xhc—hb04.button—macro—3

ROW 5
(bit out) xhc—hb04.button—step
(bit out) xhc—hb04.button—-mode
(bit out) xhc—hb04.button—-macro—6
(bit out) xhc—hb04.button—macro—7

SYNTHESIZED BUTTON PINS
Additional buttons are synthesized for buttons named zero, goto—zero, and half. These synthesized buttons
are active when the button is pressed AND the selector—switch is set to the corresponding axis [xyza].

(bit out) xhc—hb04.button—zero—[xyza]
(bit out) xhc—hb04.button—goto—zero—[xyza]
(bit out) xhc—hb04.button—half-[xyza]

DEBUGGING
For debugging USB activity, use environmental variable LIBUSB_DEBUG:
export LIBUSB_DEBUG=[2 | 3 | 4]; xhc—hb04 [options]
2:warning, 3:info, 4:debug
SIM CONFIGS

The distribution includes several simulation configurations in the directory:

/usr/share/doc/linuxcnc/examples/sample—configs/sim/axis/xhc—hb04/
or for a RIP build:
rip_base_dir/configs/sim/axis/xhc—hb04/

These configurations use a distribution—provided script (xhc—hb04.tcl) to configure the pendant and make

necessary HAL connections according to a number of INI file settings. The script uses an additional HAL
component (xhc_hb04_util) to provide common functionality and includes support for a standard method

LinuxCNC 01/04/2026 181

XHC-HBO04(1) LinuxCNC Documentation XHC-HBO04(1)

Note

for the start—pause button.

The settings available include: * Specify button—cfg—file for standard layoutl or layout2, * select axes (up
to 4 axes from set of X y za b c u v w), * implement per—axis filtering coefficients, * implement per—axis
acceleration for mpg jogging, * implement per—axis scale settings, * select normal or velocity based jog
modes, * select stepsize sequence, * option to initialize pin for inch or mm display icon, * option to require
pendant on startup.

The sim configs illustrate button connections that: * Connect pendant stepsize—up button to the step input
pin, * connect buttons to halui.* pins, * connect buttons to motion.* pins.

Another script is included to monitor the pendant and report loss of USB connectivity. See the README
and .txt files in the above directory for usage.

The sim configs use the AXIS GUI but the scripts are available with any HAL configuration or GUI. The
same scripts can be used to adapt the xhc—hb04 to existing configurations provided that the halui, motion,
and axis.N pins needed are not otherwise claimed. Instructions are included in README file in the
directory named above.

Use halemd to display the pins and signals used by the xhc—hb04.tcl script:
halemd show pin xhc-hb04 (show all xhc—hb04 pins)

halemd show pin pendant_util (show all pendant_util pins)
halemd show sig pendant: (show all pendant signals)

AUTHOR

182

Frederick Rible (frible @teaser.fr)

01/04/2026 LinuxCNC

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

NAME

xhc-whb04b-6 — Non—realtime jog dial HAL component for the wireless XHC WHB04B—-6 USB device.
SYNOPSIS

xhc—whb04b—6 [-h] | [-H] [OPTIONS]
DESCRIPTION

The xhc—whb04b—6 HAL component supports the XHC WHBO04B—-6, a 6—axis wireless USB pendant. It
provides a number of push—buttons, a jogwheel, two rotary buttons for axis and speed / step selection and
an ordinary LCD display.

The LCD display, having a very simple firmware interface, indicates the following listed information only.
No other information, such as custom data, can be printed.

e Activated axis (X, Y, Z, A, B or C)
¢ Current axis position of X, Y, Z and separately of A, B, C.

¢ Whether machine (X, Y, Z, A, B or C) or relative (X1, Y1, Z1, Al, Bl or C1) coordinates are
displayed.

 Step size or velocity depending on the operating mode (MPG or Step or Continuous).
» Feedrate override
* Spindle Feedrate override
* Machine state such as reset.
* Battery level
* Wireless signal strength
The pendant display, its rotary selector switch, and the component pin names use designators X, y, z, a, b

and c. While this arrangement presumes a machine configured as X, Y, Z, A, B an C, the pins can be
assigned independently as required in a HAL configuration.

OPTIONS
—h, —help
Prints the synopsis and the most commonly used commands.
-H

Run xhc—whb04b-6 in HAL—mode instead of interactive mode. When in HAL mode commands from
device will be exposed to HAL’s shred memory. Interactive mode is useful for testing device
connectivity and debugging.

-
Lead + jogwheel changes the spindle override speed. Each tick will increase/decrease the spindle

override.
—f
MPG + jogwheel changes the feed override. Each tick will increment/decrement the feed override.
-B
Add 5 mm and 10 mm to Step feedrate output
—t
Wait with timeout for USB device then proceed, exit otherwise. Without —t the timeout is implicitly
infinite.
—u, -U

Show received data from device. With —U received and transmitted data will be printed. Output is
prefixed with "usb".

-p
Show HAL pins and HAL related messages. Output is prefixed with "hal".

LinuxCNC 01/04/2026 183

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

—e
Show captured events such as button pressed/released, jog dial, axis rotary button, and feed rotary
button event. Output is prefixed with "event".

-a
Enable all logging facilities without explicitly specifying each.

—c
Enable checksum output which is necessary for debugging the checksum generator function. Do not
rely on this feature since it will be removed once the generator is implemented.

Force being silent and not printing any output except of errors. This will also inhibit messages prefixed
with "init".
UDEV
The xhc—whb04b-6 executable needs permission for reading the pendant’s USB device. There may be the
need for additional udev rules. If so, this file /etc/udev/rules.d/99—xhc—whb04b—6.rules should be created
with the single line ATTR({idProduct}=="eb93", ATTR{idVendor}=="10ce", MODE="0666",
OWNER="root", GROUP="plugdev".

STANDALONE USAGE
The xhc—whb04b—6 program can be run from the command line without LinuxCNC to test a pendant. This
standalone mode is used to identify the button codes produced for each button press and debug transmitted
USB data.

EXAMPLES
xhc—whb04b—-6 —ue
Start in simulation mode and prints incoming USB data transfer and generated key pressed/released
events.

xhc—whb04b—-6 —p
Start in simulation mode and prints HAL pin names and events distributed to HAL memory.

xhc—whb04b-6 —H
Start in HAL mode (Normal mode for real machine use).

xhc—whb04b—-6 —HsfB
Start in HAL mode + Spindle Override + Feedrate Override + Big step (5/10 mm).

HAL USAGE
Use the —H option to specify HAL mode and other options as required: loadusr —W xhc—whb04b—6 —HsfB

Input/Output Signals
Note: For each button an output pin is provided even if no functionality is realized with that signal. For
example, to stop a running program the Stop button pin may be directly connected to halui.program.stop.
However, to start/pause/resume a program, the corresponding button toggles besides
whb.button.start—pause also the “whb.halui.program.*{run,pause,resume} signals accordingly.

Note: The Spindle+/Spindle— buttons do manipulate the spindle override. The spindle speed is set with the
respective combos Fn + Spindle— and FN + Spindle+.

The following tables list all in—/output pins and state which signals they are meant to be connected to.
Axis and Stepgen
Signals utilized for moving axis.

<N> ... denotes the axis number, which is of {x, y, z, a, b, c}.

whb.halui.home-all (bit,out)
connect to halui.home-all, driven by M—-Home. Pin for requesting all axis to home. See also

184 01/04/2026 LinuxCNC

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

whb.button.m—home.

whb.halui.axis._<N>__.select (bit,out)
connect to halui.axis._ <N>__.select. Pin to select axis.

whb.axis._<N>_.jog—counts (s32,out)
connect to axis._<N>_.jog—counts. The count pin of the jogwheel.

whb.axis._<N>_.jog—enable (bit,out)
connect to axis._<N>_.jog—enable. If true (and in manual mode), any change to "jog—counts"
will result in motion. If false, "jog—counts" is ignored.

whb.axis._<N>_.jog—scale (float,out)
connect to axis.‘__<N>__.jog—scale‘. The distance to move for each count on "jog—counts", in
machine units.

whb.axis._<N>_.jog—vel-mode (bit,out)
connect to axis.’__<N>__.jog—jog—vel-mode‘. If false the jogwheel operates in position mode.
The axis will move exactly jog—scale units for each count, regardless of how long that might
take. If true, the jogwheel operates in velocity mode — motion stops when the wheel stops, even
if that means the commanded motion is not completed.

whb.halui.max—velocity.value (float,in)
connect to halui.max—velocity.value. The maximum allowable velocity, in units per second
(<N> is two digit O—padded).

whb.halui.feed—override.scale (float,in)
connect to halui.feed—override.scale. The scaling for feed override value.

whb.halui.axis.’__<N>__.pos—feedback" (float,in)
connect to halui.axis.__<N>__.pos—feedback‘. Feedback axis position in machine coordinates
to be displayed.

whb.halui.axis._<N>_.pos—relative (float,in)
connect to halui.axis.”__<N>__.pos—relative‘. Commanded axis position in relative coordinates
to be displayed.

Machine

Signals utilized for toggling machine status.

whb.halui.machine.on (bit,out)
Connect to halui.machine.on. Pin for requesting machine on.

whb.halui.machine.is—on (bit,in)
Connect to halui.machine.is—on. Pin that indicates machine is on.

whb.halui.machine.off (bit,out)
Connect to halui.machine.off. Pin for requesting machine off.

Spindle
Signals utilized for operating a spindle.

whb.halui.spindle.start (bit,out)
Connect to halui.spindle.0.start. Pin to start the spindle.

whb.halui.spindle.is—on (bit,in)
Connect to halui.spindle.0.on. Pin to indicate spindle is on (either direction).

whb.halui.spindle.stop (bit,out)
Connect to halui.spindle.0.stop. Pin to stop the spindle.

whb.halui.spindle.forward (bit,out)
Connect to halui.spindle.0.forward. Pin to make the spindle go forward.

LinuxCNC 01/04/2026 185

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

186

whb.halui.spindle.reverse (bit,out)
Connect to halui.spindle.0.reverse. Pin to make the spindle go reverse.

whb.halui.spindle.decrease (bit,out)
Connect to halui.spindle.0.decrease. Pin to decrease the spindle speed.

whb.halui.spindle.increase (bit,out)
Connect to halui.spindle.0.increase. Pin to increase the spindle speed.

whb.halui.spindle—override.increase (bit,out)
Connect to halui.spindle.0.override.increase. Pin for increasing the spindle override by the
amount of scale.

whb.halui.spindle—override.decrease (bit,out)
Connect to halui.spindle.O.override.decrease. Pin for decreasing the spindle override by the
amount of scale.

whb.halui.spindle—override.value (float,in)
Connect to halui.spindle.0.override.value. The current spindle override value.

whb.halui.spindle—override.scale (float,in)
Connect to halui.spindle.0.override.scale. The current spindle scaling override value.

Feed

Signals utilized for operating spindle and feed override. The feed rotary button can serve in
* Continuous move x% from max velocity
» Step move X mm
* MPG override feed/spindle

* The special position Lead.

Continuous: In this mode jogging is performed at the selected feed rate. As long the jogwheel
turns, the selected axis moves.

Step: In this mode the machine moves steps * wheel_counts at the currently selected step size
and the current set feed rate in machine units. If the commanded position is not reached the
machine keeps moving even the jogwheel is not turning.

Lead: Manipulates the spindle override.
MPG: Manipulates the feedrate override.

Note: As a consequence of 3 modes from manufacturer, switching the feed rotary button back from
Lead revert to MPG mode, MPG mode is default mode at startup. Depending on the mode before
turning the rotary button, the feed override results in different values. In MPG/CON the feed rate will
change to 100%, 60%, ... and so forth. In Step mode the feed rate is specified in mm.

whb.halui.feed—override.value (float,in)
Connect to halui.feed—override.value. The current feed override value.

whb.halui.feed—override.decrease (bit,out)
Connect to halui.feed—override.decrease. Pin for decreasing the feed override by amount of scale.

whb.halui.feed—override.increase (bit,out)
Connect to halui.feed—override.increase. Pin for increasing the feed override by amount of scale.

whb.halui.feed—override.scale (float,out)
Connect to halui.feed—override.scale. Pin for setting the scale on changing the feed override.

01/04/2026 LinuxCNC

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

whb.halui.max—velocity.value (float,out)
Connect to halui.max—velocity.value.

Program

Signals for operating program and MDI mode.

whb.halui.program.run (bit,out)

Connect to halui.program.run in for running a program.
whb.halui.program.is—running (bit,in)

Connect to halui.program.is—running in indicating a program is running.
whb.halui.program.pause (bit,out)

Connect to halui.program.pause. Pin for pausing a program.
whb.halui.program.is—paused (bit,in)

Connect to halui.program.is—paused. Pin indicating a program is pausing.

whb.halui.program.resume (bit,out)
Connect to halui.program.resume. Pin for resuming a program.

whb.halui.program.stop (bit,out)

Connect to program.stop. Pin for stopping a program.
whb.halui.program.is—idle (bit,in)

Connect to halui.program.is—idle. Pin indicating no program is running.

whb.halui.mode.auto (bit,out)
Connect to halui.mode.auto. Pin for requesting auto mode.

whb.halui.mode.is—auto (bit,in)
Connect to halui.mode.is—auto. Pin for indicating auto mode is on.

whb.halui.mode.joint (bit,out)

Connect to halui.mode.joint Pin for requesting joint by joint mode.
whb.halui.mode.is—joint (bit,in)

Connect to halui.mode.is—joint. Pin indicating joint by joint mode is on.

whb.halui.mode.manual (bit,out)
Connect to halui.mode.manual. Pin for requesting manual mode.

whb.halui.mode.is—manual (bit,in)
Connect to halui.mode.is—manual. Pin indicating manual mode is on.

whb.halui.mode.mdi (bit,out)
Connect to halui.mode.mdi. Pin for requesting MDI mode.

whb.halui.mode.is—mdi (bit,in)
Connect to halui.mode.is—mdi. Pin indicating MDI mode is on.

whb.halui.mode.teleop (bit,out)
Connect to halui.mode.teleop. Pin for requesting axis by axis mode.

whb.halui.mode.is—teleop (bit,in)
Connect to halui.mode.is—teleop. Pin indicating axis by axis mode is on.

Buttons

LinuxCNC

For flexibility reasons each button provides an output pin even if no functionality is realized
directly with that signal. The Fn button can be combined with each other push—button. This
includes also RESET, Stop, Start/Pause, Macro—10, and Step|Continuous. By default the
more frequent used orange buttons are executed, whereas blue ones
(whb.button.macro— <M >) by combining them with Fn (press Fn first then button).

01/04/2026 187

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

Button macro needs to be added to your INI and needs to be edited for your own use:

[HALUI]
MDI_COMMAND=(debug,macro0) # this one is for numbering but not used by pendant (need 1 to 16)
MDI_COMMAND=(debug,macrol)
MDI_COMMAND=(debug,macro2)
MDI_COMMAND=(debug,macro3)
MDI_COMMAND=(debug,macro4)
MDI_COMMAND=(debug,macro5)
MDI_COMMAND=(debug,macro6)
MDI_COMMAND=(debug,macro7)
MDI_COMMAND=(debug,macro8)
MDI_COMMAND=(debug,macro9)
MDI_COMMAND=(debug,macro10)
MDI_COMMAND=(debug,macrol1)
MDI_COMMAND=(debug,macro12)
MDI_COMMAND=(debug,macrol3)
MDI_COMMAND=(debug,macro14)
MDI_COMMAND=(debug,macrol5)
MDI_COMMAND=(debug,macro16)

<M> ... denotes an arbitrary macro number which is of {1, 2, ..., 16}

whb.button.reset (bit,out)
See whb.halui.estop.{activate, reset} True one Reset button down, false otherwise. For toggling
E—stop use whb.halui.estop .active and .reset.

whb.button.stop (bit,out)
See whb.halui.program.stop. True on Stop button down, false otherwise. For stopping a program
use whb.halui.program.stop.

whb.button.start—pause (bit,out)
See whb.halui.program.{run, pause, resume}. True on Start—Pause button down, false otherwise.
For toggling start—pause use ‘whb.halui.program.run, .pause, and .resume.

whb.button.feed—plus (bit,out)
True on Feed+ button down, false otherwise.

whb.button.feed—minus (bit,out)
True on Feed— button down, false otherwise.

whb.button.spindle—plus (bit,out)
See halui.spindle.0.override.increase. True on Spindle+ button down, false otherwise. This button
is meant to manipulate the spindle override. For increasing the spindle override use
halui.spindle.0.override.increase.

whb.button.spindle-minus (bit,out)
See halui.spindle.0.override.decrease. True on Spindle— button down, false otherwise. This
button is meant to manipulate the spindle override. For decreasing the spindle override use
halui.spindle.0.override.decrease.

whb.button.m—home (bit,out)
Connect to halui.home—all. True on M—Home button down, false otherwise. Requests MDI mode
before button pin is set. See also whb.halui.mode.mdi.

whb.button.safe—z (bit,out)
Connect to halui.mdi—-command-‘__<M>__ True on Safe-Z button down, false otherwise.
Requests MDI mode before button pin is set. See also ‘whb.halui.mode.mdi.

whb.button.w—home (bit,out)

188 01/04/2026 LinuxCNC

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

LinuxCNC

Connect to halui.mdi—-command—°__<M>__ True on W—-Home button down, false otherwise.
Requests MDI mode before button pin is set. See also ‘whb.halui.mode.mdi.

whb.button.s—on—off (bit,out)
See “whb.halui.spindle.*{ “start*, “stop*‘} True on S—ON/OFF button down, false otherwise.
For toggling spindle on—off use halui.spindle.O.start. For toggling spindle on—off use
halui.spindle.0.stop.

whb.button.fn (bit,out)
True on Fn button down, false otherwise.

whb.button.probe-z (bit,out)
Connect to halui.mdi—command—‘__<M>__ True on Probe-Z button down, false otherwise.
Requests MDI mode before button pin is set. See also ‘whb.halui.mode.mdi.

whb.button.macro—1 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—1 button (Fn + Feed+) down, false
otherwise.

whb.button.macro—2 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—2 button (Fn + Feed-) down, false
otherwise.

whb.button.macro—3 (bit,out)
See whb.halui.spindle.increase True on Macro—3 button (Fn + Spindle+) down, false otherwise.
This button is meant to manipulate the spindle speed. For decreasing the spindle speed use
whb.halui.spindle.increase.

whb.button.macro—4 (bit,out)
See whb.halui.spindle.decrease True on Macro—4 button down (Fn + Spindle—), false otherwise.
This button is meant to manipulate the spindle speed. For decreasing the spindle speed use
whb.halui.spindle.decrease.

whb.button.macro—5 (bit,out)
Connect to halui.mdi—command—<M> True on Macro-5 button down (Fn + M—HOME), false
otherwise.

whb.button.macro—6 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—6 button down (Fn + Safe—Z7), false
otherwise.

whb.button.macro—7 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—7 button down (Fn + W—HOME), false
otherwise.

whb.button.macro—8 (bit,out)
Reserved for Spindle Direction True on Macro—8 button down (Fn + S—ON/OFF), false
otherwise.

whb.button.macro—9 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—9 button down (Fn + Probe-Z), false
otherwise.

whb.button.macro—10 (bit,out)
Reserved for toggle DRO Abs/rel. True on Macro—10 button down, false otherwise. Switches the
display coordinates to relative coordinates. On display the axis are denoted then as X1, Y1, Z1,
Al, Bl and CI. See also whb.halui.axis.’__<N>__.pos—relative*.

whb.button.macro—11 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—11 button down (Fn + RESET), false
otherwise.

whb.button.macro—12 (bit,out)

01/04/2026 189

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

Connect to halui.mdi—-command—<M> True on Macro—12 button (Fn + Stop) down, false
otherwise.

whb.button.macro—13 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—13 button (Fn + Start/Pause) down, false
otherwise.

whb.button.macro—14 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—14 button (Fn + Macro—10) down, false
otherwise.

whb.button.macro—15 (bit,out)
Connect to halui.mdi—-command—<M> True on Macro—15 button down (Fn + MPG), false
otherwise.

whb.button.macro—16 (bit,out)
Connect to halui.mdi—command—<M> True on Macro—16 button (Fn + Step) down, false
otherwise.

whb.button.mode—continuous (bit,out)
True on Continuous mode button down, false otherwise.

whb.button.mode—step (bit,out)
True on Step mode button down, false otherwise.

Pendant

whb.pendant.is—sleeping (bit,out)
True as long pendant is in sleep mode (usually a few seconds after turned off), false otherwise.

whb.pendant.is—connected (bit,out)
True as long pendant is not in sleep mode (turned on), false otherwise.

HAL CONFIGURATION EXAMPLE
Exercise caution if using copy and paste of this example code from the online web docs. Certain characters
are incompatibly encoded by the web site (minus becomes em—dash). It is safer to copy and paste from
https://raw.githubusercontent.com/LinuxCNC/linuxcnc/devel/src/hal/user_comps/xhc—whb04b—6/example—configuration

#

Hal File xhc_whb04b_6.hal Example

#

HHEHHHHE AR R AR R AR R
load pendant components

HHEHHHHE AR R AR R HR R

loadusr —W xhc—whb04b—6 —HsfB
H# HEHHA A

pendant signal configuration
HHEHHHHE AR R AR R HR R

On/Off signals

net machine.is—on halui.machine.is—on whb.halui.machine.is—on
net pdnt.machine.on whb.halui.machine.on halui.machine.on

net pdnt.machine.off whb.halui.machine.off halui.machine.off

program related signals

net pdnt.program.is—idle whb.halui.program.is—idle halui.program.is—idle
net pdnt.program.is—paused whb.halui.program.is—paused halui.program.is—paused
net pdnt.program—is—running whb.halui.program.is—running halui.program.is—running

190 01/04/2026 LinuxCNC

XHC-WHB04B-6(1)

net pdnt.program.resume
net pdnt.program.pause
net pdnt.program.run

net pdnt.program.stop

machine mode related signals
net pdnt.mode.auto

net pdnt.mode.manual
net pdnt.mode.mdi

net pdnt.mode.joint

net pdnt.mode.teleop

net pdnt.mode.is—auto
net pdnt.mode.is—manual
net pdnt.mode.is—mdi
net pdnt.mode.is—joint
net pdnt.mode.is—teleop

LinuxCNC Documentation

whb.halui.program.resume
whb.halui.program.pause
whb.halui.program.run
whb.halui.program.stop

whb.halui.mode.auto
whb.halui.mode.manual
whb.halui.mode.mdi
whb.halui.mode.joint
whb.halui.mode.teleop
halui.mode.is—auto
halui.mode.is—manual
halui.mode.is—mdi
halui.mode.is—joint
halui.mode.is—teleop

XHC-WHB04B—-6(1)

halui.program.resume
halui.program.pause
halui.program.run
halui.program.stop

halui.mode.auto
halui.mode.manual
halui.mode.mdi
halui.mode.joint
halui.mode.teleop
whb.halui.mode.is—auto
whb.halui.mode.is—manual
whb.halui.mode.is—mdi
whb.halui.mode.is—joint
whb.halui.mode.is—teleop

"is—homed" axis signal for allowing pendant when machine is not homed

net pdnt.axis.X.is—homed
net pdnt.axis.Y.is—homed
net pdnt.axis.Z.is—homed

"selected axis" signals
net pdnt.axis.X.select
net pdnt.axis.y.select
net pdnt.axis.Z.select

net pdnt.axis.x.jog—scale
net pdnt.axis.y.jog—scale
net pdnt.axis.z.jog—scale

net pdnt.axis.x.jog—counts
net pdnt.axis.y.jog—counts
net pdnt.axis.z.jog—counts

net pdnt.axis.x.jog—enable
net pdnt.axis.y.jog—enable
net pdnt.axis.z.jog—enable

halui.joint.0.is—homed
halui.joint.1.is—homed
halui.joint.2.is—homed

whb.halui.axis.x.select
whb.halui.axis.y.select
whb.halui.axis.z.select

whb.axis.x.jog—scale
whb.axis.y.jog—scale
whb.axis.z.jog—scale

whb.axis.x.jog—counts
whb.axis.y.jog—counts
whb.axis.z.jog—counts

whb.axis.x.jog—enable
whb.axis.y.jog—enable
whb.axis.z.jog—enable

whb.halui.joint.x.is—homed
whb.halui.joint.y.is—homed
whb.halui.joint.z.is—homed

halui.axis.x.select
halui.axis.y.select
halui.axis.z.select

axis.x.jog—scale
axis.y.jog—scale
axis.z.jog—scale

axis.x.jog—counts
axis.y.jog—counts
axis.z.jog—counts

axis.x.jog—enable
axis.y.jog—enable
axis.z.jog—enable

axis.x.jog—vel-mode
axis.y.jog—vel-mode
axis.z.jog—vel-mode

net pdnt.axis.x.jog—vel-mode
net pdnt.axis.y.jog—vel-mode
net pdnt.axis.z.jog—vel-mode

whb.axis.x.jog—vel-mode
whb.axis.y.jog—vel-mode
whb.axis.z.jog—vel-mode

macro buttons to MDI commands

net pdnt.macro—1
net pdnt.macro—2

net pdnt.reserved.for.spindle+
net pdnt.reserved.for.spindle—

net pdnt.macro—5
net pdnt.macro—6
net pdnt.macro—7

net pdnt.reserved.for.spindle.dir

net pdnt.macro—9

LinuxCNC

whb.button.macro—1
whb.button.macro—2
whb.button.macro—3
whb.button.macro—4
whb.button.macro—5
whb.button.macro—6
whb.button.macro—7
whb.button.macro—8
whb.button.macro—9

01/04/2026

halui.mdi—command-01
halui.mdi—command—-02

use MDI command
use MDI command

Hardcoded for spindle+ wht
Hardcoded for spindle— wht

halui.mdi—command-05
halui.mdi—command—-06
halui.mdi—command—-07

use MDI command
use MDI command
use MDI command

Hardcoded for spindle direct

halui.mdi—command—-09

use MDI command

191

XHC-WHB04B-6(1)

192

LinuxCNC Documentation

net pdnt.reserved.for. ABS-REL
net pdnt.macro—14

net pdnt.reserved.for.flood

net pdnt.reserved.for.mist

whb.button.macro—10
whb.button.macro—14
whb.button.macro—15
whb.button.macro—16

whb.button.macro—11
whb.button.macro—12
whb.button.macro—13

net pdnt.macro.11
net pdnt.macro.12
net pdnt.macro.13

flood and mist toggle signals
net pdnt.flood.is—on

net pdnt.flood.off

net pdnt.flood.on

whb.halui.flood.is—on
whb.halui.flood.off
whb.halui.flood.on

whb.halui.mist.is—on
whb.halui.mist.off
whb.halui.mist.on

net pdnt.mist.is—on
net pdnt.mist.off
net pdnt.mist.on

default function button signals
net pdnt.button.m—home

net pdnt.button.safe—z

net pdnt.button.w—home

net pdnt.button.probe-z

whb.button.m—home
whb.button.safe—z
whb.button.w—home
whb.button.probe—z

XHC-WHB04B—-6(1)

Hardcoded for swap Dro

halui.mdi—command—14 # use MDI commanc
Hardcoded for halui.flood on/

Hardcoded for halui.mist on/c

use MDI command
use MDI command
use MDI command

halui.mdi—command—11
halui.mdi—command—12
halui.mdi—command—13

halui.flood.is—on
halui.flood.off
halui.flood.on

#return signal is on or off
#reserved whb.button.macro—15
#reserved whb.button.macro—135

halui.mist.is—on
halui.mist.off
halui.mist.on

#return signal is on or off
#reserved whb.button.macro—16
#reserved whb.button.macro—16

halui.home-all
halui.mdi—command—03
halui.mdi—command—04
halui.mdi—command—08

Homeing use built—in
Safe—z use MDI cor
Unpark use ML

Probe—Z use MDI

unused, just exposes pendant internal status or as basic button

#net pdnt.mode—lead
#net pdnt.mode—mpg—feed
#net pdnt.mode—continuous
#net pdnt.mode—step

#net pdnt.button.mode—mpg
#net pdnt.button.mode—step
#net pdnt.button.fn

#net pdnt.button.reset

#net pdnt.button.stop

#net pdnt.button.start—pause
#net pdnt.button.s—on—off
#net pdnt.button.spindle—plus
#net pdnt.button.spindle—minus
#net pdnt.button.feed—plus
#net pdnt.button.feed—minus

whb.button.mode—step
whb.button.fn
whb.button.reset
whb.button.stop
whb.button.start—pause
whb.button.s—on—off

whb.button.spindle-mi
whb.button.feed—plus
whb.button.feed—minus

spindle related signals
net pdnt.spindle.is—on

net pdnt.spindle.start

net pdnt.spindle.stop

net pdnt.spindle.forward
net pdnt.spindle.reverse

net pdnt.spindle.increase
net pdnt.spindle.decrease
net pdnt.spindle—speed—abs

whb.halui.spindle.is—on
whb.halui.spindle.start
whb.halui.spindle.stop
whb.halui.spindle.forward
whb.halui.spindle.reverse
whb.halui.spindle.increase
whb.halui.spindle.decrease

01/04/2026

whb.halui.spindle—speed—cmd

whb.halui.feed.selected—lead
whb.halui.feed.selected—mpg—feed
whb.halui.feed.selected—continuous

whb.halui.feed.selected—step

whb.button.mode—continuous

whb.button.spindle—plus

nus

spindle.0.on
halui.spindle.0.start
halui.spindle.0.stop
halui.spindle.0.forward
halui.spindle.0.reverse
halui.spindle.0.increase # reserved whb.button.
halui.spindle.0.decrease # reserved whb.buttor
spindle.0.speed—out—abs # speed cmd frc

LinuxCNC

XHC-WHB04B—6(1) LinuxCNC Documentation XHC-WHB04B—-6(1)

spindle speed override signals

net pdnt.spindle—override.scale whb.halui.spindle—override.scale halui.spindle.0.override.scale # needed for bo
net pdnt.spindle.override.value halui.spindle.0.override.value whb.halui.spindle—override.value # GUI feed rate
net pdnt.spindle.override.increase whb.halui.spindle—override.increase halui.spindle.0.override.increase

net pdnt.spindle.override.decrease whb.halui.spindle—override.decrease halui.spindle.0.override.decrease

GUI feed rate related signals can be used when program is running moving GUI slider
net pdnt.feed—override.scale whb.halui.feed—override.scale halui.feed—override.scale # needed for both |
net pdnt.max—velocity.value whb.halui.max—velocity.value halui.max—velocity.value # needed for Mp

take feed override min/max values from/to the GUI

net pdnt.feed—override.value halui.feed—override.value whb.halui.feed—override.value # GUI feed rate r
net pdnt.feed—override.increase whb.halui.feed—override.increase halui.feed—override.increase
net pdnt.feed—override.decrease whb.halui.feed—override.decrease halui.feed—override.decrease

axis position related signals feedback

net pdnt.axis.x.pos—feedback halui.axis.x.pos—feedback whb.halui.axis.x.pos—feedback
net pdnt.axis.y.pos—feedback halui.axis.y.pos—feedback whb.halui.axis.y.pos—feedback
net pdnt.axis.z.pos—feedback halui.axis.z.pos—feedback whb.halui.axis.z.pos—feedback

axis position related signals relative

net pdnt.axis.x.pos—relative halui.axis.x.pos—relative whb.halui.axis.x.pos—relative
net pdnt.axis.y.pos—relative halui.axis.y.pos—relative whb.halui.axis.y.pos—relative
net pdnt.axis.z.pos—relative halui.axis.z.pos—relative whb.halui.axis.z.pos—relative
SEE ALSO
xhc—whb04b—6 developer documentation on GitHub
NOTES

The CRC code function is not disclosed by the manufacturer. Thus the CRC value transmitted with each
package is not checked yet. Feel free to help us enhance the component.

AUTHOR
This component was started by Raoul Rubien based on predecessor device component xhc—hb04.cc.
https://github.com/machinekit/machinekit/graphs/contributors gives you a more complete list of
contributors.

HISTORY
The component was developed accidentally as leisure project. The development started with the
xhc—whb04 (4-axis wireless pendant) implementation as reference. 73 & many thanks to the developers
who delivered provided an excellent preparatory work!

COPYRIGHT
Copyright © 2018 Raoul Rubien (github.com/rubienr) Updated for Linuxcnc 2020 by alkabal_free.fr.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 193

XYZAB-TDR-GUI(1) LinuxCNC Documentation XYZAB-TDR-GUI(1)

NAME
xyzab-tdr-gui — Vismach Virtual Machine GUI

DESCRIPTION
xyzab-tdr—gui is one of the sample Vismach GUIs for LinuxCNC, simulating a dual-rotary machine with
switchable kinematics.

SEE ALSO

linuxcne(1)*
See the main LinuxCNC documentation for more details: https://linuxcnc.org/docs/html/gui/vismach.html

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

194 01/04/2026 LinuxCNC

XYZAC-TRT-GUI(1) LinuxCNC Documentation XYZAC-TRT-GUI(1)

NAME
xyzac-trt-gui — Vismach Virtual Machine GUI

DESCRIPTION
xyzac—trt—gui is one of the sample Vismach GUIs for LinuxCNC, simulating a 5—axis milling machine
with tool—point kinematics.

See the main LinuxCNC documentation for more details.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 195

XYZBC-TRT-GUI(1) LinuxCNC Documentation XYZBC-TRT-GUI(1)

NAME
xyzbe-trt-gui — Vismach Virtual Machine GUI

DESCRIPTION
xyzbc—trt—gui is one of the sample Vismach GUIs for LinuxCNC, simulating a 5—axis milling machine
with tool—point kinematics.

See the main LinuxCNC documentation for more details.

SEE ALSO

linuxcne(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

BUGS

None known at this time.

AUTHOR
This man page written by Andy Pugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2020 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

196 01/04/2026 LinuxCNC

HALQ(3) LinuxCNC Documentation HAL(3)

NAME
hal — Introduction to the HAL API

DESCRIPTION
HAL stands for Hardware Abstraction Layer, and is used by LinuxCNC to transfer realtime data to and
from I/O devices and other low—level modules.

hal.h defines the API and data structures used by the HAL. This file is included in both realtime and
non-realtime HAL components. HAL uses the RTPAI real-time interface, and the #define symbols RTAPI
and ULAPI are used to distinguish between realtime and non—realtime code. The API defined in this file is
implemented in hal_lib.c and can be compiled for linking to either realtime or non—realtime HAL
components.

The HAL is a very modular approach to the low level parts of a motion control system. The goal of the
HAL is to allow a systems integrator to connect a group of software components together to meet whatever
I/O requirements he (or she) needs. This includes realtime and non—realtime I/O, as well as basic motor
control up to and including a PID position loop. What these functions have in common is that they all
process signals. In general, a signal is a data item that is updated at regular intervals. For example, a PID
loop gets position command and feedback signals, and produces a velocity command signal.

HAL is based on the approach used to design electronic circuits. In electronics, off-the—shelf components
like integrated circuits are placed on a circuit board and their pins are interconnected to build whatever
overall function is needed. The individual components may be as simple as an op—amp, or as complex as a
digital signal processor. Each component can be individually tested, to make sure it works as designed.
After the components are placed in a larger circuit, the signals connecting them can still be monitored for
testing and troubleshooting.

Like electronic components, HAL components have pins, and the pins can be interconnected by signals.

In the HAL, a signal contains the actual data value that passes from one pin to another. When a signal is
created, space is allocated for the data value. A pin on the other hand, is a pointer, not a data value. When a
pin is connected to a signal, the pin’s pointer is set to point at the signal’s data value. This allows the
component to access the signal with very little run—time overhead. (If a pin is not linked to any signal, the
pointer points to a dummy location, so the realtime code doesn’t have to deal with null pointers or treat
unlinked variables as a special case in any way.)

There are three approaches to writing a HAL component. Those that do not require hard realtime
performance can be written as a regular non—realtime process. Components that need hard realtime
performance but have simple configuration and init requirements can be done as a single realtime
component, using either pre—defined init info, or load—time parameters. Finally, complex components may
use both a realtime component for the realtime part, and a non—realtime process to handle INI file access,
user interface (possibly including GUI features), and other details.

HAL uses the RTAPI/ULAPI interface. If RTAPI is #defined, hal_lib.c generates a realtime—capable library
(to be insmoded into the kernel or linked to a realtime process) that provides the functions for all realtime
components. The same source file compiled with the ULAPI #define would make a non—realtime library
that would be linked to non—realtime code to make non-realtime executables. The variable lists and link
information are stored in a block of shared memory and protected with mutexes, so that realtime
components and non—realtime programs can access the data.

REALTIME CONSIDERATIONS

For an explanation of realtime considerations, see rtapi(3).

HAL STATUS CODES
Except as noted in specific manual pages, HAL returns negative errno values for errors, and non—negative
values for success.

LinuxCNC 01/04/2026 197

HALQ(3) LinuxCNC Documentation HAL(3)

SEE ALSO
rtapi(3)

198 01/04/2026 LinuxCNC

HAL_ADD_FUNCT_TO_THR(3) LinuxCNC Documentation HAL_ADD_FUNCT_TO_THR(3)

NAME

hal_add_funct_to_thread, hal_del_funct_from_thread — cause a function to be executed at regular intervals

SYNTAX
int hal_add_funct_to_thread(const char* funct_name, const char* thread_name, int position)
int hal_del_funct_from_thread(const char* funct_name, const char* thread_name)

ARGUMENTS
funct_name
The name of the function.

thread_name
The name of the thread.

position
The desired location within the thread. This determines when the function will run, in relation to other
functions in the thread. A positive number indicates the desired location as measured from the
beginning of the thread, and a negative is measured from the end. So +1 means this function will
become the first one to run, +5 means it will be the fifth one to run, —2 means it will be next to last,
and —1 means it will be last. Zero is illegal.

DESCRIPTION
The function hal_add_funct_to_thread adds another function that is exported by a realtime HAL
component to a realtime thread. This determines how often and in what order functions are executed.

The function hal_del_funct_from_thread removes a function from a thread.

RETURN VALUE
Returns a HAL status code.

REALTIME CONSIDERATIONS

Call only from realtime init code, not from other realtime or non—realtime code.

SEE ALSO
hal_thread_new(3), hal_export_funct(3)

LinuxCNC 01/04/2026 199

HAL_CREATE_THREAD(3) LinuxCNC Documentation HAL_CREATE _THREAD(3)

NAME
hal_create_thread — Create a HAL thread

SYNTAX

int hal_create_thread(const char* name, unsigned long period, int uses_fp)

int hal_thread_delete(const char* name)

ARGUMENTS

name
The name of the thread.

period
The interval, in nanoseconds, between iterations of the thread.

uses_fp
Must be nonzero if a function which uses floating—point will be attached to this thread.

DESCRIPTION

hal_create_thread establishes a realtime thread that will execute one or more HAL functions periodically.

All thread periods are rounded to integer multiples of the hardware timer period, and the timer period is
based on the first thread created. Threads must be created in order, from the fastest to the slowest. HAL
assigns decreasing priorities to threads that are created later, so creating them from fastest to slowest results
in rate monotonic priority scheduling.

hal_delete_thread deletes a previously created thread.

REALTIME CONSIDERATIONS

Call only from realtime init code, not from other realtime or non—realtime code.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3)

200 01/04/2026 LinuxCNC

HAL_EXIT (3) LinuxCNC Documentation HAL_EXIT (3)

NAME
hal_exit — Shut down HAL

SYNTAX
int hal_exit(int comp_id)

ARGUMENTS
comp_id
A HAL component identifier returned by an earlier call to hal_init.

DESCRIPTION
The function hal_exit shuts down and cleans up HAL and RTAPI. It must be called prior to exit by any
module that called hal_init.

REALTIME CONSIDERATIONS

Call only from within non—realtime or init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns a HAL status code.

LinuxCNC 01/04/2026 201

HAL_EXPORT_FUNCT(3) LinuxCNC Documentation HAL_EXPORT _FUNCT(3)

NAME

hal_export_funct, hal_export_functf — create a realtime function callable from a thread

SYNTAX

typedef void(hal_funct_t)(void arg, long period)

int hal_export_funct(const char* name, hal_funct_t funct, void* arg, int uses_fp, int reentrant, int comp_id)

ARGUMENTS

name
The name of the function.

funct
The pointer to the function.

arg
The argument to be passed as the first parameter of funct.

uses_fp
Nonzero if the function uses floating—point operations, including assignment of floating point values
with "=".

reentrant
If reentrant is non—zero, the function may be preempted and called again before the first call
completes. Otherwise, it may only be added to one thread.

comp_id
A HAL component identifier returned by an earlier call to hal_init.

DESCRIPTION

hal_export_funct makes a realtime function provided by a component available to the system. A
subsequent call to hal_add_funct_to_thread can be used to schedule the execution of the function as
needed by the system.

When this function is placed on a HAL thread, and HAL threads are started, funct is called repeatedly with
two arguments: void arg is the same value that was given to *hal_export_funct, and long period is the

interval between calls in nanoseconds.

Each call to the function should do a small amount of work and return.

RETURN VALUE

Returns a HAL status code.

SEE ALSO

202

hal_create_thread(3), hal_add_funct_to_thread(3)

01/04/2026 LinuxCNC

HAL_INIT(3) LinuxCNC Documentation HAL_INIT(3)

NAME
hal_init — Sets up HAL and RTAPI

SYNTAX

int hal_init(const char* modname)

ARGUMENTS
modname
The name of this HAL module.

DESCRIPTION
hal_init sets up HAL and RTAPI. It must be called by any module that intends to use the API, before any
other RTAPI calls.

modname must point to a string that identifies the module. The string may be no longer than
HAL_NAME_LEN characters.

REALTIME CONSIDERATIONS

Call only from within non—realtime or init/cleanup code, not from realtime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to HAL and rtapi APIs.
On failure, returns a HAL error code.

LinuxCNC 01/04/2026 203

HAL_MALLOC(3) LinuxCNC Documentation HAL MALLOC(3)

NAME

hal_malloc — Allocate space in the HAL shared memory area
SYNTAX

void *hal_malloc(long int size)
ARGUMENTS

size

Gives the size, in bytes, of the block.

DESCRIPTION

hal_malloc allocates a block of memory from the main HAL shared memory area. It should be used by all
components to allocate memory for HAL pins and parameters. It allocates ‘size’ bytes, and returns a
pointer to the allocated space, or NULL (0) on error. The returned pointer will be properly aligned for any
type HAL supports. A component should allocate during initialization all the memory it needs.

The allocator is very simple, and there is no ‘free’. The entire HAL shared memory area is freed when the
last component calls hal_exit. This means that if you continuously install and remove one component while
other components are present, you eventually will fill up the shared memory and an install will fail.
Removing all components completely clears memory and you start fresh.

RETURN VALUE
A pointer to the allocated space, which is properly aligned for any variable HAL supports. Returns NULL
on error.

204 01/04/2026 LinuxCNC

HAL_PARAM_ALIAS(3) LinuxCNC Documentation HAL_PARAM_ALIAS(3)

NAME

hal_param_alias — create an alternate name for a param
SYNTAX

int hal_param_alias(const char original_name*, const char alias*);
ARGUMENTS

original_name
The original name of the param

alias
The alternate name that may be used to refer to the param, or NULL to remove any alternate name.

DESCRIPTION
A param may have two names: the original name (the one that was passed to a hal_param_new function)
and an alias.

Usually, aliases are for the convenience of users and should be created and destroyed via halcmd. However,
in some cases it is sensible to create aliases directly in a component. These cases include the case where a
param is renamed, to preserve compatibility with old versions.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_pin_alias(3)

LinuxCNC 01/04/2026 205

HAL_PARAM_NEW (3) LinuxCNC Documentation HAL_PARAM_NEW (3)

NAME
hal_param_new, hal_param_bit_new, hal_param_float_new, hal_param_u32_new, hal_param_s32_new,
hal_param_bit_newf, hal_param_float_newf, hal_param_u32_newf, hal_param_s32_newf — creates a HAL
parameter

SYNTAX

int hal_param_bit_new(const char* name, hal_param_dir_t dir, hal_bit_t* data_addr, int comp_id)

int hal_param_float_new(const char* name, hal_param_dir_t dir, hal_float_t* data_addr, int comp_id)
int hal_param_u32_new(const char* name, hal_param_dir_t dir, hal_u32_t* data_addr, int comp_id)
int hal_param_s32_new(const char* name, hal_param_dir_t dir, hal_s32_t* data_addr, int comp_id)

int hal_param_bit_newf(hal_param_dir_t dir, hal_bit_t* data_addr, int comp_id, const char* fmt, ...)

int hal_param_float_newf(hal_param_dir_t dir, hal_float_t* data_addr, int comp_id, const char* fmt, ...)
int hal_param_u32_newf(hal_param_dir_t dir, hal_u32_t * data_addr, int comp_id, const char* fmt, ...)
int hal_param_s32_newf(hal_param_dir_t dir, hal_s32_t * data_addr, int comp_id, const char* fmt, ...)

int hal_param_new(const char* name, hal_type_t type, hal_param_dir_t dir, void* data_addr, int comp_id)

ARGUMENTS
name
The name to give to the created parameter.
dir
The direction of the parameter, from the viewpoint of the component. It may be one of HAL_RO, or
HAL_RW. A component may assign a value to any parameter, but other programs (such as halcmd)
may only assign a value to a parameter that is HAL_RW.

data_addr

The address of the data, which must lie within memory allocated by hal_malloc.
comp_id

A HAL component identifier returned by an earlier call to hal_init.

fmt, ...

A printf—style format string and arguments.

type
The type of the parameter, as specified in hal_type_t(3).

DESCRIPTION

The hal_param_new family of functions create a new param object.

There are functions for each of the data types that the HAL supports. Pins may only be linked to signals of
the same type.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3)

206 01/04/2026 LinuxCNC

HAL_PARPORT (3) LinuxCNC Documentation HAL PARPORT(3)

NAME
hal_parport — portable access to PC—style parallel ports

SYNTAX
#include "hal_parport.h"
int hal_parport_get(int _comp_id_, hal_parport_t* _port_, unsigned short _base_, unsigned short _base_hi_, unsigned int
void hal_parport_release(hal_parport_t* _port_)

ARGUMENTS
comp_id
A HAL component identifier returned by an earlier call to hal_init.

port
A pointer to a hal_parport_t structure.

base
The base address of the port (if port >= 16) or the linux port number of the port (if port < 16)

base_hi
The "high" address of the port (location of the ECP registers), O to use a probed high address, or —1 to
disable the high address

modes
Adyvise the driver of the desired port modes, from <linux/parport.h>. If a linux—detected port does not
provide the requested modes, a warning is printed with rtapi_print_msg. This does not make the port
request fail, because unfortunately, many systems that have working EPP parports are not detected as
such by Linux.

DESCRIPTION
hal_parport_get allocates a parallel port for exclusive use of the named HAL component. The port must
be released with hal_parport_release before the component exits with hal_exit.

HIGH ADDRESS PROBING
If the port is a parallel port known to Linux, and Linux detected a high I/O address, this value is used.
Otherwise, if base+0x400 is not registered to any device, it is used. Otherwise, no address is used. If no
high address is detected, portabase_hi is O.

PARPORT STRUCTURE
typedef struct
{

unsigned short base;

unsigned short base_hi;

.... I/ and further unspecified fields
} hal_parport_t;

RETURN VALUE
hal_parport_get returns a HAL status code. On success, port is filled out with information about the
allocated port. On failure, the contents of port are undefined except that it is safe (but not required) to pass
this port to hal_parport_release.

hal_parport_release does not return a value. It always succeeds.

NOTES

In new code, prefer use of rtapi_parport to hal_parport.

LinuxCNC 01/04/2026 207

HAL_PIN_ALIAS(3) LinuxCNC Documentation HAL PIN_ALIAS(3)

NAME

hal_pin_alias — creates an alternate name for a pin
SYNTAX

int hal_pin_alias(const char* original_name, const char* alias);
ARGUMENTS

original_name
The original name of the pin.

alias
The alternate name that may be used to refer to the pin, or NULL to remove any alternate name.

DESCRIPTION
A pin may have two names: the original name (the one that was passed to a hal_pin_new function) and an
alias.

Usually, aliases are for the convenience of users and should be created and destroyed via halcmd. However,
in some cases it is sensible to create aliases directly in a component. These cases include the case where a
pin is renamed, to preserve compatibility with old versions.

RETURN VALUE
Returns a HAL status code.

SEE ALSO

hal_param_alias(3)

208 01/04/2026 LinuxCNC

HAL_PIN_NEW(3) LinuxCNC Documentation HAL _PIN_NEW(3)

NAME
hal_pin_new, hal_pin_bit_new, hal_pin_float_new, hal_pin_u32_new, hal_pin_s32_new, hal_pin_port_new,
hal_pin_bit_newf, hal_pin_float_newf, hal_pin_u32_newf — creates a HAL pin

SYNTAX

int hal_pin_bit_new(const char* name, hal_pin_dir_t dir, hal_bit_t** data_ptr_addr, int comp_id)

int hal_pin_float_new(const char* name, hal_pin_dir_t dir, hal_float_t** data_ptr_addr, int comp_id)
int hal_pin_u32_new(const char* name, hal_pin_dir_t dir, hal_u32_t** data_ptr_addr, int comp_id)
int hal_pin_s32_new(const char* name, hal_pin_dir_t dir, hal_s32_t** data_ptr_addr, int comp_id)

int hal_pin_port_new(const char* name, hal_pin_dir_t dir, hal_port_t** data_ptr_addr, int comp_id)
int hal_pin_bit_newf(hal_pin_dir_t dir, hal_bit_t** data_ptr_addr, int comp_id, const char* fmt, ...)

int hal_pin_float_newf(hal_pin_dir_t dir, hal_float_t** data_ptr_addr, int comp_id, const char* fmnt, ...)
int hal_pin_u32_newf(hal_pin_dir_t dir, hal_u32_t** data_ptr_addr, int comp_id, const char* fnt, ...)
int hal_pin_s32_newf(hal_pin_dir_t dir, hal_s32_t** data_ptr_addr, int comp_id, const char* fmt, ...)
int hal_pin_port_newf(hal_pin_dir_t dir, hal_port_t** data_ptr_addr, int comp_id, const char* fmt, ...)

int hal_pin_new(const char* name, hal_type_t type, hal_pin_dir_t dir, void** data_ptr_addr, int comp_id)

ARGUMENTS
name
Name of the pin.
dir
The direction of the pin, from the viewpoint of the component. It may be one of HAL_IN,
HAL_OUT, or HAL_IO. Any number of HAL_IN or HAL_IO pins may be connected to the same

signal, but at most one HAL_OUT pin is permitted. A component may assign a value to a pin that is
HAL_OUT or HAL_IO, but may not assign a value to a pin that is HAL_IN.

data_ptr_addr
The address of the pointer—to—data, which must lie within memory allocated by hal_malloc.

comp_id
HAL component identifier returned by an earlier call to hal_init.

fmt,
printf—style format string and arguments

type
The type of the param, as specified in hal_type_t(3).
DESCRIPTION
The hal_pin_new family of functions create a new pin object. Once a pin has been created, it can be linked
to a signal object using hal_link. A pin contains a pointer, and the component that owns the pin can

dereference the pointer to access whatever signal is linked to the pin. (If no signal is linked, it points to a
dummy signal.)

There are functions for each of the data types that the HAL supports. Pins may only be linked to signals of
the same type.

LinuxCNC 01/04/2026 209

HAL_PIN_NEW(3) LinuxCNC Documentation HAL _PIN_NEW(3)

RETURN VALUE

Returns 0 on success, or a negative errno value on failure.

SEE ALSO
hal_type_t(3), hal_link(3)

210 01/04/2026 LinuxCNC

HAL_PORT(3) LinuxCNC Documentation HAL_PORT(3)

NAME

hal_port — a HAL pin type that acts as an asynchronous one way byte stream

SYNOPSIS
#include <hal.h>
bool hal_port_read(hal_port_t port, char* dest, unsigned count);
bool hal_port_peek(hal_port_t port, char* dest, unsigned count);
bool hal_port_peek_commit(hal_port_t port, unsigned count);
unsigned hal_port_readable(hal_port_t port);
void hal_port_clear(hal_port_t port);

bool hal_port_write(hal_port_t port, const char* src, unsigned count);
unsigned hal_port_writable(hal_port_t port);

unsigned hal_port_buffer_size(hal_port_t port);

#ifdef ULAPI

void hal_port_wait_readable(hal_port_t** port, unsigned count, sig_atomic_t* stop);
void hal_port_wait_writable(hal_port_t** port, unsigned count, sig_atomic_t* stop);
#endif

DESCRIPTION
A HAL port pin is a HAL pin that acts as a one way byte oriented data stream in real-time. An output port
on any component may be connected to an input port on any other component via a signal. Data written on
the output pin becomes accessible to the input pin. A HAL port signal may link only a single writer and a
single reader.

A port also buffers data. Users should determine the proper buffer size based upon their intended
application.

hal_port_read
Reads count bytes from the port into destination buffer dest. hal_port_read will read count bytes if and only
if count bytes are available for reading and otherwise it will leave the port unaffected. Returns true if count
bytes were read and false otherwise. This function should only be called by the component that owns the IN
PORT pin.

hal_port_peek
Behaves the same as hal_port_read, however it does not consume bytes from the HAL port. Repeated calls
to hal_port_peek will return the same data. Returns true if count bytes were read and false otherwise. This
function should only be called by the component that owns the IN PORT pin.

hal_port_peek_commit
Advances the read position in the port buffer by count bytes. A hal_port_peek followed by a
hal_port_peek_commit would function equivalently to hal_port_read given the same count value. Returns
true if count readable bytes were skipped and are no longer accessible and false if no bytes wer skipped.
This function should only be called by the component that owns the IN PORT pin.

hal_port_readable
Returns the number of bytes available for reading from port. It is safe to call this function from any
component.

hal_port_clear
Emptys a given port of all data. hal_port_clear should only be called by the component that owns the IN
PORT pin.

hal_port_write
Writes count bytes from src into the port. Returns true if count bytes were written and false otherwise. This
function should only be called by the component that owns the OUT PORT pin.

LinuxCNC 01/04/2026 211

HAL_PORT(3) LinuxCNC Documentation HAL_PORT(3)

hal_port_writable
Returns the number of bytes that can be written into the port. It is safe to call this function from any
component.

hal_port_buffer_size
Returns the maximum number of bytes that a port can buffer. It is safe to call this function from any
component.

hal_port_wait_readable
Waits until the port has count bytes or more available for reading or the stop flag is set.

hal_port_wait_writable
Waits until the port has count bytes or more available for writing or the stop flag is set.

ARGUMENTS
hal_port_t
A handle to a port object. Created by hal_pin_new.

dest

An array of bytes that hal_port_read and hal_port_peek will copy data into. This must be allocated by
the caller and be at least count bytes long.

count
The number of bytes that hal_port_read, hal_port_peek, and hal_port_write will copy in to dest or out
from src.

src
An array of bytes that hal_port_write will copy data from into the port buffer. This must be of size
count bytes or larger.

stop
A pointer to a value which is monitored while waiting. If it is nonzero, the wait operation returns early.
This allows a wait call to be safely terminated in the case of a signal.

SAMPLE CODE
In the source tree under src/hal/components/raster.comp is a realtime component intended for laser control.
src/tests/raster is a test program that also programs the raster component from Python.

REALTIME CONSIDERATIONS
hal_port_read, hal_port_peek, hal_port_peek_commit, hal_port_readable, hal_port_clear,
hal_port_write, hal_port_writable, hal_port_buffer_size may be called from realtime code.

hal_port_wait_writable, hal_port_wait_readable may be called from ULAPI code.
SEE ALSO

raster(9)

212 01/04/2026 LinuxCNC

HAL_READY (3) LinuxCNC Documentation HAL_READY (3)

NAME

hal_ready — indicates that this component is ready
SYNTAX

hal_ready(int comp_id)
ARGUMENTS

comp_id

A HAL component identifier returned by an earlier call to hal_init.

DESCRIPTION

hal_ready indicates that this component is ready (has created all its pins, parameters, and functions). This
must be called in any realtime HAL component before its rtapi_app_init exits, and in any non—realtime
component before it enters its main loop.

RETURN VALUE
Returns a HAL status code.

LinuxCNC 01/04/2026 213

HAL_SET_CONSTRUCTOR(3) LinuxCNC Documentation HAL_SET _CONSTRUCTOR(3)

NAME

hal_set_constructor — sets the constructor function for this component

SYNTAX
typedef int (hal_constructor_t)(const char prefix, const char* arg); int hal_set_constructor(int comp_id,
hal_constructor_t constructor)

ARGUMENTS
comp_id
A HAL component identifier returned by an earlier call to hal_init.

prefix
The prefix to be given to the pins, parameters, and functions in the new instance.

arg
An argument that may be used by the component to customize this instance.

DESCRIPTION
As an experimental feature in HAL 2.1, components may be constructable. Such a component may create
pins and parameters not only at the time the module is loaded, but it may create additional pins and
parameters, and functions on demand.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
halemd(1)

214 01/04/2026 LinuxCNC

HAL_SET LOCK(3) LinuxCNC Documentation HAL_SET LOCK(3)

NAME
hal_set_lock, hal_get_lock — Set or get the HAL lock level

SYNTAX
int hal_set_lock(unsigned char lock_type)

int hal_get_lock()

ARGUMENTS
lock_type
The desired lock type, which may be a bitwise combination of: HAL_LOCK_LOAD,
HAL_LOCK_CONFIG, HAL_LOCK_PARAMS, or HAL_LOCK_PARAMS.
HAL_LOCK_NONE or 0 locks nothing, and HAL_LOCK_ALL locks everything.

RETURN VALUE
hal_set_lock returns a HAL status code. hal_get_lock returns the current HAL lock level or a HAL status
code.

LinuxCNC 01/04/2026 215

HAL_SIGNAL_NEW (3) LinuxCNC Documentation HAL_SIGNAL_NEW (3)

NAME
hal_signal_new, hal_signal_delete, hal_link, hal_unlink — Manipulate HAL signals

SYNTAX

int hal_signal_new(const char* signal_name, hal_type_t type)
int hal_signal_delete(const char* signal_name)
int hal_link(const char* pin_name, const char* signal_name)

int hal_unlink(const char* pin_name)

ARGUMENTS
signal_name
The name of the signal.
pin_name
The name of the pin.

type
The type of the signal, as specified in hal_type_t(3).

DESCRIPTION
hal_signal_new creates a new signal object. Once a signal has been created, pins can be linked to it with
hal_link. The signal object contains the actual storage for the signal data. Pin objects linked to the signal
have pointers that point to the data. name is the name of the new signal. It may be no longer than
HAL_NAME_LEN characters. If there is already a signal with the same name the call will fail.

hal_link links a pin to a signal. If the pin is already linked to the desired signal, the command succeeds. If
the pin is already linked to some other signal, it is an error. In either case, the existing connection is not
modified. (Use hal_unlink to break an existing connection.) If the signal already has other pins linked to it,
they are unaffected — one signal can be linked to many pins, but a pin can be linked to only one signal.

hal_unlink unlinks any signal from the specified pin.

hal_signal_delete deletes a signal object. Any pins linked to the object are unlinked.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3)

216 01/04/2026 LinuxCNC

HAL_START _THREADS(3) LinuxCNC Documentation HAL_START THREADS(3)

NAME
hal_start_threads — Allow HAL threads to begin executing

SYNTAX
int hal_start_threads()

int hal_stop_threads()
DESCRIPTION

hal_start_threads starts all threads that have been created. This is the point at which realtime functions
start being called.

hal_stop_threads stops all threads that were previously started by hal_start_threads. It should be called
before any component that is part of a system exits.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3), hal_create_thread(3), hal_add_funct_to_thread(3)

LinuxCNC 01/04/2026 217

HAL_STREAM (3) LinuxCNC Documentation HAL_STREAM(3)

NAME

hal_stream — non—blocking realtime streams

SYNOPSIS

#include <hal.h>

int hal_stream_create(hal_stream_t* stream, int comp_id, int key, int depth, const char* typestring);
void hal_stream_destroy(hal_stream_t* stream);

int hal_stream_attach(hal_stream_t* stream, int comp_id, int key, const char* typestring);

int hal_stream_detach(hal_stream_t* stream);

int hal_stream_element_count(hal_stream_t* stream);

hal_type_t hal_stream_element_type(hal_stream_t* stream, int idx);
int hal_stream_depth(hal_stream_t* stream);

int hal_stream_maxdepth(hal_stream_t* stream);

int hal_stream_num_underruns(hal_stream_t* stream);

int hal_stream_num_overruns(hal_stream_t* stream);

int hal_stream_read(hal_stream_t* stream, union hal_stream_data* buf, unsigned* sampleno);
bool hal_stream_readable(hal_stream_t* stream);

int hal_stream_write(hal_stream_t* stream, union hal_stream_data* buf);
bool hal_stream_writable(hal_stream_t* stream);

#ifdef ULAPI

void hal_stream_wait_writable(hal_stream_t* stream, sig_atomic_t* stop);
void hal_stream_wait_readable(hal_stream_t* stream, sig_atomic_t* stop);
#endif

DESCRIPTION

218

A HAL stream provides a limited ability for two components to communicate data which does not fit
within the model of HAL pins. A reader and a writer must agree on a key (32-bit integer identifier) and a
data structure specified by typestring. They must also agree which component (the first one loaded) will
hal_stream_create the stream, and which component (the second one loaded) will hal_stream_attach to
the already—created stream.

The non—realtime part can be halstreamer or halsampler. In the case of halstreamer the key is
0x48535430 plus the channel number. In the case of halsampler the key is 0x48534130 plus the channel
number.

hal_stream_create
Create the given stream, initializing the stream which is passed by reference. It is an undiagnosed error
if a stream has already been created with the same key.

hal_stream_destroy
Destroy the given stream. It is an undiagnosed error if the stream is still attached by another
component. It is an undiagnosed error if the stream was attached with hal_stream_attach rather than
created with hal_stream_create. It is an undiagnosed error if the call to hal_stream_destroy is
omitted.

hal_stream_attach
Attach the given stream, which was already created by hal_stream_create. If the typestring is
specified, this call fails if it does not match the typestring the stream was created with. If the typestring
argument is NULL, then any typestring is accepted.

hal_stream_detach
Detach the given stream. It is an undiagnosed error if the stream was created with hal_stream_create
rather than attached with hal_stream_attach. It is an undiagnosed error if the call to
hal_stream_detach is omitted.

01/04/2026 LinuxCNC

HAL_STREAM (3) LinuxCNC Documentation HAL_STREAM(3)

hal_stream_element_count
Returns the number of pins.

hal_stream_element_type
Returns the type of the given pin number.

hal_stream_readable
Returns true if the stream has at least one sample to read

hal_stream_read
If the stream has one sample to read, stores it in buf.

hal_stream_writable
Returns true if the stream has room for at least one sample to be written.

hal_stream_depth
Returns the number of samples waiting to be read.

hal_stream_maxdepth
Returns the depth argument that the stream was created with.

hal_stream_num_overruns
Returns a number which is incremented each time hal_stream_write is called without space available.

hal_stream_num_underruns
Returns a number which is incremented each time hal_stream_read is called without a sample
available.

hal_stream_wait_readable
Waits until the stream is readable or the stop flag is set.

hal_stream_wait_writable
Waits until the stream is writable or the stop flag is set.

hal_stream_read
Reads a record from stream. If successful, it is stored in the given buffer. Optionally, the sample
number can be retrieved. If no sample is available, num_underruns is incremented. It is an undetected
error if more than one component or real-time function calls hal_stream_read concurrently.

hal_stream_write
Writes a record to the stream. If successful, it copied from the given buffer. If no room is available,
num_overruns is incremented. In either case, the internal sampleno value is incremented. It is an
undetected error if more than one component or real-time function calls hal_stream_write
concurrently.

ARGUMENTS

stream
A pointer to a stream object. In the case of hal_stream_create and hal_stream_attach this is an
uninitialized stream; in other cases, it must be a stream created or attached by an earlier call and not
yet detached or destroyed.

hal_id
An HAL component identifier returned by an earlier call to hal_init.

key
The key for the shared memory segment.

depth
The number of samples that can be unread before any samples are lost (overrun)

typestring
A typestring is a case—insensitive string which consists of one or more of the following type
characters:

[upperalpha, start=2]

LinuxCNC 01/04/2026 219

HAL_STREAM (3) LinuxCNC Documentation HAL_STREAM(3)

for bool / hal_bit_t

for int32_t/hal s32 t
for uint32_t/hal_u32 t
for real_t/hal float_t

Ll

A typestring is limited to 16 characters.

buf
A buffer big enough to hold all the data in one sample.

sampleno
If non—-NULL, the last sample number is stored here. Gaps in this sequence indicate that an overrun
occurred between the previous read and this one. May be NULL, in which case the sample number is
not retrieved.

stop
A pointer to a value which is monitored while waiting. If it is nonzero, the wait operation returns early.
This allows a wait call to be safely terminated in the case of a signal.

SAMPLE CODE
In the source tree under src/hal/components, sampler.c and streamer.c are realtime components that read
and write HAL streams.

REALTIME CONSIDERATIONS
hal_stream_read, hal_stream_readable, hal_stream_write, hal_stream_writable,
hal_stream_element_count, hal_tream_pin_type, hal_stream_depth, hal_stream_maxdepth,
hal_stream_num_underruns, hal_stream_number_overruns may be called from realtime code.

hal_stream_wait_writable, hal_stream_wait_writable may be called from ULAPI code.

Other functions may be called in any context, including realtime contexts.

RETURN VALUE
The functions hal_stream_create, hal_stream_attach, hal_stream_read, hal_stream_write,
hal_stream_detach and hal_stream_destroy return an RTAPI status code. Other functions' return values
are explained above.

BUGS
The memory overhead of a stream can be large. Each element in a record uses 8 bytes, and the implicit
sample number also uses 8 bytes. As a result, a stream which is used to transport 8—bit values uses 94% of
its memory as overhead. However, for modest stream sizes this overhead is not important. (This memory is
part of its own shared memory region and does not count against the HAL shared memory region used for
pins, parameters and signals.)

SEE ALSO

sampler(9), streamer(9), halsampler(1), halstreamer(1)

220 01/04/2026 LinuxCNC

HAL_TYPE_T(3) LinuxCNC Documentation HAL_TYPE_T(3)

NAME
hal_type_t, hal_bool, hal_bit_t, hal_s32_t, hal_u32_t, hal_port_t, hal_float_t, real_t, ireal_t — typedefs for
HAL datatypes

DESCRIPTION
typedef ... hal_bool;
A type which may have a value of 0 or nonzero.

typedef ... hal_bit_t;
A volatile type which may have a value of 0 or nonzero.

typedef ... hal_s32_t;
A volatile type which may have a value from —2147483648 to 2147483647.

typedef ... hal_u32_t;
A volatile type which may have a value from 0 to 4294967295.

typedef ... hal_port_t;
A volatile handle to a port object. Used with hal_port* functions.

typedef ... hal_float_t;
A volatile floating—point type, which typically has the same precision and range as the C type double.

typedef ... real _t;
A nonvolatile floating—point type with at least as much precision as hal_float_t.

typedef ... ireal _t;
A nonvolatile unsigned integral type the same size as hal_float_t.

typedef enum hal_type_t;

HAL_BIT
Corresponds to the type hal_bit_t.

HAL_FLOAT
Corresponds to the type hal_float_t.

HAL_S32
Corresponds to the type hal_s32_t.

HAL_U32
Corresponds to the type hal_u32_t.

NOTES
hal_bit_t is typically a typedef to an integer type whose range is larger than just O and 1. When testing the
value of a hal_bit_t, never compare it to 1. Prefer one of the following:

+ if(b)

o if(b!=0)
It is often useful to refer to a type that can represent all the values as a HAL type, but without the volatile
qualifier. The following types correspond with the HAL types:

hal_bit_t
int

hal s32 t
832

hal_u32_t
_u32

hal_float_t
hal real t

hal_port_t

LinuxCNC 01/04/2026 221

HAL_TYPE_T(3) LinuxCNC Documentation HAL_TYPE_T(3)

int

Take care not to use the types s32 and u32. These will compile in kernel modules but not in userspace, and
not for realtime components when using uspace realtime.

SEE ALSO

hal_pin_new(3), hal_param_new(3)

222 01/04/2026 LinuxCNC

RTAPI(3) LinuxCNC Documentation RTAPI(3)

NAME
rtapi — Introduction to the RTAPI API

DESCRIPTION
RTAPI is a library providing a uniform API for several real time operating systems. As of LinuxCNC 2.7,
POSIX threads and RTAI are supported.

HEADER FILES
rtapi.h
The file rtapi.h defines the RTAPI for both realtime and non-realtime code. This is a change from Rev 2,
where the non—realtime API was defined in ulapi.h and used different function names. The symbols RTAPI
and ULAPI are used to determine which mode is being compiled, RTAPI for realtime and ULAPI for
non-realtime.

rtapi_math.h
The file rtapi_math.h defines floating—point functions and constants. It should be used instead of <math.h>
in rtapi real-time components.

rtapi_string.h
The file rtapi_string.h defines string—related functions. It should be used instead of <string.h> in rtapi
real-time components.

rtapi_byteorder.h
This file defines the preprocessor macros RTAPI_BIG_ENDIAN, RTAPI_LITTLE_ENDIAN, and
RTAPI_FLOAT_BIG_ENDIAN as true or false depending on the characteristics of the target system. It
should be used instead of <endian.h> (userspace) or <linux/byteorder.h> (kernel space).

rtapi_limits.h
This file defines the minimum and maximum value of some fundamental integral types, such as INT_MIN
and INT_MAX. This should be used instead of <limits.h> because that header file is not available to kernel
modules.

REALTIME CONSIDERATIONS
Non-realtime code
Certain functions are not available in non—realtime code. This includes functions that perform direct device
access such as rtapi_inb(3).

Init/cleanup code
Certain functions may only be called from realtime init/cleanup code. This includes functions that perform
memory allocation, such as rtapi_shmem_new(3).

Realtime code
Only a few functions may be called from realtime code. This includes functions that perform direct device
access such as rtapi_inb(3). It excludes most Linux kernel APIs such as do_gettimeofday(3) and many
rtapi APIs such as rtapi_shmem_new(3).

Simulator
For an RTAPI module to be buildable in the "sim" environment (fake realtime system without special
privileges), it must not use any linux kernel APIs, and must not use the RTAPI APIs for direct device
access such as rtapi_inb(3). This automatically includes any hardware device drivers, and also devices
which use Linux kernel APIs to do things like create special devices or entries in the /proc filesystem.

RTAPI STATUS CODES
Except as noted in specific manual pages, RTAPI returns negative errno values for errors, and nonnegative
values for success.

LinuxCNC 01/04/2026 223

RTAPI APP_EXIT (3) LinuxCNC Documentation RTAPI_APP_EXIT (3)

NAME

rtapi_app_exit — User—provided function to shut down a component

SYNTAX
#include <rtapi_app.h>
void rtapi_app_exit(void);
ARGUMENTS

None

DESCRIPTION
The body of rtapi_app_exit, which is provided by the component author, generally consists of a call to
rtapi_exit or hal_exit, preceded by other component—specific shutdown code.

This code is called when unloading a component which successfully initialized (i.e., returned zero from its
rtapi_app_main). It is not called when the component did not successfully initialize.

RETURN VALUE

None.

REALTIME CONSIDERATIONS

Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_main(3), rtapi_exit(3), hal_exit(3)

224 01/04/2026 LinuxCNC

RTAPI_APP_MAIN(3) LinuxCNC Documentation RTAPI_APP_MAIN(3)

NAME

rtapi_app_main — User—provided function to initialize a component

SYNTAX
#include <rtapi_app.h>
int rtapi_app_main(void);
ARGUMENTS
None

DESCRIPTION
The body of rtapi_app_main, which is provided by the component author, generally consists of a call to
rtapi_init or hal_init, followed by other component—specific initialization code.

RETURN VALUE
Return O for success. Return a negative errno value (e.g., -EINVAL) on error. Existing code also returns
RTAPI or HAL error values, but using negative errno values gives better diagnostics from insmod.

REALTIME CONSIDERATIONS

Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_exit(3), rtapi_init(3), hal_init(3)

LinuxCNC 01/04/2026 225

RTAPI ATOMIC(3) LinuxCNC Documentation RTAPI_ATOMIC(3)

NAME

rtapi_atomic — subset of C11 stdatomic.h

SYNTAX
#include <rtapi_atomic.h>
enum memory_order { ... };
#define atomic_store(obj, desired)...
#define atomic_store_explicit(obj, desired, order)...
#define atomic_load(obyj)...
#define atomic_load_explicit(obj, order)...

ARGUMENTS
volatile A* obj
A pointer to a volatile object that is the destination of the store or the source of the load. The pointer
must have an appropriate type and alignment such that the underlying store or load operation itself is
atomic; at a minimum, a properly aligned "int" may be assumed to be such a type. Improper size or
alignment are undiagnosed errors.

C desired
The value to be stored in the object. "*obj = desired" must be well-formed.

memory_order order
The required memory ordering semantic.

DESCRIPTION
This header provides at least the subset of C11’s <+stdatomic.h>+ given above. When there is an ordering
requirement for multiple values read or written in RTAPI shared memory areas by other threads of
execution, including the values of HAL pins and parameters, these functions (or function—like macros) are
the only way to ensure the ordering requirement is obeyed. Otherwise, according to architecture—specific
rules, loads and stores may be reordered from their normal source code order.

For example, to leave a message in a shared memory area from one thread and retrieve it from another, the
writer must use an atomic store for the "message is complete" variable, and the reader must use an atomic
load when checking that variable:

/Il producer
*message = 42;
atomic_store_explicit(message_ready, 1, memory_order_release);

// consumer
while(atomic_load_explicit(message_ready, memory_order_acquire) == 0) sched_yield();
printf("message was %d\n", *message); // must print 42

REALTIME CONSIDERATIONS
May be called from any code.

RETURN VALUE

atomic_load and atomic_load_explicit return the value pointed to by the obj argument.

atomic_store and atomic_store_explicit have no return value.

SEE ALSO
<stdatomic.h> (C11), <rtapi_bitops.h> (for other atomic memory operations supported by rtapi)

226 01/04/2026 LinuxCNC

RTAPI_BOOL(3) LinuxCNC Documentation RTAPI_BOOL(3)

NAME

rtapi_bool — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_bool.h>

DESCRIPTION
Includes either <stdbool.h> or <linux/types.h> as appropriate, to obtain suitable declarations of "bool",
"true" and "false".

REALTIME CONSIDERATIONS

None.

NOTES

Also permitted in C++ programs, where including it has no effect.

LinuxCNC 01/04/2026 227

RTAPI_BYTEORDER(3) LinuxCNC Documentation RTAPI_BYTEORDER(3)

NAME

rtapi_byteorder — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_byteorder.h>

RTAPI_BIG_ENDIAN
Defined to 1 if the platform is big—endian, O otherwise.

RTAPI_LITTLE_ENDIAN
Defined to 1 if the platform is little—endian, O otherwise.

RTAPI_FLOAT BIG_ENDIAN
Defined to 1 if the platform double—precision value is big—endian, 0 otherwise.

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_byteorder_register always succeeds)

REALTIME CONSIDERATIONS

May be used at any time.

RETURN VALUE

As in Linux.

228 01/04/2026 LinuxCNC

RTAPI CLOCK_SET _PERI(3) LinuxCNC Documentation RTAPI_CLOCK_SET_PERI(3)

NAME

rtapi_clock_set_period — set the basic time interval for realtime tasks
SYNTAX

rtapi_clock_set_period(long int nsec);
ARGUMENTS

nsec

The desired basic time interval for realtime tasks.

DESCRIPTION

rtapi_clock_set_period sets the basic time interval for realtime tasks. All periodic tasks will run at an
integer multiple of this period. The first call to rtapi_clock_set_period with nsec greater than zero will
start the clock, using nsec as the clock period in nano—seconds. Due to hardware and RTOS limitations, the
actual period may not be exactly what was requested. On success, the function will return the actual clock
period if it is available, otherwise it returns the requested period. If the requested period is outside the limits
imposed by the hardware or RTOS, it returns —EINVAL and does not start the clock. Once the clock is
started, subsequent calls with non—zero nsec return —EINVAL and have no effect. Calling
rtapi_clock_set_period with nsec set to zero queries the clock, returning the current clock period, or zero
if the clock has not yet been started.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from
non-realtime code.

RETURN VALUE
The actual period provided by the RTOS, which may be different than the requested period, or a RTAPI
status code.

LinuxCNC 01/04/2026 229

RTAPI_DELAY (3) LinuxCNC Documentation RTAPI_DELAY (3)

NAME
rtapi_delay, rtapi_delay_max — Busy—loop for short delays

SYNTAX
void rtapi_delay(long int _nsec_);
void rtapi_delay_max();

ARGUMENTS
nsec
The desired delay length in nanoseconds.

DESCRIPTION
rtapi_delay is a simple delay. It is intended only for short delays, since it simply loops, wasting CPU
cycles.

rtapi_delay_max returns the max delay permitted (usually approximately 1/4 of the clock period). Any
call to rtapi_delay requesting a delay longer than the max will delay for the max time only.

rtapi_delay_max should be called before using rtapi_delay to make sure the required delays can be
achieved. The actual resolution of the delay may be as good as one nano—second, or as bad as a several
microseconds.

REALTIME CONSIDERATIONS

May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE

rtapi_delay_max returns the maximum delay permitted.

SEE ALSO
rtapi_clock_set_period(3)

230 01/04/2026 LinuxCNC

RTAPI DEVICE(3) LinuxCNC Documentation RTAPI_DEVICE(3)

NAME

rtapi_device — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_device.h>
struct rtapi_device;
int rtapi_dev_set_name(struct rtapi_device* dev, const char* name, ...);
int rtapi_device_register(struct rtapi_device* dev);
int rtapi_device_unregister(struct rtapi_device* dev);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality, if
available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

LinuxCNC 01/04/2026 231

RTAPI _DIV_U64(3) LinuxCNC Documentation RTAPI_DIV_U64(3)

NAME
rtapi_div_u64, rtapi_div_u64_rem, rtapi_div_s64, rtapi_div_s64_rem — unsigned division of a 64—bit

number by a 32-bit number
SYNTAX
__u64 rtapi_div_u64_rem(__u64 dividend, __u32 divisor, __u32* remainder);
__u64 rtapi_div_u64(__u64 dividend, __u32 divisor);
__s64 rtapi_div_s64(__s64 dividend, __s32 divisor);
__s64 rtapi_div_s64_rem(__s64 dividend, __s32 divisor, __s32* remainder);

ARGUMENTS
dividend
The value to be divided.

divisor
The value to divide by.

remainder
Pointer to the location to store the remainder. This may not be a NULL pointer. If the remainder is not

desired, call rtapi_div_u64 or rtapi_div_s64.
DESCRIPTION

Perform integer division (and optionally compute the remainder) with a 64-bit dividend and 32-bit divisor.

RETURN VALUE
The result of integer division of dividend / divisor. In versions with the remainder argument, the remainder
is stored in the pointed—to location.

NOTES
If the result of the division does not fit in the return type, the result is undefined.

This function exists because in kernel space the use of the division operator on a 64—bit type can lead to an
undefined symbol such as __umoddi3 when the module is loaded.

REALTIME CONSIDERATIONS

May be called from init/cleanup code and from within realtime tasks. Available in non—realtime
components.

232 01/04/2026 LinuxCNC

RTAPI_EXIT (3) LinuxCNC Documentation RTAPI_EXIT (3)

NAME
rtapi_exit — Shut down RTAPI

SYNTAX
int rtapi_exit(int module_id);

ARGUMENTS
module_id
An rtapi module identifier returned by an earlier call to rtapi_init.

DESCRIPTION
rtapi_exit shuts down and cleans up the RTAPI. It must be called prior to exit by any module that called
rtapi_init.

REALTIME CONSIDERATIONS

Call only from within non—realtime or realtime init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns a RTAPI status code.

LinuxCNC 01/04/2026 233

RTAPI_FIRMWARE(3) LinuxCNC Documentation RTAPI_FIRMWARE(3)

NAME

rtapi_firmware — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_firmware.h>
struct rtapi_firmware;
int rtapi_request_firmware(const struct rtapi_firmware **fw,
const char* name, struct rtapi_device* device);
void rtapi_release_firmware(const struct rtapi_firmware *fw);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality, if
available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

234 01/04/2026 LinuxCNC

RTAPI GET_MSG_LEVEL(3) LinuxCNC Documentation RTAPI_GET_MSG_LEVEL(3)

NAME

rtapi_get_msg_level, rtapi_set_msg_level — Get or set the logging level

SYNTAX
int rtapi_set_msg_level(int level);
int rtapi_get_msg_level();

ARGUMENTS
level
The desired logging level.

DESCRIPTION
Get or set the RTAPI message level used by rtapi_print_msg. Depending on the RTOS, this level may
apply to a single RTAPI module, or it may apply to a group of modules.

REALTIME CONSIDERATIONS

May be called from non—realtime, init/cleanup, and realtime code.

RETURN VALUE
rtapi_set_msg_level returns a status code, and rtapi_get_msg_level returns the current level.
RTAPI_MSG_NONE = 0, RTAPI_MSG_ERR = 1, RTAPI_MSG_WARN = 2, RTAPI_MSG_INFO = 3,
RTAPI_MSG_DBG = 4,RTAPI_MSG_ALL =5

SEE ALSO
rtapi_print_msg(3)

LinuxCNC 01/04/2026 235

RTAPI_GET_TIME(3) LinuxCNC Documentation RTAPI_GET_TIME(3)

NAME

rtapi_get_time, rtapi_get_clocks — get the current time

SYNTAX
long long rtapi_get_time();
long long rtapi_get_clocks();

DESCRIPTION
rtapi_get_time returns the current time in nanoseconds. Depending on the RTOS, this may be time since
boot, or time since the clock period was set, or some other time. Its absolute value means nothing, but it is
monotonically increasing and can be used to schedule future events, or to time the duration of some
activity. Returns a 64 bit value. The resolution of the returned value may be as good as one nano—second,
or as poor as several microseconds. May be called from init/cleanup code, and from within realtime tasks.

rtapi_get_clocks returns the current time in CPU clocks. It is fast, since it just reads the TSC in the CPU
instead of calling a kernel or RTOS function. Of course, times measured in CPU clocks are not as
convenient, but for relative measurements this works fine. Its absolute value means nothing, but it is
monotonically increasing and can be used to schedule future events, or to time the duration of some
activity. (On SMP machines, the two TSC’s may get out of sync, so if a task reads the TSC, gets swapped
to the other CPU, and reads again, the value may decrease. RTAPI tries to force all RT tasks to run on one
CPU.) Returns a 64 bit value. The resolution of the returned value is one CPU clock, which is usually a few
nanoseconds to a fraction of a nanosecond. Note that long long math may be poorly supported on some
platforms, especially in kernel space. Also note that rtapi_print() will NOT print long longs. Most time
measurements are relative, and should be done like this:

deltat = (long int)(end_time — start_time);

where end_time and start_time are longlong values returned from rtapi_get_time, and deltat is an ordinary
long int (32 bits). This will work for times up to a second or so, depending on the CPU clock frequency. It
is best used for millisecond and microsecond scale measurements though.

RETURN VALUE

Returns the current time in nanoseconds or CPU clocks.

NOTES

Certain versions of the Linux kernel provide a global variable cpu_khz. Computing
deltat = (end_clocks — start_clocks) / cpu_khz:

gives the duration measured in milliseconds. Computing

deltat = (end_clocks — start_clocks) * 1000000 / cpu_khz:

gives the duration measured in nanoseconds for deltas less than about 9 trillion clocks (e.g., 3000 seconds
at 3 GHz).

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks. Not available in non—realtime
components.

236 01/04/2026 LinuxCNC

RTAPI_GFP(3) LinuxCNC Documentation RTAPI_GFP(3)

NAME
rtapi_gfp — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_gfp.h>
enum rtapi_gfp_e;
RTAPI_GFP_xxx
typedef ... rtapi_gfp_t;

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

LinuxCNC 01/04/2026 237

RTAPI _INIT (3) LinuxCNC Documentation RTAPI_INIT (3)

NAME
rtapi_init — Sets up RTAPI
SYNTAX

int rtapi_init(const char *_modname_);

ARGUMENTS

modname
The name of this RTAPI module.

DESCRIPTION
rtapi_init sets up the RTAPI. It must be called by any module that intends to use the API, before any other
RTAPI calls.

modname can optionally point to a string that identifies the module. The string will be truncated at
RTAPI_NAME_LEN characters. If modname is NULL, the system will assign a name.

REALTIME CONSIDERATIONS

Call only from within non—realtime or realtime init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to rtapi_xxx_new,
rtapi_xxx_delete, and rtapi_exit. On failure, returns an RTAPI error code.

238 01/04/2026 LinuxCNC

RTAPI _10(3) LinuxCNC Documentation RTAPI_10(3)

NAME

rtapi_io — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_io.h>
unsigned char rtapi_inb(unsigned short int port);
unsigned short rtapi_inw(unsigned short int port);
unsigned int rtapi_inl(unsigned short int port);
unsigned void rtapi_outb(unsigned char value, unsigned short int port);
unsigned void rtapi_outw(unsigned short value, unsigned short int port);
unsigned void rtapi_inl(unsigned int value, unsigned short int port);
int rtapi_ioperm(unsigned long from, unsigned long num, int turn_on);
unsigned void rtapi_outl(unsigned int value, unsigned short int port);

DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality, if
available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register and the kernel space implementation of rtapi_ioperm always
succeeds)

REALTIME CONSIDERATIONS
Call from init/cleanup code and from realtime tasks. These functions will cause illegal instruction
exceptions in non—realtime components, as well as in uspace rtapi_app when it is not setuid root.

RETURN VALUE

As in Linux.

SEE ALSO
inb(3), inw(3), inl(3), outb(3), outw(3), outl(3), ioperm(3)

AUTHOR
Jeff Epler

LinuxCNC 01/04/2026 239

RTAPI_IS(3) LinuxCNC Documentation RTAPI_IS(3)

NAME
rtapi_is — details of rtapi configuration

SYNTAX
int rtapi_is_kernelspace();
int rtapi_is_realtime();
DESCRIPTION
rtapi_is_kernelspace() returns nonzero when rtapi modules run in kernel space (e.g., under RTAI) and zero
when they run in userspace (e.g., under uspace).

rtapi_is_realtime() returns nonzero when capable of running with realtime guarantees. For rtai, this always
returns nonzero (but actually loading realtime modules will fail if not running under the appropriate kernel).
For uspace, this returns nonzero when the running kernel indicates it is capable of realtime performance. If

rtapi_app is not setuid root, this returns nonzero even though rtapi_app will not be able to obtain realtime
scheduling or hardware access, so e.g., attempting to loadrt a hardware driver will fail.

REALTIME CONSIDERATIONS

May be called from non—realtime or from realtime setup code. rtapi_is_realtime() may perform filesystem
/0.

RETURN VALUE

Zero for false, nonzero for true.

240 01/04/2026 LinuxCNC

RTAPI_LIST(3) LinuxCNC Documentation RTAPI_LIST(3)

NAME

rtapi_list — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_list.h>
struct rtapi_list_head;
void rtapi_list_add(struct rtapi_list_head*new_,
struct rtapi_list_head* head);
void rtapi_list_add_tail(struct rtapi_list_head* new_,
struct rtapi_list_head* head);
void rtapi_list_del(struct rtapi_list_head* entry);
void RTAPI_INIT_LIST_HEAD(struct rtapi_list_head* entry);
rtapi_list_for_each(pos, head) \{ ... }
rtapi_list_entry(ptr, type, member)

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call from init/cleanup code and from realtime tasks. These functions will cause illegal instruction
exceptions in non—realtime components, as well as in uspace rtapi_app when it is not setuid root.

RETURN VALUE

As in Linux.

LinuxCNC 01/04/2026 241

RTAPI MODULE_PARAM (3)

NAME

rtapi_module_param, EXPORT_FUNCTION, RTAPI_MP_INT, RTAPI_MP_LONG,
RTAPI_MP_STRING, RTAPI_MP_ARRAY_INT, RTAPI_MP_ARRAY_LONG,
RTAPI_MP_ARRAY_STRING, MODULE_LICENSE - Specifying module parameters

SYNTAX

RTAPI_MP_INT(_var_, _description_);
RTAPI_MP_LONG(_var_, _description_);
RTAPI_MP_STRING(_var_, _description_);
RTAPI_MP_ARRAY_INT(_var_, _num_, _description_);
RTAPI_MP_ARRAY_LONG(_var_, _num_, _description_);

RTAPI_MP_ARRAY_STRING(_var_, _num_, _description_);

MODULE_LICENSE(license_);
MODULE_AUTHOR(_author_);
MODULE_DESCRIPTION(_description_);
EXPORT_FUNCTION(_function_);

ARGUMENTS

var
The variable where the parameter should be stored

description
A short description of the parameter or module

num
The maximum number of values for an array parameter

license
The license of the module, for instance "GPL"

author
The author of the module

function
The pointer to the function to be exported

DESCRIPTION
These macros are portable ways to declare kernel module parameters. They must be used in the global
scope, and are not followed by a terminating semicolon. They must be used after the associated variable or

function has been defined.

NOTES
EXPORT_FUNCTION makes a symbol available for use by a subsequently loaded component. It is

unrelated to HAL functions, which are described in hal_export_funct(3)

INTERPRETATION OF LICENSE STRINGS
MODULE_LICENSE follows the kernel’s definition of license strings. Notably, "GPL" indicates "GNU

242

General Public License v2 or later". (emphasis ours).

IIGPLH
GNU General Public License v2 or later

"GPL v2"
GNU General Public License v2

"GPL and additional rights"
GNU General Public License v2 rights and more

"Dual BSD/GPL"
GNU General Public License v2 or BSD license choice

"Dual MIT/GPL"
GNU General Public License v2 or MIT license choice

01/04/2026

LinuxCNC Documentation

RTAPI_ MODULE_PARAM (3)

LinuxCNC

RTAPI MODULE_PARAM (3) LinuxCNC Documentation RTAPI_ MODULE_PARAM (3)

"Dual MPL/GPL"
GNU General Public License v2 or Mozilla license choice

"Proprietary"”
Non—free products

It is still good practice to include a license block which indicates the author, copyright date, and disclaimer
of warranty as recommended by the GNU GPL.

REALTIME CONSIDERATIONS

Not available in userspace code.

LinuxCNC 01/04/2026 243

RTAPI MUTEX(3) LinuxCNC Documentation RTAPI_MUTEX(3)

NAME

rtapi_mutex — Mutex—related functions

SYNTAX

#include <rtapi_mutex.h>

int rtapi_mutex_try(unsigned long* _mutex_);
int rtapi_mutex_get(unsigned long* _mutex_);
int rtapi_mutex_give(unsigned long* _mutex_);

ARGUMENTS
mutex
A pointer to the mutex.

DESCRIPTION
rtapi_mutex_try makes a non—blocking attempt to get the mutex. If the mutex is available, it returns 0, and
the mutex is no longer available. Otherwise, it returns a nonzero value.

rtapi_mutex_get blocks until the mutex is available.

rtapi_mutex_give releases a mutex acquired by rtapi_mutex_try or rtapi_mutex_get.

REALTIME CONSIDERATIONS

rtapi_mutex_give and rtapi_mutex_try may be used from non-realtime, init/cleanup, and realtime code.

rtapi_mutex_get may not be used from realtime code.

RETURN VALUE

rtapi_mutex_try returns O for if the mutex was claimed, and nonzero otherwise.

rtapi_mutex_get and rtapi_mutex_gif have no return value.

244 01/04/2026 LinuxCNC

RTAPI_OPEN_AS_ROOT (3) LinuxCNC Documentation RTAPI_OPEN_AS_ROOT(3)

NAME

rtapi_open_as_root — Open a file with "root" privilege

SYNTAX
#include <rtapi.h>
int rtapi_open_as_root(const char *filename, int flags);

ARGUMENTS
filename
The filename to open, as in open(2). Note that rtapi has no well-defined "current directory", so this
should be an absolute path, but this is not enforced.
flags
The open flags, as in open(2). Should never include bits that open or create files (e.g., O_CREAT,
O_APPEND, etc) as this API is not intended for creating or writing files, but this is not enforced.

DESCRIPTION
In "uspace" realtime, root privileges are dropped whenever possible. This API temporarily switches on root
privileges to open a file, and switches them off before returning. This can be useful for example when
accessing device nodes or memory—mapped 1/O.

In the case of PCI devices on x86 and x86—64 systems, prefer the linux—style PCI interfaces provided in
<rtapi_pci.h>.

RETURN VALUE
In case of success, the nonnegative file descriptor opened. If the caller does not close it, it remains open
until rtapi_app exits.

In case of failure, a negative errno value.

REALTIME CONSIDERATIONS

Call only from realtime initcode in "uspace" realtime.

SEE ALSO
open(2), rtapi_pci(3)

LinuxCNC 01/04/2026 245

RTAPI_OUTB(3) LinuxCNC Documentation
NAME

rtapi_outb, rtapi_inb — Perform hardware 1I/O
SYNTAX

void rtapi_outb(unsigned char _byte_, unsigned int _port_);
unsigned char rtapi_inb(unsigned int _port_);

ARGUMENTS
port
The address of the 1/O port
byte
The byte to be written to the port

DESCRIPTION

RTAPI_OUTB(3)

rtapi_outb writes a byte to a hardware 1/O port. rtapi_inb reads a byte from a hardware I/O port.

REALTIME CONSIDERATIONS

May be called from init/cleanup code and from within realtime tasks. Not available in non—realtime

components.

RETURN VALUE
rtapi_inb returns the byte read from the given I/O port

NOTES

The I/O address should be within a region previously allocated by rtapi_request_region. Otherwise,
another real-time module or the Linux kernel might attempt to access the I/O region at the same time.

SEE ALSO
rtapi_region(3)

246 01/04/2026

LinuxCNC

RTAPI_PARPORT (3) LinuxCNC Documentation RTAPI_PARPORT (3)

NAME
rtapi_parport — portable access to PC—style parallel ports

SYNTAX
#include "rtapi_parport.h"

int rtapi_parport_get(const char* _module_name_, rtapi_parport_t* _port_,
short _base_, unsigned short _base_hi_,
int _modes_);

void rtapi_parport_release(rtapi_parport_t* _port_);

ARGUMENTS
module_name
By convention, the name of the RTAPI module or HAL component using the parport.

port
A pointer to a rtapi_parport_t structure.

base
The base address of the port (if port >= 16) or the linux port number of the port (if port < 16).

base_hi
The "high" address of the port (location of the ECP registers), O to use a probed high address, or —1 to
disable the high address.

modes
Adyvise the driver of the desired port modes, from <linux/parport.h>. If a linux—detected port does not
provide the requested modes, a warning is printed with rtapi_print_msg. This does not make the port
request fail, because unfortunately, many systems that have working EPP parports are not detected as
such by Linux.

DESCRIPTION
rtapi_parport_get allocates a parallel port for exclusive use of the named hal component. If successful,
access the port with I/O calls such as rtapi_inb at address based at the base or base_hi addresses. The port
must be released with rtapi_parport_release before the component exits with rtapi_exit.

HIGH ADDRESS PROBING
If the port is a parallel port known to Linux, and Linux detected a high I/O address, this value is used.
Otherwise, if base+0x400 is not registered to any device, it is used. Otherwise, no address is used. If no
high address is detected, portabase_hi is O.

PARPORT STRUCTURE
typedef struct
{

unsigned short base;
unsigned short base_hi;
.... I/ and further unspecified fields
} rtapi_parport_t;
RETURN VALUE
rtapi_parport_get returns a HAL status code. On success, port is filled out with information about the
allocated port. On failure, the contents of port are undefined except that it is safe (but not required) to pass
this port to rtapi_parport_release.

rtapi_parport_release does not return a value. It always succeeds.

NOTES

In new code, prefer use of rtapi_parport to rtapi_parport.

LinuxCNC 01/04/2026 247

RTAPI_PCI(3) LinuxCNC Documentation RTAPI_PCI(3)

NAME

rtapi_pci — RTAPI wrappers for linux kernel functionality

SYNTAX

#include <rtapi_pci.h>

struct rtapi_pci_device_id \{ ... };

struct rtapi_pci_resource \{ ... };

struct rtapi_pci_dev \{ ... };

struct rtapi_pci_driver \{ ... };

const char *rtapi_pci_name(const struct rtapi_pci_dev *pdev);

int rtapi_pci_enable_device(struct rtapi_pci_dev *dev);

void rtapi__iomem *rtapi_pci_ioremap_bar(struct rtapi_pci_dev *pdey, int bar);
int rtapi_pci_register_driver(struct rtapi_pci_driver *driver);

void rtapi_pci_unregister_driver(struct rtapi_pci_driver *driver);
int rtapi_pci_enable_device(struct rtapi_pci_dev *dev);

int rtapi_pci_disable_device(struct rtapi_pci_dev *dev);

#define rtapi_pci_resource_start(dev, bar) ...

#define rtapi_pci_resource_end(dev, bar) ...

#define rtapi_pci_resource_flags(dev, bar) ...

#define rtapi_pci_resource_len(dev,bar)

void rtapi_pci_set_drvdata(struct rtapi_pci_dev *pdev, void *data)
void rtapi_pci_set_drvdata(struct rtapi_pci_dev *pdev, void *data)
void rtapi_iounmap(volatile void *addr);

struct rtapi_pci;

DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_pci_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

248

As in Linux.

01/04/2026 LinuxCNC

RTAPI _PRINT (3) LinuxCNC Documentation RTAPI_PRINT (3)

NAME

rtapi_print, rtapi_print_msg — print diagnostic messages
SYNTAX

void rtapi_print(const char®* _fmt_, _..._)

void rtapi_print_msg(int level, const char* _fmt_, _..._)

typedef void(**rtapi_msg_handler_t*)(msg_level_t _level_, const char* _msg_);
void rtapi_set_msg_handler(rtapi_msg_handler_t _handler_);
rtapi_msg_handler_t rtapi_get_msg_handler(void);

ARGUMENTS
level
A message level: One of RTAPI_MSG_ERR, RTAPI_MSG_WARN, RTAPI_MSG_INFO, or
RTAPI_MSG_DBG.

handler
A function to call from rtapi_print or rtapi_print_msg to actually output the message.

fmt, ...
Other arguments are as for rtapi_vsnprintf(3).

DESCRIPTION
rtapi_print and rtapi_print_msg work like the standard C printf functions, except that a reduced set of
formatting operations are supported. Notably, formatting long—long values is not supported, and formatting
floating—point values has different behavior than standard printf.

Depending on the RTOS, the default may be to print the message to stdout, stderr, a kernel log, etc. In
RTAPI code, the action may be changed by a call to rtapi_set_msg_handler. A NULL argument to
rtapi_set_msg_handler restores the default handler. rtapi_msg_get_handler returns the current handler.
When the message came from rtapi_print, level is RTAPI_MSG_ALL.

rtapi_print_msg works like rtapi_print but only prints if level is less than or equal to the current message
level.

REALTIME CONSIDERATIONS
rtapi_print and rtapi_print_msg May be called from non-realtime, init/cleanup, and realtime code.
rtapi_get_msg_handler and rtapi_set_msg_handler may be called from realtime init/cleanup code. A
message handler passed to rtapi_set_msg_handler may only call functions that can be called from
realtime code.

RETURN VALUE

None.

SEE ALSO
rtapi_set_msg_level(3), rtapi_get_msg_level(3), rtapi_vsnprintf(3)

LinuxCNC 01/04/2026 249

RTAPI _PRIO(3) LinuxCNC Documentation RTAPI_PRIO(3)

NAME

rtapi_prio, rtapi_prio_highest, rtapi_prio_lowest, rtapi_prio_next_higher, rtapi_prio_next_lower — thread

priority functions
SYNTAX

int rtapi_prio_highest();

int rtapi_prio_lowest();

int rtapi_prio_next_higher(int _prio_);

int rtapi_prio_next_lower(int _prio_);
ARGUMENTS

prio

A value returned by a prior rtapi_prio_xxx call

DESCRIPTION

The rtapi_prio_xxxx functions provide a portable way to set task priority. The mapping of actual priority
to priority number depends on the RTOS. Priorities range from rtapi_prio_lowest to rtapi_prio_highest,
inclusive. To use this API, use one of two methods:

1. Set your lowest priority task to rtapi_prio_lowest, and for each task of the next lowest priority,
set their priorities to rtapi_prio_next_higher(previous).

2. Set your highest priority task to rtapi_prio_highest, and for each task of the next highest
priority, set their priorities to rtapi_prio_next_lower(previous).

N.B.: A high priority task will preempt or interrupt a lower priority task. Linux is always the lowest
priority!

REALTIME CONSIDERATIONS

Call these functions only from within init/cleanup code, not from realtime tasks.

RETURN VALUE

Returns an opaque real—time priority number.

SEE ALSO
rtapi_task_new(3)

250 01/04/2026 LinuxCNC

RTAPI_REGION(3) LinuxCNC Documentation RTAPI_REGION(3)

NAME

rtapi_region, rtapi_request_region, rtapi_release_region — functions to manage I/O memory regions

SYNTAX
void *rtapi_request_region(unsigned long _base_, unsigned long int _size_, const char* _name_)
void rtapi_release_region(unsigned long _base_, unsigned long int _size_)

ARGUMENTS

base

The base address of the I/O region
size

The size of the I/O region

name
The name to be shown in /proc/ioports

DESCRIPTION

rtapi_request_region reserves I/O memory starting at base and going for size bytes.

REALTIME CONSIDERATIONS

May be called from realtime init/cleanup code only.

RETURN VALUE

rtapi_request_region returns NULL if the allocation fails, and a non—NULL value otherwise.

rtapi_release_region has no return value.

LinuxCNC 01/04/2026 251

RTAPI_SHMEM (3) LinuxCNC Documentation RTAPI_SHMEM (3)

NAME
rtapi_shmem, rtapi_shmem_new, rtapi_shmem_delete, rtapi_shmem_getptr — Functions for managing
shared memory blocks

SYNTAX
int rtapi_shmem_new(int _key_, int _module_id_, unsigned long int _size_);

int rtapi_shmem_delete(int _shmem_id_, int _module_id_);
int rtapi_shmem_getptr(int _shmem_id_, void ** _ptr_);

ARGUMENTS
key
Identifies the memory block. Key must be nonzero. All modules wishing to use the same memory
must use the same key.

module_id
Module identifier returned by a prior call to rtapi_init.

size
The desired size of the shared memory block, in bytes

ptr
The pointer to the shared memory block. Note that the block may be mapped at a different address for
different modules.

DESCRIPTION
rtapi_shmem_new allocates a block of shared memory. key identifies the memory block, and must be
non-zero. All modules wishing to access the same memory must use the same key. module_id is the ID of
the module that is making the call (see rtapi_init). The block will be at least size bytes, and may be rounded
up. Allocating many small blocks may be very wasteful. When a particular block is allocated for the first
time, the contents are zeroed. Subsequent allocations of the same block by other modules or processes will
not touch the contents of the block. Applications can use those bytes to see if they need to initialize the
block, or if another module already did so. On success, it returns a positive integer ID, which is used for all
subsequent calls dealing with the block. On failure it returns a negative error code.

rtapi_shmem_delete frees the shared memory block associated with shmem_id. module_id is the ID of the
calling module. Returns a status code.

rtapi_shmem_getptr sets *ptr to point to shared memory block associated with shmem_id.

REALTIME CONSIDERATIONS

rtapi_shmem_getptr may be called from non-realtime code, init/cleanup code, or realtime tasks.

rtapi_shmem_new and rtapi_shmem_dete may not be called from realtime tasks.

252 01/04/2026 LinuxCNC

RTAPI SLAB(3) LinuxCNC Documentation RTAPI_SLAB(3)

NAME

rtapi_slab — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_slab.h>

void *rtapi_kmalloc(size_t size, gfp_t g);

void *rtapi_kzalloc(size_t size, gfp_t g);

void *rtapi_krealloc(size_t size, gfp_t g);

void rtapi_kfree(void*);
DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation — possibly with reduced functionality — is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from
non-realtime code.

RETURN VALUE

As in Linux.

LinuxCNC 01/04/2026 253

RTAPI_SNPRINTF (3) LinuxCNC Documentation RTAPI_SNPRINTF(3)

NAME
rtapi_snprintf, rtapi_vsnprintf — Perform snprintf-like string formatting
SYNTAX
int rtapi_snprintf(char* _buf_, unsigned long int _size_, const char* _fmt_, _..._);
int rtapi_vsnprintf(char* _buf_, unsigned long int _size_, const char* _fmt_, va_list _apf);
ARGUMENTS
As for snprintf(3) or vsnprintf(3).
DESCRIPTION

These functions work like the standard C printf functions, except that a reduced set of formatting operations
are supported.

In particular: formatting of long long values is not supported. Formatting of floating—point values is done as
though with %A even when other formats like %f are specified.

REALTIME CONSIDERATIONS

May be called from non—realtime, init/cleanup, and realtime code.

RETURN VALUE

The number of characters written to buf.

SEE ALSO
printf(3)

254 01/04/2026 LinuxCNC

RTAPI _STDINT (3)

NAME

LinuxCNC Documentation

rtapi_stdint — RTAPI wrappers for linux kernel functionality

SYNTAX

#include <rtapi_stdint.h>

typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...

rtapi_s8;
rtapi_s16;
rtapi_s32;
rtapi_s64;
rtapi_intptr_t;
rtapi_us8;
rtapi_ul6;
rtapi_u32;
rtapi_u64;
rtapi_uintptr_t;

#define RTAPI_INT__xx__ MIN ...
#define RTAPL_INT__ xx__ MAX ...
#define RTAPI_UINT__xx__ MAX ...

DESCRIPTION

RTAPI_STDINT (3)

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality, if

available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

None.

RETURN VALUE

As in Linux.

LinuxCNC

01/04/2026

255

RTAPI _STRING(3) LinuxCNC Documentation RTAPI_STRING(3)

NAME

rtapi_string — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_string.h>
char** rtapi_argv_split(rtapi_gfp_t g, const char* argstr, int* argc);
void rtapi_argv_free(char** argv);
char* rtapi_kstrdup(const char* s, rtapi_gfp_t t);
DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation—possibly with reduced functionality—is provided. (For example, the userspace
implementation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from
non-realtime code.

RETURN VALUE

As in Linux.

256 01/04/2026 LinuxCNC

RTAPI _STRLCPY (3) LinuxCNC Documentation RTAPI_STRLCPY (3)

NAME
rtapi_strlcpy — RTAPI string manipulation functions

SYNTAX
#include <rtapi_string.h>

size_t rtapi_strlcpy(char *dst, const char *src, size_t sz);
#define rtapi_strxcpy(dst, src) ...
size_t rtapi_strlcat(char *dst, const char *src, size_t sz);
#define rtapi_strxcat(dst, src) ...

DESCRIPTION

rtapi_strlcpy will copy at most sz chars from src to dst. Always leaves dst NUL—terminated except if sz is O.

rtapi_strxcpy(dst, src) checks that dst is an array with known size, and calls rtapi_strlcpy(dst, src,
sizeof(dst)). If it is not an array with a known size, it is a (possibly cryptic!) syntax error.

rtapi_strlcat will append characters from src to dst, stopping when the end of src is reached, or dst uses
sz—many bytes of storage including the tailing null.

rtapi_strxcat(dst, src) checks that dst is an array with known size, and calls rtapi_strlcat(dst, src,
sizeof(dst)). If it is not an array with a known size, it is a (possibly cryptic!) syntax error.

RETURN VALUE
The total length of the string strlcpy or strlcat tried to create. For strlcpy() that means the length of src. If
the return value is greater than or equal to sz, the result was truncated.

SEE ALSO
strlcpy(3bsd), strlcat(3bsd)

LinuxCNC 01/04/2026 257

RTAPI _TASK_NEW (3) LinuxCNC Documentation RTAPI_TASK_NEW (3)

NAME

rtapi_task_new, rtapi_task_delete — create a realtime task

SYNTAX
int rtapi_task_new(void (*_taskcode_)(void*), void *_arg_, int _prio_,
unsigned long _stacksize_, int _uses_fp_);
int rtapi_task_delete(int _task_id_);

ARGUMENTS
taskcode
A pointer to the function to be called when the task is started

arg
An argument to be passed to the faskcode function when the task is started

prio
A task priority value returned by rtapi_prio_xxxx
uses_fp
A flag that tells the OS whether the task uses floating point or not.
task_id
A task ID returned by a previous call to rtapi_task_new
DESCRIPTION

rtapi_task_new creates but does not start a realtime task. The task is created in the "paused” state. To start
it, call either rtapi_task_start for periodic tasks, or rtapi_task_resume for free—running tasks.

REALTIME CONSIDERATIONS

Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
On success, returns a positive integer task ID. This ID is used for all subsequent calls that need to act on the
task. On failure, returns an RTAPI status code.

SEE ALSO
rtapi_prio(3), rtapi_task_start(3), rtapi_task_wait(3), rtapi_task_resume(3)

258 01/04/2026 LinuxCNC

RTAPI TASK_PAUSE(3) LinuxCNC Documentation RTAPI _TASK_PAUSE(3)

NAME

rtapi_task_pause, rtapi_task_resume — pause and resume real-time tasks

SYNTAX
void rtapi_task_pause(int _task_id_);
void rtapi_task_resume(int _task_id_);

ARGUMENTS
task_id
An RTAPI task identifier returned by an earlier call to rtapi_task_new.

DESCRIPTION

rtapi_task_resume starts a task in free—running mode. The task must be in the "paused" state.

A free running task runs continuously until either:

1. It is prempted by a higher priority task. It will resume as soon as the higher priority task releases
the CPU.

2. Tt calls a blocking function, like rtapi_sem_take. It will resume when the function unblocks.

3. It is returned to the "paused" state by rtapi_task_pause. May be called from init/cleanup code,
and from within realtime tasks.

rtapi_task_pause causes a task to stop execution and change to the "paused" state. The task can be
free—running or periodic. Note that rtapi_task_pause may called from any task, or from init or cleanup
code, not just from the task that is to be paused. The task will resume execution when either
rtapi_task_resume or rtapi_task_start (depending on whether this is a free-running or periodic task) is
called.

REALTIME CONSIDERATIONS

May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
An RTAPI status code.

SEE ALSO
rtapi_task_new(3), rtapi_task_start(3)

LinuxCNC 01/04/2026 259

RTAPI TASK_SELF(3) LinuxCNC Documentation RTAPI_TASK_SELF (3)

NAME

rtapi_task_self — Retrieve ID of current task
SYNTAX
void rtapi_task_self();

DESCRIPTION
rtapi_task_self retrieves the current task, or —EINVAL if not in a realtime task (e.g., in startup or shutdown
code).

REALTIME CONSIDERATIONS

May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
The task number previously returned by rtapi_task_new or —EINVAL.

SEE ALSO
rtapi_task_new(3)

260 01/04/2026 LinuxCNC

RTAPI TASK_START (3) LinuxCNC Documentation RTAPI_TASK_START (3)

NAME

rtapi_task_start — start a realtime task in periodic mode
SYNTAX

int rtapi_task_start(int task_id, unsigned long period_nsec);
ARGUMENTS

task_id

A task ID returned by a previous call to rtapi_task_new

period_nsec
The clock period in nanoseconds between iterations of a periodic task

DESCRIPTION

rtapi_task_start starts a task in periodic mode. The task must be in the paused state.

REALTIME CONSIDERATIONS

Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns an RTAPI status code.

SEE ALSO

rtapi_task_new(3), rtapi_task_pause(3), rtapi_task_resume(3)

LinuxCNC 01/04/2026

261

RTAPI TASK_WAIT (3) LinuxCNC Documentation RTAPI_TASK_WAIT (3)

NAME

rtapi_task_wait — suspend execution of this periodic task
SYNTAX

void rtapi_task_wait();
DESCRIPTION

rtapi_task_wait suspends execution of the current task until the next period. The task must be periodic. If
not, the result is undefined.

REALTIME CONSIDERATIONS

Call only from within a periodic realtime task.

RETURN VALUE

None

SEE ALSO
rtapi_task_start(3), rtapi_task_pause(3)

262 01/04/2026 LinuxCNC

HM?2_ALLOCATE_BSPI _TR(3) LinuxCNC Documentation HM2 ALLOCATE_BSPI_TR(3)

NAME
hm2_allocate_bspi_tram — Allocate the TRAM regions for a BSPI channel

SYNTAX
#include <hostmot2—serial.h>
hm?2_allocate_bspi_tram(char* name)

DESCRIPTION
hm2_allocate_bspi_tram Allocate the TRAM memory for bspi instance "name". "name" is a unique string
given to each bspi channel during hostmot2 setup. The names of the available channels are printed to
standard output during the driver loading process and take the form: hm2_<board name>.<board
index>.bspi.<index>, for example: hm2_5i23.0.bspi.0 .

This function allocates the TRAM memory and sets up the regular data transfers. It should be called only
when all the frames have been defined by calls to hm?2_tram_add_bspi_frame().

REALTIME CONSIDERATIONS

Call only from realtime init code, not from other realtime code or non—realtime components.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO
hm2_bspi_set_read_function(3), hm2_bspi_setup_chan(3), hm2_bspi_set_write_function(3),
hm2_bspi_write_chan(3), hm2_tram_add_bspi_frame(3)

See src/hal/drivers mesa_7i65.comp for an example usage.

LinuxCNC 01/04/2026 263

HM?2_BSPI_SET _READ_FU(3) LinuxCNC Documentation HM?2_BSPI SET READ_FU(3)

NAME
hm2_bspi_set_read_function — Register a function to handle the tram write phase of a hostmot2 buffered
SPI driver.

SYNTAX
#include <hostmot2—serial.h>
int hm?2_bspi_set_read_function(char *name, void *func, void *subdata)

DESCRIPTION
hm2_bspi_set_read_function registers a function in an external driver to be called every time that the
main Hostmot2 driver calls the generic "process_tram_read" function. The names of the available channels
are printed with rtapi_print_msg during the driver loading process and take the form:

hm2_<board name>.<board index>.bspi.<index>
For example hm2_5i23.0.bspi.0.

"func" should be a pointer to a function in the sub driver which is to be called to process the results of the
BSPI TRAM read phase. The function must take a single argument, a pointer to an individual instance of
the internal driver. If defined in comp then the function must not use the FUNCTION() convenience macro,
and the argument to the function in the definition must always be (struct state *inst).

"subdata" is a pointer to the driver instance internal data. In the case of a driver written in comp this will
always be "inst" in the function call and the call should be anywhere in the EXTRA_SETUP code.

REALTIME CONSIDERATIONS

Call only from realtime init code, not from other realtime code or non—realtime components.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO
hm2_allocate_bspi_tram(3), hm2_bspi_setup_chan(3), hm2_bspi_set_write_function(3),
hm2_bspi_write_chan(3), hm2_tram_add_bspi_frame(3), src/hal/drivers mesa_7i65.comp in the
LinuxCNC source distribution.

264 01/04/2026 LinuxCNC

HM?2_BSPI_SET _WRITE_F(3) LinuxCNC Documentation HM?2_BSPI SET WRITE _F(3)

NAME
hm2_bspi_set_write_function — Register a function to handle the tram write phase of a hostmot2 buffered
SPI driver.

SYNTAX
#include <hostmot2—serial.h>
int hm2_bspi_set_write_function(char *name, void *func, void *subdata)

DESCRIPTION
hm2_bspi_set_write_function registers a function in an external driver to be called every time that the
main Hostmot2 driver calls the generic "prepare_tram_write" functions. The names of the available
channels are printed with rtapi_print_msg during the driver loading process and take the form:

hm2_<board name>.<board index> .bspi.<index>
For example hm2_5i23.0.bspi.0.

"func" should be a pointer to a function in the sub driver which is to be called to process the pins into BSPI
write registers prior to the regular TRAM write phase. The function must take a single argument, a pointer
to an individual instance of the internal driver. If defined in comp then the function must not use the
FUNCTIONY() convenience macro, and the argument to the function in the definition must always be (struct
state *inst).

"subdata" is a pointer to the driver instance internal data. In the case of a driver written in comp this will
always be "inst" in the function call.

If using comp then the call to this function should be anywhere in the EXTRA_SETUP code.
REALTIME CONSIDERATIONS

Call only from realtime init code, not from other realtime code or non—realtime components.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO
hm2_allocate_bspi_tram(3), hm2_bspi_set_read_function(3), hm2_bspi_setup_chan(3),
hm2_bspi_write_chan(3), hm2_tram_add_bspi_frame(3), src/hal/drivers mesa_7i65.comp in the
LinuxCNC source distribution.

LinuxCNC 01/04/2026 265

HM?2_BSPI_SETUP_CHAN(3) LinuxCNC Documentation HM?2_BSPI SETUP_CHAN(3)

NAME

hm2_bspi_setup_chan — setup a Hostmot2 bspi channel

SYNTAX
#include <hostmot2—serial.h>
int hm2_bspi_setup_chan(char* name, int chan, int cs, int bits, float mhz,
int delay, int cpol, int cpha, int noclear, int noecho)

DESCRIPTION
hm2_bspi_setup_chan allows a realtime component to claim and configure a BSPI channel on a
previously configured hostmot2 board.

name
A unique string given to the BSPI channel during hostmot2 setup. The names of the available channels
are printed to standard output during the driver loading process and take the form
hm2_board—name.board—index.bspi.bspi—index. For example, the first index on the first hm2_5i23
board would be called hm2_5i23.0.bspi.0.

chan
Channels are numbered O to 15. The value on the chip—select lines is set by cs and need not match the
channel number.

cs
The chip select line(s) to assert when accessing this channel. BSPI supports 4 chip select lines, so the
valid range for cs is 0-15.
bits
sets the bit—length of the SPI packet. The maximum supported length is 64 bits but this will span two
read FIFO entries and will need special handling (values 32 and below require no special handling).
mhz
sets the chip communication rate. The maximum value for this is half the FPGA base frequency, so for
example with a 48 MHz 5123 the max SPI frequency is 24 MHz. Values in excess of the max
supported will be silently rounded down.
delay
sets the chip select valid delay (in ns)
cpha and cpol
Set the clock phase and polarity (according to the device datasheet).
noclear
Controls whether the frame clear bit is set after the 32 bit buffer transfer. This parameter should be set
to 1 when the frame length is greater than 32 bits and the next data in the FIFO contains the other bits.
noecho
Set to 1 for devices which do not return data (such as DACs).
samplelate

Set to 1 to sample the received SPI data 1/2 SPI clock later than normal. This is useful when high
clock rates or isolation cause significant delays from clock to received data.

REALTIME CONSIDERATIONS

Call only from within realtime init/cleanup code or non—realtime components, not from realtime tasks.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO
hm2_allocate_bspi_tram(3), hm2_bspi_set_read_function(3), hm2_bspi_set_write_function(3),
hm2_bspi_write_chan(3), hm2_tram_add_bspi_frame(3)

See src/hal/drivers mesa_7i65.comp for an example usage.

266 01/04/2026 LinuxCNC

HM?2_BSPI_WRITE_CHAN(3) LinuxCNC Documentation HM?2_BSPI_WRITE_CHAN(3)

NAME

hm2_bspi_write_chan — write data to a Hostmot2 Buffered SPI channel

SYNTAX
#include <hostmot2—serial.h>
hm2_bspi_write_chan(char* name, int chan, u32 val)

DESCRIPTION
hm2_bspi_write_chan write one—time data to the bspi channel "chan" on the bspi instance "name".
"name" is a unique string given to each bspi channel during hostmot2 setup. The names of the available
channels are printed to standard output during the driver loading process and take the form: hm2_<board
name>.<board index> .bspi.<index>. For example: hm2_5i23.0.bspi.0.

This function performs a one—time write of data to the specified channel. It is typically used for setup and
chip enabling purposes. It should not be used in the main loop for regular data transfers (but is appropriate
to use for on—the—fly setup changes).

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks. Not available in non—realtime
components.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO
hm2_allocate_bspi_tram(3), hm2_bspi_set_read_function(3), hm2_bspi_setup_chan(3),
hm2_bspi_set_write_function(3), hm2_tram_add_bspi_frame(3)

See src/hal/drivers mesa_7i65.comp for an example usage.

LinuxCNC 01/04/2026 267

HM?2_PKTUART (3) LinuxCNC Documentation HM?2_ PKTUART (3)

NAME
hm2_pktuart — functions to access the Mesa FPGA card packeted UART'

SYNOPSIS
#include <hostmot2—serial.h>
int hm?2_pktuart_setup(char* name, int bitrate, rtapi_s32 tx_mode, rtapi_s32 rx_mode, int txclear, int rxclear);
int hm2_pktuart_send(char* name, unsigned char data[], rtapi_u8* num_frames, rtapi_ul6 frame_sizes[]);
int hm2_pktuart_read(char* name, unsigned char data[], rtapi_u8* num_frames, rtapi_ul6 *max_frame_length, rtapi_ul!
int hm2_pktuart_queue_get_frame_sizes(char *name, rtapi_u32 fsizes[]);
int hm2_pktuart_queue_read_data(char* name, rtapi_u32* data, int bytes);
int hm2_pktuart_get_clock(char* name);
int hm2_pktuart_get_version(char* name);
rtapi_u32 hm?2_pktuart_get_rx_status(char* name);
rtapi_u32 hm?2_pktuart_get_tx_status(char* name);

DESCRIPTION
In this context a "Packeted UART" sends data as a burst of bytes separated by blank space, and receives
packets of bytes similarly delimited. Each "packet" of N bytes is sent from, or stored in 32—bit "frames"
inside 16—deep FIFOs in the FPGA code.

Unlike the other hostmot2 functions, the hostmot2 uart and pktuart do not create any HAL pins or usable
driver code when hostmot?2 is loaded. Instead interfaxes are created to allow secondary drivers to use them.

In LinuxCNC v2.8 and earlier the PktUART driver was entirely inactive. In LinuxCNC v2.9 onwards the
driver polls the Rx and Tx status registers every servo thread, and these can be read with the functions
rtapi_u32 hm?2_pktuart_get_rx_status() and rtapi_u32 hm2_pktuart_get_tx_status().

Accessing the UARTSs
The UART functions above can be included in your driver code by ‘““#include "hostmot2—serial.h"*. This
will make the functions above available for use in your own C code.

The UARTS are accessed by name, and the names will be printed to the terminal (or dmesg in the case of
RTAI kernel realtime) when the board driver (hm2_eth, hm?2_pci etc) is loaded. Internally the UARTS are
addressed by index, but the indices are per—card so not unambiguous. Internally the functions all use the
private hm2_get_pktuart function which returns the index of the UART and the low level driver instance it
belongs to. These functions are not hard— private, you can #include "hostmot2.h" if you need the
lower—level functions, but then need to track the board instances yourself.

Configuring the UART
You should refer to the Hostmot2 "regmap" file for up—to—date register setup information. The latest
version will normally be found at https://freeby.mesanet.com/regmap.
You should use the function hm2_pktuart_get_version() to check the module version loaded to the FPGA
board. This documentation is valid for Rx v0 / vl and Tx v0. The return value of the function is 16 * Tx +
Rx. If viewed in Hex then 0x01 would indicate Tx v0 and Rx v1. (The latest at the time of writing.)
When reading the Regmap file it should be considered that to an FPGA read and write addresses are not the
same. You will see that there are overlaps, in that some bits in the registers have different functions when
read or written.
To configure the UART use
int hm2_pktuart_setup(name, bitrate, tx_mode, rx_mode, txclear, rxclear)

bitrate is simply the bitrate (e.g. 9600, 115200 etc).

txmode is built up from the following bits (directly copied from the regmap).

268 01/04/2026 LinuxCNC

HM?2_PKTUART (3) LinuxCNC Documentation HM?2_ PKTUART (3)

Bit 17 Parity enable WO
Bit 18 0Odd Parity WO (1=0dd, O=even)
Bits 15..8 InterFrame delay in bit times RW
Bit 6 Drive Enable bit (enables external RS—422/485 Driver when set) RW
Bit 5 Drive enable Auto (Automatic external drive enable) RW
Drive Enable Auto has priority over Drive Enable (bit 6 is a no—op if bit 5 is set)
Bits 3..0 Drive enable delay (delay from asserting drive enable to start of data transmit.
In Clock Low periods RW Drive enable delay is important to avoid start bit timing errors at high baud rates in R

A reasonable starting value for txmode is 0x00000A20
rxmode is built from the following:

Bits 29..22 RX data digital filter (in ClockLow periods)
Should be set to 1/2 bit time (or max=255 if it cannot be set long enough)
Bit 17 Parity enable WO
Bit 18 Odd Parity WO (1=o0dd, O=even)
Bits 15..8 InterFrame delay in bit times RW
Bit 6 RXMask RO
Bit 3 RXEnable (must be set to receive packets) RW
Bit 2 RXMask Enable (enables input data masking when transmitting) RW

For low baud rates 0x3FC0140C will generally work, but the filter bits should really be set according to the
actual baud rate.

The function int hm2_pktuart_get_clock(name) is provided to enable calculation of the required filter
period. It returns units of Hz.

[Note] It is expected that v2 of Rx will extend the number of bits in the filter definition for better behaviour
at low bitrates.

Direct reads and writes
The function:

int hm2_pktuart_send()

Will always use the hm2_llio_queue_write function where available.

However:

int hm2_pktuart_read()

Will force an immediate read transaction. It may be used in setup and teardown code, but should not be

called in the realtime functions as this will cause extra packets to be transmitted. This may be acceptable
for PCI cards, but should otherwise be avoided.

Queued Reads and Writes
In the realtime threads the queued reads and writes should be used. This means that most transactions will
be spread over more than one thread period.
rtapi_u32 hm2_pktuart_get_rx_status(name)

rtapi_u32 hm2_pktuart_get_tx_status(name)

These functions will always return the latest status from the most recent data packet from the FPGA. The
status should be used to check if any new data has been received, or if the UART has completed the recent

LinuxCNC 01/04/2026 269

HM?2_PKTUART (3) LinuxCNC Documentation HM?2_ PKTUART (3)

270

transmissions.

The Tx status is encoded as:

Bit 21 FrameBuffer Has Data RO
Bits 20..16 Frames to send RO

Bit 7 Send busy RO

Bit 4 SCFIFO Error RO

The Rx status is:

Bit 21

FrameBuffer has data RO

Bits 20..16 Frames received RO

Bit 7
Bit 6
Bit 5
Bit 4
Bit 1
Bit 0

Buffer error (RX idle but data in RX data FIFO) RO
RXMask RO

Parity Error RW

RCFIFO Error RW

Overrun error (no stop bit when expected) (sticky) RW
False Start bit error (sticky) RW

Based on the status of the Rx and Tx components reads or writes from the FPGA can then be set up. This is
typically a multi—step process:

1.

5.

Data Formats

rxstatus indicates that there are packets of data, but at this point we need to know how big each
packet is (and reading two much or two little data from the FIFOs will cause problems).

Queue a read of the frame sizes. hm2_pktuart_queue_get_frame_sizes(name, fsizes[]) On
return, the fsizes[] array will have been loaded with the frame sizes (size in bytes). If fsizes are
[8] [7] [6] and you only read 1 frame from the data FIFO then on the next call to get_frame_sizes
the returned array would be [7] [6].

Wait one thread cycle to get the data. Note that there is no serial latency here, the data is already
on the FPGA but we can only know how much data to request once we know the packet size

Queue enough data reads to get all the data frames that the packet is spread over. int
hm2_pktuart_queue_read_data(name, data, bytes) On return the data[] array will have been
loaded with enough 32-bit frames to include "bytes" bytes.

Parse the data.

Both the Tx and Rx pack the bytes that are to be read or written in 32-bit "frames" stored in a 16—deep

FIFO.

To send the sequence 01, 02, 03, 04, 05, 06 followed by the sequence F1, F2, F3, F3, F5, F6, F7 the
registers would be loaded with:

0x04030201
0xXXXX0605
O0xF4F3F2F1
0xXXF7F6F5

(Where X indicates data that will be ignored).

Le., the data is filled right—to—left and right—justified with consecutive packets not sharing a 32—-bit frame.

Typical Usage

Because the transactions are necessarily split over multiple reads, and some steps will have serial—port
latency delays it is recommended to use a state machine in the realtime code where waiting on input is not

01/04/2026 LinuxCNC

HM?2_PKTUART (3) LinuxCNC Documentation HM?2_ PKTUART (3)

possible.

int process(void *arg, long period) {
static int state = START;

switch (state) {
case START:
/I Check for received data
if (rxstatus & 0x200000) {
state = WAIT_FOR_DATA_FRAME;
break;

}

/I No incoming data, so service the outputs

if (time to send data){
hm2_pktuart_send(pktUART_name, some_data);
state = WAIT_FOR_SEND_COMPLETE;

break;

case WAIT_FOR_SEND_COMPLETE:
if (! (txstatus & 0x80)){ //i.e. the Tx is not busy
state = WAIT_FOR_DATA_FRAME;

}
break;

case WAIT_FOR_DATA_FRAME:
if (! (rxstatus & 0x1F0000)) { // no data yet
break;
1
/ find the frame size
hm2_pktuart_queue_get_frame_sizes(pktUART _name, fsizes);
state = WAIT_FOR_FRAME_SIZES;
frame_inde = 0;
break;

case WAIT_FOR_FRAME_SIZES:

case FETCH_MORE_DATA:
/l This step may need to be iterated if there are multiple frames
r = hm2_pktuart_queue_read_data(pktUART_name, rxdata, fsizes[frame_index]);
state = WAIT_FOR_DATA; // Just a one—cycle delay, the data is on the FPGA
break;

case WAIT_FOR_DATA:
parse_data(rxdata);
if ((fsizes[++frame_index] & Ox3FF) > 0){
state = FETCH_MORE_DATA;
} else {
state = WAIT_FOR_RX_CLEAR;

}
break;

case WAIT_FOR_RX CLEAR:

if (rxstatus & 0x200000) break;
state = START;

LinuxCNC 01/04/2026 271

HM?2_PKTUART (3) LinuxCNC Documentation HM?2_ PKTUART (3)

break;

PINS

The functions / hostmot2 component do not create any HAL pins.

EXAMPLE
See inuxcnc—dev/src/hal/components/mesa_pktgyro_test.comp for a simple example (which might not
work, and uses the deprecated direct reads and writes. mesa_modbus is a better example, but significantly
more complex and less instructive because of that.

TESTING
The PktUART can be tested using low—level register writes outside the realtime context using mesaflash.
Here is an example bash script:

First setup the DDR and Alt Source regs for the 7196

mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x1100=0x1F800
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x1104=0x1C3FF
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x1200=0x1F800
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x1204=0x1C3FF

Next set the baud rate DDS's for 9600 baud

mesaflash —device 7196 —addr 10.10.10.10 —wpo 0x6300=0x65
mesaflash —device 7196 —addr 10.10.10.10 —wpo 0x6700=0x65

setup the TX and RX mode registers

mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6400=0x00062840
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6800=0x3FC61408
Reset the TX and RX UARTS

mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6400=0x80010000
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6800=0x80010000
load 7 bytes of data into the TX UART

mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6100=0x54535251
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6100=0x58575655
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6100=0x64636261
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6100=0x68676665
Command the TX UART to send 8 bytes twice

mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6200=0x08
mesaflash —device 7196 ——addr 10.10.10.10 —wpo 0x6200=0x08

sleep .1

display the RX mode reg, RX count, and the data

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6800

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6600

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6500

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6500

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6800

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6600

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6500

mesaflash —device 7196 ——addr 10.10.10.10 —rpo 0x6500

AUTHOR
Andy Pugh

LICENSE
GPL-2.0+

272 01/04/2026 LinuxCNC

HM?2_PKTUART _READ(3) LinuxCNC Documentation HM?2_PKTUART _READ(3)

NAME
hm2_pktuart_read — read data from a Hostmot2 UART buffer

SYNTAX
#include <hostmot2—serial.h>
int hm?2_pktuart_read(char* name, unsigned char data[], rtapi_u8* num_frames,
rtapi_ul6* max_frame_length, rtapi_ul6 frame_sizes[]);

DESCRIPTION
hm?2_pktuart_read reads data from the PktUART "name".

DEPRECATED except in setup code.

Please see the combined document hm2_pktuart.3

LinuxCNC 01/04/2026 273

HM?2_PKTUART_SEND(3) LinuxCNC Documentation HM?2_PKTUART _SEND(3)

NAME
hm2_pktuart_send — write data to a Hostmot2 PktUART

SYNTAX
#include <hostmot2—serial.h>
int hm2_uart_send(char* name, unsigned char data[], rtapi_u8* num_frames,
rtapi_ul6 frame_sizes[]);

DESCRIPTION
hm?2_pktuart_send writes "num_frames" of data to the PktUART "name" from the buffer "data" with
frame sizes preset in "frame_sizes[]" array.

Please see the combined document hm?2_pktuart.3 for how to use this function.

274 01/04/2026 LinuxCNC

HM?2_PKTUART _SETUP(3) LinuxCNC Documentation HM?2_PKTUART _SETUP(3)

NAME
hm2_pktuart_setup — setup a Hostmot2 PktUART instance

SYNTAX
#include <hostmot2—serial.h>
int hm2_pktuart_setup(char* name, int bitrate, rtapi_s32 tx_mode,
rtapi_s32 rx_mode, int txclear, int rxclear)

DESCRIPTION
hm2_pktuart_setup

Please see the combined document hm?2_pktuart.3 for how to use this function.

LinuxCNC 01/04/2026 275

HM?2_TRAM_ADD_BSPI_FR(3) LinuxCNC Documentation HM?2_TRAM_ADD_BSPI_FR(3)

NAME

hm2_tram_add_bspi_frame — add a register—write to the Hostmot2 TRAM

SYNTAX

#include <hostmot2—serial.h>
hm2_tram_add_bspi_frame(char* name, int chan, u32** wbuff, u32** rbuff);

DESCRIPTION

hm2_tram_add_bspi_frame Add a regular (every thread) write event to the Hostmot2 tram for bspi
instance "name". "name" is a unique string given to each bspi channel during hostmot2 setup. The names of
the available channels are printed to standard output during the driver loading process and take the form:

hm2_<board name>.<board index>.bspi.<index> For example hm2_5i23.0.bspi.0

This function is used to add a regular, every thread, write or write—read transaction to the Translation RAM
system. A write need not have a read (use O for rbuff) but it is an error to have a read without a write. Note
that the TRAM list is not actioned until the hm2_allocate_bspi_tram function is called. The read and write
parameters must be pointers to pointers, as TRAM re—maps the buffers into contiguous memory.

REALTIME CONSIDERATIONS

Call only from realtime init code, not from other realtime code or non—realtime components.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO

276

hm2_allocate_bspi_tram(3), hm2_bspi_set_read_function(3), hm2_bspi_setup_chan(3),
hm2_bspi_set_write_function(3), hm2_bspi_write_chan(3)

See src/hal/drivers mesa_7i65.comp for an example usage.

01/04/2026 LinuxCNC

HM?2_UART _READ(3) LinuxCNC Documentation HM?2 _UART _READ(3)

NAME
hm?2_uart_read — read data from a Hostmot2 UART buffer

SYNTAX
#include <hostmot2—serial.h>
int hm2_uart_read(char *name, unsigned char *data);

DESCRIPTION
hm2_uart_read read data from the UART "name". "name" is a unique string given to each UART during
hostmot2 setup. The names of the available channels are printed to standard output during the driver
loading process and take the form: hm2_<board name>.<board index> .uart.<index> For example:
hm?2_5i23.0.uart.0.

This function reads a variable number of bytes from the the specified channel. It should be used inside a
realtime HAL component registered with the main hostmot2 driver using the function
hm2_uart_set_read_function in the setup code.

Note that the UART Receive FIFO is only 16 bytes deep,(the transmit FIFO is 64 bytes) and "data" needs to
be at least that large or undefined mayhem will ensue.

RETURN VALUE

Returns the number of bytes read on success and —1 on failure.

SEE ALSO
hm2_uart_setup(3), hm2_uart_send(3)

See src/hal/drivers mesa_uart.comp for an example usage.

LinuxCNC 01/04/2026 277

HM?2_UART _SEND(3) LinuxCNC Documentation HM?2_UART _SEND(3)

NAME
hm?2_uart_send — write data to a Hostmot2 UART

SYNTAX
#include <hostmot2—serial.h>
int hm2_uart_send(char* name, unsigned char data[], int count);

DESCRIPTION

hm2_uart_send write count bytes of data to the UART "name" from the buffer data.
The UART FIFO is 64 bytes deep, attempts to transmit more than 64 bytes may have unexpected effects.

"name" is a unique string given to each UART during hostmot2 setup. The names of the available channels
are printed to standard output during the driver loading process and take the form: hm2_<board
name>.<board index> .uart.<index>, for example hm2_5i23.0.uart.0.

This function performs writes of data to the specified UART. It should be used inside a function in a
realtime or non—realtime HAL component.

RETURN VALUE

Returns the number of bytes sent on success and —1 on failure.

SEE ALSO
hm2_uart_setup(3), hm2_uart_read(3)

See src/hal/drivers mesa_uart.comp for an example usage.

278 01/04/2026 LinuxCNC

HM?2_UART _SETUP(3) LinuxCNC Documentation HM?2 _UART _SETUP(3)

NAME
hm2_uart_setup — setup a Hostmot2 UART

SYNTAX
#include <hostmot2—serial.h>
int hm2_uart_setup(char* name, int bitrate, s32 tx_mode, s32 rx_mode);

DESCRIPTION
hm2_uart_setup Setup the bitrate for the UART named "name". "name" is a unique string given to each
UART during hostmot2 setup. The names of the available UARTS are printed to standard output during the
driver loading process and take the form: hm2_ <board name>.<board index> .uart.<index>, for example
hm2_5i23.0.uart.0. The minimum bitrate is approximately 50 bps, and the maximum around the FPGA
frequency, 48 MHz for a 5123. The UART function allows different RX and TX bitrates, but that is not
currently supported by this driver.

tx_mode is bit mask defined in the Hostmot2 regmap: Bit 0..3:: TXEnable delay. TXEnable delay specifies
the transmit data holdoff time from the TXenable signal valid state. This is used for RS—485 (half duplex)
operation, to delay transmit data until the driver is enabled, allowing for driver enable delays, isolation
barrier delays, etc. Delay is in units of ClockLow period. Bit 4:: FIFOError, it indicates that a host push has
overflowed the FIFO (Mainly for driver debugging). Bit 5:: DriveEnableAuto, When set, enables Drive
when any data is in FIFO or Xmit Shift register, removes drive when FIFO and Xmit shift register are
empty. Bit 6:: DriveEnableBit, If DriveEnableAuto is 0, controls Drive (for software control of Xmit drive).

rx_mode is bit mask defined in the Hostmot2 regmap: Bit 0:: FalseStart bit Status, 1 = false start bit
detected Bit 1 = OverRun Status, 1 = overrun condition detected (no valid stop bit) Bit 2:: RXMaskEnable,
1= enable RXMask for half duplex operation, 0 = ignore RXMask Bit 4 = FIFOError, indicates that a host
read has attempted to read more data than available. (mainly for driver debugging) Bit 5:: LostDataError,
indicates that data was received with no room in FIFO, therefore lost Bit 6:: RXMask, RO RXMASK status
Bit 7:: FIFO Has Data

rx_mode and tx_mode registers are currently write—only. There should possibly be a get—status function.

To write only to the tx_mode DriveEnable bit call this function with the bitrate unchanged and —1 as the
rx_mode. To change bitrate without altering mode settings send —1 to both modes.

RETURN VALUE

Returns 0 on success and —1 on failure.

SEE ALSO
hm2_uart_send(3), hm2_uart_read(3)

See src/hal/drivers mesa_uart.comp for an example usage.

LinuxCNC 01/04/2026 279

ABS(9) LinuxCNC Documentation ABS(9)

NAME
abs — Compute the absolute value and sign of the input signal
SYNOPSIS
loadrt abs [count=N|names=name][,name2...]]
FUNCTIONS
abs.N (requires a floating—point thread)
PINS
abs.N.in float in
Analog input value
abs.N.out float out
Analog output value, always positive
abs.N.sign bit out
Sign of input, false for positive, true for negative
abs.N.is—positive bit out
TRUE if input is positive, FALSE if input is 0 or negative
abs.N.is—negative bit out
TRUE if input is negative, FALSE if input is O or positive
AUTHOR
John Kasunich
LICENSE
GPL

280 01/04/2026 LinuxCNC

ABS_S532(9) LinuxCNC Documentation ABS_S32(9)

NAME

abs_s32 — Compute the absolute value and sign of the input signal

SYNOPSIS

loadrt abs_s32 [count=N|names=namel[,name2...]]

FUNCTIONS
abs—s32.N

PINS
abs—s32.N.in s32 in
input value

abs—s32.N.out s32 out
output value, always non—negative

abs—s32.N.sign bit out
Sign of input, false for positive, true for negative

abs—s32.N.is—positive bit out
TRUE if input is positive, FALSE if input is 0 or negative
abs—s32.N.is—negative bit out
TRUE if input is negative, FALSE if input is 0 or positive
AUTHOR

Sebastian Kuzminsky

LICENSE
GPL

LinuxCNC 01/04/2026 281

ABS_S64(9) LinuxCNC Documentation ABS_S64(9)

NAME

abs_s64 — Compute the absolute value and sign of the input signal

SYNOPSIS

loadrt abs_s64 [count=N|names=namel[,name2...]]

FUNCTIONS
abs—s64.N

PINS
abs—s64.N.in s64 in
input value

abs—s64.N.out s64 out
output value, always non—negative

abs—s64.N.sign bit out
Sign of input, false for positive, true for negative

abs—s64.N.is—positive bit out
true if input is positive, false if input is 0 or negative
abs—s64.N.is—negative bit out
true if input is negative, false if input is 0 or positive
AUTHOR

ArcEye based on code from Sebastian Kuzminsky

LICENSE
GPL

282 01/04/2026 LinuxCNC

AND2(9) LinuxCNC Documentation
NAME
and2 — Two—input AND gate
SYNOPSIS
loadrt and2 [count=N|names=namel[,name2...]]
DESCRIPTION
The out pin is computed from the value of the in0 and in1 pins according to the following truth table:
inl | in0 | out
0 0 0
0 1 0
1 0 0
1 1 1
FUNCTIONS
and2.N
PINS
and2.N.in0 bit in
First input
and2.N.inl bit in
Second input
and2.N.out bit out
Output
SEE ALSO
logic(9), lut5(9), not(9), or2(9), xor2(9).
AUTHOR
Jeff Epler
LICENSE
GPL

LinuxCNC

01/04/2026

AND2(9)

283

ANGLEJOG(9)

NAME

LinuxCNC Documentation ANGLEJOG(9)

anglejog — Jog two axes (or joints) at an angle

SYNOPSIS

loadrt anglejog [count=N|names=namel[,name?2...]]

DESCRIPTION

The anglejog component accepts a dynamic counts—in input (typically from a manual pulse generator
(MPQ)) and static angle and scale factor settings. It computes the counts and scale values required to jog
two (M,N) axes (or joints) at an angle. The corresponding output pins must be connected to the candidate
axis.[MN].jog (or joint.[MN].jog) pins to create motion at the current angle. HAL pins are provided to set

the vector

Notes:
1.

velocity and acceleration and to enable the computations.

The max—vel, max—accel settings should be less than or equal to the smallest settings for both
of the target axes.

The scale—in pin is sampled only when the enable—in pin is false. The value in use is output on
the current—scale pin.

The angle—degrees—in pin is sampled only when the enable—in pin is false. The value in use is
output on the current—angle—degrees pin.

The value of the iscale—factor pin multiplies counts—in internally to support integer (s32)
calculations for counting. The current—scale—out is divided by the same amount. The pin is
sampled only when the enable—in pin is false. The default value should work in most
applications.

For identity kins machines that support both world jogging (axis letter) and joint jogging (joint
number), connections are needed for both the axis pins: axis.[MN].jog—enable, jog—scale,
jog—counts and the corresponding joint pins: joint.[mn].jog—enable, jog—scale, jog—counts
where [mn] are the joint numbers corresponding to the [MN] axis letters.

The current—scale pin is for information, the required output scaling pin is current—scale—out as it
depends on the iscale—factor setting.

Simulation Config: configs/sim/axis/anglejog/anglejog.in

FUNCTIONS

anglejog.N (requires a floating—point thread)

PINS

anglejog.N.enable—in bit in
enables motion (disables alteration of angle and scale)

anglejog.N.counts—in s32 in
MPG (wheel) counts

anglejog.N.angle—degrees—in float in
vector angle

anglejog.N.iscale—factor s32 in (default: /0000)
integer scaling factor (>1)

anglejog.N.scale—in float in
magnitude units/count (mag = counts * scale)

anglejog.N.max—vel float in
vector max velocity magnitude

anglejog.N.max—accel float in
vector max acceleration magnitude

anglejog.N.accel-fraction—in float in (default: 7)

284

01/04/2026 LinuxCNC

ANGLEJOG(9) LinuxCNC Documentation ANGLEJOG(9)

acceleration fraction input

anglejog.N.enable—out bit out
to: axis.M.jog—enable AND axis.N.jog—enable

anglejog.N.current—scale float out
effective scale (informational)

anglejog.N.current—scale—out float out
to: axis.M.jog—scale AND axis.N.jog—scale

anglejog.N.coscounts s32 out
to: axis.M.jog—counts (cosine counts)

anglejog.N.sincounts s32 out
to: axis.N.jog—counts (sine counts)

anglejog.N.cos—accel-fraction float out
to: axis.M.jog—accel—fraction

anglejog.N.sin—accel—fraction float out
to: axis.N.jog—accel—fraction

anglejog.N.active bit out
angle jog move in progress
anglejog.N.current—angle—degrees float out
current angle

anglejog.N.current—-mag float out
current vector magnitude

anglejog.N.current—vel float out
current vector speed

AUTHOR
Dewey Garrett

LICENSE
GPL

LinuxCNC 01/04/2026 285

AT _PID(9) LinuxCNC Documentation AT _PID(9)

NAME
at_pid — obsolete pid HAL component

DESCRIPTION

The functionality of the at_pid component has been merged into the pid component.

SEE ALSO
pid(9)

286 01/04/2026 LinuxCNC

AXISTEST (9) LinuxCNC Documentation AXISTEST (9)

NAME

axistest — Used to allow testing of an axis. Used IN PnCconf.

SYNOPSIS

loadrt axistest [count=N|names=name[,name2...]]

FUNCTIONS

PINS

axistest.V.update (requires a floating—point thread)

axistest.N.jog—minus bit in
Drive TRUE to jog the axis in its negative (minus) direction.

axistest.N.jog—plus bit in
Drive TRUE to jog the axis in its positive direction.

axistest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile.

axistest.N.maxvel float in
Maximum velocity

axistest.N.amplitude float in
Approximate amplitude of positions to command during run

axistest.N.dir s32 in
Direction from central point to test: O = both, 1 = positive, 2 = negative

axistest./N.position—cmd float out
axistest.N.position—fb float in
axistest.N.running bit out
axistest.N.run—target float out
axistest.N.run-start float out
axistest.N.run-low float out
axistest.N.run-high float out

axistest.N.pause s32 in (default: 0)
Pause time for each end of run in seconds

PARAMETERS

axistest.NV.epsilon float rw (default: .001)

axistest.N.elapsed float r
Current value of the internal timer

AUTHOR

Chris S. Morley

LICENSE

GPL

LinuxCNC 01/04/2026 287

BIN2GRAY (9) LinuxCNC Documentation

NAME

bin2gray — convert a number to the gray—code representation

SYNOPSIS

loadrt bin2gray [count=N|names=namel[,name2...]]

DESCRIPTION

Converts a number into gray—code
FUNCTIONS
bin2gray.N

PINS
bin2gray.N.in u32 in
binary code in

bin2gray.N.out u32 out
gray code out

AUTHOR
Andy Pugh

LICENSE
GPL

288 01/04/2026

BIN2GRAY (9)

LinuxCNC

BIQUAD(9) LinuxCNC Documentation BIQUAD(9)

NAME
biquad — Biquad IIR filter
SYNOPSIS
loadrt biquad [count=N|names=namel[,name?2...]]
DESCRIPTION
Biquad IIR filter. Implements the following transfer function: H(z) = (n0 + nlz—1 + n2z-2) / (1 + d1z—-1 +
d2z-2)
FUNCTIONS
biquad.N (requires a floating—point thread)
PINS
biquad.N.in float in
Filter input.
biquad.N.out float out
Filter output.

biquad.N.enable bit in (default: 0)
Filter enable. When false, the in pin is passed to the out pin without any filtering. A transition from
false to true causes filter coefficients to be calculated according to the current type and the describing
pin and parameter settings

biquad.N.valid bit out (default: 0)
When false, indicates an error occurred when calculating filter coefficients (require 2>Q>0.5 and
f0>sampleRate/2)

biquad.N.type— u32 in (default: 0)
Filter type determines the type of filter coefficients calculated. When 0, coefficients must be loaded
directly from the n0,n1,n2,d1 params. When 1, a low pass filter is created specified by the £0,Q pins.
When 2, a notch filter is created specified by the f0,Q pins.

biquad.N.f0 float in (default: 250.0)
The corner frequency of the filter.

biquad.N.Q float in (default: 0.7071)
The Q of the filter.

biquad.N.s1 float out (default: 0.0)
1st—delayed internal state (for debug only)

biquad.N.s2 float out (default: 0.0)
2nd-delayed internal state (for debug only)

PARAMETERS
biquad.N.d1 float rw (default: 0.0)
1st—delayed denominator coef

biquad.N.d2 float rw (default: 0.0)
2nd-delayed denominator coef

biquad.N.n0 float rw (default: 7.0)
non—delayed numerator coef

biquad.N.n1 float rw (default: 0.0)
1st—delayed numerator coef

biquad.N.n2 float rw (default: 0.0)
2nd-delayed numerator coef

AUTHOR

Peter G. Vavaroutsos

LinuxCNC 01/04/2026 289

BIQUAD(9) LinuxCNC Documentation BIQUAD(9)

LICENSE
GPL

290 01/04/2026 LinuxCNC

BITMERGE(9) LinuxCNC Documentation BITMERGE(9)

NAME

bitmerge — Converts individual bits into an unsigned—32
SYNOPSIS

loadrt bitmerge [count=N|names=name![,name2...]] [personality=PI[,P2...]]
DESCRIPTION

This component creates a compound unsigned—32 from individual bit—inputs for each bit of an
unsigned—32 output. The number of bits can be limited by the "personality”" modparam. The inverse process
can be performed by the bitslice HAL component.

FUNCTIONS
bitmerge. N

PINS
bitmerge.N.out u32 out
The output value

bitmerge.N.in—MM bit in (MM=00..personality)

AUTHOR
Andy Pugh

LICENSE
GPL2+

LinuxCNC 01/04/2026 291

BITSLICE(9) LinuxCNC Documentation BITSLICE(9)

NAME

bitslice — Converts an unsigned—32 input into individual bits

SYNOPSIS

loadrt bitslice [count=N|names=nameI[,name?2...]] [personality=PI[,P2...]]

DESCRIPTION
This component creates individual bit—outputs for each bit of an unsigned—32 input. The number of bits can
be limited by the "personality” modparam. The inverse process can be performed by the bitmerge HAL
component.

FUNCTIONS
bitslice. N

PINS
bitslice.V.in u32 in
The input value

bitslice.N.out—MM bit out (MM=00..personality)

AUTHOR
Andy Pugh

LICENSE
GPL2+

292 01/04/2026 LinuxCNC

BITWISE(9)

NAME

bitwise — Computes various bitwise operations on the two input values

SYNOPSIS

loadrt bitwise [count=N|names=namel[,name2...]]

FUNCTIONS

PINS

bitwise. N

bitwise.N.in0 u32 in
First input value

bitwise.N.in1 u32 in
Second input value

bitwise.N.out—and u32 out
The bitwise AND of the two inputs

bitwise.N.out—or u32 out
The bitwise OR of the two inputs

bitwise.N.out—xor u32 out
The bitwise XOR of the two inputs

bitwise.N.out—nand u32 out
The inverse of the bitwise AND

bitwise.N.out—nor u32 out
The inverse of the bitwise OR

bitwise.N.out—xnor u32 out
The inverse of the bitwise XOR

AUTHOR

Andy Pugh

LICENSE

GPL 2+

LinuxCNC

LinuxCNC Documentation

01/04/2026

BITWISE(9)

293

BLDC(9) LinuxCNC Documentation BLDC(9)
NAME
bldc — BLDC and AC—servo control component
SYNOPSIS
loadrt bldc cfg=qi6,aH
DESCRIPTION

294

This component is designed as an interface between the most common forms of three—phase motor
feedback devices and the corresponding types of drive. However, there is no requirement that the motor and
drive should necessarily be of inherently compatible types.

Each instance of the component is defined by a group of letters describing the input and output types. A
comma separates individual instances of the component. For example loadrt bldc cfg=qi6,aH.

TAGS

Input type definitions are all lower—case:

n: No motor feedback.

This mode could be used to drive AC induction motors, but is also potentially useful for creating
free—running motor simulators for drive testing.

h: Hall sensor input. Brushless DC motors (electronically commutated permanent magnet 3—phase
motors) typically use a set of three Hall sensors to measure the angular position of the rotor.

A lower—case h in the cfg string indicates that these should be used.

a: Absolute encoder input (also possibly used by some forms of Resolver conversion hardware).
The presence of this tag over—rides all other inputs.

Note that the component still requires to be be connected to the rawcounts encoder pin to prevent
loss of commutation on index—reset.

q: Incremental (quadrature) encoder input. If this input is used then the rotor will need to be homed
before the motor can be run.

i: Use the index of an incremental encoder as a home reference.

f: Use a 4-bit Gray—scale pattern to determine rotor alignment.

This scheme is only used on the Fanuc "Red Cap" motors. This mode could be used to control one
of these motors using a non—Fanuc drive.

Output type descriptions are all upper—case:

Defaults: The component will always calculate rotor angle, phase angle and the absolute value of the input
value for interfacing with drives such as the Mesa 8I20. It will also default to three individual, bipolar
phase output values if no other output type modifiers are used.

B: Bit level outputs. Either 3 or 6 logic—level outputs indicating which high or low gate drivers on
an external drive should be used.

6: Create 6 rather than the default 3 outputs.

In the case of numeric value outputs these are separate positive and negative drive amplitudes. Both
have positive magnitude.

H: Emulated Hall sensor output. This mode can be used to control a drive which expects 3x Hall
signals, or to convert between a motor with one hall pattern and a drive which expects a different
one.

01/04/2026 LinuxCNC

BLDC(9) LinuxCNC Documentation BLDC(9)

e F: Emulated Fanuc Red Cap Gray—code encoder output. This mode might be used to drive a
non—Fanuc motor using a Fanuc drive intended for the "Red—Cap" motors.

e T: Force Trapezoidal mode.

OPERATING MODES

The component can control a drive in either Trapezoidal or Sinusoidal mode, but will always default to
sinusoidal if the input and output modes allow it. This can be over-ridden by the T tag. Sinusoidal
commutation is significantly smoother (trapezoidal commutation induces 13% torque ripple).

ROTOR HOMING.

To use an encoder for commutation a reference 0—degrees point must be found. The component uses the
convention that motor zero is the point that an unloaded motor aligns to with a positive voltage on the A (or
U) terminal and the B & C (or V and W) terminals connected together and to —ve voltage. There will be
two such positions on a 4—pole motor, 3 on a 6—pole and so on. They are all functionally equivalent as far
as driving the motor is concerned. If the motor has Hall sensors then the motor can be started in trapezoidal
commutation mode, and will switch to sinusoidal commutation when an alignment is found. If the mode is
gh then the first Hall state—transition will be used. If the mode is ghi then the encoder index will be used.
This gives a more accurate homing position if the distance in encoder counts between motor zero and
encoder index is known. To force homing to the Hall edges instead simply omit the i.

Motors without Hall sensors may be homed in synchronous/direct mode. The better of these options is to
home to the encoder zero using the iq config parameter. When the init pin goes high the motor will rotate
(in a direction determined by the rev pin) until the encoder indicates an index—latch (the servo thread runs
too slowly to rely on detecting an encoder index directly).

If there is no encoder index or its location relative to motor zero can not be found, then an alternative is to
use magnetic homing using the q config. In this mode the motor will go through an alignment sequence
ending at motor zero when the init pin goes high It will then set the final position as motor zero.
Unfortunately the motor is rather springy in this mode and so alignment is likely to be fairly sensitive to
load.

FUNCTIONS

PINS

bldc.N (requires a floating—point thread)

bldc.N halll bit in [if personality & 0x01]
Hall sensor signal 1

bldc.N.hall2 bit in [if personality & 0x01]
Hall sensor signal 2

bldc.N.hall3 bit in [if personality & 0x01]
Hall sensor signal 3

bldc.N hall-error bit out [if personality & 0x01]
Indicates that the selected hall pattern gives inconsistent rotor position data. This can be due to the
pattern being wrong for the motor, or one or more sensors being unconnected or broken. A consistent
pattern is not neceesarily valid, but an inconsistent one can never be valid.

bldc.N.C1 bit in [if (personality & 0x10)]
Fanuc Gray—code bit O input

bldc.N.C2 bit in [if (personality & 0x10)]
Fanuc Gray—code bit 1 input

bldc.N.C4 bit in [if (personality & 0x10)]
Fanuc Gray—code bit 2 input

bldc.N.C8 bit in [if (personality & 0x10)]
Fanuc Gray—code bit 3 input

LinuxCNC 01/04/2026 295

BLDC(9) LinuxCNC Documentation BLDC(9)

296

bldc.N.value float in
PWM master amplitude input

bldc.N.lead—angle float in [if personality & 0x06] (default: 90)
The phase lead between the electrical vector and the rotor position in degrees

bldc.N.rev bit in
Set this pin true to reverse the motor. Negative PWM amplitudes will alsoreverse the motor and there
will generally be a Hall pattern that runs the motor in each direction too.

bldc.N frequency float in [if (personality & 0xOF) == 0]
Frequency input for motors with no feedback at all, or those with only an index (which is ignored)

bldc.N.initvalue float in [if personality & 0x04] (default: 0.2)
The current to be used for the homing sequence in applications where an incremental encoder is used
with no hall-sensor feedback

bldc.N.rawcounts s32 in [if personality & 0x06] (default: 0)
Encoder counts input. This must be linked to the encoder rawcounts pin or encoder index resets will
cause the motor commutation to fail.

bldc.N.index—enable bit io [if personality & 0x08]
This pin should be connected to the associated encoder index—enable pin to zero the encoder when it
passes index. This is only used indicate to the bldc control component that an index has been seen.
bldc.N.init bit in [if (personality & 0x05) == 4]
A rising edge on this pin starts the motor alignment sequence. This pin should be connected in such a
way that the motors re—align any time that encoder monitoring has been interrupted. Typically this will
only be at machine power—off.

The alignment process involves powering the motor phases in such a way as to put the motor in a
known position. The encoder counts are then stored in the offset parameter. The alignment process
will tend to cause a following error if it is triggered while the axis is enabled, so should be set before
the matching axis.N.enable pin.

The complementary init—done pin can be used to handle the required sequencing.

Both pins can be ignored if the encoder offset is known explicitly, such as is the case with an absolute
encoder. In that case the offset parameter can be set directly in the HAL file.

bldc.N.init—done bit out [if (personality & 0x05) == 4] (default: 0)
Indicates homing sequence complete.

bldc.N.A—value float out [if (personality & 0xF00) == 0]
Output amplitude for phase A

bldc.N.B—-value float out [if (personality & 0xF00) == 0]
Output amplitude for phase B

bldc.N.C—value float out [if (personality & 0xF00) == 0]
Output amplitude for phase C

bldc.N.A—on bit out [if (personality & 0xF00) == 0x100]

Output bit for phase A

bldc.N.B-on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase B

bldc.N.C—on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase C

bldc.N.A-high float out [if (personality & 0xF00) == 0x200]
High—side driver for phase A

01/04/2026 LinuxCNC

BLDC(9) LinuxCNC Documentation BLDC(9)

bldc.N.B-high float out [if (personality & 0xF00) == 0x200]
High—side driver for phase B

bldc.N.C-high float out [if (personality & 0xF00) == 0x200]
High—side driver for phase C

bldc.N.A-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase A

bldc.N.B-low float out [if (personality & 0xFO00) == 0x200]
Low-side driver for phase B

bldc.N.C-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase C

bldc.N.A-high-on bit out [if (personality & 0xF00) == 0x300]
High—side driver for phase A

bldc.N.B-high—on bit out [if (personality & 0xF00) == 0x300]
High—side driver for phase B

bldc.N.C-high-on bit out [if (personality & 0xF00) == 0x300]
High—side driver for phase C

bldc.N.A-low—on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase A

bldc.N.B-low-on bit out [if (personality & 0xF00) == 0x300]
Low—side driver for phase B

bldc.N.C-low—on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase C

bldc.N halll-out bit out [if (personality & 0x400)]
Hall 1 output

bldc.N.hall2—out bit out [if (personality & 0x400)]
Hall 2 output

bldc.N hall3—out bit out [if (personality & 0x400)]
Hall 3 output

bldc.N.C1-out bit out [if (personality & 0x800)]
Fanuc Gray—code bit O output

bldc.N.C2-out bit out [if (personality & 0x800)]
Fanuc Gray—code bit 1 output

bldc.N.C4—out bit out [if (personality & 0x800)]
Fanuc Gray—code bit 2 output

bldc.N.C8-out bit out [if (personality & 0x800)]
Fanuc Gray—code bit 3 output

bldc.N.phase—angle float out (default: 0)
Phase angle including lead/lag angle after encoder zeroing, etc. Useful for angle/current drives. This
value has a range of 0 to 1 and measures electrical revolutions. It will have two zeros for a 4 pole
motor, three for a 6—pole, etc.

bldc.N.rotor—angle float out (default: 0)
Rotor angle after encoder zeroing etc. Useful for angle/current drives which add their own phase offset
such as the 8120. This value has a range of 0 to 1 and measures electrical revolutions. It will have two
zeros for a 4 pole motor, three for a 6—pole, etc.

bldc.N.out float out
Current output, including the effect of the dir pin and the alignment sequence.

LinuxCNC 01/04/2026 297

BLDC(9) LinuxCNC Documentation BLDC(9)

bldc.N.out—dir bit out
Direction output, high if value is negative XOR rev is true.

bldc.N.out—abs float out
Absolute value of the input value

PARAMETERS

298

bldc.N.in—type s32 r (default: —7)
state machine output, will probably hide after debug

bldc.N.out-type s32 r (default: —1)
state machine output, will probably hide after debug

bldc.N.scale s32 rw [if personality & 0x06] (default: 572)
The number of encoder counts per rotor revolution.

bldc.N.poles s32 rw [if personality & 0x06] (default: 4)
The number of motor poles. The encoder scale will be divided by this value to determine the number
of encoder counts per electrical revolution.

bldc.N.encoder—offset s32 rw [if personality & 0x0A] (default: 0)
The offset, in encoder counts, between the motor electrical zero and the encoder zero modulo the
number of counts per electrical revolution

bldc.N.offset—measured s32 r [if personality & 0x04] (default: 0)
The encoder offset measured by the homing sequence (in certain modes)

bldc.N.drive-offset float rw (default: 0)
The angle, in degrees, applied to the commanded angle by the drive in degrees. This value is only used
during the homing sequence of drives with incremental encoder feedback. It is used to back—calculate
from commanded angle to actual phase angle. It is only relevant to drives which expect rotor—angle
input rather than phase—angle demand. Should be 0 for most drives.

bldc.N.output—pattern u32 rw [if personality & 0x400] (default: 25)
Commutation pattern to be output in Hall Signal translation mode. See the description of pattern for
details.

bldc.N.pattern u32 rw [if personality & 0x01] (default: 25)
Commutation pattern to use, from 0 to 47. Default is type 25. Every plausible combination is included.
The table below shows the excitation pattern along the top, and the pattern code on the left hand side.
The table entries are the hall patterns in H1, H2, H3 order. Common patterns are:
+ 0 (30 degree commutation) and 26, its reverse.
+ 17 (120 degree)
+ 18 (alternate 60 degree)
+ 21 (300 degree, Bodine)
+ 22 (240 degree)

+ 25 (60 degree commutation)

Note that a number of incorrect commutations will have non—zero net torque which might look as if
they work, but don’t really.

If your motor lacks documentation it might be worth trying every pattern.

01/04/2026 LinuxCNC

BLDC(9)

AUTHOR
Andy Pugh

LICENSE
GPL

LinuxCNC

LinuxCNC Documentation

01/04/2026

BLDC(9)

299

BLEND(9) LinuxCNC Documentation BLEND(9)

NAME
blend — Perform linear interpolation between two values
SYNOPSIS
loadrt blend [count=N|names=namel[,name?2...]]
FUNCTIONS
blend.N (requires a floating—point thread)
PINS
blend.N.in1 float in
First input. If select is equal to 1.0, the output is equal to inl
blend.N.in2 float in
Second input. If select is equal to 0.0, the output is equal to in2
blend.N .select float in
Select input. For values between 0.0 and 1.0, the output changes linearly from in2 to inl
blend.N.out float out
Output value.
PARAMETERS
blend.N.open bit rw
If true, select values outside the range 0.0 to 1.0 give values outside the range in2 to inl. If false,
outputs are clamped to the the range in2 to inl
AUTHOR
Jeff Epler
LICENSE
GPL

300 01/04/2026 LinuxCNC

CAROUSEL(9) LinuxCNC Documentation CAROUSEL(9)

NAME

carousel — Orient a toolchanger carousel using various encoding schemes

SYNOPSIS

loadrt carousel pockets=N[,N] encoding=ssss[,sss] num_sense=N[,N] dir=N[,N]

pockets The number of pockets in each toolchanger
Use up to 8 numbers separated by commas to create multiple carousel components.

encoding
The position encoding. One of gray, binary, bed, index, edge, counts or single. Default = gray.

num_sense
The number of position sense pins. Default = 4.

dir
Set to 1 for unidirectional or 2 for bidirectional operation. Default = bidirectional
parity
Set to 1 for odd parity, O for even parity checking. Default = 0 (even)
DESCRIPTION

This component is intended to help operate various types of carousel—type toolchangers.

The component can be configured to operate with binary, binary—coded decimal (BCD) or gray—coded
position feedback (binary;, 'bcd and gray modes) It can alternatively work with an individual sensor for
each tool position (single mode) or with a sensor at each tool position and a separate index (index mode).
Systems using a stepper motor or quadrature encoder are also supported (counts mode). edge is a special
case of index mode for tool changers with pockets on both the rising and falling edges of the position
sensor. (Seen on at least one Denford Orac.)

Both unidirectional and bidirectional systems are supported and those that reverse against a stop when in
position.

The number of carousel component instances created depends on the number of entries in the pockets
modparam. For example

B loadrt carousel pockets=10,10,8. Would create 3 carousel instances with 10, 10 and 8 pockets. The
other parameters are optional. If absent then defaults will be used. Any missing entry will assume the
previous value.

When the enable pin is set to true the component will immediately set the "active" pin to true and then (for
a bidirectional instance) calculate the shortest path to the requested pocket number. The appropriate motor
direction output pins will then be set. Bit outputs for forward and reverse are provided as well as a
three—state velocity output for driving a DC motor PWM or a velocity—mode stepgen.

The component will monitor the carousel position and, when the correct position is reached, set the
motor—control pins to 0, set "active" to 0 and set "ready" to 1.

In index, edge or counts’mode there is a need to find the initial home position of the carousel. The first time
that the "enable" pin is set; the carousel will rotate forwards searching for a home signal. In 'index and
edge mode this is when both the index and pulse inputs are true. In counts mode only the index input needs
to be set to set home. Additionally in counts mode the usual index—enable logic of the encoder counters is
supported.

With some carousel designs the carousel will not stop immediately. To allow for this set the align—dc pin to
a low velocity to be used for a final latching move, and set the decel-time to a suitable value. Once the
decel—-time has expired the carousel will, if it was moving forwards, reverse back on to the position marker,
off of the marker and then back on to the FWD edge. If moving in reverse it will continue off the marker

LinuxCNC 01/04/2026 301

CAROUSEL(9) LinuxCNC Documentation CAROUSEL(9)

and then reverse slowly on to the FWD edge. This alignment is only possible with a motor—vel controlled
bidirectional carousel, Other combinations will be accepted but probably will not have the desired
behaviour. Some tuning will be needed of align—dc and decel—time to achieve reliable operation.

In the unusual case that the index and pulse signals do not align it is possible to use HAL logic to achieve
the desired pin switching during homing.

Setting "enable" low does not halt the homing move, so if homing on first tool change is not needed then
the enable pin can be toggled by an axis homing pin or a script and the homing process will continue even
if that driving signal resets during the carousel homing move.

To operate the component with an encoder or stepgen use mode "C". The scale pin should be the number of
steps or encoder counts between pocket centres. The width pin can be used to stop the motor some distance
before the centre of the pocket to allow the motor time to decelerate. In mode "C" it is possible to use either
the speed/direction control used in other modes or to use direct position mode using the counts—target pin.
The internal scaling of the encoder or stepgen should be set to 1.0. A PID hal component will be needed for
encoder applications whereas stepgen configurations can use a stepgen in position control mode or in
velocity control mode with a PID.

For tool changers which lock the carousel against a stop the rev—pulse pin can be set to a non—zero value.
The motor—rev pin will then be set for this many seconds at the completion of the tool search and at the
same time the reverse duty/cycle velocity value will be sent to the motor—vel pin.

FUNCTIONS

PINS

302

carousel.N (requires a floating—point thread)

carousel.N.pocket—number s32 in
The pocket to move to when the .enable pin goes high. If the value passed is higher than the number of
pockets specified in the "pockets" modparam then modulo arithmetic is used. This is intended to allow
the use of multiple tools in the same holder, as is sometimes useful with lathes.

carousel.NV.enable bit in
Set this pin high to start movement. Setting it low will stop movement

carousel.NV.active bit out
indicates that the component is active

carousel.N.ready bit out
This pin goes high when the carousel is in—position

carousel.N.strobe bit in (default: 7)
Use this pin to indicate that the position feedback is valid. Often provided by binary encoders

carousel.N.parity— bit in
Some encoders supply a parity bit, if this is connected then the parity—error output bit will indicate
parity errors

carousel.NV.sense—M bit in (M=0..personality)
Carousel position feedback pins. In index mode there will be only 2 pins. sense—0 is the index and
sense—1 is the pocket sensor.

carousel.N.rev—pulse float in
The duration in seconds for which a ratchet changer (Boxford, Emco) should pulse the reverse pin to
lock the holder

carousel.NV.fwd-dc float in
Velocity or duty cycle when forwards rotation is desired

carousel.N.rev—dc float in
Velocity or duty cycle when reverse rotation is desired

01/04/2026 LinuxCNC

CAROUSEL(9) LinuxCNC Documentation CAROUSEL(9)

carousel.N.hold-dc float in
Duty cycle when carousel is in—position (to hold against stop)

carousel.N.align—dc float in
Use this pin to set the speed of a slower alignment move once the changer is in position. Such a system
almost certainly needs decel—time setting too

carousel.N.decel-time float in
Time to wait for carousel to stop before final alignment and position check

carousel.NV.counts s32 in
Connect to the rawcounts of an encoder or a stepgen in counts mode

carousel.N.scale s32 in (default: 100)
The number of stepgen or encoder counts between successive pockets

carousel.N.width s32 in (default: /0)
How far each side of the exact scale to signal a new pocket

carousel.N.home-offset s32 in (default: 0)
The offset (in counts) between the index and pocket 1

carousel.N.index—enable bit io
Used to home to an encoder index

carousel.NV.jog—fwd bit in
Jog the carousel forwards one tool position

carousel.NV.jog-rev bit in
Jog the carousel in reverse (only if dir = 2). It is very important that these pins should be debounced
and should probably also be interlocked to only operate when the machine is idle.

carousel. N.motor—fwd bit out
Indicates the motor should run forwards (bigger numbers)

carousel.N.motor—rev bit out
Indicates the motor should run reverse.

carousel.NV.parity—error bit out
Indicates a parity error

carousel.N.current—position s32 out
This pin indicates the current position feedback

carousel.N.motor—vel float out
The duty—cycle or velocity to drive a DC motor or stepgen

carousel.N.homed bit out (default: 0)
Shows that homing is complete. Only used in index and edge modes

carousel.N.unhome bit in (default: 0)
Should only really be necessary for testing

carousel.N.counts—target float out
Target position for a stepgen or external PID controller

PARAMETERS
carousel.V.state s32 r (default: 0)
Current component state

carousel.N.homing bit r (default: 0)
Shows that homing is in progress. Only used for index mode

carousel.N.timer float r
Shows the value of the internal timer

carousel.N.motor—dir s32 r

LinuxCNC 01/04/2026 303

CAROUSEL(9) LinuxCNC Documentation

Internal tag for search direction

carousel.N.counts—offset s32 r
Internal offset of index pin

carousel.N.debounce u32 rw
How many thread cycles to wait for the position to stabilise

carousel.N.target s32 r
Current target pocket, debug

carousel.N.base—counts s32 r (default: 0)

AUTHOR
Andy Pugh

LICENSE
GPL

304 01/04/2026

CAROUSEL(9)

LinuxCNC

CHARGE_PUMP(9) LinuxCNC Documentation CHARGE_PUMP(9)

NAME

charge_pump — Create a square—wave for the 'charge pump' input of some controller boards
SYNOPSIS

loadrt charge_pump
DESCRIPTION

The Charge Pump should be added to the base thread function. When enabled the output is on for one
period and off for one period. To calculate the frequency of the output 1/(period time in seconds x 2) = Hz.
For example if you have a base period of 100,000ns that is 0.0001 seconds and the formula would be
1/(0.0001 x 2) = 5,000 Hz or 5 kHz. Two additional outputs are provided that run a factor of 2 and 4 slower
for hardware that requires a lower frequency.

FUNCTIONS
charge—pump.—
Toggle the output bit (if enabled)
PINS

charge—pump.out bit out
Square wave if enable is TRUE or unconnected, low if enable is FALSE

charge—pump.out-2 bit out
Square wave at half the frequency of out

charge—pump.out—4 bit out
Square wave at a quarter of the frequency of out

charge—pump.enable bit in (default: TRUE)
If FALSE, forces all out pins to be low

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 305

CLARKE2(9) LinuxCNC Documentation CLARKE2(9)

NAME

clarke2 — Two input version of Clarke transform

SYNOPSIS

loadrt clarke2 [count=N|names=name[,name2...]]

DESCRIPTION

The Clarke transform can be used to translate a vector quantity from a three phase system (three
components 120 degrees apart) to a two phase Cartesian system. clarke2 implements a special case of the
Clarke transform, which only needs two of the three input phases. In a three wire three phase system, the
sum of the three phase currents or voltages must always be zero. As a result only two of the three are
needed to completely define the current or voltage. clarke2 assumes that the sum is zero, so it only uses
phases A and B of the input. Since the H (homopolar) output will always be zero in this case, it is not
generated.

FUNCTIONS
clarke2.N (requires a floating—point thread)
PINS
clarke2.N.a float in
clarke2.N.b float in
first two phases of three phase input
clarke2.N.x float out
clarke2.N.y float out
cartesian components of output
SEE ALSO
clarke3(9) for the general case, clarkeinv(9) for the inverse transform.
AUTHOR
John Kasunich
LICENSE

306

GPL

01/04/2026 LinuxCNC

CLARKE3(9) LinuxCNC Documentation CLARKE3(9)

NAME

clarke3 — Clarke (3 phase to cartesian) transform

SYNOPSIS

loadrt clarke3 [count=N|names=name[,name2...]]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three
components 120 degrees apart) to a two phase Cartesian system (plus a homopolar component if the three
phases don’t sum to zero). clarke3 implements the general case of the transform, using all three phases. If
the three phases are known to sum to zero, see clarke2 for a simpler version.

FUNCTIONS
clarke3.N (requires a floating—point thread)

PINS
clarke3.N.a float in

clarke3.N.b float in

clarke3.N.c float in
three phase input vector

clarke3.N.x float out

clarke3.N.y float out
cartesian components of output

clarke3.N.h float out
homopolar component of output

SEE ALSO

clarke2(9) for the a+b+c=0 case, clarkeinv(9) for the inverse transform.

AUTHOR

John Kasunich

LICENSE
GPL

LinuxCNC 01/04/2026 307

CLARKEINV (9) LinuxCNC Documentation CLARKEINV (9)

NAME

clarkeinv — Inverse Clarke transform

SYNOPSIS

loadrt clarkeinv [count=N|names=namel[,name2...]]

DESCRIPTION
The inverse Clarke transform can be used rotate a vector quantity and then translate it from Cartesian
coordinate system to a three phase system (three components 120 degrees apart).

FUNCTIONS

clarkeinv.N (requires a floating—point thread)

PINS

clarkeinv.N.x float in

clarkeinv.NV.y float in
cartesian components of input

clarkeinv.N.h float in
homopolar component of input (usually zero)

clarkeinv.N.theta float in
rotation angle: 0.00 to 1.00 = 0 to 360 degrees

clarkeinv.N.a float out
clarkeinv.N.b float out

clarkeinv.N.c float out
three phase output vector

SEE ALSO
clarke2(9) and clarke3(9) for the forward transform.

AUTHOR

John Kasunich

LICENSE
GPL

308 01/04/2026 LinuxCNC

CLASSICLADDER(9) LinuxCNC Documentation CLASSICLADDER(9)

NAME

classicladder — realtime software plc based on ladder logic

SYNOPSIS
loadrt classicladder_rt [numRungs=N] [numBits=N] [numWords=N] [numTimers=N]
[numMonostables=N] [numCounters=/N] [numPhysInputs=N] [numPhysOutputs=N]
[numArithmExpr=N] [numSections=N] [numSymbols=N] [numS32in=N] [numS32out=N]
[numFloatIn=N] [numFloatOut=N]

loadusr classicladder <file name> [-—nogui]

DESCRIPTION
This component consist of a realtime part and a non—realtime part. The non—realtime part loads the
programmable ladder description, while the realtime part provides the pins. The file name of the
configuration can be changed using an argument to the non—realtime part. By default the non—realtime part
provides a graphical visualisation of the loaded ladder, which can be disabled using the ——nogui option to
the non—realtime part.

These pins and parameters are created by the realtime classicladder_rt module. Each period (minimum
1000000 ns), ClassicLadder reads the inputs, evaluates the ladder logic defined in the GUI, and then writes
the outputs.

PINS
classicladder.0.in-NN IN bit
These bit signal pins map to %INN variables in ClassicLadder.

classicladder.0.out-NN OUT bit
These bit signal pins map to % QNN variables in ClassicLadder. Output from ClassicLadder.

classicladder.0.s32in—NN IN s32
Integer input from ClassicLadder. These s32 signal pins map to %IWNN variables in ClassicLadder.

classicladder.0.s32out—NN OUT s32
Integer output from ClassicLadder. These s32 signal pins map to % QWANN variables in
ClassicLadder.

classicladder.0.floatin—-NN IN float
Integer input from ClassicLadder. These float signal pins map to %IFNN variables in ClassicLadder.
These are truncated to S32 values internally, e.g. 7.5 will be 7.

classicladder.0.floatout—-~NN OUT float
Float output from ClassicLadder. These float signal pins map to % QFNN variables in ClassicLadder.

classicladder.0.hide_gui IN bit
This bit pin hides the ClassicLadder window, while still having the non—realtime code run. This is
usually desirable when modbus is used, as modbus requires the non—realtime code to run.

PARAMETERS
classicladder.0.refresh.time RO s32
Tells you how long the last refresh took.

classicladder.0.refresh.tmax RW s32
Tells you how long the longest refresh took.

classicladder.0.ladder—state RO s32
Tells you if the program is running or not

FUNCTIONS
classicladder.0.refresh FP
The rung update rate. Add this to the servo thread. You can added it to a faster thread but it. Will
update no faster than once every 1 millisecond (1000000 ns).

LinuxCNC 01/04/2026 309

CLASSICLADDER(9) LinuxCNC Documentation CLASSICLADDER(9)

BUGS
See https://wiki.linuxcnc.org/cgi—bin/wiki.pl?ClassicLadder_Ver_7.124 for the latest.

SEE ALSO
ClassicLadder chapters in the LinuxCNC documentation for a full description of the ClassicLadder syntax
and examples.

https://wiki.linuxcnc.org/cgi—bin/wiki.pl?ClassicLadder_Ver_7.124

310 01/04/2026 LinuxCNC

COMP(9) LinuxCNC Documentation COMP(9)

NAME

comp — Two input comparator with hysteresis

SYNOPSIS

loadrt comp [count=N|names=name][,name2...]]

FUNCTIONS
comp.N (requires a floating—point thread)
Update the comparator

PINS
comp.N.in0 float in
Inverting input to the comparator

comp.N.inl float in
Non—inverting input to the comparator

comp.N.out bit out
Normal output. True when inl > in0 (see parameter hyst for details)

comp.N.equal bit out
Match output. True when difference between inl and in0 is less than hyst/2

PARAMETERS
comp.N.hyst float rw (default: 0.0)
Hysteresis of the comparator (default 0.0)

With zero hysteresis, the output is true when inl > in0. With nonzero hysteresis, the output switches on and
off at two different values, separated by distance hyst around the point where inl = in0. Keep in mind that
floating point calculations are never absolute and it is wise to always set hyst if you intend to use equal

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 311

CONV_BIT_FLOAT(9) LinuxCNC Documentation

NAME

conv_bit_float — Convert a value from bit to float

SYNOPSIS

loadrt conv_bit_float [count=N|names=namel[,name?2...]]

FUNCTIONS
conv-bit—float.N (requires a floating—point thread)
Update out based on in

PINS

conv-bit—float.NV.in bit in
conv-bit—float.N.out float out

AUTHOR
Jeff Epler

LICENSE
GPL

312 01/04/2026

CONV_BIT_FLOAT (9)

LinuxCNC

CONV_BIT_S532(9) LinuxCNC Documentation
NAME

conv_bit_s32 — Convert a value from bit to s32
SYNOPSIS

loadrt conv_bit_s32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv-bit—s32.N
Update out based on in

PINS
conv-bit—s32.N.in bit in

conv-bit—s32.N.out s32 out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

CONV_BIT_S§32(9)

313

CONV_BIT_S564(9) LinuxCNC Documentation
NAME

conv_bit_s64 — Convert a value from bit to s64
SYNOPSIS

loadrt conv_bit_s64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv-bit—s64.N
Update out based on in

PINS
conv-bit—s64.N.in bit in

conv-bit—s64.N.out s64 out

AUTHOR
Jeff Epler

LICENSE
GPL

314 01/04/2026

CONV_BIT_S564(9)

LinuxCNC

CONV_BIT_U32(9) LinuxCNC Documentation
NAME

conv_bit_u32 — Convert a value from bit to u32
SYNOPSIS

loadrt conv_bit_u32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv-bit-u32.N
Update out based on in

PINS

conv-bit—u32.N.in bit in
conv-bit—u32.N.out u32 out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

CONV_BIT _U32(9)

315

CONV_BIT_U64(9) LinuxCNC Documentation
NAME

conv_bit_u64 — Convert a value from bit to u64
SYNOPSIS

loadrt conv_bit_u64 [count=N|names=name[,name2...]]
FUNCTIONS

conv-bit-u64.N
Update out based on in

PINS

conv-bit—u64.N.in bit in
conv-bit—u64.N.out u64 out

AUTHOR
Jeff Epler

LICENSE
GPL

316 01/04/2026

CONV_BIT _U64(9)

LinuxCNC

CONV_FLOAT_S32(9) LinuxCNC Documentation

NAME

conv_float_s32 — Convert a value from float to s32

SYNOPSIS

loadrt conv_float_s32 [count=N|names=namel[,name?...]]

FUNCTIONS
conv—float—s32.N (requires a floating—point thread)
Update out based on in

PINS

conv—float—s32.N.in float in
conv—float—s32.N.out s32 out

conv—float—s32.N.out—of-range bit out
TRUE when in is not in the range of s32

PARAMETERS

conv—float—s32.N.clamp bit rw

CONV_FLOAT _S32(9)

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

317

CONV_FLOAT_S64(9) LinuxCNC Documentation

NAME

conv_float_s64 — Convert a value from float to s64

SYNOPSIS

loadrt conv_float_s64 [count=N|names=namel[,name?...]]

FUNCTIONS
conv—float—s64.N (requires a floating—point thread)
Update out based on in

PINS

conv—float—s64.N.in float in
conv—float—s64.N.out s64 out

conv—float—s64.N.out—of-range bit out
TRUE when in is not in the range of s64

PARAMETERS

conv—float—s64.N.clamp bit rw

CONV_FLOAT _S64(9)

If TRUE, then clamp to the range of s64. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

318 01/04/2026

LinuxCNC

CONV_FLOAT_U32(9) LinuxCNC Documentation
NAME

conv_float_u32 — Convert a value from float to u32
SYNOPSIS

loadrt conv_float_u32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—float—u32.N (requires a floating—point thread)
Update out based on in

PINS

conv—float—u32.N.in float in
conv—float—u32.N.out u32 out

conv—float—u32.N.out—-of-range bit out
TRUE when in is not in the range of u32

PARAMETERS

conv—float—u32.N.clamp bit rw

CONV_FLOAT _U32(9)

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

319

CONV_FLOAT_U64(9) LinuxCNC Documentation
NAME

conv_float_u64 — Convert a value from float to u64
SYNOPSIS

loadrt conv_float_u64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—float—u64.N (requires a floating—point thread)
Update out based on in

PINS

conv—float—u64.N.in float in
conv—float—u64.N.out u64 out

conv—float—u64.N.out—of-range bit out
TRUE when in is not in the range of u64

PARAMETERS

conv—float—u64.N.clamp bit rw

CONV_FLOAT _U64(9)

If TRUE, then clamp to the range of u64. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

320 01/04/2026

LinuxCNC

CONV_S§32_BIT(9) LinuxCNC Documentation
NAME

conv_s32 bit — Convert a value from s32 to bit
SYNOPSIS

loadrt conv_s32_bit [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s32-bit.N
Update out based on in

PINS
conv—s32-bit.NV.in s32 in

conv—s32-bit.N.out bit out

conv—s32-bit.N.out—of-range bit out
TRUE when in is not in the range of bit

PARAMETERS

conv—s32-bit.N.clamp bit rw

CONV_S32_BIT(9)

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

321

CONV_S§32_FLOAT(9) LinuxCNC Documentation

NAME

conv_s32 float — Convert a value from s32 to float

SYNOPSIS

loadrt conv_s32_float [count=N|names=namel[,name?...]]

FUNCTIONS
conv—s32—float.N (requires a floating—point thread)
Update out based on in

PINS
conv—s32-float.N.in s32 in

conv—s32-float.N.out float out

AUTHOR
Jeff Epler

LICENSE
GPL

322 01/04/2026

CONV_S32_FLOAT (9)

LinuxCNC

CONV_S§32_564(9) LinuxCNC Documentation
NAME

conv_s32 s64 — Convert a value from s32 to s64
SYNOPSIS

loadrt conv_s32_s64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s32—-s64.N
Update out based on in

PINS
conv—s32-s64.N.in s32 in

conv—s32-s64.N.out s64 out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

CONV_532_564(9)

323

CONV_§32_U32(9) LinuxCNC Documentation
NAME

conv_s32 u32 — Convert a value from s32 to u32
SYNOPSIS

loadrt conv_s32_u32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s32—u32.N
Update out based on in

PINS
conv—s32—-u32.N.in s32 in

conv—s32—-u32.N.out u32 out

conv—s32—-u32.N.out—of-range bit out
TRUE when in is not in the range of u32

PARAMETERS

conv—s32—u32.N.clamp bit rw

CONV_S§32_U32(9)

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

324 01/04/2026

LinuxCNC

CONV_§32_U64(9) LinuxCNC Documentation
NAME

conv_s32 u64 — Convert a value from s32 to u64
SYNOPSIS

loadrt conv_s32_u64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s32—u64.N
Update out based on in

PINS
conv—s32—-u64.N.in s32 in

conv—s32—-u64.N.out u64 out

conv—s32—-u64.N.out—of-range bit out
TRUE when in is not in the range of u64

PARAMETERS

conv—s32—u64.N.clamp bit rw

CONV_S32_U64(9)

If TRUE, then clamp to the range of u64. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

325

CONV_S64_BIT (9) LinuxCNC Documentation
NAME

conv_s64_bit — Convert a value from s64 to bit
SYNOPSIS

loadrt conv_s64_bit [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s64—bit.N
Update out based on in

PINS
conv—s64-bit.NV.in s64 in

conv—s64-bit.N.out bit out

conv—s64—bit.N.out—of-range bit out
TRUE when in is not in the range of bit

PARAMETERS

conv—s64—bit.N.clamp bit rw

CONV_S64_BIT (9)

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

326 01/04/2026

LinuxCNC

CONV_S64_FLOAT (9) LinuxCNC Documentation

NAME

conv_s64_float — Convert a value from s64 to float

SYNOPSIS

loadrt conv_s64_float [count=N|names=namel[,name?...]]

FUNCTIONS
conv—s64—float.N (requires a floating—point thread)
Update out based on in

PINS
conv—s64—float.N.in s64 in

conv—s64—float.N.out float out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

CONV_S64_FLOAT (9)

327

CONV_S564_532(9) LinuxCNC Documentation
NAME

conv_s64_s32 — Convert a value from s64 to s32
SYNOPSIS

loadrt conv_s64_s32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s64—s32.N
Update out based on in

PINS
conv—s64—s32.N.in s64 in

conv—s64—s32.N.out s32 out

conv—-s64—s32.N.out—of-range bit out
TRUE when in is not in the range of s32

PARAMETERS
conv—s64—s32.N.clamp bit rw

CONV_564_532(9)

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

328 01/04/2026

LinuxCNC

CONV_S§64_U32(9) LinuxCNC Documentation
NAME

conv_s64_u32 — Convert a value from s64 to u32
SYNOPSIS

loadrt conv_s64_u32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s64—u32.N
Update out based on in

PINS
conv—s64—u32.N.in s64 in

conv—s64—u32.N.out u32 out

conv—s64—u32.N.out—of-range bit out
TRUE when in is not in the range of u32

PARAMETERS

conv—s64—u32.N.clamp bit rw

CONV_S564_U32(9)

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

329

CONV_S564_U64(9) LinuxCNC Documentation
NAME

conv_s64_u64 — Convert a value from s64 to u64
SYNOPSIS

loadrt conv_s64_u64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—s64—u64.N
Update out based on in

PINS
conv—s64—u64.N.in s64 in

conv—s64—u64.N.out u64 out

conv—s64—u64.N.out—of-range bit out
TRUE when in is not in the range of u64

PARAMETERS

conv—s64—u64.N.clamp bit rw

CONV_S64_U64(9)

If TRUE, then clamp to the range of u64. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

330 01/04/2026

LinuxCNC

CONV_U32_BIT(9) LinuxCNC Documentation

NAME

conv_u32_bit — Convert a value from u32 to bit

SYNOPSIS

loadrt conv_u32_bit [count=N|names=name[,name2...]]

FUNCTIONS
conv—u32-bit.N
Update out based on in

PINS

conv—u32-bit.N.in u32 in
conv—u32-bit.N.out bit out

conv—u32-bit.N.out—of-range bit out
TRUE when in is not in the range of bit

PARAMETERS

conv—u32-bit.N.clamp bit rw

CONV_U32_BIT(9)

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

331

CONV_U32_FLOAT (9) LinuxCNC Documentation

NAME

conv_u32_float — Convert a value from u32 to float

SYNOPSIS

loadrt conv_u32_float [count=N|names=namel[,name2...]]

FUNCTIONS
conv—u32—float.N (requires a floating—point thread)
Update out based on in

PINS

conv—u32-float.N.in u32 in
conv—u32-float.N.out float out

AUTHOR
Jeff Epler

LICENSE
GPL

332 01/04/2026

CONV_U32_FLOAT(9)

LinuxCNC

CONV_U32_832(9) LinuxCNC Documentation
NAME

conv_u32_s32 — Convert a value from u32 to s32
SYNOPSIS

loadrt conv_u32_s32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—u32-s32.N
Update out based on in

PINS
conv—u32-s32.N.in u32 in

conv—u32-s32.N.out s32 out

conv—u32—-s32.N.out—of-range bit out
TRUE when in is not in the range of s32

PARAMETERS

conv—u32-s32.N.clamp bit rw

CONV_U32_532(9)

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

333

CONV_U32_864(9) LinuxCNC Documentation
NAME

conv_u32_s64 — Convert a value from u32 to s64
SYNOPSIS

loadrt conv_u32_s64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—-u32-s64.N
Update out based on in

PINS
conv—u32-s64.N.in u32 in

conv—u32-s64.N.out s64 out

AUTHOR
Jeff Epler

LICENSE
GPL

334 01/04/2026

CONV_U32_564(9)

LinuxCNC

CONV_U32_U64(9) LinuxCNC Documentation
NAME

conv_u32_u64 — Convert a value from u32 to u64
SYNOPSIS

loadrt conv_u32_u64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv-u32-u64.N
Update out based on in

PINS

conv—u32—-u64.N.in u32 in
conv—u32-u64.N.out u64 out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

CONV_U32_U64(9)

335

CONV_U64_BIT(9) LinuxCNC Documentation

NAME

conv_u64_bit — Convert a value from u64 to bit

SYNOPSIS

loadrt conv_u64_bit [count=N|names=name[,name?...]]

FUNCTIONS
conv—u64-bit.N
Update out based on in

PINS

conv—u64-bit.N.in u64 in
conv—u64-bit.N.out bit out

conv—u64-bit.N.out—of-range bit out
TRUE when in is not in the range of bit

PARAMETERS

conv—u64-bit.N.clamp bit rw

CONV_U64_BIT (9)

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

336 01/04/2026

LinuxCNC

CONV_U64_FLOAT (9) LinuxCNC Documentation

NAME

conv_u64_float — Convert a value from u64 to float

SYNOPSIS

loadrt conv_u64_float [count=N|names=namel[,name?2...]]

FUNCTIONS
conv—u64—float.N (requires a floating—point thread)
Update out based on in

PINS

conv—u64—float.N.in u64 in
conv—u64—float.N.out float out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

CONV_U64_FLOAT (9)

337

CONV_U64_532(9) LinuxCNC Documentation
NAME

conv_u64_s32 — Convert a value from u64 to s32
SYNOPSIS

loadrt conv_u64_s32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—u64—s32.N
Update out based on in

PINS
conv—u64-s32.N.in u64 in

conv—u64—s32.N.out s32 out

conv—u64—s32.N.out—of-range bit out
TRUE when in is not in the range of s32

PARAMETERS

conv—u64—s32.N.clamp bit rw

CONV_U64_532(9)

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

338 01/04/2026

LinuxCNC

CONV_U64_564(9) LinuxCNC Documentation
NAME

conv_u64_s64 — Convert a value from u64 to s64
SYNOPSIS

loadrt conv_u64_s64 [count=N|names=namel[,name2...]]
FUNCTIONS

conv—-u64-s64.N
Update out based on in

PINS
conv—u64—-s64.N.in u64 in

conv—u64-s64.N.out s64 out

conv—u64—s64.N.out—of-range bit out
TRUE when in is not in the range of s64

PARAMETERS

conv—u64—s64.N.clamp bit rw

CONV_U64_564(9)

If TRUE, then clamp to the range of s64. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

339

CONV_U64_U32(9) LinuxCNC Documentation
NAME

conv_u64_u32 — Convert a value from u64 to u32
SYNOPSIS

loadrt conv_u64_u32 [count=N|names=namel[,name2...]]
FUNCTIONS

conv-u64-u32.N
Update out based on in

PINS
conv—u64—u32.N.in u64 in

conv—u64—u32.N.out u32 out

conv—u64—u32.N.out—of-range bit out
TRUE when in is not in the range of u32

PARAMETERS

conv—u64—u32.N.clamp bit rw

CONV_U64_U32(9)

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

AUTHOR
Jeff Epler

LICENSE
GPL

340 01/04/2026

LinuxCNC

COREXY _BY _HAL(9) LinuxCNC Documentation COREXY_BY_HAL(9)

NAME

corexy_by_hal — CoreXY kinematics

SYNOPSIS

loadrt corexy_by_hal [count=N|names=namel[,name?2...]]

DESCRIPTION

Implement CoreXY forward and inverse transformations in HAL. This component provides an alternative
method for implementing CoreXY kinematics.

In the INI file, use:

[KINS]
KINEMATICS=trivkins
coordinates=xyz
kinstype=both

This component accepts two joint (jO, j1) motor position commands for a trivkins coordinates=xyz
configuration and computes equivalent CoreXY motor commands for two motors identified as alpha, beta.
Similarly, the component accepts feedback values for the alpha,beta motor controllers and converts to
equivalent joint (jO, j1) motor position feedback values.

Notes:

1. Using trivkins with this module allows home switches to trigger according to the Cartesian x,y
positions

2. Joint pin names are based on coordinates=xyz and the corresponding joint number assignments
used by trivkins so j0==x, jl==y (see trivkins(9)).

3. CoreXY kinematics can also be implemented using the kinematics module named corexykins
with home switches triggered by the j0,j1 motor positions (see kins(9)).

FUNCTIONS

PINS

corexy—by-hal.N (requires a floating—point thread)

corexy—by—hal.N.alpha—fb float in
typ: feedback from alpha motor controller

corexy—by-hal.N.beta—fb float in
typ: feedback from beta motor controller

corexy—by-hal.N.j0—motor—pos—cmd float in
typ: from joint.0.motor—pos—cmd

corexy—by-hal.N.j1-motor—pos—cmd float in
typ: from joint.1.motor—pos—cmd

corexy—by—hal.N.j0—motor—pos—fb float out
typ: to joint.0.motor—pos—fb
corexy—by-hal.N.j1-motor—pos—fb float out
typ: to joint.1.motor—pos—fb
corexy—by—hal.N.alpha—-cmd float out
typ: command to alpha motor

corexy—by—hal.N.beta—cmd float out
typ: command to beta ts motor

LinuxCNC 01/04/2026 341

COREXY _BY _HAL(9) LinuxCNC Documentation COREXY_BY_HAL(9)

AUTHOR

Dewey Garrett based on forum post from nbremond

LICENSE
GPL

342 01/04/2026 LinuxCNC

COUNTER(9) LinuxCNC Documentation COUNTER(9)

NAME

counter — counts input pulses (DEPRECATED)

SYNOPSIS

loadrt counter [num_chan=N]

DESCRIPTION

counter is a deprecated HAL component and will be removed in a future release. Use the encoder
component with encoder.X.counter—mode set to TRUE.

counter is a HAL component that provides software— based counting that is useful for spindle position
sensing and maybe other things. Instead of using a real encoder that outputs quadrature, some lathes have a
sensor that generates a simple pulse stream as the spindle turns and an index pulse once per revolution. This
component simply counts up when a "count" pulse (phase—A) is received, and if reset is enabled, resets
when the "index" (phase—Z) pulse is received.

This is of course only useful for a unidirectional spindle, as it is not possible to sense the direction of
rotation.

counter conforms to the "canonical encoder" interface described in the HAL manual.

FUNCTIONS

PINS

counter.capture—position (uses floating—point)
Updates the counts, position and velocity outputs based on internal counters.

counter.update—counters
Samples the phase—A and phase—Z inputs and updates internal counters.

counter.N.phase—A bit in
The primary input signal. The internal counter is incremented on each rising edge.

counter.N.phase—Z bit in
The index input signal. When the index—enable pin is TRUE and a rising edge on phase-Z is seen,
index—enable is set to FALSE and the internal counter is reset to zero.

counter.N.index—enable bit io
counter.N.reset bit io
counter.N.counts signed out
counter.N.position float out

counter.N.velocity float out
These pins function according to the canonical digital encoder interface.

counter.N.position—scale float rw
This parameter functions according to the canonical digital encoder interface.

counter.N.rawcounts signed ro
The internal counts value, updated from update—counters and reflected in the output pins at the next
call to capture—position.

SEE ALSO

encoder(9)

LinuxCNC 01/04/2026 343

DBOUNCE(9) LinuxCNC Documentation DBOUNCE(9)

NAME

dbounce — alternative debounce component

SYNOPSIS

loadrt dbounce [count=N|names=namel[,name?2...]]

DESCRIPTION
This component is similar to the debounce(9) component but uses settable delay pins for each instance and
supports count= or names= parameters (groups are not used)

FUNCTIONS
dbounce.N

PINS

dbounce.N.in bit in
dbounce.N.out bit out
dbounce.N.delay u32 in (default: 5)

AUTHOR
Dewey Garrett

LICENSE
GPL

344 01/04/2026 LinuxCNC

DDT(9) LinuxCNC Documentation DDT(9)

NAME

ddt — Compute the derivative of the input function

SYNOPSIS

loadrt ddt [count=N|names=name][,name2...]]

DESCRIPTION
For every function call from the real time thread, calculate the difference between the old and current input
value divided by the timer elapsed since the last call.

FUNCTIONS
ddt.N (requires a floating—point thread)

PINS
ddt.N.in float in

ddt.N.out float out
NOTES

As this only work on two consecutive input values, it will only work well if the input change every function
call, and not work so well if the rate of change is very low and the input change do not happen every time
the real time function is called.

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 345

DEADZONE((9) LinuxCNC Documentation

NAME

deadzone — Return the center if within the threshold

SYNOPSIS

loadrt deadzone [count=N|names=namel[,name?2...]]

FUNCTIONS
deadzone.N (requires a floating—point thread)
Update out based on in and the parameters.

PINS

deadzone.N.in float in
deadzone.N.out float out

PARAMETERS
deadzone.N.center float rw (default: 0.0)
The center of the dead zone

deadzone.N.threshold float rw (default: 71.0)
The dead zone is center x(threshold/2)

AUTHOR
Jeff Epler

LICENSE
GPL

346 01/04/2026

DEADZONE(9)

LinuxCNC

DEBOUNCE(9) LinuxCNC Documentation DEBOUNCE(9)

NAME

debounce — filter noisy digital inputs

SYNOPSIS

loadrt debounce cfg=size[,size,...]

Creates debounce groups with the number of filters specified by (size). Every filter in the same group has
the same sample rate and delay. For example cfg=2,3 creates two filter groups with 2 filters in the first
group and 3 filters in the second group.

SEE ALSO
An alternate component named dbounce implements similar functionality using conventional count= and
names= parameters. Delay settings are implemented by a delay pin for each instance instead of using filter
groups.

DESCRIPTION
The debounce filter works by incrementing a counter whenever the input is true, and decrementing the
counter when it is false. If the counter decrements to zero, the output is set false and the counter ignores
further decrements. If the counter increments up to a threshold, the output is set true and the counter
ignores further increments. If the counter is between zero and the threshold, the output retains its previous
state. The threshold determines the amount of filtering: A threshold of 1 does no filtering at all, and a
threshold of N requires a signal to be present for N samples before the output changes state.

FUNCTIONS
debounce.G
Sample all the input pins in group G and update the output pins.

PINS
debounce.G.F.in bit in
The F’th input pin in group G.

debounce.G.F.out bit out
The F’th output pin in group G. Reflects the last "stable" input seen on the corresponding input pin.

debounce.G.delay signed rw
Sets the amount of filtering for all pins in group G.

LinuxCNC 01/04/2026 347

DEMUX(9) LinuxCNC Documentation DEMUX(9)

NAME

demux — Select one of several output pins by integer and/or or individual bits.
SYNOPSIS

loadrt demux [count=N|names=name[,name2...]] [personality=P1[,P2...]]
DESCRIPTION

This component creates a number of output bits defined by the "personality" command-line parameter. One
of these bits will be set based on interpreting the bit—inputs as a binary number and then adding on the
integer input. Most uses will use only one or the other, but it is possible to use the bits as a ""shift"" if
required. An optional operating mode is enabled by setting the "bargraph" parameter to true, in this case all
bits up to the selected bit will be set, as might be required for an LED bargraph display.

FUNCTIONS

demux.N (requires a floating—point thread)

PINS
demux.N.sel-bit—MM bit in (MM=00..04)
Binary—number bit selectors
demux.N.sel-u32 u32 in
Integer selection input
demux.N.out—MM bit out (MM=00..personality)
The set of output bits
PARAMETERS
demux.N.bargraph bit rw (default: 0)
SEE ALSO
select8(9)
AUTHOR
Andy Pugh
LICENSE
GPL 2+

348 01/04/2026 LinuxCNC

DIFFERENTIAL(9) LinuxCNC Documentation

NAME

differential — kinematics for a differential transmission

SYNOPSIS

loadrt differential [count=N|names=name[,name2...]]

FUNCTIONS

PINS

differential. N (requires a floating—point thread)

differential. V.roll-cmd float in
position command for roll (in degrees)

differential. N.pitch—cmd float in
position command for pitch (in degrees)

differential. N.roll-fb float out
position feedback for roll (in degrees)

differential. N.pitch—fb float out
position feedback for pitch (in degrees)

differential. N.motor0—cmd float out
position command to motorQ (based on roll & pitch inputs)

differential. N.motor1-cmd float out
position command to motorl (based on roll & pitch inputs)

differential. N.motor0—fb float in
position feedback from motorQ

differential. N.motor1—fb float in
position feedback from motorl

AUTHOR

Sebastian Kuzminsky

LICENSE

GPL

LinuxCNC 01/04/2026

DIFFERENTIAL(9)

349

DIV2(9) LinuxCNC Documentation DIV2(9)

NAME

div2 — Quotient of two floating point inputs

SYNOPSIS

loadrt div2 [count=N|names=namel[,name2...]]

DESCRIPTION
A very simple comp to divide a floating point number by another floating point number, to get a floating
point result. Remember, not to use a zero divisor. A zero divisor creates an indefinte result. This is simple
mathematics.

FUNCTIONS
div2.N (requires a floating—point thread)

PINS
div2.N.in0 float in
the Dividend

div2.N.in1 float in
the Divisor

div2.N.out float out
the Quotient out = in0 / inl

PARAMETERS
div2.N.deadband float rw
The out will be zero if in is between —deadband and +deadband

SEE ALSO
mult2(9), invert(9)

AUTHOR
Noel Rodes

LICENSE
GPL

350 01/04/2026 LinuxCNC

EDGE(9) LinuxCNC Documentation

NAME
edge — Edge detector

SYNOPSIS

loadrt edge [count=N|names=namel[,name2...]]

FUNCTIONS
edge. N
Produce output pulses from input edges

PINS
edge.N.in bit in

edge.N.out bit out
Goes high when the desired edge is seen on in

edge.N.out—invert bit out
Goes low when the desired edge is seen on in

PARAMETERS
edge.N.both bit rw (default: FALSE)

If TRUE, selects both edges. Otherwise, selects one edge according to in—edge

edge.N.in—edge bit rw (default: TRUE)

If both is FALSE, selects the one desired edge: TRUE means falling, FALSE means rising

edge.N.out—width—ns s32 rw (default: 0)
Time in nanoseconds of the output pulse

edge.N.time—left—ns s32 r
Time left in this output pulse

edge.N last—in bit r
Previous input value

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

EDGE(9)

351

ENCODER(9) LinuxCNC Documentation ENCODER(9)

NAME

encoder — software counting of quadrature encoder signals

SYNOPSIS

loadrt encoder [num_chan=num | names=namel[,name2...]]

DESCRIPTION
encoder is used to measure position by counting the pulses generated by a quadrature encoder. As a
software—based implementation it is much less expensive than hardware, but has a limited maximum count
rate. The limit is in the range of 10 kHz to 50 kHz, depending on the computer speed and other factors. If
better performance is needed, a hardware encoder counter is a better choice. Some hardware—based systems
can count at MHz rates.

encoder supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names
separated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, or if num_chan=0 is specified, the default value is three.

encoder has a one—phase, unidirectional mode called counter. In this mode, the phase-B input is ignored;
the counts increase on each rising edge of phase—A. This mode may be useful for counting a unidirectional
spindle with a single input line, though the noise—resistant characteristics of quadrature are lost.

If used in counter—mode it is also possible to enable the missing—teeth index mode, where a gap in the
pulse train of one or more teeth is used as in index marker. This system is used extensively for automotive
crank position sensors.

FUNCTIONS
encoder.update—counters (no floating—point)
Does the actual counting, by sampling the encoder signals and decoding the quadrature waveforms.
Must be called as frequently as possible, preferably twice as fast as the maximum desired count rate.
Operates on all channels at once.

encoder.capture—position (uses floating point)
Captures the raw counts from update—counters and performs scaling and other necessary conversion,
handles counter rollover, etc. Can (and should) be called less frequently than update—counters.
Operates on all channels at once.

NAMING
The names for pins and parameters are prefixed as: encoder.N. for N=0,1,...,num—1 when using
num_chan=num nameN. for nameN=namel,name2,... when using names=namel,name2,...

The encoder.N. format is shown in the following descriptions.

PINS
encoder.N.counter—-mode bit i/0
Enables counter mode. When true, the counter counts each rising edge of the phase—A input, ignoring
the value on phase—B. This is useful for counting the output of a single channel (non—quadrature)
sensor. When false (the default), it counts in quadrature mode.

encoder.N.counts s32 out
Position in encoder counts.

encoder.N.index—enable bit i/o
When true, counts and position are reset to zero on the next rising edge of Phase—Z. At the same
time, index—enable is reset to zero to indicate that the rising edge has occurred.

encoder.N.min—speed—estimate float in (default: 1.0)
Determine the minimum speed at which velocity will be estimated as nonzero and

352 01/04/2026 LinuxCNC

ENCODER(9) LinuxCNC Documentation ENCODER(9)

postition—interpolated will be interpolated. The units of min—speed—estimate are the same as the
units of velocity. Setting this parameter too low will cause it to take a long time for velocity to go to 0
after encoder pulses have stopped arriving.

encoder.N.phase—A bit in
Quadrature input for encoder channel N.

encoder.N.phase-B bit in
Quadrature input.

encoder.N.phase-Z bit in
Index pulse input.

encoder.N.position float out
Position in scaled units (see position—scale)

encoder.N.position—interpolated float out
Position in scaled units, interpolated between encoder counts. Only valid when velocity is
approximately constant and above min—speed—estimate. Do not use for position control.

encoder.N.position—scale float i/o
Scale factor, in counts per length unit. For example, if position—scale is 500, then 1000 counts of the
encoder will be reported as a position of 2.0 units.

encoder.N.missing—teeth s32 in
The number of teeth missing from the index gap. For example a 60 tooth gear with two teeth shortened
to form an index so that there are 58 pulses per revolution would use a position—scale of 60 and a
missing—teeth of 2.

encoder.N.rawcounts s32 out
The raw count, as determined by update—counters. This value is updated more frequently than counts
and position. It is also unaffected by reset or the index pulse.

encoder.N.reset bit in
When true, counts and position are reset to zero immediately.

encoder.N.velocity float out
Velocity in scaled units per second. encoder uses an algorithm that greatly reduces quantization noise
as compared to simply differentiating the position output. When the magnitude of the true velocity is
below min—speed—estimate, the velocity output is 0.

encoder.N.velocity—rpm float out
Velocity in scaled units per minute. Simply encoder.N.velocity scaled by a factor of 60 for
convenience.

encoder.N.x4-mode bit i/o
Enables times—4 mode. When true (the default), the counter counts each edge of the quadrature
waveform (four counts per full cycle). When false, it only counts once per full cycle. In
counter—mode, this parameter is ignored.

encoder.N.latch—input bit in
encoder.N.latch—falling bit in (default: TRUE)
encoder.N latch-rising bit in (default: TRUE)
encoder.N.counts—latched s32 out

encoder.N.position—latched float out
Update counts—latched and position—latched on the rising and/or falling edges of latch—input as
indicated by latch-rising and latch—falling.

encoder.N.counter—-mode bit rw
Enables counter mode. When true, the counter counts each rising edge of the phase—A input, ignoring
the value on phase—B. This is useful for counting the output of a single channel (non—quadrature)

LinuxCNC 01/04/2026 353

ENCODER(9) LinuxCNC Documentation

sensor. When false (the default), it counts in quadrature mode.

encoder.N.capture—position.tmax s32 rw

Maximum number of CPU cycles it took to execute this function.

PARAMETERS

The encoder component has no HAL Parameters.

354 01/04/2026

ENCODER(9)

LinuxCNC

ENCODER_RATIO(9) LinuxCNC Documentation ENCODER_RATIO(9)

NAME

encoder_ratio — an electronic gear to synchronize two axes

SYNOPSIS

loadrt encoder_ratio [num_chan=num | names=namel[,name?2...] |

DESCRIPTION

encoder_ratio can be used to synchronize two axes (like an "electronic gear"). It counts encoder pulses
from both axes in software, and produces an error value that can be used with a PID loop to make the slave
encoder track the master encoder with a specific ratio.

This module supports up to eight axis pairs. The number of pairs is set by the module parameter
num_chan. Alternatively, specify names= and unique names separated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is one.

FUNCTIONS

encoder—ratio.sample
Read all input pins. Must be called at twice the maximum desired count rate.

encoder—ratio.update (uses floating—point)
Updates all output pins. May be called from a slower thread.

NAMING

PINS

The names for pins and parameters are prefixed as: encoder—ratio.N. for N=0,1,...,num—1 when using
num_chan=num nameN. for nameN=namel,name2,... when using *names=namel ,name2,... .

The encoder—ratio.N. format is shown in the following descriptions.

encoder—ratio.N.master—A bit in
encoder—ratio.N.master—B bit in
encoder—ratio.N.slave—A bit in

encoder—ratio.N.slave—B bit in
The encoder channels of the master and slave axes.

encoder-ratio.N.enable bit in
When the enable pin is FALSE, the error pin simply reports the slave axis position, in revolutions. As
such, it would normally be connected to the feedback pin of a PID block for closed loop control of the
slave axis. Normally the command input of the PID block is left unconnected (zero), so the slave axis
simply sits still. However when the enable input goes TRUE, the error pin becomes the slave position
minus the scaled master position. The scale factor is the ratio of master teeth to slave teeth. As the
master moves, error becomes non—zero, and the PID loop will drive the slave axis to track the master.

encoder—ratio.N.error float out
The error in the position of the slave (in revolutions).

PARAMETERS

encoder—ratio.N.master—ppr unsigned rw, encoder—ratio.N.slave—ppr unsigned rw
The number of pulses per revolution of the master and slave axes.

encoder—ratio.N.master—teeth unsigned rw, encoder—ratio.N.slave—teeth unsigned rw
The number of "teeth" on the master and slave gears.

SEE ALSO

encoder(9)

LinuxCNC 01/04/2026 355

ENUM(9) LinuxCNC Documentation ENUM(9)

NAME

enum — enumerate integer values into bits

SYNOPSIS

loadrt enum enums=E;enum1pinl;enumlpin2;;;enum1pin3,D;;;enum2pinl;enum2pin2
[names=namel ,name2]

DESCRIPTION

enum converts integer values into bits and vice versa.

The component is especially suitable for encoding and decoding register values for modbus devices, where
control commands and status are frequently encoded as enumerations rather than bits. For example, 0 =
stop, 1 = forwards, 2 = backwards, 3 = jog—forwards etc.

The pins created and the behaviour of the component are controlled by the load—time modparams
"enums="and "names="

The enums= parameter should be a comma-—separated list of semicolon—separated pin labels. The
enumerated values will increase in sequence starting at zero. To skip a value use a zero—length label, i.e.
two consecutive semicolons, as shown in the examples.

There should be no spaces in the "enums="list.

"names=" is an optional list of component instance names. If "names=" is omitted the functions and pins
will be named "enum—decode...." or "enum-encode...."

Taking the example configuration above, if enum—-decode.01.enum2pinl—in is set to TRUE then the
output pin enum—decode.01.output will be set to the value 2. If enum—decode.01.enum2pin2—in is set to
true then the output would be 3.

Conversely, if enum—encode.00.input is set to 4 then the pin enum—encode.00.enum1pin3—out will be
set to TRUE.

OPTIONS

Preceding the list of labels should be the control—codes "D" for decode or "E" for encode. A D—type enum
will set the value of HAL bit pins in response to changes to the enum—decode.NN.input value, whereas an
E—type enum will set the value of the enum—encode.NN.output integer depending on which
enum—encode.NN.label-bit value is set.

If more than one label-bit input pin is set the output value will correspond to the pin label later in the list.

E and D—type enumerations may be freely mixed in separate instances.

FUNCTIONS

PINS

356

enum—decode.NN
if instance type = "D"

enum—encode. NN
if instance type = "E"

enum-decode.NN.input
The integer value to be decoded

enum-decode.NN.label-out
Output bits of a decode instance

enum-decode.NN.label-val
The enumeration value corresponding to each specific bit output. These are populated in sequence

01/04/2026 LinuxCNC

ENUM(9) LinuxCNC Documentation ENUM(9)

during loading but may be over—ridden in HAL if convenient.

enum-encode.NN.label-in
input bits of a decode instance

enum-encode.NN.label-val
The enumeration value corresponding to each specified bit input. These are populated in sequence
during loading but may be over—ridden in HAL if convenient.

enum—decode.NN.output
The integer value corresponding to the set bit input.

BUGS

If no bits are set the output value will be zero even if zero is a defined enumeration.
AUTHOR

Andy Pugh
REPORTING BUGS

Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2023 Andy Pugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 357

EOFFSET _PER ANGLE(9)

NAME

eoffset_per_angle — Compute External Offset Per Angle

SYNOPSIS

loadrt eoffset_per_angle [count=N|names=namel[,name?2...]]

DESCRIPTION

An offset is computed (from one of several functions) based on an input angle in degrees. The angle could

be a rotary coordinate value or a spindle angle.

LinuxCNC Documentation

EOFFSET PER ANGLE(9)

The computed offset is represented as an s32 kcounts output pin that is a compatible input to external
offset pins like axis.L.eoffset—counts where L is the coordinate letter. Scaling of the s32 kcounts is
controlled by the input (k) — its reciprocal value is presented on an output pin kreciprocal for connection

to axis.L.eoffset—scale. The default value for k should be suitable for most uses.

The built—in functions use pins fmult and rfraction to control the output frequency (or number of polygon
sides) and amplitude respectively. The rfraction pin controls the offset amplitude as a fraction of the

radius—ref pin.

One of the four built—in functions is specified by the fnum pin:
¢ 0: f0 inside polygon (requires fmult == nsides a¥ 3)

e 1: f1 outside polygon (requires fmult == nsides a¥ 3)

e 2:f2 sinusoid

e 3: {3 square wave

Unsupported fnum values default to use function f0.

FUNCTIONS

PINS

358

eoffset—per—angle.N (requires a floating—point thread)

eoffset—per—angle.N.active bit in (default: 0)
From: motion.eoffset—active

eoffset—per—angle.N.is—on bit in (default: 0)
From: halui.machine.is—on

eoffset—per—angle.N.enable—in bit in (default: 0)
Enable Input

eoffset—per—angle.N.radius—ref float in (default: /)
Radius reference (see notes)

eoffset—per—angle.N.angle float in (default: 0)
Input angle (in degrees)

eoffset—per—angle.N.start—angle float in (default: 0)
Start angle (in degrees)

eoffset—per—angle.N.fnum s32 in (default: 0)
Function selector (default 0)

eoffset—per—angle.N.rfraction float in (default: 0.7)
Offset amplitude (+/— fraction of radius_ref)

eoffset—per—angle.N.fmult float in (default: 6)
Offset frequency multiplier

eoffset—per—angle.N .k u32 in (default: 70000)
Scaling Factor (if 0, use 10000)

01/04/2026

LinuxCNC

EOFFSET _PER ANGLE(9) LinuxCNC Documentation EOFFSET PER ANGLE(9)

eoffset—per—angle.N.is—off bit out
invert is_on (for convenience)

eoffset—per—angle.N.enable—out bit out
To: axis.L.eoffset—enable

eoffset—per—angle.N.clear bit out
To: axis.L.eoffset—clear

eoffset—per—angle.N kcounts s32 out
To: axis.L.eoffset—counts

eoffset—per—angle.N kreciprocal float out
To: axis.L.eoffset—scale (1/k)

eoffset—per—angle.N.eoffset—dbg float out
offset (debug pin—use kcounts & kreciprocal)

eoffset—per—angle.N.state—dbg u32 out
state (debug pin)
EXAMPLES
An example simulation configuration is provided at: configs/sim/axis/external_offsets/opa.ini. A simulated
XZC machine uses the C coordinate angle to offset the transverse X coordinate according to the selected
fnum function.

NOTES

radius—ref
The computed offsets are based on the radius—ref pin value. This pin may be set to a constant radius
value or controlled by a user interface or by g code program (using M68 and a
motion.analog—out—NN pin for instance).

Stopping
When the enable-in pin is deasserted, the offset is returned to zero respecting the allocated
acceleration and velocity limits. The allocations for coordinate L are typically controlled by an ini file
setting:

[AXIS_L]

OFFSET_AV_RATIO=...

If unsupported parameters are supplied to a function (for instance a polygon with fewer than three sides),
the current offset will be returned to zero (respecting velocity and acceleration constraints). After correcting
the offending parameter, the enable—in pin must be toggled to resume offset computations.

AUTHOR
Dewey Garrett

LICENSE
GPL

LinuxCNC 01/04/2026 359

ESTOP_LATCH(9) LinuxCNC Documentation ESTOP_LATCH(9)

NAME

estop_latch — Software ESTOP latch

SYNOPSIS

loadrt estop_latch [count=N|names=name][,name2...]]

DESCRIPTION

This component can be used as a part of a simple software ESTOP chain.
It has two states: "OK" and "Faulted".

The initial state is "Faulted". When faulted, the out—ok output is false, the fault—out output is true, and the
watchdog output is unchanging.

The state changes from "Faulted" to "OK" when all these conditions are true:
 fault—in is false
* ok-inis true

* reset changes from false to true
When "OK", the out—ok output is true, the fault—out output is false, and the watchdog output is toggling.

The state changes from "OK" to "Faulted" when any of the following are true:
* fault—in is true
* ok-inis false
To facilitate using only a single fault source, ok—in and fault—en are both set to the non—fault—causing

value when no signal is connected. For estop—latch to ever be able to signal a fault, at least one of these
inputs must be connected.

Typically, an external fault or estop input is connected to fault—in, iocontrol.0.user-request—enable is
connected to reset, and ok—out is connected to iocontrol.0.emc—enable—in.

In more complex systems, it may be more appropriate to use classicladder to manage the software portion
of the estop chain.

FUNCTIONS

PINS

estop-latch.N

estop—latch.N.ok—in bit in (default: true)
estop—latch.N fault—in bit in (default: false)
estop—latch.N.reset bit in
estop—latch.N.ok—out bit out (default: false)
estop—latch.N.fault—out bit out (default: true)
estop—latch.N.watchdog bit out

AUTHOR

John Kasunich

LICENSE

360

GPL

01/04/2026 LinuxCNC

FEEDCOMP(9)

NAME

feedcomp — Multiply the input by the ratio of current velocity to the feed rate.

SYNOPSIS

LinuxCNC Documentation

loadrt feedcomp [count=N|names=namel[,name?2...]]

FUNCTIONS

feedcomp.N (requires a floating—point thread)

PINS
feedcomp.N.out float out
Proportionate output value

feedcomp.N.in float in
Reference value

feedcomp.N.enable bit in
Turn compensation on or off.

feedcomp.N.vel float in
Current velocity

PARAMETERS
feedcomp.N feed float rw
Feed rate reference value

NOTES

Note that if enable is false, out = in.

AUTHOR
Eric H. Johnson

LICENSE
GPL

LinuxCNC

01/04/2026

FEEDCOMP(9)

361

FILTER KALMAN (9) LinuxCNC Documentation FILTER_KALMAN (9)

NAME

filter_kalman — Unidimensional Kalman filter, also known as linear quadratic estimation (LQE)

SYNOPSIS

loadrt filter_kalman [count=N|names=name[,name2...]]

DESCRIPTION

Useful for reducing input signal noise (e.g. from the voltage or temperature sensor).
More information can be found at https://en.wikipedia.org/wiki/Kalman_filter.
Adjusting Qr and Qk covariances:

Default values of Rk and QKk are given for informational purpose only. The nature of the filter requires the
parameters to be individually computed.

One of the possible and quite practical method (probably far from being the best) of estimating the Rk
covariance is to collect the raw data from the sensor by either asserting the debug pin or using halscope
and then compute the covariance using cov() function from Octave package. Ready to use script can be
found at

https://github.com/dwrobel/TrivialKalmanFilter/blob/master/examples/DS 18B20Test/covariance.m.

Adjusting Qk covariance mostly depends on the required response time of the filter. There is a relationship
between Qk and response time of the filter that the lower the Qk covariance is the slower the response of
the filter is.

Common practice is also to conservatively set Rk and QKk slightly larger then computed ones to get
robustness.

FUNCTIONS

PINS

filter—kalman.N (requires a floating—point thread)
Update xk—out based on zKk input.

filter—kalman.N.debug bit in (default: FALSE)
When asserted, prints out measured and estimated values.

filter—kalman.N.passthrough bit in (default: FALSE)
When asserted, copies measured value into estimated value.

filter—kalman.N.reset bit in (default: FALSE)
When asserted, resets filter to its initial state and returns O as an estimated value (reset pin has higher
priority than passthrough pin).

filter—kalman.N.zk float in
Measured value.

filter—kalman.N .xk—out float out
Estimated value.

PARAMETERS

filter—kalman.N Rk float rw (default: 1.17549¢—38)
Estimation of the noise covariances (process).

filter—kalman.N.QKk float rw (default: 1.17549¢—38)
Estimation of the noise covariances (observation).

AUTHOR

362

Dmian Wrobel dwrobel. AT .ertelnet.rybnik.pl

01/04/2026 LinuxCNC

FILTER KALMAN (9) LinuxCNC Documentation FILTER_KALMAN (9)

LICENSE
GPL-2.0—or-later

LinuxCNC 01/04/2026 363

FLIPFLOP(9) LinuxCNC Documentation

NAME

flipflop — D type flip—flop

SYNOPSIS

loadrt flipflop [count=N|names=namel[,name?2...]]

FUNCTIONS

PINS

flipflop.N

flipflop.V.data- bit in
data input

flipflop.N.clk bit in
clock, rising edge writes data to out

flipflop.V.set bit in
when true, force out true

flipflop.N.reset bit in
when true, force out false; overrides set

flipflop.N.out bit io
output

flipflop.N.out—not bit io
inverted output

AUTHOR

John Kasunich

LICENSE

364

GPL

01/04/2026

FLIPFLOP(9)

LinuxCNC

GANTRY (9) LinuxCNC Documentation GANTRY (9)

NAME

gantry — LinuxCNC HAL component for driving multiple joints from a single axis.

SYNOPSIS

loadrt gantry [count=N|names=namel[,name2...]] [personality=PI[,P2...]]

DESCRIPTION

——— Deprecation Notice
gantry — Superseded by the general purpose #rivkins kinematics module.

To specify a gantry with non—identity kinematics: use trivkins with the kinstype parameter set for
KINEMATICS_BOTH. Example:

loadrt trivkins coordinates=xyyz kinstypes=BOTH Drives multiple physical motors (joints) from a single
axis input

——— End deprecation notice Drives multiple physical motors (joints) from a single axis input

The ‘personality’ value is the number of joints to control. Two is typical, but up to seven is supported (a
three joint setup has been tested with hardware).

All controlled joints track the commanded position (with a per—joint offset) unless in the process of
homing. Homing is when the commanded position is moving towards the homing switches (as determined
by the sign of search—vel) and the joint home switches are not all in the same state. When the system is
homing and a joint home switch activates, the command value sent to that joint is "frozen" and the joint
offset value is updated instead. Once all home switches are active, there are no more adjustments made to
the offset values and all joints run in lock—step once more.

For best results, set HOME_SEARCH_VEL and HOME_LATCH_VEL to the same direction and as slow
as practical. When a joint home switch trips, the commanded velocity will drop immediately from
HOME_SEARCH_VEL to zero, with no limit on acceleration.

FUNCTIONS

PINS

gantry.N.read (requires a floating—point thread)
Update position—fb and home/limit outputs based on joint values.

gantry.N.write (requires a floating—point thread)
Update joint pos—cmd outputs based on position—cmd in.

gantry.N.joint.MM.pos—ecmd float out (MM=00..personality)
Per—joint commanded position

gantry.N.joint.MM.pos—fb float in (MM=00..personality)
Per—joint position feedback

gantry.N.joint.MM.home bit in (MM=00..personality)
Per—joint home switch

gantry.N.joint.MM.offset float out (MM=00..personality)
(debugging) Per—joint offset value, updated when homing.

gantry.N.position—cmd float in
Commanded position from motion

gantry.N.position—fb float out
Position feedback to motion

gantry.N.home bit out
Combined home signal, true if all joint home inputs are true.

LinuxCNC 01/04/2026 365

GANTRY (9) LinuxCNC Documentation

gantry.N limit bit out

Combined limit signal, true if any joint home input is true.

gantry.N.search—vel float in
HOME_SEARCH_VEL from INI file

AUTHOR
Charles Steinkuehler

LICENSE
GPL

366 01/04/2026

GANTRY (9)

LinuxCNC

GANTRYKINS(9) LinuxCNC Documentation GANTRYKINS (9)

NAME

gantrykins — Superseded by the general purpose 'trivkins' kinematics module.

SYNOPSIS
To specify a gantry with non—identity kinematics: use trivkins with the kinstype parameter set for
KINEMATICS_BOTH. Example:

loadrt trivkins coordinates=xyyz kinstypes=BOTH

SEE ALSO
trivkins(9)

LinuxCNC 01/04/2026 367

GEARCHANGE(9) LinuxCNC Documentation GEARCHANGE(9)

NAME

gearchange — Select from one two speed ranges

SYNOPSIS
The output will be a value scaled for the selected gear, and clamped to the min/max values for that gear.
The scale of gear 1 is assumed to be 1, so the output device scale should be chosen accordingly. The scale
of gear 2 is relative to gear 1, so if gear 2 runs the spindle 2.5 times as fast as gear 1, scale2 should be set to
2.5.

FUNCTIONS

gearchange.N (requires a floating—point thread)

PINS
gearchange.N.sel bit in
Gear selection input

gearchange.N.speed—in float in
Speed command input

gearchange.N.speed—out float out
Speed command to DAC/PWM

gearchange.N.dir—in bit in
Direction command input

gearchange.N.dir—out bit out
Direction output — possibly inverted for second gear

PARAMETERS
gearchange.N.min1 float rw (default: 0)
Minimum allowed speed in gear range 1

gearchange.N.max1 float rw (default: 700000)
Maximum allowed speed in gear range 1

gearchange.N.min2 float rw (default: 0)
Minimum allowed speed in gear range 2

gearchange.N.max2 float rw (default: 700000)
Maximum allowed speed in gear range 2

gearchange.N.scale2 float rw (default: 1.0)
Relative scale of gear 2 vs. gear 1. Since it is assumed that gear 2 is "high gear", scale2 must be
greater than 1, and will be reset to 1 if set lower.

gearchange.N.reverse bit rw (default: 0)
Set to 1 to reverse the spindle in second gear.

AUTHOR
Stephen Wille Padnos

LICENSE
GPL

368 01/04/2026 LinuxCNC

GENTRIVKINS(9) LinuxCNC Documentation GENTRIVKINS (9)

NAME

gentrivkins — Superseded by the general purpose 'trivkins' kinematics module.

SEE ALSO
trivkins(9)

LinuxCNC 01/04/2026 369

GLADEVCP(9) LinuxCNC Documentation GLADEVCP(9)

NAME
gladevcp — displays Virtual control Panels built with GTK / GLADE

SYNOPSIS
loadusr gladevep [-c componentname(OxN] [-g WxH+Xoffset+YoffsetOxN] [-H halcmdfile] [-x
windowid] gladefile.glade

DESCRIPTION
GladeVCP parses a glade file and displays the widgets in a window. Then calls gladevcp_makepins which
again parses the gladefile looking for specific HAL widgets then makes HAL pins and sets up updating for
them. The HAL component name defaults to the basename of the glade file. The —x option directs
GladeVCP to reparent itself under this X window id instead of creating its own toplevel window. The —H
option passes an input file for halemd to be run after the GladeVCP component is initialized. This is used in
Axis when running GladeVCP under a tab with the EMBED_TAB_NAME/EMBED_TAB_COMMAND
INTI file feature.

GladeVCP supports GtkBuilder or libglade files though some widgets are not fully supported in GtkBuilder
yet.

ISSUES
For now, system links need to be added in the glade library folders to point to our new widgets and catalog
files. Look in lib/python/gladevcp/READ_ME for details.

370 01/04/2026 LinuxCNC

GRAY2BIN (9) LinuxCNC Documentation

NAME

gray2bin — convert a gray—code input to binary

SYNOPSIS

loadrt gray2bin [count=N|names=namel[,name2...]]

DESCRIPTION

Converts a gray—coded number into the corresponding binary value

FUNCTIONS
gray2bin.N

PINS
gray2bin.N.in u32 in
gray code in

gray2bin.N.out u32 out
binary code out

AUTHOR
Andy Pugh

LICENSE
GPL

LinuxCNC 01/04/2026

GRAY2BIN (9)

371

HAL_BB_GPIO(9) LinuxCNC Documentation HAL BB_GPIO(9)

NAME

hal_bb_gpio — Driver for beaglebone GPIO pins
SYNOPSIS

loadrt hal_bb_gpio user_leds=,... input_pins=,...__output_pins=#,...
USER LEDS

The user_leds loadrt parameter controls which LEDs are available to HAL. Valid range: 0..3. These LEDs
are next to the ethernet jack and the LinuxCNC numbers match the silkscreen on beaglbone black.
Empirically, these seem to be OR’d with whatever function is assigned to the LED in Linux.

PINS
bb_gpio.userledN bit in

bb_gpio.userled N-invert bit in
The associated LED is lit if userledN xor userledN—invert is TRUE.

INPUT PINS
The input_pins loadrt parameter controls which physical I/O pins are available to HAL as input pins. The
numbering is "800+N" for pin N on connector P8, and "900+N" for pin N on connector P9. For example,
"803" means connector P8 pin 3, which is also described in BeagleBone documentation as "gpmc_ad6".

Specifying pins that are otherwise in use by the system may have undesirable side effects, such as crashing
rtapi_app or the whole system.

PINS
bb_gpio.pN.in—NN bit out
bb_gpio.pN.in—NN—-invert bit in
in—NN is a snapshot of the value of the corresponding physical pin XOR the value of the
corresponding in—NN—invert pin.

OUTPUT PINS
The input_pins loadrt parameter controls which physical I/O pins are available to HAL as input pins. The
numbering is "800+N" for pin N on connector P8, and "900+N" for pin N on connector P9.

Specifying pins that are otherwise in use by the system may have undesirable side effects, such as crashing
rtapi_app or the whole system.

PINS
bb_gpio.pN.out—NN bit out

bb_gpio.pN.out—-NN-invert bit in
The corresponding physical pin is driven with the result of in—NN xor in—NN-invert.

PARAMETERS

None

FUNCTIONS
bb_gpio.read
Update HAL pins from physical pins.

bb_gpio.write
Update physical pins from HAL pins.

LICENSE
GPL

372 01/04/2026 LinuxCNC

HAL_PARPORT (9) LinuxCNC Documentation HAL PARPORT(9)

NAME

hal_parport — Realtime HAL component to communicate with one or more pc parallel ports.

SYNOPSIS

loadrt hal_parport cfg="port_addr [type] [[port_addr [type] .. .]"

DESCRIPTION

The hal_parport component is a realtime component that provides connections from HAL via halpins to the
physical pins of one or more parallel ports. It provides a read and write function to send and receive data to
the attached parallel port(s).

The hal_parport component supports up to 8 physical parallel ports.

OPTIONS

PINS

cfg=""port_addr [type] [[port_addr [type] ...]"
The cfg string tells hal_parport the address(es) of the parallel port(s) and whether the port(s) is/are
used as an input or output port(s). Up to eight parallel ports are supported by the component.

The port_addr parameter of the configuration string may be either the physical base address of a parallel
port or specified as the detected parallel port via Linux parport_pc driver. In which case, a port_addr of 0
is the first parallel port detected on the system, / is the next, and so on.

The type parameter of the configuration string determines how the I/O bits of the port are used. There are
four possible options and if none is specified will default to out.
in
Sets the 8 bits of the data port to input. In this mode the parallel port has a total of 13 input pins and 4
output pins.

out
Sets the 8 bits of the data port to output. In this mode the parallel port has a total of 5 input pins and 12
output pins.

epp
This option is the same as setting to out, but can cause the computer to change the electrical
characteristics of the port, see USAGE below.

The option allows ports with open collectorts on the control group pins to be configured as inputs
resulting in 8 output pins and 9 input pins, see USAGE below.

"N

The pins created by the hal_parport component depends on how it is configured in the cfg=
to it, see OPTIONS.
parport.p.pin—n—out (bit)

Drives a physical output pin.

string passed

parport.p.pin—n—in (bit)
Tracks a physical input pin.

parport.p.pin—n—in—not (bit)
Tracks a physical input pin, but inverted.

For each pin created, p is the port number, and # is the physical pin number in the 25 pin D—shell
connector.

For each physical output pin, the driver creates a single HAL pin, for example: parport.0.pin—14—out.

For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin—12—in and
parport.0.pin—12—in—not.

LinuxCNC 01/04/2026 373

HAL_PARPORT (9) LinuxCNC Documentation HAL PARPORT(9)

The —in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The —in—not
HAL pin is inverted and is FALSE if the physical pin is high.

"

The following lists the input and output pins by the type setting used in the cfg="" string.
in: Pins 2,3,4,5,6,7,8,9,10,11,12,13,15 are input pins and pins 1,14,16 and 17 are output pins.
out/epp: Pins 10,11,12,13 and 15 are input pins and pins 1,2,3,4,5,6,7,8,9,14,16 and 17 are output pins.

x: Pins 1,10,11,12,13,14,15,16 and 17 are input pins and pins 2,3,4,5,6,7,8,9 are output pins. (See USAGE
section.)

PARAMETERS

parport.p.pin—<n>-out—invert (bit)
Inverts an output pin.
parport.p.pin—<n>-out-reset (bit)
(only for out pins) TRUE if this pin should be reset when the .reset function is executed.

parport.p.reset—time (u32)
The time (in nanoseconds) between a pin is set by write and reset by the reset function if it is enabled.

FUNCTIONS

parport.p.read (funct)
Reads physical input pins of port <portnum> and updates HAL —in and —in—not pins.

parport.read—all (funct)
Reads physical input pins of all ports and updates HAL —in and —in—not pins.

parport.p.write (funct)
Reads HAL —out pins of port p and updates that port’s physical output pins.

parport.write—all (funct)
Reads HAL —out pins of all ports and updates all physical output pins.

parport.p.reset (funct)
Waits until reset—time has elapsed since the associated write, then resets pins to values indicated by
—out—reset and —out—invert settings. Reset must be later in the same thread as write. If —out—reset is
TRUE, then the reset function will set the pin to the value of _ —out—invert_ . This can be used in
conjunction with stepgen’s doublefreq to produce one step per period. The stepgen stepspace for that
pin must be set to 0 to enable doublefreq.

USAGE

374

The hal_parport component is a driver for the traditional PC parallel port. The port has a total of 25
physical pins of which 17 are used for signals. The original parallel port divided those pins into three
groups: data, control, and status. The data group consists of 8 output pins, the control group consists of 4
output pins, and the status group consists of 5 input pins.

In the early 1990s, the bidirectional parallel port was introduced, which allows the data group to be used for
output or input. The HAL driver supports the bidirectional port, and allows the user to set the data group as
either input or output. If configured as "out", a port provides a total of 12 outputs and 5 inputs. If configured
as "in", it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an

nyn

external gate. On a board with open collector control pins, if configured as "x", it provides 8 outputs, and 9
inputs.

In some parallel ports, the control group has push—pull drivers and cannot be used as an input.
Note: HAL and Open Collectors

01/04/2026 LinuxCNC

HAL_PARPORT (9) LinuxCNC Documentation HAL PARPORT(9)

HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors
(OC). If they are not, they cannot be used as inputs, and attempting to drive them LOW from an
external source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no device
attached, HAL should read the pin as TRUE. Next, insert a 470 ohm resistor from one of the control pins to
GND. If the resulting voltage on the control pin is close to 0V, and HAL now reads the pin as FALSE, then
you have an OC port. If the resulting voltage is far from OV, or HAL does not read the pin as FALSE, then
your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates (e.g., 74LS05).

On some computers, BIOS settings may affect whether x mode can be used. SPP mode is most likely to
work.

No other combinations are supported, and a port cannot be changed from input to output once the driver is
installed.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports are
numbered starting at zero.

Loading the hal_parport component
The hal_parport driver is a real time component so it must be loaded into the real time thread with
loadrt. The configuration string describes the parallel ports to be used, and (optionally) their types. If
the configuration string does not describe at least one port, it is an error.

loadrt hal_parport cfg="port [type] [port [type] ...]"

Specifying the Port
Numbers below 16 refer to parallel ports detected by the system. This is the simplest way to configure
the hal_parport driver, and cooperates with the Linux parport_pc driver if it is loaded. A port of O is
the first parallel port detected on the system, 1 is the next, and so on.

Basic configuration
This will use the first parallel port Linux detects:

loadrt hal_parport cfg="0"

Using the Port Address
Instead, the port address may be specified using the hex notation 0x then the address.+ loadrt
hal_parport cfg="0x378"

Specifying a port Type
For each parallel port handled by the hal_parport driver, a type can optionally be specified. The type is
one of in, out, epp, or X.

If the type is not specified, the default is out.

A type of epp is the same as out, but the hal_parport driver requests that the port switch into EPP mode.
The hal_parport driver does not use the EPP bus protocol, but on some systems EPP mode changes the
electrical characteristics of the port in a way that may make some marginal hardware work better. The
Gecko G540’s charge pump is known to require this on some parallel ports.

See the Note above about mode x.

Example with two parallel ports
This will enable two system—detected parallel ports, the first in output mode and the second in input
mode:

LinuxCNC 01/04/2026 375

HAL_PARPORT (9) LinuxCNC Documentation HAL PARPORT(9)

loadrt hal_parport cfg=""0 out 1 in"

Functions single port
You must also direct LinuxCNC to run the read and write functions.

addf parport.read—all base—thread

addf parport.write—all base—thread

Functions multiple ports
You can direct LinuxCNC to run the read and write functions for all the attached ports.

addf parport.0.read base—thread
addf parport.0.write base—thread

The individual functions are provided for situations where one port needs to be updated in a very fast
thread, but other ports can be updated in a slower thread to save CPU time. It is probably not a good idea to
use both an —all function and an individual function at the same time.

SEE ALSO
Parallel Port Driver (Hardware Drivers Section of LinuxCNC Docs), PCI Parallel Port Example (Hardware
Examples Section of LinuxCNC Docs)

AUTHOR
This man page written by Joe Hildreth as part of the LinuxCNC project. Most of this information was taken
from the parallel—port docs located in the Hardware Drivers section of the documentation. To the best of
our knowledge that documentation was written by Sebastian Kuzminsky and Chris Radek.

376 01/04/2026 LinuxCNC

HISTOBINS (9) LinuxCNC Documentation HISTOBINS (9)

NAME

histobins — histogram bins utility for scripts/hal-histogram

SYNOPSIS

loadrt histobins [count=N|names=namel[,name2...]]

DESCRIPTION
Read availablebins pin for the number of bins available. Set the minvalue, binsize, and nbins pins and
ensure nbins A availablebins.

For nbins = N, the bins are numbered: O ... N-1

Iterate:
* Set index pin to a bin number: 0 8% index < nbins.
* Read check pin and verify that check pin == index pin.

* Read outputs: binvalue, pextra, nextra pins.
(binvalue is count for the indexed bin)
(pextra is count for all inputs > maxvalue)
(nextra is count for all bins < minvalue)

If index is out of range (index < 0 or index > maxbinnumber then binvalue == —1. The input—error pin
is set when input rules are violated and updates cease. The reset pin may be used to restart.

The input used is selected based on pintype:

pintype | inputpin
0 input
1 input—s32
2 input-u32
3 input-bit

Additional output statistics pins:
* input-min
* input-max
* nsamples
e variance

* mean
The method input pin selects an alternate variance calculation.

Maintainers note: hardcoded for MAXBINNUMBER==200

FUNCTIONS
histobins.N (requires a floating—point thread)

LinuxCNC 01/04/2026 377

HISTOBINS(9) LinuxCNC Documentation

PINS

histobins.N.pintype u32 in
histobins.N.input float in
histobins.N.input—s32 s32 in
histobins.N.input—-u32 u32 in
histobins.N.input-bit bit in
histobins.N.nbins u32 in (default: 20)
histobins. N .binsize float in (default: /)
histobins.N.minvalue float in (default: 0)
histobins.N.index s32 in
histobins.N.check s32 out
histobins.N.reset bit in
histobins.N.method bit in
histobins.N.input—error bit out
histobins.N.binvalue float out
histobins.N.pextra float out
histobins.N.nextra float out
histobins.N.input—-min float out
histobins.N.input—-max float out
histobins.N.nsamples u32 out
histobins.N.variance float out
histobins.N.mean float out

histobins.N.availablebins s32 out (default: 200)

AUTHOR

Dewey Garrett

LICENSE

378

GPL

01/04/2026

HISTOBINS (9)

LinuxCNC

HM?2_7143(9) LinuxCNC Documentation HM?2_7143(9)

NAME
hm2_7i43 — LinuxCNC HAL driver for the Mesa Electronics 7i43 EPP Anything 10 board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i43 [ioaddr=N[,N...] | [ioaddr_hi=N[,N...]] [epp_wide=N[,N...]] [config=""str"" |
[debug_epp=N__[,N...]]

ioaddr [default: O (parport0)]
The base address of the parallel port.

The number of ioaddr indexes/addresses given is used by the driver to determine how many boards to
search for.

ioaddr_hi [default: O]
The secondary address of the parallel port, used to set EPP mode. O means to use ioaddr + 0x400.

epp_wide [default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16— and 32-bit EPP transfers,
which can reduce the time spent in the read and write functions. However, this may not work on all
EPP parallel ports.

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

debug_epp [default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm?2_7i43 is a device driver that interfaces the Mesa 7i43 board with the HostMot2 firmware to the
LinuxCNC HAL. Both the 200K and the 400K FPGAs are supported.

The driver talks with the 7i43 over the parallel port, not over USB. USB can be used to power the 7i43, but
not to talk to it. USB communication with the 7i43 will not be supported any time soon, since USB has
poor real—time qualities.

The driver programs the board’s FPGA with firmware when it registers the board with the hostmot2 driver.
The firmware to load is specified in the config modparam, as described in the hostmot2(9) manpage, in the
config modparam section.

JUMPER SETTINGS
To send the FPGA configuration from the PC, the board must be configured to get its firmware from the
EPP port. To do this, jumpers W4 and W5 must both be down, ie toward the USB connector.

The board must be configured to power on whether or not the USB interface is active. This is done by
setting jumper W7 up, ie away from the edge of the board.

COMMUNICATING WITH THE BOARD
The 7i43 communicates with the LinuxCNC computer over EPP, the Enhanced Parallel Port. This provides
about 1 Mbps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9. EPP 1.9 is preferred, but EPP 1.7 will work too. The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cards do not work. They do not meet
the EPP spec, and cannot be reliably used with the 7i43. You have to find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may

cause communication timeouts. The driver exports a parameter named hm2_7i43.<BoardNum>.io_error to
inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops

LinuxCNC 01/04/2026 379

HM?2_7143(9) LinuxCNC Documentation HM?2_7143(9)

communicating with the 7i43 board. Setting io_error back to False makes the driver start trying to
communicate with the 7i43 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LICENSE
GPL

380 01/04/2026 LinuxCNC

HM?2_7190(9) LinuxCNC Documentation HM?2_7190(9)

NAME
hm2_7i90 — LinuxCNC HAL driver for the Mesa Electronics 7190 EPP Anything 10 board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i90 [ioaddr=NI[,N...]] [ioaddr_hi=N[,N...]] [epp_wide=N[,N...]] [debug_epp=N[,N...]]

ioaddr [default: O (parport0)]
The base address of the parallel port.

The number of ioaddr indexes/addresses given is used by the driver to determine how many boards to
search for. Previously the number of config strings was used, but a blank config string is perfectly
acceptable for 7i90.

ioaddr_hi [default: O]
The secondary address of the parallel port, used to set EPP mode. O means to use ioaddr + 0x400.

epp_wide [default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16— and 32-bit EPP transfers,
which can reduce the time spent in the read and write functions. However, this may not work on all
EPP parallel ports.

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

debug_epp [default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm?2_7i90 is a device driver that interfaces the Mesa 7190 board with the HostMot2 firmware to the
LinuxCNC HAL.

The 7190 firmware is stored on the 7i90 itself, it is not programmed by the driver at load time. The 7i90
firmware can be changed using the mesaflash program.

The driver talks with the 7i90 over the parallel port, via EPP.

COMMUNICATING WITH THE BOARD
The 7190 communicates with the LinuxCNC computer over EPP, the Enhanced Parallel Port. This provides
about 1 MBps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9. EPP 1.9 is preferred, but EPP 1.7 will work too. The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cards do not work. They do not meet
the EPP spec, and cannot be reliably used with the 7i190. You have to find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may
cause communication timeouts. The driver exports a parameter named hm2_7i90.<BoardNum>.io_error to
inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops
communicating with the 7i90 board. Setting io_error back to False makes the driver start trying to
communicate with the 7i90 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LinuxCNC 01/04/2026 381

HM?2_7190(9) LinuxCNC Documentation HM?2_7190(9)

LICENSE
GPL

382 01/04/2026 LinuxCNC

HM?2_ETH(9) LinuxCNC Documentation HM?2_ETH(9)

NAME
hm2_eth — LinuxCNC HAL driver for the Mesa Electronics Ethernet Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_eth [config="str[,str...]"] [board_ip=ip[,ip...]] [board_mac=mac[,mac...]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

board_ip [default: ""]
The IP address of the board(s), separated by commas. As shipped, the board address is 192.168.1.121.

DESCRIPTION
hm2_eth is a device driver that interfaces Mesa’s ethernet based Anything I/0O boards (with the HostMot2
firmware) to the LinuxCNC HAL. The supported boards are: 7176E, 7I80DB, 7I80HD, 7192, 7193, 7194,
7195, 7196, 7196S, 7197, 7198. It also supports boards with the litthm?2 firmware
(https://github.com/sensille/litehm?2). The board must have its firmware loaded on the board by the
mesaflash(1) program.

hm2_eth is only available when LinuxCNC is configured with "uspace" realtime.

INTERFACE CONFIGURATION
hm2_eth should be used on a dedicated network interface, with only a cable between the PC and the board.
Wireless and USB network interfaces are not suitable.

These instructions assume your dedicated network interface is "eth1", 192.168.1/24 is an unused private
network, that the hostmot2 board is using the default address of 192.168.1.121, that you are using Debian 7
or similar, and that you do not otherwise use iptables. If any of these are false, you will need to modify the
instructions accordingly. After following all the instructions, reboot so that the changes take effect.

It is particularly important to check that the network 192.168.1/24 is not already the private network used
by your internet router, because this is a commonly—used value. If you use another network, you will also
need to reconfigure the hostmot2 card to use an IP address on that network by using the mesaflash(1) utility
and change jumper settings. Typically, you will choose one of the networks in the Private IPv4 address
space. One common alternative is PC address 10.10.10.1, hostmot2 address 10.10.10.10.

Use of the dedicated ethernet interface while LinuxCNC is running can cause violation of realtime
guarantees. hm2_eth will automatically mitigate most accidental causes of interference.

Configure network with static address
Add these lines to the file /etc/network/interfaces to configure the ethernet interface eth1 with a static
address:

auto ethl

iface ethl inet static
address 192.168.1.1
hardware—irq—coalesce—rx—usecs 0

PACKET LOSS
While ethernet is fairly resistant to electrical noise, many systems will not have 100% perfect packet
reception. The hm?2_eth driver has a limited ability to deal with lost packets. Packet loss is detected by
transmitting an expected read or write packet count with each request, and checking the value with each
read response. When a lost packet is detected, the packet—error pin is asserted in that cycle, the
packet—error—level pin is increased, and if it reaches a threshold then a permanent low—level I/O error is
signaled.

However, not all hm?2 special functions know how to properly recover from lost packets. For instance, the
encoder special function does not properly manage the index feature when packets are lost. The author

LinuxCNC 01/04/2026 383

HM?2_ETH(9) LinuxCNC Documentation HM?2_ETH(9)

PINS

believes that this can lead to rare failures in home—to—index, which can have severe consequences.

On the other hand, pid—stepper systems will run properly for extended periods of time with packet loss on
the order of .01%, as long as following error is increased enough that having stale position feedback does
not trigger a following error. Altering the HAL configuration so that during transient packet loss the pid and
motion feedback value is equal to the command value, instead of the stale feedback value, appears to
improve tuning. This can be accomplished with a mux2(9) component for each feedback signal, using
packet—error as the mux2 sel input.

In addition to the pins documented in hostmot2(9), hm2_eth(9) creates the following additional pins:

hm2_<BoardType>.<BoardNum> .packet—error (bit, out)
This pin is TRUE when the most recent cycle detected a read or write error, and FALSE at other times.

hm2_<BoardType>.<BoardNum>.packet—error—level (s32, out)
This pin shows the current error level, with higher numbers indicating a greater number of recent
detected errors. The error level is always in the range from 0 to packet—error—limit, inclusive.

hm?2_<BoardType>.<BoardNum> .packet—error—exceeded (bit, out)
This pin is TRUE when the current error level is equal to the maximum, and FALSE at other times.

PARAMETERS

In addition to the parameters documented in hostmot2(9), hm2_eth(9) creates the following additional
parameters:

hm2_<BoardType>.<BoardNum>.packet—error—decrement (s32, rw)
The amount deducted from packet—error—level in a cycle without detected read or write errors, without
going below zero.

hm2_<BoardType>.<BoardNum> .packet—error—increment (s32, rw)
The amount added to packet—error—level in a cycle without detected read or write errors, without
going above packet—error—limit.

hm2_<BoardType>.<BoardNum>.packet—error—limit (s32, rw)
The level at which a detected read or write error is treated as a permanent error. When this error level
is reached, the board’s io—error pin becomes TRUE and the condition must be manually reset.

hm2_<BoardType>.<BoardNum> .packet-read—timeout (s32, rw)
The length of time that must pass before a read request times out. If the value is less than or equal to O,
it is interpreted as 80% of the thread period. If the value is less than 100, it is interpreted as a
percentage of the thread period. Otherwise, it is interpreted as a time in nanoseconds. In any case, the
timeout is never less than 100 microseconds.

Setting this value too low can cause spurious read errors. Setting it too high can cause realtime delay errors.

NOTES

384

hm2_eth uses an iptables chain called "hm2—eth—rules—output”. That technology is common to control
network access to INPUT chain), through (FORWARD chain) or from (OUTPUT chain) your computer.
Someone who has configured a firewall on Linux has encountered iptables is familiar with that technology.
This chain contains additional rules to control network interface while HAL is running. The chain is created
if it does not exist, and a jump to it is inserted at the beginning of the OUTPUT chain if it is not there
already. If you have an existing iptables setup, you can insert a direct jump from OUTPUT to
hm2-eth—rules—output in an order appropriate to your local network.

At (normal) exit, hm2_eth will remove the rules. After a crash, you can manually clear the rules with sudo
iptables —F hm2-eth—rules—output; the rules are also removed by a reboot.

"hardware—irq—coalesce—rx—usecs" decreases time waiting to receive a packet on most systems, but on at
least some Marvel—chipset NICs it is harmful. If the line does not improve system performance, then

01/04/2026 LinuxCNC

HM?2_ETH(9) LinuxCNC Documentation HM?2_ETH(9)

remove it. A reboot is required for the value to be set back to its power—on default. This requires the ethtool
package to be installed.

BUGS
Some hostmot2 functions such uart are coded in a way that causes additional latency when used with
hm?2_eth.

On the 7192, the HAL pins for the LEDs are called CRO1..CR04, but the silkscreens are CR3..CR6.
Depending on the FPGA firmware, the LEDs may initially be under control of the ethernet engine. This can
be changed until power cycle with

elbpcom 01D914000000

Depending on firmware version, this driver may cause the hardware error LED to light even though the
driver and hardware are functioning normally. This will reportedly be fixed in future bitfile updates from
Mesa.

SEE ALSO
hostmot2(9), elbpcom(1)

LICENSE
GPL

LinuxCNC 01/04/2026 385

HM2_MODBUS(9) LinuxCNC Documentation HM2_MODBUS(9)

NAME

hm2_modbus — A hostmot2 driver that implements the Modbus protocol using the PktUART ports.

SYNOPSIS

loadrt hm2_modbus ports=... mbccbs=...

ports [default: <empty>]
A comma separated list of PkKtUART HAL names to use as Modbus hardware channel. Each must be
matched with an MBCCSB file specified in the mbccbs parameter. Example:
ports="hm?2_7i96s.0.pktuart.0","hm2_5i25.0.pktuart.2"

mbccbs [default: <empty>]
A comma separated list of "Modbus Command Control Binary" (MBCCB) file paths to use for each
PktUART port as specified in the ports parameter. The path should be an absolute path to prevent
nasty surprises. Example: mbccbs="/path/to/rly—and—spindle.mbccb","/path/to/lightsparks.mbccb”

debug [default: —1]
Set the message level of the running process. The message level is set if debug is set to a positive
value between 0 and 5, where 0 means no messages at all and 5 means everything. A value of —1 does
not touch the current message level.

Caveat Emptor: the driver must be compiled with debug messages enabled for it to start emitting
messages at the debug level. Changing the message level is process—wide and all modules within the
process will spit out messages at the requested level. This may cause quite some clutter in your
terminal.

DESCRIPTION

386

The hm2_modbus driver implements the Modbus protocol and maps HAL pins to Modbus devices' coils,
inputs and registers. The mappings may be a complex combination of types and pins. The configuration
format is described in mesambcce(1).

The Mesa FPGA board must be flashed with a PkKtUART capable bit—file. It is recommended to use an
FPGA bit—file that supports PktUART version 3 or later. The hm2_modbus driver will run with PktUART
version 2, but it will lack several important bug fixes and features, like 2 stop—bits, correct and extended
inter—frame delay for high speed communication and inter—character delay measurements. Warnings will
be emitted if communication settings cannot be honored by the older PktUART version. PktUART versions
older than 2 are not supported and the driver will abort with an error if encountered.

The driver exports a set of HAL pins and parameters that can be used to inspect status and alter some
settings in a live environment.

Up to eight instances are supported, which are instantiated by setting the ports and mbccbs parameters.
The instances are named hm2_modbus.0, hm2_modbus. 1, etc.. The pin names generated by the driver will
always be prefixed with the driver’s name.

loadrt hm2_modbus ports="7196s.0.pktuart.0" mbccbs="/path/to/myfile.mbccb"

The driver exports one function named process, which must be added to the servo—thread after hostmot2’s
read function and before hostmot2’s write function:

addf hm2_7i96s.0.read servo—thread

Add any functions here that process data that will be sent to
the Modbus device(s).

addf hm2_modbus.0.process servo—thread

01/04/2026 LinuxCNC

HM2_MODBUS(9) LinuxCNC Documentation HM2_MODBUS(9)

Add any functions here that process data received from the
Modbus device(s).

addf hm2_7i96s.0.write servo—thread

There are no software limits to how many Modbus devices may share one and the same physical bus and by
extension the same hm2_modbus instance. The Modbus protocol limits the number of devices to 247
(available device IDs). However, the practical limit will be effective communication speed and bus load.

PARAMETERS
Exported parameters for driver instance N:

hm2_modbus.N.baudrate (u32, readonly)
The communication baudrate.

hm2_modbus.N.drivedelay (u32, readonly)
The transmitter wait time between enabling the transmitter and start sending in bit—times.

hm2_modbus.N.icdelay (u32, readonly)
The maximum inter—character delay accepted in received frames in bit—times. Set to zero (0) when
disabled.

hm2_modbus.N.parity' (u32, readonly)
The communication parity (0=None, 1=0dd, 2=Even).

hm2_modbus.N.rxdelay (u32, readonly)
The inter—frame delay required before a packet is accepted in bit—times.

hm2_modbus.N.stopbits (u32, readonly)
The communication number of stopbits (1 or 2).

hm2_modbus.N.txdelay (u32, readonly)
The inter—frame delay inserted after a packet in bit—times.

The parameters are all read/only. There is normally no need to alter any parameters. Any tuning of values
should be done in the mbccs/mbecb file.

PINS
Each driver instance N exports the following pins to control the instance’s operation and indicate the
instance’s status:

hm2_modbus.N.fault (bit, output)
Indicates a fault condition.

hm2_modbus.N.fault-command (u32, output)
The command index that caused the last fault condition.

hm2_modbus.N.last—error—code (u32, output)
The errno value of the error that caused the fault condition.

hm2_modbus.N.reset (bit, input)
Reset all commands error counters and re—enable disabled commands on the rising edge of the input
pin.

hm2_modbus.N.suspend (bit, input)
Suspend all activity while set. The default can be set in the MBCCB file.

Suspended start (when set in the MBCCB file) can ensure that all HAL files and commands are parsed
and executed (like setp and sets commands) before Modbus communication starts. This enables you to
setup scale and offset pins without bad values being pushed to the Modbus device(s). The last HAL
command after setting all relevant pins and signals would be to enable Modbus communication by
isssuing (replace N with actual instance number):

LinuxCNC 01/04/2026 387

HM2_MODBUS(9) LinuxCNC Documentation HM2_MODBUS(9)

388

setp hm2_modbus.N.suspend false It may be necessary to issue a delay command as the first or last
init command to ensure flushing all pins before reading pin data that will be transferred to the Modbus
device(s). See also writeflush attribute in the MBCCB file.

It is possible to suspend the Modbus communication by setting the suspend pin to true in a live and
running system. The suspend pin is probed every time at the end of the <commands> list and
execution will become suspended if the pin is true.

Command pins

Each command in the MBCCB file (not init commands) will generate a set of pins to reflect
the current state, where MM is the command number counting from zero (00):

hm2_modbus.N.command.MM.disable (bit, input)
Disable this command on the rising edge of this pin. You need to use the command’s
corresponding reset pin to re—enable it.

hm2_modbus.N.command.MM.disabled (bit, output)
Set if the command is no longer sent in the commands loop.

hm2_modbus.N.command.MM.error—code (u32, output)
The errno code of the last error. The following error codes can be set:

e 5, 0x05 (EIO): The receiver detected an overrun, a false start—bit or wrong parity.

9, 0x09 (EBADF): The reply returned an unsupported function.

e 11, 0xOb (EAGAIN): The command was manually disabled in the mbccb or via the
disable pin.

e 22,0x16 (EINVAL): An invalid value was detected (internal error).
e 27, 0x1b (EFBIG): The received data packet size exceeds the internally allocated buffer.

e 34, 0x22 (ERANGE): The received data packet was too small or the message’s length
indicator was wrong.

e 42, 0x2a (ENOMSG): The inter—character delay was too long and the packet was
dropped.

e 44, 0x2c (ECHRNG): The reply had a different function than the sent function.

e 52,0x34 (EBADE): The CRC of the received packet was wrong.

e 74, 0x4a (EBADMSG): The reply had the error—bit set.

e 75, 0x4b (EOVERFLOW): The received packet was larger than the maximum 256 bytes.
* 90, 0x5a (EMSGSIZE): The message did not fit into the maximum PDU size of 253.

e 110, 0x6e (ETIMEDOUT): The command received no reply and timed out.

hm2_modbus.N.command.MM.errors (u32, output)
The number of consecutive errors seen in this command. The command will be disabled when
this count reaches five (5). The value will be reset to zero (0) when the command succeeds.

hm2_modbus.N.command.MM.reset (bit, input)
Reset this command’s error counter and re—enable the command on the rising edge of the input
pin.

Note: Re—enabling the command will honor the writeflush setting of the command.

Each mbccb file will generate a set of pins as defined in the mbccb file. See mesambecee(1) for details.

01/04/2026 LinuxCNC

HM2_MODBUS(9) LinuxCNC Documentation HM2_MODBUS(9)

SEE ALSO

hostmot2(9), mesambcce(1).

AUTHOR
This man page written by B.Stultiens, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2025 B.Stultiens

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 389

HM2_PCI(9) LinuxCNC Documentation HM?2_PCI(9)

NAME
hm2_pci — LinuxCNC HAL driver for the Mesa Electronics PCI-based Anything 10 boards, with
HostMot?2 firmware.

SYNOPSIS
loadrt hm2_pci [config="sr[,str...]"]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

DESCRIPTION
hm2_pci is a device driver that interfaces Mesa’s PCI and PC—104/Plus based Anything I/O boards (with
the HostMot2 firmware) to the LinuxCNC HAL.

The supported boards are: the 5i20, 5i21, 5i22, 5i23, 5i24, and 5125 (all on PCI); the 4i65, 4168, and 4169
(on PC—-104/Plus), and the 3x20 (using a 6168 or 7i68 carrier card) and 6i25 (on PCI Express).

The driver optionally programs the board’s FPGA with firmware when it registers the board with the
hostmot2 driver. The firmware to load is specified in the config modparam, as described in the hostmot2(9)
manpage, in the config modparam section.

SEE ALSO
hostmot2(9)

LICENSE
GPL

390 01/04/2026 LinuxCNC

HM?2_RPSPI(9) LinuxCNC Documentation HM?2_RPSPI(9)

NAME

hm2_rpspi — This driver has been superseded by the hm?2_spix driver. LinuxCNC HAL driver for the Mesa
Electronics SPI Anything IO boards, with HostMot2 firmware.

SYNOPSIS
loadrt hm2_rpspi

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

spiclk_rate [default: 31250]
Specify the SPI clock rate in kHz. See SPI CLOCK RATES below.

spiclk_rate_rd [default: —1 (same as spiclk_rate)]
Specify the SPI read clock rate in kHz. Usually you read and write at the same speed. However, you
may want to reduce the reading speed if the round—trip is too long (see SPI CLOCK RATES below).

spiclk_base [default: 400000000]
This is the SPI clock divider calculation fallback value. Usually, the base rate is read from
/sys/kernel/debug/clk/vpu/clk_rate and used in the divider calculation (for the Rpi3 it should be 250
MHz). The spiclk_base is only used as a fallback if the system’s cannot be read. It is normally safe
(and recommended) that you leave this parameter as is.

You should set this manually to 250000000 if your system does not provide access to the kernel clock
settings. Otherwise, your SPI clock frequency will be only 62.5% of the requested value.

spi_pull_miso [default: 1 (pull-down)], spi_pull_mosi [default: 1 (pull-down)], spi_pull_sclk [default: 1
(pull-down)]
Enable or disable pull-up/pull-down on the SPI lines. A value of 0 disables any pull-up/down on the
pin. A value of 1 means pull-down and 2 means pull-up. The chip enable line(s) are always pull-up
enabled.

spi_probe [default: 1]
Probe SPI port and CE lines for a card. This is a bit—field indicating which combinations of SPI and
CE should be probed:

* 1 =SPI0/CEO,
* 2 =SPI0/CEL,
4 = SPI1/CEO,
8 = SPI1/CE]l,
16 = SPI1/CE2.

The probe is performed exactly in above order. Any boards found will be numbered 0...4 in the order found.
See also INTERFACE CONFIGURATION below.

It is an error if a probe fails and the driver will abort. The SPIO/SPI1 peripherals are located at GPIO pins
(with 40—pin I/O header pin—number in parentheses): — SPI0: MOSI=10(19), MISO=9(21), SCLK=11(23),
CE0=8(24), CE1=7(26) — SPI1: MOSI=20(38), MISO=19(35), SCLK=21(40), CE0=18(12), CE1=17(11),
CE2=16(36)

spi_debug [default: —1]
Set the message level of the running process. The message level is set if spi_debug is set to a positive
value between 0 and 5, where 0 means no messages at all and 5 means everything. A value of —1 does
not touch the current message level.

Caveat Emptor: Changing the message level is process—wide and all modules within the process will spit
out messages at the requested level. This may cause quite some clutter in your terminal.

LinuxCNC 01/04/2026 391

HM?2_RPSPI(9) LinuxCNC Documentation HM?2_RPSPI(9)

DESCRIPTION

hm2_rpspi is a device driver for the Raspberry Pi 2/3 that interfaces Mesa’s SPI based Anything I/O boards
(with the HostMot2 firmware) to the LinuxCNC HAL. This driver is not based on the linux spidev driver,
but on a dedicated BCM2835—SPI driver.

It is strongly recommended that you unload/disable the kernel’s spidev driver by disabling it using
raspi—config. Please note that having both kernel and user—space SPI drivers installed can result in
unexpected interactions and system instabilities.

The supported boards are: 7190HD.

The board must have a compatible firmware (ie.: 7i90_spi_svst4_8.bit) loaded on the board by the
mesaflash(1) program.

hm2_rpspi is only available when LinuxCNC is configured with "uspace" realtime. It works with Raspian
and PREEMPT _RT kernel.

INTERFACE CONFIGURATION

Up to five devices (7i90 boards) are supported. Two on SPIO and three on SPII. It is recommended that
you, at most, use two devices and each device connected to a separate SPI port. You can choose which CE
lines you prefer or fit the design and setup the spi_probe parameter to instruct the driver where to search
for the board(s).

REALTIME PERFORMANCE OF THE BCM2835-SPI DRIVER

TBD.

SPI CLOCK RATES

392

The maximum SPI clock of the BCM2835—SPI driver and the 7190 is documented over 32 MHz. The SPI
driver can provide frequencies well beyond what is acceptable for the 7i90. A safe value to start with would
be 12.5 MHz (spiclk_rate=12500) and then work your way up from there.

The SPI driver generates (very) discrete clock frequency values, especially in the MHz range because of a
simple clock divider structure. The base frequency is 250 MHz and the divider for SPIO/SPII1 scales using
discrete factors. The following list specifies the spiclk_rate setting and the discrete SPI clock frequency
(250 MHz / (2n) forn > 1):

Table 1. SPI clock rate and corresponding SPI clock frequency

01/04/2026 LinuxCNC

HM?2_RPSPI(9) LinuxCNC Documentation HM?2_RPSPI(9)

Divider | spiclk_rate (kHz) | actual frequency
2 62500 62.500 MHz
3 41667 41.667 MHz
4 31250 31.250 MHz
5 25000 25.000 MHz
6 20834 20.833 MHz
7 17858 17.857 MHz
8 15625 15.625 MHz
9 13889 13.889 MHz
10 12500 12.500 MHz
11 11364 11.364 MHz
12 10417 10.417 MHz
13 9616 9.615 MHz

The lowest selectable SPI clock frequency is 30 kHz (spiclk_rate=30) for SPIO and SPI1. Theoretically, the
SPIO port could go slower, but there is no point in doing so. You should not expect any real-time
performance with such slow setting, unless your machine is located next to a black hole.

The highest SPI clock frequency is, theoretically, 125 MHz. However, you will not be able to build any
reliable hardware interface at that frequency. The driver limits the clock to 62.5 MHz (cpiclk_rate=62500).
The chances are rather slim that you get the interface to work reliably at this frequency. The 7i90 interface
only supports frequencies up to 50 MHz and that is with perfect cabling and impedance matching (in write
direction only).

Writing to the 7190 may be done faster than reading. This is especially important if you have "long" wires
or any buffers on the SPI-bus path. You can set the read clock frequency to a lower value (using
spiclk_rate_rd) to counter the effects of the SPI-bus round—trip needed for read actions. For example, you
can write at 41.67 MHz and read at 25.00 MHz.

It should be noted that the RPi3 must have an adequate 5V power supply and the power should be properly
decoupled right on the 40—pin I/O header. At high speeds and noise on the supply, there is the possibility of
noise throwing off the SoC’s PLL(s), resulting in strange behaviour.

For optimal performance on the RPi3, you must disable the "ondemand" CPU frequency governor. You
may add the following to your /etc/rc.local file:

1313

echo —n 1200000 > /sys/devices/system/cpu/cpufreq/policy(O/scaling_min_freq echo —n performance >
/sys/devices/system/cpu/cpufreq/policy(O/scaling_governor

LinuxCNC 01/04/2026 393

HM?2_RPSPI(9) LinuxCNC Documentation HM?2_RPSPI(9)

Be sure to have a proper heatsink mounted on the SoC or it will get too warm and crashes.

NOTE

This driver has been superseded for most purposes by the hm2_spix driver.

SEE ALSO
hostmot2(9) hm2_spix(9)

LICENSE
GPL

394 01/04/2026 LinuxCNC

HM?2_SPI(9) LinuxCNC Documentation HM?2_SPI(9)

NAME
hm2_spi — This driver has been superseded by the hm?2_spix driver. LinuxCNC HAL driver for the Mesa
Electronics SPI Anything IO boards, with HostMot2 firmware.

SYNOPSIS
loadrt hm2_spi [config="str[,str...]"] [spidev_path=path[,path...]] [spidev_rate=rate[,rate...]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

spidev_path [default: "/dev/spidev1.0"]
The path to the spi device node, a character special device in /dev

spidev_rate [default: 24000]
The desired rate of the SPI clock in kHz. If the exact specified clock is not available, a lower clock is
used. Due to shortcomings in the spidev AP, it is not possible for hal to report the actual clock used.

DESCRIPTION
hm2_spi is a device driver that interfaces Mesa’s SPI based Anything I/O boards (with the HostMot2
firmware) to the LinuxCNC HAL.

The supported boards are: 7190HD.
The board must have a compatible firmware loaded on the board by the mesaflash(1) program.

hm2_spi is only available when LinuxCNC is configured with "uspace" realtime.

INTERFACE CONFIGURATION
It is possible for one SPI bus to connect several devices; in this configuration, a master device has several
chip select lines. In order to meet realtime deadlines, hm2_spi should be used on a dedicated SPI interface
not shared with any other slaves.

REALTIME PERFORMANCE OF LINUX SPIDEV DRIVERS
As of kernel 3.8, most or all kernel SPI drivers do not achieve the high realtime response rate required for a
typical LinuxCNC configuration. The driver was tested with a modified version of the spi—s3c64xx SPI
driver on the Odroid U3 platform. The patched kernel resides on github.

SPI CLOCK RATES
The maximum SPI clock of the 7190 is documented as SOMHz. Other elements of the data path between
HAL and the 7i90 may impose other limitations.

NOTE

This driver has been superseded for most purposes by the hm2_spix driver.

SEE ALSO
hostmot2(9) hm2_spix(9)

LICENSE
GPL

LinuxCNC 01/04/2026 395

HM?2_SPIX(9) LinuxCNC Documentation HM?2_SPIX(9)

NAME

hm2_spix — LinuxCNC HAL driver for the Mesa Electronics Anything IO boards with SPI enabled
HostMot?2 firmware.

SYNOPSIS

loadrt hm2_spix [arg [arg [...]]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

spiclk_rate [default: 25000]
Specify the SPI clock rate in kHz for each probed board. See SPI CLOCK RATES below. Each entry
follows the spi_probe setting, where each probe takes the next value of the spi_rate list. A spi_rate
of 0 (zero) or less automatically selects the first rate in the list. You may truncate the list to the number
of boards you use.

spiclk_rate_rd [default: same as spiclk_rate]
Specify the SPI read clock rate in kHz. Usually you read and write at the same speed. However, you
may want to reduce the reading speed if the round—trip is too long (see SPI CLOCK RATES below).
You may truncate the list to the number of boards you use.

spi_probe [default: 1]
Probe SPI port and CE lines for a card. This is a bit—field indicating which combinations of SPI and
CE should be probed: — 1 = SPI0/CEOQ, — 2 = SPIO/CE1, — 4 = SPI1/CEQ, — 8 = SPI1/CE1, - 16 =
SPI1/CE2.

The probe is performed exactly in above order. Any boards found will be numbered 0...4 in the order
found. It is an error if a probe fails and the driver will abort. See also INTERFACE
CONFIGURATION below.

force_driver [default: <auto probe>]
Force a specific hardware driver to be selected. This is usually not necessary and the hm2_spix driver
will normally select the appropriate hardware driver automatically. See also HARDWARE DRIVERS
below.

spidev_path [default: <empty>]
Override the device node path to the spidev device. Default is /dev/spidevX.Y, where X.Y is {0.0, 0.1,
1.0, 1.1, 1.2} in that order. This option has only effect if the spix_spidev hardware driver is selected or
forced to be used.

spi_noqueue [default: O (off)]
Force disable queued command processing. Normally, all requests are queued if requested by
upstream and sent in one bulk transfer. This reduces overhead significantly by up to 35%. Disabling
the queue makes each transfer visible and more easily debug—able. Set to any non—zero value to
disable the queue.

spi_debug [default: —1]
Set the message level of the running process. The message level is set if spi_debug is set to a positive
value between 0 and 5, where 0 means no messages at all and 5 means everything. A value of —1 does
not touch the current message level.

Caveat Emptor: changing the message level is process—wide and all modules within the process will
spit out messages at the requested level. This may cause quite some clutter in your terminal.

DESCRIPTION

396

hm2_spix is a device driver for all computer boards with an available SPI port, including Raspberry Pi 3, 4
and 5. The SPI port interfaces with Mesa’s SPI based Anything I/O boards with SPI enabled HostMot2
firmware to the LinuxCNC HAL.

This driver unifies all previous hostmot2 SPI hal drivers in one with dedicated hardware drivers for

01/04/2026 LinuxCNC

HM?2_SPIX(9) LinuxCNC Documentation HM?2_SPIX(9)

Raspberry Pi models 3, 4 and 5 and has a fall-back to spidev for unknown boards. Further hardware drivers
may be created and integrated when requested.

The supported Mesa boards are: 7I90HD, 7143, 7C80 and 7C81.

The board must have a compatible firmware (like: 7i190_spi_*-bit, 7c80_*.bit and 7c81_*.bit) loaded on the
board by the mesaflash(1) program.

hm2_spix is only available when LinuxCNC is configured with "uspace" realtime. It works with Raspian
and PREEMPT _RT kernel.

See also NOTES below.
HARDWARE DRIVERS

The following hardware drivers are implemented and probed in order:

Driver Board

spix_rpi3 RPi3B, RPi3A+, RPi3B+, RPi4B,
RPi4CM

spix_rpi5 | RPi5B, RPi5CM

spix_spidev | Any board not recognised

Probing the hardware is implemented by matching known computer boards against the device—tree
compatible string—list from /proc/device—tree/compatible. Normally, the first hardware driver giving a
match will be selected. However, it is possible to force a specific driver to be used using the force_driver
option with the name of the driver you want to use.

INTERFACE CONFIGURATION
Up to five device boards are supported. Two on SPIO and three on SPI1. It is recommended that you, at
most, use two devices and each device connected to a separate SPI port. You can choose which CE lines
you prefer or fit your design and setup. Use the spi_probe parameter to instruct the driver where to search
for the board(s).

For the Mesa 7C80 and 7C81 you’ll always want to configure SPIO/CEQ. These boards have a matching
40-pin header for the computer board.

The SPI ports are located on the 40—pin header for those computer boards with a compatible header. The
GPIO numbers are only guaranteed to be valid for Raspberry Pi boards.

Port SPIO:

LinuxCNC 01/04/2026 397

HM?2_SPIX(9)

LinuxCNC Documentation

Pin GPIO | 40-pin | Devname
MOSI 10 19

MISO 9 21

SCLK 11 23

CEO 8 24 | /dev/spidev0.0
CEl 7 26 | /dev/spidev0.1

Port SPI1:

Pin GPIO | 40-pin | Devname
MOSI 20 38

MISO 19 35

SCLK 21 40

CEO 18 12 | /dev/spidevl.0
CEl 17 11 | /dev/spidevl.l
CE2 16 36 | /dev/spidevl.2

REALTIME PERFORMANCE OF THE HM2_SPIX DRIVER

HM?2_SPIX(9)

Using a RPi3 will work, but is not the best option. Currently, the RPi4 is known to work adequately. The

newer RPi5 is a lot faster and will normally run a servo—thread at 1 kHz without problems.

All other computer boards and LinuxCNC configurations need to be tested thoroughly.

All other parameters: TBD.
SPI CLOCK RATES

The SPI driver can provide frequencies beyond what is acceptable for any board. A safe value to start with

would be 12.5 MHz (spiclk_rate=12500) and then work your way up from there.

The SPI driver generates (very) discrete clock frequencies, especially in the high MHz range because of a
simple clock divider structure. The base frequency is different between boards and the divider for
SPIO/SPI1 scales using discrete factors with formula f=trunc(base/(2*divider)). The following list specifies
the highest possible spiclk_rate and spiclk_rate_rd frequencies (in kHz) for discrete divider settings:

398

01/04/2026

LinuxCNC

HM?2_SPIX(9) LinuxCNC Documentation HM?2_SPIX(9)

RPi3 RPi4 RPi5
Base 400 MHz | 500 MHz | 200 MHz
Fastest 50000 50000 50000
40000 41666 33333
33333 35714 25000
28571 31250 20000
25000 27777 16666
22222 25000 14285
20000 22727 12500
18181 20833 11111
16666 19230 10000
15384 17857 9090
Slowest SPI0:4 SPI0:4 SPIO:4
Slowest SPI1:49 SPI1:62 SPI1:4

Note that the clock rate setting is heavily influenced by rounding and may be higher than expected if the
divider rounds to the next lower value. You can check the actual clock rate by enabling informational
messages (set spi_debug=3).

The slowest selectable SPI clock frequency for SPIO and SPI1 are not for production systems. They can be
selected for testing purposes. You should not expect any real—time performance with such slow setting.

The highest theoretically possible SPI clock frequency is higher than stated in the above table. However,
you will not be able to build any reliable hardware interface at that frequency. The driver limits the clock to
50.0 MHz (cpiclk_rate=50000). The Mesa board interface supports frequencies up to 50 MHz and that is
with good cabling in write direction only.

Writing to the Mesa board may be done faster than reading. This is especially important if you have "long"
wires or any buffers on the SPI-bus path. You can set the read clock frequency to a lower value (using
spiclk_rate_rd) to counter the effects of the SPI-bus round—trip needed for read actions. For example, you
can write at 33.33 MHz and read at 25.00 MHz.

The maximum SPI clock of the spix_rpi5 driver has been tested up to 50 MHz write speed and 33 MHz

read speed on the 7C80 and 7C81. However, it is not recommended to run at the limit on production
systems. A safe setting would be to set one step below the maximum speeds.

LinuxCNC 01/04/2026 399

HM?2_SPIX(9) LinuxCNC Documentation HM?2_SPIX(9)

NOTES
If you know your setup and do not require the spix_spidev driver, then it is strongly recommended that you
unload/disable the kernel’s SPI drivers dw_spi and dw_spi_mmio for the RPi5 or spi_bmc2835 for the
RPi3 and RPi4. The hm2_spix hardware drivers attempt to unload the kernel driver at startup if detected
and restore it at exit if initially loaded. However, there are no guarantees about the effectiveness of the
module unload/load actions.

Warning: having both kernel and user—space SPI drivers installed can result in unexpected interactions and
system instabilities.

The Raspberry Pi must have an adequate power supply. At high speeds and noise on the supply, there is the
possibility of strange behaviour if the noise gets out of hand.

The Mesa 7C80 provides enough local power to the host via the 40—pin interface header if your external
power supply is adequate (on connector TB6). The Mesa 7C81 needs an adequate external 5V power
supply (on connector TB1) and feeds it directly to the host interface header.

For the Raspberry Pi 4: Be sure to have a proper heat—sink mounted on the SoC or it will get too warm and
may crash.

For the Raspberry Pi 5: Be sure to have a proper active heat—sink mounted on the SoC or it will get too
warm and may crash.

SEE ALSO
hostmot2(9)

LICENSE
GPL

400 01/04/2026 LinuxCNC

HOMECOMP(9) LinuxCNC Documentation HOMECOMP(9)

NAME

homecomp — homing module template
SYNOPSIS

Custom Homing module loaded with [EMCMOT]JHOMEMOD=homecomp
DESCRIPTION

Example of a homing module buildable with halcompile. Demonstrates required code for #includes,
function definitions, etc.

If HOMING_BASE is #defined and points to a valid homing.c file, an example of a customized homing
module is built. This module creates input hal pins joint.n.request—custom—homing that enable an alternate
joint homing state machine for requested joints. A hal output pin joint.N.is_custom—homing verifies
selection”

The customized homing module utilizes many of the base homing api routines from homing.c without
modification but augments other base functions to add support for custom hal pins and custom joint homing
state machines. A user—built module will likely replace additional api functions or augment them with other
customizations.

If HOMING_BASE is not #defined, an actual homing scheme is not implemented but all necessary
functions are included as skeleton code. (All joints are effectively homed at all times and cannot be
unhomed).

See the source code file: src/emc/motion/homing.c for the baseline implementation that includes all
functions for the default homemod module.

To avoid updates that overwrite homecomp.comp, best practice is to rename the file and its component
name (example: user_homecomp.comp, user_homecomp).

The (renamed) component can be built and installed with halcompile and then substituted for the default
homing module (homemod) using:

$ linuxene —m user_homecomp someconfig.ini
or by inifile setting:

[EMCMOT]
HOMEMOD=user_homecomp

Note: If using a deb install:
1. halcompile is provided by the package linuxcnc—dev

2. This source file for BRANCHNAME (master,2.9,etc) is downloadable from github:
https://github.com/LinuxCNC/linuxcnc/blob/BRANCHNAME/src/hal/components/homecomp.comp

PINS

homecomp.N.is—module bit out (default: /)

AUTHOR
Dewey Garrett

LICENSE
GPL

LinuxCNC 01/04/2026 401

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

NAME

hostmot2 — LinuxCNC HAL driver for the Mesa Electronics HostMot2 firmware.

SYNOPSIS

See the config modparam section below for Mesa card configuration. Typically hostmot2 is loaded with no
parameters unless debugging is required.

loadrt hostmot2 [debug_idrom=N] [debug_module_descriptors=N] [debug_pin_descriptors=N] [
debug_modules=N]

debug_idrom [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 IDROM header.

debug_module_descriptors [default: 0]
Developer/debug use only! Enables debug logging of the HostMot2 Module Descriptors.

debug_pin_descriptors [default: 0]
Developer/debug use only! Enables debug logging of the HostMot2 Pin Descriptors.

debug_modules [default: 0]
Developer/debug use only! Enables debug logging of the HostMot2 Modules used.

use_serial_numbers [default: 0]
When creating HAL pins for smart—serial devices name the pins by the board serial number rather
than which board and port they are connected to. With this option set to 1 pins will have names like
hm?2_8i20.1234.current rather than hm2_5i23.0.8120.0.1.current. The identifier consists of the last 4
digits of the board serial number, which is normally on a sticker on the board. This will make configs
less portable, but does mean that boards can be re—connected less carefully.

DESCRIPTION

402

hostmot2 is a device driver that interfaces the Mesa or litehm2 HostMot2 firmware to the LinuxCNC HAL.
This driver by itself does nothing, the boards that actually run the firmware require their own drivers before
anything can happen. Currently drivers are available for PCI, Ethernet, SPI and EPP interfaced cards.

The HostMot2 firmware provides modules such as encoders, PWM generators, step/dir generators, and
general purpose I/O pins (GPIOs). These things are called "Modules". The firmware is configured, at
firmware compile time, to provide zero or more instances of each of these Modules.

Board 1/0 Pins

The HostMot2 firmware runs on an FPGA board. The board interfaces with the computer via PCI, Ethernet,

SPI, or EPP, and interfaces with motion control hardware, such as servos and stepper motors via I/O pins on
the board.

Each I/O pin can be configured, at board—driver load time, to serve one of two purposes: Either as a
particular I/O pin of a particular Module instance (encoder, pwmgen, stepgen etc), or as a general purpose
digital I/O pin. By default all Module instances are enabled, and all the board’s pins are used by the Module
instances.

The user can disable Module instances at board—driver load time, by specifying a hostmot2 config string
modparam. Any pins which belong to Module instances that have been disabled automatically become
GPIOs.

All I/O pins have some HAL presence, whether they belong to an active module instance or are full GPIOs.
GPIOs can be changed (at run—time) between inputs, normal outputs, and open drains, and have a flexible
HAL interface. I/O pins that belong to active Module instances are constrained by the requirements of the
owning Module, and have a more limited interface in HAL. This is described in the General Purpose I/O
section below.

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

config modparam
All the board—driver modules (hm2_pci, hm?2_eth etc) accept a load—time modparam of type string array,
named "config". This array has one config string for each board the driver should use. Each board’s config
string is passed to and parsed by the hostmot2 driver when the board—driver registers the board.

The config string can contain spaces, so it is usually a good idea to wrap the whole thing in double—quotes
(the " character).

The comma character (,) separates members of the config array from each other.

For example, if your control computer has one 5120 and one 5123 you might load the hm2_pci driver with a
HAL command (in halcmd) something like this:

loadrt hm2_pci config=""firmware=hm2/5i20/SVST8_4.BIT num_encoders=3 num_pwmgens=3
num_stepgens=3,firmware=hm?2/5i23/SVSS8_8.BIT sserial_port_0=0000 num_encoders=4"

Note: This assumes that the hm2_pci driver detects the 5120 first and the 5123 second. If the detection order
does not match the order of the config strings, the hostmot2 driver will refuse to load the firmware and the
board—driver (hm2_pci etc) will fail to load. To the best of my knowledge, there is no way to predict the
order in which PCI boards will be detected by the driver, but the detection order will be consistent as long
as PCI boards are not moved around. Best to try loading it and see what the detection order is.

The valid entries in the format string are:
e [firmware=F]
¢ [num_dplls=N]
¢ [num_encoders=N]
¢ [ssi_chan_N=abc%nq]
¢ [biss_chan_N=abc%nq]
¢ [fanuc_chan_N=abc%nq]
e [num_inmux=N]
¢ [num_inms=N]
¢ [num_resolvers=N]
¢ [num_pwmgens=N]
¢ [num_3pwmgens=N]
¢ [num_oneshots=N]
¢ [num_periodms=N]
¢ [num_rcpwmgens=N]
¢ [num_stepgens=N]
¢ [stepgen_width=N]
¢ [sserial_port_0=00000000]
¢ [num_bspis=N]
¢ [num_leds=N]
¢ [num_ssrs=N]

¢ [num_outms=N]

LinuxCNC 01/04/2026 403

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

¢ [num_xy2mods=N]
¢ [enable_raw]

firmware [optional]
Load the firmware specified by F into the FPGA on this board. If no "firmware=F" string is
specified, the FPGA will not be re—programmed but may continue to run a previously
downloaded firmware.

The requested firmware F is fetched by udev, which searches for the firmware in the system’s
firmware search path, wusually /lib/firmware. F typically has the form
"hm2/<BoardType>/file.bit"; a typical value for F might be "hm2/5i20/SVSTS8_4.BIT". The
hostmot2 firmware files are supplied by the hostmot2—firmware packages, available from
linuxcnc.org and can normally be installed by entering the command "sudo apt—get install
hostmot2—firmware—5i23" to install the support files for the 5123 for example.

Newer FPGA cards come pre—programmed with firmware and no "firmware=" string should be
used with these cards. To change the firmware on these cards the "mesaflash" utility should be
used. It is perfectly valid and reasonable to load these cards with no config string at all.

num_dplls [optional, default: —1]
The hm2dpll is a phase—locked loop timer module which may be used to reduce sample and write
time jitter for some hm2 modules. This parameter can be used to disable the hm2dpll by setting
the number to 0. There is only ever one module of this type, with 4 timer channels, so the other
valid numbers are —1 (enable all) and 1, both of which end up meaning the same thing.

num_encoders [optional, default: —1]
Only enable the first N encoders. If N is —1, all encoders are enabled. If N is 0, no encoders are
enabled. If N is greater than the number of encoders available in the firmware, the board will fail
to register.

ssi_chan_N [optional, default: ""]
Specifies how the bit stream from a Synchronous Serial Interface device will be interpreted.
There should be an entry for each device connected. Only channels with a format specifier will be
enabled (as the software can not guess data rates and bit lengths).

biss_chan_N [optional, default: ""]
As for ssi_chan_N, but for BiSS devices.

fanuc_chan_N [optional, default: ""]
Specifies how the bit stream from a Fanuc absolute encoder will be interpreted. There should be
an entry for each device connected. Only channels with a format specifier will be enabled (as the
software can not guess data rates and bit lengths).

num_resolvers [optional, default: —1]
Only enable the first N resolvers. If N = —1 then all resolvers are enabled. This module does not
work with generic resolvers (unlike the encoder module which works with any encoder). At the
time of writing this Hostmot2 Resolver function only works with the Mesa 7149 card.

num_pwmgens [optional, default: —1]
Only enable the first N pwmgens. If N is —1, all pwmgens are enabled. If N is 0, no pwmgens are
enabled. If N is greater than the number of pwmgens available in the firmware, the board will fail
to register.

num_3pwmgens [optional, default: —1]
Only enable the first N Three—phase pwmgens. If N is —1, all 3pwmgens are enabled. If N is 0,
no pwmgens are enabled. If N is greater than the number of pwmgens available in the firmware,
the board will fail to register.

num_rcpwmgens [optional, default: —1]
Only enable the first N RC pwmgens. If N is —1, all rcpwmgens are enabled. If N is 0, no

404 01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

rcpwmgens are enabled. If N is greater than the number of rcpwmgens available in the firmware,
the board will fail to register.

num_stepgens [optional, default: —1]
Only enable the first N stepgens. If N is —1, all stepgens are enabled. If N is 0, no stepgens are
enabled. If N is greater than the number of stepgens available in the firmware, the board will fail
to register.

num_xy2mods [optional, default: —1]
Only enable the first N xy2mods. If N is —1, all xy2mods are enabled. If N is 0, no xy2mods are
enabled. If N is greater than the number of xy2mods available in the firmware, the board will fail
to register.

stepgen_width [optional, default: 2]
Used to mask extra, unwanted, stepgen pins. Stepper drives typically require only two pins (step
and dir) but the Hostmot2 stepgen can drive up to 8 output pins for specialised applications
(depending on firmware). This parameter applies to all stepgen instances. Unused, masked pins
will be available as GPIO.

sserial_port_N (N =0 .. 3) [optional, default: 00000000 for all ports]

Up to 32 Smart Serial devices can be connected to a Mesa Anything I/O board, depending on the
firmware used and the number of physical connections on the board. These are arranged in 1-4
ports (N) of 1 to 8 channels. Some Smart Serial (SSLBP) cards offer more than one load—time
configuration, for example all inputs, or all outputs, or offering additional analogue input on some
digital pins. To set the modes for port O use for example sserial_port_0=0120xxxx. A "0" in the
string sets the corresponding channel to mode 0, a "1" to mode 1, and so on up to mode 9. An "x"
in any position disables that channel and makes the corresponding FPGA pins available as GPIO.
The string can be up to 8 characters long, and if it defines more modes than there are channels on
the port then the extras are ignored. Channel numbering is left to right so the example above
would set sserial device 0.0 to mode 0, 0.1 to mode 1, 0.2 to mode 2, 0.3 to mode 0 and disables
channels 0.4 onwards. The sserial driver will auto—detect connected devices, no further
configuration should be needed. Unconnected channels will default to GPIO, but the pin values
will vary semi—randomly during boot when card—detection runs, to it is best to actively disable
any channel that is to be used for GPIO. See SSERIAL(9) for more information.

num_bspis [optional, default: —1]
Only enable the first N Buffered SPI drivers. If N is —1 then all the drivers are enabled. Each
BSPI driver can address 16 devices.

num_leds [optional, default: —1]
Only enable the first N of the LEDs on the FPGA board. If N is —1, then HAL pins for all the
LEDs will be created. If N=0 then no pins will be added.

num_ssrs [optional, default: —1]
Only enable the first N of the SSR modules on the FPGA board. If N is —1, then HAL pins for all
the SSR outputs will be created. If N=0 then no pins will be added.

enable_raw [optional]
If specified, this turns on a raw access mode, whereby a user can peek and poke the firmware
from HAL. See Raw Mode below.

dpll
The hm2dpll module has pins like "hm2__<BoardType>_.<BoardNum>.dpll" It is likely that the pin—count
will decrease in the future and that some pins will become parameters. This module is a phase—locked loop
that will synchronise itself with the thread in which the hostmot2 "read" function is installed and will
trigger other functions that are allocated to it at a specified time before or after the "read" function runs.
This can be applied to the three absolute encoder types, quadrature encoder, stepgen, and xy2mod. In the
case of the absolute encoders this allows the system to trigger a data transmission just prior to the time
when the HAL driver reads the data. In the case of stepgens, quadrature encoders, and the xy2mod, the
timers can be used to reduce position sampling jitter. This is especially valuable with the

LinuxCNC 01/04/2026 405

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

406

ethernet—interfaced cards.

Pins:

hm2<BoardType>.<BoardNum>.dpll._NN.timer—us (float, in)
This pin sets the triggering offset of the associated timer. There are 4 timers numbered 01 to 04,
represented by the NN digits in the pin name. The units are microseconds (us). Generally the value for
reads will be negative, and positive for writes, so that input data is sampled prior to the main hostmot
read and output data is written some time after the main hostmot2 read.

For stepgen and quadrature encoders, the value needs to be more than the maximum variation between
read times. —100 will suffice for most systems, and —50 will work on systems with good performance
and latency.

For serial encoders, the value also needs to include the time it takes to transfer the absolute encoder
position. For instance, if 50 bits must be read at 500 kHz then subtract an additional 50/500 kHz = 100
us to get a starting value of —200.

The xy2mod uses 2 DPLL timers, one for read and one for write. The read timer value can be the same
as used by the stepgen and quadrature encoders so the same timer channel can be shared. The write
timer is typically set to a time after the main hostmot2 write this may take some experimentation.

hm?2 <BoardType >.< BoardNum > .dpll.base—freq—khz (float, in)
This pin sets the base frequency of the phase—locked loop. By default it will be set to the nominal
frequency of the thread in which the PLL is running and will not normally need to be changed.

hm2 <BoardType>.<BoardNum> .dpll.phase—error—us (float, out)
Indicates the phase error of the DPLL. If the number cycles by a large amount it is likely that the PLL
has failed to achieve lock and adjustments will need to be made.

hm2_<BoardType>.<BoardNum>.dpll.time—const (u32, in)
The filter time—constant for the PLL. The default value is a compromise between insensitivity to
single—cycle variations and being resilient to changes to the Linux CLOCK_MONOTONIC timescale,
which can instantly change by up to *500ppm from its nominal value, usually by timekeeping
software like ntpd and ntpdate. Default 2000 (0x7d0).

hm2_<BoardType>.<BoardNum>.dpll.plimit (u32, in)
Sets the phase adjustment limit of the PLL. If the value is zero then the PLL will free—run at the base
frequency independent of the servo thread rate. This is probably not what you want. Default 4194304
(0x400000) Units not known...

hm2_<BoardType>.<BoardNum>.dpll.ddsize (u32, out)
Used internally by the driver, likely to disappear.

hm2_<BoardType>.<BoardNum>.dpll.prescale (u32, in)
Prescale factor for the rate generator. Default 1.

Encoder

Encoders have names like hm2_<BoardType>.<BoardNum>.encoder.<Instance>.". "Instance" is a
two—digit number that corresponds to the HostMot2 encoder instance number. There are "num_encoders"
instances, starting with 00.

So, for example, the HAL pin that has the current position of the second encoder of the first 5125 board is:
hm2_5i25.0.encoder.01.position (this assumes that the firmware in that board is configured so that this
HAL object is available).

Each encoder uses three or four input I/O pins, depending on how the firmware was compiled. Three—pin

encoders use A, B, and Index (sometimes also known as Z). Four—pin encoders use A, B, Index, and
Index—mask.

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

The hm?2 encoder representation is similar to the one described by the Canonical Device Interface (in the
HAL General Reference document), and to the software encoder component. Each encoder instance has the
following pins and parameters:

Pins:

count (s32 out)
Number of encoder counts since the previous reset.

count_64 (s64 out)
Number of encoder counts since the previous reset (64 bit).

position (float out)
Encoder position in position units (count / scale).

position—interpolated (float out)
Encoder interpolated position in position units (count / scale). Only valid when velocity is
approximately constant and the time between counts is less than the velocity timeout parameter value.
Do not use for position control. Useful for spindle synchronized moves with low resolution encoders.

position—latched (float out)
Encoder latched position in position units (count / scale).

velocity (float out)
Estimated encoder velocity in position units per second.

velocity—rpm (float out)
Estimated encoder velocity in position units per minute.

reset (bit in)
When this pin is True, the count and position pins are set to 0 (the value of the velocity pin is not
affected by this). The driver does not reset this pin to FALSE after resetting the count to 0, that is the
user’s job.

index—enable (bit in/out)
When this pin is set to True, (and no—clear—on—index is false) the count (and therefore also position)
are reset to zero on the next Index (Phase—Z) pulse. At the same time, index—enable is reset to zero to
indicate that the pulse has occurred.

no—clear—on—index (bit in)
When this pin is set to True, the count (and therefore also position) are NOT reset to zero on the next
Index (Phase\-Z) pulse. On an index event the latched count and position will be set to indicate the
count and position where the index occured.

probe—enable (bit in/out)
When this pin is set to True, the encoder count (and therefore also position) are latched on the the next
probe active edge. At the same time, probe—enable is reset to zero to indicate that latch event has
occurred. (only present if supported by firmware)

probe—invert (bit r/w)
If set to True, the rising edge of the probe input pin triggers the latch event (if probe—enable is True).
If set to False, the falling edge triggers. (only present if supported by firmware)

rawcounts (s32 out)
Total number of encoder counts since the start, not adjusted for index or reset.

rawcounts_64 (s64 out)
Total number of encoder counts since the start, not adjusted for index or reset. (64 bit)

count_latch (s32 out)
Encoder count at latch event. (index or probe)

count_latch_64 (s64 out)
Encoder count at latch event. (index or probe) (64 bit)

LinuxCNC 01/04/2026 407

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

408

input—a, input—b, input—index (bit out)
Real time filtered values of A,B,Index encoder signals

quad-—error—enable (bit in)
When this pin is True quadrature error reporting is enabled. When False, existing quadrature errors are
cleared and error reporting is disabled.

quad—error (bit out)
This bit indicates that a quadrature sequence error has been detected. It can only be set if the
corresponding quad—error—enable bit is True.

hm2_XXXX.N.encoder.sample—frequency (u32 in)
This is the sample frequency that determines all standard encoder channels digital filter time constant
(see filter parameter).

hm2_XXXX.N.encoder.muxed—sample—frequency (u32 in)
This is the sample frequency that determines all muxed encoder channels digital filter time constant
(see filter parameter). This also sets the encoder multiplexing frequency.

hm2_XXXX.N.encoder.muxed—skew (float in)
This sets the muxed encoder sample time delay (in ns) from the multiplex signal. Setting this properly
can increase the usable multiplex frequency and compensate for cable delays (suggested value is 3*
cable length in feet +20).

hm2_XXXX.N.encoder.hires—timestamp (bit in)
When this pin is True the encoder timestamp counter frequency is ca. 10 MHz. When False the
timestamp counter frequency is ca. 2 MHz. This should be set True for frequency counting
applications to improve the resolution. It should be set False when servo thread periods longer than 1
ms are used.

Parameters:

scale (float r/w)
Converts from "count" units to "position" units.

index—invert (bit r/w)
If set to True, the rising edge of the Index input pin triggers the Index event (if index—enable is True).
If set to False, the falling edge triggers.

index—mask (bit r/w)
If set to True, the Index input pin only has an effect if the Index—Mask input pin is True (or False,
depending on the index—mask—invert pin below).

index—mask—invert (bit r/w)
If set to True, Index—Mask must be False for Index to have an effect. If set to False, the Index—Mask
pin must be True.

counter—mode (bit r/w)
Set to False (the default) for Quadrature. Set to True for Step/Dir (in which case Step is on the A pin
and Dir is on the B pin).

filter (bit r/w)
If set to True (the default), the quadrature counter needs 15 sample clocks to register a change on any
of the three input lines (any pulse shorter than this is rejected as noise). If set to False, the quadrature
counter needs only 3 clocks to register a change. The default encoder sample clock runs at
approximately 25 to 33 MHz but can be changed globally with the sample—frequency or
muxed—sample—frequency pin.

vel-timeout (float r/w)
When the encoder is moving slower than one pulse for each time that the driver reads the count from
the FPGA (in the hm2_read() function), the velocity is harder to estimate. The driver can wait several
iterations for the next pulse to arrive, all the while reporting the upper bound of the encoder velocity,

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

which can be accurately guessed. This parameter specifies how long to wait for the next pulse, before
reporting the encoder stopped. This parameter is in seconds.

hm2_XXXX.N.encoder.timer—number (default: —1) (s32 r/w)
Sets the hm2dpll timer instance to be used to latch encoder counts. A setting of —1 does not latch
encoder counts. A setting of 0 latches at the same time as the main hostmot2 read. A setting of 1..4
uses a time offset from the main hostmot?2 read according to the dpll’s timer—us setting.

Typically, timer—us should be a negative number with a magnitude larger than the largest latency (e.g.,
—100 for a system with mediocre latency, —50 for a system with good latency). A negative number specifies
latching the specified time before the nominal hostmot2 read time.

If no DPLL module is present in the FPGA firmware, or if the encoder module does not support DPLL,
then this pin is not created.

When available, this feature should typically be enabled. Doing so generally reduces following errors.

Synchronous Serial Interface (SSI)
(Not to be confused with the Smart Serial Interface)

One pin is created for each SSI instance regardless of data format:

hm2_XXXX.NN.ssi.MM.data—incomplete (bit, in)
This pin will be set "True" if the module was still transferring data when the value was read. When this
problem exists there will also be a limited number of error messages printed to the UL This pin should
be used to monitor whether the problem has been addressed by config changes. Solutions to the
problem depend on whether

* the encoder read is being triggered by the hm2dpll phase—locked—loop timer (described above)
* or by the trigger—encoders function (described below).
The names of the pins created by the SSI module will depend entirely on the format string for each channel
specified in the loadrt command line. A typical format string might be

ssi_chan_0O=error % 1bposition %24g.

This would interpret the LSB of the bit—stream as a bit—type pin named "error" and the next 24 bits as a
Gray—coded encoder counter. The encoder—related HAL pins would all begin with "position".

There should be no spaces in the format string, as this is used as a delimiter by the low—level code.
The format consists of a string of alphanumeric characters that will form the HAL pin names, followed by a
% symbol, a bit—count and a data type. All bits in the packet must be defined, even if they are not used.

There is a limit of 64 bits in total.

The valid format characters and the pins they create are:

p: (Pad)
Does not create any pins, used to ignore sections of the bit stream that are not required.

b: (Boolean).
(bit, out) hm2_XXXX.N.ssi.MM.<name>.

If any bits in the designated field width are non—zero then the HAL pin will be "True".
(bit, out) hm2_XXXX.N.ssi.MM.<name>-not.

An inverted version of the above, the HAL pin will be "True" if all bits in the field are zero.

LinuxCNC 01/04/2026 409

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

u: (Unsigned)
(float, out) hm2_XXXX.N.ssi.MM.<name>. The value of the bits interpreted as an unsigned integer
then scaled such that the pin value will equal the scalemax parameter value when all bits are high. (for
example if the field is 8 bits wide and the scalmax parameter was 20 then a value of 255 would return
20, and 0 would return 0.

s: (Signed)
(float, out) hm2_XXXX.N.ssi. MM.<name>.

The value of the bits interpreted as a 2s complement signed number then scaled similarly to the
unsigned variant, except symmetrical around zero.

f: (bitField)
(bit, out) hm2_XXXX.N.ssi.MM.<name>—NN.
The value of each individual bit in the data field. NN starts at 00 up to the number of bits in the field.

(bit, out) hm2_XXXX.N.ssi.MM.<name>—NN-not.

An inverted version of the individual bit values.

e: (Encoder)
(s32, out) hm2_XXXX.N.ssi.MM.<name>.count.

The lower 32 bits of the total encoder counts. This value is reset both by the ...reset and the
...index—enable pins.

(s32, out) hm2_XXXX.N.ssi.MM.<name>.rawcounts.
The lower 32 bits of the total encoder counts. The pin is not affected by reset and index.
(float, out) hm2_XXXX.N.ssi.MM.<name>.position.

The encoder position in machine units. This is calculated from the full 64-bit buffers so will show a
True value even after the counts pins have wrapped. It is zeroed by reset and index enable.

(bit, I0) hm2_XXXX.N.ssi.MM.<name>.index—enable.

When this pin is set "True" the module will wait until the raw encoder counts next passes through an
integer multiple of the number of counts specified by counts—per—rev parameter and then it will zero
the counts and position pins, and set the index—enable pin back to "False" as a signal to the system that
"index" has been passed. this pin is used for spindle—synchronised motion and index—homing.

(bit, in) (bit, out) hm2_XXXX.N.ssi.MM.<name>.reset.

When this pin is set high the counts and position pins are zeroed.

h: (Split encoder, high—order bits)
Some encoders (Including Fanuc) place the encoder part—turn counts and full-turn counts in separate,
non—contiguous fields. This tag defines the high—order bits of such an encoder module. There can be
only one h and one 1 tag per channel, the behaviour with multiple such channels will be undefined.

I: (Split encoder, low—order bits)
Low order bits (see "h")

g: (Gray—code)
This is a modifier that indicates that the following format string is gray—code encoded. This is only
valid for encoders (e, h 1) and unsigned (u) data types.

410 01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

BiSS

m: (Multi—turn)
This is a modifier that indicates that the following format string is a multi—turn encoder. This is only
valid for encoders (e, h 1). A jump in encoder position of more than half the full scale is interpreted as
a full turn and the counts are wrapped. With a multi—turn encoder this is only likely to be a data glitch
and will lead to a permanent offset. This flag endures that such encoders will never wrap.

Parameters

Two parameters are universally created for all SSI instances

hm2_XXXX.N.ssi.MM.frequency—khz (float r/w)
This parameter sets the SSI clock frequency. The units are kHz, so 500 will give a clock frequency of
500,000 Hz.

hm2_XXXX.N.ssi.timer—number—num (s32 r/w)
This parameter allocates the SSI module to a specific hm2dpll timer instance. This pin is only of use in
firmwares which contain a hm2dpll function and will default to 1 in cases where there is such a
function, and O if there is not. The pin can be used to disable reads of the encoder, by setting to a
nonexistent timer number, or to 0.

Other parameters depend on the data types specified in the config string.

p: (Pad)
No Parameters.

b: (Boolean)
No Parameters.

u: (Unsigned)
(float, r/w) hm2_XXXX.N.ssi. MM.<name>—scalemax. The scaling factor for the channel.

s: (Signed)
(float, r/w) hm2_XXXX.N.ssi. MM.<name>—scalemax. The scaling factor for the channel.

f: (bitField)
No parameters.

e: (Encoder)
(float, r/w) hm2_XXXX.N.ssi.MM.<name>.scale: (float, r.w) The encoder scale in counts per
machine unit. (u32, r/w) hm2_XXXX.N.ssi.MM. <name>.counts—per—rev (u32, r/w) Used to emulate
the index behaviour of an incremental+index encoder. This would normally be set to the actual counts
per rev of the encoder, but can be any whole number of revs. Integer divisors or multipliers of the true
PPR might be useful for index—homing. Non—integer factors might be appropriate where there is a
synchronous drive ratio between the encoder and the spindle or ballscrew.

BiSS is a bidirectional variant of SSI. Currently only a single direction is supported by LinuxCNC (encoder
to PC).

One pin is created for each BiSS instance regardless of data format:

hm2_XXXX.NN.biss.MM.data—incomplete (bit, in)
This pin will be set "True" if the module was still transferring data when the value was read. When this
problem exists there will also be a limited number of error messages printed to the UL This pin should
be used to monitor whether the problem has been addressed by config changes. Solutions to the
problem depend on whether the encoder read is being triggered by the hm2dpll phase—locked—loop
timer (described above) or by the trigger—encoders function (described below).

The names of the pins created by the BiSS module will depend entirely on the format string for each
channel specified in the loadrt command line and follow closely the format defined above for SSI. Currently

LinuxCNC 01/04/2026 411

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

data packets of up to 96 bits are supported by the LinuxCNC driver, although the Mesa Hostmot2 module
can handle 512 bit packets. It should be possible to extend the number of packets supported by the driver if
there is a requirement to do so.

Fanuc encoder
The pins and format specifier for this module are identical to the SSI module described above, except that at
least one pre—configured format is provided. A modparam of fanuc_chan_N=AA64 (case sensitive) will
configure the channel for a Fanuc Aa64 encoder. The pins created are:

hm2XXXX. N.fanuc.MM .batt
indicates battery state

hm2XXXX._N.fanuc.MM .batt—not
inverted version of above

hm2XXXX._N.fanuc.MM.comm
The 0—1023 absolute output for motor commutation

hm2XXXX._ N.fanuc.MM.crc
The CRC checksum. Currently HAL has no way to use this

hm2XXXX. N.fanuc.MM.encoder.count
Encoder counts

hm2XXXX. N.fanuc.MM .encoder.index—enable
Simulated index. Set by counts—per—rev parameter

hm2XXXX._N.fanuc.MM .encoder.position
Counts scaled by the ...scale parameter

hm2XXXX. N.fanuc.MM.encoder.rawcounts
Raw counts, unaffected by reset or index

hm2XXXX. N.fanuc.MM.encoder.reset
If high/True then counts and position = 0

hm2XXXX. N.fanuc.MM.valid
Indicates that the absolute position is valid

hm2XXXX._ N.fanuc.MM.valid—not
Inverted version

resolver
Resolvers have names like hm2_<BoardType>.<BoardNum>.resolver.<Instance>. <Instance> is a
2—-digit number, which for the 7149 board will be between 00 and 05. This function only works with the
Mesa Resolver interface boards (of which the 7149 is the only example at the time of writing). This board
uses an SPI interface to the FPGA card, and will only work with the correct firmware. The pins allocated
will be listed in the dmesg output, but are unlikely to be usefully probed with HAL tools.

Pins:

angle (float, out)
This pin indicates the angular position of the resolver. It is a number between 0 and 1 for each
electrical rotation.

position (float, out)
Calculated from the number of complete and partial revolutions since startup, reset, or index—reset
multiplied by the scale parameter.

velocity (float, out)
Calculated from the rotational velocity and the velocity—scale parameter. The default scale is electrical
rotations per second.

velocity—rpm (float, out)
Simply velocity scaled by a factor of 60 for convenience.

412 01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

count (s32, out)
This pins outputs a simulated encoder count at 224 counts per rev (16777216 counts).

rawcounts (s32, out)
This is identical to the counts pin, except it is not reset by the "index" or "reset" pins. This is the pin
which would be linked to the bldc HAL component if the resolver was being used to commutate a
motor.

reset (bit, in)
Resets the position and counts pins to zero immediately.

joint—pos—fb (bit, in)

The Mesa resolver driver has the capability of emulating an absolute encoder using a position file (see
the INI—config section of the manual) and the single—turn absolute operation of resolvers. At startup,
and only if the use—position—file parameter is set to "True", the resolver driver will wait for a value to
be written by the system to the axis.N.joint—pos—fb pin (which must be netted to this resolver pin) and
will calculate the number of full turns that best matches the current resolver position. It will then
pre—load the driver output with this offset. This should only be used on systems where axis movement
in the unpowered state is unlikely. This feature will only work properly if the machine is initially
homed to "index" and if the axis home positions are exactly zero.

index—enable (bit, in/out)
When this pin is set high the position and counts pins will be reset the next time the resolver passes
through the zero position. At the same time the pin is driven low to indicate to connected modules that
the index has been seen, and that the counters have been reset.

error (bit, out)
Indicates an error in the particular channel. If this value is "True" then the reported position and
velocity are invalid.

Parameters:

scale (float, read/write)
The position scale, in machine units per resolver electrical revolution.

velocity—scale (float, read/write)
The conversion factor between resolver rotation speed and machine velocity. A value of 1 will
typically give motor speed in RPS, a value of 0.01666667 will give (approximate) RPM.

index—divisor (default 1) (u32, read/write)
The resolver component emulates an index at a fixed point in the sin/cos cycle. Some resolvers have
multiple cycles per rev (often related to the number of pole—pairs on the attached motor). LinuxCNC
requires an index once per revolution for proper threading etc. This parameter should be set to the
number of cycles per rev of the resolver. CAUTION: Which pseudo—index is used will not necessarily
be consistent between LinuxCNC runs. Do not expect to re—start a thread after restarting LinuxCNC.
It is not appropriate to use this parameter for index—homing of axis drives.

excitation—khz (float, read/write)
This pin sets the excitation frequency for the resolver. This pin is module—level rather than
instance—level as all resolvers share the same excitation frequency. Valid values are 10 (ca. 10 kHz), 5
(ca. 5 kHz) and 2.5 (ca. 2.5 kHz). The actual frequency depends on the FPGA frequency, and they
correspond to CLOCK_LOW/5000, CLOCK_LOW/10000 and CLOCK_LOW/20000 respectively.
The parameter will be set to the closest available of the three frequencies. A value of —1 (the default)
indicates that the current setting should be retained.

use—position—file (bit, read/write)
In conjunction with joint—pos—fb (qv) emulate absolute encoders.
pwmgen
pwmgens have names like "hm2_<BoardType>.< BoardNum>.pwmgen.<Instance>". <Instance> is a
two—digit number that corresponds to the HostMot2 pwmgen instance number. There are

LinuxCNC 01/04/2026 413

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

414

"num_pwmgens"—many instances, starting with 00.

So, for example, the HAL pin that enables output from the fourth pwmgen of the first 7143 board is:
hm2_7i43.0.pwmgen.03.enable (this assumes that the firmware in that board is configured so that this HAL
object is available).

In HM2, each pwmgen uses three output I/O pins: Not—Enable, Out0, and Outl. The function of the OutO
and Outl I/O pins varies with output—type parameter (see below).

The hm2 pwmgen representation is similar to the software pwmgen component. Each pwmgen instance has
the following pins and parameters:

Pins:

enable (bit input)
If True, the pwmgen will set its Not—Enable pin False and output its pulses. If "enable" is False,
pwmgen will set its Not—Enable pin True and not output any signals.

value (float input)
The current pwmgen command value, in arbitrary units.

Parameters:

scale (float rw)
Scaling factor to convert "value" from arbitrary units to duty cycle: dc = value / scale. Duty cycle has
an effective range of —1.0 to +1.0 inclusive, anything outside that range gets clipped. The default scale
is 1.0.

output—type (s32 rw)
This emulates the output_type load—time argument to the software pwmgen component. This
parameter may be changed at runtime, but most of the time you probably want to set it at startup and
then leave it alone. Accepted values are 1 (PWM on OutO and Direction on Outl), 2 (Up on Out0O and
Down on Outl), 3 (PDM mode, PDM on Out0 and Dir on Outl), and 4 (Direction on Out0 and PWM
on Outl, "for locked antiphase").

offset—mode (bit input)
When True, offset—-mode modifies the PWM behavior so that a PWM value of O results in a 50% duty
cycle PWM output, a —1 value results in a 0% duty cycle and +1 results in a 100% duty cycle (with
default scaling). This mode is used by some PWM motor drives and PWM to analog converters.
Typically the direction signal is not used in this mode.

dither (bit input)
When True, dither causes the PWM output to dither between two adjacent PWM register values at the
PWM frequency. This increases the PWM resolution when used for analog output purposes,
increasing the maximum resolution from 12 to 16 bits. Dither is only supported with PWMGen
firmware version 1 or greater and only affects PWM outputs, not PDM outputs.

In addition to the per—instance HAL Parameters listed above, there are a couple of HAL Parameters that
affect all the pwmgen instances:

pwm_frequency (u32 rw)

This specifies the PWM frequency, in Hz, of all the pwmgen instances running in the PWM modes
(modes 1 and 2). This is the frequency of the variable—duty—cycle wave. Its effective range is from 1
Hz up to 386 kHz. Note that the max frequency is determined by the ClockHigh frequency of the
Anything IO board; the 5125 and 7192 both have a 200 MHz clock, resulting in a 386 kHz max PWM
frequency. Other boards may have different clocks, resulting in different max PWM frequencies. If the
user attempts to set the frequency too high, it will be clipped to the max supported frequency of the
board. Frequencies below about 5 Hz are not terribly accurate, but above 5 Hz they’re pretty close. The
default pwm_frequency is 20,000 Hz (20 kHz).

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

pdm_frequency (u32 rw)

This specifies the PDM frequency, in Hz, of all the pwmgen instances running in PDM mode (mode
3). This is the "pulse slot frequency"; the frequency at which the pdm generator in the AnyIO board
chooses whether to emit a pulse or a space. Each pulse (and space) in the PDM pulse train has a
duration of 1/pdm_frequency seconds. For example, setting the pdm_frequency to 2e6 (2 MHz) and
the duty cycle to 50% results in a 1 MHz square wave, identical to a 1 MHz PWM signal with 50%
duty cycle. The effective range of this parameter is from about 1525 Hz up to just under 200 MHz.
Note that the max frequency is determined by the ClockHigh frequency of the Anything 10 board; the
5125 and 7192 both have a 100 MHz clock, resulting in a 100 MHz max PDM frequency. Other boards
may have different clocks, resulting in different max PDM frequencies. If the user attempts to set the
frequency too high, it will be clipped to the max supported frequency of the board. The default
pdm_frequency is 20,000 Hz (20 kHz).

3ppwmgen

Three—Phase PWM generators (3pwmgens) are intended for controlling the high—side and low—side gates
in a 3—phase motor driver. The function is included to support the Mesa motor controller daughter—cards
but can be used to control an IGBT or similar driver directly. 3pwmgens have names like
"hm2_<BoardType>.<BoardNum>.3pwmgen.<Instance>" where <Instance> is a 2—digit number. There
will be num_3pwmgens instances, starting at 00. Each instance allocates 7 output and one input pins on the
Mesa card connectors. Outputs are: PWM A, PWM B, PWM C, /PWM A, /PWM B, /PWM C, Enable. The
first three pins are the high side drivers, the second three are their complementary low—side drivers. The
enable bit is intended to control the servo amplifier. The input bit is a fault bit, typically wired to
over—current detection. When set, the PWM generator is disabled. The three phase duty—cycles are
individually controllable from —Scale to +Scale. Note that 0 corresponds to a 50% duty cycle and this is the
initialization value.

Pins:

A-value, B—value, C—value (float input)
The PWM command value for each phase, limited to +/— "scale". Defaults to zero which is 50% duty
cycle on high—side and low—sidepins (but see the "deadtime" parameter).

enable (bit input)
When high the PWM is enabled as long as the fault bit is not set by the external fault input pin. When
low the PWM is disabled, with both high— side and low—side drivers low. This is not the same as 0
output (50% duty cycle on both sets of pins) or negative full scale (where the low side drivers are "on"
100% of the time).

fault (bit output)
Indicates the status of the fault bit. This output latches high once set by the physical fault pin until the
"enable" pin is set to high.

Parameters:

deadtime (u32 rw)

Sets the dead—time between the high—side driver turning off and the low—side driver turning on and
vice—versa. Deadtime is subtracted from on time and added to off time symmetrically. For example
with 20 kHz PWM (50 ps period), 50% duty cycle and zero dead time, the PWM and NPWM outputs
would be square waves (NPWM being inverted from PWM) with high times of 25 ps. With the same
settings but 1 s of deadtime, the PWM and NPWM outputs would both have high times of 23 ps (25
— (2X 1 ps), 1 ps per edge). The value is specified in nanoseconds (ns) and defaults to a rather
conservative 5000 ns. Setting this parameter to too low a value could be both expensive and dangerous
as if both gates are open at the same time there is effectively a short circuit across the supply.

scale (float rw)
Sets the half—scale of the specified 3—phase PWM generator. PWM values from —scale to +scale are
valid. Default is +/- 1.0

fault—invert (bit rw)

LinuxCNC 01/04/2026 415

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

Sets the polarity of the fault input pin. A value of 1 means that a fault is triggered with the pin high,
and 0 means that a fault it triggered when the pin is pulled low. Default 0, fault = low so that the PWM
works with the fault pin unconnected.

sample—time (u32 rw)
Sets the time during the cycle when an ADC pulse is generated. 0 = start of PWM cycle and 1 = end.
Not currently useful to LinuxCNC. Default is 0.5.

In addition the per—instance parameters above there is the following parameter that affects all instances:

frequency (u32 rw)
Sets the master PWM frequency. Maximum is approx 48 kHz, minimum is 1 kHz. Defaults to 20 kHz.

oneshot
The oneshot is a hardware one—shot device suitable for various timing, delay, signal conditioning, PWM
generation, and watchdog functions. The oneshot module includes 2 timers to allow variable pulse delays
for applications like phase control. Trigger sources can be software, external inputs, the DPLL timer, a built
in rate generator or the other timer. Oneshots have names like
"hm2_<BoardType>.< BoardNum>.oneshot.<Instance>" where <Instance> is a 2—digit number. There
will be num_oneshots instances, starting at 00. Each instance allocates up to two input and two output pins.

Pins:

width1 (float rw)
Sets the pulse width of timerl in ms. Default is 1 ms (1/1000 s).

width2 (float rw)
Sets the pulse width of timer2 in ms. Default is 1 ms (1/1000 s).

filter1 (float rw)
Sets digital filter time constant for timerl’s external trigger input Filter time is in ms. Default filter
time constant time is 0.1 ms. External trigger response will be delayed by the filter time setting.

filter2 (float rw)
Sets digital filter time constant for timer2’s external trigger input Filter time is in ms. Default filter
time constant time is 0.1 ms. External trigger response will be delayed by the filter time setting.

rate (float rw)
Sets the frequency of the built in rate generator (in Hz)

trigger_selectl,trigger_select2 (u32 rw)
Sets the trigger source for timer1,timer2 respectively. Trigger sources are:

0 Trigger disabled

1 Software trigger: triggered when hal pin swtriggerl is true
2 External hardware: trigger

3 DPLL trigger: triggered by selected DPLL timer

4 Rate trigger: triggered by build in rate generator.

5 Timer] trigger: triggered by timer! output

6 Timer?2 trigger: triggered by timer2 output

trigger_on_risel, trigger_on_rise2 (bit rw)
When true, triggers timerl, timer2 respectively on the rising edge of the trigger source.

trigger_on_falll, trigger_on_fall2 (bit rw)
When true, triggers timerl, timer2 respectively on the falling edge of the trigger source.

retriggerablel, retriggerable2 (bit rw)
When true, the associated timer is retriggerable, meaning the timer will reset to full time on a trigger
event even during the output pulse period. When false the timer is not retriggerable, meaning it will
ignore trigger events during the output pulse period.

416 01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

enablel, enable2 (bit rw)
Trigger enable for timerl and timer2 respectively True to enable.

resetl, reset2 (bit rw)
If true, resets timerl and timer2 respectively, aborting any pulse in progress.

outl,out2 (bit ro)
Pulse output status bits for timerl and timer?2.

exttriggerl, exttrigger2 (bit ro)
External trigger input status bits for timerl and timer2. These monitor the filtered inputs.

swtriggerl, swtrigger2 (bit rw)
Software trigger inputs to trigger timerl and timer2.

periodm
The periodm is a period/width/duty cycle measuring module. It can measure period, frequency, pulse width
and duty cycle. It can also average readings for noise filtering.

Pins:

period_us (float r)
Input period in microseconds.

width_us (float r)
Input pulse width in microseconds.

duty_cycle (float r)
Input duty cycle (width/period) scaling and offset are changeable.

duty_cycle_scale (float rw)
Sets the scale of the duty cycle value, default is 100.

duty_cycle_offset (float rw)
Sets an offset to the duty cycle value, added after scaling. Default is 0.

averages (float rw)
Number of periods/widths to average. From 1 to 4095. Update rate of period, width, duty cycle, and
frequency will be input frequency/averages.

frequency (float r)
Input frequency in Hz.

minimum_frequency (float w)
Minimum input frequency in Hz, if input frequency is lower than this threshold, the valid bit will be
cleared.

filtertc_us (float w)
The periodm input in conditioned with a digital filter for noise rejection. The time constant of this
filter is settable via this pin in units of microseconds. Pulses shorter than this time constant will not be
recognized.

valid (bit out)
The valid output bit is true when the input signal is present and the input frequency exceeds the
minimum frequency setting.

invert (bit in)
The invert bit sets the input polarity, when false, the input is direct which means the input high time
determines the width. When set true, the input is inverted so the input low time determines the width.

input_status (bit out)
The input_status bit reads the real time filtered input status (affected by invert pin).

LinuxCNC 01/04/2026 417

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

418

rcpwmgen

The rcpwmgen is a simple PWM generator optimized for use with standard RC servos that use pulse width
to determine position. rcpwmgens have names like
"hm2_<BoardType>.< BoardNum>.rcpwmgen. < Instance>" where <Instance> is a 2—digit number. There
will be num_rcpwmgens—many instances, starting at 00. Each instance allocates a single output pin. Unlike
the standard PWM generator, the rcpwmgen output is specified in width rather than duty cycle so the pulse
width is independent of the operating frequency. Resolution is approximately 1/2000 for standard 1 to 2 ms
range RC servos.

Pins:

rate (float rw)
Sets the master RC PWM frequency. Maximum is 1 kHz, minimum is 0.01 Hz. Defaults to 50 Hz.

width (float rw)
Sets the per channel pulse width in (ms/scale).

offset (float rw)
Sets the per channel pulse width offset in ms. This would be set to 1.5 ms for 1-2 ms servos for a 0
center position.

scale (float rw)
Sets the per channel pulse width scaling. For example, setting the scale to 90 and the offset to 1.5 ms
would result in a position range of +—45 degrees and scale in degrees for 1-2 ms servos with a full
motion range of 90 degrees.

stepgen

stepgens have names like "hm2_<BoardType>.<BoardNum>.stepgen.<lInstance>". <Instance> is a
two—digit number that corresponds to the HostMot2 stepgen instance number. There are
"num_stepgens"—many instances, starting with 00.

So, for example, the HAL pin that has the current position feedback from the first stepgen of the second
5122 board is: hm2_5i22.1.stepgen.00.position—fb (this assumes that the firmware in that board is
configured so that this HAL object is available).

Each stepgen uses between 2 and 8 I/O pins. The signals on these pins depends on the step_type parameter
(described below).

The stepgen representation is modeled on the stepgen software component. Each stepgen instance has the
following pins and parameters:

Pins:

position—cmd (float input)
Target position of stepper motion, in arbitrary position units. This pin is only used when the stepgen is
in position control mode (control-type=0).

velocity—cmd (float input)
Target velocity of stepper motion, in arbitrary position units per second. This pin is only used when the
stepgen is in velocity control mode (control-type=1).

counts (s32 output)
Feedback position in counts (number of steps).

position—fb (float output)
Feedback position in scaled position units. This is similar to "counts/position_scale", but has finer than
step resolution.

position—latched (float output)
latched—position in scaled position units. This is similar to "counts/position_scale", but has finer than

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

step resolution.

velocity—fb (float output)
Feedback velocity in arbitrary position units per second.

enable (bit input)
This pin enables the step generator instance. When True, the stepgen instance works as expected.
When False, no steps are generated and velocity—fb goes immediately to 0. If the stepgen is moving
when enable goes False it stops immediately, without obeying the maxaccel limit.

position—reset (bit input)
Resets position to 0 when True. Useful for step/dir controlled spindles when switching between
spindle and joint modes.

control-type (bit input)
Switches between position control mode (0) and velocity control mode (1). Defaults to position
control (0).

index—enable (bit in/out)
When this pin is set to True, the step count (and therefore also position) are reset to zero on the next
stepgen index pulse. At the same time, index—enable is reset to zero to indicate that the pulse has
occurred.

index—invert (bit r/w)
If set to True, the rising edge of the index input pin triggers the position clear event (if index—enable is
True). If set to False, the falling edge triggers.

probe—enable (bit in/out)
When this pin is set to True, the step count (and therefore also position) are latched on the the next
stepgen probe active edge. At the same time, probe—enable is reset to zero to indicate that a latch event
has occurred.

probe—invert (bit r/w)
If set to True, the rising edge of the probe input pin triggers the latch event (if probe—enable is True).
If set to False, the falling edge triggers.

Parameters:

position—scale (float r/w)
Converts from counts to position units. position = counts / position_scale

maxvel (float r/w)
Maximum speed, in position units per second. If set to 0, the driver will always use the maximum
possible velocity based on the current step timings and position—scale. The max velocity will change if
the step timings or position—scale changes. Defaults to 0.

maxaccel (float r/w)
Maximum acceleration, in position units per second per second. Defaults to 1.0. If set to O, the driver
will not limit its acceleration at all. This requires that the position—cmd or velocity—cmd pin is driven
in a way that does not exceed the machine’s capabilities. This is probably what you want if you are
going to be using the LinuxCNC trajectory planner to jog or run G—code.

steplen (u32 r/w)
Duration of the step signal, in nanoseconds.

stepspace (u32 r/w)
Minimum interval between step signals, in nanoseconds.

dirsetup (u32 r/w)
Minimum duration of stable Direction signal before a step begins, in nanoseconds.

dirhold (u32 r/w)
Minimum duration of stable Direction signal after a step ends, in nanoseconds.

LinuxCNC 01/04/2026 419

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

step_type (u32 r/w)

Output format, like the step_type modparam to the software stepgen(9) component: 0 = Step/Dir, 1 =
Up/Down, 2 = Quadrature, 3+ = table—lookup mode. In this mode the step_type parameter determines
how long the step sequence is. Additionally the stepgen_width parameter in the loadrt config string
must be set to suit the number of pins per stepgen required. Any stepgen pins above this number will
be available for GPIO. This mask defaults to 2. The maximum length is 16. Note that Table mode is
not enabled in all firmwares but if you see GPIO pins between the stepgen instances in the dmesg/log
hardware pin list then the option may be available.

In Quadrature mode (step_type=2), the stepgen outputs one complete Gray cycle (00 4 01 4 11 a 10 4 00)
for each "step" it takes, so the scale must be divided by 4 relative to standard step/dir. In table mode, up to 6
I/O pins are individually controlled in an arbitrary sequence up to 16 phases long.

swap_step_dir (bit input)
This swaps the step and direction outputs on the selected stepgen. This parameter is only available if
the firmware supports this option.

table—data—N (u32 r/w)
There are 4 table—data—N parameters, table—data—0 to table—data—3. These each contain 4 bytes
corresponding to 4 stages in the step sequence. For example table—data—0 = 0x00000001 would set
stepgen pin 0 (always called "Step" in the dmesg output) on the first phase of the step sequence, and
table—data—4 = 0x20000000 would set stepgen pin 6 ("Table5Pin" in the dmesg output) on the 16th
stage of the step sequence.

hm2_XXXX.N.stepgen.timer—number (default: —1) (s32 r/w)
Sets the hm2dpll timer instance to be used to latch stepgen counts. A setting of —1 does not latch
stepgen counts. A setting of 0 latches at the same time as the main hostmot2 read. A setting of 1..4
uses a time offset from the main hostmot?2 read according to the dpll’s timer—us setting.

Typically, timer—us should be a negative number with a magnitude larger than the largest latency (e.g.,
—100 for a system with mediocre latency, —50 for a system with good latency). A negative number specifies

latching the specified time before the nominal hostmot2 read time.

If no DPLL module is present in the FPGA firmware, or if the stepgen module does not support DPLL, then
this pin is not created.

When available, this feature should typically be enabled. Doing so generally reduces following errors.

Smart Serial Interface

The Smart Serial Interface allows up to 32 different devices such as the Mesa 8i20 2.2 kW 3—phase drive or
7164 48—way I/O cards to be connected to a single FPGA card. The driver auto—detects the connected
hardware port, channel and device type. Devices can be connected in any order to any active channel of an
active port (see the config modparam definition above).

For full details of the smart—serial devices see sserial(9).

BSPI

420

The BSPI (Buffered SPI) driver is unusual in that it does not create any HAL pins. Instead the driver
exports a set of functions that can be used by a sub—driver for the attached hardware. Typically, these would
be written in the "comp".

Pre—processing language: see https://linuxcnc.org/docs/html/hal/comp.html or man halcompile for further
details. See mesa_7i65(9) and the source of mesa_7i65.comp for details of a typical sub—driver. See
hm2_bspi_setup_chan(3), hm2_bspi_write_chan(3), hm2_tram_add_bspi_frame(3),
hm2_allocate_bspi_tram(3), hm2_bspi_set_read_function(3) and hm2_bspi_set_write_function(3) for the
exported functions.

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

The names of the available channels are printed to standard output during the driver loading process and
take the form hm2_<board name>.<board index> .bspi.<index>, e.g., hm2_5i23.0.bspi.0.

UART
The UART driver also does not create any HAL pins, instead it declares two simple read/write functions
and a setup function to be utilised by user—written code. Typically this would be written in the "comp"
pre—processing language: see https://linuxcnc.org/docs/html/hal/comp.html or man halcompile for further
details. See mesa_uart(9) and the source of mesa_uart.comp for details of a typical sub—driver. See
hm2_uart_setup_chan(3), hm2_uart_send(3), hm2_uart_read(3) and hm2_uart_setup(3).

The names of the available uart channels are printed to standard output during the driver loading process
and take the form hm2_<board name>.<board index>.uart.<index>, e.g., hm2_5i23.0.uart.0.

General Purpose I/0
I/O pins on the board which are not used by a module instance are exported to HAL as "full" GPIO pins.
Full GPIO pins can be configured at run—time to be inputs, outputs, or open drains, and have a HAL
interface that exposes this flexibility. I/O pins that are owned by an active module instance are constrained
by the requirements of the owning module, and have a restricted HAL interface.

GPIOs have names like "hm2_<BoardType>.< BoardNum>.gpio.<IONum>". <IONum> is a three—digit
number. The mapping from <I/ONum> to connector and pin—on—that—connector is written to the syslog
when the driver loads, and it is documented in Mesa’s manual for the Anything I/O boards.

So, for example, the HAL pin that has the current inverted input value read from GPIO 012 of the second
7143 board is: hm2_7i43.1.gpio.012.in—not (this assumes that the firmware in that board is configured so
that this HAL object is available).

The HAL parameter that controls whether the last GPIO of the first 5122 is an input or an output is:
hm2_5i22.0.gpio.095.is_output (this assumes that the firmware in that board is configured so that this HAL
object is available).

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the
Canonical Device Interface (part of the HAL General Reference document). Each GPIO can have the
following HAL Pins:

in & in_not (bit out)
State (normal and inverted) of the hardware input pin. Both full GPIO pins and I/O pins used as inputs
by active module instances have these pins.

out (bit in)
Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins have this pin.

Each GPIO can have the following Parameters:

is_output (bit r/w)
If set to 0, the GPIO is an input. The I/O pin is put in a high—impedance state (weakly pulled high), to
be driven by other devices. The logic value on the I/O pin is available in the "in" and "in_not" HAL
pins. Writes to the "out" HAL pin have no effect. If this parameter is set to 1, the GPIO is an output;
its behavior then depends on the "is_opendrain" parameter. Only full GPIO pins have this parameter.

is_opendrain (bit 1/w)
This parameter only has an effect if the "is_output” parameter is True. If this parameter is False, the
GPIO behaves as a normal output pin: The I/O pin on the connector is driven to the value specified by
the "out" HAL pin (possibly inverted), and the value of the "in" and "in_not" HAL pins is undefined. If
this parameter is True, the GPIO behaves as an open—drain pin. Writing 0 to the "out" HAL pin drives
the I/O pin low, writing 1 to the "out" HAL pin puts the I/O pin in a high—impedance state. In this
high—impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the "in" and "in_not" pins. Only full GPIO pins and

LinuxCNC 01/04/2026 421

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

422

I/O pins used as outputs by active module instances have this parameter.

invert_output (bit r/w)
This parameter only has an effect if the "is_output" parameter is True. If this parameter is True, the
output value of the GPIO will be the inverse of the value on the "out" HAL pin. Only full GPIO pins
and I/O pins used as outputs by active module instances have this parameter.

When a physical I/O pin is used by a special function, the related is_output, and is_opendrain HAL
parameters are aliased to the special function. For instance, if gpio 1 is taken over by pwmgen 0’s first
output, then aliases like hm2_7i92.0.pwmgen.00.out0.invert_output (referring to
hm2_7i92.0.gpio.001.invert_output) will be automatically created. When more than one GPIO is connected
to the same special function, an extra .# is inserted so that the settings for each related GPIO can be set
separately. For example, for the firmware SV12IM_2X7148 72, the aliases
hm2_5i20.0.pwmgen.00.0.enable.invert_output (referring to hm2_5i20.0.gpio.000.invert_output) and
hm2_5i20.0.pwmgen.00.1.enable.invert_output (referring to hm2_5i20.0.gpio.023.invert_output) are both
created.

inm and inmux

inm/inmuxs are input debouncing modules that support hardware digital filtering of input pins. In addition
to the input filtering function, the inm/inmux modules support up to 4 simple quadrature counters for MPG
use. The quadrature inputs for MPG encoders O through 3 are inm/inmux pins O through 7. MPG A,B
inputs use the filter time constants programmed for inputs 0..7. Each inm/inmux input pin can have a slow
or fast filter constant. Filter time constants are specified in units of scan times. inms have names like
"hm?2_<BoardType>.<BoardNum>.inm.<Instance>". inmuxes have names like
"hm2_<BoardType>.<BoardNum>.inmux.<[Instance>". "Instance" is a two—digit number that
corresponds to the HostMot2 inm or inmux instance number. There are "num_inms" or numx_inmuxs"
instances, starting with 00.

Each instance reads between 8 and 32 input pins. inm and inmux are identical except for pin names and the
physical interface.

Pins:

input and input—not (bit out)
True and inverted filtered input states.
raw—input and raw—input—not (bit out)
True and inverted unfiltered input states.
input—slow (bit in)
If True, selects the long time constant filter for the corresponding input bit, if False the short time
constant is used.

encO—count,enc1—count,enc2—count,enc3—count (s32 out)
MPG counters 0 through 3.

encO-reset,enc1-reset,enc2—reset,enc3—reset (bit in)
Reset for MPG counters 0 through 3, count is forced to O if true.

Parameters:

scan_rate (u32 in)
This sets the input scan rate in Hz. Default scan rate is 20 kHz (50 ps scan period).

fast_scans (u32 in)
This sets the fast time constant for all input pins. This is the time constant used when the input—slow
pin for the corresponding input is False. The range is 0 to 63 scan periods and the default value is 5 =
250 ps at the default 20 kHz scan_rate.

slow_scans (u32 in)

01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

This sets the slow time constant for all input pins. This is the time constant used when the input—slow
pin for the corresponding input is True. The range is 0 to 1023 scan periods and the default value is
500 = 25 ms at the default 20 kHz scan_rate.

enc0_4xmode, encl_4xmode, enc2_4xmode, and enc3_4xmode (bit in)
These set the MPG encoder operating modes to 4X when True and 1X when False.

scan_width (u32 out)
This read only parameter specifies the number of inputs scanned by the module.

led
Creates HAL pins for the LEDs on the FPGA board.

Pins:

CR<NN> (bit in)
The pins are numbered from CRO1 upwards with the name corresponding to the PCB silkscreen.
Setting the bit to "True" or 1 lights the LED.

Solid State Relay
SSRs have names like "hm2_<BoardType>.<BoardNum>.ssr.<Instance>". Instance is a two-—digit
number that corresponds to the HostMot2 SSR instance number. There are num_ssrs instances, starting
with 00.

Each instance has a rate control pin and between 1 and 32 output pins.

Pins:

rate (u32 in)
Set the internal frequency of the SSR instance, in Hz (approximate). The valid range is 25 kHz to 25
MHz. Values below the minimum will use the minimum, and values above the max will use the max. 1
MHez is a typical value, and appropriate for all Mesa cards, and is the default. Set to O to disable this
SSR instance.

out—NN (bit in)
The state of this SSR instance’s NNth output. Set to 0 to make the output pins act like an open switch
(no connection), set to 1 to make them act like a closed switch.

invert—NN (bit in)
Inverts the state of this SSR instance’s NNth output, defaults to 0. When invert—NN is set to 1, SSR
output NN is closed when the out—NN pin is O and open when the out—NN pin is 1.

OutM Simple output module
OutMs have names like "hm2_<BoardType>.< BoardNum>.QutM.<Instance>". Instance is a two—digit
number that corresponds to the HostMot2 OutM instance number. There are num_outms instances, starting
with 00.

Each instance has between 1 and 32 output pins.

Pins:

out—NN (bit in)
The sets the state of this OutM instance’s NNth output. Normally the output pin follows the state of
this pin but may be inverted by the invert—nn HAL pin.

invert—NN (bit in)
Inverts the state of the this OutM instance’s NNth output, defaults to 0. When invert—NN is set to 1,
OutM output NN is high when the out—NN pin is 0 and low when the out—NN pin is 1.

xy2mod
The xy2mod is a xy2—-100 galvanometer interface. It supports 16 and 18 bit data modes and includes
parabolic interpolation to provide position updates between servo thread invocations.

LinuxCNC 01/04/2026 423

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

Pins:

posx_cmd, posy_cmd (float in)
X and Y position commands. Full scale is +—posn_scale default full scale (set by posx_scale and
posy_scale) is +— 1

posx_fb, posy_fb (float out)
X and Y position feedback. Full scale is +—posN_scale default full scale is +— 1. This is feedback from
the interpolator not the galvanometer.

velx_cmd, vely_cmd (float in)
X and Y velocity commands in units of fullscale_position/second

velx_fb, vely_fb (float out)
X and Y velocity feedback in units of fullscale_position/second

accx_cmd, accy_cmd (float in)
X and Y acceleration commands in units of fullscale_position/second2

posx_scale, posy_scale (float in)
This sets the full scale range of the position command and feedback, default is +— 1.0.

enable (bit in)
When False, output data is 0, all interpolator values are set to 0 and overflow flags are cleared. Must be
True for normal operation.

controlx, controly (u32 in)
These set the galvanometer control bits. There 3 bits per channel in 16 bit mode but just 1 control bit
in 18 bit mode, so values from 0..7 are valid in 16 bit mode but only 0 and 4 are valid in 18 bit mode.

commandx, commandy (u32 in)
These set the raw 16 bit data sent to the galvanometer in command mode.

commandmodex, commandmodey (bit in)
When set, these enable the command mode where 16 bit command data is sent to the galvanometer.

18bitmodex, 18bitmodey (bit in)
When True, these enable the 18 bit data mode for the respective channel.

posx—overflow, posy—overflow (bit out)
When true, these indicate an attempted position move beyond the full scale value.

velx—overflow, vely—overflow (bit out)
When True, these indicate an attempted velocity update move beyond the full scale value.

status (u32 out)
Raw 16 bit return status from galvanometer.

Parameters:

read—timer—number (s32 in)
Selects the DPLL timer number for pre-read sampling of the position and velocity registers. If set to
—1, pre—read sampling is disabled.

write—timer—number (s32 in)
Selects the DPLL timer number for post write update of the position and velocity registers. If set to —1,
post write update is disabled.

Watchdog
The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it. The
HAL representation of the watchdog is named "hm2_<BoardType >.< BoardNum>.watchdog".

The watchdog starts out asleep and inactive. Once you access the board the first time by running the hm2

write() HAL function (see below), the watchdog wakes up. From them on it must be petted periodically or
it will bite. Pet the watchdog by running the hm2 write() HAL function.

424 01/04/2026 LinuxCNC

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and
become high—impedance inputs (pulled high), and all communication with the board stops. The state of the
HostMot2 firmware modules is not disturbed (except for the configuration of the I/O pins). Encoder
instances keep counting quadrature pulses, and pwm-— and step—generators keep generating signals (which
are not relayed to the motors, because the I/0 pins have become inputs).

Resetting the watchdog (by clearing the has_bit pin, see below) resumes communication and resets the /O
pins to the configuration chosen at load—time.

If the firmware includes a watchdog, the following HAL objects will be exported:

Pins:

has_bit (bit in/out)
True if the watchdog has bit, False if the watchdog has not bit. If the watchdog has bit and the has_bit
bit is True, the user can reset it to False to resume operation.

Parameters:

timeout_ns (u32 read/write)
Watchdog timeout, in nanoseconds. This is initialized to 5,000,000 (5 milliseconds) at module load
time. If more than this amount of time passes between calls to the hm?2 write() function, the watchdog
will bite.

Raw Mode
If the "enable_raw" config keyword is specified, some extra debugging pins are made available in HAL.
The raw mode HAL pin names begin with "hm2_<BoardType >.< BoardNum>.raw".

With Raw mode enabled, a user may peek and poke the firmware from HAL, and may dump the internal
state of the hostmot?2 driver to the syslog.

Pins:

read_address (u32 in)
The bottom 16 bits of this is used as the address to read from.

read_data (u32 out)
Each time the hm?2_read() function is called, this pin is updated with the value at .read_address.

write_address (u32 in)
The bottom 16 bits of this is used as the address to write to.

write_data (u32 in)
This is the value to write to .write_address.

write_strobe (bit in)
Each time the hm2_write() function is called, this pin is examined. If it is True, then value in
.write_data is written to the address in .write_address, and .write_strobe is set back to False.

dump_state (bit in/out)
This pin is normally False. If it gets set to True, the hostmot2 driver will write its representation of the
board’s internal state to the syslog, and set the pin back to False.

Setting up Smart Serial devices
See setsserial(9) for the current way to set smart—serial eeprom parameters.

FUNCTIONS
hm2_<BoardType>.<BoardNum>.read-request
On boards with long turn around time for reads (at the time of writing, this applies only to ethernet
boards), this function sends a read request. When multiple boards are used, this can reduce the servo
thread execution time. In this case, the appropriate thread order would be

LinuxCNC 01/04/2026 425

HOSTMOT2(9) LinuxCNC Documentation HOSTMOT2(9)

addf hm2_7i80.0.read—request
addf hm2_7i80.1.read—request
addf hm2_7i80.0.read
addf hm2_7i80.1.read

which causes the read request to be sent to board 1 before waiting for the response to the read request to
arrive from board 0.

hm?2_<BoardType>.<BoardNum>.read
This reads the encoder counters, stepgen feedbacks, and GPIO input pins from the FPGA.

hm2_<BoardType>.<BoardNum>.write
This updates the PWM duty cycles, stepgen rates, and GPIO outputs on the FPGA. Any changes to
configuration pins such as stepgen timing, GPIO inversions, etc., are also effected by this function.

hm?2_<BoardType>.<BoardNum>.read_gpio
Read the GPIO input pins. Note that the effect of this function is a subset of the effect of the .read()
function described above. Normally only .read() is used. The only reason to call this function is if you
want to do GPIO things in a faster—than—servo thread. (This function is not available on the 7143 due
to limitations of the EPP bus.)

hm2_<BoardType>.< BoardNum>.write_gpio
Write the GPIO control registers and output pins. Note that the effect of this function is a subset of the
effect of the .write() function described above. Normally only .write() is used. The only reason to call
this function is if you want to do GPIO things in a faster—than—servo thread. (This function is not
available on the 7143 due to limitations of the EPP bus.)

hm2_<BoardType>.<BoardNum> trigger—encoders

This function will only appear if the firmware contains a BiSS, Fanuc or SSI encoder module and if
the firmware does not contain a hm2dpll module (qv) or if the modparam contains num_dplls=0. This
function should be inserted first in the thread so that the encoder data is ready when the main
hm2_*XXXX .NN.read* function runs. An error message will be printed if the encoder read is not
finished in time. It may be possible to avoid this by increasing the data rate. If the problem persists and
if "stale" data is acceptable then the function may be placed later in the thread, allowing a full servo
cycle for the data to be transferred from the devices. If available it is better to use the synchronous
hm2dpll triggering function.

SEE ALSO

hm2_pci(9), hm2_eth(9), hm2_spi(9), hm2_rpspi(9), hm2_7i43(9), hm2_7i90(9)

Mesa’s documentation for the Anything I/O boards, at https://www.mesanet.com.

LICENSE

426

GPL

01/04/2026 LinuxCNC

HYPOT(9) LinuxCNC Documentation

NAME

hypot — Three—input hypotenuse (Euclidean distance) calculator

SYNOPSIS

loadrt hypot [count=N|names=name][,name2...]]

FUNCTIONS
hypot.N (requires a floating—point thread)

PINS
hypot.N.in0 float in

hypot.N.inl float in
hypot.N.in2 float in

hypot.N.out float out
out = sqrt(in02 + in12 + in22)

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

HYPOT(9)

427

ILOWPASS(9) LinuxCNC Documentation ILOWPASS(9)

NAME

ilowpass — Low—pass filter with integer inputs and outputs

SYNOPSIS

loadrt ilowpass [count=N|names=nameI[,name?2...]]

DESCRIPTION
While it may find other applications, this component was written to create smoother motion while jogging
with an MPG.

In a machine with high acceleration, a short jog can behave almost like a step function. By putting the
ilowpass component between the MPG encoder counts output and the axis jog—counts input, this can be
smoothed.

Choose scale conservatively so that during a single session there will never be more than about 2e9 / scale
pulses seen on the MPG. Choose gain according to the smoothing level desired. Divide the
axis.N.jog—scale values by scale.

FUNCTIONS
ilowpass.N (requires a floating—point thread)
Update the output based on the input and parameters.

PINS
ilowpass.N.in s32 in

ilowpass.N.out s32 out
out tracks in * scale through a low—pass filter of gain per period.

PARAMETERS
ilowpass.N.scale float rw (default: 71024)
A scale factor applied to the output value of the low—pass filter.

ilowpass.N.gain float rw (default: .5)
Together with the period, sets the rate at which the output changes. Useful range is between 0 and 1,
with higher values causing the input value to be tracked more quickly. For instance, a setting of 0.9
causes the output value to go 90% of the way towards the input value in each period.

AUTHOR
Jeff Epler

LICENSE
GPL

428 01/04/2026 LinuxCNC

INTEG(9) LinuxCNC Documentation INTEG(9)

NAME
integ — Integrator with gain pin and windup limits
SYNOPSIS
loadrt integ [count=N|names=namel[,name2...]]
FUNCTIONS
integ.N (requires a floating—point thread)
PINS
integ.N.in float in
integ.N.gain float in (default: 1.0)
integ.N.out float out
The discrete integral of gain * in since reset was deasserted
integ.N.reset bit in
When asserted, set out to O
integ. N.max— float in (default: /¢20)
integ. N.min- float in (default: —/¢20)
AUTHOR
Jeff Epler
LICENSE
GPL

LinuxCNC 01/04/2026 429

INVERT (9) LinuxCNC Documentation INVERT (9)

NAME

invert — Compute the inverse of the input signal

SYNOPSIS
The output will be the mathematical inverse of the input, ie out = 1 / in. The parameter deadband can be
used to control how close to 0 the denominator can be before the output is clamped to 0. deadband must be
at least 1e—8, and must be positive.

FUNCTIONS

invert.N (requires a floating—point thread)

PINS
invert.N.in float in
Analog input value

invert.N.out float out
Analog output value

PARAMETERS
invert.N.deadband float rw
The out will be zero if in is between —deadband and +deadband.

SEE ALSO
invert(9), div2(9)

AUTHOR
Stephen Wille Padnos

LICENSE
GPL

430 01/04/2026 LinuxCNC

JOINT_AXIS_MAPPER(9) LinuxCNC Documentation JOINT_AXIS_MAPPER(9)

NAME

joint_axis_mapper — Translate faults from Joint to Axis
SYNOPSIS

loadrt joint_axis_mapper
DESCRIPTION

By default joint.n.amp—fault—in triggers an error message Joint n amplifier fault.
This component is a translation layer that shows an additional message
Usage example: loadrt joint_axis_mapper coord=xyz addf joint_axis_mapper servo—thread

net x—fault joint.0.faulted 4 jam.x—fault net y—fault joint.1.faulted & jam.y—fault net z—fault joint.2.faulted a
jam.z—fault

FUNCTIONS
Jjoint—axis—mapper.— (requires a floating—point thread)

PINS
joint—axis—mapper.dummy bit out
halcompile requires at least one halpin

LICENSE
GPL

LinuxCNC 01/04/2026 431

JOYHANDLE(9) LinuxCNC Documentation JOYHANDLE(9)

NAME

joyhandle — sets nonlinear joypad movements, deadbands and scales
SYNOPSIS

loadrt joyhandle [count=N|names=namel[,name2...]]
DESCRIPTION

The component joyhandle uses the following formula for a non linear joypad movements:
y = (scale * (a * x"power + b * x)) + offset

The parameters a and b are adjusted in such a way, that the function starts at (deadband,offset) and ends at
(1,scale+offset).

Negative values will be treated point symmetrically to origin. Values —deadband < x < +deadband will be
set to zero.

Values x > 1 and x < —1 will be skipped to *(scale+offset). Invert transforms the function to a progressive
movement.

With power one can adjust the nonlinearity (default = 2). Default for deadband is 0.

Valid values are: power a¥ 1.0 (reasonable values are 1.x .. 4-5, take higher power—values for higher
deadbands (>0.5), if you want to start with a nearly horizontal slope), 0 8% deadband < 0.99 (reasonable
0.1).

An additional offset component can be set in special cases (default = 0).

All values can be adjusted for each instance separately.

FUNCTIONS
Jjoyhandle.N (requires a floating—point thread)

PINS
joyhandle.N.in float in

joyhandle.N.out float out

PARAMETERS
joyhandle.N.power float rw (default: 2.0)

joyhandle.N.deadband float rw (default: 0.)
joyhandle.N.scale float rw (default: 1.)
joyhandle.N.offset float rw (default: 0.)
joyhandle.N.inverse bit rw (default: 0)

AUTHOR
Paul Willutzki

LICENSE
GPL

432 01/04/2026 LinuxCNC

KINS(9)

NAME

LinuxCNC Documentation KINS(9)

kins, genhexkins, genserkins, maxkins, pentakins, pumakins, rotatekins, scarakins, tripodkins — kinematics

definitions for LinuxCNC

SYNOPSIS

loadrt trivkins (use for most cartesian machines)

loadrt corexykins
loadrt genhexkins

loadrt genserkins

loadrt lineardeltakins (see separate manpage)

loadrt matrixkins
loadrt maxkins

loadrt pentakins
loadrt pumakins
loadrt rosekins

loadrt rotarydeltakins
loadrt rotatekins
loadrt scarakins
loadrt tripodkins
loadrt xyzab_tdr_Kins
loadrt xyzac—trt—Kins
loadrt xyzbc—trt—kins

loadrt Saxiskins

DESCRIPTION
Rather than exporting HAL pins and functions, these components provide the forward and inverse
kinematics definitions for LinuxCNC.

trivkins — generalized trivial kinematics
Joint numbers are assigned sequentially according to the axis letters specified with the coordinates=

parameter.

If the coordinates= parameter is omitted, joint numbers are assigned sequentially to every known axis letter

("xyzabcuvw").

Example: loadrt trivkins

Assigns all axis letters to joint numbers in sequence: x==joint0, y==joint1, z==joint2 a==joint3,
b==joint4, c==joint5 u==joint6, v==joint7, w==joint§

Example: loadrt trivkins coordinates=xyz

LinuxCNC

01/04/2026 433

KINS(9) LinuxCNC Documentation KINS(9)

Assigns: x==joint0, y==joint1, z==joint2

Example: loadrt trivkins coordinates=xz
Assigns: x==joint(, z==jointl

Example: loadrt trivkins coordinates=xyzy
Assigns: x==joint0, yO==jointl, z==joint2, y1==joint3:

The default kinematics type is KINEMATICS_IDENTITY. GUIs may provide special features for
configurations using this default kinematics type. For instance, the AXIS GUI automatically handles joint
and world mode operations so that the distinctions between joints and axes are not visible to the operator.
This is feasible since there is an exact correspondence between a joint number and its matching axis letter.

The kinematics type can be set with the Kinstype= parameter
kinstype=1 for KINEMATICS_IDENTITY (default if kinstype= omitted)
kinstype=[b|B] for KINEMATICS_BOTH
kinstype=[f|F] for KINEMATICS_FORWARD_ONLY
kinstype=[i[I] for KINEMATICS_INVERSE_ONLY

Example: loadrt trivkins coordinates=xyz kinstype=b
Use kinstype=B (KINEMATICS_BOTH) for configurations that need to move joints
independently (joint mode) or as coordinated (teleop) movements in world coordinates.

When using the axis gui with KINEMATICS_BOTH, the $ key is used to toggle between joint
and teleop (world) modes.

An axis letter may be used more than once (duplicated) to assign multiple joints to a single axis
coordinate letter.

Example: coordinates=xyyzw kinstype=B
Assigns: x==joint0, y==jointl AND joint2, z==joint3, w==joint4

The above example illustrates a gantry configuration that uses duplicated coordinate letters to indicate that
two joints (jointl and joint2) move a single axis (y). Using kinstype=B allows the configuration to be
toggled between joint and world modes of operation. Homing configuration options are available to
synchronize the final homing move for selected joints — see the documentation for Homing
Configuration.

NOTES for duplicated coordinates
When duplicated coordinate letters are used, specifying KINEMATICS_BOTH (kinstype=B) allows a
gui to support jogging of each individual joint in joint mode. Caution is required for machines where
the movement of a single joint (in a set specified by a duplicated coordinate letter) can lead to gantry
racking or other unwanted outcomes. When the kinstype= parameter is omitted, operation defaults to
KINEMATICS_IDENTITY (kinstype=1) and a gui may allow jogging based upon a selected axis
coordinate letter (or by a keyboard key) before homing is completed and the machine is still in joint
mode. The joint selected will depend upon the gui implementation but typically only one of the
multiple joints in the set will jog. Consequently, specifying KINEMATICS_BOTH is recommended as
it enables support for unambiguous, independent jogging of each individual joint. Machines that
implement homing for all joints (including the provisions for synchronizing the final homing move for
multiple joints) may be homed at machine startup and automatically switch to world mode where
per—coordinate jogging is available.

corexykins — CoreXY Kinematics
X =0.5*JOINT_O0 + JOINT_1)

Y =0.5*JOINT_0 - JOINT_1)

434 01/04/2026 LinuxCNC

KINS(9) LinuxCNC Documentation KINS(9)

Z =JOINT_2

[KINSJJOINTS= must specify 3 or more joints (maximum 9). If enabled by the number of
[KINSJJOINTS= specified, JOINT_3,4,5,6,7,8 correspond to coordinates A,B,C,U,V,W respectively.

genhexkins — Hexapod Kinematics
Gives six degrees of freedom in position and orientation (XYZABC). The location of base and platform
joints is defined by HAL parameters. The forward kinematics iteration is controlled by HAL pins. (See
switchkins documentation for more info)

genhexkins.base.N.x
genhexkins.base.N.y
genhexkins.base.N.z
genhexKkins.platform.N.x
genhexKkins.platform.N.y

genhexKkins.platform.N.z
Parameters describing the Nth joint’s coordinates.

genhexKkins.spindle—offset
Added to all joints Z coordinates to change the machine origin. Facilitates adjusting spindle position.

genhexkins.base—-n.N.x
genhexkins.base—-n.N.y
genhexkins.base—-n.N.z
genhexKkins.platform—n.N.x
genhexKkins.platform—n.N.y

genhexKkins.platform-n.N.z
Parameters describing unit vectors of Nth joint’s axis. Used to calculate strut length correction for
cardanic joints and non—captive actuators.

genhexkins.screw—lead
Lead of strut actuator screw, positive for the right—handed thread. Default is O (strut length correction
disabled).

genhexKkins.correction.NV
Current values of strut length correction for non—captive actuators with cardanic joints.

genhexkins.convergence—criterion
Minimum error value that ends iterations with converged solution.

genhexKkins.limit—iterations
Limit of iterations, if exceeded iterations stop with no convergence.

genhexkins.max—error
Maximum error value, if exceeded iterations stop with no convergence.

genhexKkins.last—iterations
Number of iterations spent for the last forward kinematics solution.

genhexkins.max—iterations
Maximum number of iterations spent for a converged solution during current session.

genhexKkins.tool-offset
TCP offset from platform origin along Z to implement RTCP function. To avoid joints jump change
tool offset only when the platform is not tilted.

LinuxCNC 01/04/2026 435

KINS(9) LinuxCNC Documentation KINS(9)

genserkins — generalized serial kinematics
Kinematics that can model a general serial-link manipulator with up to 6 angular joints. See switchkins
documentation for more info.

The kinematics use Denavit—Hartenberg definition for the joint and links. The DH definitions are the ones
used by John J Craig in "Introduction to Robotics: Mechanics and Control" The parameters for the
manipulator are defined by HAL pins. Note that this uses a convention sometimes known as "Modified DH
Parameters" and this must be borne in mind when setting up the system. https://w.wiki/NcY

genserkins.A—N
genserkins. ALPHA-N

genserkins.D-N
Parameters describing the Nth joint’s geometry.

matrixkins — Calibrated kinematics for 3—axis cartesian machines
Similar to trivkins, but allows calibrating out small imperfections in axis alignment. See matrixkins(9) man
page for detailed instructions.

maxKins — 5—axis kinematics example
Kinematics for Chris Radek’s tabletop 5 axis mill named max with tilting head (B axis) and horizontal
rotary mounted to the table (C axis). Provides UVW motion in the rotated coordinate system. The source
file, maxkins.c, may be a useful starting point for other 5—axis systems.

pentakins — Pentapod Kinematics
Gives five degrees of freedom in position and orientation (XYZAB). The location of base and effector
joints is defined by HAL parameters. The forward kinematics iteration is controlled by HAL pins.

pentakins.base.N.x
pentakins.base.N.y
pentakins.base.N.z
pentakins.effector.N.r

pentakins.effector.N.z
Parameters describing the Nth effector joint’s radius and axial position.

pentakins.convergence—criterion
Minimum error value that ends iterations with converged solution.

pentakins.limit—iterations
Limit of iterations, if exceeded iterations stop with no convergence.

pentakins.max—error
Maximum error value, if exceeded iterations stop with no convergence.

pentakins.last—iterations
Number of iterations spent for the last forward kinematics solution.

pentakins.max—iterations
Maximum number of iterations spent for a converged solution during current session.

pentakins.tool-offset
TCP offset from effector origin along Z to implement RTCP function. To avoid joints jump change
tool offset only when the platform is not tilted.

pumakins — kinematics for puma typed robots
Kinematics for a puma-—style robot with 6 joints:

pumakins.A2
pumakins.A3
pumakins.D3

436 01/04/2026 LinuxCNC

KINS(9) LinuxCNC Documentation KINS(9)

pumakins.D4
Describe the geometry of the robot

rosekins — kinematics for a rose engine using
a transverse, longitudinal, and rotary joint (3 joints)

rotarydeltakins — kinematics for a rotary delta machine
Rotary delta robot (3 Joints)

rotatekins — Rotated Kinematics
The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.

scarakins — kinematics for SCARA-type robots
(See switchkins documentation for more info)

scarakins.D1
Vertical distance from the ground plane to the center of the inner arm.

scarakins.D2
Horizontal distance between joint[0] axis and joint[1] axis, i.e., the length of the inner arm.

scarakins.D3
Vertical distance from the center of the inner arm to the center of the outer arm. May be positive or
negative depending on the structure of the robot.

scarakins.D4
Horizontal distance between joint[1] axis and joint[2] axis, i.e., the length of the outer arm.

scarakins.D5
Vertical distance from the end effector to the tooltip. Positive means the tooltip is lower than the end
effector, and is the normal case.

scarakins.D6
Horizontal distance from the centerline of the end effector (and the joints 2 and 3 axis) and the tooltip.
Zero means the tooltip is on the centerline. Non—zero values should be positive, if negative they
introduce a 180 degree offset on the value of joint[3].

tripodkins — Tripod Kinematics
The joints represent the distance of the controlled point from three predefined locations (the motors), giving
three degrees of freedom in position (XYZ)

tripodkins.Bx
tripodkins.Cx

tripodKins.Cy
The location of the three motors is (0,0), (Bx,0), and (Cx,Cy)

xyzac—trt—Kkins — 5 Axis mill (Table Rotary/Tilting)
Tilting table (A) and horizontal rotary mounted to table (C axis) (5 Joints 0:x,1:y,2:z,3:a,4:c) with
provisions to switch between xyzac and trivkins kinematic types. The joint mapping can be altered with the
coordinates parameter in the same way as supported by trivkins. (See switchkins documentation for more
info)

xyzbc—trt—kins — 5 Axis mill (Table Rotary/Tilting)
(5 Joints 0:x,1:y,2:2,3:b,4:c) with provisions to switch between xyzbc and trivkins kinematic types. The
joint mapping can be altered with the coordinates parameter in the same way as supported by trivkins. (See
switchkins documentation for more info)

Saxiskins — 5 Axis bridge mill
XYZBCW — the W coordinate values (typically used for tool motion) are incorporated into XYZ
positioning. (Only 5 joints are needed by the kinematics module but an additional joint is needed to display
W values). (See switchkins documentation for more info)

By default, Saxiskins uses coordinates XYZBCW assigned consecutively to joints 0..5. The module

LinuxCNC 01/04/2026 437

KINS(9) LinuxCNC Documentation KINS(9)

coordinates parameter may be used to assign multiple joints to an axis letter and/or to assign joints to
additional coordinates A,U,V with a one—to—one correspondence to the assigned joints. Example:
XYZBCWYYV (8 joints total numbered 0..7) uses two joints for Y (joints 1,6) and adds an additional
coordinate V that has a one—to—one relation to joint 7.

Note: These kinematics may be used with the vismach 5axisgui providing that the joint—letter assignments
agree with the default ordering expected by it (XYZBCW —> joints 0..5)

SEE ALSO

For additional information, see following subsections of the section Advanced Topics of the LinuxCNC
documentation:

¢ Kinematics
¢ 5-Axis Kinematics

¢ Switchable Kinematics

The HAL component userkins.comp is a template for making kinematic modules using the halcompile
tool. The unmodified template supports an identity xyz configuration that uses 3 joints. See userkins(9) for
more info.

438 01/04/2026 LinuxCNC

KNOB2FLOAT (9) LinuxCNC Documentation KNOB2FLOAT (9)

NAME

knob2float — Convert counts (probably from an encoder) to a float value

SYNOPSIS

loadrt knob2float [count=N|names=namel[,name2...]]

FUNCTIONS
knob2float.N (requires a floating—point thread)

PINS
knob2float.N.counts s32 in
Counts

knob2float.N.enable bit in
When TRUE, output is controlled by count, when FALSE, output is fixed

knob2float.N.scale float in
Amount of output change per count

knob2float.N.out float out
Output value

PARAMETERS
knob2float.N.max—out float rw (default: 7.0)
Maximum output value, further increases in count will be ignored

knob2float.N.min-out float rw (default: 0.0)
Minimum output value, further decreases in count will be ignored

AUTHOR

John Kasunich

LICENSE
GPL

LinuxCNC 01/04/2026 439

LASERPOWER(9) LinuxCNC Documentation

NAME

laserpower — Scales laser power output based upon velocity input power and distance to go

SYNOPSIS

loadrt laserpower [count=N|names=namel[,name2...]]

DESCRIPTION

During operation laserpower must be scaled proportionally to actual velocity vs commanded velocity. This

PINS

440

prevents uneven laser power when rounding tight corners.

LASERPOWER(9)

Component laserpower operates in 2 modes. Raster mode (when raster_mode=1). During raster mode
raster_power is scaled between min_power and max_power proportionally to req_velocity and

cur_velocity.

Velocity mode (when raster_mode=0). During velocity mode vector_power corresponds to the power
level desired when reaching the next control point. This allows vector power to be scaled along moves.

FUNCTIONS

laserpower.N (requires a floating—point thread)

laserpower.N.min—power float in
Minimum allowed power level.

laserpower.N.max—power float in
Maximum allowed power level

laserpower.N.req—velocity float in
Requested motion velocity

laserpower.N.cur—velocity float in
Current motion velocity

laserpower.N.enabled bit in
True when laser output enabled

laserpower.N.raster—mode bit in
false for vector mode, true for raster mode

laserpower.N.raster—power float in
Requested power level during raster operations

laserpower.N.vector—power float in
Requested power level during vector operations

laserpower.N.distance—to—go float in
Distance to go of current move

laserpower.N.power float out
Current power level command

laserpower.N.command—-power float out
Commanded power before normalization and velocity scaling

laserpower.N.start—power float out
Power level when reqPower last changed

laserpower.N.start—distance float out
Distance amount when reqPower last changed

laserpower.N.vel-scale float out
Velocity related scaling component.

01/04/2026

LinuxCNC

LASERPOWER(9) LinuxCNC Documentation LASERPOWER(9)

LICENSE
GPL

LinuxCNC 01/04/2026 441

LATENCYBINS (9) LinuxCNC Documentation LATENCYBINS(9)

NAME

latencybins — comp utility for scripts/latency—histogram
SYNOPSIS

loadrt latencybins [count=N|names=name][,name2...]]
DESCRIPTION

Read availablebins pin for the number of bins available. Set the maxbinnumber pin for the number of
+;bins. Ensure maxbinnumber 2 availablebins.

For maxbinnumber = N, the bins are numbered:

e —-N..0O..+N bins
(the -0 bin is not populated)
(total effective bins = 2 * maxbinnumber + 1)
Set nsbinsize pin for the binsize (ns).

Iterate:
* Set index pin to a bin number: 0 8% index 4% maxbinnumber.
* Read check pin and verify that check pin == index pin.
* Read output pins:
¢ pbinvalue is count for bin = +index
* nbinvalue is count for bin = —index
e pextra is count for all bins > maxbinnumber
* nextra is count for all bins < maxbinnumber
* latency—min is max negative latency

* latency—max is max positive latency

If index is out of range (index < 0 or index > maxbinnumber) then pbinvalue = nbinvalue = —1. The
reset pin may be used to restart.

The latency pin outputs the instantaneous latency.

Maintainers note: hardcoded for MAXBINNUMBER==1000

FUNCTIONS
latencybins.N

PINS
latencybins.N.maxbinnumber s32 in (default: /000)

latencybins.N.index s32 in
latencybins.N.reset bit in
latencybins.N.nsbinsize s32 in
latencybins.N.check s32 out
latencybins.N.latency s32 out
latencybins.N.latency—max s32 out
latencybins.N.latency—min s32 out

latencybins.N.pbinvalue s32 out

442 01/04/2026 LinuxCNC

LATENCYBINS (9) LinuxCNC Documentation LATENCYBINS(9)

latencybins.N.nbinvalue s32 out
latencybins.N.pextra s32 out
latencybins.N.nextra s32 out
latencybins.N.variance s32 out
latencybins.N.availablebins s32 out (default: 7000)

AUTHOR
Dewey Garrett

LICENSE
GPL

LinuxCNC 01/04/2026 443

LCD(9) LinuxCNC Documentation LCD(9)

NAME

led — Stream HAL data to an LCD screen
SYNOPSIS

loadrt led fmt_strings=""""Plain Text %4.4f\nAnd So on|Second Page, Next Inst""
FUNCTIONS

led (requires a floating—point thread).
All LCD instances are updated by the same function.

PINS
lcd.NN.out (u32) out
The output byte stream is sent via this pin. One character is sent every thread invocation. There in no
handshaking provided.

led.NN.page.PP.arg.NN (float/s32/u32/bit) in
The input pins have types matched to the format string specifiers.

led.NN.page_num (u32) in
Selects the page number. Multiple layouts may be defined, and this pin switches between them.

lcd.NN.contrast (float) in
Attempts to set the contrast of the LCD screen using the byte sequence ESC C and then a value from
0x20 to OxBF (matching the Mesa 7173). The value should be between 0 and 1.

PARAMETERS
led.*NN.decimal-separator (u32) rw
Sets the decimal separator used for floating point numbers. The default value is 46 (0x2E) which
corresponds to ".". If a comma is required then set this parameter to 44 (0x2C).

DESCRIPTION
led takes format strings much like those used in C and many other languages in the printf and scanf
functions and their variants.

The component was written specifically to support the Mesa 7173 pendant controller, however, it may be of
use streaming data to other character devices and, as the output format mimics the ADM3 terminal format,
it could be used to stream data to a serial device. Perhaps even a genuine ADM3. The strings contain a
mixture of text values (which are displayed directly), "escaped" formatting codes and numerical format
descriptors. For a detailed description of formatting codes see: https://en.wikipedia.org/wiki/Printf .

The component can be configured to display an unlimited number of differently—formatted pages, which
may be selected with a HAL pin.

Escaped codes
* \n Inserts a clear—to—end, carriage return and line feed character. This will still linefeed and clear
even if an automatic wrap has occurred (Icd has no knowledge of the width of the lcd display). To
print in the rightmost column it is necessary to allow the format to wrap and omit the \n code.

» \t Inserts a tab (actually 4 spaces in the current version rather than a true tab).

e \NN inserts the character defined by the hexadecimal code NN. As the , character is used in the
format string to separate LCD instances it must be represented by \2C in the format string (the
decimal separator is handled differently).

¢ \\Inserts a literal \.

Numerical formats
led differs slightly from the standard printf conventions. One significant difference is that width limits are
strictly enforced to prevent the LCD display wrapping and spoiling the layout. The field width includes the
sign character so that negative numbers will often have a smaller valid range than positive. Numbers that do
not fit in the specified width are displayed as a line of asterisks (¥####** k%)

444 01/04/2026 LinuxCNC

LCD(9)

LinuxCNC Documentation LCD(9)

Each format begins with a "%" symbol. (For a literal % use "%%"). Immediately after the % the following
modifiers may be used:

non

(space) Pad the number to the specified width with spaces. This is the default and is not strictly
necessary.

"0" Pad the number to the specified width with the numeral 0.

"+" Force display of a + symbol before positive numbers. This (like the — sign) will appear
immediately to the left of the digits for a space—padded number and in the extreme left position for
a O—padded number.

"1234567890" A numerical entry (other than the leading O above) defines the total number of
characters to display including the decimal separator and the sign. Whilst this number can be as
many digits as required, the maximum field width is 20 characters. The inherent precision of the
"double" data type means that more than 14 digits will tend to show errors in the least significant
digits. The integer data types will never fill more than 10 decimal digits.

Following the width specifier should be the decimal specifier. This can only be a full-stop character (.) as
the comma (,) is used as the instance separator. Currently lcd does not access the locale information to
determine the correct separator but the decimal-separator HAL parameter can be used to choose any
desired separator.

Following the decimal separator should be a number that determines how many places of decimals to
display. This entry is ignored in the case of integer formats.

All the above modifiers are optional, but to specify a decimal precision the decimal point must precede the
precision, e.g., as in "%.3f". The default decimal precision is 4.

The numerical formats supported are:

LinuxCNC

%f %F (for example, %+09.3f): These create a floating—point type HAL pin. The example would
be displayed in a 9—character field, with 3 places of decimals, as a decimal separator, padded to the
left with Os and with a sign displayed for both positive and negative. Conversely a plain %f would
be 6 digits of decimal, variable format width, with a sign only shown for negative numbers. Both
%ft and %F create exactly the same format.

%i %d (For example %+ 4d): Creates a signed (s32) HAL pin. The example would display the
value at a fixed 4 characters, space padded, width including the "+" giving a range of +999 to —999.
%i and %d create identical output.

%u (for example %08u): Creates an unsigned (u32) HAL pin. The example would be a fixed 8
characters wide, padded with zeros.

%x, %X: Creates an unsigned (u32) HAL pin and displays the value in Hexadecimal. Both %x and
%X display capital letters for digits ABCDEF. A width may be specified, though the u32 HAL type
is only 8 hex digits wide.

%o0: Creates an unsigned (u32) pin and displays the value in octal representation.

%c: Creates a u32 HAL pin and displays the character corresponding to the value of the pin. Values
less than 32 (space) are suppressed. A width specifier may be used, for example %20c might be
used to create a complete line of one character.

%b: This specifier has no equivalent in printf. It creates a bit (boolean) type HAL pin. The b should
be followed by two characters and the display will show the first of these when the pin is true, and
the second when false. Note that the characters follow, not precede the "b", unlike the case with
other formats. The characters may be "escaped" Hex values. For example "%b\FF " will display a
solid black block if true, and a space if false and "%b\7F\7E" would display right—arrow for false
and left—arrow for true. An unexpected value of E indicates a formatting error.

01/04/2026 445

LCD(9) LinuxCNC Documentation LCD(9)

Pages: The page separator is the "|" (pipe) character (if the actual character is needed then \7C may be
used). A "Page" in this context refers to a separate format which may be displayed on the same display.

Instances: The instance separator is the comma. This creates a completely separate lcd instance, for
example to drive a second lcd display on the second 7173. The use of comma to separate instances is built
in to the modparam reading code so not even escaped commas "\," can be used. A comma may be displayed
by using the \2C sequence.

AUTHOR
Andy Pugh

LICENSE
GPL

446 01/04/2026 LinuxCNC

LED_DIM(9) LinuxCNC Documentation LED_DIM (9)

NAME
led_dim — HAL component for dimming LEDs

SYNOPSIS

loadrt led_dim [count=N|names=name][,name2...]]
DESCRIPTION

Component for LED dimming according to human perception of brightness of light. .LP The output is
calculated using the CIE 1931 formula.

FUNCTIONS
led—dim.N (requires a floating—point thread)
Update the output value

PINS
led—dim.N.in float in
Brightness input value 4 0 to 1
led—dim.N.out float out
Luminance output value 4 0 to 1
AUTHOR
Alexander RA ssler
LICENSE
GPL

LinuxCNC 01/04/2026 447

LIMITI(9) LinuxCNC Documentation
NAME

limitl — Limit the output signal to fall between min and max
SYNOPSIS

loadrt limit1 [count=N|names=namel[,name?2...]]
FUNCTIONS

limitl.N (requires a floating—point thread)
PINS

limitl.NV.in float in

limitl.N.out float out

limit1.N.min- float in (default: —/¢20)

limit1l.N.max~- float in (default: /¢20)
AUTHOR

Jeff Epler
LICENSE

GPL

448 01/04/2026

LIMITI(9)

LinuxCNC

LIMIT2(9) LinuxCNC Documentation LIMIT2(9)

NAME
limit2 — Limit the output signal to fall between min and max and limit its slew rate to less than maxv per
second. When the signal is a position, this means that position and velocity are limited.

SYNOPSIS

loadrt limit2 [count=N|names=namel[,name?2...]]

FUNCTIONS
limit2.N (requires a floating—point thread)

PINS

limit2.N.in float in
limit2.N.out float out

limit2.N.load bit in
When TRUE, immediately set out to in, ignoring maxv

limit2.N.min- float in (default: —/¢20)
limit2.N.max- float in (default: 7¢20)
limit2.N.maxv float in (default: /¢20)

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 449

LIMIT3(9) LinuxCNC Documentation LIMIT3(9)

NAME

limit3 — Follow input signal while obeying limits

SYNOPSIS
Limit the output signal to fall between min and max, limit its slew rate to less than maxv per second, and
limit its second derivative to less than maxa per second squared. When the signal is a position, this means
that the position, velocity, and acceleration are limited.

FUNCTIONS
limit3.N (requires a floating—point thread)

PINS

limit3.N.in float in

limit3.N.enable bit in (default: 7)
1: out follows in, 0: out returns to O (always per constraints)

limit3.N.out float out

limit3.N.load bit in (default: 0)
When TRUE, immediately set out to in, ignoring maxv and maxa

limit3.N.min- float in (default: —/¢20)
limit3.N.max~- float in (default: 7¢20)
limit3.N.maxv float in (default: /¢20)

limit3.N.maxa float in (default: /e7)
Max Acceleration. Note that the component becomes unstable with maxa greater than about 1e7 in a
1kHz thread

limit3.N.smooth—steps u32 in (default: 2)
Smooth out acceleration this many periods before reaching input or max/min limit. Higher values
avoid oscillation, but will accelerate slightly more slowly.

AUTHOR

John Kasunich

LICENSE
GPL

450 01/04/2026 LinuxCNC

LIMIT _AXIS(9) LinuxCNC Documentation LIMIT _AXIS(9)

NAME

limit_axis — Dynamic range based axis limits
SYNOPSIS

loadrt limit_axis [count=N|names=name[,name2...]] [personality=P1[,P2...]]
DESCRIPTION

Limit axis to certain limits at varying inputs.

For example on a spindle with C rotation, to avoid hitting a gantry when the height is above Z—10.
* Use Z axis as feedback
e Use 2 ranges (0,—10) (-10, —40)
e When Z is above 10, C rotation is limited to range O

e When Z is below 10, C rotation is limited to range 1
Usage:

loadrt limit_axis count=3 personality=2,3,2
#or
loadrt limit_axis names=limit_x,limit_y,limit_z personality=2,3,2

The personality argument defines how many ranges are supported by each instance. Note that no spaces
can be used in the names= and personality= parameters.

Caveats:
» Searches ranges from 0 to 9 and will take the first range that matches
* Ranges are inclusive min_range ax feedback 4 max_range
e Max can not be less than minimum for any group
« sticky indicates, to not check other ranges if the feedback is still in the current range

* enable allows for a range to be turned on/off, for cases such as avoiding a tool changer, but
allowing sometimes

FUNCTIONS

limit—axis.N (requires a floating—point thread)

PINS
limit—axis.N.error—no—range bit out
error pin indicating that no range matches the fb

limit—axis.N.min—output float out
Minimum limit output

limit—axis.N.max—output float out
Maximum limit output

limit—axis.N.fb float in
Feedback pin, the value of this pin determines which range is active

limit—axis.N.current-range u32 out
Indicates which range is currently active

limit—axis.N.min-limit-MM float in (MM=00..personality)
The array of minimum limits to select from

limit—axis.N.max-limit—MM float in (MM=00..personality)
The array of macimum limits

LinuxCNC 01/04/2026 451

LIMIT_AXIS(9) LinuxCNC Documentation

limit—axis.N.min—-range—MM float in (MM=00..personality)
Defines the range of values with which the fb is compared to set the range

limit—axis.N.max-range—MM float in (MM=00..personality)
Defines the range of values with which the fb is compared to set the range

limit—axis.N.enable—MM bit in (MM=00..personality)
Used to enable and disable a specific range

limit—axis.N.sticky—MM bit in (MM=00..personality)
Used to make specific range sticky or not

limit—axis.N.error-range—MM bit out (MM=00..personality) (default: I)
Error bit indicating that the fb pin falls outside all ranges

limit—axis.N.error—limit—MM bit out (MM=00..personality) (default:)
Error bit indicating that the max limit is not larger than the min limit

AUTHOR
Chad Woitas

LICENSE
GPL

452 01/04/2026

LIMIT _AXIS(9)

LinuxCNC

LINCURVE(9) LinuxCNC Documentation LINCURVE(9)

NAME

lincurve — one—dimensional lookup table

SYNOPSIS

loadrt lincurve [count=N|names=nameI[,name?2...]] [personality=P/[,P2...]]

DESCRIPTION
This component can be used to map any floating—point input to a floating—point output. Typical uses would
include linearisation of thermocouples, defining PID gains that vary with external factors or to substitute for
any mathematical function where absolute accuracy is not required.

The component can be thought of as a 2—dimensional graph of points in (X,y) space joined by straight lines.
The input value is located on the x axis, followed up until it touches the line, and the output of the
component is set to the corresponding y—value.

The (x,y) points are defined by the x—val-NN and y—val-NN parameters which need to be set in the HAL
file using "setp" commands.

The maximum number if (x,y) points supported is 16.

For input values less than the x—val—-00 breakpoint the y—val—00 is returned. For x greater than the largest
x—val-NN the yval corresponding to x—max is returned (ie, no extrapolation is performed.)

Sample usage: loadrt lincurve count=3 personality=4,4.,4 for a set of three 4—element graphs.

FUNCTIONS

lincurve.N (requires a floating—point thread)

PINS
lincurve.N.in—- float in
The input value

lincurve.N.out- float out
The output value

lincurve.N.out—io float io
The output value, compatible with PID gains

PARAMETERS
lincurve.N.x—val-MM float rw (MM=00..personality)
axis breakpoints

lincurve.N.y—val-MM float rw (MM=00..personality)
output values to be interpolated

AUTHOR
Andy Pugh

LICENSE
GPL

LinuxCNC 01/04/2026 453

LINEARDELTAKINS(9) LinuxCNC Documentation LINEARDELTAKINS (9)

NAME

lineardeltakins — Kinematics for a linear delta robot
SYNOPSIS

loadrt lineardeltakins
KINEMATICS

The kinematics model is appropriate for a rostock/kossel—style design with three joints arranged in an
equilateral triangle. (0,0) is always the center of the working volume. Joint 0 is at (O,R) and subsequent
joints are 120 degrees clockwise (note that joint O is not at zero radians). The length of the arm is L.

Joints 0-2 are the linear carriages. Axes ABC and UVW are passed through unchanged in joints 3-8, so
that e.g., A can still be used to control an extruder.

PINS
lineardeltakins.R float in
Effective diameter of the platform.

The radius R is different than the distance from the center of the table to the center of the belt/smooth
rod/extrusion that the joints ride on. In RepRap delta parlance, R is DELTA_RADIUS which is
computed as

DELTA_SMOOTH_ROD_OFFSET — DELTA_EFFECTOR_OFFSET -
DELTA_CARRIAGE_OFFSET.

lineardeltakins.L float in
Length of the rod connecting the carriage to the effector. In RepRap delta parlance, L is
DELTA_DIAGONAL_ROD.

NOTES
The R and L values can be adjusted while LinuxCNC is running. However, doing so while in coordinated
mode will lead to a step change in joint position, which generally will trigger a following error if in joint
mode with machine on.

454 01/04/2026 LinuxCNC

LOGIC(9) LinuxCNC Documentation LOGIC(9)

NAME

logic — LinuxCNC HAL component providing configurable logic functions

SYNOPSIS
loadrt logic [count=N|names=namel[,name?2...]] personality=0xXXXX[,0xXXXX...]

count
The number of logical gates.

names
The named logical gates to create.

personality
Comma separated list of hexadecimal number. Each number defines the behaviour of the individual
logic gate. The list must have the same number of personalities as the N count.

DESCRIPTION

General ‘logic function’ component. Can perform ‘and’, ‘or’, ‘nand’, ‘nor’ and ‘xor’ of up to 16 inputs.

Determine the proper value for ‘personality’ by adding the inputs and outputs then convert to hex:
e The number of input pins, usually from 2 to 16
e 256 (0x100) if the ‘and’ output is desired
e 512 (0x200) if the ‘or’ output is desired
¢ 1024 (0x400) if the ‘xor’ (exclusive or) output is desired
* 2048 (0x800) if the ‘nand’ output is desired
* 4096 (0x1000) if the ‘nor’ output is desired

Outputs can be combined, for example 2 + 256 + 1024 = 1282 converted to hex would be 0x502 and would
have two inputs and have both ‘xor’ and ‘and’ outputs.

FUNCTIONS
logic.N
Read the inputs and toggle the output bit.
PINS
logic.N.in—MM bit in (MM=00..personality & 0xff)
logic.N.and bit out [if personality & 0x100]
logic.N.or bit out [if personality & 0x200]
logic.N.xor bit out [if personality & 0x400]
logic.N.nand bit out [if personality & 0x800]

logic.N.nor bit out [if personality & 0x1000]
EXAMPLES

This is an OR circuit connected to three different signals, two inputs named sig—in—0 and sig—in—1, and one
output named sig—out. First the circuit is defined, then its function is connected to the servo real time
thread, last, its pins are connected to the wanted signals.

loadrt logic count=1 personality=0x202
addf logic.0 servo—thread

net sig—in—0 => logic.0.in—00

net sig—in—1 => logic.0.in-01

net sig—out <=logic.0.or

This is a named AND circuit with two inputs and one output.

LinuxCNC 01/04/2026 455

LOGIC(9) LinuxCNC Documentation

loadrt logic names=both personality=0x102
addf both servo—thread
net sig—in—0 => both.in—00
net sig—in—1 => both.in—-01
net sig—out <= both.and
SEE ALSO
and2(9), lut5(9), not(9), or2(9), xor2(9)

AUTHOR
Jeff Epler

LICENSE
GPL

456 01/04/2026

LOGIC(9)

LinuxCNC

LOWPASS(9) LinuxCNC Documentation LOWPASS(9)

NAME

lowpass — Low—pass filter

SYNOPSIS

loadrt lowpass [count=N|names=namel[,name2...]]

FUNCTIONS

lowpass.N (requires a floating—point thread)

PINS

lowpass.N.in float in
lowpass.N.out float out
out += (in — out) * gain
lowpass.N.load bit in
When TRUE, copy in to out instead of applying the filter equation.

PARAMETERS

lowpass.N.gain float rw

NOTES

gain pin setting

The digital filter implemented is equivalent to a unity—gain continuous—time single—pole low—pass filter
that is preceded by a zero—order—hold and sampled at a fixed period. For a pole at —a (radians/seconds) the
corresponding continuous—time lowpass filter LaPlace transfer function is:

H(s) = a/(s + a)

For a sampling period T (seconds), the gain for this HAL lowpass component is:
gain=1-¢e"(-a*T)

e = 2.71828 https://en.wikipedia.org/wiki/E_(mathematical_constant)

Examples: T = 0.001 seconds (typical servo thread period) a = (2 * pi * 100) (100Hz bandwidth single
pole) gain = 0.466

T = 0.001 seconds (typical servo thread period)
a=(2*pi*10) (*10Hz* bandwidth single pole)
gain = *0.0609*

T = 0.001 seconds (typical servo thread period)
a=2*pi*1) (*1Hz* bandwidth single pole)
gain = *0.0063*
AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 457

LUT5(9)

NAME

LinuxCNC Documentation LUT5(9)

Iut5 — Arbitrary S—input logic function based on a look—up table

SYNOPSIS

loadrt lut5 [count=N|names=name[,name2...]]

DESCRIPTION

458

lutS constructs a logic function with up to 5 inputs using a look—up table. The value for function can be
determined by writing the truth table, and computing the sum of all the weights for which the output value
would be TRUE. The weights are hexadecimal not decimal so hexadecimal math must be used to sum the
weights. A wiki page has a calculator to assist in computing the proper value for function.

https://wiki.linuxcnc.org/cgi—bin/wiki.pl?Lut5

Note that LUTS will generate any of the 4,294,967,296 logical functions of 5 inputs so AND, OR, NAND,
NOR, XOR and every other combinatorial function is possible.

Example Functions

A 5—input and function is TRUE only when all the inputs are true, so the correct value for function is
0x80000000.

A 2—input or function would be the sum of 0x2 + 0x4 + 0x8, so the correct value for function is Oxe.

A 5—input or function is TRUE whenever any of the inputs are true, so the correct value for function is
Oxfffffffe. Because every weight except 0x1 is true the function is the sum of every line except the first one.

A 2—-input xor function is TRUE whenever exactly one of the inputs is true, so the correct value for

function is 0x6. Only in—0 and in—1 should be connected to signals, because if any other bit is TRUE then
the output will be FALSE.

01/04/2026 LinuxCNC

LUT5(9) LinuxCNC Documentation

FUNCTIONS
lut5.N

PINS
lut5.N.in-0 bit in

lut5.N.in—1 bit in
lutS5.N.in-2 bit in
lut5.NV.in-3 bit in
lut5.N.in—4 bit in
lut5.N.out bit out
PARAMETERS

lut5.N function u32 rw

SEE ALSO

and(9), logic(9), not(9), or2(9), xor2(9).

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC

01/04/2026

LUT5(9)

459

MAJ3(9) LinuxCNC Documentation

NAME

maj3 — Compute the majority of 3 inputs

SYNOPSIS

loadrt maj3 [count=N|names=namel[,name2...]]

FUNCTIONS
maj3.N

PINS
maj3.N.inl bit in

maj3.N.in2 bit in

maj3.N.in3 bit in

maj3.N.out bit out
PARAMETERS

maj3.N.invert bit rw

AUTHOR
Jeff Epler

LICENSE
GPL

460 01/04/2026

MAJ3(9)

LinuxCNC

MATCHS(9) LinuxCNC Documentation

NAME
match8 — 8-bit binary match detector

SYNOPSIS

loadrt match8 [count=N|names=name[,name2...]]

FUNCTIONS
match8.N

PINS
match8.N.in bit in (default: TRUE)
cascade input — if false, output is false regardless of other inputs

match8.N.a0 bit in
match8.N.al bit in
match8.N.a2 bit in
match8.N.a3 bit in
match8.N.a4 bit in
match8.N.aS bit in
match8.N.a6 bit in
match8.N.a7 bit in
match8.N.b0 bit in
match8.N.b1 bit in
match8.N.b2 bit in
match8.N.b3 bit in
match8.N.b4 bit in
match8.N.bS bit in
match8.N.b6 bit in
match8.N.b7 bit in

match8.N.out bit out
true only if in is true and a[m] matches b[m] for m = O thru 7

AUTHOR

John Kasunich

LICENSE
GPL

LinuxCNC 01/04/2026

MATCHS(9)

461

MATRIX_KB(9) LinuxCNC Documentation MATRIX_KB(9)

NAME

matrix_kb — Convert integers to HAL pins. Optionally scan a matrix of I/O ports to create those integers.

SYNOPSIS

loadrt matrix_kb config=RxCs,RxCs... names=namel ,name?2...
Creates a component configured for R rows and N columns of matrix keyboard.

If the s option is specified then a set of output rows will be cyclically toggled, and a set of input columns
will be scanned.

The names parameter is optional, but if used then the HAL pins and functions will use the specified names
rather than the default ones. This can be useful for readability and 2—pass HAL parsing.

There must be no spaces in the parameter lists.

DESCRIPTION

This component was written to convert matrix keyboard scancodes into HAL pins. However, it might also
find uses in converting integers from O to N into N HAL pins.

The component can work in two ways, and the HAL pins created vary according to mode.

In the default mode the component expects to be given a scan code from a separate driver but could be any
integer from any source. Most typically this will be the keypad scancode from a Mesa 7173. The default
codes for keyup and keydown are based on the Mesa 7173 specification with 0x40 indicating a keydown
and 0x80 a keyup event. If using the 7173 it is important to match the keypad size jumpers with the HAL
component. Valid configs for the 7173 are 4x8 and 8x8. Note that the component will only work properly
with the version 12 (0xC) 7173 firmware. The firmware version is visible on the component parameters in
HAL.

In the optional scan—generation mode the matrix_kb.N.keycode pin changes to an output pin and a set of
output row pins and input column pins are created. These need to be connected to physical inputs and
outputs to scan the matrix and return values to HAL. Note the negative—logic parameter described below,
this will need to be set on the most common forms of inputs which float high when unconnected.

In both modes a set of HAL output pins are created corresponding to each node of the matrix.

FUNCTIONS

PINS

462

matrix_kb.N
Perform all requested functions. Should be run in a slow thread for effective debouncing.

matrix_Kkb.N.col-CC—=in bit in
The input pin corresponding to column C.

matrix_kb.N.key.rReC bit out
The pin corresponding to the key at row R column C of the matrix.

matrix_kb.N.keycode unsigned in or out, depending on mode
This pin should be connected to the scancode generator if hardware such as a 7173 is being used. In
this mode it is an input pin. In the internally—generated scanning mode this pin is an output, but will
not normally be connected.

matrix_kb.N.row—RR—-out bit out
The row scan drive pins. Should be connected to external hardware pins connected to the keypad. The
row scan drive pins.Should be connected to external hardware pins connected to the keypad.

01/04/2026 LinuxCNC

MATRIX_KB(9) LinuxCNC Documentation MATRIX_KB(9)

PARAMETERS
matrix_kb.N.key_rollover unsigned r/w (default 2)
With most matrix keyboards the scancodes are only unambiguous with 1 or 2 keys pressed. With more
keys pressed phantom keystrokes can appear. Some keyboards are optimised to reduce this problem,
and some have internal diodes so that any number of keys may be pressed simultaneously. Increase the

value of this parameter if such a keyboard is connected, or if phantom keystrokes are more acceptable
than only two keys being active at one time.

matrix_kb.N.negative—logic bit r/w (default 1), only in scan mode

When no keys are pressed a typical digital input will float high. The input will then be pulled low by
the keypad when the corresponding poll line is low. Set this parameter to O if the I/O in use requires
one row at a time to be high, and a high input corresponds to a button press.

LinuxCNC 01/04/2026 463

MATRIXKINS(9) LinuxCNC Documentation MATRIXKINS (9)

NAME

matrixkins — Calibrated kinematics for 3—axis machines

SYNOPSIS

loadrt matrixkins [count=N|names=name[,name2...]]

DESCRIPTION

464

The matrixkins component implements custom kinematics for 3—axis Cartesian machines that allows
compensating minor alignment inaccuracies in software.

KINEMATICS MODEL

By default identity matrix is used, which is equal to trivial kinematics:

X_joint		100]		X_ axis
Y_joint	=]010]	*	Y_axis	
Z_joint		001		Z_axis
Adjusting the calibration matrix allows compensating out many mechanical issues, including:
1. Scale error of each axis.
2. Perpendicularity between each pair of axes.
3. Parallelism between spindle rotational axis and Z movement.
4. Perpendicularity between spindle rotational axis and X/Y movement.
The matrix coefficients are set by parameters C_xx .. C_zz. For 3 axis machine, the equations become:
X_joint = C_xx * X_axis + C_xy * Y_axis + C_xz * Z_axis
Y_joint = C_yx * X_axis + C_yy * Y_axis + C_yz * Z_axis

Z_joint = C_zx * X_axis + C_zy * Y_axis + C_zz * Z_axis

If the machine has more than 3 axes, the rest are passed through without adjustment.

CALIBRATION INSTRUCTIONS

For a 3 axis milling machine, the following process can be used to accurately measure and compensate the
mechanical alignment.

Tools required:
1. Dial indicator that can be mounted on spindle.
2. Straight rod that can be mounted on spindle.

3. Calipers.

Process:

1. Head tramming
Mechanically tram the spindle to the table surface as well as you can. The perpendicularity
of spindle vs. table cannot be compensated in software, and the spindle axis will act as the

reference for all further steps.

You can measure the perpendicularity by mounting the dial indicator on the spindle. Search
for "mill tramming" online for detailed process.

2. X and Y axis squaring

Cut octagon out of some rigid material. It is best to cut a roughing path first and a

01/04/2026 LinuxCNC

MATRIXKINS(9) LinuxCNC Documentation MATRIXKINS (9)

thin finishing pass last, to get the best accuracy. Make the octagon as large as your
calipers can measure. Before unmounting the workpiece, mark the X and Y
directions on it.

Measure width along X and Y axes. If your axis scales are set correctly, they should
be identical. If they are not, you can adjust c[0] and c[4] to compensate. Note that
endmill diameter will affect the actual dimensions of the test octagon, but not the
ratio between sides.

Measure width along both diagonals. If the X and Y axes are square to each other,
the readings should be identical.

To compensate, set C_xy = (B2 — A2) / (2 * A * B) where A is the diagonal in
X+/Y+ direction and B is the diagonal in X+/Y— direction.

This adjusts Y axis direction while keeping X axis as it was. Alternatively you can
set C_yx to adjust X axis instead. The choice affects alignment with respect to e.g.
table slots.

3. X axis squaring to spindle

Mount the dial indicator so that it rotates around the spindle axis, like in
tramming measurement. Mark a spot on the table where the indicator touches
when it is in positive X direction from spindle center. Zero the dial indicator.

Rotate dial indicator 180 degrees around the spindle. Move X axis in positive
direction until the indicator touches the same spot. Ideally indicator reads 0
again.

To compensate, set C_zx = D / X where D is the new dial indicator reading,
and X is the length moved along X axis.

4. Y axis squaring to spindle

Same as step 3, except move the machine in positive Y direction.

To compensate, set C_zy = D / Y where D is the new dial indicator
reading, and Y is the length moved.

5. Z axis parallelism to spindle in X direction

LinuxCNC

Mount straight rod to the spindle. Position dial indicator so that it
measures horizontally against the positive X side of the rod, close
to the spindle.

Spin the spindle by hand to see if there is any runout. Zero the dial
indicator at the midway position.

Raise Z axis until dial indicator measures close to the bottom end
oflthe rod. Spin the spindle by hand and take note of the midway
value.

Set C_xz = — X / Z where X is the dial indicator difference
between bottom and top and Z is the amount you raised the Z axis.

01/04/2026 465

MATRIXKINS(9) LinuxCNC Documentation MATRIXKINS (9)

6. Z axis parallelism to spindle in Y direction

Sa(rlne as step 5, except measure on the positive Y side of the
rod.

Set C_yz = - Y / Z where Z is the dial indicator difference
and Z 15 the amount you raised the Z axis.

CONFIGURATION FILES
Specify matrixkins in LinuxCNC INI file as:

[KINS]
KINEMATICS=matrixkins

In your HAL configuration file, set the parameters C_xx .. C_zz:

setp matrixkins.C_xx 1 # X axis scale
setp matrixkins.C_xy O # Skew Y axis towards X axis
setp matrixkins.C_xz 0 # Skew Z axis towards X axis
setp matrixkins.C_yx O # Skew X axis towards Y axis
setp matrixkins.C_yy 1 #Y axis scale
setp matrixkins.C_yz 0 # Skew Z axis towards Y axis
setp matrixkins.C_zx 0 # Skew X axis towards Z axis
setp matrixkins.C_zy 0 # Skew Y axis towards Z axis
setp matrixkins.C_zz 1 # Z axis scale

The parameters can be modified during runtime using halecmd. To avoid sudden movements, it is better to
turn off machine power before changes.

If recalibration is performed with already existing calibration being in effect, the adjustment values should
be added to the old values instead of replacing them.

PINS
matrixkins.N.dummy bit out (default: 7)

SEE ALSO
kins(9)

LICENSE
GPL

466 01/04/2026 LinuxCNC

MAX31855(9) LinuxCNC Documentation MAX31855(9)

NAME

max31855 — Support for the MAX31855 Thermocouple—to—Digital converter using bitbanged spi

SYNOPSIS

loadrt max31855 [count=N|names=nameI[,name2...]] [personality=PI[,P2...]]

DESCRIPTION

The component requires at least 3 pins to bitbang spi protocol, for example:
loadrt max31855 personality=1

setp hm2_6i25.0.gpio.023.is_output true
setp hm2_6i25.0.gpio.024.is_output true

net spi.clk.in hm2_6i25.0.gpio.023.out max31855.0.clk.out

net spi.cs.in hm?2_6i25.0.gpio.024.out max31855.0.cs.out

net spi.data0.in hm?2_6i25.0.gpio.033.in_not max31855.0.data.0.in
addf max31855.0.bitbang—spi servo—thread

The MAX31855 supports a range of —270C to 1800C, however linearization data is only available for the
—200C to 1350C range, beyond which raw temperature is returned.

Temperature pins are provided for readings in Celsius, Fahrenheit and Kelvin, temperature values are not
updated while a fault condition is present.

The personality parameter is used to indicate the number of sensors. Multiple sensors share the clk and cs
pins, but connect to discrete data input pins. A maximum of 15 sensors are supported.

FUNCTIONS
max31855.N.bitbang—spi (requires a floating—point thread)
PINS
max31855.N.data.M.in bit in (M=0..(personality & 0xf))
Pin(s) connected to data out.
max31855.N.cs.out bit out
Pin connected to cs, pulled low to shift data, pulled high for data refresh.
max31855.N.clk.out bit out
Pin connected to clk.
max31855.N.temp—celsius.M float out (M=0..(personality & 0xf))
Temperature output values in Celsius.
max31855.N.temp—fahrenheit.M float out (M=0..(personality & 0xf))
Temperature in Fahrenheit.
max31855.N.temp—kelvin.M float out (M=0..(personality & 0xf))
Temperature in Kelvin.
max31855.N fault.M bit out (M=0..(personality & 0xf))
Fault condition detected.
max31855.N fault—flags.M u32 out (M=0..(personality & 0xf))
Fault flags: Ox1 = open sensor, 0x2 short to gnd, 0x3 short to vcc.
AUTHOR

Joseph Calderon

LinuxCNC 01/04/2026 467

MAX31855(9) LinuxCNC Documentation MAX31855(9)

LICENSE
GPL

468 01/04/2026 LinuxCNC

MESA_7165(9) LinuxCNC Documentation MESA_7165(9)

NAME

mesa_7i65 — Support for the Mesa 7i65 Octuple Servo Card
SYNOPSIS

loadrt mesa_7i65
DESCRIPTION

The component takes parameters in the form of a comma-—separated list of bspi (buffered SPI) instance
names, for example:

loadrt mesa_7i65 bspi_chans=hm?2_5i23.0.bspi.0, hm2_5i23.0.bspi. 1

The BSPI instances are printed to the dmesg buffer during the Hostmot2 setup sequence, one for each bspi
instance included in the bitfile loaded to each installed card during the Hostmot2 setup sequence. Type
"dmesg" at the terminal prompt to view the output.

PINS
mesa—7i65.N.analogue.M.out float in (M=0..7)
Analogue output values. The value will be limited to a —1.0 to +1.0 range

mesa—7i65.N.analogue.M.in float out (M=0..7)
Analogue outputs read by the 7165 (in Volts)

mesa—7i65.N.digital.M.in bit out (M=0..3)
Miscellaneous Digital Inputs

mesa—7i65.N.enable.M.out bit in (M=0..7)
Amplifier—enable control pins

mesa—7i65.N.watchdog.has—bit bit out
Indicates the status of the 7165 Watchdog (which is separate from the FPGA card watchdog

PARAMETERS
mesa—7i65.N.scale-M float rw (M=0..7) (default: 10)
Analogue output scale factor. For example if the scale is 7 then an input of 1.0 will give 7V on the
output terminals

mesa—7i65.N.is—bipolar—M bit rw (M=0..7) (default: 7)
Set this value to TRUE for a plus/minus "scale" output. Set to O for a 0—"scale" output

AUTHOR
Andy Pugh / Cliff Blackburn

LICENSE
GPL

LinuxCNC 01/04/2026 469

MESA_PKTGYRO_TEST (9) LinuxCNC Documentation MESA_PKTGYRO_TEST (9)

NAME

mesa_pktgyro_test — PktUART simple test with Microstrain 3DM-GX3-15 gyro
SYNOPSIS

loadrt mesa_pktgyro_test [count=N|names=namel[,name2...]]
DESCRIPTION

This component is written in order to test the PktUART driver for Mesa. It resembles partly Andy Pugh’s
mesa_uart.comp .

This module uses the names= mode of loadrt declaration to specify which PktUART instances to enable. A
check is included to ensure that the count= option is not used instead. For simplicity we test only one
PktUART instance, therefore load the component like this:

loadrt mesa_uart names=hm?2_5i25.0.pktuart.0

The PktUART instance names are printed to the dmesg buffer during the Hostmot2 setup sequence, one for
each PktUART instance included in the bitfile loaded to each installed card during the Hostmot2 setup
sequence. Type "dmesg" at the terminal prompt to view the output. If you want to work with more than one
PktUART instance, consult Andy Pugh’s mesa_uart.comp

In order to compile and install do:
halcompile ——install src/hal/drivers/mesa_pktgyro_test.comp

The component exports only one function, namely receive, which needs to be added to a realtime thread. To
test this component set DEBUG=5 before and execute this HAL script:

loadrt hostmot2

loadrt hm2_pci

loadrt mesa_pktgyro_test names=hm2_5i25.0.pktuart.0
loadrt threads namel=test1 period1=10000000

addf hm2_5i25.0.pktuart.0.receive testl

start

Check linuxcnc.log for debug output.
FUNCTIONS

mesa—pktgyro—test.N.receive (requires a floating—point thread)

PINS
mesa—pktgyro—test.N.rxbytes s32 out
Number of Bytes received or negative Error code

AUTHOR
Boris Skegin

LICENSE
GPL

470 01/04/2026 LinuxCNC

MESA_UART(9) LinuxCNC Documentation MESA_UART(9)

NAME

mesa_uart — An example component demonstrating how to access the Hostmot2 UART

SYNOPSIS

loadrt mesa_uart [count=N|names=namel[,name?2...]]

DESCRIPTION

This component creates 16 input and 16 output pins. It transmits bytes each cycle out of the receive FIFO
and writes the values to the associated (pins > rx—bytes simply hold their previous value)

This module uses the names= mode of loadrt declaration to specify which UART instances to enable. A
check is included to ensure that the count= option is not used instead.

The component takes parameters in the form of a comma-—separated list of UART instance names, for
example:

loadrt mesa_uart names=hm2_5i23.0.uart.0,hm2_5i23.0.uart.7

Note that no spaces are allowed in the string unless it is delimited by double quotes.

The UART instance names are printed to the dmesg buffer during the Hostmot2 setup sequence, one for
each UART instance included in the bitfile loaded to each installed card during the Hostmot2 setup
sequence. Type "dmesg" at the terminal prompt to view the output.

The component exports two functions, send and receive, which need to be added to a realtime thread.

The above example will output data on UART channels 0 and 7 and the pins will have the names of the
individual UARTS. (they need not be on the same card, or even the same bus).

Read the documents on "halcompile" for help with writing realtime components:
http://linuxcnc.org/docs/html/hal/comp.html

FUNCTIONS

PINS

mesa—uart.N.send (requires a floating—point thread)

mesa—uart.N.receive (requires a floating—point thread)

mesa—uart.N.tx—data—MM u32 in (MM=00..15)
Data to be transmitted

mesa—uart.N.rx—data—MM u32 out (MM=00..15)
Data received

mesa—uart.N.tx—bytes s32 in
Number of bytes to transmit

mesa—uart.N.rx—bytes s32 out
Number of Bytes received

AUTHOR

Andy Pugh andy @bodgesoc.org

LICENSE

GPL

LinuxCNC 01/04/2026 471

MESSAGE(9) LinuxCNC Documentation MESSAGE(9)

NAME
message — Display a message
SYNOPSIS

loadrt message [count=N|names=namel[,name?2...]] [messages=N]

messages
The messages to display. These should be listed, comma—delimited, inside a single set of quotes. See
the "Description" section for an example. If there are more messages than "count" or "names" then the
excess will be ignored. If there are fewer messages than "count" or "names" then an error will be
raised and the component will not load.

DESCRIPTION

Allows HAL pins to trigger a message. Example hal commands:

loadrt message names=oillow,oilpressure,inverterfail messages="Slideway oil low,No oil pressure,Spindle inverter fault"
addf oillow servo—thread

addf oilpressure servo—thread

addf inverterfail servo—thread

setp oillow.edge O #this pin should be active low

net no—oil classicladder.0.out-21 oillow.trigger

net no—pressure classicladder.0.out—22 oilpressure.trigger
net no—inverter classicladder.0.out—23 inverterfail.trigger

When any pin goes active, the corresponding message will be displayed.

FUNCTIONS
message.N
Display a message
PINS
message.N.trigger bit in (default: FALSE)
signal that triggers the message

message.N.force bit in (default: FALSE)
A FALSEATRUE transition forces the message to be displayed again if the trigger is active

PARAMETERS
message.N.edge bit rw (default: TRUE)
Selects the desired edge: FALSE means falling, TRUE means rising

AUTHOR
Les Newell

LICENSE
GPL v2

472 01/04/2026 LinuxCNC

MILLTURN (9) LinuxCNC Documentation MILLTURN (9)

NAME

millturn — Switchable kinematics for a mill-turn machine

SYNOPSIS

loadrt millturn [count=N|names=namel[,name2...]]

DESCRIPTION
This is a switchable kinematics module using 3 cartesian linear joints (XYZ) and 1 angular joint (A). The
module contains two kinematic models:

type0 (default) is a mill (XYZA) configuration with A being a rotary axis.

typel is a turn (Z-YX) configuration with A configured to be a spindle.

For an example configuration, run the sim config: configs/sim/axis/vismach/millturn/millturn.ini.
Further explanations can be found in the README in configs/sim/axis/vismach/millturn.
millturn.comp was constructed by modifying the template file: userkins.comp.

For more information on how to modify userkins.comp run: $ man userkins. Also, see additional
information inside: userkins.comp.

For information on kinematics in general see the kinematics document chapter
(docs/src/motion/kinematics.txt) and for switchable kinematics in particular see the switchkins document
chapter (docs/src/motion/switchkins.txt)

FUNCTIONS

millturn.N.fdemo (requires a floating—point thread)

PINS
millturn.N.fpin s32 out (default: 0)
pin to demonstrate use of a conventional (non—kinematics) function fdemo

AUTHOR
David Mueller

LICENSE
GPL

LinuxCNC 01/04/2026 473

MINMAX(9) LinuxCNC Documentation MINMAX (9)

NAME

minmax — Track the minimum and maximum values of the input to the outputs
SYNOPSIS

loadrt minmax [count=N|names=namel[,name?2...]]
FUNCTIONS

minmax.N (requires a floating—point thread)
PINS

minmax.N.in float in

minmax.N.reset bit in

When reset is asserted, in is copied to the outputs

minmax.N.max- float out

minmax.N.min- float out
AUTHOR

Jeff Epler
LICENSE

GPL

474 01/04/2026 LinuxCNC

MOTION (9) LinuxCNC Documentation MOTION (9)

NAME

motion, axis — accepts NML motion commands, interacts with HAL in realtime

SYNOPSIS
loadrt motmod [base_period_nsec=period] [base_thread_fp=0 or I] [servo_period_nsec=period]
[traj_period_nsec=period] [num_joints=//—16]] [num_dio=//—-64] | names_dout=name],...]
names_din=namel,...]] [num_aio=//—64] | names_aout=name|,...] _names_ain="*name/,...]]
[num_misc_error=/0—-64]] [num_spindles=//-8]] [unlock_joints_mask=jointmask]
[num_extrajoints=/0—-16]]

The limits for the following items are compile—time settings:

num_joints
Maximum number of joints is set by EMCMOT_MAX_JOINTS.

num_dio
Maximum number of digital IO pins is set by EMCMOT_MAX_DIO. Minimum is 1, if num_dio is
not specified, it defaults to DEFAULT_DIO.

names_dout
A comma—separated list of names for digital output pins. This parameter is mutually exclusive with
num_dio, but can be combined with names_din. A maximum of EMCMOT_MAX_DIO names can
be specified. The default digital output pin has names like motion.digital—out—00 whereas
names_dout=is—homing—x,is—homing—y will create the HAL pins motion.dout—is—homing—x and
motion.dout—is—homing—y.

names_din
A comma—separated list of names for digital input pins. This parameter is mutually exclusive with
num_dio, but can be combined with names_dout. A maximum of EMCMOT_MAX_DIO names
can be specified. The default digital input pin has names like motion.digital-in—00 whereas
names_din=homed—x,homed—y will create the HAL pins motion.din—homed—x and
motion.din—homed-y.

num_aio
Maximum number of analog IO pins is set by EMCMOT_MAX_AIO. Minimum is 1, if num_aio is
not specified, it defaults to DEFAULT_AIO.

names_aout
A comma—separated list of names for analog output pins. This parameter is mutually exclusive with
num_aio, but can be combined with names_ain. A maximum of EMCMOT_MAX_AIO names can
be specified. The default analog output pin has names like motion.analog—out—00 whereas
names_aout=feedratel feedrate? will create the HAL pins motion.aout—feedratel and
motion.aout—feedrate?2.

names_ain
A comma-—separated list of names for analog input pins. This parameter is mutually exclusive with
num_aio, but can be combined with names_aout. A maximum of EMCMOT_MAX_AIO names can
be specified. The default analog input pin has names like motion.analog—in—00 whereas
names_ain=proxyl,proxy2 will create the HAL pins motion.ain—proxyl and motion.ain—proxy2.

num_misc_error
Maximum number of extra error inputs is set by EMCMOT_MAX_MISC_ERRORS.

names_misc_errors
A comma-—separated list of names for extra error inputs. This parameter is mutually exclusive with
num_misc_error. If using num_misc_error the additional error input pins will have names like
motion.misc—error—00 whereas names_misc_errors=overtemp,undertemp will create hal pins
motion.err—overtemp and motion.err—undertemp.

num_spindles
Maximum number of spindles is set by EMCMOT_MAX_SPINDLES.

LinuxCNC 01/04/2026 475

MOTION (9) LinuxCNC Documentation MOTION (9)

Pin names starting with "joint" or "axis" are read and updated by the motion—controller function.

DESCRIPTION

By default, the base thread does not support floating point. Software stepping, software encoder counting,
and software pwm do not use floating point. base_thread_fp can be used to enable floating point in the
base thread (for example for brushless DC motor control).

These pins and parameters are created by the realtime motmod module. This module provides a HAL
interface for LinuxCNC’s motion planner. Basically motmod takes in a list of waypoints and generates a
nice blended and constraint—limited stream of joint positions to be fed to the motor drives.

The optional num_extrajoints parameter specifies a quantity of joints that participate in homing but are not
used by kinematics transformations. After homing, control of an extra joint is transferred to a posthome
command HAL pin (joint.N.posthome—cmd) and the motor feedback value is ignored. Extra joints must be
managed by independent motion planners/controllers (typically using limit3 HAL components). Extra
joints maybe unhomed only when motion is disabled.

The maximum num_extrajoints value is equal to the num_joints value. (Note that using the maximum
value would allow no operation in world coordinates). The num_joints value must be equal to the sum of
the number of joints used for kinematics calculations plus the number of extra joints.

The num_joints parameter is conventionally set using the INI file setting [KINS]JOINTS=value. The
num_extrajoints is set by the additional motmod parameter [EMCMOT Jmotmod
num_extrajoints=value. HAL pin numbering for all joints is zero based [0 ... num_joints—1]. When
specified, extra joints are assigned the last num_extrajoints in the numbering sequence. For example,
specifying [KINS]JOINTS=5 and [EMCMOT]motmod num_extrajoints=2 for a 3 joint trivkins
configuration [KINS] KINEMATICS=trivkins coordinates=xyz uses joints 0,1,2 for the kinematic joints
and joints 3,4 for the extra joints.

An equal number of digital or analog 1O pins will always be created. For example, if names_din is
specified with two pins, two named input and two default named output pins will be created. In cases where
names_dout is specified with two pins and names_din with three pins, two named output and one default
named output pin will be created, along with three named input pins. This principle applies independently
to digital and analog IO pins, allowing for scenarios such as having three digital pins and two analog pins.

MOTION PINS

476

motion—command—-handler.time OUT S32
Time (in CPU clocks) for the motion module motion—command—handler

motion—controller.time OUT S32
Time (in CPU clocks) for the motion module motion—controller

motion.adaptive—feed IN FLOAT
When adaptive feed is enabled with M52 P1, the commanded velocity is multiplied by this value. This
effect is multiplicative with the NML—level feed override value and motion.feed—hold. Negative
values are valid and will run the G—code path in reverse.

motion.analog—in—NN IN FLOAT
These pins are used by M66 Enn wait—for—input mode.

motion.analog—out—NN OUT FLOAT
These pins are used by M67-68.

motion.coord—error OUT BIT
TRUE when motion has encountered an error, such as exceeding a soft limit

motion.coord—mode OUT BIT
TRUE when motion is in "coordinated mode", as opposed to "teleop mode"

motion.current—vel OUT FLOAT

01/04/2026 LinuxCNC

MOTION (9) LinuxCNC Documentation MOTION (9)

Current cartesian velocity

motion.digital-in—NN IN BIT
These pins are used by M66 Pnn wait—for—input mode.

motion.digital-out—-NN OUT BIT
These pins are controlled by the M62 through M65 words.

motion.distance—to—go OUT FLOAT
Distance remaining in the current move

motion.enable IN BIT
If this bit is driven FALSE, motion stops, the machine is placed in the "machine off" state, and a
message is displayed for the operator. For normal motion, drive this bit TRUE.

motion.eoffset—active OUT BIT
Indicates external offsets are active (non—zero)

motion.eoffset-limited OUT BIT
Indicates motion with external offsets was limited by a soft limit constraint
([AXIS_LIMIN_LIMIT,MAX_LIMIT).

motion.feed—hold IN BIT
When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.

Note: feed—hold applies to G-code commands — not jogs.

motion.feed—inhibit IN BIT
When this pin is TRUE, machine motion is inhibited for G—code commands.

If the machine is performing a spindle synchronized move when this pin goes TRUE, the spindle
synchronized motion will finish, and any following moves will be inhibited (this is to prevent damage to the
machine, the tool, or the work piece).

If the machine is in the middle of a (non—spindle synchronized) move when this pin goes TRUE, the
machine will decelerate to a stop at the maximum allowed acceleration rate.

Motion resumes when this pin goes FALSE.

Note: feed—inhibit applies to G—code commands — not jogs.

motion.feed—upm OUT FLOAT
Current feed rate in G—code program units per minute for motion.motion—type feed(2) and arc(3).
Value is the G—code program F value multiplied by the current feed override value and the
motion.adaptive—feed setting (if M52 active). Value is zero if motion.feed—hold or motion.feed—inhibit
are asserted. If units (G20 or G21) are not specified in the G—code file then units will be the last units
used.

motion.feed—inches—per—-minute OUT FLOAT
Current feed rate in inches per minute for motion.motion—type feed(2) and arc(3). Value is the inch
equivalent of the G—code program F value multiplied by the current feed override value and the
motion.adaptive—feed setting (if M52 active). Value is zero if motion.feed—hold or motion.feed—inhibit
are asserted.

motion.feed—inches—per—second OUT FLOAT
Current feed rate in inches per second for motion.motion—type feed(2) and arc(3). Value is the inch
equivalent of the G—code program F value multiplied by the current feed override value and the
motion.adaptive—feed setting (if M52 active). Value is zero if motion.feed—hold or motion.feed—inhibit
are asserted.

motion.feed—mm-per—-minute OUT FLOAT
Current feed rate in mm per minute for motion.motion—type feed(2) and arc(3). Value is the mm

LinuxCNC 01/04/2026 477

MOTION (9) LinuxCNC Documentation MOTION (9)

478

equivalent of the G—code program F value multiplied by the current feed override value and the
motion.adaptive—feed setting (if M52 active). Value is zero if motion.feed—hold or motion.feed—inhibit
are asserted.

motion.feed—mm-per—second OUT FLOAT
Current feed rate in mm per second for motion.motion—type feed(2) and arc(3). Value is the mm
equivalent of the G—code program F value multiplied by the current feed override value and the
motion.adaptive—feed setting (if M52 active). Value is zero if motion.feed—hold or motion.feed—inhibit
are asserted.

motion.homing—inhibit IN BIT
If this bit is TRUE, initiation of any joint homing move (including "Home All") is disallowed and an
error is reported. By default, homing is allowed in joint mode whenever motion is enabled.

motion.is—all-homed OUT BIT
TRUE if all active joints is homed.

motion.jog—inhibit IN BIT
If this bit is TRUE, jogging of any joint or axis is disallowed and an error is reported.

motion.jog—stop IN BIT
If any jog is active when the pin state changes to TRUE then that jog will be stopped following the
associated acceleration values.

motion.jog—stop—immediate IN BIT
If any jog is active when the pin state changes to TRUE then that jog will be stopped immediately.

motion.jog—is—active OUT BIT
TRUE if any joint or axis is jogging.

motion.in—position OUT BIT
TRUE if the machine is in position (i.e., not currently moving towards the commanded position).

motion.misc—error—-NN IN BIT
Extra error inputs for faults such as over—temperature sensors, low coolant warnings, custom HAL
component errors. If driven TRUE this will disable a machine. Similar to spindle.amp—fault—in.

motion.motion—enabled OUT BIT

motion.motion—type OUT S32
These values are from src/emc/nml_intf/motion_types.h:

0: Idle (no motion)
1: Traverse

2: Linear feed

3: Arc feed

4: Tool change

5: Probing

6: Rotary unlock for traverse

motion.on—soft—limit OUT BIT, motion.probe—input IN BIT
G38.n uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

motion.program-line OUT S32
The current program line while executing. Zero if not running or between lines while single stepping.

01/04/2026 LinuxCNC

MOTION (9) LinuxCNC Documentation MOTION (9)

motion.requested—vel OUT FLOAT
The current requested velocity in user units per second. This value is the F-word setting from the
G—code file, possibly reduced to accommodate machine velocity and acceleration limits. The value on
this pin does not reflect the feed override or any other adjustments.

motion.servo.last—period OUT U32
The number of CPU clocks between invocations of the servo thread. Typically, this number divided by
the CPU speed gives the time in seconds, and can be used to determine whether the realtime motion
controller is meeting its timing constraints

motion.switchkins—type IN float
Kinematics modules that define the functions kinematicsSwitchable() and kinematicsSwitch() receive
the integer value of this pin to select the machine kinematics functions. Extra G-code commands may
be required to synchronize task and motion before and after changes to the pin value.

motion.teleop—mode OUT BIT
Motion mode is teleop (axis coordinate jogging available).

motion.tooloffset.L. OUT FLOAT
Current tool offset for each axis where (L is the axis letter, one of: xyzab cuvw)

motion.tp—reverse OUT BIT
Trajectory planning is reversed (reverse run)

AXIS PINS

(L is the axis letter, one of: xyzabcuvw)

axis.L.eoffset OUT FLOAT
Current external offset.

axis.L.eoffset—clear IN BIT
Clear external offset request

axis.L.eoffset—counts IN S32
Counts input for external offset. The eoffset—counts are transferred to an internal register. The applied
external offset is the product of the register counts and the eoffset—scale value. The register is reset to
zero at each machine startup. If the machine is turned off with an external offset active, the
eoffset—counts pin should be set to zero before restarting.

axis.L.eoffset—enable IN BIT
Enable for external offset (also requires INI file setting for [AXIS_L]JOFFSET_AV_RATIO)

axis.L.eoffset-request OUT FLOAT
Debug pin for requested external offset.

axis.L.eoffset—scale IN FLOAT
Scale for external offset.

axis.L.jog—accel-fraction IN FLOAT
Sets acceleration for wheel jogging to a fraction of the INI max_acceleration for the axis. Values
greater than 1 or less than zero are ignored.

axis.L.jog—counts IN S32
Connect to the "counts" pin of an external encoder to use a physical jog wheel.

axis.L.jog—enable IN BIT
When TRUE (and in manual mode), any change to "jog—counts" will result in motion. When false,
"jog—counts" is ignored.

axis.L.jog—scale IN FLOAT
Sets the distance moved for each count on "jog—counts", in machine units.

axis.L.jog—vel-mode IN BIT
When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog—scale units for each count, regardless of how long that might take. When TRUE, the wheel

LinuxCNC 01/04/2026 479

MOTION (9) LinuxCNC Documentation MOTION (9)

operates in velocity mode — motion stops when the wheel stops, even if that means the commanded
motion is not completed.

axis.L.kb—jog—active OUT BIT
(free planner axis jogging active (keyboard or halui))

axis.L.pos—cmd OUT FLOAT
The axis commanded position. There may be several offsets between the axis and motor coordinates:
Backlash compensation, screw error compensation, and home offsets. External offsets are reported
separately (axis.L.eoffset).

axis.L.teleop—pos—cmd OUT FLOAT, axis.L.teleop—tp—enable OUT BIT
TRUE when the "teleop planner" is enabled for this axis.

axis.L.teleop—vel-cmd OUT FLOAT
The axis’s commanded velocity.

axis.L.teleop—vel-lim OUT FLOAT
The velocity limit for the teleop planner.

axis.L.wheel—jog—active OUT BIT

JOINT PINS

480

N is the joint number (O ... num_joints—1))

Note: Pins marked (DEBUG) serve as debugging aids and are subject to change or removal at any time.

joint.N.acc—cmd OUT FLOAT (DEBUG)
The joint’s commanded acceleration.

joint.N.active OUT BIT (DEBUG)
TRUE when this joint is active.

joint.N.amp-enable—out OUT BIT
TRUE if the amplifier for this joint should be enabled.

joint.N.amp—fault—in IN BIT
Should be driven TRUE if an external fault is detected with the amplifier for this joint.

joint.N.backlash—corr OUT FLOAT (DEBUG)
Backlash or screw compensation raw value.

joint.N.backlash—filt OUT FLOAT (DEBUG)
Backlash or screw compensation filtered value (respecting motion limits).

joint.N.backlash—vel OUT FLOAT (DEBUG)
Backlash or screw compensation velocity.

joint.N.coarse—pos—cmd OUT FLOAT (DEBUG), joint.N.error OUT BIT (DEBUG)
TRUE when t*his joint has encountered an error, such as a limit switch closing.

joint.N.f—error OUT FLOAT (DEBUG)
The actual following error.

joint.N.f-error-lim OUT FLOAT (DEBUG)
The following error limit.

joint.N.f-errored OUT BIT (DEBUG)
TRUE when this joint has exceeded the following error limit.

joint.N.faulted OUT BIT (DEBUG), joint.N.free—pos—cmd OUT FLOAT (DEBUG)
The "free planner" commanded position for this joint.

joint.N.free—tp—enable OUT BIT (DEBUG)
TRUE when the "free planner" is enabled for this joint.

joint.N.free—vel-lim OUT FLOAT (DEBUG)

01/04/2026 LinuxCNC

MOTION (9) LinuxCNC Documentation MOTION (9)

The velocity limit for the free planner.

joint.N.home-state OUT S32 (DEBUG)
homing state machine state

joint.N.home-sw—in IN BIT
Should be driven TRUE if the home switch for this joint is closed.

joint.N.homed OUT BIT (DEBUG)
TRUE if the joint has been homed.

joint.N.homing OUT BIT
TRUE if the joint is currently homing.

joint.N.in—position OUT BIT (DEBUG)
TRUE if the joint is using the "free planner" and has come to a stop.

joint.N.index—enable 10 BIT
Should be attached to the index—enable pin of the joint’s encoder to enable homing to index pulse.

joint.N.is—unlocked IN BIT
Indicates joint is unlocked (see JOINT UNLOCK PINS).

joint.N.jog—accel—fraction IN FLOAT
Sets acceleration for wheel jogging to a fraction of the INI max_acceleration for the joint. Values
greater than 1 or less than zero are ignored.

joint.N.jog—counts IN S32
Connect to the "counts" pin of an external encoder to use a physical jog wheel.

joint.N.jog—enable IN BIT
When TRUE (and in manual mode), any change to "jog—counts" will result in motion. When false,
"jog—counts" is ignored.

joint.N.jog—scale IN FLOAT
Sets the distance moved for each count on "jog—counts", in machine units.

joint.N.jog—vel-mode IN BIT
When FALSE (the default), the jogwheel operates in position mode. The joint will move exactly
jog—scale units for each count, regardless of how long that might take. When TRUE, the wheel
operates in velocity mode — motion stops when the wheel stops, even if that means the commanded
motion is not completed.

joint.N.kb—jog—active OUT BIT (DEBUG)
(free planner joint jogging active (keyboard or halui))

joint.N.motor-offset OUT FLOAT (DEBUG)
joint motor offset established when joint is homed.

joint.N.motor—pos—cmd OUT FLOAT
The commanded position for this joint.

joint.N.motor—pos—fb IN FLOAT
The actual position for this joint.

joint.N.neg—hard-limit OUT BIT (DEBUG)
The negative hard limit for the joint

joint.N.neg-lim—sw—in IN BIT
Should be driven TRUE if the negative limit switch for this joint is tripped.

joint.N.pos—cmd OUT FLOAT
The joint (as opposed to motor) commanded position. There may be several offsets between the joint
and motor coordinates: backlash compensation, screw error compensation, and home offsets.

joint.N.pos—fb OUT FLOAT

LinuxCNC 01/04/2026 481

MOTION (9) LinuxCNC Documentation MOTION (9)

The joint feedback position. This value is computed from the actual motor position minus joint offsets.
Useful for machine visualization.

joint.N.pos—hard-limit OUT BIT (DEBUG)

The positive hard limit for the joint.
joint.N.pos—lim-sw—in IN BIT

Should be driven TRUE if the positive limit switch for this joint is tripped.
joint.N.unlock OUT BIT

TRUE if the axis is a locked joint (typically a rotary) and a move is commanded (see JOINT
UNLOCK PINS).

joint.N.vel-cmd OUT FLOAT (DEBUG)
The joint’s commanded velocity.

joint.N.wheel-jog—active OUT BIT (DEBUG)
JOINT POSTHOME PINS

Each joint designated as an extra joint is provided with a HAL pin joint.N.posthome—cmd. The pin value
is ignored prior to homing. After homing, the pin value is augmented by the motor offset value and routed
to the joint.N.motor—pos—cmd.

JOINT UNLOCK PINS
The joint pins used for unlocking a joint (joint.N.unlock, joint.N.is—unlocked), are created according to
the unlock_joints_mask=jointmask parameter for motmod. These pins may be required for locking
indexers (typically a rotary joint).

The jointmask bits are: (Isb)0:joint0, 1:jointl, 2:joint2, ...

Example: loadrt motmod ... unlock_joints_mask=0x38 creates unlock pins for joints 3, 4, 5.

SPINDLE PINS
(M is the spindle number (0 ... num_spindles—1))

spindle.M.amp—fault—in IN BIT
Should be driven TRUE if an external fault is detected with the amplifier for this spindle.

spindle.M.at-speed IN BIT
Motion will pause until this pin is TRUE, under the following conditions: Before the first feed move
after each spindle start or speed change; before the start of every chain of spindle—synchronized
moves; and if in CSS mode, at every rapidafeed transition.

spindle.M.brake OUT BIT
TRUE when the spindle brake should be applied.

spindle.M.forward OUT BIT
TRUE when the spindle should rotate forward.

spindle.M.index—enable I/O BIT
For correct operation of spindle synchronized moves, this signal must be hooked to the index—enable
pin of the spindle encoder.

spindle.M.inhibit IN BIT
When TRUE, the spindle speed is set and held to O.

spindle.M.is—oriented IN BIT
Acknowledge pin for spindle—orient. Completes orient cycle. If spindle—orient was true when
spindle—is—oriented was asserted, the spindle—orient pin is cleared and the spindle—locked pin is
asserted. Also, the spindle—brake pin is asserted.

spindle.M.locked OUT BIT
Spindle orient complete pin. Cleared by any of M3, M4 or M5.

spindle.M.on OUT BIT

482 01/04/2026 LinuxCNC

MOTION (9) LinuxCNC Documentation MOTION (9)

TRUE when spindle should rotate.

spindle.M.orient OUT BIT
Indicates start of spindle orient cycle. Set by M19. Cleared by any of M3, M4 or M5.

If spindle—orient—fault is not zero during spindle—orient true, the M19 command fails with an error
message.

spindle.M.orient—angle OUT FLOAT
Desired spindle orientation for M19. Value of the M19 R word parameter plus the value of the
[RS274NGC]JORIENT_OFFSET INI parameter.

spindle.M.orient—fault IN S32
Fault code input for orient cycle. Any value other than zero will cause the orient cycle to abort.

spindle.M.orient-mode OUT BIT
Desired spindle rotation mode. Reflects M19 P parameter word.

spindle.M.reverse OUT BIT
TRUE when the spindle should rotate backward.

spindle.M.revs IN FLOAT
For correct operation of spindle synchronized moves, this signal must be hooked to the position pin of
the spindle encoder.

spindle.M.speed—cmd-rps FLOAT OUT
Commanded spindle speed in units of revolutions per second.

spindle.M.speed—in IN FLOAT
Actual spindle speed feedback in revolutions per second; used for G96 (constant surface speed) and
G95 (feed per revolution) modes.

spindle.M.speed—out OUT FLOAT
Desired spindle speed in rotations per minute.

spindle.M.speed—out—abs OUT FLOAT
Desired spindle speed in rotations per minute, always positive regardless of spindle direction.

spindle.M.speed—out—rps OUT FLOAT
Desired spindle speed in rotations per second.

spindle.M.speed—out—rps—abs OUT FLOAT
Desired spindle speed in rotations per second, always positive regardless of spindle direction.

MOTION PARAMETERS

Many of the parameters serve as debugging aids, and are subject to change or removal at any time.

motion—command-handler.tmax RW S32
Show information about the execution time of these HAL functions in CPU clocks.

motion—-command-handler.tmax—increased RO S32, motion—controller.tmax RW S32
Show information about the execution time of these HAL functions in CPU clocks.

motion—controller.tmax—increased RO BIT

motion.debug—*
These values are used for debugging purposes.

FUNCTIONS

Generally, these functions are both added to the servo—thread in the order shown.

motion—command-handler
Receive and process incoming motion commands. The pin named motion—command—-handler.time
and parameters motion—command-handler.tmax,tmax—increasedare created for this function.

motion—controller

LinuxCNC 01/04/2026 483

MOTION (9) LinuxCNC Documentation MOTION (9)

Runs the LinuxCNC motion controller. The pin named motion—controller.time and parameters
motion—controller.tmax,tmax—increased are created for this function.

BUGS

This manual page is incomplete.

Identification of pins categorized with (DEBUG) is dubious.

SEE ALSO
iocontrol(1), milltask(1), spindle(9)

484 01/04/2026 LinuxCNC

MOVEOFF(9) LinuxCNC Documentation MOVEOFF(9)

NAME

moveoff — Component for HAL-only offsets

SYNOPSIS

loadrt moveoff [count=N|names=nameI[,name2...]] [personality=PI[,P2...]]

DESCRIPTION
The moveoff component is used to offset joint positions using custom HAL connections. Implementing an
offset—while—program—is—paused functionality is supported with appropriate connections for the input
pins. Nine joints are supported.

The axis offset pin values (offset—in—M) are continuously applied (respecting limits on value, velocity, and
acceleration) to the output pins (offset—current—M, pos—plusoffset—M, fb—minusoffset—M) when both
enabling input pins (apply—offsets and move—enable) are TRUE. The two enabling inputs are anded
internally. A warning pin is set and a message issued if the apply—offsets pin is deasserted while offsets are
applied. The warning pin remains TRUE until the offsets are removed or the apply—offsets pin is set.

Typically, the move—enable pin is connected to external controls and the apply—offsets pin is connected to
halui.program.is—paused (for offsets only while paused) or set to TRUE (for continuously applied offsets).

Applied offsets are automatically returned to zero (respecting limits) when either of the enabling inputs is
deactivated. The zero value tolerance is specified by the epsilon input pin value.

Waypoints are recorded when the moveoff component is enabled. Waypoints are managed with the
waypoint—sample—secs and waypoint—threshold pins. When the backtrack—enable pin is TRUE, the
auto—return path follows the recorded waypoints. When the memory available for waypoints is exhausted,
offsets are frozen and the waypoint—limit pin is asserted. This restriction applies regardless of the state of
the backtrack—enable pin. An enabling pin must be deasserted to allow a return to the original (non—offset
position).

Backtracking through waypoints results in slower movement rates as the moves are point—to—point
respecting velocity and acceleration settings. The velocity and acceleration limit pins can be managed
dynamically to control offsets at all times.

‘When backtrack—enable is FALSE, the auto—return move is NOT coordinated, each axis returns to zero at
its own rate. If a controlled path is wanted in this condition, each axis should be manually returned to zero
before deasserting an enabling pin.

The waypoint—sample—secs, waypoint—threshold, and epsilon pins are evaluated only when the component
is idle.

The offsets—applied output pin is provided to indicate the current state to a GUI so that program resumption
can be managed. If the offset(s) are non—zero when the apply—offsets pin is deasserted (for example when
resuming a program when offsetting during a pause), offsets are returned to zero (respecting limits) and an
Error message is issued.

Caution: If offsets are enabled and applied and the machine is turned off for any reason, any external HAL
logic that manages the enabling pins and the offset—in—M inputs is responsible for their state when the
machine is subsequently turned on again.

This HAL—-only means of offsetting is typically not known to LinuxCNC nor available in GUI preview
displays. No protection is provided for offset moves that exceed soft limits managed by LinuxCNC. Since
soft limits are not honored, an offset move may encounter hard limits (or CRASH if there are no limit
switches). Use of the offset—-min—M and offset—max—M inputs to limit travel is recommended. Triggering a
hard limit will turn off the machine — see Caution above.

LinuxCNC 01/04/2026 485

MOVEOFF(9) LinuxCNC Documentation MOVEOFF(9)

The offset—in—M values may be set with inifile settings, controlled by a GUI, or managed by other HAL
components and connections. Fixed values may be appropriate in simple cases where the direction and
amount of offset is well-defined but a control method is required to deactivate an enabling pin in order to
return offsets to zero. GUIs may provide means for users to set, increment, decrement, and accumulate
offset values for each axis and may set offset—in—M values to zero before deasserting an enabling pin.

The default values for accel, vel, min, max, epsilon, waypoint—sample—secs, and waypoint—threshold may
not be suitable for any particular application. This HAL component is unaware of limits enforced elsewhere
by LinuxCNC. Users should test usage in a simulator application and understand all hazards before use on
hardware.

The module personality item sets the number of joints supported (default==3, maximum is 9).

Use of the names= option for naming is required for compatibility with the gui provided as
scripts/moveoff_gui: loadrt moveoff names=mv personality=number_of_joints

FUNCTIONS

PINS

486

moveoff.N.read—inputs (requires a floating—point thread)
Read all inputs

moveoff.N.write—outputs (requires a floating—point thread)
Write computed offset outputs (offset—current—M, pos—plusoffset—M, fb—minusoffset—M). All other
outputs are updated by read—inputs().

moveoff.N.power—on bit in
Connect to motion.motion—enabled

moveoff.N.move—enable bit in
Enable offsets (Enabling requires apply—offset TRUE also)

moveoff.N.apply—offsets bit in
Enable offsets (Enabling requires move—enable TRUE also)

moveoff.N.backtrack—enable bit in (default: /)
Enable backtrack on auto—return

moveoff.N.epsilon float in (default: 0.0005)
When enabling pins are deactivated, return to un—offsetted position within epsilon units. Warning:
values that are too small in value may cause overshoot. A minimum value of 0.0001 is silently
enforced.

moveoff.N.waypoint—threshold float in (default: 0.02)
Minimum distance (in a single axis) for a new waypoint

moveoff.N.waypoint—sample—secs float in (default: 0.02)
Minimum sample interval (in seconds) for a new waypoint

moveoff.N.warning bit out
Set TRUE if apply—offsets is deasserted while offset—applied is TRUE.

moveoff.N.offset—applied bit out
TRUE if one or more offsets are applied.

moveoff.N.waypoint—limit bit out (default: 0)
Indicates waypoint limit reached (motion ceases), an enabling pin must be deasserted to initiate return
to original position.

moveoff.N.waypoint—ct s32 out
Waypoint count (for debugging)

moveoff.N.waypoint—percent—used s32 out
Percent of available waypoints used

01/04/2026 LinuxCNC

MOVEOFF(9) LinuxCNC Documentation MOVEOFF(9)

moveoff.N.offset—in—M float in (M=0..personality)
Joint offset input value

moveoff.N.pos—M float in (M=0..personality)
Joint position (typ: axis.0.motor—pos—cmd)
moveoff.N.fb—M float in (M=0..personality)
Joint feedback (typ from encoder and input to pid controller (pid.feedback))

moveoff.N.offset—current—M float out (M=0..personality)
Joint offset current value

moveoff.N.pos—plusoffset—M float out (M=0..personality)
Computed joint position plus offset (typically connect to pid command input)

moveoff.N.fb—minusoffset—) float out (M=0..personality)
Computed Joint feedback minus offset (typically connected to axis.0.motor—pos—fb)

moveoff.N.offset—vel-M float in (M=0..personality) (default: 710)
Joint offset velocity limit

moveoff.N.offset—accel-M float in (M=0..personality) (default: 700)
Joint offset acceleration limit

moveoff.N.offset—min—M float in (M=0..personality) (default: —/e20)
Minimum limit for applied joint offset (typ negative)

moveoff.N.offset—-max—M float in (M=0..personality) (default: /e20)
Maximum limit for applied offset (typ positive)

moveoff.N.dbg—waypoint-limit—test bit in
Debug input to test with limited number of waypoints

moveoff.N.dbg—state s32 out
Debug output for current state of state machine

EXAMPLES
Example simulator configs that demonstrate the moveoff component and a simple gui (scripts/moveoff_gui)
are located in configs/sim/axis/moveoff. The AXIS GUI is used for the demonstrations and the configs can
be adapted for other GUISs like Touchy and Gscreen. An example with the Touchy GUI is provided in
configs/sim/touchy/ngcgui/.

SEE ALSO

moveoff_gui(1)

AUTHOR
Dewey Garrett and Andy Pugh

LICENSE
GPL

LinuxCNC 01/04/2026 487

MULT2(9) LinuxCNC Documentation

NAME

mult2 — Product of two inputs

SYNOPSIS

loadrt mult2 [count=N|names=namel[,name?2...]]

FUNCTIONS
mult2.N (requires a floating—point thread)

PINS
mult2.N.in0 float in

mult2.N.in1 float in

mult2.N.out float out
out = in0 * inl
SEE ALSO
invert(9), div2(9)
AUTHOR

John Kasunich

LICENSE
GPL

488 01/04/2026

MULT2(9)

LinuxCNC

MULTICLICK (9) LinuxCNC Documentation MULTICLICK (9)

NAME

multiclick — Single—, double—, triple—, and quadruple—click detector

SYNOPSIS

loadrt multiclick [count=N|names=name[,name2...]]

DESCRIPTION

A click is defined as a rising edge on the in pin, followed by the in pin being True for at most max—hold—ns

nanoseconds, followed by a falling edge.

A double—click is defined as two clicks, separated by at most max—space—ns nanoseconds with the in pin

in the False state.

I bet you can guess the definition of triple— and quadruple—click.

You probably want to run the input signal through a debounce component before feeding it to the multiclick

detector, if the input is at all noisy.

The *—click pins go high as soon as the input detects the correct number of clicks.

The *—click—only pins go high a short while after the click, after the click separator space timeout has

expired to show that no further click is coming. This is useful for triggering halui MDI commands.

FUNCTIONS
multiclick.NV
Detect single—, double—, triple—, and quadruple—clicks
PINS
multiclick.V.in bit in
The input line, this is where we look for clicks.
multiclick.N.single—click bit out
Goes high briefly when a single—click is detected on the in pin.
multiclick.N.single—click—only bit out
Goes high briefly when a single—click is detected on the in pin and no second click followed it.
multiclick.N.double—click bit out
Goes high briefly when a double—click is detected on the in pin.
multiclick.N.double—click—only bit out
Goes high briefly when a double—click is detected on the in pin and no third click followed it.
multiclick.N.triple—click bit out
Goes high briefly when a triple—click is detected on the in pin.
multiclick.N.triple—click—only bit out
Goes high briefly when a triple—click is detected on the in pin and no fourth click followed it.
multiclick.N.quadruple—click bit out
Goes high briefly when a quadruple—click is detected on the in pin.
multiclick.N.quadruple—click—only bit out
Goes high briefly when a quadruple—click is detected on the in pin and no fifth click followed it.
multiclick.N.state s32 out
PARAMETERS

multiclick.N.invert—input bit rw (default: FALSE)
If FALSE (the default), clicks start with rising edges. If TRUE, clicks start with falling edges.

multiclick.N.max-hold—-ns u32 rw (default: 250000000)

If the input is held down longer than this, it’s not part of a multi—click. (Default 250,000,000 ns, 250

LinuxCNC 01/04/2026

489

MULTICLICK (9) LinuxCNC Documentation MULTICLICK (9)

ms.)

multiclick. N.max-space—ns u32 rw (default: 250000000)
If the input is released longer than this, it’s not part of a multi—click. (Default 250,000,000 ns, 250
ms.)

multiclick.N.output—hold—ns u32 rw (default: 700000000)
Positive pulses on the output pins last this long. (Default 100,000,000 ns, 100 ms.)

AUTHOR

Sebastian Kuzminsky

LICENSE
GPL

490 01/04/2026 LinuxCNC

MULTISWITCH (9) LinuxCNC Documentation MULTISWITCH (9)

NAME

multiswitch — This component toggles between a specified number of output bits.

SYNOPSIS
loadrt multiswitch personality=P [cfg=N]

cfg
cfg should be a comma-—separated list of sizes, for example cfg=2,4,6 would create 3 instances of 2, 4
and 6 bits respectively. Ignore the "personality" parameter, that is auto—generated.

FUNCTIONS

multiswitch.N (requires a floating—point thread)

PINS
multiswitch.N.up bit in (default: false)
Receives signal to toggle up

multiswitch.N.down bit in (default: false)
Receives signal to toggle down

multiswitch.N.bit—MM bit out (MM=00..personality) (default: false)
Output bits

PARAMETERS
multiswitch.N.top—position u32 rw
Number of positions

multiswitch.N.position s32 rw
Current state (may be set in the HAL)

AUTHOR
ArcEye schooner30.AT tiscali.co.uk / Andy Pugh andy.AT.bodgesoc.org

LICENSE
GPL

LinuxCNC 01/04/2026 491

MUXI16(9) LinuxCNC Documentation MUXI16(9)

NAME

mux16 — Select from one of sixteen input values

SYNOPSIS

loadrt mux16 [count=N|names=namel[,name?2...]]

FUNCTIONS

PINS

492

mux16.N (requires a floating—point thread)

mux16.N.use—graycode bit in
This signifies the input will use Gray code instead of binary. Gray code is a good choice when using
physical switches because for each increment only one select input changes at a time.

mux16.N.suppress—no—input bit in
This suppresses changing the output if all select lines are false. This stops unwanted jumps in output
between transitions of input. but make in00 unavailable.

mux16.N.debounce-time float in
sets debounce time in seconds. eg. .10 = a tenth of a second input must be stable this long before
outputs changes. This helps to ignore noisy switches.

mux16.N.selM bit in (M=0..3)
Together, these determine which inN value is copied to out.

mux16.N.out—f float out

mux16.N.out—s s32 out
Follows the value of one of the in/N values according to the four sel values and whether use—graycode
is active. The s32 value will be trunuated and limited to the max and min values of signed values.

01/04/2026 LinuxCNC

MUXI16(9) LinuxCNC Documentation

sel3 | sel2 | sell | sel0 | out follows

0 0 0 0 in00

0 0 0 1 in01

0 0 1 0 in02

0 0 1 1 in03

0 1 0 0 in04

0 1 0 1 in05
0 1 1 0 in06
0 1 1 1 in07

1 0 0 0 in08

1 0 0 1 in09

1 0 1 0 in10

1 0 1 1 in11
1 1 0 0 in12
1 1 0 1 in13
1 1 1 0 in14
1 1 1 1 in15

mux16.N.inMM float in (MM=00..15)
array of selectable outputs

PARAMETERS
mux16.N.elapsed float r
Current value of the internal debounce timer for debugging.

mux16.N.selected s32 r
Current value of the internal selection variable after conversion for debugging

SEE ALSO

mux2(9), mux4(9), mux8(9), mux_generic(9).

AUTHOR
Chris S Morley

LICENSE
GPL

LinuxCNC 01/04/2026

MUXI16(9)

493

MUX2(9) LinuxCNC Documentation

NAME

mux?2 — Select from one of two input values

SYNOPSIS

loadrt mux2 [count=N|names=namel[,name?2...]]

FUNCTIONS

mux2.N (requires a floating—point thread)

PINS

mux2.N.sel bit in

mux2.N.out float out
Follows the value of in0 if sel is FALSE, or in1 if sel is TRUE

mux2.N.inl float in

mux2.N.in0 float in

SEE ALSO
mux4(9), mux8(9), mux16(9), mux_generic(9).

AUTHOR
Jeff Epler

LICENSE
GPL

494 01/04/2026

MUX2(9)

LinuxCNC

MUX4(9)

NAME

LinuxCNC Documentation

mux4 — Select from one of four input values

SYNOPSIS

loadrt mux4 [count=N|names=namel[,name?2...]]

FUNCTIONS

mux4.N (requires a floating—point thread)

PINS

mux4.N.sel0 bit in

mux4.N.sell bit in

Together, these determine which inN value is copied to out.

mux4.N.out float out

Follows the value of one of the in/N values according to the two sel values

sell | sel0

out follows

in0

inl

in2

in3

mux4.N.in0 float in

mux4.N.inl float in

mux4.N.in2 float in

mux4.N.in3 float in

SEE ALSO

mux2(9), mux8(9), mux16(9), mux_generic(9).

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC

01/04/2026

MUX4(9)

495

MUXS8(9) LinuxCNC Documentation MUXS8(9)

NAME
mux8 — Select from one of eight input values
SYNOPSIS
loadrt mux8 [count=N|names=namel[,name?2...]]
FUNCTIONS
mux8.N (requires a floating—point thread)
PINS
mux8./N.sel0 bit in
mux8./N.sell bit in
mux8./N.sel2 bit in
Together, these determine which inN value is copied to out.
mux8./N.out float out
Follows the value of one of the in/N values according to the three sel values
sel2 | sell | sel0 | out follows
0 0 0 in0
0 0 1 inl
0 1 0 in2
0 1 1 in3
1 0 0 ind
1 0 1 in5
1 1 0 in6
1 1 1 in7
mux8.N.in0 float in
mux8.N.inl float in
mux8.N.in2 float in
mux8.N.in3 float in
mux8.N.ind float in
mux8.N.in5 float in
mux8.N.in6 float in
mux8.N.in7 float in
SEE ALSO
mux2(9), mux4(9), mux16(9), mux_generic(9).
AUTHOR

Stuart Stevenson

496 01/04/2026 LinuxCNC

MUXS8(9) LinuxCNC Documentation MUXS8(9)

LICENSE
GPL

LinuxCNC 01/04/2026 497

MUX_GENERIC(9) LinuxCNC Documentation MUX_GENERIC(9)

NAME

mux_generic — choose one from several input values

SYNOPSIS

loadrt mux_generic config=""bb8,ful2...."

FUNCTIONS

PINS

mux—gen.NN Depending on the data types can run in either a floating point or non—floating point thread.

mux—gen.N.suppress—no—input bit in
This suppresses changing the output if all select lines are false. This stops unwanted jumps in output
between transitions of input but makes in00O unavailable.

mux—gen.N.debounce—us unsigned in
sets debounce time in microseconds, e.g. 100000 = a tenth of a second. The selection inputs must be
stable this long before the output changes. This helps to ignore noisy switches.

mux—gen.N.sel-bit—MM bit in (M=0..N), mux—gen.N.sel-int unsigned in
Together, these determine which inN value is copied to output. The bit pins are interpreted as binary
bits, and the result is simply added on to the integer pin input. It is expected that either one or the other
would normally be used. However, the possibility exists to use a higher—order bit to "shift" the values
set by the integer pin. The sel-bit pins are only created when the size of the mux_gen component is an
integer power of two. This component (unlike mux16) does not offer the option of decoding
Gray—code, however the same effect can be achieved by arranging the order of the input values to suit.

mux—gen.N.out—[bit/float/s32/u32] variable-type out
Follows the value of one of the in/N values according to the selection bits and/or the selection number.
Values will be converted/truncated according to standard C rules. This means, for example that a float
input greater than 2147483647 will give an S32 output of —2147483648.

mux—gen.N.in—[bit/float/s32/u32]-MM variable—type in
The possible output values that are selected by the selection pins.

PARAMETERS

mux-gen.N.elapsed float r
Current value of the internal debounce timer for debugging.

mux-gen.N.selected s32 r
Current value of the internal selection variable after conversion for debugging. Possibly useful for
setting up gray—code switches.

DESCRIPTION

This component is a more general version of the other multiplexing components. It allows the creation of
arbitrary—size multiplexers (up to 1024 entries) and also supports differing data types on the input and
output pins. The configuration string is a comma-—separated list of code—letters and numbers, such as
"bb4,ful2". This would create a 4—element bit—to—bit mux and a 12—element float—to—unsigned mux. The
code letters are b = bit, f = float, s = signed integer, u = unsigned integer. The first letter code is the input
type, the second is the output type. The codes are not case—sensitive. The order of the letters is significant
but the position in the string is not. Do not insert any spaces in the config string. Any non—zero float value
will be converted to a "true" output in bit form. Be wary that float datatypes can be very, very, close to zero
and not actually be equal to zero.

Each mux has its own HAL function and must be added to a thread separately. If neither input nor output is
of type float then the function is base—thread (non floating—point) safe. Any mux_generic with a floating
point input or output can only be added to a floating—point thread.

SEE ALSO

498

mux2(9), mux4(9), mux8(9), mux16(9)

01/04/2026 LinuxCNC

MUX_GENERIC(9)

AUTHOR
Andy Pugh

LICENSE
GPL

LinuxCNC

LinuxCNC Documentation

01/04/2026

MUX_GENERIC(9)

499

NEAR(9) LinuxCNC Documentation

NAME

near — Determine whether two values are roughly equal.

SYNOPSIS

loadrt near [count=N|names=namel[,name2...]]

FUNCTIONS

near.N (requires a floating—point thread)

PINS

near.N.inl- float in
near.N.in2- float in

near.N.out bit out

NEAR(9)

out is true if inl and in2 are within a factor of scale (i.e., for inl positive, inl/scale a¢ in2 ax
inl*scale), OR if their absolute difference is no greater than difference (i.e., |in1-in2| &% difference).

out is false otherwise.

PARAMETERS

near.N.scale float rw (default: 7)

near.N.difference float rw (default: 0)

AUTHOR
Chris Radek

LICENSE
GPL

500 01/04/2026

LinuxCNC

NOT (9) LinuxCNC Documentation NOT (9)

NAME

not — Inverter

SYNOPSIS

loadrt not [count=N|names=name[,name2...]]

DESCRIPTION

The out output pin is set to the inverted logic level of the in input pin.

FUNCTIONS
not. N

PINS

not.N.in bit in
not.N.out bit out

SEE ALSO
and2(9), logic(9), lut5(9), or2(9), xor2(9).

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 501

OFFSET(9) LinuxCNC Documentation

NAME

offset — Adds an offset to an input, and subtracts it from the feedback value.

SYNOPSIS

loadrt offset [count=N|names=namel[,name2...]]

FUNCTIONS
offset.N.update—output (requires a floating—point thread)
Updated the output value by adding the offset to the input.

offset.N.update—feedback (requires a floating—point thread)

Update the feedback value by subtracting the offset from the feedback.

PINS
offset.N.offset float in
The offset value

offset.N.in float in
The input value

offset.N.out float out
The output value

offset.N.fb—in float in
The feedback input value

offset.N.fb—out float out
The feedback output value

AUTHOR
Jeff Epler

LICENSE
GPL

502 01/04/2026

OFFSET(9)

LinuxCNC

OHMIC(9) LinuxCNC Documentation OHMIC(9)

NAME
ohmic — LinuxCNC HAL component that uses a Mesa THCAD for ohmic sensing

SYNOPSIS

loadrt ohmic [count=N|names=namel[,name2...]]

DESCRIPTION
Mesa THCAD Card component to scale input and outputs from the Mesa THCAD2, THCADS, THCAD10,
and THCAD300 cards.

Allows user configurable voltage thresholds for ohmic sensing.

Output pins are provided for:

ohmic—volts —the voltage sensed on ohmic sensing.

thcad—volts —the actual voltage measured by the THCAD.

ohmic—on —true if ohmic—volts 8¥ ohmic—threshold, false if ohmic—volts 8% ohmic—low.

A THCAD-5 would often be used for ohmic sensing in conjunction with a 24 Volt isolated power supply
and a 390 ki© series resistor resulting in a voltage divider of 4.9.

This would result in a full scale reading of 24.5 Volts which is above the power supply output voltage.
The circuit will remain protected by the THCAD’s ability to tolerate a 500 Volt over—voltage indefinitely.

It is optional that power to the ohmic sensing circuit be disconnected unless probing is in progress.

FUNCTIONS

ohmic.N (requires a floating—point thread)
PINS
ohmic.N.is—probing bit in
True if probing

ohmic.N.ohmic-low float in (default: 27)
The threshold volts below which ohmic sensing is set to be false

ohmic.N.ohmic—threshold float in (default: 22)
The threshold volts above which ohmic sensing is set to be true

ohmic.N.thcad—0—-volt—freq float in
0 volt calibration data for THCAD card in Hz

ohmic.N.thcad-divide float in (default: 32)
THCAD divider set by links on THCAD board (1, 32, 64, or 128)

ohmic.N.thcad—fullscale float in (default: 5)
THCAD full scale in Volt (5, 10, or 300 Volt)

ohmic.N.thcad—max-volt—freq float in
Full scale calibration data for THCAD Card in Hz

ohmic.N.velocity—in float in
The velocity returned from the THCAD and read by the Mesa encoder input

ohmic.N.volt-divider float in (default: 4.9)
The divide ratio

ohmic.N.ohmic-on bit out
True if ohmic circuit is closed (material is sensed)

LinuxCNC 01/04/2026 503

OHMIC(9) LinuxCNC Documentation OHMIC(9)

ohmic.N.ohmic—volts float out
Calculated ohmic voltage

EXAMPLES

The below HAL example assumes a THCADS card using a 1/32 frequency setting and a voltage divider
internal to the plasma cutter with range extended to 24.5 volts by a series 390K external resistor as per the
manual. Additional information and wiring diagram is contained in the Plasma Primer in the LinuxCNC
documentation.

Example Calibration Data: 0V = 122.9 kHz, 10V = 925.7 kHz should be entered as 122900 and 925700.

loadrt ohmic names=ohmicsense

addf ohmicsense servo—thread

setp ohmicsense.thcad—0—volt—freq 122900
setp ohmicsense.thcad—max—volt—freq 925700

setp ohmicsense.thcad—divide 32
setp ohmicsense.thcad—fullscale 5
setp ohmicsense.volt—divider 4.9
setp ohmicsense.threshold 22
setp ohmicsense.ohmic—low 21

net ohmic—vel ohmicsense.velocity—in <= hm2_7i76e.0.encoder.00.velocity
net ohmic—enable ohmicsense.is_probing <= plasmac.ohmic—enable
net ohmic—true ohmicsense.ohmic—on => plasmac.ohmic—probe

AUTHOR

Rod Webster

LICENSE

504

GPL

01/04/2026 LinuxCNC

ONESHOT (9) LinuxCNC Documentation ONESHOT (9)

NAME

oneshot — one—shot pulse generator

SYNOPSIS

loadrt oneshot [count=N|names=name[,name2...]]

DESCRIPTION

creates a variable—length output pulse when the input changes state. This function needs to run in a thread

which supports floating point (typically the servo thread). This means that the pulse length has to be a
multiple of that thread period, typically 1ms. For a similar function that can run in the base thread, and
which offers higher resolution, see "edge".

FUNCTIONS
oneshot.N (requires a floating—point thread)
Produce output pulses from input edges

PINS
oneshot.N.in bit in
Trigger input
oneshot.N.reset bit in
Reset

oneshot.N.out bit out
Active high pulse

oneshot.N.out—not bit out
Active low pulse

oneshot.N.width float in (default: 0)
Pulse width in seconds

oneshot.N.time-left float out
Time left in current output pulse

PARAMETERS
oneshot.N.retriggerable bit rw (default: TRUE)
Allow additional edges to extend pulse

oneshot.N.rising bit rw (default: TRUE)
Trigger on rising edge

oneshot.N falling bit rw (default: FALSE)
Trigger on falling edge

AUTHOR

John Kasunich

LICENSE
GPL

LinuxCNC 01/04/2026

505

OPTO_AC5(9) LinuxCNC Documentation OPTO_AC5(9)

NAME

opto_ac5 — Realtime driver for opto22 PCI-ACS5 cards
SYNOPSIS

loadrt opto_ac5 [portconfig0=0xN] [portconfigl=0xN]
DESCRIPTION

These pins and parameters are created by the realtime opto_acS module. The portconfig0 and portconfigl
variables are used to configure the two ports of each card. The first 24 bits of a 32 bit number represent the
24 i/o points of each port. The lowest (rightmost) bit would be HAL pin 0 which is header connector pin
47. Then next bit to the left would be HAL pin 1, header connector pin 45 and so on, until bit 24 would be
HAL pin 23, header connector pin 1. "1" bits represent output points. So channel 0..11 as inputs and 12..23
as outputs would be represented by (in binary) 111111111111000000000000 which is 0xfff000 in
hexadecimal. That is the number you would use, e.g.

loadrt opto_ac5 portconfig0=0x{ff000
If no portconfig variable is specified the default configuration is 12 inputs then 12 outputs.
Up to 4 boards are supported. Boards are numbered starting at 0.

Portnumber can be 0 or 1. Port O is closest to the card bracket.

PINS
opto_acS5.BOARDNUMBER.port. PORTNUMBER.in—-PINNUMBER OUT bit

opto_ac5.BOARDNUMBER.port.PORTNUMBER.in—PINNUMBER-not OUT bit
Connect a HAL bit signal to this pin to read an i/o point from the card. The PINNUMBER represents
the position in the relay rack. E.g., PINNUMBER 0 is position 0 in a opto22 relay rack and would be
pin 47 on the 50 pin header connector. The —not pin is inverted so that LOW gives TRUE and HIGH
gives FALSE.

opto_ac5.BOARDNUMBER.port.PORTNUMBER.out—PINNUMBER IN bit
Connect a HAL bit signal to this pin to write to an i/o point of the card. The PINNUMBER represents
the position in the relay rack. E.g., PINNUMBER 23 is position 23 in a opto22 relay rack and would
be pin 1 on the 50 pin header connector.

opto_ac5.BOARDNUMBER.led. NUMBER OUT bit
Turns one of the on board LEDS on/off. LEDS are numbered O to 3.

PARAMETERS
opto_ac5S.BOARDNUMBER.port.PORTNUMBER.out—PINNUMBER—invert W bit
When TRUE, invert the meaning of the corresponding —out pin so that TRUE gives LOW and FALSE
gives HIGH.

FUNCTIONS
opto_ac5.0.digital-read
Add this to a thread to read all the input points.

opto_ac5.0.digital-write
Add this to a thread to write all the output points and LEDS.

BUGS

All boards are loaded with the same port configurations as the first board.

SEE ALSO
https://wiki.linuxcnc.org/cgi—bin/wiki.pl?OptoPciAcS

506 01/04/2026 LinuxCNC

OR2(9) LinuxCNC Documentation OR2(9)

NAME
or2 — Two—input OR gate
SYNOPSIS

loadrt or2 [count=N|names=name][,name2...]]

DESCRIPTION

The out pin is computed from the value of the in0 and in1 pins according to the following truth table:

inl | in0 | out

FUNCTIONS
or2.N

PINS
or2.N.in0 bit in
First input
or2.N.inl bit in
Second input

or2.N.out bit out
Output

SEE ALSO
logic(9)

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 507

ORIENT (9) LinuxCNC Documentation ORIENT (9)

NAME

orient — Provide a PID command input for orientation mode based on current spindle position, target angle
and orient mode

SYNOPSIS

loadrt orient [count=N|names=nameI[,name2...]]

DESCRIPTION

This component is designed to support a spindle orientation PID loop by providing a command value, and
fit with the motion spindle—orient support pins to support the M19 code.

The spindle is assumed to have stopped in an arbitrary position. The spindle encoder position is linked to
the position pin. The current value of the position pin is sampled on a positive edge on the enable pin, and
command is computed and set as follows: floor(number of full spindle revolutions in the position sampled
on positive edge) plus angle/360 (the fractional revolution) +1/-1/0 depending on mode.

The mode pin is interpreted as follows:

e 0: the spindle rotates in the direction with the lesser angle, which may be clockwise or
counterclockwise.

* 1: the spindle rotates always rotates clockwise to the new angle.

» 2: the spindle rotates always rotates counterclockwise to the new angle.

HAL USAGE

On spindle.N.orient disconnect the spindle control and connect to the orient—pid loop:

loadrt orient names=orient

loadrt pid names=orient—pid

net orient—angle spindle.N.orient—angle orient.angle

net orient—mode spindle.N.orient—mode orient.mode

net orient—enable spindle.N.orient orient.enable orient—pid.enable
net spindle—in—pos orient.is—oriented spindle.N.is—oriented

net spindle—pos encoder.position orient.position orient—pid.feedback
net orient—command orient.command orient—pid.command

FUNCTIONS

PINS

508

orient.N (requires a floating—point thread)
Update command based on enable, position, mode and angle.

orient.N.enable bit in
enable angular output for orientation mode

orient.N.mode s32 in
0: rotate — shortest move; 1: always rotate clockwise; 2: always rotate counterclockwise

orient.N.position float in
spindle position input, unit 1 rev

orient.N.angle float in
orient target position in degrees, 0 a angle < 360

orient.N.command float out
target spindle position, input to PID command

orient.N.poserr float out
in degrees — aid for PID tuning

orient.N.is—oriented bit out
This pin goes high when poserr < tolerance. Use to drive spindle.N.is—oriented

01/04/2026 LinuxCNC

ORIENT (9) LinuxCNC Documentation ORIENT (9)

orient.N.tolerance float in (default: 0.5)
The tolerance in degrees for considering the align completed

AUTHOR
Michael Haberler

LICENSE
GPL

LinuxCNC 01/04/2026 509

PID(9)

NAME

LinuxCNC Documentation PID(9)

pid — proportional/integral/derivative controller with automatic tuning support

SYNOPSIS

loadrt pid [num_chan=num | names=namel[,name2...]] [debug=*_dbg]

DESCRIPTION

510

pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback loops
for servo motors and other closed—loop applications.

pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names
separated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is three. If debug is set to 1 (the default is 0), some additional HAL parameters

will be exported, which might be useful for tuning, but are otherwise unnecessary.

In the following description, it is assumed that we are discussing position loops. However this component
can be used to implement other loops such as speed loops, torch height control, and others.

Each loop has a number of pins and parameters, whose names begin with pid.N., where N is the channel
number. Channel numbers start at zero.

The three most important pins are command, feedback, and output. For a position loop, command and
feedback are in position units. For a linear axis, this could be inches, mm, metres, or whatever is relevant.
Likewise, for a angular axis, it could be degrees, radians, etc. The units of the output pin represent the
change needed to make the feedback match the command. As such, for a position loop output is a velocity,
in inches/sec, mm/sec, degrees/sec, etc.

Each loop has several other pins as well. error is equal to command minus feedback. enable is a bit that
enables the loop. If enable is false, all integrators are reset, and the output is forced to zero. If enable is

true, the loop operates normally.

The PID gains, limits, and other tunable features of the loop are implemented as parameters. These are as
follows:

Pgain Proportional gain

Igain Integral gain

Dgain Derivative gain

bias Constant offset on output

FF0 Zeroth order Feedforward gain

FF1 First order Feedforward gain

FF2 Second order Feedforward gain

FF3 Third order Feedforward gain

deadband Amount of error that will be ignored

maxerror Limit on error

01/04/2026 LinuxCNC

PID(9)

LinuxCNC Documentation PID(9)

maxerrorl Limit on error integrator

maxerrorD Limit on error differentiator

maxcemdD Limit on command differentiator

maxecmdDD Limit on command 2nd derivative

maxcmdDDD Limit on command 3rd derivative

maxoutput Limit on output value

All of the limits (max____) are implemented such that if the parameter value is zero, there is no limit.

A number of internal values which may be useful for testing and tuning are also available as parameters. To
avoid cluttering the parameter list, these are only exported if "debug=1" is specified on the insmod
command line.

errorl Integral of error

errorD Derivative of error

commandD Derivative of the command

commandDD 2nd derivative of the command

commandDDD 3rd derivative of the command

The PID loop calculations are as follows (see the code in pid.c for all the nitty gritty details):

error = command — feedback

if (abs(error) < deadband) then error = 0

limit error to +/— maxerror

error] += error * period

limit errorl to +/— maxerrorl

errorD = (error — previouserror) / period

limit errorD to +/— maxerrorD

commandD = (command — previouscommand) / period

limit commandD to +/— maxcmdD

commandDD = (commandD — previouscommandD) / period

limit commandDD to +/— maxcmdDD

commandDDD = (commandDD - previouscommandDD) / period

limit commandDDD to +/— maxcmdDDD

output = bias + error * Pgain + errorl * Igain +
errorD * Dgain + command * FFQ + commandD * FF1 +
commandDD * FF2 + commandDDD * FF3

limit output to +/— maxoutput

This component has a built in auto tune mode. It works by setting up a limit cycle to characterize the
process. This is called the Relay method and described in the 1984 Automation paper Automatic Tuning
of Simple Regulators with Specifications on Phase and Amplitude Margins by Karl Johan AstrA{m
and Tore HArgglund (doi:10.1016/0005-1098(84)90014-1),
https://lup.lub.lu.se/search/ws/files/6340936/8509157.pdf. Using this method, Pgain/Igain/Dgain or
Pgain/Igain/FF1 can be determined using the Ziegler—Nichols algorithm. When using FF1 tuning, scaling

LinuxCNC 01/04/2026 511

PID(9)

LinuxCNC Documentation PID(9)

must be set so that output is in user units per second.

During auto tuning, the command input should not change. The limit cycle is setup around the commanded
position. No initial tuning values are required to start auto tuning. Only tune—cycles, tune—effort and
tune—mode need be set before starting auto tuning. Note that setting tune—mode to true disable the control
loop. When auto tuning completes, the tuning parameters will be set, the output set to bias and the
controller still be disabled. If running from LinuxCNC, the FERROR setting for the axis being tuned may
need to be loosened up, as it must be larger than the limit cycle amplitude in order to avoid a following
error.

To perform auto tuning, take the following steps. Move the axis to be tuned somewhere near the center of
it’s travel. Set tune—cycles (the default value should be fine in most cases) and tune—mode. Set
tune—effort to a small value. Set enable to true. Set tune—mode to true. Set tune-start to true. If no
oscillation occurs, or the oscillation is too small, slowly increase tune—effort. Set tune—start to true. If no
oscillation occurs, or the oscillation is too small, slowly increase tune—effort Auto tuning can be aborted at
any time by setting enable or tune—mode to false.

NAMING

The names for pins, parameters, and functions are prefixed as: pid.N. for N=0,1,...,num—1 when using
num_chan=num nameN. for nameN=namel,name2,... when using names=namel,name2,...

The pid.N. format is shown in the following descriptions.

FUNCTIONS

PINS

512

pid.N.do—pid—calcs (uses floating—point) performs the PID calculations for control loop N.

pid.N.command float in
The desired (commanded) value for the control loop.

pid.N.Pgain float in
Proportional gain. Results in a contribution to the output that is the error multiplied by Pgain.

pid.N.Igain float in
Integral gain. Results in a contribution to the output that is the integral of the error multiplied by Igain.
For example an error of 0.02 that lasted 10 seconds would result in an integrated error (errorl) of 0.2,
and if Igain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float in
Derivative gain. Results in a contribution to the output that is the rate of change (derivative) of the
error multiplied by Dgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and if Dgain is 5, the derivative term would
add 0.25 to the output.

pid.N.feedback float in
The actual (feedback) value, from some sensor such as an encoder.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.command—deriv float in
The derivative of the desired (commanded) value for the control loop. If no signal is connected then
the derivative will be estimated numerically.

pid.N.feedback—deriv float in
The derivative of the actual (feedback) value for the control loop. If no signal is connected then the
derivative will be estimated numerically. When the feedback is from a quantized position source (e.g.,
encoder feedback position), behavior of the D term can be improved by using a better velocity
estimate here, such as the velocity output of encoder(9) or hostmot2(9).

pid.N.error—previous—target bit in

01/04/2026 LinuxCNC

PID(9) LinuxCNC Documentation PID(9)

Use previous invocation’s target vs. current position for error calculation, like the motion controller
expects. This may make torque—mode position loops and loops requiring a large I gain easier to tune,
by eliminating velocity—dependent following error.

pid.N.error float out
The difference between command and feedback.

pid.N.enable bit in
When true, enables the PID calculations. When false, output is zero, and all internal integrators, etc,
are reset.

pid.N.index—enable bit in
On the falling edge of index—enable, pid does not update the internal command derivative estimate.
On systems which use the encoder index pulse, this pin should be connected to the index—enable
signal. When this is not done, and FF1 is nonzero, a step change in the input command causes a
single—cycle spike in the PID output. On systems which use exactly one of the —deriv inputs, this
affects the D term as well.

pid.N.bias float in
bias is a constant amount that is added to the output. In most cases it should be left at zero. However,
it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the weight of an
object that moves vertically. bias is turned off when the PID loop is disabled, just like all other
components of the output. If a non—zero output is needed even when the PID loop is disabled, it
should be added with an external HAL sum2 block.

pid.N.FF0 float in
Zero order feed—forward term. Produces a contribution to the output that is FF0 multiplied by the
commanded value. For position loops, it should usually be left at zero. For velocity loops, FF0 can
compensate for friction or motor counter—EMF and may permit better tuning if used properly.

pid.N.FF1 float in
First order feed—forward term. Produces a contribution to the output that is FF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed, and
can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional to
acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float in
Second order feed—forward term. Produces a contribution to the output that is FF2 multiplied by the
second derivative of the commanded value. For position loops, the contribution is proportional to
acceleration, and can be used to compensate for inertia. For velocity loops, the contribution is
proportional to jerk, and should usually be left at zero.

pid.N.FF3 float in
Third order feed—forward term. Produces a contribution to the output that is FF3 multiplied by the
third derivative of the commanded value. For position loops, the contribution is proportional to jerk,
and can be used to compensate for residual errors during acceleration. For velocity loops, the
contribution is proportional to snap(jounce), and should usually be left at zero.

pid.N.deadband float in
Defines a range of "acceptable" error. If the absolute value of error is less than deadband, it will be
treated as if the error is zero. When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one—half count, to prevent the control loop
from hunting back and forth if the command is between two adjacent encoder values. When the
absolute value of the error is greater than the deadband, the deadband value is subtracted from the
error before performing the loop calculations, to prevent a step in the transfer function at the edge of
the deadband (see BUGS).

pid.N.maxoutput float in
Output limit. The absolute value of the output will not be permitted to exceed maxoutput, unless

LinuxCNC 01/04/2026 513

PID(9) LinuxCNC Documentation PID(9)

maxoutput is zero. When the output is limited, the error integrator will hold instead of integrating, to
prevent windup and overshoot.

pid.N.maxerror float in
Limit on the internal error variable used for P, I, and D. Can be used to prevent high Pgain values from
generating large outputs under conditions when the error is large (for example, when the command
makes a step change). Not normally needed, but can be useful when tuning non—linear systems.

pid.N.maxerrorD float in
Limit on the error derivative. The rate of change of error used by the Dgain term will be limited to this
value, unless the value is zero. Can be used to limit the effect of Dgain and prevent large output spikes
due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorlI float in
Limit on error integrator. The error integrator used by the Igain term will be limited to this value,
unless it is zero. Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdD float in
Limit on command derivative. The command derivative used by FF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is a
step change on the command. Not normally needed.

pid.N.maxcmdDD float in
Limit on command second derivative. The command second derivative used by FF2 will be limited to
this value, unless the value is zero. Can be used to prevent FF2 from producing large output spikes if
there is a step change on the command. Not normally needed.

pid.N.maxcmdDDD float in
Limit on command third derivative. The command third derivative used by FF3 will be limited to this
value, unless the value is zero. Can be used to prevent FF3 from producing large output spikes if there
is a step change on the command. Not normally needed.

pid.N.saturated bit out
When true, the current PID output is saturated. That is,

output = + maxoutput.

pid.N.saturated—s float out, pid.N.saturated—count s32 out
When true, the output of PID was continually saturated for this many seconds (saturated—s) or
periods (saturated—count).

Additional auto tuning pins
pid.N.tune—mode bit in
When true, enables auto tune mode. When false, normal PID calculations are performed.

pid.N.tune—start bit io
When set to true, starts auto tuning. Cleared when the auto tuning completes.

pid.N*.tune—type u32 rw
When set to 0, Pgain/Igain/Dgain are calculated. When set to 1, Pgain/Igain/FF1 are calculated.

pid.N.tune—cycles u32 rw
Determines the number of cycles to run to characterize the process. tune—cycles actually sets the
number of half cycles. More cycles results in a more accurate characterization as the average of all
cycles is used.

pid.N.tune—effort float rw
The maximum output value used during automatic tuning. Determines the effort used in setting up the
limit cycle in the process. tune—effort should be set to a positive value less than maxoutput. Start
with something small and work up to a value that results in a good portion of the maximum motor
current being used. The smaller the value, the smaller the amplitude of the limit cycle.

514 01/04/2026 LinuxCNC

PID(9) LinuxCNC Documentation PID(9)

pid.N.ultimate—gain float ro (only if debug=1)
Determined from process characterization. ultimate—gain is the ratio of tune—effort to the limit cycle
amplitude multiplied by 4.0 divided by Pi.

pid.N.ultimate—period float ro (only if debug=1)
Determined from process characterization. ultimate—period is the period of the limit cycle.

PARAMETERS
pid.N.errorl float ro (only if debug=1)
Integral of error. This is the value that is multiplied by Igain to produce the Integral term of the output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied by Dgain to produce the Derivative term of the
output.

pid.N.commandD float ro (only if debug=1)
Derivative of command. This is the value that is multiplied by FF1 to produce the first order
feed—forward term of the output.

pid.N.commandDD float ro (only if debug=1)
Second derivative of command. This is the value that is multiplied by FF2 to produce the second order
feed—forward term of the output.

pid.N.commandDDD float ro (only if debug=1)
Third derivative of command. This is the value that is multiplied by FF3 to produce the third order
feed—forward term of the output.

BUGS
Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband. This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version of pid. However,
the default behavior should not be changed.

Negative gains may lead to unwanted behavior. It is possible in some situations that negative FF gains make

sense, but in general all gains should be positive. If some output is in the wrong direction, negating gains to
fix it is a mistake; set the scaling correctly elsewhere instead.

LinuxCNC 01/04/2026 515

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

NAME

plasmac — A plasma cutter controller

SYNOPSIS

loadrt plasmac

DESCRIPTION

A plasma cutting table control component for use with the LinuxCNC 2.10.

VERSION
014

SUMMARY
Usage of this component is demonstrated in the QtPlasmaC example configurations included with
LinuxCNC.

DISCLAIMER
THE AUTHOR OF THIS SOFTWARE ACCEPTS ABSOLUTELY NO LIABILITY FOR ANY HARM
OR LOSS RESULTING FROM ITS USE.

IT IS EXTREMELY UNWISE TO RELY ON SOFTWARE ALONE FOR SAFETY.

Any machinery capable of harming persons must have provisions for completely stopping all motors and
moving parts etc. before persons enter any danger area.

All machinery must be designed to comply with local and national safety codes, and the author of this
software can not, and does not, take any responsibility for such compliance.

FUNCTIONS

plasmac.— (requires a floating—point thread)

PINS
plasmac.arc—fail-delay float in
arc start failure timeout (seconds)

plasmac.arc-lost—delay float in
arc lost delay during a cut (seconds)

plasmac.arc—ok-high float in
maximum voltage level for Arc OK signal [mode 0] (volts)

plasmac.arc—ok—in bit in
external arc ok input signal [mode 1 & mode 2]

plasmac.arc—ok-low float in
minimum voltage level for Arc OK signal [mode 0] (volts)

plasmac.arc—-max-—starts s32 in
maximum attempts at starting the arc

plasmac.arc—voltage—in float in
arc voltage input [mode 0 & mode 1] see Notes above

plasmac.arc—voltage—offset float in
offset to set arc voltage to 0 at 0 volts

plasmac.arc—voltage—scale float in
scale to convert arc_voltage input to actual volts

plasmac.axis—x—max-limit float in
axis X maximum limit, connect to ini.x.max—limit

plasmac.axis—x—min-limit float in
axis X minimum limit, connect to ini.x.min—limit

516 01/04/2026 LinuxCNC

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

plasmac.axis—x—position float in
current X axis position, connect to axis.x.pos—cmd

plasmac.axis—y—max-limit float in
axis y maximum limit, connect to ini.y.max—limit

plasmac.axis—y—min-limit float in
axis y minimum limit, connect to ini.y.min—-limit

plasmac.axis—y—position float in
current y axis position, connect to axis.y.pos—cmd

plasmac.axis—z—max-limit float in
axis z maximum limit, connect to ini.z.max—limit

plasmac.axis—z—min-limit float in
axis z minimum limit, connect to ini.z.min—limit

plasmac.axis—z—position float in
current z axis position, connect to joint.N.pos—fb

plasmac.breakaway bit in
torch breakaway switch (optional, see float_switch)

plasmac.consumable—change bit in
change consumables in torch

plasmac.cornerlock—enable bit in
enable corner lock

plasmac.cornerlock—threshold float in
corner lock threshold (% of requested feed rate), speeds below this disable THC

plasmac.current—velocity float in
current machine velocity, connect to motion.current—vel

plasmac.cut—feed—rate float in
cut feed rate from current material (machine units per minute)

plasmac.cut-height float in
cut height (machine units)

plasmac.cut—recovery bit in
recover from cut error

plasmac.cut—volts float in
cut voltage (volts)

plasmac.cutting—start bit in
start a new cut, connect to spindle.0.on

plasmac.debug—print bit in
if true will print state changes as a debug aid

plasmac.dry—run bit in
perform a dry run without probing

plasmac.external—estop bit in
external E—stop input

plasmac.feed—override float in
feed override value from GUI (connect to halui.feed—override.value)

plasmac.feed—reduction float in
reduce adaptive feed to this percentage (connect to motion.analog—out—03)

plasmac.feed—upm float in
requested feed_rate, connect to motion.feed—upm to use as the default (G—code units per minute)

LinuxCNC 01/04/2026 517

PLASMAC(9) LinuxCNC Documentation

518

plasmac.float—switch bit in
float switch input (can also act as breakaway if it actuates when torch breaks away)

plasmac.float—switch—travel float in
float switch travel (machine units)

plasmac.gcode—scale float in (default: 7)
current G—code scale

plasmac.height—override float in
height override adjustment (volts)

plasmac.height—per—volt float in
torch height change per volt (machine units)

plasmac.homed bit in
machine is homed

plasmac.ignore—arc—ok-0 bit in
Do not require arc ok for start or cutting.

plasmac.ignore—arc—ok-1 bit in
Do not require arc ok for start or cutting.

plasmac.kerf-width float in
placeholder for better G—code portability between GUIs

plasmac.laser—mode bit in
laser mode for fiber lasers

plasmac.laser—recovery—start s32 in
start laser offset for cut recovery

plasmac.laser—x—offset s32 in
alignment laser x axis offset (scaled units)

plasmac.laser—y—offset s32 in
alignment laser y axis offset (scaled units)

plasmac.lowpass—frequency float in
lowpass cutoff frequency for arc voltage output

plasmac.machine—is—on bit in
machine is on signal, connect to halui.machine.is—on

plasmac.material-thickness float in
material thickness (machine units)

plasmac.max-offset s32 in (default: 5)
maximum height offset (mm)

plasmac.mesh—arc—ok bit in (default: FALSE)
Do not require arc ok for mesh mode.

plasmac.mesh—enable bit in
enable mesh cutting mode

plasmac.mode s32 in
operating mode

plasmac.motion—type s32 in
motion type, connect to motion.motion—type

plasmac.move—down bit in
external thc down switch [mode 2]

plasmac.move—up bit in
external thc up switch [mode 2]

01/04/2026

PLASMAC(9)

LinuxCNC

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

plasmac.multi—tool bit in (default: 1)
allows the use of multiple tools

plasmac.offset—feed—rate float in
probe offset velocity (machine units per minute)

plasmac.offset—probe—delay float in
wait for probe to deploy (seconds)

plasmac.offset—probe—x float in
X axis offset for offset probe (machine units)

plasmac.offset—probe-y float in
Y axis offset for offset probe (machine units)

plasmac.offset—set—probe bit in
deploy probe for setting offsets

plasmac.offset—set—scribe bit in
deploy scribe for setting offsets

plasmac.offsets—active bit in
offsets are active, connect to motion.eoffset—active

plasmac.ohmic—-max—attempts s32 in
maximum ohmic probe attempts before fallback to float switch

plasmac.ohmic—probe bit in
ohmic probe input, from ohmic—sense—out or external component/pin

plasmac.ohmic—probe—enable bit in
enable ohmic probe

plasmac.ohmic—probe—offset float in
Z axis offset for ohmic probe (machine units)

plasmac.ohmic—sense—on—delay s32 in (default: 3)
debounce cycles for ohmic sense on

plasmac.ohmic—sense—off—delay s32 in (default: 3)
debounce cycles for ohmic sense off

plasmac.ohmic—sense—in bit in
ohmic sense relay input

plasmac.ohmic—test bit in
test for shorted torch

plasmac.ok—sample—counts s32 in (default: /0)
arc_ok number of valid samples required [mode 0]

plasmac.ok—sample—threshold float in (default: /10)
arc_ok maximum arc voltage deviation allowed [mode 0]

plasmac.override—jog bit in
override jog inhibit

plasmac.pause—at—end float in
time to pause at end of cut

plasmac.paused—motion—speed float in
multiplier for speed of motion when paused, from —1 to 1

plasmac.pid—d—gain float in
derivative gain input [mode 0 & mode 1]

plasmac.pid—i—gain float in
integral gain input [mode 0 & mode 1]

LinuxCNC 01/04/2026 519

PLASMAC(9) LinuxCNC Documentation

520

plasmac.pid—p—gain float in
proportional gain input [mode 0 & mode 1]

plasmac.pierce—delay float in
time required to pierce stock (seconds)

plasmac.pierce—height float in
pierce height (machine units)

plasmac.probe—feed—rate float in
probe down velocity (machine units per minute)

plasmac.probe—final-speed s32 in (default: 7)
final probe speed (steps per servo period)

plasmac.probe-start—height float in
probe starting height

plasmac.probe—test bit in
probe test only

plasmac.program—is—idle bit in
program is idle, connect to halui.program.is—idle

plasmac.program—is—paused bit in
program is paused, connect to halui.program.is—paused

plasmac.program—is—running bit in
program is running, connect to halui.program.is—running

plasmac.puddle—jump-delay float in

PLASMAC(9)

Delay move from pierce height to cut height (seconds), leave disconnected if not required.

plasmac.puddle—jump-height float in

Puddle jump height (percentage of pierce height), leave disconnected if not required.

plasmac.requested—velocity float in
deprecated

plasmac.resolution s32 in (default: /100)
multiplier for resolution of the offset counts

plasmac.restart—delay float in
time from arc failure till next restart attempt

plasmac.safe—height float in
requested safe traverse height (machine units)

plasmac.scribe—arm-delay float in
delay from scribe arm to scribe on

plasmac.scribe—on-delay float in
delay from scribe on to motion beginning

plasmac.scribe—start bit in
start a new scribe, connect to spindle.1.on

plasmac.setup—feed-rate float in
feed rate for moves to pierce and cut heights (machine units per minute)

plasmac.skip—ihs—distance float in
skip IHS if less than this distance from last cut

plasmac.slat—height float in
slat height (machine units)

plasmac.spotting—start bit in
start a new spot, connect to spindle.2.on

01/04/2026

LinuxCNC

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

plasmac.spotting—threshold float in
threshold voltage to start spotting delay

plasmac.spotting—time float in
torch off delay after spotting threshold reached

plasmac.thc—auto bit in
enable automatic thc activation

plasmac.thc—delay float in
delay from cut feed rate reached to THC activate (seconds) [non auto THC]

plasmac.thc—disable bit in
thc disable

plasmac.thc—enable bit in
enable/disable thc and set the IHS skip type

plasmac.thc—feed—rate float in
maximum feed rate for thc (machine units per minute)

plasmac.thc—sample—counts s32 in (default: 50)
thc number of valid samples required [auto THC]

plasmac.thc—sample—threshold float in (default: /)
thc maximum arc voltage deviation allowed [auto THC]

plasmac.thc—threshold float in
the threshold (volts), changes below this have no effect

plasmac.torch—enable bit in
enable torch

plasmac.torch—off bit in
turn torch off

plasmac.torch—pulse—start bit in
torch pulse start

plasmac.torch—pulse—time float in
torch pulse time (seconds)

plasmac.tube—cut bit in
set the current job as tube cutting

plasmac.units—per—mm float in
for scale calcs, connect to halui.machine.units—per—-mm

plasmac.use—auto—volts bit in
use calculated voltage for thc baseline

plasmac.voidlock—enable bit in
enable voidlock [mode 0 & mode 1]

plasmac.voidlock—off-cycles s32 in (default: 70)
number of sampling cycles to deactivate voidlock

plasmac.voidlock—on—cycles s32 in (default: 2)
number of sampling cycles to activate voidlock

plasmac.voidlock—slope s32 in (default: 500)
voidlock slope in volts per second

plasmac.x—offset s32 in
offset to apply to axis x for consumable change and cut recovery (scaled units)

plasmac.x—offset—current float in
current x axis offset, connect to axis.x.eoffset

LinuxCNC 01/04/2026 521

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

522

plasmac.xy—feed—rate float in
feed—rate for consumable change

plasmac.y—offset s32 in
offset to apply to axis y for consumable change and cut recovery (scaled units)

plasmac.y—offset—current float in
current y axis offset, connect to axis.y.eoffset

plasmac.z—offset—current float in
current z axis offset, connect to axis.z.eoffset

plasmac.zero—window float in (default: 0.1)
sets window that voltage fluctuations show as zero (0.1 to 0.1 at default value)

plasmac.pierce—type s32 in (default: 0)
allows motion to progress during pierce. 0=No movement, 1=Wiggle, 2=Ramp

plasmac.pierce—motion—delay float in (default: 0)
delay starting motion during pierce delay period. This is a % of Pierce Delay. Only used when
pierce—with—motion is True.

plasmac.cut-height—delay float in (default: 0)
at the end of transition to end—pierce—height how long to pause before transition to cut height.

plasmac.pierce—end-height float in (default: 0)
height at end of piercing (in machine units). Can be different to Cut Height. Default O means not used.
i.e. no change in height.

plasmac.gouge—speed float in (default: 0)
ramp starting speed for gouge. In machine units/min.

plasmac.gouge—speed—distance float in (default: 0)
distance gouge will run in machine units. Gouge plus creep distance should not be longer than any
lead in.

plasmac.creep—speed float in (default: 0)
ramp creep or intermediate speed. Comes after gouge and is before cut speed. In machine units/min.

plasmac.creep—speed—distance float in (default: 0)
distance creep will run in machine units. Gouge plus creep distance should not be longer than any lead
in.

plasmac.adaptive—feed float out
for reverse—run, connect to motion.adaptive—feed

plasmac.arc—ok—out bit out
arc ok output

plasmac.arc—voltage—out float out
arc voltage output [mode 0 & mode 1]

plasmac.consumable—changing bit out
consumables are being changed

plasmac.cornerlock—is—locked bit out
corner locked indicator

plasmac.current—feed—rate float out
current feed rate per minute (for auto—thc)

plasmac.cut—length float out
length of current cut job

plasmac.cut-recovering bit out
recovering from cut error

01/04/2026 LinuxCNC

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

plasmac.cut—time float out
cut time of current job

plasmac.cutting—stop bit out
stop manual cut, connect to halui.spindle.0.stop

plasmac.feed—hold bit out
feed hold, connect to motion.feed—hold

plasmac.jog—inhibit bit out
jog inhibit, connect to motion.jog—inhibit

plasmac.laser—recovery—state s32 out
laser recovery status

plasmac.led—down bit out
thc move down indicator

plasmac.led—up bit out
thc move up indicator

plasmac.offset—scale float out
offset scale, connect to axis.<x y z>.eoffset—scale

plasmac.ohmic—enable bit out
on only while probing

plasmac.ohmic—sense—out bit out
ohmic sense output state

plasmac.paused—motion bit out
paused motion flag, true when paused motion is active

plasmac.paused-time float out
paused time during current job

plasmac.pierce—count s32 out
number of pierce attempts (torch starts)

plasmac.probe—out bit out
probe for tube cutting, connect to motion.probe—input

plasmac.probe—test—error bit out
minimum limit reached while probe testing

plasmac.probe—time float out
probe time of current job

plasmac.program—pause bit out
pause the current program, connect to halui.program.pause

plasmac.program—resume bit out
resume the currently paused program, connect to halui.program.resume

plasmac.program—run bit out
run the currently loaded program, connect to halui.program.run

plasmac.program-—stop bit out
stop current program, connect to halui.program.stop

plasmac.rapid—time float out
rapid motion time of current job

plasmac.requested—feed—-rate float out
requested feed rate (for auto—thc)

plasmac.run—time float out
run time of current job

LinuxCNC 01/04/2026 523

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

plasmac.safe—height—is—limited bit out
safe height is limited indicator

plasmac.sensor—active bit out
one of float, ohmic, or breakaway is detected

plasmac.scribe—arm bit out
arm the scribe

plasmac.scribe—on bit out
turn scribe on

plasmac.state—out s32 out
current state

plasmac.stop—type—out s32 out
current stop type

plasmac.thc-active bit out
the status output

plasmac.thc—enabled bit out
thc is enabled

plasmac.torch—on bit out
turn torch on, connect to your torch on input

plasmac.torch—time float out
torch on time of current job

plasmac.voidlock—is—locked bit out
voidlock is locked indicator [mode 0 & mode 1]

plasmac.x—offset—counts s32 out
x offset for consumable change, connect to axis.x.eoffset—counts

plasmac.xy—offset—enable bit out
enable x and y offsets, connect to axis.<x & y>.eoffset—enable

plasmac.y—offset—counts s32 out
y offset for consumable change, connect to axis.y.eoffset—counts

plasmac.z-height float out
current z axis height relative to the probed zero height

plasmac.z—offset—counts s32 out
z offset for height control, connect to axis.z.eoffset—counts

plasmac.z—offset—enable bit out
enable z offsets, connect to axis.z.eoffset—enable

plasmac.z—relative float out
distance of Z from last probed height

plasmac.low—cut—volts s32 in
low cut voltage threshold while thc active

plasmac.target—samples s32 in (default: 6)
number of samples for setting target_volts

plasmac.target—volts float out
target voltage for thc, set by arc voltage at cut height

AUTHOR
Phillip A Carter & Gregory D Carl

524 01/04/2026 LinuxCNC

PLASMAC(9) LinuxCNC Documentation PLASMAC(9)

LICENSE
GPLV?2 or greater

LinuxCNC 01/04/2026 525

PWMGEN (9) LinuxCNC Documentation PWMGEN(9)

NAME
pwmgen — software PWM/PDM generation

SYNOPSIS
loadrt pwmgen output_type=rypeO[,typel...]

DESCRIPTION
pwmgen is used to generate PWM (pulse width modulation) or PDM (pulse density modulation) signals.
The maximum PWM frequency and the resolution is quite limited compared to hardware—based
approaches, but in many cases software PWM can be very useful. If better performance is needed, a
hardware PWM generator is a better choice.

pwmgen supports a maximum of eight channels. The number of channels actually loaded depends on the
number of fype values given. The value of each type determines the outputs for that channel.

type O: single output
A single output pin, pwm, whose duty cycle is determined by the input value for positive inputs, and
which is off (or at min—dc) for negative inputs. Suitable for single ended circuits.

type 1: pwm/direction
Two output pins, pwm and dir. The duty cycle on pwm varies as a function of the input value. dir is
low for positive inputs and high for negative inputs.

type 2: up/down
Two output pins, up and down. For positive inputs, the PWM/PDM waveform appears on up, while
down is low. For negative inputs, the waveform appears on down, while up is low. Suitable for
driving the two sides of an H-bridge to generate a bipolar output.

FUNCTIONS
pwmgen.make—pulses (no floating—point)
Generates the actual PWM waveforms, using information computed by update. Must be called as
frequently as possible, to maximize the attainable PWM frequency and resolution, and minimize jitter.
Operates on all channels at once.

pwmgen.update (uses floating point)
Accepts an input value, performs scaling and limit checks, and converts it into a form usable by
make—pulses for PWM/PDM generation. Can (and should) be called less frequently than
make—pulses. Operates on all channels at once.

PINS
pwmgen.N.enable bit in
Enables PWM generator N — when false, all pwmgen.N output pins are low.

pwmgen.N.value float in
Commanded value. When value = 0.0, duty cycle is 0%, and when value = *+scale, duty cycle is +
100% (subject to min—dc and max—dc limitations).

pwmgen.N*.pwm bit out (output types O and 1 only)
PWM/PDM waveform.

pwmgen.N.dir bit out (output type 1 only)
Direction output: low for forward, high for reverse.

pwmgen.N.up bit out (output type 2 only)
PWM/PDM waveform for positive input values, low for negative inputs.

pwmgen.N.down bit out (output type 2 only)
PWM/PDM waveform for negative input values, low for positive inputs.

pwmgen.N.curr—dc float out
The current duty cycle, after all scaling and limits have been applied. Range is from —1.0 to +1.0.

pwmgen.N.max—dc float in/out

526 01/04/2026 LinuxCNC

PWMGEN (9) LinuxCNC Documentation PWMGEN(9)

The maximum duty cycle. A value of 1.0 corresponds to 100%. This can be useful when using
transistor drivers with bootstrapped power supplies, since the supply requires some low time to
recharge.

pwmgen.N.min—dc float in/out
The minimum duty cycle. A value of 1.0 corresponds to 100%. Note that when the pwm generator is
disabled, the outputs are constantly low, regardless of the setting of min—dc.

pwmgen.N.scale float in/out, pwmgen.N.offset float in/out
These parameters provide a scale and offset from the value pin to the actual duty cycle. The duty cycle
is calculated according to dc = (value/scale) + offset, with 1.0 meaning 100%.

pwmgen.N.pwm—freq float in/out
PWM frequency in Hz. The upper limit is half of the frequency at which make—pulses is invoked, and
values above that limit will be changed to the limit. If dither—pwm is false, the value will be changed
to the nearest integer submultiple of the make—pulses frequency. A value of zero produces Pulse
Density Modulation instead of Pulse Width Modulation.

pwmgen.N.dither—pwm bit in/out
Because software—generated PWM uses a fairly slow timebase (several to many microseconds), it has
limited resolution. For example, if make—pulses is called at a 20 kHz rate, and pwm-freq is 2 kHz,
there are only 10 possible duty cycles. If dither—pwm is false, the commanded duty cycle will be
rounded to the nearest of those values. Assuming value remains constant, the same output will repeat
every PWM cycle. If dither—pwm is true, the output duty cycle will be dithered between the two
closest values, so that the long—term average is closer to the desired level. dither—pwm has no effect
if pwm-—freq is zero (PDM mode), since PDM is an inherently dithered process.

LinuxCNC 01/04/2026 527

RASTER(9)

NAME

LinuxCNC Documentation RASTER(9)

raster — Outputs laser power based upon pre programmed rastering data

SYNOPSIS

loadrt raster [count=N|names=name][,name2...]]

DESCRIPTION
The raster component converts a single raster program line to laser output. The position pin is slaved to the
axis that the raster line maps too. The raster program must be programmed for each raster line that is to be
executed. The port must be programmed prior to a raster line being executed.

A python component RasterProgrammer (lib/python/RasterProgrammer.py) is provided to ease
programming of the raster component. An example configs/sim/axis/laser shows how these pieces could be
integrated for a functional laser engraver config.

A program line format is as follows:

{program_offset};{bits_per_pixel};{pixels_per_unit};{number_of_ pixels};{pixel_data ...}

FUNCTIONS

program_offset: a float. It indicates the start position of the raster line relative to the current axis
position. A negative program_offset indicates that the raster sweeps from positive to negative. A
zero or positive program_offset* indicates that the raster sweeps from negative to positive direction.

bits_per_pixel: an integer. It indicates the precision of a pixel value and consequently the number
of bytes consumed per pixel value. A bits per pixel of 4 takes 1 character (0—F) and scales out from
from 0.0 to 1.0 (0 being 0 and E being 1.0). F corresponds to off or —1.0. A bits per pixel of 8 takes
2 characters per pixel, 12 takes 3 characters per pixel etc...

pixels_per_unit: a float that represents the size of a pixel in machine units. 1 would correspond to 1
pixel per machine unit, 100 would correspond to 100 pixels per machine unit.

number_of_pixels: an integer that indicates the length of the raster line in pixels. The length of the
rasterline in machine units would be number_of_pixels / pixels_per_unit

pixel_data: a series of hexadeicmal digits ([0-9][a—f][A-F]) the represents the pixel data.
bits_per_pixel determines the resolution of a pixel and how many hexadecimal digits per pixel.
pixel data characters have no delimiter between each pixel.

4 bpp is one character per pixel

8 bpp is 2 characters per pixel

12 bpp is 3

etc...

raster.N (requires a floating—point thread)

PINS

raster.N.position float in
input coordinate for raster

raster.N.reset bit in
resets the component

raster.N.program port in
pixel data used by the raster

raster.N.run bit in
starts the raster

528

01/04/2026 LinuxCNC

RASTER(9) LinuxCNC Documentation RASTER(9)

raster.N.enabled bit out (default: 0)
When a valid raster program is running.

raster.N.output float out (default: —7)
current output level command

raster.N.fault bit out (default: 0)
If error has occurred

raster.N.fault—code s32 out (default: 0)
Code of fault

raster.N.state s32 out (default: 0)
current state

raster.N.program—position float out (default: 0.0)
base position of program at run start

raster.N.program—offset float out (default: 0.0)
offset to start of pixel data

raster.N.bpp s32 out (default: 0)
bits per pixel.

raster.N.ppu float out (default: 0.0)
pixels per unit

raster.N.count s32 out (default: 0)
pixel count

raster.N.bitmap—position float out (default: 0.0)
calculated position in bitmap

raster.N.current—pixel-value float out (default: —1.0)
current loaded pixel value

raster.N.previous—pixel-value float out (default: —1.0)
previously loaded pixel value

raster.N.current—pixel-index s32 out (default: —7)
currently loaded pixel index

raster.N.fraction float out (default: 0.0)

LICENSE
GPL

LinuxCNC 01/04/2026 529

RESET(9)

NAME

reset — Resets an 10 signal

SYNOPSIS

loadrt reset [count=N|names=namel[,name2...]]

DESCRIPTION

Component to reset 10 signals.

LinuxCNC Documentation

RESET(9)

This function works like a conditional sets — it is fed with a float and/or bit/s32/u32 pins that are I/O, but
are save the value only if the trigger pin is set. The values assigned to those signals are passed via the input

pins reset_float/s32/u32/bit.

FUNCTIONS

PINS

reset.N (requires a floating—point thread)
Update the output value

reset.N.trigger bit in
Trigger input

reset.N.out—u32 u32 io (default: 0)
Unsigned 32 bit integer output value

reset.N.reset—u32 u32 in (default: 0)
Unsigned 32 bit integer reset value

reset.N.out—s32 s32 io (default: 0)
Signed 32 bit integer output value

reset.N.reset—s32 s32 in (default: 0)
Signed 32 bit integer reset value

reset.N.out—float float io (default: 0.0)
Float output value

reset.N.reset—float float in (default: 0.0)
Float reset value

reset.N.out-bit bit io (default: false)
Bit integer output value

reset.N.reset—bit bit in (default: false)
Bit reset value

reset.N.retriggerable bit in (default: true)
Allow additional edges to reset

reset.N.rising bit in (default: true)
Trigger on rising edge

reset.N.falling bit in (default: false)
Trigger on falling edge

AUTHOR

Alexander RA ssler

LICENSE

530

GPL

01/04/2026

LinuxCNC

ROSEKINS (9) LinuxCNC Documentation ROSEKINS(9)

NAME

rosekins — Kinematics for a rose engine

SYNOPSIS

loadrt rosekins

KINEMATICS
joint_O linear, transverse (perpendicular to spindle) joint_1 linear, longitudinal (parallel to spindle identity
to z) joint_2 rotary, spindle (workholding, not tool holding, e.g. not a highspeed spindle)

PINS
rosekins.revolutions float out
Count of crossings of the negative X axis. Clockwise crossings increment revolutions by 1,
counterclockwise crossings decrement by 1.

rosekins.theta_degrees float out
Principal value for arctan(Y/X)

rosekins.bigtheta_degrees float out
Accumulated angle (theta + revolutions * 360)

NOTES
Theta is the principal value of arctan(Y/X). Joint_2 angle values are not limited to principal values of
arctan(Y/X) but accumulate continuously as the spindle is rotated. HAL pins are provided for the principal
value and a count of the number of revolutions.

The transverse motion is exactly perpendicular to the spindle. In a traditional rose engine, the transverse

motion is created by rocking the headstock about a pivot. A typical pivot length combined with the limited
amount of X travel in a real machine make the perpendicular approximation a reasonable model.

LinuxCNC 01/04/2026 531

SAFETY_LATCH (9)

NAME

safety_latch — latch for error signals

SYNOPSIS

loadrt safety_latch [count=N|names=namel[,name2...]]

DESCRIPTION

HAL component that implements a safety latch for error signals with customizable harm, healing and

latching features.

When the component is not enabled the error input value is forwarded to output without further

modififactions.

LinuxCNC Documentation

SAFETY LATCH(9)

If error—in is true the error count is increased by harm. If error—in is false the error count is decreased by
heal. When the error count exceeds the threscold value error—out is set to true. If latching is false the

error—out pin will only return to false when reset is set to true.

The inputs pin min and max clamp the error count value to a specified range.

FUNCTIONS

PINS

safety—latch.N

safety—latch.N.error—in bit in (default: false)
Error Input

safety—latch.N.heal s32 in (default: 7)
Heal when ok per tick

safety—latch.N.harm s32 in (default: 7)
Harm when error per tick

safety—latch.N.latching bit in (default: true)
If a reset is necessary to heal an error

safety—latch.N.reset bit in (default: false)
Reset input

safety—latch.N.threshold s32 in (default: /00)
Error output threshold

safety—latch.N.min s32 in (default: 0)
Minimum count

safety—latch.N.max s32 in (default: 1000)
Maximum count

safety—latch.N.enable bit in (default: true)
If not enabled the error count is passed to the output

safety—latch.N.count s32 out (default: 0)
Current count

safety—latch.N.error—out bit out (default: false)
Error output

safety—latch.N.ok—out bit out (default: rrue)
Ok output

AUTHOR

Alexander RA ssler

LICENSE

532

GPL

01/04/2026

LinuxCNC

SAMPLE_HOLD(9) LinuxCNC Documentation

NAME
sample_hold — Sample and Hold

SYNOPSIS

loadrt sample_hold [count=N|names=namel[,name?2...]]

FUNCTIONS
sample-hold.N

PINS
sample—hold.N.in s32 in

sample—hold.N.hold bit in
sample—hold.N.out s32 out

SEE ALSO
tristate(9)

AUTHOR
Stephen Wille Padnos

LICENSE
GPL

LinuxCNC 01/04/2026

SAMPLE_HOLD(9)

533

SAMPLER(9) LinuxCNC Documentation SAMPLER(9)

NAME

sampler — sample data from HAL in real time

SYNOPSIS
loadrt sampler depth=depthi[,depth2...] cfg=stringl|,string2...]

DESCRIPTION
The HAL component sampler and the program halsampler(1) are used together to sample HAL data in
real time and store it in a file. Of these, sampler performs in realtime, exporting HAL pins and creates a
FIFO (first—in, first out queue) in shared memory. It then samples data from the HAL and sends these to the
FIFO. The application halsampler copies data from the FIFO to stdout, where it can be redirected to a file
or piped to some other program.

OPTIONS
depth=depthl[,depth?...]
sets the depth of the realtime‘a‘non—realtime FIFO that sampler creates to buffer the realtime data.
Multiple values of depth (separated by commas) can be specified if you need more than one FIFO (for
example if you want to sample data from two different realtime threads).

cfg=stringl|,string2...]
defines the set of HAL pins that sampler exports and later samples data from. One string must be
supplied for each FIFO, separated by commas. sampler exports one pin for each character in string.
Legal characters are:

* F, f (float pin)

* B, b (bit pin)

e S,s (s32 pin)

e U, u (u32 pin)
FUNCTIONS

sampler.N
One function is created per FIFO, numbered from zero.

PINS
sampler.N.pin.M input
Pin for the data that will wind up in column M of FIFO N (and in column M of the output file). The pin
type depends on the config string.

sampler.N.curr—depth s32 output
Current number of samples in the FIFO. When this reaches depth new data will begin overwriting old
data, and some samples will be lost.

sampler.N.full bit output
TRUE when the FIFO N is full, FALSE when there is room for another sample.

sampler.N.enable bit input
When TRUE, samples are captured and placed in FIFO N, when FALSE, no samples are acquired.
Defaults to TRUE.

PARAMETERS
sampler.N.overruns s32 read/write
The number of times that sampler has tried to write data to the HAL pins but found no room in the
FIFO. It increments whenever full is true, and can be reset by the setp command.

sampler.N.sample—num s32 read/write
A number that identifies the sample. It is automatically incremented for each sample, and can be reset
using the setp command. The sample number can optionally be printed in the first column of the
output from halsampler, using the —# option (see man 1 halsampler).

534 01/04/2026 LinuxCNC

SAMPLER(9) LinuxCNC Documentation SAMPLER(9)

SEE ALSO

halsampler(1), streamer(9), halstreamer(1)

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2006 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 01/04/2026 535

SCALE(9) LinuxCNC Documentation SCALE(9)

NAME
scale — LinuxCNC HAL component that applies a scale and offset to its input

SYNOPSIS

loadrt scale [count=N|names=namel[,name2...]]

FUNCTIONS

scale.N (requires a floating—point thread)

PINS

scale.N.in float in
scale.N.gain float in
scale.N.offset float in

scale.N.out float out
out = in * gain + offset

AUTHOR
Jeff Epler

LICENSE
GPL

536 01/04/2026 LinuxCNC

SCALED_S32_SUMS(9) LinuxCNC Documentation SCALED_S32_SUMS(9)

NAME
scaled_s32_sums — Sum of four inputs (each with a scale)
SYNOPSIS
loadrt scaled_s32_sums [count=N|names=name[,name2...]]
FUNCTIONS
scaled—s32—sums.N (requires a floating—point thread)
PINS
scaled—s32—-sums.N.in0 s32 in
scaled—s32-sums.N.inl s32 in
scaled—s32—-sums.N.in2 s32 in
scaled—s32—-sums.N.in3 s32 in
scaled—s32-sums.N.scale(float in (default: 1.0)
scaled—s32-sums.N.scalel float in (default: 1.0)
scaled—s32-sums.N.scale2 float in (default: 1.0)
scaled—s32-sums.N.scale3 float in (default: 1.0)
scaled—s32—-sums.N.out-s s32 out
scaled—s32-sums.N.out—f float out
out—s = out—f = (in0 * scale0) + (inl * scalel) + (in2 * scale2) + (in3 * scale3)
SEE ALSO
sum2(9), weighted_sum(9)
AUTHOR
Chris S Morley
LICENSE
GPL

LinuxCNC 01/04/2026

537

SELECTS8(9) LinuxCNC Documentation SELECTS8(9)

NAME

select8 — 8—bit binary match detector

SYNOPSIS

loadrt select8 [count=N|names=namel[,name2...]]

FUNCTIONS
select8.V

PINS
select8.N.enable bit in (default: TRUE)
Set enable to FALSE to cause all outputs to be set FALSE.

select8.N.sel s32 in
The number of the output to set TRUE. All other outputs well be set FALSE.

select8.N.outM bit out (M=0..7)
Output bits. If enable is set and the sel input is between 0 and 7, then the corresponding output bit will
be set true.

SEE ALSO
demux(9)

AUTHOR
Stephen Wille Padnos

LICENSE
GPL

538 01/04/2026 LinuxCNC

SERPORT(9) LinuxCNC Documentation SERPORT(9)

NAME
serport — Hardware driver for the digital I/O bits of the 8250 and 16550 serial port.

SYNOPSIS
loadrt serport io=addr|,addr...]

The pin numbers refer to the 9—pin serial pinout. Keep in mind that these ports generally use rs232
voltages, not 0/5V signals.

Specify the I/O address of the serial ports using the module parameter io=addr[,addr...]. These ports must
not be in use by the kernel. To free up the I/O ports after bootup, install setserial and execute a command
like:

sudo setserial /dev/ttyS0O uart none

but it is best to ensure that the serial port is never used or configured by the Linux kernel by setting a kernel
commandline parameter or not loading the serial kernel module if it is a modularized driver.

FUNCTIONS
serport.N.read
serport.N.write

PINS

serport.N.pin—1-in bit out
Also called DCD (data carrier detect); pin 8 on the 25—pin serial pinout

serport.N.pin—6—in bit out
Also called DSR (data set ready); pin 6 on the 25—pin serial pinout

serport.N.pin—8—in bit out
Also called CTS (clear to send); pin 5 on the 25—pin serial pinout

serport.N.pin—9—in bit out
Also called RI (ring indicator); pin 22 on the 25—pin serial pinout

serport.N.pin—1-in—not bit out
Inverted version of pin—1—in

serport.N.pin—6—in—not bit out
Inverted version of pin—6—in

serport.N.pin—8—in—not bit out
Inverted version of pin—8—in

serport.N.pin—9—in—not bit out
Inverted version of pin—9—in

serport.N.pin—3—out bit in
Also called TX (transmit data); pin 2 on the 25—pin serial pinout

serport.N.pin—4—out bit in
Also called DTR (data terminal ready); pin 20 on the 25—pin serial pinout

serport.N.pin—7-out bit in
Also called RTS (request to send); pin 4 on the 25—pin serial pinout

PARAMETERS

serport.N.pin—3—out—invert bit rw
serport.N.pin—4—out—invert bit rw
serport.N.pin—7—out—invert bit rw

serport.N.ioaddr u32 r

LinuxCNC 01/04/2026 539

SERPORT(9) LinuxCNC Documentation SERPORT(9)

LICENSE
GPL

540 01/04/2026 LinuxCNC

SETSSERIAL(9) LinuxCNC Documentation SETSSERIAL(9)

NAME
setsserial — a utility for setting Smart Serial NVRAM parameters.

SYNOPSIS

loadrt setsserial cmd="'command parameter/device valuelfilename"

NOTE: This rather clunky utility is no longer needed except for flashing new smart—serial remote
firmware. Smart—serial remote parameters can now be set in the HAL file in the normal way.

FUNCTIONS

None

PINS

None

USAGE

loadrt setsserial cmd="set hm2_8i20.001f.nvmaxcurrent 750"
Commands available are set and flash.
This utility should be used under halcmd, without LinuxCNC running or any realtime threads running.

A typical command sequence would be:

halrun

loadrt hostmot2 use_serial_numbers=1 loadrt hm2_pci config="firmware=hm2/5123/svss8_8.bit"
show param

loadrt setsserial cmd="set hm2_8i20.001f.nvmaxcurrent 750"

exit

This example uses the option to have the HAL pins and parameters labelled by the serial number of the
remote. This is not necessary but can reduce the scope for confusion. (The serial number is normally on a
sticker on the device.)

The next line loads the hm2_pci driver in the normal way. The hm2_7i43 driver should work equally well,
as should any future 7i80 driver. If the card has already been strted up and a firmware has been loaded, then
the config string may be omitted.

"show param" is optional, but provides a handy list of all the devices and parameters. It also shows the
current values of the parameters which can be useful for determining scaling. u32 pin values are always
shown in hex, but new values can be entered in decimal or hex. Use the Ox123ABC format to enter a hex
value.

The next line invokes setsserial. This is run in a slightly strange way in order to have kernel-level access to
a live Hostmot?2 config. It is basically a HAL module that always fails to load. This may lead to error
messages being printed to the halcmd: prompt. These can often be ignored. All the real feedback is via the
dmesg command. It is suggested to have a second terminal window open to run dmesg after each command.

On exiting there will typically be a further error message related to the driver failing to unload setsserial.
This can be ignored.

The parameter changes will not show up until the drivers are reloaded.
Flashing Firmware To flash new firmware to an FPGA card such as the 5i25 or 5i20 the "mesaflash"
utility should be used. Setsserial is only useful for changing/updating the firmware on smart—serial remote

such as the 8i20. The firmware should be placed somewhere in the /lib/firmware/hm?2 tree, where the Linux
firmware loading macros can find it.

LinuxCNC 01/04/2026 541

SETSSERIAL(9) LinuxCNC Documentation SETSSERIAL(9)

The flashing routine operates in a realtime thread, and can only send prompts to the user through the kernel
log (dmesg). It is most convenient to open two terminal windows, one for command entry and one to
monitor progress.

In the first terminal enter

tail —f /var/log/kern.log

This terminal will now display status information.

The second window will be used to enter the commands. It is important that LinuxCNC and/or HAL are not
already loaded when the process is started. To flash new firmware it is necessary to move a jumper on the
smart—serial remote drive and to switch smart—serial communication to a slower baudrate.

A typical command sequence is then

halrun

loadrt hostmot2 sserial_baudrate=115200 loadrt hm2_pci config="firmware=hm2/5i23/svss8_8.bit"

loadrt setsserial cmd="flash hm2_5i23.0.8120.0.1 hm2/8i20/8i20T.BIN"

exit

It is not necessary (or useful) to specify a config string in a system using the 5i25 or 6i25 cards.

Note that it is necessary to exit halrun and unload the realtime environment before flashing the next card
(exit)

The correct sserial channel name to use can be seen in the dmesg output in the feedback terminal after the
loadrt hm2_pci step of the sequence.

LICENSE

542

GPL

01/04/2026 LinuxCNC

SIGGEN(9) LinuxCNC Documentation SIGGEN (9)

NAME

siggen — signal generator

SYNOPSIS

loadrt siggen[num_chan=num | names=nameI[,name2...]]

DESCRIPTION
siggen is a signal generator that can be used for testing and other applications that need simple waveforms.
It produces sine, cosine, triangle, sawtooth, and square waves of variable frequency, amplitude, and offset,
which can be used as inputs to other HAL components.

siggen supports a maximum of sixteen channels. The number of channels actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names
separated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is one.

NAMING

The names for pins, parameters, and functions are prefixed as:
siggen.N. for N=0, 1, ..., num—1 when using num_chan=num
name). for nameN = namel, name2, ... when using names=namel,name2,...

The siggen.N. format is shown in the following descriptions.

FUNCTIONS
siggen.N.update (uses floating—point)
Updates output pins for signal generator N. Each time it is called it calculates a new sample. It should
be called many times faster than the desired signal frequency, to avoid distortion and aliasing.

PINS
siggen.N.frequency float in
The output frequency for signal generator &, in Hertz. The default value is 1.0 Hertz.

siggen.N.amplitude float in
The output amplitude for signal generator N. If offset is zero, the outputs will swing from —amplitude
to +amplitude. The default value is 1.00.

siggen.N.offset float in
The output offset for signal generator N. This value is added directly to the output signal. The default
value is zero.

siggen.N.reset bit in
Resets output pins to predetermined states:

sine: 0

sawtooth: 0

square: —1 * amplitude
cosine: —1 * amplitude

triangle: —1 * amplitude

siggen.N.clock bit out
The clock output. Bit type clock signal output at the commanded frequency.

LinuxCNC 01/04/2026 543

SIGGEN(9) LinuxCNC Documentation SIGGEN (9)

siggen.N.square float out
The square wave output. Positive while triangle and cosine are ramping upwards, and while sine is
negative.

siggen.N.sine float out
The sine output. Lags cosine by 90 degrees.

siggen.N.cosine float out
The cosine output. Leads sine by 90 degrees.

siggen.N.triangle float out
The triangle wave output. Ramps up while square is positive, and down while square is negative.
Reaches its positive and negative peaks at the same time as cosine.

siggen.N.sawtooth float out
The sawtooth output. Ramps upwards to its positive peak, then instantly drops to its negative peak and
starts ramping again. The drop occurs when triangle and cosine are at their positive peaks, and
coincides with the falling edge of square.

PARAMETERS

544

None

01/04/2026 LinuxCNC

SIM_AXIS_HARDWARE(9) LinuxCNC Documentation SIM_AXIS_HARDWARE(9)

NAME

sim_axis_hardware — A component to simulate home and limit switches
SYNOPSIS

loadrt sim_axis_hardware [count=N|names=namel[,name?2...]]
DESCRIPTION

This component creates simulated home and limit switches based on the current position. .br It currently
can supply simulation for X, tandem X, Y, tandem Y, Z, U, V, and A axes.

FUNCTIONS

sim—axis—hardware.N.update (requires a floating—point thread)

PINS
sim—axis—hardware.N.Xcurrent—pos float in
The current position on the axis — eg connect to joint.0.motor—pos—fb

sim—axis—hardware.N.X2current—pos float in
sim—axis—hardware.N.Y current—pos float in
sim—axis—hardware.N.Y2current—pos float in
sim—axis—hardware.N.Zcurrent—pos float in
sim—axis—hardware.N.Acurrent—pos float in
sim—axis—hardware.N.Ucurrent—pos float in
sim—axis—hardware.N.Vcurrent—pos float in

sim-axis—hardware.N.Xhomesw—pos float in (default: /)
The position of the home switch

sim—-axis—hardware.N.X2homesw—pos float in (default: 7)
sim-axis—hardware.N.Yhomesw—pos float in (default: /)
sim—axis—hardware.N.Y2homesw—pos float in (default: 7)
sim—-axis—hardware.N.Zhomesw—pos float in (default: 7)
sim—axis—hardware.N.Ahomesw—pos float in (default: /)
sim-axis—hardware.N.Uhomesw—pos float in (default: /)
sim-axis—hardware.N.Vhomesw—pos float in (default: /)

sim—axis—hardware.N. Xmaxsw—upper float in
The upper range of the maximum limit switch, above this is false.

sim—axis—hardware.N.X2maxsw—upper float in
sim-axis—hardware.N.Ymaxsw—upper float in
sim—axis—hardware.N.Y2maxsw—upper float in
sim—-axis—hardware.N.Zmaxsw—upper float in
sim—axis—hardware.N.Amaxsw—upper float in
sim—axis—hardware.N.Umaxsw—upper float in
sim—axis—hardware.N.Vmaxsw—upper float in

sim—axis—hardware.N. Xmaxsw—lower float in
The lower range of the maximum limit switch, below this is false.

sim—axis—hardware.N.X2maxsw—lower float in
sim—axis—hardware.N.Ymaxsw—lower float in

sim—axis—hardware.N.Y2maxsw—lower float in

LinuxCNC 01/04/2026 545

SIM_AXIS_HARDWARE(9) LinuxCNC Documentation SIM_AXIS_HARDWARE(9)

546

sim—-axis—hardware.N.Zmaxsw-lower float in
sim—-axis—hardware.N.Amaxsw-lower float in
sim—-axis—hardware.N.Umaxsw-lower float in
sim—-axis—hardware.N.Vmaxsw-lower float in

sim—axis—hardware.N. Xminsw—upper float in
The upper range of the minimum limit switch, above this is false.

sim—axis—hardware.N. X2minsw—upper float in
sim-axis—hardware.N.Yminsw—upper float in
sim—axis—hardware.N.Y2minsw—upper float in
sim-axis—hardware.N.Zminsw—upper float in
sim—axis—hardware.N.Aminsw—upper float in
sim—axis—hardware.N.Uminsw—upper float in
sim—axis—hardware.N.Vminsw—upper float in

sim—axis—hardware.N. Xminsw—lower float in
The lower range of the minimum limit switch, below this is false.

sim—-axis—hardware.N.X2minsw—lower float in
sim—-axis—hardware.N.Yminsw-lower float in
sim—-axis—hardware.N.Y2minsw—lower float in
sim—-axis—hardware.N.Zminsw—lower float in
sim—-axis—hardware.N.Aminsw-lower float in
sim—-axis—hardware.N.Uminsw-lower float in
sim—-axis—hardware.N.Vminsw-lower float in

sim—axis—hardware.N.Xhomesw-hyst float in (default: .025)
range that home switch will be true +— half this to the home position

sim—axis—hardware.N.X2homesw-hyst float in (default: .025)
sim—axis—hardware.N.Yhomesw-hyst float in (default: .025)
sim—axis—hardware.N.Y2homesw—hyst float in (default: .025)
sim—-axis—hardware.N.Zhomesw-hyst float in (default: .025)
sim—axis—hardware.N.Ahomesw-hyst float in (default: .025)
sim—axis—hardware.N.Uhomesw-hyst float in (default: .025)
sim—axis—hardware.N.Vhomesw-hyst float in (default: .025)

sim—axis—hardware.N.Xhoming bit in
True is homing in progress

sim—axis—hardware.N.X2homing bit in
sim-axis—hardware.N.Yhoming bit in
sim—axis—hardware.N.Y2homing bit in
sim—axis—hardware.N.Zhoming bit in
sim—-axis—hardware.N.Ahoming bit in
sim-axis—hardware.N.Uhoming bit in

sim-axis—hardware.N.Vhoming bit in

01/04/2026 LinuxCNC

SIM_AXIS_HARDWARE(9) LinuxCNC Documentation SIM_AXIS_HARDWARE(9)

sim—axis—hardware.N.Xhomesw—out bit out
Home switch for the X axis

sim—axis—hardware.N.X2homesw—out bit out
sim—axis—hardware.N.Yhomesw—out bit out
sim-axis—hardware.N.Y2homesw—out bit out
sim—axis—hardware.N.Zhomesw—out bit out
sim—axis—hardware.N.Ahomesw—out bit out
sim—axis—hardware.N.Uhomesw—out bit out
sim—axis—hardware.N.Vhomesw—out bit out
sim—axis—hardware.N.homesw-all bit out

sim—axis—hardware.N. Xmaxsw—out bit out
Max limit switch

sim—axis—hardware.N.Xminsw—out bit out
min limit switch

sim—axis—hardware.N.Xbothsw—out bit out
True for both max and min limit switch

sim-axis—hardware.N.X2maxsw—out bit out
sim-axis—hardware.N.X2minsw-out bit out
sim—-axis—hardware.N.X2bothsw—out bit out
sim—axis—hardware.N.Ymaxsw—out bit out
sim-axis—hardware.N.Yminsw—out bit out
sim—axis—hardware.N.Ybothsw—out bit out
sim-axis—hardware.N.Y2maxsw—out bit out
sim-axis—hardware.N.Y2minsw-out bit out
sim—-axis—hardware.N.Y2bothsw—out bit out
sim-axis—hardware.N.Zmaxsw—out bit out
sim—-axis—hardware.N.Zminsw—out bit out
sim-axis—hardware.N.Zbothsw-out bit out
sim—-axis—hardware.N.Amaxsw—out bit out
sim—axis—hardware.N.Aminsw—out bit out
sim—-axis—hardware.N.Abothsw—out bit out
sim—axis—hardware.N.Umaxsw—out bit out
sim-axis—hardware.N.Uminsw—out bit out
sim—axis—hardware.N.Ubothsw—out bit out
sim-axis—hardware.N.Vmaxsw—out bit out
sim-axis—hardware.N.Vminsw—out bit out
sim—-axis—hardware.N.Vbothsw—out bit out
sim—axis—hardware.N limitsw—all bit out

sim—axis—hardware.N limitsw—homesw-all bit out
True for all limits and all home.

LinuxCNC 01/04/2026 547

SIM_AXIS_HARDWARE(9)

sim—-axis—hardware.N. Xmaxsw—homesw-out bit out
sim—-axis—hardware.N. Xminsw—homesw-out bit out
sim—axis—hardware.N.Xbothsw—homesw—out bit out
sim—-axis—hardware.N.X2maxsw—homesw—out bit out
sim-axis—hardware.N.X2minsw—homesw—-out bit out
sim—axis—hardware.N.X2bothsw—homesw—out bit out
sim—-axis—hardware.N.Ymaxsw—homesw-out bit out
sim—axis—hardware.N.Yminsw—homesw-out bit out
sim—axis—hardware.N.Ybothsw—homesw—out bit out
sim—axis—hardware.N.Y2maxsw—homesw—out bit out
sim—axis—hardware.N.Y2minsw—homesw—-out bit out
sim-axis—hardware.N.Y2bothsw—homesw—out bit out
sim—-axis—hardware.N.Zmaxsw—homesw—out bit out
sim—axis—hardware.N.Zminsw—homesw—out bit out
sim—axis—hardware.N.Zbothsw—homesw—out bit out
sim—-axis—hardware.N.Amaxsw—homesw-out bit out
sim—-axis—hardware.N.Aminsw—homesw-out bit out
sim—axis—hardware.N.Abothsw—homesw—out bit out
sim—-axis—hardware.N.Umaxsw—homesw-out bit out
sim—axis—hardware.N.Uminsw—homesw-out bit out
sim-axis—hardware.N.Ubothsw—homesw—out bit out
sim—axis—hardware.N.Vmaxsw—homesw-out bit out
sim—axis—hardware.N.Vminsw—homesw-out bit out
sim—axis—hardware.N.Vbothsw—homesw—out bit out

sim—axis—hardware.N.limit—offset float in (default: .01)

LinuxCNC Documentation

SIM_AXIS_HARDWARE(9)

how much the limit switches are offset from inputted position. added to max, subtracted from min

AUTHOR

Chris S Morley

LICENSE

548

GPL

01/04/2026

LinuxCNC

SIM_ENCODER(9) LinuxCNC Documentation SIM_ENCODER(9)

NAME

sim_encoder — simulated quadrature encoder
SYNOPSIS

loadrt sim_encoder [num_chan=num | names=name[,name2...]]
DESCRIPTION

sim_encoder can generate quadrature signals as if from an encoder. It also generates an index pulse once
per revolution. It is mostly used for testing and simulation, to replace hardware that may not be available. It
has a limited maximum frequency, as do all software based pulse generators.

sim_encoder supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan= argument when the module is loaded. Alternatively, specify names= and unique names
separated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is one.

FUNCTIONS
sim—encoder.make—pulses (no floating—point)
Generates the actual quadrature and index pulses. Must be called as frequently as possible, to
maximize the count rate and minimize jitter. Operates on all channels at once.

sim—encoder.update—speed (uses floating—point)
Reads the speed command and other parameters and converts the data into a form that can be used by
make—pulses. Changes take effect only when update—speed runs. Can (and should) be called less
frequently than make—pulses. Operates on all channels at once.

NAMING
The names for pins and parameters are prefixed as: sim—encoder.N. for N=0,1,...,num—1 when using
num_chan=num nameN. for nameN=namel,name2,... when using names=namel,name2,...

The sim—encoder.N. format is shown in the following descriptions.

PINS
sim—encoder.N.phase—A bit out
One of the quadrature outputs.

sim—encoder.N.phase-B bit out
The other quadrature output.

sim—encoder.N.phase-Z bit out
The index pulse.

sim—encoder.N.speed float in
The desired speed of the encoder, in user units per per second. This is divided by scale, and the result
is used as the encoder speed in revolutions per second.

PARAMETERS
sim—encoder.N.ppr u32 rw
The pulses per revolution of the simulated encoder. Note that this is pulses, not counts, per revolution
(ppr). Each pulse or cycle from the encoder results in four counts, because every edge is counted.
Default value is 100 ppr, or 400 counts per revolution.

sim—encoder.N.scale float rw
Scale factor for the speed input. The speed value is divided by scale to get the actual encoder speed in
revolutions per second. For example, if scale is set to 60, then speed is in revolutions per minute
(RPM) instead of revolutions per second. The default value is 1.00.

LinuxCNC 01/04/2026 549

SIM_HOME_SWITCH (9) LinuxCNC Documentation SIM_HOME_SWITCH (9)

NAME

sim_home_switch — Home switch simulator
SYNOPSIS

loadrt sim_home_switch [count=N|names=namel[,name?...]]
DESCRIPTION

After tripping home switch, travel in opposite direction is required (amount set by the hysteresis pin). A pin
(index—enable) is provided for use when [JOINT_n]JHOME_USE_INDEX is specified to reset the I/O pin
joint.N.index—enable.

FUNCTIONS

sim—home—switch.N (requires a floating—point thread)

PINS
sim—home-switch.N.cur—pos float in
Current position (typically: joint.n.motor—pos—fb)
sim—home-switch.N.home—pos float in (default: 7)
Home switch position

sim—home-switch.N.hysteresis float in (default: 0.7)
Travel required to backoff (hysteresis)

sim—home—switch.N.home—sw bit out
Home switch activated

sim—home-switch.VN.index—enable bit io
typ: connect to joint.N.index—enable

sim—home-switch.VN.index—delay—ms float in (default: 70)
delay in msec to reset index—enable

AUTHOR
Dewey Garrett

LICENSE
GPL

550 01/04/2026 LinuxCNC

SIM_MATRIX_KB(9) LinuxCNC Documentation SIM_MATRIX_KB(9)

NAME

sim_matrix_kb — convert HAL pin inputs to keycodes

SYNOPSIS

loadrt sim_matrix_kb [count=N|names=namel[,name2...]]

FUNCTIONS

sim—matrix—kb.N (requires a floating—point thread)

PINS
sim—matrix—kb.N.out u32 out
pin that outputs the Keycode

sim-matrix—kb.N.button.c00.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c01.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c02.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c03.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c04.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c05.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c06.rMM bit in (MM=00..07)
array of inputs

sim-matrix—kb.N.button.c07.rMM bit in (MM=00..07)
array of inputs

AUTHOR
Chris S Morley

LICENSE
GPL

LinuxCNC 01/04/2026 551

SIM_PARPORT (9) LinuxCNC Documentation SIM_PARPORT (9)

NAME
sim_parport — A component to simulate the pins of the hal_parport component
SYNOPSIS
loadrt sim_parport [count=N|names=namel[,name2...]]
DESCRIPTION
Sim_parport is used to replace the pins of a real parport without changing any of the pins names in the rest
of the config.

It has pass—through pins (ending in —fake) that allows connecting to other components.
eg pin—02—in will follow pin—02—in—fake 's logic.

pin_01_out—fake will follow pin_01_out (possibly modified by pin_01_out—invert)

It creates all possible pins of both in and out options of the hal_parport component.

This allows using other hardware 1/O in place of the parport (without having to change the rest of the
config)

or simulating hardware such as limit switches.

it’s primary use is in Stepconf for building simulated configs.

You must use the names= option to have the right pin names.

eg. names=parport.0,parport. 1

The read and write functions pass the logic from pins to fake pins or vice vera

The reset function is a no operation.

FUNCTIONS

sim—parport.N.read
sim—parport.N.write

sim—parport.N.reset

PINS

sim—parport.N.pin—01-out bit in
sim—parport.N.pin—02-out bit in
sim—parport.N.pin—03-out bit in
sim—parport.N.pin—04—out bit in
sim—parport.N.pin—05-out bit in
sim—parport.N.pin—06—out bit in
sim—parport.N.pin—07-out bit in
sim—parport.N.pin—08—out bit in
sim—parport.N.pin—09-out bit in
sim—parport.N.pin—14-out bit in
sim—parport.N.pin—16-out bit in

sim—parport.N.pin—17-out bit in

552 01/04/2026 LinuxCNC

SIM_PARPORT (9) LinuxCNC Documentation SIM_PARPORT (9)

sim—parport.N.pin—01-out—fake bit out
sim—parport.N.pin—02—-out—fake bit out
sim—parport.N.pin—03—-out—fake bit out
sim—parport.N.pin—04—out—fake bit out
sim—parport.N.pin—05-out—fake bit out
sim—parport.N.pin—06—out—fake bit out
sim—parport.N.pin—07-out—fake bit out
sim—parport.N.pin—08—out—fake bit out
sim—parport.N.pin—09-out—fake bit out
sim—parport.N.pin—14—out—fake bit out
sim—parport.N.pin—16—out—fake bit out
sim—parport.N.pin—17-out—fake bit out
sim—parport.N.pin—02—in bit out
sim—parport.N.pin—03—-in bit out
sim—parport.N.pin—04—in bit out
sim—parport.N.pin—05—-in bit out
sim—parport.N.pin—06—in bit out
sim—parport.N.pin—07—-in bit out
sim—parport.N.pin—08—in bit out
sim—parport.N.pin—09—-in bit out
sim—parport.N.pin—10—-in bit out
sim—parport.N.pin—11—-in bit out
sim—parport.N.pin—12—in bit out
sim—parport.N.pin—13—-in bit out
sim—parport.N.pin—15—-in bit out
sim—parport.N.pin—02-in—fake bit in
sim—parport.N.pin—03-in—fake bit in
sim—parport.N.pin—04-in—fake bit in
sim—parport.N.pin—05-in—fake bit in
sim—parport.N.pin—06—in—fake bit in
sim—parport.N.pin—07-in—fake bit in
sim—parport.N.pin—08—in—fake bit in
sim—parport.N.pin—09-in—fake bit in
sim—parport.N.pin—10-in—fake bit in
sim—parport.N.pin—11-in—fake bit in
sim—parport.N.pin—12-in—fake bit in
sim—parport.N.pin—13-in—fake bit in
sim—parport.N.pin—15-in—fake bit in

sim—parport.N.pin—02—-in—not bit out

LinuxCNC 01/04/2026 553

SIM_PARPORT(9)

sim—parport.N.pin—03—-in—not bit out
sim—parport.N.pin—04—in—not bit out
sim—parport.N.pin—05-in—not bit out
sim—parport.N.pin—06—in—not bit out
sim—parport.N.pin—07-in—not bit out
sim—parport.N.pin—08—in—not bit out
sim—parport.N.pin—09-in—not bit out
sim—parport.N.pin—10-in—not bit out
sim—parport.N.pin—11-in—not bit out
sim—parport.N.pin—12—-in—not bit out
sim—parport.N.pin—13—-in—not bit out
sim—parport.N.pin—15-in—not bit out

sim—parport.N.reset—time float in

PARAMETERS

554

sim—parport.N.pin—01-out—invert bit rw
sim—parport.N.pin—02—out—invert bit rw
sim—parport.N.pin—03—out—invert bit rw
sim—parport.N.pin—04—out—invert bit rw
sim—parport.N.pin—05—-out—invert bit rw
sim—parport.N.pin—06—out—invert bit rw
sim—parport.N.pin—07-out—invert bit rw
sim—parport.N.pin—08—out—invert bit rw
sim—parport.N.pin—09-out—invert bit rw
sim—parport.N.pin—14—out—invert bit rw
sim—parport.N.pin—16—out—invert bit rw
sim—parport.N.pin—17-out—invert bit rw
sim—parport.N.pin—01-out-reset bit rw
sim—parport.N.pin—02—out-reset bit rw
sim—parport.N.pin—03—out-reset bit rw
sim—parport.N.pin—04—out-reset bit rw
sim—parport.N.pin—05—-out-reset bit rw
sim—parport.N.pin—06—out—reset bit rw
sim—parport.N.pin—07-out-reset bit rw
sim—parport.N.pin—08—out—reset bit rw
sim—parport.N.pin—09-out-reset bit rw
sim—parport.N.pin—14—out-reset bit rw
sim—parport.N.pin—16—out-reset bit rw

sim—parport.N.pin—17-out-reset bit rw

LinuxCNC Documentation

01/04/2026

SIM_PARPORT (9)

LinuxCNC

SIM_PARPORT (9) LinuxCNC Documentation SIM_PARPORT (9)

AUTHOR
Chris S Morley

LICENSE
GPL

LinuxCNC 01/04/2026 555

SIM_SPINDLE(9) LinuxCNC Documentation
NAME

sim_spindle — Simulated spindle with index pulse
SYNOPSIS

loadrt sim_spindle [count=N|names=namel[,name2...]]
FUNCTIONS

sim—spindle.N (requires a floating—point thread)

PINS
sim—spindle.N.velocity—cmd float in
Commanded speed

sim—spindle.N.position—fb float out
Feedback position, in revolutions

sim—spindle.N.index—enable bit io
Reset position—fb to 0 at the next full rotation

PARAMETERS
sim—spindle.N.scale float rw (default: 71.0)
factor applied to velocity—cmd.

SIM_SPINDLE(9)

The result of velocity—cmd * scale be in revolutions per second. For example, if velocity—cmd is in

revolutions/minute, scale should be set to 1/60 or 0.016666667.

AUTHOR
Michael Haberler

LICENSE
GPL

556 01/04/2026

LinuxCNC

SIMPLE_TP(9) LinuxCNC Documentation SIMPLE_TP(9)

NAME

simple_tp — This component is a single axis simple trajectory planner, same as used for jogging in
LinuxCNC.

SYNOPSIS

Used by PNCconf to allow testing of acceleration and velocity values for an axis.

FUNCTIONS

PINS

simple—tp.N.update (requires a floating—point thread)

simple—tp.N.target—pos float in
target position to plan for.

simple—tp.N.maxvel float in
Maximum velocity

simple—tp.N.maxaccel float in
Acceleration rate

simple—tp.N.enable bit in
If disabled, planner sets velocity to zero immediately.

simple—tp.N.current—pos float out
position commanded at this point in time.

simple—tp.N.current—vel float out
velocity commanded at this moment in time.

simple—tp.N.active bit out
if active is true, the planner is requesting movement.

AUTHOR

Chris S Morley

LICENSE

GPL

LinuxCNC 01/04/2026

557

SPHEREPROBE(9) LinuxCNC Documentation

NAME

sphereprobe — Probe a pretend hemisphere

SYNOPSIS

loadrt sphereprobe [count=N|names=namel[,name?2...]]

FUNCTIONS
sphereprobe. N
update probe—out based on inputs

PINS
sphereprobe.N.px s32 in

sphereprobe.N.py s32 in

sphereprobe.N.pz s32 in
rawcounts position from software encoder

sphereprobe.N.cx s32 in
sphereprobe.N.cy s32 in

sphereprobe.N.cz s32 in
Center of sphere in counts

sphereprobe.N.r s32 in
Radius of hemisphere in counts

sphereprobe.N.probe—out bit out

AUTHOR
Jeff Epler

LICENSE
GPL

558 01/04/2026

SPHEREPROBE(9)

LinuxCNC

SPINDLE(9) LinuxCNC Documentation SPINDLE(9)

NAME

spindle — Control a spindle with different acceleration and deceleration and optional gear change scaling

SYNOPSIS

loadrt spindle [count=N|names=nameI[,name2...]]

DESCRIPTION

This component will control a spindle with adjustable acceleration and deceleration.

NOTE: This component is unfortunately named and creates pins with names very much like those created by the motion ¢
In nearly every case this is not the documentation page that you are looking for.
See http://linuxcnc.org/docs/html/man/man9/motion.9.html instead.

It is designed for use with non—servo spindle drives that have separate fwd/reverse inputs, such as DC
drives and inverters. If a spindle encoder is available it is used to tailor the acceleration and deceleration to
the spindle load. If not the spindle speed is simulated. The component allows for gearboxes with up to 16
gears. Each gear has individual control of speeds, acceleration, driver gain and direction.

FUNCTIONS
spindle.N (requires a floating—point thread)

PINS
spindle.N.select—gear u32 in
Select a gear. Must be in the range 0 4 number of available gears —1. If you use this, do not use the
select.x input pins.

spindle.N.commanded-speed float in
Commanded spindle speed (in RPM)

spindle.N.actual-speed float in
Actual spindle speed from a spindle encoder (in RPS). If you do not have a spindle encoder set the
simulate_encoder parameter to 1.

spindle.N.simulate—encoder bit in
If you do not have an encoder, set this to 1.

spindle.N.enable bit in
If FALSE, the spindle is stopped at the gear’s maximum deceleration.

spindle.N.spindle-Ipf float in
Smooth the spindle-rpm—abs output when at speed, 0 = disabled. Suitable values are probably
between 1 and 20 depending on how stable your spindle is.

spindle.N.spindle—rpm float out
Current spindle speed in RPM.+ve = forward, —ve = reverse. Uses the encoder input if available. If
not, uses a simulated encoder speed.

spindle.N.spindle-rpm-abs float out
Absolute spindle speed in RPM. Useful for spindle speed displays.

spindle.N.output float out
Scaled output

spindle.N.current—gear u32 out
Currently selected gear.

spindle.N.at—speed bit out
TRUE when the spindle is at speed

spindle.N .forward bit out
TRUE for forward rotation

spindle.N.reverse bit out
TRUE for reverse rotation. Both forward and reverse are false when the spindle is stopped.

LinuxCNC 01/04/2026 559

SPINDLE(9) LinuxCNC Documentation SPINDLE(9)

spindle.N.brake bit out
TRUE when decelerating

spindle.N.zero—speed bit out
TRUE when the spindle is stationary

spindle.N limited bit out
TRUE when the commanded spindle speed is >max or <min.

SEE ALSO

motion(9)

NOTES
The following pins are created depending the numgears= parameter. One of each pin is created for each
gear. If no gears are specified then one gear will be created. For instance if you have gears=2 on your
command line, you will have two scale pins: spindle.N.scale.0 spindle.N.scale.1

spindle.N.scale.x float in
Scale the output. For multiple gears you would use a different scale for each gear. If you need to
reverse the output for some gears, use a negative scale.

spindle.N.min.x float in
Set the minimum speed allowed (in RPM). The limit output will be TRUE while the commanded
speed is between 0 RPM and the min speed.

spindle.N.max.x float in
Set the maximum speed allowed (in RPM). The limit output will be TRUE while the commanded
speed is above this value.

spindle.N.accel.x float in
Set the maximum acceleration. If you do not have a spindle encoder this is in RPM/second. If you do
have an encoder the output is the actual speed plus this value. This way the acceleration can be
dependent on the spindle load.

spindle.N.decel x float in
Set the minimum deceleration. If you do not have a spindle encoder this is in RPM/second. If you do
have an encoder the output is the actual speed minus this value.

spindle.N.speed—tolerance.x float in
Tolerance for at—speed signal (in RPM). Actual spindle speeds within this amount of the commanded
speed will cause the at—speed signal to go TRUE.

spindle.N.zero—tolerance.x float in
Tolerance for zero—speed signal (in RPM).

spindle.N.offset.x float in
The output command is offset by this amount (in RPM).

spindle.N.select.x bit in
Selects this gear. If no select inputs are active, gear 0 is selected. If multiple select inputs are active
then the highest is selected.

AUTHOR
Les Newell

LICENSE
GPL

560 01/04/2026 LinuxCNC

SPINDLE_MONITOR(9) LinuxCNC Documentation
NAME

spindle_monitor — spindle at—speed and underspeed detection
SYNOPSIS

loadrt spindle_monitor [count=N|names=namel[,name?2...]]
FUNCTIONS

spindle—monitor.N (requires a floating—point thread)

PINS

spindle—monitor.N.spindle—is—on bit in
spindle—monitor.N.spindle—command float in
spindle—-monitor.N.spindle—feedback float in
spindle—monitor.N.spindle—at—speed bit out
spindle—monitor.N.spindle—underspeed bit out

PARAMETERS
spindle—-monitor.N.level u32 rw
state machine state

spindle—monitor.N.threshold float rw

AUTHOR

Sebastian Kuzminsky

LICENSE
gpl v2 or higher

LinuxCNC 01/04/2026

SPINDLE_MONITOR(9)

561

SSERIAL(9) LinuxCNC Documentation SSERIAL(9)

NAME
sserial — Smart Serial LinuxCNC HAL driver for the Mesa Electronics HostMot2 Smart—Serial remote
cards

SYNOPSIS
The Mesa Smart—Serial interface is a 2.5Mbs proprietary interface between the Mesa Anything—IO cards
and a range of subsidiary devices termed "smart—serial remotes". The remote cards perform a variety of
functions, but typically they combine various classes of IO. The remote cards are self—configuring, in that
they tell the main LinuxCNC Hostmot2 driver what their pin functions are and what they should be named.

Many sserial remotes offer different pinouts depending on the mode they are started up in. This is set using
the sserial_port_N= option in the hm2_pci modparam. See the hostmot2 manpage for further details.

It is likely that this documentation will be permanently out of date.

Each Anything—IO board can attach up to 8 sserial remotes to each header (either the S0—pin headers on the
5120/5122/5123/7143 or the 25—pin connectors on the 5125, 6125 and 7180). The remotes are grouped into
"ports" of up to 8 "channels". Typically each header will be a single 8 channel port, but this is not
necessarily always the case.

PORTS
In addition to the per—channel/device pins detailed below there are three per—port pins and three
parameters.

Pins:

sserial.port-N.run (bit, in):: Enables the specific Smart Serial module..

Setting this pin low will disable all boards on the port and puts the

port in a pass—through mode where device parameter setting is possible.

It is necessary to toggle the state of this pin if there is a

requirement to alter a remote parameter on a live system.

This pin defaults to TRUE and can be left unconnected.

However, toggling the pin low—to—high will re—enable a faulted drive,

so the pin could usefully be connected to the ‘iocontrol.0.user—enable—out* pin.

run_state (u32, ro):: Shows the state of the sserial communications state-machine..

This pin will generally show a value of 0x03 in normal operation, 0x07 in setup mode and 0x00 when the "run" pin is fals

error-count (u32, ro):: Indicates the state of the Smart Serial error handler, see the parameters
section for more details.. Parameters:

fault-inc (u32 r/w):: Any over-run or handshaking error in the.

SmartSerial communications will increment the .fault—count pin by the
amount specified by this parameter. Default = 10.

fault-lim (u32 r/w):: When the fault counter reaches this threshold the.

Smart Serial interface on the corresponding port will be stopped and an
error printed in dmesg. Together these three pins allow for control over
the degree of fault— tolerance allowed in the interface. The default
values mean that if more than one transaction in ten fails, more than 20
times, then a hard error will be raised. If the increment were to be set
to zero then no error would ever be raised, and the system would carry
on regardless. Conversely setting decrement to zero, threshold to 1 and
limit to 1 means that absolutely no errors will be tolerated.

(This structure is copied directly from vehicle ECU practice.)

562 01/04/2026 LinuxCNC

SSERIAL(9) LinuxCNC Documentation SSERIAL(9)

Any other parameters than the ones above are created by the card itself from data in the remote firmware.
They may be set in the HAL file using "setp" in the usual way.
Note

Because a Smart—Serial remote can only communicate non—process data to the host card in setup
mode, it is necessary to stop and re—start the smart—serial port associated with the card to alter the
value of a parameter.

Note

In the case of parameters beginning with "nv" (which are stored in non—volatile memory) the effect
will not be seen until after the next power cycle of the drive.

Unchanged values will not be re—written so it is safe to leave the "setp" commands in the HAL file or delete
them as you see fit.

DEVICES
The other pins and parameters created in HAL depend on the devices detected. The following list of Smart
Serial devices is by no means exhaustive.

8120
The 8120 is a 2.2 kW three—phase drive for brushless DC motors and AC servo motors. 8120 pins and
parameters have names like "hm2__<BoardType>_.<BoardNum>.8i20.< PortNum>.< ChanNum>.<Pin>",
for example "hm?2_5i23.0.8i20.1.3.current" would set the phase current for the drive connected to the fourth
channel of the second sserial port of the first 5123 board. Note that the sserial ports do not necessarily
correlate in layout or number to the physical ports on the card.

Pins:

angle (float in)
The rotor angle of the motor in fractions of a full phase revolution. An angle of 0.5 indicates that the
motor is half a turn / 180 degrees / I radians from the zero position. The zero position is taken to be the
position that the motor adopts under no load with a positive voltage applied to the A (or U) phase and
both B and C (or V and W) connected to —V or 0 V. A 6 pole motor will have 3 zero positions per
physical rotation. Note that the 8120 drive automatically adds the phase lead/lag angle, and that this
pin should see the raw rotor angle. There is a HAL module (bldc) which handles the complexity of
differing motor and drive types.

current (float, in)
The phase current command to the drive. This is scaled from —1 to +1 for forwards and reverse
maximum currents. The absolute value of the current is set by the max_current parameter.

bus—voltage (float, ro)
The drive bus voltage in V. This will tend to show 25.6 V when the drive is unpowered and the drive
will not operate below about 50 V.

temp (float, ro)
The temperature of the driver in degrees C.

comms (u32, ro)
The communication status of the drive. See the manual for more details.

status and fault. (bit, ro)
The following fault/status bits are exported. For further details see the 8120 manual:

fault.U-current / fault.U-current—not fault.V—current / fault. V—current—not fault. W—current /
fault. W—current—not fault.bus—high / fault.bus—high—not fault.bus—overv / fault.bus—overv—not
fault.bus—underv / fault.bus—underv—not fault.framingr / fault.framingr—not fault.module /
fault.module—not fault.no—enable / fault.no—enable—not fault.overcurrent / fault.overcurrent—not

LinuxCNC 01/04/2026 563

SSERIAL(9) LinuxCNC Documentation SSERIAL(9)

564

fault.overrun / fault.overrun—not fault.overtemp / fault.overtemp—not fault.watchdog /
fault.watchdog—not

status.brake—old / status.brake—old—not status.brake—on / status.brake—on—not status.bus—underv /
status.bus—underv—not status.current—lim / status.current—lim—no status.ext—reset /
status.ext—reset—not status.no—enable / status.no—enable—not status.pid—on / status.pid—on—not
status.sw—reset / status.sw—reset—not status.wd—reset / status.wd-reset—not

Parameters:
The following parameters are exported. See the PDF documentation downloadable from Mesa for
further details:

hm2_5i25.0.8120.0.1.angle—maxlim, hm2_5i25.0.8i20.0.1.angle—minlim,
hm2_5i25.0.8120.0.1.angle—scalemax, hm2_5i25.0.8120.0.1.current—maxlim,
hm?2_5i25.0.8i20.0.1.current—minlim, hm2_5i25.0.8i20.0.1.current—scalemax,
hm?2_5i25.0.8i20.0.1.nvbrakeoffv, hm2_5i25.0.8i20.0.1.nvbrakeonv, hm2_5i25.0.8i20.0.1.nvbusoverv,
hm?2_5i25.0.8i20.0.1.nvbusundervmax, hm2_5i25.0.8i20.0.1.nvbusundervmin,
hm?2_5i25.0.8i20.0.1.nvkdihi, hm2_5i25.0.8i20.0.1.nvkdil, hm2_5i25.0.8i20.0.1.nvkdilo,
hm?2_5i25.0.8i20.0.1.nvkdp, hm2_5i25.0.8i20.0.1.nvkqihi, hm2_5i25.0.8i20.0.1.nvkqil,
hm?2_5i25.0.8i20.0.1.nvkqilo, hm2_5i25.0.8i20.0.1.nvkqp, hm2_5i25.0.8i20.0.1.nvmaxcurrent,
hm?2_5i25.0.8i20.0.1.nvrembaudrate, hm2_5i25.0.8i120.0.1.swrevision, hm2_5i25.0.8120.0.1.unitnumber,
max_current (float, rw)

Sets the maximum drive current in Amps. The default value is the maximum current programmed into

the drive EEPROM. The value must be positive, and an error will be raised if a current in excess of the

drive maximum is requested.

serial_number (u32, ro)
The serial number of the connected drive. This is also shown on the label on the drive.

The 7164 is a 24—input 24—output 10 card. 7164 pins and parameters have names like
"hm2 <BoardType >.< BoardNum>.7164.< PortNum>.< ChanNum>.<Pin>", for example
hm?2_5i23.0.7i64.1.3.output—01.

Pins:

7i164.0.0.output—NN (bit, in)
Writing a 1 or TRUE to this pin will enable output driver NN. Note that the outputs are drivers
(switches) rather than voltage outputs. The LED adjacent to the connector on the board shows the
status. The output can be inverted by setting a parameter.
7i164.0.0.input-NN (bit, out)
The value of input NN. Note that the inputs are isolated and both pins of each input must be connected,
typically to signal and the ground of the signal. (This need not be the ground of the board.)
7164.0.0.input—NN-not (bit, out)
An inverted copy of the corresponding input.

7164.0.0.analog0 & 7i164.0.0.analog1 (float, out)
The two analogue inputs (0 to 3.3 V) on the board.

Parameters:

7164.0.0.output—NN—invert (bit, rw)
Setting this parameter to 1 / TRUE will invert the output value, such that writing 0 to .gpio.NN.out
will enable the output and vice—versa.

01/04/2026 LinuxCNC

SSERIAL(9) LinuxCNC Documentation SSERIAL(9)

7176
The 7176 is not really a smart—serial device. It serves as a breakout for a number of other Hostmot2
functions. There are connections for 5 step generators (for which see the main hostmot2 manpage). The
stepgen pins are associated with the 5125 (hm2_5i25.0.stepgen.00....), whereas the smart—serial pins are
associated with the 7176 (hm2_5i25.0.7i76.0.0.output—00).

Pins:

7i76.0.0.spinout (float in):: This controls the analogue output of the 7176..

This is intended as a speed control signal for a VFD.

.7176.0.0.output—__NN__ (bit out):: (_ NN_ =0 to 15). 16 digital outputs.
The sense of the signal can be set via a parameter.

.7176.0.0.input—__NN___ (bit out):: (_NN_ =0 to 31) 32 digital inputs.

.7176.0.0.input—__NN__—not (bit in):: (_ NN_ =0 to 31) An inverted copy of the inputs provided for convenience.
The two complementary pins may be connected to different signal nets.

Parameters:

7i76.0.0.nvunitnumber (u32 ro):: Indicates the serial number of the device and should match a
sticker on the card..

This can be useful for working out which card is which.
.7176.0.0.nvwatchdogtimeout (u32 ro):: The sserial remote watchdog timeout.

This is separate from the Anything—IO card timeout.

This is unlikely to need to be changed.
.7176.0.0.output—__NN__—invert (bit rw):: Invert the sense of the corresponding output pin.
.7176.0.0.spindir—invert (bit rw):: Invert the senseof the spindle direction pin.
.7176.0.0.spinena—invert (bit rw):: Invert the sense of the spindle—enable pin.
.7176.0.0.spinout—maxlim (float rw):: The maximum speed request allowable
.7176.0.0.spinout—minlim (float rw):: The minimum speed request.
.7176.0.0.spinout—scalemax (float rw):: The spindle speed scaling.

This is the speed request which would correspond to full-scale output from the spindle control pin.

For example with a 10 V drive voltage and a 10000 RPM scalemax a value of 10,000 RPM on the spinout pin would pro

However, if spinout—maxlim were set to 5000 RPM then no voltage above 5 V would be output.
.7176.0.0.swrevision (u32 ro):: The onboard firmware revision number.

Utilities (man setsserial for details) exist to update and change this firmware.

7177
The 7177 is an 6—axis servo control card. The analogue outputs are smart—serial devices, but the encoders
are conventional hostmot2 encoders and further details of them may be found in the hostmot2 manpage.

Pins:
7i77.0.1.analogoutN (float in):: (N = 0 to 5) This controls the analog output of the 7177.. Parameters:

7i77.0.0.spinout-scalemax (float rw):: The spindle speed scaling..

This is the speed request which would correspond to full-scale output from the spindle control pin.

For example with a 10 V drive voltage and a 10000 RPM scalemax a value of 10000 RPM on th

However, if spinout—maxlim were set to 5000 RPM then no voltage above 5 V would be output.
.7177.0.0.analogout__ N__-maxlim (float rw):: (_N_ = 0 to 5) The maximum speed request allowable
.7177.0.0.analogout__N__—minlim (float rw):: (_N_ =0 to 5) The minimum speed request.
.7177.0.0.analogout__ N__—scalemax (float rw):: (_N_ =0 to 5) The analog speed scaling.

This is the speed request which would correspond to full-scale output from the spindle control pin.

For example with a 10 V drive voltage and a 10000 RPM scalemax a value of 10000 RPM on th

LinuxCNC 01/04/2026 565

SSERIAL(9) LinuxCNC Documentation SSERIAL(9)

However, if spinout—maxlim were set to 5000 RPM then no voltage above 5 V would be output.

7169
The 7169 is a 48 channel digital IO card. It can be configured in four different modes:
MODE 0
Bidirectional mode (48 bits in 48 bits out)
MODE 1
Input only mode (48 bits in)
MODE 2
Output only mode (48 bits out)
MODE 3
24/24mode (24 bits in = bits 0..23 and 24 bits out = bits 24..47)
MODE 4
Bidirectional mode (48 bits in 48 bits out) plus 4 MPG encoder channels oninputs O through 7
Pins:

7i69.0.0.input-NN-not (bit out):: Digital input, inverted.. Parameters:

7170
7i69.0.0.swrevision (u32 ro):: The onboard firmware revision number. Utilities exist to update and
change this firmware.. The 7170 is a remote isolated 48 input card. The 7170 inputs sense positive inputs
relative to a common field ground. Input impedance is 10 KIi© and input voltage can range from 5 VDC to
32 VDC. All inputs have LED status indicators. The input common field ground is galvanically isolated
from the communications link.

The 7170 has three software selectable modes. These different modes select different sets of 7170 data to be
transferred between the host and the 7170 during real time process data exchanges. For high speed
applications, choosing the correct mode can reduced the data transfer sizes, resulting in higher maximum
update rates.

MODE 0
Input mode (48 bits input data only)

MODE 1
Input plus analog mode (48 bits input data plus 6 channels of analog data)

MODE 2
Input plus field voltage

Pins:

7i70.0.0.input-NN-not (bit in):: (NN = 0 to 47) An inverted copy of the inputs provided for
convenience. The two complementary pins may be connected to different signal nets.. Parameters:

7171
7i69.0.0.swrevision (u32 ro):: The onboard firmware revision number. Utilities exist to update and
change this firmware.. The 7171 is a remote isolated 48 output card. The 48 outputs are § VDC to 28 VDC
sourcing drivers (common + field power) with 300 mA maximum current capability. All outputs have LED
status indicators.

The 7171 has two software selectable modes. For high speed applications, choosing the correct mode can
reduced the data transfer sizes, resulting in higher maximum update rates:

MODE 0
Output only mode (48 bits output data only)

566 01/04/2026 LinuxCNC

SSERIAL(9) LinuxCNC Documentation SSERIAL(9)

MODE 1
Outputs plus read back field voltage

Pins:
7i71.0.0.output-NN (bit out):: (NN = 0 to 47) 48 digital outputs..

The sense may be inverted by the invert parameter.
.7171.0.0.output—__NN__ (bit out):: (_NN_ =0 to 47) 48 digital outputs.
The sense may be inverted by the invert parameter.

Parameters:

7173
7i69.0.0.swrevision (u32 ro):: The onboard firmware revision number. Utilities exist to update and
change this firmware.. The 7173 is a remote real time pendant or control panel interface.

The 7173 supports up to four 50 kHz encoder inputs for MPGs, 8 digital inputs and 6 digital outputs and up
to a 64 Key keypad. If a smaller keypad is used, more digital inputs and outputs become available. Up to
eight 0.0 V to 3.3 V analog inputs are also provided. The 7173 can drive a 4 line 20 character LCD for local
DRO applications.

The 7173 has 3 software selectable process data modes. These different modes select different sets of 7173
data to be transferred between the host and the 7173 during real time process data exchanges. For high
speed applications, choosing the correct mode can reduced the data transfer sizes, resulting in higher
maximum update rates

MODE 0
I/O + ENCODER

MODE 1
I/0 + ENCODER + ANALOG IN

MODE 2
I/0 + ENCODER + ANALOG IN FAST DISPLAY

Pins:

7i73.0.0.analoginN (float out):: Analogue inputs..

Up to 8 channels may be available dependent on software and hardware configuration modes
(see the PDF manual downloadable from https://www.mesanet.com).

7i73.0.1.display (modes 1 and 2) (u32 in):: Data for LCD display..

This pin may be conveniently driven by the HAL "lcd" component which allows
the formatted display of the values any number of HAL pins and textual content.

7i73.0.1.output-NN (bit in):: Up to 22 digital outputs (dependent on config). Parameters:
7i73.0.1.output-00-invert (u32 ro)::. For further details of the use of the above see the Mesa manual.

LinuxCNC 01/04/2026 567

STEPGEN(9) LinuxCNC Documentation STEPGEN(9)

NAME

stepgen — software step pulse generation

SYNOPSIS

loadrt stepgen step_type=typeO[,typel...] [ctrl_type=typeO|,typel...]] [user_step_type=,...]

DESCRIPTION

568

stepgen is used to control stepper motors. The maximum step rate depends on the CPU and other factors,
and is usually in the range of 5 kHz to 25 kHz. If higher rates are needed, a hardware step generator is a
better choice.

stepgen has two control modes, which can be selected on a channel by channel basis using ctrl_type.
Possible values are "p" for position control, and "v" for velocity control. The default is position control,
which drives the motor to a commanded position, subject to acceleration and velocity limits. Velocity
control drives the motor at a commanded speed, again subject to accel and velocity limits. Usually, position
mode is used for machine axes. Velocity mode is reserved for unusual applications where continuous
movement at some speed is desired, instead of movement to a specific position. (Note that velocity mode
replaces the former component freqgen.)

stepgen can control a maximum of 16 motors. The number of motors/channels actually loaded depends on
the number of fype values given. The value of each type determines the outputs for that channel. Position or
velocity mode can be individually selected for each channel. Both control modes support the same 16
possible step types.

By far the most common step type is 0, standard step and direction. Others include up/down, quadrature,
and a wide variety of three, four, and five phase patterns that can be used to directly control some types of
motor windings. (When used with appropriate buffers of course.)

Some of the stepping types are described below, but for more details (including timing diagrams) see the
stepgen section of the HAL reference manual.

type O: step/dir
Two pins, one for step and one for direction. make—pulses must run at least twice for each step (once
to set the step pin true, once to clear it). This limits the maximum step rate to half (or less) of the rate
that can be reached by types 2—14. The parameters steplen and stepspace can further lower the
maximum step rate. Parameters dirsetup and dirhold also apply to this step type.

type 1: up/down
Two pins, one for step up and one for step down. Like type 0, make—pulses must run twice per step,
which limits the maximum speed.

type 2: quadrature
Two pins, phase—A and phase—B. For forward motion, A leads B. Can advance by one step every time
make—pulses runs.

type 3: three phase, full step
Three pins, phase—A, phase—B, and phase—C. Three steps per full cycle, then repeats. Only one phase
is high at a time — for forward motion the pattern is A, then B, then C, then A again.

type 4: three phase, half step
Three pins, phases A through C. Six steps per full cycle. First A is high alone, then A and B together,
then B alone, then B and C together, etc.

types 5 through 8: four phase, full step
Four pins, phases A through D. Four steps per full cycle. Types 5 and 6 are suitable for use with
unipolar steppers, where power is applied to the center tap of each winding, and four open—collector
transistors drive the ends. Types 7 and 8 are suitable for bipolar steppers, driven by two H-bridges.

types 9 and 10: four phase, half step
Four pins, phases A through D. Eight steps per full cycle. Type 9 is suitable for unipolar drive, and

01/04/2026 LinuxCNC

STEPGEN(9) LinuxCNC Documentation STEPGEN(9)

type 10 for bipolar drive.

types 11 and 12: five phase, full step
Five pins, phases A through E. Five steps per full cycle. See HAL reference manual for the patterns.

types 13 and 14: five phase, half step
Five pins, phases A through E. Ten steps per full cycle. See HAL reference manual for the patterns.

type 15: user—specified
This uses the waveform specified by the user_step_type module parameter, which may have up to 10
steps and 5 phases.

FUNCTIONS
stepgen.make—pulses (no floating—point)
Generates the step pulses, using information computed by update—freq. Must be called as frequently
as possible, to maximize the attainable step rate and minimize jitter. Operates on all channels at once.

stepgen.capture—position (uses floating point)
Captures position feedback value from the high speed code and makes it available on a pin for use
elsewhere in the system. Operates on all channels at once.

stepgen.update—freq (uses floating point)
Accepts a velocity or position command and converts it into a form usable by make—pulses for step
generation. Operates on all channels at once.

PINS
stepgen.N.counts s32 out
The current position, in counts, for channel N. Updated by capture—position.

stepgen.N.position—fb float out
The current position, in length units (see parameter position—scale). Updated by capture—position.
The resolution of position—fb is much finer than a single step. If you need to see individual steps, use
counts.

stepgen.N.enable bit in
Enables output steps — when false, no steps are generated.

stepgen.N.velocity—cmd float in (velocity mode only)
Commanded velocity, in length units per second (see parameter position—scale).

stepgen.N.position—cmd float in (position mode only)
Commanded position, in length units (see parameter position—scale).

stepgen.N.step bit out (step type O only)
Step pulse output.

stepgen.N.dir bit out (step type O only)
Direction output: low for forward, high for reverse.

stepgen.N.up bit out (step type 1 only)
Count up output, pulses for forward steps.

stepgen.N.down bit out (step type 1 only)
Count down output, pulses for reverse steps.

stepgen.N.phase—A thru phase—E bit out (step types 2—14 only)
Output bits. phase—A and phase—B are present for step types 2—14, phase—C for types 3—14, phase-D
for types 5—14, and phase—E for types 11-14. Behavior depends on selected stepping type.

PARAMETERS
stepgen.N.frequency float ro
The current step rate, in steps per second, for channel N.

stepgen.N.maxaccel float rw
The acceleration/deceleration limit, in length units per second squared.

LinuxCNC 01/04/2026 569

STEPGEN(9) LinuxCNC Documentation STEPGEN(9)

stepgen.N.maxvel float rw
The maximum allowable velocity, in length units per second. If the requested maximum velocity
cannot be reached with the current combination of scaling and make—pulses thread period, it will be
reset to the highest attainable value.

stepgen.N.position—scale float rw
The scaling for position feedback, position command, and velocity command, in steps per length unit.

stepgen.N.rawcounts s32 ro
The position in counts, as updated by make—pulses. (Note: this is updated more frequently than the
counts pin.)

stepgen.N.steplen u32 rw
The length of the step pulses, in nanoseconds. Measured from rising edge to falling edge.

stepgen.N.stepspace u32 rw (step types 0 and 1 only)
The minimum space between step pulses, in nanoseconds. Measured from falling edge to rising edge.
The actual time depends on the step rate and can be much longer. If stepspace is 0, then step can be
asserted every period. This can be used in conjunction with hal_parport's auto—resetting pins to
output one step pulse per period. In this mode, steplen must be set for one period or less.

stepgen.N.dirsetup u32 rw (step type O only)
The minimum setup time from direction to step, in nanoseconds periods. Measured from change of
direction to rising edge of step.

stepgen.N.dirhold u32 rw (step type O only)
The minimum hold time of direction after step, in nanoseconds. Measured from falling edge of step to
change of direction.

stepgen.N.dirdelay u32 rw (step types 1 and higher only)
The minimum time between a forward step and a reverse step, in nanoseconds.

TIMING
There are five timing parameters which control the output waveform. No step type uses all five, and only
those which will be used are exported to HAL. The values of these parameters are in nano—seconds, so no
recalculation is needed when changing thread periods. In the timing diagrams that follow, they are
identified by the following numbers:
(1) stepgen.n.steplen
(2) stepgen.n.stepspace
(3) stepgen.n.dirhold
(4) stepgen.n.dirsetup
(5) stepgen.n.dirdelay

For step type 0, timing parameters 1 thru 4 are used. The following timing diagram shows the output
waveforms, and what each parameter adjusts.

STEP /\ /\ / o\

I ||
Time |—(1)—l——(2)——||—(1)—l——(3)——|—(4)—|—(1)—|

DIR /

For step type 1, timing parameters 1, 2, and 5 are used. The following timing diagram shows the output

570 01/04/2026 LinuxCNC

STEPGEN(9) LinuxCNC Documentation STEPGEN(9)
waveforms, and what each parameter adjusts.

up _/ ____/ \

[T I
Time |—(1)—|—(2)—|—(1)—|——|—(5|)———|—|(1)—|—(2)—|—(1)—|

DOWN / o\ /\

For step types 2 and higher, the exact pattern of the outputs depends on the step type (see the HAL manual
for a full listing). The outputs change from one state to another at a minimum interval of steplen. When a

direction change occurs, the minimum time between the last step in one direction and the first in the other

direction is the sum of steplen and dirdelay.

SEE ALSO
The HAL User Manual.

LinuxCNC 01/04/2026 571

STEPTEST (9) LinuxCNC Documentation STEPTEST (9)

NAME

steptest — Used by Stepconf to allow testing of acceleration and velocity values for an axis.

SYNOPSIS

loadrt steptest [count=N|names=namel[,name2...]]

FUNCTIONS

PINS

steptest.N (requires a floating—point thread)

steptest.N.jog—minus bit in
Drive TRUE to jog the axis in its minus direction

steptest.N.jog—plus bit in
Drive TRUE to jog the axis in its positive direction

steptest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile

steptest.N.maxvel float in
Maximum velocity

steptest.N.maxaccel float in
Permitted Acceleration

steptest.N.amplitude float in
Approximate amplitude of positions to command during run

steptest.N.dir s32 in
Direction from central point to test: O = both, 1 = positive, 2 = negative

steptest.N.position—cmd float out
steptest.N.position—fb float in
steptest.N.running bit out
steptest.N.run—target float out
steptest.N.run-start float out
steptest.N.run—-low float out
steptest.N.run-high float out

steptest.N.pause s32 in (default: 0)
pause time for each end of run in seconds

PARAMETERS

steptest.N.epsilon float rw (default: .007)

steptest.N.elapsed float r
Current value of the internal timer

AUTHOR

Jeff Epler

LICENSE

572

GPL

01/04/2026 LinuxCNC

STREAMER(9) LinuxCNC Documentation STREAMER(9)

NAME

streamer — stream file data into HAL in real time
SYNOPSIS

loadrt streamer depth=depthi[,depth2...] cfg=stringl[,string2...]
DESCRIPTION

streamer and halstreamer(1) are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a non—realtime program that copies data from stdin into the FIFO, so that streamer can
write it to the HAL pins.

OPTIONS
depth=depthl[,depth2...]
Sets the depth of the FIFO that the realtime streamer creates to receive data from the non—realtime
hal-streamer. Multiple values of depth (separated by commas) can be specified if you need more than
one FIFO (for example if you want to stream data to two different realtime threads).

cfg=stringl/,string2...]
Defines the set of HAL pins that streamer exports and later writes data to. One string must be
supplied for each FIFO, separated by commas. streamer exports one pin for each character in string.
Legal characters are:

e F, f (float pin)

* B, b (bit pin)

* S,s(s32 pin)

e U, u (u32 pin)
FUNCTIONS

streamer.N
One function is created per FIFO, numbered from zero.

PINS
streamer.N.pin.M output
Data from column M of the data in FIFO N appears on this pin. The pin type depends on the config
string.

streamer.N.curr—depth s32 output
Current number of samples in the FIFO. When this reaches zero, new data will no longer be written to
the pins.

streamer.N.empty bit output
TRUE when the FIFO N is empty, FALSE when valid data is available.

streamer.N.enable bit input
When TRUE, data from FIFO N is written to the HAL pins. When false, no data is transferred.
Defaults to TRUE.

streamer.N.underruns s32 read/write
The number of times that sampler has tried to write data to the HAL pins but found no fresh data in
the FIFO. It increments whenever empty is true, and can be reset by the setp command.

streamer.N.*clock bit input
Clock for data as specified by the clock—mode pin.

streamer.N.*clock—mode s32 input
Defines behavior of clock pin:

¢ 0 (default) free run at every iteration

LinuxCNC 01/04/2026 573

STREAMER(9) LinuxCNC Documentation STREAMER(9)

* 1 clock on falling edge of clock pin
* 2 clock on rising edge of clock pin

* 3 clock on any edge of clock pin

SEE ALSO
halstreamer(1), sampler(9), halsampler(1)

BUGS
Should an enable HAL pin be added, to allow streaming to be turned on and off?

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues.

COPYRIGHT
Copyright © 2006 John Kasunich.

This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

574 01/04/2026 LinuxCNC

SUM2(9) LinuxCNC Documentation

NAME

sum?2 — Sum of two inputs (each with a gain) and an offset

SYNOPSIS

loadrt sum2 [count=N|names=name[,name2...]]

FUNCTIONS

sum2.N (requires a floating—point thread)

PINS

sum2.VN.in0 float in
sum2.N.inl float in

sum?2.N.out float out
out = in0 * gain0 + inl * gainl + offset

PARAMETERS
sum2.N.gain0 float rw (default: 1.0)

sum2.N.gainl float rw (default: 1.0)

sum2.N.offset float rw

SEE ALSO
scaled_s32_sums(9), weighted_sum(9)

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

SUM2(9)

575

SUPPLY (9) LinuxCNC Documentation SUPPLY (9)

NAME

supply — set output pins with values from parameters (obsolete)

SYNOPSIS

loadrt supply num_chan=num

DESCRIPTION

supply was used to allow the inputs of other HAL components to be manipulated for testing purposes.
When it was written, the only way to set the value of an input pin was to connect it to a signal and connect
that signal to an output pin of some other component, and then let that component write the pin value.
supply was written to be that "other component". It reads values from parameters (set with the HAL
command setp) and writes them to output pins.

Since supply was written, the setp command has been modified to allow it to set unconnected pins as well
as parameters. In addition, the sets command was added, which can directly set HAL signals, as long as
there are no output pins connected to them. Therefore, supply is obsolete.

supply supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan argument when the module is loaded. If numchan is not specified, the default value is one.

FUNCTIONS

PINS

576

supply.N.update (uses floating—point)
Updates output pins for channel N.

supply.N.q bit out
Output bit, copied from parameter supply.N.d.

supply.N._q bit out
Output bit, inverted copy of parameter supply.N.d.

supply.N.variable float out
Analog output, copied from parameter supply.N.value.

supply.N._variable float out
Analog output, equal to —1.0 times parameter supply.N.value.

supply.N.d bit rw
Data source for q and _q output pins.

supply.N.value bit rw
Data source for variable and _variable output pins.

01/04/2026 LinuxCNC

THC(9) LinuxCNC Documentation THC(9)

NAME
thc — Torch Height Control

SYNOPSIS
loadrt the

DESCRIPTION
Torch Height Control
Mesa THC > Encoder > LinuxCNC THC component

The Mesa THC sends a frequency based on the voltage detected to the encoder. The velocity from the
encoder is converted to volts with the velocity scale parameter inside the THC component.

The THCAD card sends a frequency at 0 volts so the scale offset parameter is used to zero the calculated
voltage.

Component Functions
If enabled and torch is on and X + Y velocity is within tolerance of set speed allow the THC to offset the Z
axis as needed to maintain voltage.

If enabled and torch is off and the Z axis is moving up remove any correction at a rate not to exceed the rate
of movement of the Z axis.

If enabled and torch is off and there is no correction pass the Z position and feed back untouched.

If not enabled pass the Z position and feed back untouched.

Physical Connections
Plasma Torch Arc Voltage Signal 4 6 x 487k 1% resistors 4 THC Arc Voltage In

THC Frequency Signal a Encoder #0, pin A (Input)
Plasma Torch Arc OK Signal 4 input pin

output pin 4 Plasma Torch Start Arc Contacts

HAL Plasma Connections
encoder.nn.velocity a thc.encoder—vel (tip voltage)

spindle.0.on a output pin (start the arc)

thc.arc—ok 4 motion.digital-in—00 & input pin (arc ok signal)

HAL Motion Connections
thc.requested—vel a motion.requested—vel

the.current—vel 4 motion.current—vel

FUNCTIONS

the.— (requires a floating—point thread)

PINS
thc.encoder—vel float in
Connect to hm2_5i20.0.encoder.00.velocity

thc.current—vel float in
Connect to motion.current—vel

the.requested—vel float in
Connect to motion.requested—vel

LinuxCNC 01/04/2026 577

THC(9) LinuxCNC Documentation

the.volts—requested float in
Tip Volts current_vel >= min_velocity requested

the.vel-tol float in
Velocity Tolerance (Corner Lock)

the.torch—on bit in
Connect to spindle.N.on

thc.arc—ok bit in
Arc OK from Plasma Torch

thc.enable bit in
Enable the THC, if not enabled Z position is passed through

the.z—pos—in float in
Z Motor Position Command in from axis.n.motor—pos—cmd

the.z—pos—out float out
Z Motor Position Command Out

thc.z—ftb—out float out
Z Position Feedback to Axis

the.volts float out
The Calculated Volts

the.vel-status bit out
When the THC thinks we are at requested speed

thc.offset—value float out
The Current Offset

PARAMETERS
the.vel-scale float rw
The scale to convert the Velocity signal to Volts

the.scale—offset float rw
The offset of the velocity input at 0 volts

the.velocity—tol float rw
The deviation percent from planned velocity

the.voltage—tol float rw
The deviation of Tip Voltage before correction takes place

the.correction—vel float rw
The amount of change in user units per period to move Z to correct

AUTHOR

John Thornton

LICENSE
GPLV?2 or greater

578 01/04/2026

THC(9)

LinuxCNC

THCUD(9) LinuxCNC Documentation THCUD(9)

NAME
thcud — Torch Height Control Up/Down Input

SYNOPSIS
loadrt thcud

DESCRIPTION
Torch Height Control This THC takes either an up or a down input from a THC

If enabled and torch is on and X + Y velocity is within tolerance of set speed allow the THC to offset the Z
axis as needed to maintain voltage.

If enabled and torch is off and the Z axis is moving up remove any correction at a rate not to exceed the rate
of movement of the Z axis.

If enabled and torch is off and there is no correction pass the Z position and feed back untouched.
If not enabled pass the Z position and feed back untouched.

Typical Physical Connections using a Parallel Port

Parallel Pin 12 4 THC controller Plasma Up

Parallel Pin 13 4 THC controller Plasma Down

Parallel Pin 15 a Plasma Torch Arc Ok Signal

Parallel Pin 16 4 Plasma Torch Start Arc Contacts

HAL Plasma Connections

net torch—up thcud.torch—up & parport.0.pin—12—in

net torch—down thcud.torch—down a parport.0.pin—13—in

net torch—on spindle.0.on 4 parport.0.pin—16—out (start the arc)

net arc—ok thcud.arc—ok 4 motion.digital-in—00 a parport.0.pin—15—in (arc ok signal)
HAL Motion Connections

net requested—vel thcud.requested—vel & motion.requested—vel

net current—vel thcud.current—vel & motion.current—vel

PyVCP Connections In the XML file you need something like:

<pyvcp>
<checkbutton>
<text>"THC Enable"</text>
<halpin>"thc—enable" </halpin>
</checkbutton>
</pyvcp>

Connect the PyVCP pins in the postgui.hal file like this:

LinuxCNC 01/04/2026 579

THCUD(9) LinuxCNC Documentation THCUD(9)

net thc—enable thcud.enable a pyvcp.thc—enable

FUNCTIONS

thcud.— (requires a floating—point thread)

PINS
thcud.torch—up bit in
Connect to an input pin

thcud.torch—down bit in
Connect to input pin

thcud.current—vel float in
Connect to motion.current—vel

thcud.requested—vel float in
Connect to motion.requested—vel

thcud.torch—on bit in
Connect to spindle.N.on

thcud.arc—ok bit in
Arc Ok from Plasma Torch

thcud.enable bit in
Enable the THC, if not enabled Z position is passed through

thcud.z—pos—in float in
Z Motor Position Command in from axis.n.motor—pos—cmd

thcud.z—pos—out float out
Z Motor Position Command Out

thcud.z—fb—out float out
Z Position Feedback to Axis

thcud.cur—offset float out
The Current Offset

thcud.vel-status bit out
When the THC thinks we are at requested speed

thcud.removing—offset bit out
Pin for testing

thcud.correction—vel float in
The Velocity to move Z to correct

PARAMETERS
thcud.velocity—tol float rw
The deviation percent from planned velocity

AUTHOR

John Thornton

LICENSE
GPLV?2 or greater

580 01/04/2026 LinuxCNC

THREADS(9) LinuxCNC Documentation THREADS(9)

NAME

threads — creates hard realtime HAL threads

SYNOPSIS
loadrt threads namel=name periodl=period [fp1=<0|1>] [<_thread—2—info_>] [<_thread—3—info_>]

DESCRIPTION
threads is used to create hard realtime threads which can execute HAL functions at specific intervals. It is
not a true HAL component, in that it does not export any functions, pins, or parameters of its own. Once it
has created one or more threads, the threads stand alone, and the threads component can be unloaded
without affecting them. In fact, it can be unloaded and then reloaded to create additional threads, as many
times as needed.

threads can create up to three realtime threads. Threads must be created in order, from fastest to slowest.
Each thread is specified by three arguments. namel is used to specify the name of the first thread (thread
1). period1 is used to specify the period of thread 1 in nanoseconds. Both name and period are required.
The third argument, fp1 is optional, and is used to specify if thread 1 will be used to execute floating point
code. If not specified, it defaults to 1, which means that the thread will support floating point. Specify 0 to
disable floating point support, which saves a small amount of execution time by not saving the FPU
context. For additional threads, name2, period2, fp2, name3, period3, and fp3 work exactly the same. If
more than three threads are needed, unload threads, then reload it to create more threads.

FUNCTIONS

None

PINS

None

PARAMETERS

None

BUGS
The existence of threads might be considered a bug. Ideally, creation and deletion of threads would be
done directly with halemd commands, such as "newthread name period", "delthread name", or similar.
However, limitations in the current HAL implementation require thread creation to take place in kernel
space, and loading a component is the most straightforward way to do that.

LinuxCNC 01/04/2026 581

THREADTEST (9) LinuxCNC Documentation

NAME
threadtest — LinuxCNC HAL component for testing thread behavior

SYNOPSIS

loadrt threadtest [count=N|names=namel|[,name?2...]]

FUNCTIONS

threadtest.N.increment
threadtest.N.reset

PINS
threadtest.N.count u32 out

AUTHOR
Jeff Epler

LICENSE
GPL

582 01/04/2026

THREADTEST (9)

LinuxCNC

TIME(9) LinuxCNC Documentation TIME(9)

NAME

time — Time on in Hours, Minutes, Seconds

SYNOPSIS

loadrt time [count=N|names=name[,name?...]]

DESCRIPTION

Time

When either the time.N.start or time.N.pause bits goes true the cycle timer resets and starts to time until
time.N.start AND time.N.pause go false. When the time.N.pause bit goes true timing is paused until
time.N.pause goes false. If you connect time.N.start to halui.program.is—running and leave
time.N.pause unconnected the timer will reset during a pause. See the example connections below for more
information.

Time returns the hours, minutes, and seconds that time.N.start is true.

Sample PyVCP code to display the hours:minutes:seconds.

<pyvcp>
<hbox>
<label>
<text>"Cycle Time" </text>
("Helvetica",14)
</label>
<u32>
<halpin>"time—hours" </halpin>
("Helvetica",14)
<format>"2d"</format>
</fu32>
<label>
<text>":"</text>
("Helvetica",14)
</label>
<u32>
<halpin>"time—-minutes" </halpin>
("Helvetica",14)
<format>"2d"</format>
</fu32>
<label>
<text>":"</text>
("Helvetica",14)
</label>
<u32>
<halpin>"time—seconds" </halpin>
("Helvetica",14)
<format>"2d"</format>
</fu32>
</hbox>
</pyvcp>

In your post—gui.hal file you might use one of the following to connect this timer:
For a new config:

loadrt time

LinuxCNC 01/04/2026 583

TIME(9) LinuxCNC Documentation TIME(9)

addf time.0 servo—thread

net cycle—timer time.0.start <= halui.program.is—running

net cycle—timer—pause time.0.pause <= halui.program.is—paused
net cycle—seconds pyvcp.time—seconds <= time.0.seconds

net cycle—minutes pyvcp.time—minutes <= time.0.minutes

net cycle—hours pyvcp.time—hours <= time.0.hours

Previous to this version if you wanted the timer to continue running during a pause instead of resetting, you
had to use a HAL NOT component to invert the halui.program.is—idle pin and connect to time.N.start as
shown below:

loadrt time

loadrt not

addf time.0 servo—thread

addf not.0 servo—thread

net prog—running not.0.in <= halui.program.is—idle

net cycle—timer time.0.start <= not.0.out

net cycle—seconds pyvcp.time—seconds <= time.0.seconds
net cycle—minutes pyvcp.time—minutes <= time.0.minutes
net cycle—hours pyvcp.time—hours <= time.0.hours

For those who have this setup already, you can simply add a net connecting time.N.pause to
halui.program.is—paused:

net cycle—timer—pause time.0.pause <= halui.program.is—paused

FUNCTIONS

time.N (requires a floating—point thread)

PINS
time.V.start bit in
Timer On

time.N.pause bit in (default: 0)
Pause

time.N.seconds u32 out
Seconds

time.N.minutes u32 out
Minutes

time.N.hours u32 out
Hours

AUTHOR
John Thornton, itaib, Moses McKnight

LICENSE
GPL

584 01/04/2026 LinuxCNC

TIMEDELAY (9) LinuxCNC Documentation TIMEDELAY (9)

NAME

timedelay — The equivalent of a time—delay relay

SYNOPSIS

loadrt timedelay [count=N|names=name[,name2...]]

FUNCTIONS
timedelay.N (requires a floating—point thread)

PINS
timedelay.N.in bit in

timedelay.N.out bit out
Follows the value of in after applying the delays on—delay and off-delay.

timedelay.N.on—delay float in (default: 0.5)
The time, in seconds, for which in must be true before out becomes true

timedelay.N.off-—delay float in (default: 0.5)
The time, in seconds, for which in must be false before out becomes false

timedelay.N.elapsed float out
Current value of the internal timer

AUTHOR
Jeff Epler, based on works by Stephen Wille Padnos and John Kasunich

LICENSE
GPL

LinuxCNC 01/04/2026 585

TIMEDELTA(9) LinuxCNC Documentation TIMEDELTA(9)

NAME

timedelta — LinuxCNC HAL component that measures thread scheduling timing behavior

SYNOPSIS

loadrt timedelta [count=N|names=namel[,name?2...]]

FUNCTIONS

PINS

timedelta. N

timedelta.N jitter s32 out (default: 0)
Worst—case scheduling error (in ns). This is the largest discrepancy between ideal thread period, and
actual time between sequential runs of this component. This uses the absolute value of the error, so got
run too early and got run too late both show up as positive jitter.

timedelta.N.current—jitter s32 out (default: 0)
Scheduling error (in ns) of the current invocation. This is the discrepancy between ideal thread period,
and actual time since the previous run of this component. This uses the absolute value of the error, so
got run too early and got run too late both show up as positive jitter.

timedelta.N.current—error s32 out (default: 0)
Scheduling error (in ns) of the current invocation. This is the discrepancy between ideal thread period,
and actual time since the previous run of this component. This does not use the absolute value of the
error, so got run too early shows up as negative error and got run too late shows up as positive error.

timedelta.N.min—- s32 out (default: 0)
Minimum time (in ns) between sequential runs of this component.

timedelta.N.max— s32 out (default: 0)
Maximum time (in ns) between sequential runs of this component.

timedelta.N.reset bit in
Set this pin to True, then back to False, to reset some of the statistics.

timedelta.N.out s32 out
Time (in ns) since the previous run of this component. This should ideally be equal to the thread
period.

timedelta.N.err s32 out (default: 0)
Cumulative time error (in ns). Probably not useful.

timedelta.N.avg—err float out (default: 0)
The average scheduling error (in ns).

AUTHOR

Jeff Epler

LICENSE

586

GPL

01/04/2026 LinuxCNC

TOF(9) LinuxCNC Documentation

NAME
tof — IEC TOF timer — delay falling edge on a signal

SYNOPSIS

loadrt tof [count=N|names=name[,name2...]]

FUNCTIONS
tof N (requires a floating—point thread)
Update the timer

PINS
tof.V.in bit in
Input signal

tof.N.q bit out
Output signal

tof.NV.et float out
Elapsed time since falling edge in seconds

PARAMETERS
tof N.pt float rw
Delay time in seconds

AUTHOR
Chad Woitas

LICENSE
GPL

LinuxCNC 01/04/2026

TOF(9)

587

TOGGLE(9) LinuxCNC Documentation
NAME
toggle — "‘push—on, push—off' from momentary pushbuttons
SYNOPSIS
loadrt toggle [count=N|names=nameI[,name2...]]
DESCRIPTION
a aaaa aaaa

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAA

4 A333333aaaaaa

AAAAAAAAAAAAA

out: 4334344 HEEREEL
FUNCTIONS
toggle.N
PINS
toggle.N.in bit in
button input
toggle.N.out bit io
on/off output
PARAMETERS
toggle.N.debounce u32 rw (default: 2)
debounce delay in periods
AUTHOR
John Kasunich
LICENSE
GPL

588 01/04/2026

TOGGLE(9)

LinuxCNC

TOGGLE2NIST(9) LinuxCNC Documentation TOGGLE2NIST (9)

NAME

toggle2nist — toggle button to nist logic
SYNOPSIS

loadrt toggle2nist [count=N|names=namel[,name2...]]
DESCRIPTION

Toggle2nist can be used with a momentary push button to control a device that has separate on and off
inputs and an is—on output. A debounce delay in cycles can be set for in. (default = 2)

* On arising edge on pin in when is—on is low: It sets on until is—on becomes high.

* On arising edge on pin in when is—on is high: It sets off until is—on becomes low.

AAAAAA N AAAAAA A

AAAAAAAAAAAAAAAAAAAAAAAAAA

in : 4322283 XXXXXXXXXXXXA334444442442 XXXXXXXXXXXXA33aaa

4 2233223323344

AAA

Oon ! aaaaaaa ddaaaadaaaaadaaaaaaaadaaddaaaaaddaaaaaaaaaaa

a 4284232223444

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

is—on: 44242222222322233333a ddadaaaaaaaa

FUNCTIONS
toggle2nist.N

PINS
toggle2nist.N.in bit in
momentary button in

toggle2nist.N.is—on bit in
current state of device

toggle2nist.N.debounce u32 in (default: 2)
debounce delay for in—pin in cycles

toggle2nist.N.on bit out
turn device on

toggle2nist.N.off bit out
turn device off

AUTHOR
Anders Wallin, David Mueller

LICENSE
GPL

LinuxCNC 01/04/2026 589

TON(9) LinuxCNC Documentation

NAME
ton — IEC TON timer — delay rising edge on a signal

SYNOPSIS

loadrt ton [count=N|names=namel[,name2...]]

FUNCTIONS
ton.N (requires a floating—point thread)
Update the timer

PINS
ton.N.in bit in
Input signal

ton.N.q bit out
Output signal

ton.N.et float out
Elapsed time since rising edge in seconds

PARAMETERS
ton.N.pt float rw
Delay time in seconds

AUTHOR
Chad Woitas

LICENSE
GPL

590 01/04/2026

TON(9)

LinuxCNC

TP(9) LinuxCNC Documentation

NAME

tp — IEC TP timer — generate a high pulse of defined duration on rising edge

SYNOPSIS

loadrt tp [count=N|names=namel[,name2...]]

FUNCTIONS
tp.N (requires a floating—point thread)
Update the timer

PINS
tp.N.in bit in
Input signal

tp.N.q bit out
Output signal

tp.N.et float out
Elapsed time since start of pulse in seconds

PARAMETERS
tp.N.pt float rw
Pulse time in seconds

AUTHOR
Chad Woitas

LICENSE
GPL

LinuxCNC 01/04/2026

TP(9)

591

TPCOMP(9) LinuxCNC Documentation TPCOMP(9)

NAME

tpcomp — Trajectory Planning (tp) module skeleton

SYNOPSIS

Custom Trajectory Planning module loaded with [TRAJ]ITPMOD=tpcomp

DESCRIPTION

PINS

Example of a trajectory planning (tp) module buildable with halcompile.

The tpcomp.comp file (src/hal/components/tpcomp.comp) illustrates a method to use halcompile to build a
trajectory planning module based on the files used for the default trajectory planner (tpmod).

The example tpcomp.comp is not usable until modified for the user environment. To create a runnable
tpcomp module, the tpcomp.comp file must be edited to supply 1) a valid #define TOPDIR and 2)

references to valid source code file names for all files used.

To avoid updates that overwrite tpcomp.comp, best practice is to rename the file and its component name
(example: user_tpcomp.comp creates module: user_tpcomp).

The (renamed) component can be built and installed with halcompile and then substituted for the default tp
module (tpmod) using:

$ linuxcne *—t user_tpcomp* someconfig.ini
or by inifile setting: [TRAJITPMOD=user_tpcomp

*Note:*If using a deb install:
1. halcompile is provided by the deb package linuxcnc—dev

2. This source file for BRANCHNAME (master,2.9,etc) is downloadable from github:

https://github.com/LinuxCNC/linuxcnc/blob/BRANCHNAME/src/hal/components/tpcomp.comp

tpcomp.N.is—module bit out (default: /)

AUTHOR

Dewey Garrett

LICENSE

592

GPL

01/04/2026 LinuxCNC

TRISTATE_BIT(9) LinuxCNC Documentation TRISTATE_BIT(9)

NAME

tristate_bit — Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics

SYNOPSIS

loadrt tristate_bit [count=N|names=namel[,name?2...]]

FUNCTIONS
tristate—bit. N
If enable is TRUE, copy in to out.

PINS
tristate—bit.V.in— bit in
Input value

tristate—bit.N.out bit io
Output value

tristate—bit.V.enable bit in
When TRUE, copy in to out

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026 593

TRISTATE_FLOAT (9) LinuxCNC Documentation TRISTATE_FLOAT (9)

NAME

tristate_float — Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics
SYNOPSIS

loadrt tristate_float [count=N|names=namel[,name?...]]
FUNCTIONS

tristate—float.N (requires a floating—point thread)
If enable is TRUE, copy in to out.

PINS
tristate—float.N.in— float in
Input value

tristate—float.N.out float io
Output value

tristate—float.N.enable bit in
When TRUE, copy in to out

AUTHOR
Jeff Epler

LICENSE
GPL

594 01/04/2026 LinuxCNC

UPDOWN (9) LinuxCNC Documentation
NAME
updown — Counts up or down, with optional limits and wraparound behavior
SYNOPSIS
loadrt updown [count=N|names=name][,name2...]]
FUNCTIONS
updown.N

Process inputs and update count if necessary

PINS
updown.N.countup bit in
Increment count when this pin goes from O to 1

updown.N.countdown bit in
Decrement count when this pin goes from 0 to 1

updown.N.reset bit in
Reset count when this pin goes from O to 1

updown.N.count s32 out
The current count

PARAMETERS
updown.N.clamp bit rw
If TRUE, then clamp the output to the min and max parameters.

updown.N.wrap bit rw

UPDOWN (9)

If TRUE, then wrap around when the count goes above or below the min and max parameters. Note

that wrap implies (and overrides) clamp.

updown.N.max s32 rw (default: Ox7FFFFFFF)
If clamp or wrap is set, count will never exceed this number

updown.N.min s32 rw
If clamp or wrap is set, count will never be less than this number

AUTHOR
Stephen Wille Padnos

LICENSE
GPL

LinuxCNC 01/04/2026

595

USERKINS(9) LinuxCNC Documentation USERKINS(9)

NAME

userkins — Template for user—built kinematics

SYNOPSIS

loadrt userkins [count=N|names=namel[,name?2...]]

DESCRIPTION

The userkins.comp file is a template for creating kinematics that can be user—built using halcompile.

The unmodified userkins component can be used as a kinematics file for a machine with identity kinematics
for an xyz machine employing 3 joints (motors).

USAGE
Copy the userkins.comp file to a user—owned directory (mydir). Note: The userkins.comp file can be
downloaded from: github.com/LinuxCNC/linuxcnc/raw/2.8/src/hal/components/userkins.comp where 2.8 is
the branch name (use master for the master branch). For a RIP (run—in—place) build, the file is located in
the git tree as: src/hal/components/userkins.comp.

Edit the functions kinematicsForward() and kinematicsInverse() as required.
If required, add HAL pins following examples in the template code.
Build and install the component using halcompile:

$ c¢d mydir

$ [sudo] halcompile ——install userkins.comp

Note:

sudo is required when using a deb install

sudo is *not* required for run—in—place builds
$ man halcompile for more info

Specify userkins in an ini file as:

[KINS]

KINEMATICS=userkins

JOINTS=3

the number of JOINTS must agree with the

number of joints used in your modified userkins.comp

Note: the manpage for userkins is not updated by halcompile ——install

To use a different component name, rename the file (example mykins.comp) and change all instances of
userkins to mykins.

NOTES
e The fpin pin is included to satisfy the requirements of the halcompile utility but it is not accessible
to kinematics functions.

e HAL pins and parameters needed in kinematics functions (kinematicsForward(),
kinematicsInverse()) must be setup in a function (userkins_setup()) invoked by the initial motion
module call to kinematicsType().

FUNCTIONS

userkins.N.fdemo (requires a floating—point thread)

PINS
userkins.N.fpin s32 out (default: 0)
pin to demonstrate use of a conventional (non—kinematics) function fdemo

596 01/04/2026 LinuxCNC

USERKINS(9) LinuxCNC Documentation USERKINS(9)

AUTHOR
Dewey Garrett

LICENSE
GPL

LinuxCNC 01/04/2026 597

WATCHDOG(9) LinuxCNC Documentation WATCHDOG(9)

NAME

watchdog — monitor multiple inputs for a "heartbeat"

SYNOPSIS

loadrt watchdog num_inputs=N

You must specify the number of inputs, from 1 to 32. Each input has a separate timeout value.

FUNCTIONS
process
Check all input pins for transitions, clear the ok—out pin if any input has no transition within its
timeout period. This function does not use floating point, and should be added to a fast thread.

set—timeouts
Check for timeout changes, and convert the float timeout inputs to int values that can be used in
process. This function also monitors enable—in for false to true transitions, and re—enables monitoring
when such a transition is detected. This function does use floating point, and it is appropriate to add it
to the servo thread.

PINS
watchdog.input-N bit in
Input number N. The inputs are numbered from 0 to num_inputs—1.

watchdog.enable—in bit in (default: FALSE)
If TRUE, forces out—ok to be false. Additionally, if a timeout occurs on any input, this pin must be set
FALSE and TRUE again to re—start the monitoring of input pins.

watchdog.ok—out bit out (default: FALSE)
OK output. This pin is true only if enable—in is TRUE and no timeout has been detected. This output
can be connected to the enable input of a charge_pump or stepgen (in v mode), to provide a heartbeat
signal to external monitoring hardware.

PARAMETERS
watchdog.timeout—N float in
Timeout value for input number N. The inputs are numbered from 0 to num_inputs—1. The timeout is
in seconds, and may not be below zero. Note that a timeout of 0.0 will likely prevent ok—out from ever
becoming true. Also note that excessively long timeouts are relatively useless for monitoring purposes.

LICENSE
GPL

598 01/04/2026 LinuxCNC

WCOMP(9) LinuxCNC Documentation

NAME

wcomp — Window comparator

SYNOPSIS

loadrt wcomp [count=N|names=name][,name2...]]

FUNCTIONS

weomp.N (requires a floating—point thread)

PINS
wcomp.N.in float in
Value being compared

wcomp.N.min- float in
Low boundary for comparison

wcomp.N.max~— float in
High boundary for comparison

wcomp.N.out bit out
True if in is strictly between min and max

wcomp.N.under bit out
True if in is less than or equal to min

wcomp.N.over bit out
True if in is greater than or equal to max

NOTES

If max a min then the behavior is undefined.

AUTHOR
Jeff Epler

LICENSE
GPL

LinuxCNC 01/04/2026

WCOMP(9)

599

WEIGHTED_SUM (9) LinuxCNC Documentation WEIGHTED_SUM (9)

NAME

weighted_sum — convert a group of bits to an integer

SYNOPSIS

loadrt weighted_sum wsum_sizes=sizel,size,...]

Creates weighted sum groups each with the given number of input bits (size).

DESCRIPTION
The weighted_sum converts a group of bits to an integer. The conversion is the sum of the weights of the
bits that are on plus any offset. The weight of the m—th bit is 2°m. This is similar to a binary coded decimal
but with more options. The hold bit stops processing the input changes so the sum will not change.

The default value for each weight is 2°m where m is the bit number. This results in a binary to unsigned
conversion.

There is a limit of 8 weighted summers and each may have up to 16 input bits.

FUNCTIONS
process_wsums (requires a floating point thread)
Read all input values and update all output values.

PINS
wsum.N.bit.M.in bit in
The mth input of weighted summer n.

wsum.N.hold bit in
When TRUE, the sum output does not change. When FALSE, the sum output tracks the bif inputs
according to the weights and offset.

wsum.N.sum signed out
The output of the weighted summer.

wsum.N.bit.M.weight signed rw
The weight of the mth input of weighted summer n. The default value is 2m.

wsum.N.offset signed rw
The offset is added to the weights corresponding to all TRUE inputs to give the final sum.

SEE ALSO
scaled_s32_sums(9), sum2(9)

600 01/04/2026 LinuxCNC

XHC_HBO04_UTIL(9)

NAME

xhc_hb04_util — xhc—hb04 convenience utility

SYNOPSIS

loadrt xhc_hb04_util [count=N|names=name[,name2...]]

DESCRIPTION

Provides logic for a start/pause button and an interface to halui.program.is_paused, is_idle, is_running to

generate outputs for halui.program.pause, resume, run.

LinuxCNC Documentation

XHC_HB04_UTIL(9)

Includes 4 simple lowpass filters with coef and scale pins. The coef value should be 0 ax coef a1, smaller

coef values slow response. See the lowpass manpage for calculating the filter time constant ($ man

lowpass).

FUNCTIONS

PINS

xhc—hb04—util.N (requires a floating—point thread)

xhc-hb04—util. N.start—or—pause bit in
xhc-hb04—util. V.is—paused bit in
xhc—hb04—util. V.is—idle bit in
xhc-hb04—util. NV.is—running bit in
xhc-hb04—util. NV.pause bit out
xhc—hb04—util. N.resume bit out
xhc—hb04—util. N.run bit out
xhc—hb04—util. V.in0 s32 in
xhc—hb04—util. V.in1 s32 in
xhc—hb04—util. V.in2 s32 in
xhc—hb04—util. V.in3 s32 in

xhc—hb04—util. N.out0 s32 out
xhc—hb04—util.N.outl s32 out
xhc—hb04—util. N.out2 s32 out
xhc—hb04—util. N.out3 s32 out
xhc—hb04—util.N.scale0 float in (default: 7.0)
xhc—hb04—util.N.scalel float in (default: 7.0)
xhc—hb04—util.N.scale2 float in (default: 71.0)
xhc—hb04—util.N.scale3 float in (default: 7.0)
xhc—hb04—util. N.coef0 float in (default: 71.0)
xhc—hb04—util. N.coef1 float in (default: 1.0)
xhc—hb04—util. N.coef2 float in (default: 71.0)
xhc-hb04—util. N.coef3 float in (default: 71.0)
xhc-hb04—util. N.divide—by—k—in float in
xhc-hb04—util. N.divide—by-k—out float out
xhc-hb04—util. NV .k float in (default: 7.0)

LinuxCNC 01/04/2026

601

XHC_HBO04_UTIL(9) LinuxCNC Documentation XHC_HB04_UTIL(9)

AUTHOR
Dewey Garrett

LICENSE
GPL

602 01/04/2026 LinuxCNC

XOR2(9) LinuxCNC Documentation

NAME

xor2 — Two—input XOR (exclusive OR) gate

SYNOPSIS

loadrt xor2 [count=N|names=namel[,name2...]]

DESCRIPTION

The out pin is computed from the value of the in0 and in1 pins according to the following truth table:

inl | in0 | out

FUNCTIONS
xor2.N

PINS
xor2.N.in0 bit in
First input

xor2.N.inl bit in
Second input

xor2.N.out bit out
Output

SEE ALSO

and2(9), logic(9), lut5(9), not(9), or2(9).

AUTHOR

John Kasunich

LICENSE
GPL

LinuxCNC

01/04/2026

XOR2(9)

603

XYZAB_TDR_KINS(9) LinuxCNC Documentation XYZAB_TDR _KINS(9)

NAME

xyzab_tdr_kins — Switchable kinematics for 5 axis machine with rotary table A and B

SYNOPSIS

loadrt xyzab_tdr_Kkins [count=N|names=namel[,name?2...]]

DESCRIPTION

PINS

This is a switchable kinematics module for a 5—axis milling configuration using 3 cartesian linear joints
(XYZ) and 2 rotary table joints (AB).

The module contains two kinematic models:
type0 (default) is a trivial XYZAB configuration with joints 0..4 mapped to axes XYZAB respectively.
typel is a XYZAB configuration with tool center point (TCP) compensation.

For an example configuration, run the sim config:
/configs/sim/axis/vismach/5axis/table—dual—rotary/xyzab—tdr.ini.

Further explanations can be found in the README in /configs/sim/axis/vismach/5axis/table—dual—rotary/.
xyzab_tdr_kins.comp was constructed by modifying the template file: userkins.comp.

For more information on how to modify userkins.comp run: $ man userkins. Also, see additional
information inside: userkins.comp.

For information on kinematics in general see the kinematics document chapter
(docs/src/motion/kinematics.txt) and for switchable kinematics in particular see the switchkins document
chapter (docs/src/motion/switchkins.txt)

xyzab—tdr—kins.N.dummy s32 out (default: 0)
one pin needed to satisfy halcompile requirement

AUTHOR

David Mueller

LICENSE

604

GPL

01/04/2026 LinuxCNC

XYZACB_TRSRN(9) LinuxCNC Documentation XYZACB_TRSRN(9)

NAME
xyzacb_trsrn — Switchable kinematics for 6 axis machine with a rotary table C, rotary spindle B and
nutating spindle A

SYNOPSIS

loadrt xyzacb_trsrn [count=N|names=namel[,name?2...]]

DESCRIPTION
FIXME

FUNCTIONS

xyzacb—trsrn.N.fdemo (requires a floating—point thread)

PINS
xyzacb—trsrn.N.fpin s32 out (default: 0)
pin to demonstrate use of a conventional (non—kinematics) function fdemo

AUTHOR
David Mueller

LICENSE
GPL

LinuxCNC 01/04/2026 605

XYZBCA_TRSRN(9) LinuxCNC Documentation XYZBCA_TRSRN (9)

NAME
xyzbca_trsrn — Switchable kinematics for 6 axis machine with a rotary table B, rotary spindle C and
nutating spindle A

SYNOPSIS

loadrt xyzbca_trsrn [count=N|names=namel[,name?2...]]

DESCRIPTION
FIXME

FUNCTIONS

xyzbca—trsrn.N.fdemo (requires a floating—point thread)

PINS
xyzbca—trsrn.N.fpin s32 out (default: 0)
pin to demonstrate use of a conventional (non—kinematics) function fdemo

AUTHOR
David Mueller

LICENSE
GPL

606 01/04/2026 LinuxCNC

