
���� V2.10.0-pre0-5053-gfb14800741

���� V2.10.0-pre0-5053-gfb14800741 ii

Contents

1 �� 1

2 HAL General Reference 2
2.1 HAL Entity Names . 2
2.2 HAL General Naming Conventions . 2
2.3 Hardware Driver Naming Conventions . 3

2.3.1 Pins/Parameters names . 3
2.3.2 Function Names . 4

3 Code Notes 5
3.1 Intended audience . 5
3.2 Organization . 5
3.3 Terms and definitions . 5
3.4 Architecture overview . 6

3.4.1 LinuxCNC software architecture . 8
3.5 Motion Controller Introduction . 8

3.5.1 Motion Controller Modules . 8
3.6 Block diagrams and Data Flow . 10
3.7 Homing . 13

3.7.1 Homing state diagram . 13
3.7.2 Another homing diagram . 14

3.8 Commands . 14
3.8.1 ABORT . 14

3.8.1.1 Requirements . 15
3.8.1.2 Results . 15

3.8.2 FREE . 15
3.8.2.1 Requirements . 15
3.8.2.2 Results . 15

3.8.3 TELEOP . 15
3.8.3.1 Requirements . 16

���� V2.10.0-pre0-5053-gfb14800741 iii

3.8.3.2 Results . 16
3.8.4 COORD . 16

3.8.4.1 Requirements . 16
3.8.4.2 Results . 16

3.8.5 ENABLE . 16
3.8.5.1 Requirements . 16
3.8.5.2 Results . 16

3.8.6 DISABLE . 17
3.8.6.1 Requirements . 17
3.8.6.2 Results . 17

3.8.7 ENABLE_AMPLIFIER . 17
3.8.7.1 Requirements . 17
3.8.7.2 Results . 17

3.8.8 DISABLE_AMPLIFIER . 17
3.8.8.1 Requirements . 17
3.8.8.2 Results . 17

3.8.9 ACTIVATE_JOINT . 17
3.8.9.1 Requirements . 18
3.8.9.2 Results . 18

3.8.10DEACTIVATE_JOINT . 18
3.8.10.1Requirements . 18
3.8.10.2Results . 18

3.8.11ENABLE_WATCHDOG . 18
3.8.11.1Requirements . 18
3.8.11.2Results . 18

3.8.12DISABLE_WATCHDOG . 18
3.8.12.1Requirements . 18
3.8.12.2Results . 18

3.8.13PAUSE . 19
3.8.13.1Requirements . 19
3.8.13.2Results . 19

3.8.14RESUME . 19
3.8.14.1Requirements . 19
3.8.14.2Results . 19

3.8.15STEP . 19
3.8.15.1Requirements . 19
3.8.15.2Results . 19

3.8.16SCALE . 19
3.8.16.1Requirements . 20

���� V2.10.0-pre0-5053-gfb14800741 iv

3.8.16.2Results . 20
3.8.17OVERRIDE_LIMITS . 20

3.8.17.1Requirements . 20
3.8.17.2Results . 20

3.8.18HOME . 20
3.8.18.1Requirements . 20
3.8.18.2Results . 20

3.8.19JOG_CONT . 20
3.8.19.1Requirements . 21
3.8.19.2Results . 21

3.8.20JOG_INCR . 21
3.8.20.1Requirements . 21
3.8.20.2Results . 21

3.8.21JOG_ABS . 21
3.8.21.1Requirements . 21
3.8.21.2Results . 22

3.8.22SET_LINE . 22
3.8.23SET_CIRCLE . 22
3.8.24SET_TELEOP_VECTOR . 22
3.8.25PROBE . 22
3.8.26CLEAR_PROBE_FLAG . 22
3.8.27SET_xix . 22

3.9 Backlash and Screw Error Compensation . 23
3.10Task controller (EMCTASK) . 23

3.10.1State . 23
3.11IO controller (EMCIO) . 23
3.12���� . 23
3.13libnml Introduction . 24
3.14LinkedList . 24
3.15LinkedListNode . 24
3.16SharedMemory . 24
3.17ShmBuffer . 24
3.18Timer . 24
3.19Semaphore . 25
3.20CMS . 25
3.21Configuration file format . 26

3.21.1Buffer line . 26
3.21.2Type specific configs . 27
3.21.3Process line . 28

���� V2.10.0-pre0-5053-gfb14800741 v

3.21.4Configuration Comments . 28
3.22NML base class . 29

3.22.1NML internals . 29
3.22.1.1NML constructor . 29
3.22.1.2NML read/write . 30
3.22.1.3NMLmsg and NML relationships . 30

3.23Adding custom NML commands . 30
3.24The Tool Table and Toolchanger . 30

3.24.1Toolchanger abstraction in LinuxCNC . 30
3.24.1.1Nonrandom Toolchangers . 31
3.24.1.2Random Toolchangers . 31

3.24.2The Tool Table . 31
3.24.3G-codes affecting tools . 32

3.24.3.1Txxx . 32
3.24.3.2M6 . 32
3.24.3.3G43/G43.1/G49 . 33
3.24.3.4G10 L1/L10/L11 . 33
3.24.3.5M61 . 34
3.24.3.6G41/G41.1/G42/G42.1 . 34
3.24.3.7G40 . 34

3.24.4Internal state variables . 35
3.24.4.1IO . 35
3.24.4.2interp . 35

3.25Reckoning of joints and axes . 36
3.25.1In the status buffer . 36
3.25.2In Motion . 37

4 NML Messages 38
4.1 OPERATOR . 38
4.2 JOINT . 38
4.3 AXIS . 38
4.4 JOG . 39
4.5 TRAJ . 39
4.6 MOTION . 39
4.7 TASK . 40
4.8 TOOL . 40
4.9 AUX . 40
4.10SPINDLE . 41
4.11COOLANT . 41
4.12LUBE . 41
4.13IO (Input/Output) . 41
4.14Others . 41

���� V2.10.0-pre0-5053-gfb14800741 vi

5 Coding Style 42
5.1 Do no harm . 42
5.2 Tab Stops . 42
5.3 Indentation . 42
5.4 Placing Braces . 42
5.5 Naming . 43
5.6 Functions . 43
5.7 Commenting . 44
5.8 Shell Scripts & Makefiles . 44
5.9 C++ Conventions . 44

5.9.1 Specific method naming conventions . 45
5.10Python coding standards . 45
5.11Comp coding standards . 46

6 GUI Development Reference 47
6.1 Language . 47
6.2 Localization of float numbers in GUIs . 47
6.3 Basic Configuration . 47

6.3.1 INI [DISPLAY] . 48
6.3.1.1 Display . 48
6.3.1.2 Cycle Time . 48
6.3.1.3 File Paths . 48
6.3.1.4 Jog Increments . 48
6.3.1.5 Machine Type Hint . 49
6.3.1.6 Overrides . 49
6.3.1.7 Jog Rate . 49
6.3.1.8 Spindle Manual Controls . 49

6.3.2 INI [MDI_COMMAND] . 49
6.3.3 INI [FILTER] . 50
6.3.4 INI [HAL] . 50

6.3.4.1 Postgui Halfile . 50
6.3.4.2 Postgui Halcmd . 50

6.4 Extended Configuration . 51
6.4.1 Embedding GUI Elements . 51
6.4.2 User Message Dialogs . 51

���� V2.10.0-pre0-5053-gfb14800741 vii

7 Building LinuxCNC 52
7.1 �� . 52
7.2 Downloading source tree . 52

7.2.1 Quick Start . 53
7.3 Supported Platforms . 53

7.3.1 Realtime . 54
7.4 Build modes . 54

7.4.1 Building for Run In Place . 54
7.4.1.1 src/configure arguments . 54
7.4.1.2 make arguments . 55

7.4.2 Building Debian Packages . 55
7.4.2.1 LinuxCNC’s debian/configure arguments 56
7.4.2.2 Satisfying Build Dependencies . 57
7.4.2.3 Options for dpkg-buildpackage . 58
7.4.2.4 Installing self-built Debian packages . 59

7.5 Setting up the environment . 59
7.5.1 Increase the locked memory limit . 59

7.6 Building on Gentoo . 60
7.7 Options for checking out the git repo . 60

7.7.1 Fork us on GitHub . 61

8 Adding Configuration Selection Items 62

9 Contributing to LinuxCNC 63
9.1 �� . 63
9.2 Communication among LinuxCNC developers . 63
9.3 The LinuxCNC Source Forge project . 63
9.4 The Git Revision Control System . 63

9.4.1 LinuxCNC official Git repo . 63
9.4.2 Use of Git in the LinuxCNC project . 64
9.4.3 git tutorials . 64

9.5 Overview of the process . 64
9.6 git configuration . 65
9.7 Effective use of git . 65

9.7.1 Commit contents . 65
9.7.2 Write good commit messages . 65
9.7.3 Commit to the proper branch . 65
9.7.4 Use multiple commits to organize changes . 66
9.7.5 Follow the style of the surrounding code . 66

���� V2.10.0-pre0-5053-gfb14800741 viii

9.7.6 Get rid of RTAPI_SUCCESS, use 0 instead . 66
9.7.7 Simplify complicated history before sharing with fellow developers 66
9.7.8 Make sure every commit builds . 66
9.7.9 Renaming files . 67
9.7.10Prefer ”rebase” . 67

9.8 Translations . 67
9.9 Other ways to contribute . 67

10Glossary 68

11Legal Section 74
11.1Copyright Terms . 74
11.2GNU Free Documentation License . 74

���� V2.10.0-pre0-5053-gfb14800741 1 / 78

Chapter 1

��

This handbook is a work in progress. If you are able to help with writing, editing, or graphic prepara-
tion please contact anymember of thewriting team or join and send an email to emc-users@lists.sourceforge.net.
Copyright © 2000-2020 LinuxCNC.org
Permission is granted to copy, distribute and/or modify this document under the terms of the GNUFree
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled ”GNU Free Documentation License”.
If you do not find the license you may order a copy from:

Free Software Foundation, Inc.
51 Franklin Street
Fifth Floor
Boston, MA 02110-1301 USA.

(The English language version is authoritative)
LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered
trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a world-wide basis.
The LinuxCNC project is not affiliated with Debian®. Debian is a registered trademark owned by
Software in the Public Interest, Inc.
The LinuxCNC project is not affiliated with UBUNTU®. UBUNTU is a registered trademark owned
by Canonical Limited.

mailto:emc-users@lists.sourceforge.net

���� V2.10.0-pre0-5053-gfb14800741 2 / 78

Chapter 2

HAL General Reference

2.1 HAL Entity Names

All HAL entities are accessible and manipulable by their names, so documenting the names of pins,
signals, parameters, etc., is very important. Names in HAL have a maximum length of 41 characters
(as defined by HAL_NAME_LEN in hal.h). Many names will be presented in the general form, with
formatted text <like-this> representing fields of various values.
When pins, signals, or parameters are described for the first time, their name will be preceded by
their type in parentheses (float) and followed by a brief description. Typical pins definitions look like
these examples:

(bit) parport.<portnum>.pin-<pinnum>-in
The HAL pin associated with the physical input pin <pinnum> of the db25 connector.

(float) pid.<loopnum>.output
The PID loop output

Occasionally, an abbreviated version of the namemay be used, for example the second pin above could
be simply called with .output when it can be done without causing confusion.

2.2 HAL General Naming Conventions

Consistent naming conventions would make HAL much easier to use. For example, if every encoder
driver provided the same set of pins and named them the same way, then it would be easy to change
from one type of encoder driver to another. Unfortunately, like many open-source projects, HAL is a
combination of things that were designed, and things that simply evolved. As a result, there are many
inconsistencies. This section attempts to address that problem by defining some conventions, but it
will probably be a while before all the modules are converted to follow them.
Halcmd and other low-level HAL utilities treat HAL names as single entities, with no internal struc-
ture. However, most modules do have some implicit structure. For example, a board provides several
functional blocks, each block might have several channels, and each channel has one or more pins.
This results in a structure that resembles a directory tree. Even though halcmd doesn’t recognize the
tree structure, proper choice of naming conventions will let it group related items together (since it
sorts the names). In addition, higher level tools can be designed to recognize such structure, if the
names provide the necessary information. To do that, all HAL components should follow these rules:

• Dots (“.”) separate levels of the hierarchy. This is analogous to the slash (“/”) in a filename.

���� V2.10.0-pre0-5053-gfb14800741 3 / 78

• Hyphens (“-”) separate words or fields in the same level of the hierarchy.

• HAL components should not use underscores or “MixedCase”. 1

• Use only lowercase letters and numbers in names.

2.3 Hardware Driver Naming Conventions

��
Most drivers do not follow these conventions in version 2.0. This chapter is really a guide for future
developments.

2.3.1 Pins/Parameters names

Hardware drivers should use five fields (on three levels) to make up a pin or parameter name, as
follows:
<device-name>.<device-num>.<io-type>.<chan-num>.<specific-name>

The individual fields are:

<device-name>
The device that the driver is intended to work with. This is most often an interface board of some
type, but there are other possibilities.

<device-num>
It is possible to install more than one servo board, parallel port, or other hardware device in
a computer. The device number identifies a specific device. Device numbers start at 0 and
increment.

<io-type>
Most devices provide more than one type of I/O. Even the simple parallel port has both digital
inputs and digital outputs. More complex boards can have digital inputs and outputs, encoder
counters, pwm or step pulse generators, analog-to-digital converters, digital-to-analog convert-
ers, or other unique capabilities. The I/O type is used to identify the kind of I/O that a pin or
parameter is associated with. Ideally, drivers that implement the same I/O type, even if for very
different devices, should provide a consistent set of pins and parameters and identical behavior.
For example, all digital inputs should behave the samewhen seen from inside the HAL, regardless
of the device.

<chan-num>
Virtually every I/O device has multiple channels, and the channel number identifies one of them.
Like device numbers, channel numbers start at zero and increment.2 If more than one device is
installed, the channel numbers on additional devices start over at zero. If it is possible to have a
channel number greater than 9, then channel numbers should be two digits, with a leading zero
on numbers less than 10 to preserve sort ordering. Some modules have pins and/or parameters
that affect more than one channel. For example a PWM generator might have four channels
with four independent ”duty-cycle” inputs, but one ”frequency” parameter that controls all four
channels (due to hardware limitations). The frequency parameter should use ”0-3” as the channel
number.

1Underlined characters have been removed, but there are still a few cases of broken mixture, for example pid.0.Pgain in
place of pid.0.p-gain.

2One exception to the ”channel numbers start at zero” rule is the parallel port. Its HAL pins are numbered with the
corresponding pin number on the DB-25 connector. This is convenient for wiring, but inconsistent with other drivers. There is
some debate over whether this is a bug or a feature.

���� V2.10.0-pre0-5053-gfb14800741 4 / 78

<specific-name>
An individual I/O channel might have just a single HAL pin associated with it, but most have more
than one. For example, a digital input has two pins, one is the state of the physical pin, the other
is the same thing inverted. That allows the configurator to choose between active high and active
low inputs. For most io-types, there is a standard set of pins and parameters, (referred to as the
”canonical interface”) that the driver should implement. The canonical interfaces are described
in the Canonical Device Interfaces chapter.

Examples

motenc.0.encoder.2.position
The position output of the third encoder channel on the first Motenc board.

stg.0.din.03.in
The state of the fourth digital input on the first Servo-to-Go board.

ppmc.0.pwm.00-03.frequency
The carrier frequency used for PWM channels 0 through 3 on the first Pico Systems ppmc board.

2.3.2 Function Names

Hardware drivers usually only have two kinds of HAL functions, ones that read the hardware and
update HAL pins, and ones that write to the hardware using data from HAL pins. They should be
named as follows:
<device-name>-<device-num>.<io-type>-<chan-num-range>.read|write

<device-name>
The same as used for pins and parameters.

<device-num>
The specific device that the function will access.

<io-type>
Optional. A function may access all of the I/O on a board, or it may access only a certain type. For
example, there may be independent functions for reading encoder counters and reading digital
I/O. If such independent functions exist, the <io-type> field identifies the type of I/O they access.
If a single function reads all I/O provided by the board, <io-type> is not used. 3

<chan-num-range>
Optional. Used only if the <io-type> I/O is broken into groups and accessed by different functions.

read|write
Indicates whether the function reads the hardware or writes to it.

Examples

motenc.0.encoder.read
Reads all encoders on the first motenc board.

generic8255.0.din.09-15.read
Reads the second 8 bit port on the first generic 8255 based digital I/O board.

ppmc.0.write
Writes all outputs (step generators, pwm, DACs, and digital) on the first Pico Systems ppmc
board.

3Note to driver programmers: Do NOT implement separate functions for different I/O types unless they are interruptible
and can work in independent threads. If interrupting an encoder read, reading digital inputs, and then resuming the encoder
read will cause problems, then implement a single function that does everything.

���� V2.10.0-pre0-5053-gfb14800741 5 / 78

Chapter 3

Code Notes

3.1 Intended audience

This document is a collection of notes about the internals of LinuxCNC. It is primarily of interest to
developers, however much of the information here may also be of interest to system integrators and
others who are simply curious about how LinuxCNC works. Much of this information is now outdated
and has never been reviewed for accuracy.

3.2 Organization

There will be a chapter for each of the major components of LinuxCNC, as well as chapter(s) covering
how they work together. This document is very much a work in progress, and its layout may change
in the future.

3.3 Terms and definitions

• AXIS - An axis is one of the nine degrees of freedom that define a tool position in three-dimensional
Cartesian space. Those nine axes are referred to as X, Y, Z, A, B, C, U, V, andW. The linear orthogonal
coordinates X, Y, and Z determine where the tip of the tool is positioned. The angular coordinates
A, B, and C determine the tool orientation. A second set of linear orthogonal coordinates U, V,
and W allows tool motion (typically for cutting actions) relative to the previously offset and rotated
axes. Unfortunately ”axis” is also sometimes used to mean a degree of freedom of the machine
itself, such as the saddle, table, or quill of a Bridgeport type milling machine. On a Bridgeport this
causes no confusion, since movement of the table directly corresponds to movement along the X
axis. However, the shoulder and elbow joints of a robot arm and the linear actuators of a hexapod
do not correspond to movement along any Cartesian axis, and in general it is important to make
the distinction between the Cartesian axes and the machine degrees of freedom. In this document,
the latter will be called joints, not axes. The GUIs and some other parts of the code may not always
follow this distinction, but the internals of the motion controller do.

• JOINT - A joint is one of the movable parts of the machine. Joints are distinct from axes, although
the two terms are sometimes (mis)used to mean the same thing. In LinuxCNC, a joint is a physical
thing that can be moved, not a coordinate in space. For example, the quill, knee, saddle, and table
of a Bridgeport mill are all joints. The shoulder, elbow, and wrist of a robot arm are joints, as are
the linear actuators of a hexapod. Every joint has a motor or actuator of some type associated with
it. Joints do not necessarily correspond to the X, Y, and Z axes, although for machines with trivial

���� V2.10.0-pre0-5053-gfb14800741 6 / 78

kinematics that may be the case. Even on those machines, joint position and axis position are fun-
damentally different things. In this document, the terms joint and axis are used carefully to respect
their distinct meanings. Unfortunately that isn’t necessarily true everywhere else. In particular,
GUIs for machines with trivial kinematics may gloss over or completely hide the distinction between
joints and axes. In addition, the INI file uses the term axis for data that would more accurately be
described as joint data, such as input and output scaling, etc.

��
This distinction was made in version 2.8 of LinuxCNC. The INI file got a new section [JOINT_<num>].
Many of the parameters that were previously proper to the [AXIS_<letter>] section are now in the
new section. Other sections, such as [KINS], also take on new parameters to match this. An update
script has been provided to transform old INI files to the new axes/joints configuration.

• POSE - A pose is a fully specified position in 3D Cartesian space. In the LinuxCNCmotion controller,
when we refer to a pose we mean an EmcPose structure, containing six linear coordinates (X, Y, Z,
U, V, and W) and three angular ones (A, B, and C).

• coord, or coordinated mode, means that all articulations are synchronized and they move together
as directed by the higher-level code. It is the normal mode when machining. In coordinated mode,
commands are assumed to be given in the Cartesian reference frame, and if the machine is not
Cartesian, the commands are translated by the kinematics to drive each joint into the joint space
as needed.

• freemeans that commands are interpreted in joint space. It is used tomanually move (jog) individual
joints, although it does not prevent them from moving multiple joints at once (I think). Homing is
also done in free mode; in fact, machines with non-trivial kinematics must be homed before they
can go into coord or teleop mode.

• teleop is the mode you probably need if you are jogging with a hexapod. The jog commands imple-
mented by the motion controller are joint jogs, which work in free mode. But if you want to move
a hexapod or similar machine along a cartesian axis in particular, you must operate more than one
joint. That’s what teleop is for.

3.4 Architecture overview

There are four components contained in the LinuxCNC Architecture: a motion controller (EMCMOT),
a discrete IO controller (EMCIO), a task executor which coordinates them (EMCTASK) and several
text-mode and graphical User Interfaces. Each of them will be described in the current document,
both from the design point of view and from the developers point of view (where to find needed data,
how to easily extend/modify things, etc.).

���� V2.10.0-pre0-5053-gfb14800741 7 / 78

���� V2.10.0-pre0-5053-gfb14800741 8 / 78

3.4.1 LinuxCNC software architecture

At the coarsest level, LinuxCNC is a hierarchy of three controllers: the task level command handler
and program interpreter, the motion controller, and the discrete I/O controller. The discrete I/O con-
troller is implemented as a hierarchy of controllers, in this case for spindle, coolant, and auxiliary
(e.g., estop) subsystems. The task controller coordinates the actions of the motion and discrete I/O
controllers. Their actions are programmed in conventional numerical control ”G and M code” pro-
grams, which are interpreted by the task controller into NML messages and sent to the motion.

3.5 Motion Controller Introduction

The motion controller is a realtime component. It receives motion control commands from the non-
realtime parts of LinuxCNC (i.e. the G-code interpreter/Task, GUIs, etc) and executes those commands
within its realtime context. The communication from non-realtime context to realtime context happens
via a message-passing IPC mechanism using shared memory, and via the Hardware Abstraction Layer
(HAL).
The status of the motion controller is made available to the rest of LinuxCNC through the same
message-passing shared memory IPC, and through HAL.
The motion controller interacts with the motor controllers and other realtime and non-realtime hard-
ware using HAL.
This document assumes that the reader has a basic understanding of the HAL, and uses terms like
HAL pins, HAL signals, etc, without explaining them. For more information about the HAL, see the
HAL Manual. Another chapter of this document will eventually go into the internals of the HAL itself,
but in this chapter, we only use the HAL API as defined in src/hal/hal.h.

3.5.1 Motion Controller Modules

The realtime functions of the motion controller are implemented with realtime modules — userspace
shared objects for Preempt-RT systems or kernel modules for some kernel-mode realtime implemen-
tations such as RTAI:

• tpmod - trajectory planning

• homemod - homing functions

• motmod - processes NML commands and controls hardware via HAL

• kinematics module - performs forward (joints-->coordinates) and inverse (coordinates->joints) kine-
matics calculations

LinuxCNC is started by a linuxcnc script which reads a configuration INI file and starts all needed
processes. For realtime motion control, the script first loads the default tpmod and homemod modules
and then loads the kinematics and motion modules according to settings in halfiles specified by the
INI file.
Custom (user-built) homing or trajectory-planningmodules can be used in place of the default modules
via INI file settings or command line options. Custom modules must implement all functions used by
the default modules. The halcompile utility can be used to create a custom module.

���� V2.10.0-pre0-5053-gfb14800741 9 / 78

���� V2.10.0-pre0-5053-gfb14800741 10 / 78

3.6 Block diagrams and Data Flow

The following figure is a block diagram of a joint controller. There is one joint controller per joint.
The joint controllers work at a lower level than the kinematics, a level where all joints are completely
independent. All the data for a joint is in a single joint structure. Some members of that structure are
visible in the block diagram, such as coarse_pos, pos_cmd, and motor_pos_fb.

Figure 3.1: Joint Controller Block Diagram

The above figure shows five of the seven sets of position information that form the main data flow
through the motion controller. The seven forms of position data are as follows:

• emcmotStatus->carte_pos_cmd - This is the desired position, in Cartesian coordinates. It is updated
at the traj rate, not the servo rate. In coord mode, it is determined by the traj planner. In teleop
mode, it is determined by the traj planner? In free mode, it is either copied from actualPos, or
generated by applying forward kins to (2) or (3).

• emcmotStatus->joints[n].coarse_pos - This is the desired position, in joint coordinates, but before
interpolation. It is updated at the traj rate, not the servo rate. In coord mode, it is generated by
applying inverse kins to (1) In teleop mode, it is generated by applying inverse kins to (1) In free
mode, it is copied from (3), I think.

���� V2.10.0-pre0-5053-gfb14800741 11 / 78

• ’emcmotStatus->joints[n].pos_cmd - This is the desired position, in joint coords, after interpolation.
A new set of these coords is generated every servo period. In coord mode, it is generated from (2)
by the interpolator. In teleop mode, it is generated from (2) by the interpolator. In free mode, it is
generated by the free mode traj planner.

• emcmotStatus->joints[n].motor_pos_cmd - This is the desired position, in motor coords. Motor co-
ords are generated by adding backlash compensation, lead screw error compensation, and offset
(for homing) to (3). It is generated the same way regardless of the mode, and is the output to the
PID loop or other position loop.

• emcmotStatus->joints[n].motor_pos_fb - This is the actual position, in motor coords. It is the input
from encoders or other feedback device (or from virtual encoders on open loop machines). It is
”generated” by reading the feedback device.

• emcmotStatus->joints[n].pos_fb - This is the actual position, in joint coordinates. It is generated
by subtracting offset, lead screw error compensation, and backlash compensation from (5). It is
generated the same way regardless of the operating mode.

• emcmotStatus->carte_pos_fb - This is the actual position, in Cartesian coordinates. It is updated at
the traj rate, not the servo rate. Ideally, actualPos would always be calculated by applying forward
kinematics to (6). However, forward kinematics may not be available, or they may be unusable
because one or more axes aren’t homed. In that case, the options are: A) fake it by copying (1), or
B) admit that we don’t really know the Cartesian coordinates, and simply don’t update actualPos.
Whatever approach is used, I can see no reason not to do it the same way regardless of the operating
mode. I would propose the following: If there are forward kins, use them, unless they don’t work
because of unhomed axes or other problems, in which case do (B). If no forward kins, do (A), since
otherwise actualPos would never get updated.

���� V2.10.0-pre0-5053-gfb14800741 12 / 78

���� V2.10.0-pre0-5053-gfb14800741 13 / 78

3.7 Homing

3.7.1 Homing state diagram

���� V2.10.0-pre0-5053-gfb14800741 14 / 78

3.7.2 Another homing diagram

3.8 Commands

The commands are implemented by a large switch statement in the function emcmotCommandHan-
dler(), which is called at the servo rate. More on that function later.
There are approximately 44 commands - this list is still under construction.

��
The cmd_code_t enumeration, in motion.h, contains 73 commands, but the switch state-
ment in command.c contemplates only 70 commands (as of 6/5/2020). ENABLE_WATCHDOG
/ DISABLE_WATCHDOG commands are in motion-logger.c. Maybe they are obsolete. The
SET_TELEOP_VECTOR command only appears in motion-logger.c, with no effect other than its own
log.

3.8.1 ABORT

The ABORT command simply stops all motion. It can be issued at any time, and will always be ac-
cepted. It does not disable the motion controller or change any state information, it simply cancels
any motion that is currently in progress.1

1It seems that the higher level code (TASK and above) also use ABORT to clear faults. Whenever there is a persistent fault
(such as being outside the hardware limit switches), the higher level code sends a constant stream of ABORTs to the motion
controller trying to make the fault go away. Thousands of them…. That means that the motion controller should avoid persistent
faults. This needs to be looked into.

���� V2.10.0-pre0-5053-gfb14800741 15 / 78

3.8.1.1 Requirements

None. The command is always accepted and acted on immediately.

3.8.1.2 Results

In free mode, the free mode trajectory planners are disabled. That results in each joint stopping as fast
as its accel (decel) limit allows. The stop is not coordinated. In teleopmode, the commanded Cartesian
velocity is set to zero. I don’t know exactly what kind of stop results (coordinated, uncoordinated, etc),
but will figure it out eventually. In coord mode, the coord mode trajectory planner is told to abort the
current move. Again, I don’t know the exact result of this, but will document it when I figure it out.

3.8.2 FREE

The FREE command puts the motion controller in free mode. Free mode means that each joint is
independent of all the other joints. Cartesian coordinates, poses, and kinematics are ignored when
in free mode. In essence, each joint has its own simple trajectory planner, and each joint completely
ignores the other joints. Some commands (like Joint JOG and HOME) only work in free mode. Other
commands, including anything that deals with Cartesian coordinates, do not work at all in free mode.

3.8.2.1 Requirements

The command handler applies no requirements to the FREE command, it will always be accepted.
However, if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE), then the command will
be ignored. This behavior is controlled by code that is now located in the function set_operating_mode()
in control.c, that code needs to be cleaned up. I believe the command should not be silently ignored,
instead the command handler should determine whether it can be executed and return an error if it
cannot.

3.8.2.2 Results

If the machine is already in free mode, nothing. Otherwise, the machine is placed in free mode. Each
joint’s free mode trajectory planner is initialized to the current location of the joint, but the planners
are not enabled and the joints are stationary.

3.8.3 TELEOP

The TELEOP command places the machine in teleoperating mode. In teleop mode, movement of the
machine is based on Cartesian coordinates using kinematics, rather than on individual joints as in free
mode. However the trajectory planner per se is not used, instead movement is controlled by a velocity
vector. Movement in teleopmode is much like jogging, except that it is done in Cartesian space instead
of joint space. On a machine with trivial kinematics, there is little difference between teleop mode
and free mode, and GUIs for those machines might never even issue this command. However for non-
trivial machines like robots and hexapods, teleop mode is used for most user commanded jog type
movements.

���� V2.10.0-pre0-5053-gfb14800741 16 / 78

3.8.3.1 Requirements

The command handler will reject the TELEOP command with an error message if the kinematics
cannot be activated because the one or more joints have not been homed. In addition, if any joint is in
motion (GET_MOTION_INPOS_FLAG() == FALSE), then the command will be ignored (with no error
message). This behavior is controlled by code that is now located in the function set_operating_mode()
in control.c. I believe the command should not be silently ignored, instead the command handler
should determine whether it can be executed and return an error if it cannot.

3.8.3.2 Results

If the machine is already in teleop mode, nothing. Otherwise the machine is placed in teleop mode.
The kinematics code is activated, interpolators are drained and flushed, and the Cartesian velocity
commands are set to zero.

3.8.4 COORD

The COORD command places the machine in coordinated mode. In coord mode, movement of the
machine is based on Cartesian coordinates using kinematics, rather than on individual joints as in
free mode. In addition, the main trajectory planner is used to generate motion, based on queued
LINE, CIRCLE, and/or PROBE commands. Coord mode is the mode that is used when executing a
G-code program.

3.8.4.1 Requirements

The command handler will reject the COORD commandwith an error message if the kinematics cannot
be activated because the one or more joints have not been homed. In addition, if any joint is in
motion (GET_MOTION_INPOS_FLAG() == FALSE), then the command will be ignored (with no error
message). This behavior is controlled by code that is now located in the function set_operating_mode()
in control.c. I believe the command should not be silently ignored, instead the command handler
should determine whether it can be executed and return an error if it cannot.

3.8.4.2 Results

If the machine is already in coord mode, nothing. Otherwise, the machine is placed in coord mode.
The kinematics code is activated, interpolators are drained and flushed, and the trajectory planner
queues are empty. The trajectory planner is active and awaiting a LINE, CIRCLE, or PROBE command.

3.8.5 ENABLE

The ENABLE command enables the motion controller.

3.8.5.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.5.2 Results

If the controller is already enabled, nothing. If not, the controller is enabled. Queues and interpolators
are flushed. Any movement or homing operations are terminated. The amp-enable outputs associated
with active joints are turned on. If forward kinematics are not available, the machine is switched to
free mode.

���� V2.10.0-pre0-5053-gfb14800741 17 / 78

3.8.6 DISABLE

The DISABLE command disables the motion controller.

3.8.6.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.6.2 Results

If the controller is already disabled, nothing. If not, the controller is disabled. Queues and inter-
polators are flushed. Any movement or homing operations are terminated. The amp-enable outputs
associated with active joints are turned off. If forward kinematics are not available, the machine is
switched to free mode.

3.8.7 ENABLE_AMPLIFIER

The ENABLE_AMPLIFIER command turns on the amp enable output for a single output amplifier,
without changing anything else. Can be used to enable a spindle speed controller.

3.8.7.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.7.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually
it will set the amp enable HAL pin true.

3.8.8 DISABLE_AMPLIFIER

The DISABLE_AMPLIFIER command turns off the amp enable output for a single amplifier, without
changing anything else. Again, useful for spindle speed controllers.

3.8.8.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.8.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually
it will set the amp enable HAL pin false.

3.8.9 ACTIVATE_JOINT

The ACTIVATE_JOINT command turns on all the calculations associated with a single joint, but does
not change the joint’s amp enable output pin.

���� V2.10.0-pre0-5053-gfb14800741 18 / 78

3.8.9.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.9.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, however, any
subsequent ENABLE or DISABLE commands will modify the joint’s amp enable pin.

3.8.10 DEACTIVATE_JOINT

The DEACTIVATE_JOINT command turns off all the calculations associated with a single joint, but
does not change the joint’s amp enable output pin.

3.8.10.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.10.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, and subsequent
ENABLE or DISABLE commands will not modify the joint’s amp enable pin.

3.8.11 ENABLE_WATCHDOG

The ENABLE_WATCHDOG command enables a hardware based watchdog (if present).

3.8.11.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.11.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new
watchdog interface may be designed in the future.

3.8.12 DISABLE_WATCHDOG

The DISABLE_WATCHDOG command disables a hardware based watchdog (if present).

3.8.12.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.12.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new
watchdog interface may be designed in the future.

���� V2.10.0-pre0-5053-gfb14800741 19 / 78

3.8.13 PAUSE

The PAUSE command stops the trajectory planner. It has no effect in free or teleop mode. At this
point I don’t know if it pauses all motion immediately, or if it completes the current move and then
pauses before pulling another move from the queue.

3.8.13.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.13.2 Results

The trajectory planner pauses.

3.8.14 RESUME

The RESUME command restarts the trajectory planner if it is paused. It has no effect in free or teleop
mode, or if the planner is not paused.

3.8.14.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.14.2 Results

The trajectory planner resumes.

3.8.15 STEP

The STEP command restarts the trajectory planner if it is paused, and tells the planner to stop again
when it reaches a specific point. It has no effect in free or teleop mode. At this point I don’t know ex-
actly how this works. I’ll add more documentation here when I dig deeper into the trajectory planner.

3.8.15.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.15.2 Results

The trajectory planner resumes, and later pauses when it reaches a specific point.

3.8.16 SCALE

The SCALE command scales all velocity limits and commands by a specified amount. It is used to
implement feed rate override and other similar functions. The scaling works in free, teleop, and coord
modes, and affects everything, including homing velocities, etc. However, individual joint velocity
limits are unaffected.

���� V2.10.0-pre0-5053-gfb14800741 20 / 78

3.8.16.1 Requirements

None. The command can be issued at any time, and will always be accepted.

3.8.16.2 Results

All velocity commands are scaled by the specified constant.

3.8.17 OVERRIDE_LIMITS

The OVERRIDE_LIMITS command prevents limits from tripping until the end of the next JOG com-
mand. It is normally used to allow a machine to be jogged off of a limit switch after tripping. (The
command can actually be used to override limits, or to cancel a previous override.)

3.8.17.1 Requirements

None. The command can be issued at any time, and will always be accepted. (I think it should only
work in free mode.)

3.8.17.2 Results

Limits on all joints are over-ridden until the end of the next JOG command. (This is currently broken…
once an OVERRIDE_LIMITS command is received, limits are ignored until another OVERRIDE_LIMITS
command re-enables them.)

3.8.18 HOME

The HOME command initiates a homing sequence on a specified joint. The actual homing sequence is
determined by a number of configuration parameters, and can range from simply setting the current
position to zero, to a multi-stage search for a home switch and index pulse, followed by a move to an
arbitrary home location. For more information about the homing sequence, see the homing section of
the Integrator Manual.

3.8.18.1 Requirements

The command will be ignored silently unless the machine is in free mode.

3.8.18.2 Results

Any jog or other joint motion is aborted, and the homing sequence starts.

3.8.19 JOG_CONT

The JOG_CONT command initiates a continuous jog on a single joint. A continuous jog is generated
by setting the free mode trajectory planner’s target position to a point beyond the end of the joint’s
range of travel. This ensures that the planner will move constantly until it is stopped by either the
joint limits or an ABORT command. Normally, a GUI sends a JOG_CONT command when the user
presses a jog button, and ABORT when the button is released.

���� V2.10.0-pre0-5053-gfb14800741 21 / 78

3.8.19.1 Requirements

The command handler will reject the JOG_CONT command with an error message if machine is not in
free mode, or if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not
enabled. It will also silently ignore the command if the joint is already at or beyond its limit and the
commanded jog would make it worse.

3.8.19.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, with
a target position beyond the end of joint travel, and a velocity limit of emcmotCommand->vel. This
starts the joint moving, and the move will continue until stopped by an ABORT command or by hitting
a limit. The free mode planner accelerates at the joint accel limit at the beginning of the move, and
will decelerate at the joint accel limit when it stops.

3.8.20 JOG_INCR

The JOG_INCR command initiates an incremental jog on a single joint. Incremental jogs are cumula-
tive, in other words, issuing two JOG_INCR commands that each ask for 0.100 inches of movement
will result in 0.200 inches of travel, even if the second command is issued before the first one finishes.
Normally incremental jogs stop when they have traveled the desired distance, however they also stop
when they hit a limit, or on an ABORT command.

3.8.20.1 Requirements

The command handler will silently reject the JOG_INCR command if machine is not in free mode, or
if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will
also silently ignore the command if the joint is already at or beyond its limit and the commanded jog
would make it worse.

3.8.20.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the
target position is incremented/decremented by emcmotCommand->offset, and the velocity limit is set
to emcmotCommand->vel. The free mode trajectory planner will generate a smooth trapezoidal move
from the present position to the target position. The planner can correctly handle changes in the
target position that happen while the move is in progress, so multiple JOG_INCR commands can be
issued in quick succession. The free mode planner accelerates at the joint accel limit at the beginning
of the move, and will decelerate at the joint accel limit to stop at the target position.

3.8.21 JOG_ABS

The JOG_ABS command initiates an absolute jog on a single joint. An absolute jog is a simple move
to a specific location, in joint coordinates. Normally absolute jogs stop when they reach the desired
location, however they also stop when they hit a limit, or on an ABORT command.

3.8.21.1 Requirements

The command handler will silently reject the JOG_ABS command if machine is not in free mode, or if
any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will
also silently ignore the command if the joint is already at or beyond its limit and the commanded jog
would make it worse.

���� V2.10.0-pre0-5053-gfb14800741 22 / 78

3.8.21.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the
target position is set to emcmotCommand->offset, and the velocity limit is set to emcmotCommand-
>vel. The free mode trajectory planner will generate a smooth trapezoidal move from the present
position to the target position. The planner can correctly handle changes in the target position that
happen while the move is in progress. If multiple JOG_ABS commands are issued in quick succession,
each new command changes the target position and themachine goes to the final commanded position.
The free mode planner accelerates at the joint accel limit at the beginning of the move, and will
decelerate at the joint accel limit to stop at the target position.

3.8.22 SET_LINE

The SET_LINE command adds a straight line to the trajectory planner queue.
(More later)

3.8.23 SET_CIRCLE

The SET_CIRCLE command adds a circular move to the trajectory planner queue.
(More later)

3.8.24 SET_TELEOP_VECTOR

The SET_TELEOP_VECTOR command instructs the motion controller to move along a specific vector
in Cartesian space.
(More later)

3.8.25 PROBE

The PROBE command instructs the motion controller to move toward a specific point in Cartesian
space, stopping and recording its position if the probe input is triggered.
(More later)

3.8.26 CLEAR_PROBE_FLAG

The CLEAR_PROBE_FLAG command is used to reset the probe input in preparation for a PROBE
command. (Question: why shouldn’t the PROBE command automatically reset the input?)
(More later)

3.8.27 SET_xix

There are approximately 15 SET_xxx commands, where xxx is the name of some configuration param-
eter. It is anticipated that there will be several more SET commands as more parameters are added.
I would like to find a cleaner way of setting and reading configuration parameters. The existing meth-
ods require many lines of code to be added to multiple files each time a parameter is added. Much of
that code is identical or nearly identical for every parameter.

���� V2.10.0-pre0-5053-gfb14800741 23 / 78

3.9 Backlash and Screw Error Compensation

+ FIXME Backlash and Screw Error Compensation

3.10 Task controller (EMCTASK)

3.10.1 State

Task has three possible internal states: E-stop, E-stop Reset, andMachine On.

3.11 IO controller (EMCIO)

The I/O Controller is part of TASK. It interacts with external I/O using HAL pins.
Currently ESTOP/Enable, coolant, and tool changing are handled by iocontrol. These are relatively
low speed events, high speed coordinated I/O is handled in motion.
emctaskmain.cc sends I/O commands via taskclass.cc.
iocontrol main loop process:

• checks to see it HAL inputs have changed

• checks if read_tool_inputs() indicates the tool change is finished and set emcioStatus.status

3.12 ����

FIXME b’’�b’’b’’�b’’b’’�b’’b’’�b’’

���� V2.10.0-pre0-5053-gfb14800741 24 / 78

3.13 libnml Introduction

libnml is derived from the NIST rcslib without all the multi-platform support. Many of the wrappers
around platform specific code has been removed along with much of the code that is not required
by LinuxCNC. It is hoped that sufficient compatibility remains with rcslib so that applications can be
implemented on non-Linux platforms and still be able to communicate with LinuxCNC.
This chapter is not intended to be a definitive guide to using libnml (or rcslib), instead, it will eventually
provide an overview of each C++ class and their member functions. Initially, most of these notes will
be random comments added as the code scrutinized and modified.

3.14 LinkedList

Base class to maintain a linked list. This is one of the core building blocks used in passing NML
messages and assorted internal data structures.

3.15 LinkedListNode

Base class for producing a linked list - Purpose, to hold pointers to the previous and next nodes, pointer
to the data, and the size of the data.
No memory for data storage is allocated.

3.16 SharedMemory

Provides a block of sharedmemory along with a semaphore (inherited from the Semaphore class). Cre-
ation and destruction of the semaphore is handled by the SharedMemory constructor and destructor.

3.17 ShmBuffer

Class for passing NML messages between local processes using a shared memory buffer. Much of
internal workings are inherited from the CMS class.

3.18 Timer

The Timer class provides a periodic timer limited only by the resolution of the system clock. If, for
example, a process needs to be run every 5 seconds regardless of the time taken to run the process,
the following code snippet demonstrates how :
main()
{

timer = new Timer(5.0); /* Initialize a timer with a 5 second loop */
while(0) {

/* Do some process */
timer.wait(); /* Wait till the next 5 second interval */

}
delete timer;

}

���� V2.10.0-pre0-5053-gfb14800741 25 / 78

3.19 Semaphore

The Semaphore class provides a method of mutual exclusions for accessing a shared resource. The
function to get a semaphore can either block until access is available, return after a timeout, or
return immediately with or without gaining the semaphore. The constructor will create a semaphore
or attach to an existing one if the ID is already in use.
The Semaphore::destroy() must be called by the last process only.

3.20 CMS

At the heart of libnml is the CMS class, it contains most of the functions used by libnml and ultimately
NML. Many of the internal functions are overloaded to allow for specific hardware dependent methods
of data passing. Ultimately, everything revolves around a central block of memory (referred to as the
message buffer or just buffer). This buffer may exist as a shared memory block accessed by other
CMS/NML processes, or a local and private buffer for data being transferred by network or serial
interfaces.
The buffer is dynamically allocated at run time to allow for greater flexibility of the CMS/NML sub-
system. The buffer size must be large enough to accommodate the largest message, a small amount
for internal use and allow for the message to be encoded if this option is chosen (encoded data will
be covered later). The following figure is an internal view of the buffer space.

���� V2.10.0-pre0-5053-gfb14800741 26 / 78

CMS buffer The CMS base class is primarily responsible for creating the communications pathways
and interfacing to the operating system.

3.21 Configuration file format

NML configuration consists of two types of line formats. One for Buffers, and a second for Processes
that connect to the buffers.

3.21.1 Buffer line

The original NIST format of the buffer line is:

• B name type host size neut RPC# buffer# max_procs key [type specific configs]

• B - identifies this line as a Buffer configuration.

• name - is the identifier of the buffer.

���� V2.10.0-pre0-5053-gfb14800741 27 / 78

• type - describes the buffer type - SHMEM, LOCMEM, FILEMEM, PHANTOM, or GLOBMEM.

• host - is either an IP address or host name for the NML server

• size - is the size of the buffer

• neut - a boolean to indicate if the data in the buffer is encoded in a machine independent format, or
raw.

• RPC# - Obsolete - Place holder retained for backward compatibility only.

• buffer# - A unique ID number used if a server controls multiple buffers.

• max_procs - is the maximum processes allowed to connect to this buffer.

• key - is a numerical identifier for a shared memory buffer

3.21.2 Type specific configs

The buffer type implies additional configuration options whilst the host operating system precludes
certain combinations. In an attempt to distill published documentation in to a coherent format, only
the SHMEM buffer type will be covered.

• mutex=os_sem - default mode for providing semaphore locking of the buffer memory.

• mutex=none - Not used

• mutex=no_interrupts - not applicable on a Linux system

• mutex=no_switching - not applicable on a Linux system

• mutex=mao split - Splits the buffer in to half (or more) and allows one process to access part of the
buffer whilst a second process is writing to another part.

• TCP=(port number) - Specifies which network port to use.

• UDP=(port number) - ditto

• STCP=(port number) - ditto

• serialPortDevName=(serial port) - Undocumented.

• passwd=file_name.pwd - Adds a layer of security to the buffer by requiring each process to provide
a password.

• bsem - NIST documentation implies a key for a blocking semaphore, and if bsem=-1, blocking reads
are prevented.

• queue - Enables queued message passing.

• ascii - Encode messages in a plain text format

• disp - Encode messages in a format suitable for display (???)

• xdr - Encode messages in External Data Representation. (see rpc/xdr.h for details).

• diag - Enables diagnostics stored in the buffer (timings and byte counts ?)

���� V2.10.0-pre0-5053-gfb14800741 28 / 78

3.21.3 Process line

The original NIST format of the process line is:
P name buffer type host ops server timeout master c_num [type specific configs]

• P - identifies this line as a Process configuration.

• name - is the identifier of the process.

• buffer - is one of the buffers defined elsewhere in the config file.

• type - defines whether this process is local or remote relative to the buffer.

• host - specifies where on the network this process is running.

• ops - gives the process read only, write only, or read/write access to the buffer.

• server - specifies if this process will running a server for this buffer.

• timeout - sets the timeout characteristics for accesses to the buffer.

• master - indicates if this process is responsible for creating and destroying the buffer.

• c_num - an integer between zero and (max_procs -1)

3.21.4 Configuration Comments

Some of the configuration combinations are invalid, whilst others imply certain constraints. On a
Linux system, GLOBMEM is obsolete, whilst PHANTOM is only really useful in the testing stage of an
application, likewise for FILEMEM. LOCMEM is of little use for a multi-process application, and only
offers limited performance advantages over SHMEM. This leaves SHMEM as the only buffer type to
use with LinuxCNC.
The neut option is only of use in a multi-processor system where different (and incompatible) archi-
tectures are sharing a block of memory. The likelihood of seeing a system of this type outside of a
museum or research establishment is remote and is only relevant to GLOBMEM buffers.
The RPC number is documented as being obsolete and is retained only for compatibility reasons.
With a unique buffer name, having a numerical identity seems to be pointless. Need to review the
code to identify the logic. Likewise, the key field at first appears to be redundant, and it could be
derived from the buffer name.
The purpose of limiting the number of processes allowed to connect to any one buffer is unclear from
existing documentation and from the original source code. Allowing unspecified multiple processes
to connect to a buffer is no more difficult to implement.
The mutex types boil down to one of two, the default ”os_sem” or ”mao split”. Most of the NML
messages are relatively short and can be copied to or from the buffer with minimal delays, so split
reads are not essential.
Data encoding is only relevant when transmitted to a remote process - Using TCP or UDP implies
XDR encoding. Whilst ASCII encoding may have some use in diagnostics or for passing data to an
embedded system that does not implement NML.
UDP protocols have fewer checks on data and allows a percentage of packets to be dropped. TCP is
more reliable, but is marginally slower.
If LinuxCNC is to be connected to a network, one would hope that it is local and behind a firewall.
About the only reason to allow access to LinuxCNC via the Internet would be for remote diagnostics
- This can be achieved far more securely using other means, perhaps by a web interface.

���� V2.10.0-pre0-5053-gfb14800741 29 / 78

The exact behavior when timeout is set to zero or a negative value is unclear from the NIST docu-
ments. Only INF and positive values are mentioned. However, buried in the source code of rcslib, it
is apparent that the following applies:
timeout > 0 Blocking access until the timeout interval is reached or access to the buffer is available.
timeout = 0 Access to the buffer is only possible if no other process is reading or writing at the time.
timeout < 0 or INF Access is blocked until the buffer is available.

3.22 NML base class

Expand on the lists and the relationship between NML, NMLmsg, and the lower level cms classes.
Not to be confused with NMLmsg, RCS_STAT_MSG, or RCS_CMD_MSG.
NML is responsible for parsing the config file, configuring the cms buffers and is the mechanism for
routing messages to the correct buffer(s). To do this, NML creates several lists for:

• cms buffers created or connected to.

• processes and the buffers they connect to

• a long list of format functions for each message type

This last item is probably the nub of much of themalignment of libnml/rcslib and NML in general. Each
message that is passed via NML requires a certain amount of information to be attached in addition to
the actual data. To do this, several formatting functions are called in sequence to assemble fragments
of the overall message. The format functions will include NML_TYPE, MSG_TYPE, in addition to the
data declared in derived NMLmsg classes. Changes to the order in which the formatting functions
are called and also the variables passed will break compatibility with rcslib if messed with - There
are reasons for maintaining rcslib compatibility, and good reasons for messing with the code. The
question is, which set of reasons are overriding?

3.22.1 NML internals

3.22.1.1 NML constructor

NML::NML() parses the config file and stores it in a linked list to be passed to cms constructors in
single lines. It is the function of the NML constructor to call the relevant cms constructor for each
buffer and maintain a list of the cms objects and the processes associated with each buffer.
It is from the pointers stored in the lists that NML can interact with cms and why Doxygen fails to
show the real relationships involved.

��
The config is stored in memory before passing a pointer to a specific line to the cms constructor. The
cms constructor then parses the line again to extract a couple of variables… It would make more
sense to do ALL the parsing and save the variables in a struct that is passed to the cms constructor
- This would eliminate string handling and reduce duplicate code in cms…

���� V2.10.0-pre0-5053-gfb14800741 30 / 78

3.22.1.2 NML read/write

Calls to NML::read and NML::write both perform similar tasks in so much as processing the message
- The only real variation is in the direction of data flow.
A call to the read function first gets data from the buffer, then calls format_output(), whilst a write
function would call format_input() before passing the data to the buffer. It is in format_xxx() that the
work of constructing or deconstructing the message takes place. A list of assorted functions are called
in turn to place various parts of the NML header (not to be confused with the cms header) in the right
order - The last function called is emcFormat() in emc.cc.

3.22.1.3 NMLmsg and NML relationships

NMLmsg is the base class from which all message classes are derived. Each message class must have
a unique ID defined (and passed to the constructor) and also an update(*cms) function. The update()
will be called by the NML read/write functions when the NML formatter is called — the pointer to the
formatter will have been declared in the NML constructor at some point. By virtue of the linked lists
NML creates, it is able to select cms pointer that is passed to the formatter and therefore which buffer
is to be used.

3.23 Adding custom NML commands

LinuxCNC is pretty awesome, but some parts need some tweaking. As you know communication
is done through NML channels, the data sent through such a channel is one of the classes defined
in emc.hh (implemented in emc.cc). If somebody needs a message type that doesn’t exist, he should
follow these steps to add a new one. (TheMessage I added in the example is called EMC_IO_GENERIC
(inherits EMC_IO_CMD_MSG (inherits RCS_CMD_MSG)))

1. add the definition of the EMC_IO_GENERIC class to emc2/src/emc/nml_intf/emc.hh

2. add the type define: #define EMC_IO_GENERIC_TYPE ((NMLTYPE) 1605)

a. (I chose 1605, because it was available) to emc2/src/emc/nml_intf/emc.hh

3. add case EMC_IO_GENERIC_TYPE to emcFormat in emc2/src/emc/nml_intf/emc.cc

4. add case EMC_IO_GENERIC_TYPE to emc_symbol_lookup in emc2/src/emc/nml_intf/emc.cc

5. add EMC_IO_GENERIC::update function to emc2/src/emc/nml_intf/emc.cc

Recompile, and the new message should be there. The next part is to send such messages from
somewhere, and receive them in another place, and do some stuff with it.

3.24 The Tool Table and Toolchanger

LinuxCNC interfaces with toolchanger hardware, and has an internal toolchanger abstraction. Linux-
CNC manages tool information in a tool table file.

3.24.1 Toolchanger abstraction in LinuxCNC

LinuxCNC supports two kinds of toolchanger hardware, called nonrandom and random. The INI set-
ting [EMCIO]RANDOM_TOOLCHANGER controls which of these kinds of hardware LinuxCNC thinks
it is connected to.

���� V2.10.0-pre0-5053-gfb14800741 31 / 78

3.24.1.1 Nonrandom Toolchangers

Nonrandom toolchanger hardware puts each tool back in the pocket it was originally loaded from.
Examples of nonrandom toolchanger hardware are the ”manual” toolchanger, lathe tool turrents, and
rack toolchangers.
When configured for a nonrandom toolchanger, LinuxCNC does not change the pocket number in
the tool table file as tools are loaded and unloaded. Internal to LinuxCNC, on tool change the tool
information is copied from the tool table’s source pocket to pocket 0 (which represents the spindle),
replacing whatever tool information was previously there.

��
In LinuxCNC configured for nonrandom toolchanger, tool 0 (T0) has special meaning: ”no tool”. T0
may not appear in the tool table file, and changing to T0 will result in LinuxCNC thinking it has got
an empty spindle.

3.24.1.2 Random Toolchangers

Random toolchanger hardware swaps the tool in the spindle (if any) with the requested tool on tool
change. Thus the pocket that a tool resides in changes as it is swapped in and out of the spindle.
An example of random toolchanger hardware is a carousel toolchanger.
When configured for a random toolchanger, LinuxCNC swaps the pocket number of the old and the
new tool in the tool table file when tools are loaded. Internal to LinuxCNC, on tool change, the tool
information is swapped between the tool table’s source pocket and pocket 0 (which represents the
spindle). So after a tool change, pocket 0 in the tool table has the tool information for the new tool,
and the pocket that the new tool came from has the tool information for the old tool (the tool that was
in the spindle before the tool change), if any.

��
If LinuxCNC is configured for random toolchanger, tool 0 (T0) has no special meaning. It is treated
exactly like any other tool in the tool table. It is customary to use T0 to represent ”no tool” (i.e., a
tool with zero TLO), so that the spindle can be conveniently emptied when needed.

3.24.2 The Tool Table

LinuxCNC keeps track of tools in a file called the tool table. The tool table records the following
information for each tool:

tool number
An integer that uniquely identifies this tool. Tool numbers are handled differently by LinuxCNC
when configured for random and nonrandom toolchangers:

• When LinuxCNC is configured for a nonrandom toolchanger this number must be positive. T0
gets special handling and is not allowed to appear in the tool table.

• When LinuxCNC is configured for a random toolchanger this number must be non-negative.
T0 is allowed in the tool table, and is usually used to represent ”no tool”, i.e. the empty pocket.

pocket number
An integer that identifies the pocket or slot in the toolchanger hardware where the tool resides.
Pocket numbers are handled differently by LinuxCNC when configured for random and nonran-
dom toolchangers:

���� V2.10.0-pre0-5053-gfb14800741 32 / 78

• When LinuxCNC is configured for a nonrandom toolchanger, the pocket number in the tool
file can be any positive integer (pocket 0 is not allowed). LinuxCNC silently compactifies the
pocket numbers when it loads the tool file, so there may be a difference between the pocket
numbers in the tool file and the internal pocket numbers used by LinuxCNC-with-nonrandom-
toolchanger.

• When LinuxCNC is configured for a random toolchanger, the pocket numbers in the tool file
must be between 0 and 1000, inclusive. Pockets 1-1000 are in the toolchanger, pocket 0 is the
spindle.

diameter
Diameter of the tool, in machine units.

tool length offset
Tool length offset (also called TLO), in up to 9 axes, in machine units. Axes that don’t have a
specified TLO get 0.

3.24.3 G-codes affecting tools

The G-codes that use or affect tool information are:

3.24.3.1 Txxx

Tells the toolchanger hardware to prepare to switch to a specified tool xxx.
Handled by Interp::convert_tool_select().

1. The machine is asked to prepare to switch to the selected tool by calling the Canon function
SELECT_TOOL() with the tool number of the requested tool.

a. (saicanon) No-op.
b. (emccanon) Builds an EMC_TOOL_PREPARE message with the requested pocket number and
sends it to Task, which sends it on to IO. IO gets the message and asks HAL to prepare
the pocket by setting iocontrol.0.tool-prep-pocket, iocontrol.0.tool-prep-number,
and iocontrol.0.tool-prepare. IO then repeatedly calls read_tool_inputs() to poll the
HAL pin iocontrol.0.tool-prepared, which signals from the toolchanger hardware, via
HAL, to IO that the requested tool prep is complete. When that pin goes True, IO sets
emcioStatus.tool.pocketPrepped to the requested tool’s pocket number.

2. Back in interp, settings->selected_pocket is assigned the tooldata index of the requested tool
xxx.

��
The legacy names selected_pocket and current_pocket actually reference a sequential tooldata
index for tool items loaded from a tool table ([EMCIO]TOOL_TABLE) or via a tooldata database ([EM-
CIO]DB_PROGRAM).

3.24.3.2 M6

Tells the toolchanger to switch to the currently selected tool (selected by the previous Txxx command).
Handled by Interp::convert_tool_change().

1. The machine is asked to change to the selected tool by calling the Canon function CHANGE_TOOL()
with settings->selected_pocket (a tooldata index).

���� V2.10.0-pre0-5053-gfb14800741 33 / 78

a. (saicanon) Sets sai’s _active_slot to the passed-in pocket number. Tool information is
copied from the selected pocket of of the tool table (ie, from sai’s _tools[_active_slot])
to the spindle (aka sai’s _tools[0]).

b. (emccanon) Sends an EMC_TOOL_LOADmessage to Task, which sends it to IO. IO sets emcioStatus.tool.toolInSpindle
to the tool number of the tool in the pocket identified by emcioStatus.tool.pocketPrepped
(set by Txxx aka SELECT_TOOL()). It then requests that the toolchanger hardware per-
form a tool change, by setting the HAL pin iocontrol.0.tool-change to True. Later, IO’s
read_tool_inputs() will sense that the HAL pin iocontrol.0.tool_changed has been set
to True, indicating the toolchanger has completed the tool change. When this happens, it
calls load_tool() to update the machine state.
i. load_tool() with a nonrandom toolchanger config copies the tool information from the
selected pocket to the spindle (pocket 0).

ii. load_tool() with a random toolchanger config swaps tool information between pocket
0 (the spindle) and the selected pocket, then saves the tool table.

2. Back in interp, settings->current_pocket is assigned the new tooldata index from settings->selected_pocket
(set by Txxx). The relevant numbered parameters (#5400-#5413) are updated with the new tool
information from pocket 0 (spindle).

3.24.3.3 G43/G43.1/G49

Apply tool length offset. G43 uses the TLO of the currently loaded tool, or of a specified tool if the
H-word is given in the block. G43.1 gets TLO from axis-words in the block. G49 cancels the TLO (it
uses 0 for the offset for all axes).
Handled by Interp::convert_tool_length_offset().

1. It starts by building an EmcPose containing the 9-axis offsets to use. For G43.1, these tool offsets
come from axis words in the current block. For G43 these offsets come from the current tool (the
tool in pocket 0), or from the tool specified by the H-word in the block. For G49, the offsets are
all 0.

2. The offsets are passed to Canon’s USE_TOOL_LENGTH_OFFSET() function.

a. (saicanon) Records the TLO in _tool_offset.
b. (emccanon) Builds an EMC_TRAJ_SET_OFFSET message containing the offsets and sends it to
Task. Task copies the offsets to emcStatus->task.toolOffset and sends them on to Motion
via an EMCMOT_SET_OFFSET command. Motion copies the offsets to emcmotStatus->tool_offset,
where it gets used to offset future motions.

3. Back in interp, the offsets are recorded in settings->tool_offset. The effective pocket is
recorded in settings->tool_offset_index, though this value is never used.

3.24.3.4 G10 L1/L10/L11

Modifies the tool table.
Handled by Interp::convert_setup_tool().

1. Picks the tool number out of the P-word in the block and finds the pocket for that tool:

a. With a nonrandom toolchanger config this is always the pocket number in the toolchanger
(even when the tool is in the spindle).

b. With a random toolchanger config, if the tool is currently loaded it uses pocket 0 (pocket
0 means ”the spindle”), and if the tool is not loaded it uses the pocket number in the tool
changer. (This difference is important.)

���� V2.10.0-pre0-5053-gfb14800741 34 / 78

2. Figures out what the new offsets should be.

3. The new tool information (diameter, offsets, angles, and orientation), along with the tool number
and pocket number, are passed to the Canon call SET_TOOL_TABLE_ENTRY().

a. (saicanon) Copy the new tool information to the specified pocket (in sai’s internal tool table,
_tools).

b. (emccanon) Build an EMC_TOOL_SET_OFFSETmessage with the new tool information, and send
it to Task, which passes it to IO. IO updates the specified pocket in its internal copy of the
tool table (emcioStatus.tool.toolTable), and if the specified tool is currently loaded (it is
compared to emcioStatus.tool.toolInSpindle) then the new tool information is copied to
pocket 0 (the spindle) as well. (FIXME: that’s a buglet, should only be copied on nonrandom
machines.) Finally IO saves the new tool table.

4. Back in interp, if the modified tool is currently loaded in the spindle, and if the machine is a
non-random toolchanger, then the new tool information is copied from the tool’s home pocket
to pocket 0 (the spindle) in interp’s copy of the tool table, settings->tool_table. (This copy
is not needed on random tool changer machines because there, tools don’t have a home pocket
and instead we just updated the tool in pocket 0 directly.). The relevant numbered parameters
(#5400-#5413) are updated from the tool information in the spindle (by copying the information
from interp’s settings->tool_table to settings->parameters). (FIXME: this is a buglet, the
params should only be updated if it was the current tool that was modified).

5. If the modified tool is currently loaded in the spindle, and if the config is for a nonrandom
toolchanger, then the new tool information is written to the tool table’s pocket 0 as well, via
a second call to SET_TOOL_TABLE_ENTRY(). (This second tool-table update is not needed on
random toolchanger machines because there, tools don’t have a home pocket and instead we
just updated the tool in pocket 0 directly.)

3.24.3.5 M61

Set current tool number. This switches LinuxCNC’s internal representation of which tool is in the
spindle, without actually moving the toolchanger or swapping any tools.
Handled by Interp::convert_tool_change().
Canon: CHANGE_TOOL_NUMBER()
settings->current_pocket is assigned the tooldata index currently holding the tool specified by the
Q-word argument.

3.24.3.6 G41/G41.1/G42/G42.1

Enable cutter radius compensation (usually called cutter comp).
Handled by Interp::convert_cutter_compensation_on().
No Canon call, cutter comp happens in the interpreter. Uses the tool table in the expected way: if
a D-word tool number is supplied it looks up the pocket number of the specified tool number in the
table, and if no D-word is supplied it uses pocket 0 (the spindle).

3.24.3.7 G40

Cancel cutter radius compensation.
Handled by Interp::convert_cutter_compensation_off().
No Canon call, cutter comp happens in the interpreter. Does not use the tool table.

���� V2.10.0-pre0-5053-gfb14800741 35 / 78

3.24.4 Internal state variables

This is not an exhaustive list! Tool information is spread through out LinuxCNC.

3.24.4.1 IO

emcioStatus is of type EMC_IO_STAT

emcioStatus.tool.pocketPrepped
When IO gets the signal from HAL that the toolchanger prep is complete (after a Txxx command),
this variable is set to the pocket of the requested tool. When IO gets the signal from HAL that
the tool change itself is complete (after an M6 command), this variable gets reset to -1.

emcioStatus.tool.toolInSpindle
Tool number of the tool currently installed in the spindle. Exported on theHAL pin iocontrol.0.tool-number
(s32).

emcioStatus.tool.toolTable[]
An array of CANON_TOOL_TABLE structures, CANON_POCKETS_MAX long. Loaded from the tool table
file at startup andmaintained there after. Index 0 is the spindle, indexes 1-(CANON_POCKETS_MAX-
1) are the pockets in the toolchanger. This is a complete copy of the tool information, maintained
separately from Interp’s settings.tool_table.

3.24.4.2 interp

settings is of type settings, defined as struct setup_struct in src/emc/rs274ngc/interp_internal.hh.

settings.selected_pocket
Tooldata index of the tool most recently selected by Txxx.

settings.current_pocket
Original tooldata index of the tool currently in the spindle. In other words: which tooldata index
the tool that’s currently in the spindle was loaded from.

settings.tool_table[]
An array of tool information. The index into the array is the ”pocket number” (aka ”slot number”).
Pocket 0 is the spindle, pockets 1 through (CANON_POCKETS_MAX-1) are the pockets of the
toolchanger.

settings.tool_offset_index
Unused. FIXME: Should probably be removed.

settings.toolchange_flag
Interp sets this to truewhen calling Canon’s CHANGE_TOOL() function. It is checked in Interp::convert_tool_length_offset()
to decide which tooldata index to use for G43 (with no H-word): settings->current_pocket if
the tool change is still in progress, tooldata index 0 (the spindle) if the tool change is complete.

settings.random_toolchanger
Set from the INI variable [EMCIO]RANDOM_TOOLCHANGER at startup. Controls various tool table
handling logic. (IO also reads this INI variable and changes its behavior based on it. For example,
when saving the tool table, random toolchanger save the tool in the spindle (pocket 0), but non-
random toolchanger save each tool in its ”home pocket”.)

settings.tool_offset
This is an EmcPose variable.

• Used to compute position in various places.

���� V2.10.0-pre0-5053-gfb14800741 36 / 78

• Sent to Motion via the EMCMOT_SET_OFFSET message. All motion does with the offsets is export
them to the HAL pins motion.0.tooloffset.[xyzabcuvw]. FIXME: export these from some-
place closer to the tool table (io or interp, probably) and remove the EMCMOT_SET_OFFSET
message.

settings.pockets_max
Used interchangeably with CANON_POCKETS_MAX (a #defined constant, set to 1000 as of April
2020). FIXME: This settings variable is not currently useful and should probably be removed.

settings.tool_table
This is an array of CANON_TOOL_TABLE structures (defined in src/emc/nml_intf/emctool.h), with
CANON_POCKETS_MAX entries. Indexed by ”pocket number”, aka ”slot number”. Index 0 is the spin-
dle, indexes 1 to (CANON_POCKETS_MAX-1) are the pockets in the tool changer. On a random
toolchanger pocket numbers are meaningful. On a nonrandom toolchanger pockets are meaning-
less; the pocket numbers in the tool table file are ignored and tools are assigned to tool_table
slots sequentially.

settings.tool_change_at_g30 , settings.tool_change_quill_up , settings.tool_change_with_spindle_on

These are set from INI variables in the [EMCIO] section, and determine how tool changes are
performed.

3.25 Reckoning of joints and axes

3.25.1 In the status buffer

The status buffer is used by Task and the UIs.
FIXME: axis_mask and axes overspecify the number of axes

status.motion.traj.axis_mask
A bitmask with a ”1” for the axes that are present and a ”0” for the axes that are not present.
X is bit 0 with value 20 = 1 if set, Y is bit 1 with value 21 = 2, Z is bit 2 with value 4, etc. For
example, a machine with X and Z axes would have an axis_mask of 0x5, an XYZ machine would
have 0x7, and an XYZB machine would have an axis_mask of 0x17.

status.motion.traj.axes (removed)
This value was removed in LinuxCNC version 2.9. Use axis_mask instead.

status.motion.traj.joints
A count of the number of joints the machine has. A normal lathe has 2 joints; one driving the X
axis and one driving the Z axis. An XYYZ gantry mill has 4 joints: one driving X, one driving one
side of the Y, one driving the other side of the Y, and one driving Z. An XYZA mill also has 4 joints.

status.motion.axis[EMCMOT_MAX_AXIS]
An array of EMCMOT_MAX_AXIS axis structures. axis[n] is valid if (axis_mask & (1 << n)) is
True. If (axis_mask & (1 << n)) is False, then axis[n] does not exist on this machine and
must be ignored.

status.motion.joint[EMCMOT_MAX_JOINTS]
An array of EMCMOT_MAX_JOINTS joint structures. joint[0] through joint[joints-1] are valid,
the others do not exist on this machine and must be ignored.

Things are not this way currently in the joints-axes branch, but deviations from this design are consid-
ered bugs. For an example of such a bug, see the treatment of axes in src/emc/ini/initraj.cc:loadTraj().
There are undoubtedly more, and I need your help to find them and fix them.

���� V2.10.0-pre0-5053-gfb14800741 37 / 78

3.25.2 In Motion

The Motion controller realtime component first gets the number of joints from the num_joints load-
time parameter. This determines how many joints worth of HAL pins are created at startup.
Motion’s number of joints can be changed at runtime using the EMCMOT_SET_NUM_JOINTS command
from Task.
The Motion controller always operates on EMCMOT_MAX_AXIS axes. It always creates nine sets of
axis.*.* pins.

���� V2.10.0-pre0-5053-gfb14800741 38 / 78

Chapter 4

NML Messages

List of NML messages.
For details see src/emc/nml_intf/emc.hh.

4.1 OPERATOR

EMC_OPERATOR_ERROR_TYPE
EMC_OPERATOR_TEXT_TYPE
EMC_OPERATOR_DISPLAY_TYPE

4.2 JOINT

EMC_JOINT_SET_JOINT_TYPE
EMC_JOINT_SET_UNITS_TYPE
EMC_JOINT_SET_MIN_POSITION_LIMIT_TYPE
EMC_JOINT_SET_MAX_POSITION_LIMIT_TYPE
EMC_JOINT_SET_FERROR_TYPE
EMC_JOINT_SET_HOMING_PARAMS_TYPE
EMC_JOINT_SET_MIN_FERROR_TYPE
EMC_JOINT_SET_MAX_VELOCITY_TYPE
EMC_JOINT_INIT_TYPE
EMC_JOINT_HALT_TYPE
EMC_JOINT_ABORT_TYPE
EMC_JOINT_ENABLE_TYPE
EMC_JOINT_DISABLE_TYPE
EMC_JOINT_HOME_TYPE
EMC_JOINT_ACTIVATE_TYPE
EMC_JOINT_DEACTIVATE_TYPE
EMC_JOINT_OVERRIDE_LIMITS_TYPE
EMC_JOINT_LOAD_COMP_TYPE
EMC_JOINT_SET_BACKLASH_TYPE
EMC_JOINT_UNHOME_TYPE
EMC_JOINT_STAT_TYPE

4.3 AXIS

���� V2.10.0-pre0-5053-gfb14800741 39 / 78

EMC_AXIS_STAT_TYPE

4.4 JOG

EMC_JOG_CONT_TYPE
EMC_JOG_INCR_TYPE
EMC_JOG_ABS_TYPE
EMC_JOG_STOP_TYPE

4.5 TRAJ

EMC_TRAJ_SET_AXES_TYPE
EMC_TRAJ_SET_UNITS_TYPE
EMC_TRAJ_SET_CYCLE_TIME_TYPE
EMC_TRAJ_SET_MODE_TYPE
EMC_TRAJ_SET_VELOCITY_TYPE
EMC_TRAJ_SET_ACCELERATION_TYPE
EMC_TRAJ_SET_MAX_VELOCITY_TYPE
EMC_TRAJ_SET_MAX_ACCELERATION_TYPE
EMC_TRAJ_SET_SCALE_TYPE
EMC_TRAJ_SET_RAPID_SCALE_TYPE
EMC_TRAJ_SET_MOTION_ID_TYPE
EMC_TRAJ_INIT_TYPE
EMC_TRAJ_HALT_TYPE
EMC_TRAJ_ENABLE_TYPE
EMC_TRAJ_DISABLE_TYPE
EMC_TRAJ_ABORT_TYPE
EMC_TRAJ_PAUSE_TYPE
EMC_TRAJ_STEP_TYPE
EMC_TRAJ_RESUME_TYPE
EMC_TRAJ_DELAY_TYPE
EMC_TRAJ_LINEAR_MOVE_TYPE
EMC_TRAJ_CIRCULAR_MOVE_TYPE
EMC_TRAJ_SET_TERM_COND_TYPE
EMC_TRAJ_SET_OFFSET_TYPE
EMC_TRAJ_SET_G5X_TYPE
EMC_TRAJ_SET_HOME_TYPE
EMC_TRAJ_SET_ROTATION_TYPE
EMC_TRAJ_SET_G92_TYPE
EMC_TRAJ_CLEAR_PROBE_TRIPPED_FLAG_TYPE
EMC_TRAJ_PROBE_TYPE
EMC_TRAJ_SET_TELEOP_ENABLE_TYPE
EMC_TRAJ_SET_SPINDLESYNC_TYPE
EMC_TRAJ_SET_SPINDLE_SCALE_TYPE
EMC_TRAJ_SET_FO_ENABLE_TYPE
EMC_TRAJ_SET_SO_ENABLE_TYPE
EMC_TRAJ_SET_FH_ENABLE_TYPE
EMC_TRAJ_RIGID_TAP_TYPE
EMC_TRAJ_STAT_TYPE

4.6 MOTION

���� V2.10.0-pre0-5053-gfb14800741 40 / 78

EMC_MOTION_INIT_TYPE
EMC_MOTION_HALT_TYPE
EMC_MOTION_ABORT_TYPE
EMC_MOTION_SET_AOUT_TYPE
EMC_MOTION_SET_DOUT_TYPE
EMC_MOTION_ADAPTIVE_TYPE
EMC_MOTION_STAT_TYPE

4.7 TASK

EMC_TASK_INIT_TYPE
EMC_TASK_HALT_TYPE
EMC_TASK_ABORT_TYPE
EMC_TASK_SET_MODE_TYPE
EMC_TASK_SET_STATE_TYPE
EMC_TASK_PLAN_OPEN_TYPE
EMC_TASK_PLAN_RUN_TYPE
EMC_TASK_PLAN_READ_TYPE
EMC_TASK_PLAN_EXECUTE_TYPE
EMC_TASK_PLAN_PAUSE_TYPE
EMC_TASK_PLAN_STEP_TYPE
EMC_TASK_PLAN_RESUME_TYPE
EMC_TASK_PLAN_END_TYPE
EMC_TASK_PLAN_CLOSE_TYPE
EMC_TASK_PLAN_INIT_TYPE
EMC_TASK_PLAN_SYNCH_TYPE
EMC_TASK_PLAN_SET_OPTIONAL_STOP_TYPE
EMC_TASK_PLAN_SET_BLOCK_DELETE_TYPE
EMC_TASK_PLAN_OPTIONAL_STOP_TYPE
EMC_TASK_STAT_TYPE

4.8 TOOL

EMC_TOOL_INIT_TYPE
EMC_TOOL_HALT_TYPE
EMC_TOOL_ABORT_TYPE
EMC_TOOL_PREPARE_TYPE
EMC_TOOL_LOAD_TYPE
EMC_TOOL_UNLOAD_TYPE
EMC_TOOL_LOAD_TOOL_TABLE_TYPE
EMC_TOOL_SET_OFFSET_TYPE
EMC_TOOL_SET_NUMBER_TYPE
EMC_TOOL_START_CHANGE_TYPE
EMC_TOOL_STAT_TYPE

4.9 AUX

EMC_AUX_ESTOP_ON_TYPE
EMC_AUX_ESTOP_OFF_TYPE
EMC_AUX_ESTOP_RESET_TYPE
EMC_AUX_INPUT_WAIT_TYPE
EMC_AUX_STAT_TYPE

���� V2.10.0-pre0-5053-gfb14800741 41 / 78

4.10 SPINDLE

EMC_SPINDLE_ON_TYPE
EMC_SPINDLE_OFF_TYPE
EMC_SPINDLE_INCREASE_TYPE
EMC_SPINDLE_DECREASE_TYPE
EMC_SPINDLE_CONSTANT_TYPE
EMC_SPINDLE_BRAKE_RELEASE_TYPE
EMC_SPINDLE_BRAKE_ENGAGE_TYPE
EMC_SPINDLE_SPEED_TYPE
EMC_SPINDLE_ORIENT_TYPE
EMC_SPINDLE_WAIT_ORIENT_COMPLETE_TYPE
EMC_SPINDLE_STAT_TYPE

4.11 COOLANT

EMC_COOLANT_MIST_ON_TYPE
EMC_COOLANT_MIST_OFF_TYPE
EMC_COOLANT_FLOOD_ON_TYPE
EMC_COOLANT_FLOOD_OFF_TYPE
EMC_COOLANT_STAT_TYPE

4.12 LUBE

EMC_LUBE_ON_TYPE
EMC_LUBE_OFF_TYPE
EMC_LUBE_STAT_TYPE

4.13 IO (Input/Output)

EMC_IO_INIT_TYPE
EMC_IO_HALT_TYPE
EMC_IO_ABORT_TYPE
EMC_IO_SET_CYCLE_TIME_TYPE
EMC_IO_STAT_TYPE
EMC_IO_PLUGIN_CALL_TYPE

4.14 Others

EMC_NULL_TYPE
EMC_SET_DEBUG_TYPE
EMC_SYSTEM_CMD_TYPE
EMC_INIT_TYPE
EMC_HALT_TYPE
EMC_ABORT_TYPE
EMC_STAT_TYPE
EMC_EXEC_PLUGIN_CALL_TYPE

���� V2.10.0-pre0-5053-gfb14800741 42 / 78

Chapter 5

Coding Style

This chapter describes the source code style preferred by the LinuxCNC team.

5.1 Do no harm

When making small edits to code in a style different than the one described below, observe the local
coding style. Rapid changes from one coding style to another decrease code readability.
Never check in code after running ”indent” on it. The whitespace changes introduced by indent make
it more difficult to follow the revision history of the file.
Do not use an editor that makes unneeded changes to whitespace (e.g., which replaces 8 spaces with
a tabstop on a line not otherwise modified, or word-wraps lines not otherwise modified).

5.2 Tab Stops

A tab stop always corresponds to 8 spaces. Do not write code that displays correctly only with a
differing tab stop setting.

5.3 Indentation

Use 4 spaces per level of indentation. Combining 8 spaces into one tab is acceptable but not required.

5.4 Placing Braces

Put the opening brace last on the line, and put the closing brace first:
if (x) {

// do something appropriate
}

The closing brace is on a line of its own, except in the cases where it is followed by a continuation of
the same statement, i.e. a while in a do-statement or an else in an if-statement, like this:

���� V2.10.0-pre0-5053-gfb14800741 43 / 78

do {
// something important

} while (x > 0);

and
if (x == y) {

// do one thing
} else if (x < y) {

// do another thing
} else {

// do a third thing
}

This brace-placement also minimizes the number of empty (or almost empty) lines, which allows a
greater amount of code or comments to be visible at once in a terminal of a fixed size.

5.5 Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C
programmers do not use cute names like ThisVariableIsATemporaryCounter. A C programmer would
call that variable tmp, which is much easier to write, and not the least more difficult to understand.
However, descriptive names for global variables are a must. To call a global function foo is a shooting
offense.
GLOBAL variables (to be used only if you really need them) need to have descriptive names, as do
global functions. If you have a function that counts the number of active users, you should call that
count_active_users() or similar, you should not call it cntusr().
Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the
compiler knows the types anyway and can check those, and it only confuses the programmer. No
wonder Microsoft makes buggy programs.
LOCAL variable names should be short, and to the point. If you have some random integer loop
counter, it should probably be called i. Calling it loop_counter is non-productive, if there is no chance
of it being misunderstood. Similarly, tmp can be just about any type of variable that is used to hold a
temporary value.
If you are afraid to mix up your local variable names, you have another problem, which is called the
function-growth-hormone-imbalance syndrome. See next chapter.

5.6 Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls
of text (the ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.
The maximum length of a function is inversely proportional to the complexity and indentation level of
that function. So, if you have a conceptually simple function that is just one long (but simple) case-
statement, where you have to do lots of small things for a lot of different cases, it’s OK to have a longer
function.
However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school
student might not even understand what the function is all about, you should adhere to the maximum
limits all the more closely. Use helper functions with descriptive names (you can ask the compiler to
in-line them if you think it’s performance-critical, and it will probably do a better job of it that you
would have done).

���� V2.10.0-pre0-5053-gfb14800741 44 / 78

Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or
you’re doing something wrong. Re-think the function, and split it into smaller pieces. A human brain
can generally easily keep track of about 7 different things, anything more and it gets confused. You
know you’re brilliant, but maybe you’d like to understand what you did 2 weeks from now.

5.7 Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your
code works in a comment: it’s much better to write the code so that the working is obvious, and it’s
a waste of time to explain badly written code.
Generally, you want your comments to tell WHAT your code does, not HOW. A boxed comment de-
scribing the function, return value, and who calls it placed above the body is good. Also, try to avoid
putting comments inside a function body: if the function is so complex that you need to separately
comment parts of it, you should probably re-read the Functions section again. You can make small
comments to note or warn about something particularly clever (or ugly), but try to avoid excess. In-
stead, put the comments at the head of the function, telling people what it does, and possibly WHY it
does it.
If comments along the lines of /* Fix me */ are used, please, please, say why something needs fixing.
When a change has been made to the affected portion of code, either remove the comment, or amend
it to indicate a change has been made and needs testing.

5.8 Shell Scripts & Makefiles

Not everyone has the same tools and packages installed. Some people use vi, others emacs - A few
even avoid having either package installed, preferring a lightweight text editor such as nano or the
one built in to Midnight Commander.
gawk versus mawk - Again, not everyone will have gawk installed, mawk is nearly a tenth of the size
and yet conforms to the POSIX AWK standard. If some obscure gawk specific command is needed that
mawk does not provide, than the script will break for some users. The same would apply to mawk. In
short, use the generic awk invocation in preference to gawk or mawk.

5.9 C++ Conventions

C++ coding styles are always likely to end up in heated debates (a bit like the emacs versus vi argu-
ments). One thing is certain however, a common style used by everyone working on a project leads
to uniform and readable code.
Naming conventions: Constants either from#defines or enumerations should be in upper case through
out. Rationale: Makes it easier to spot compile time constants in the source code, e.g., EMC_MESSAGE_TYPE.
Classes and Namespaces should capitalize the first letter of each word and avoid underscores. Ratio-
nale: Identifies classes, constructors and destructors, e.g., GtkWidget.
Methods (or function names) should follow the C recommendations above and should not include the
class name. Rationale: Maintains a common style across C and C++ sources, e.g., get_foo_bar().
However, boolean methods are easier to read if they avoid underscores and use an is prefix (not to be
confused with methods that manipulate a boolean). Rationale: Identifies the return value as TRUE or
FALSE and nothing else, e.g., isOpen, isHomed.
Do NOT use Not in a boolean name, it leads only leads to confusion when doing logical tests, e.g.,
isNotOnLimit or is_not_on_limit are BAD.

���� V2.10.0-pre0-5053-gfb14800741 45 / 78

Variable names should avoid the use of upper case and underscores except for local or private names.
The use of global variables should be avoided as much as possible. Rationale: Clarifies which are
variables and which are methods. Public: e.g., axislimit Private: e.g., maxvelocity_ .

5.9.1 Specific method naming conventions

The terms get and set should be used where an attribute is accessed directly. Rationale: Indicates
the purpose of the function or method, e.g., get_foo set_bar.
Formethods involving boolean attributes, set & reset is preferred. Rationale: As above. e.g. set_amp_enable
reset_amp_fault
Math intensive methods should use compute as a prefix. Rationale: Shows that it is computationally
intensive and will hog the CPU. e.g. compute_PID
Abbreviations in names should be avoided where possible - The exception is for local variable names.
Rationale: Clarity of code. e.g. pointer is preferred over ptr compute is preferred over cmp compare
is again preferred over cmp.
Enumerates and other constants can be prefixed by a common type name, e.g., enum COLOR { COLOR_RED,
COLOR_BLUE }; .
Excessive use of macros and defines should be avoided - Using simple methods or functions is pre-
ferred. Rationale: Improves the debugging process.
Include Statements Header files must be included at the top of a source file and not scattered through-
out the body. They should be sorted and grouped by their hierarchical position within the system with
the low level files included first. Include file paths should NEVER be absolute - Use the compiler -I flag
instead to extend the search path. Rationale: Headers may not be in the same place on all systems.
Pointers and references should have their reference symbol next to the variable name rather than the
type name. Rationale: Reduces confusion, e.g., float *x or int &i.
Implicit tests for zero should not be used except for boolean variables, e.g., if (spindle_speed !=
0) NOT if (spindle_speed).
Only loop control statements must be included in a for() construct, e.g., sum = 0; for (i=0; i<10;
i++) { sum += value[i]; }
NOT: for (i=0, sum=0; i<10; i++) sum += value[i];.
Likewise, executable statements in conditionals must be avoided, e.g., if (fd = open(file_name)
is bad.
Complex conditional statements should be avoided - Introduce temporary boolean variables instead.
Parentheses should be used in plenty inmathematical expressions - Do not rely on operator precedence
when an extra parentheses would clarify things.
File names: C++ sources and headers use .cc and .hh extension. The use of .c and .h are reserved
for plain C. Headers are for class, method, and structure declarations, not code (unless the functions
are declared inline).

5.10 Python coding standards

Use the PEP 8 style for Python code.

https://www.python.org/dev/peps/pep-0008/

���� V2.10.0-pre0-5053-gfb14800741 46 / 78

5.11 Comp coding standards

In the declaration portion of a .comp file, begin each declaration at the first column. Insert extra blank
lines when they help group related items.
In the code portion of a .comp file, follow normal C coding style.

���� V2.10.0-pre0-5053-gfb14800741 47 / 78

Chapter 6

GUI Development Reference

This document attempts to be a best practices reference for general use screen development.
While it is possible to program just about anything to work with LinuxCNC, using a common frame
work, language and configuration requirements allows easier transition between screens and more
developers to maintain them.
That said, nothing in this document is written in stone.

6.1 Language

Python is currently the preferred language of LinuxCNC’s screen code.
Python has a low entry bar for new users to modify the screens to suit them.
Python has a rich array of documentation, tutorials and libraries to pull from.
It is already used and integrated into LinuxCNC’s system requirements.
While C or C++ could be used, it severely limits who can maintain and develop them.
It would be better to extend Python with C/C++ modules for whatever function that requires it.

6.2 Localization of float numbers in GUIs

Different locales use different decimal separators and thousands separators. Locale-specific string-
to-float functions should be avoided as they may give unexpected results. (For example the text string
”1.58” in de_DE will be converted to 158 by atof()). The following guidelines (based on avoiding
ambiguity rather than on ”correctness” in any specific locale) are suggested if parsing float to string
and vice-versa:

• In the case of input allow either comma (,) or point(.) as a decimal separator, but reject any input that
has more than one of either. Space should be accepted but not required as a thousands separator.

• In the case of display either use point (.) consistently or use the current localisation format consis-
tently. The emphasis here being on ”consistently”.

6.3 Basic Configuration

Currently, most screens use a combination of INI file and preference file entries to configure their
functions.
INI text files are usually used for the commonmachine controller settings, while text based preference

���� V2.10.0-pre0-5053-gfb14800741 48 / 78

files are used for more GUI related properties (such as sounds, size, colors).
There can be other files used for translations, stylizing and function customization. These are highly
dependent on the underlying widget toolkit.

6.3.1 INI [DISPLAY]

The [DISPLAY] section of the INI is for specifying screen related settings.

6.3.1.1 Display

The most important of is specifying the name of the screen that the LinuxCNC script will use to load.
The screen program usually recognizes switches such as to set full screen.
Title is for the window title and icon is used for iconizing the window.
[DISPLAY]
DISPLAY = axis
TITLE = XYZA Rotational Axis
ICON = silver_dragon.png

6.3.1.2 Cycle Time

If settable, this is how to set the cycle time of the display GUI.
This is often the update rate rather then sleep time between updates.
A value of 100 ms (0.1 s) is a common setting though a range of 50 - 200 ms is not unheard of.
[DISPLAY]
CYCLE_TIME = 100

6.3.1.3 File Paths

If these functions are available in the screen here is how to specify the path to use.
These should reference from the current INI file, or allow ~ for the home folder, or allow use of
absolute paths.
MDI_HISTORY_FILE = mdi_history.txt
PREFERENCE_FILE_PATH = gui.pref
LOG_FILE = gui-log.txt

6.3.1.4 Jog Increments

Radio buttons or a combobox are generally used for increments selection.
The linear increments can be a mix of inches or millimeters.
Angular increments are specified in degrees.
The word continuous is used to specify continuous jogging and probably should be added even if left
out of the INI line.
INCREMENTS = continuous, 10 mm, 1.0 mm, 0.10 mm, 0.01 mm, 1.0 inch, 0.1 inch, 0.01 inch
ANGULAR_INCREMENTS = continuous, .5, 1, 45, 90, 360

���� V2.10.0-pre0-5053-gfb14800741 49 / 78

6.3.1.5 Machine Type Hint

The screen often needs to be adjusted based on machine type. Lathes have different controls and
display DROs differently. Foam machine display the plot differently.
The old way to do this was adding switches LATHE = 1, FOAM = 1 etc
MACHINE_TYPE_HINT = LATHE

6.3.1.6 Overrides

Overrides allows the user to adjust feed rate or spindle speed on the fly. Usually a slider or dial is
used.
These settings are in percent.
MAX_FEED_OVERRIDE = 120
MIN_SPINDLE_0_OVERRIDE = 50
MAX_SPINDLE_0_OVERRIDE = 120

6.3.1.7 Jog Rate

Most screens have slider controls to adjust the linear and angular jog speed rate,
These settings should be specified in machine units per minute for linear and degrees per minute for
angular
Default refers to the starting rate when the screen is first loaded.
DEFAULT_LINEAR_VELOCITY =
MIN_LINEAR_VELOCITY =
MAX_LINEAR_VELOCITY =

DEFAULT_ANGULAR_VELOCITY =
MIN_ANGULAR_VELOCITY =
MAX_ANGULAR_VELOCITY =

6.3.1.8 Spindle Manual Controls

Manual controls for spindle control could be, (or a combinations of) buttons, sliders or dials
You can set limits that are less then the what the machine controller can utilize by setting these
entries.
If your screen is capable of running multiple spindles, then should accept entries higher then the
shown 0.
SPINDLE_INCREMENT = 100
DEFAULT_SPINDLE_0_SPEED = 500
MIN_SPINDLE_0_SPEED = 50
MAX_SPINDLE_0_SPEED = 1000

6.3.2 INI [MDI_COMMAND]

Some screens use buttons to run Macro NGC commands.
They can be specified like these compact examples.
NGC commands separated by colons are run to completion before the next.
The optional comma separates text for the button from the NGC code.

���� V2.10.0-pre0-5053-gfb14800741 50 / 78

[MDI_COMMAND_LIST]
MDI_COMMAND_MACRO0 = G0 Z25;X0 Y0;Z0, Goto\nUser\nZero
MDI_COMMAND_MACRO1 = G53 G0 Z0;G53 G0 X0 Y0,Goto\nMachn\nZero

6.3.3 INI [FILTER]

This section allows setting of what files are shown in the file chooser and what filter programs will
preprocess its output before sending it to LinuxCNC.
The extensions follow this pattern:
PROGRAM_EXTENSION = .extension,.extension2[space]Description of extensions
The filter program definitions are such:
filter extension = program to run
[FILTER]
Controls what programs are shown in the file manager:
PROGRAM_EXTENSION = .ngc,.nc,.tap G-Code File (*.ngc,*.nc,*.tap)
PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image
PROGRAM_EXTENSION = .py Python Script

Maps data/source code file extensions to a special ’filter’ program for the display/ ←↩
execution:

png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode
py = python3

6.3.4 INI [HAL]

Most screens will need some HAL pins. They need to be connected after the screen creates them.

6.3.4.1 Postgui Halfile

These files should be run one after another in order, after all the GUI HAL pins have been made.
[HAL]
POSTGUI_HALFILE = keypad_postgui.hal
POSTGUI_HALFILE = vfd_postgui.hal

6.3.4.2 Postgui Halcmd

These files should be run one after another in order, after all the POSTGUI files have been run.
[HAL]
POSTGUI_HALCMD = show pin qt
POSTGUI_HALCMD = loadusr halmeter

���� V2.10.0-pre0-5053-gfb14800741 51 / 78

6.4 Extended Configuration

6.4.1 Embedding GUI Elements

Allowing users to build small panels independently, that can be embedded into the main screen is
a common and very useful customization. Some screens allow embedding of 3rd party foreign pro-
grams, others only the native widget toolkit based panels.
Usually these are embedded in tabs or side panel widgets.
This is how to describe the optional title, loading command and location widget name:

EMBED_TAB_NAME=Vismach demo
EMBED_TAB_COMMAND=qtvcp vismach_mill_xyz
EMBED_TAB_LOCATION=tabWidget_utilities

6.4.2 User Message Dialogs

User dialogs are used for popping up import information (usually errors), that the user deems impor-
tant.
Some stay up till the problem is fixed, some require acknowledgement, others a yes/no choice.
A HAL I/O pin would pop up the dialog, the dialog would reset the I/O pin and set any response output
pins.
[DISPLAY]
MESSAGE_BOLDTEXT = This is an information message
MESSAGE_TEXT = This is low priority
MESSAGE_DETAILS = press ok to clear
MESSAGE_TYPE = okdialog status
MESSAGE_PINNAME = bothtest
MESSAGE_ICON = INFO

This style gives multiple messages defined by a number.
This example shows 3 possible messages based around a VFD error number.
[DISPLAY]
MULTIMESSAGE_ID = VFD

MULTIMESSAGE_VFD_NUMBER = 1
MULTIMESSAGE_VFD_TYPE = okdialog status
MULTIMESSAGE_VFD_TITLE = VFD Error: 1
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR MESSAGE NUMBER 1
MULTIMESSAGE_VFD_DETAILS = DETAILS for VFD error 1
MULTIMESSAGE_VFD_ICON = WARNING

MULTIMESSAGE_VFD_NUMBER = 2
MULTIMESSAGE_VFD_TYPE = nonedialog status
MULTIMESSAGE_VFD_TITLE = VFD Error: 2
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR MESSAGE NUMBER 2
MULTIMESSAGE_VFD_DETAILS = DETAILS for VFD error 2
MULTIMESSAGE_VFD_ICON = INFO

MULTIMESSAGE_VFD_NUMBER = 3
MULTIMESSAGE_VFD_TYPE = status
MULTIMESSAGE_VFD_TITLE = VFD Error: 3
MULTIMESSAGE_VFD_TEXT = This is the longer text FOR Error MESSAGE NUMBER 3.
MULTIMESSAGE_VFD_DETAILS = We should do something about this message.
MULTIMESSAGE_VFD_ICON = WARNING

���� V2.10.0-pre0-5053-gfb14800741 52 / 78

Chapter 7

Building LinuxCNC

7.1 ��

This document describes how to build the LinuxCNC software from source. This is primarily use-
ful if you are a developer who is modifying LinuxCNC. It can also be useful if you’re a user who is
testing developer branches, though then you also have the option of just installing Debian packages
from the buildbot (http://buildbot.linuxcnc.org) or as a regular package from your Linux distribution
(https://tracker.debian.org/pkg/linuxcnc). Admittedly, this section also exists since LinuxCNC is a
community effort. and you are encouraged to contribute to the development of LinuxCNC. Generally,
you want to compile LinuxCNC yourself for immediate functional access

• to a new development of LinuxCNC or

• a new development you perhaps want to contribute to LinuxCNC or help other completing it.

You may for instance be porting LinuxCNC to some new Linux distribution or, and this common, a
developer reacts to you reporting a problem whose fix you want to test. Any such change will see no
buildbot to help, or that help is delayed, pending someone else’s review that you do not want to wait
for or you are the only other individual with a particular hardware to test the code.
Besides the programs that control your machine that are built from the source tree, you can also build
the same PDFs and/or HTMLfiles that you are likely to have encountered online on https://linuxcnc.org/-
documents/.
If youwant to contribute to LinuxCNC but are uncertain about where to start, please seriously consider
to contribute to the documentation. Everyone always finds something to improve - and if you only
leave a ”FIXME: with a comment” in the text as a reference for yourself and others to revisit a section
later. Also, translations to languages other than English are very likely to benefit from your scrutiny
at https://hosted.weblate.org/projects/linuxcnc/ .

7.2 Downloading source tree

The LinuxCNC project git repository is at https://github.com/LinuxCNC/linuxcnc. GitHub is a popular
git hosting service and code sharing website.
To retrieve the source tree you have two options:

Download tarball
On the LinuxCNC project page in GitHub find a reference to the ”releases” or ”tags”, click that

http://buildbot.linuxcnc.org
https://tracker.debian.org/pkg/linuxcnc
https://linuxcnc.org/documents/
https://linuxcnc.org/documents/
https://hosted.weblate.org/projects/linuxcnc/
https://github.com/LinuxCNC/linuxcnc

���� V2.10.0-pre0-5053-gfb14800741 53 / 78

hyperlink to the archive page and download the latest .tar file. You will find that file compressed
as a .tar.xz or .tar.gz file. This file, commonly referred to as a ”tarball” is an archive very analogous
to a .zip. Your Linux desktop will know how to treat that file when double-clicking on it.

Prepare a local copy of the LinuxCNC repository
You would first install the tool ”git” on your machine if it is not available already (sudo apt
install git). Then prepare a local instance of the source tree as follows: .

$ git clone https://github.com/LinuxCNC/linuxcnc.git linuxcnc-source-dir

. The first argument to the git command gives it away: This is called a ”clone” of the LinuxCNC
repository. The advantage is that this local clone supports the communication about changes you may
decide to perform on the source tree.
GitHub is an infrastructure on its own and explained in depth elsewhere. Just to get you motivated
if you do not know it already.offers to perform a clone for you and have that instance made publicly
available. GitHub refers to such an additional instance of another repository as a ”fork”. You can
easily (and at no cost) create a fork of the LinuxCNC git repository at GitHub, and use that to track and
publish your changes. After creating your own GitHub fork of LinuxCNC, clone it to your development
machine and proceed with your hacking as usual.
We of the LinuxCNC project hope that you will share your changes with us, so that the community
can benefit from your work. GitHub makes this sharing very easy: After you polish your changes and
push them to your github fork, send us a Pull Request.

7.2.1 Quick Start

For the impatient, try this:
$ git clone https://github.com/LinuxCNC/linuxcnc.git linuxcnc-source-dir
$ cd linuxcnc-source-dir/src
$./autogen.sh
$./configure --with-realtime=uspace
$ make

That will probably fail! That doesn’t make you a bad person, it just means you should read this
whole document to find out how to fix your problems. Especially the section on Satisfying Build
Dependencies.
If you are running on a realtime-capable system (such as an install from the LinuxCNC Live/Install
Image, see the Realtime section below), one extra build step is needed at this time:
$ sudo make setuid

After you have successfully built LinuxCNC it is time to run the tests:
$ source ../scripts/rip-environment
$ runtests

This might fail, too! Read this whole document, especially the section on Setting up the test environ-
ment.

7.3 Supported Platforms

The LinuxCNC project targets modern Debian-based distributions, including Debian, Ubuntu, and
Mint. We continuously test on the platforms listed at http://buildbot.linuxcnc.org.
LinuxCNC builds on most other Linux distributions, though dependency management will be more
manual and less automatic. Patches to improve portability to new platforms are always welcome.

http://buildbot.linuxcnc.org

���� V2.10.0-pre0-5053-gfb14800741 54 / 78

7.3.1 Realtime

LinuxCNC is a machine tool controller, and it requires a realtime platform to do this job. This version
of LinuxCNC supports the following platforms. The first three listed are realtime operating systems:

RTAI
From https://www.rtai.org. A Linux kernel with the RTAI patch is available from the Debian
archive at https://linuxcnc.org. See Getting LinuxCNC for installation instructions.

Xenomai
From https://xenomai.org. You will have to compile or obtain a Xenomai kernel yourself.

Preempt-RT
From https://rt.wiki.kernel.org. A Linux kernel with the Preempt-RT patch is occasionally avail-
able from the Debian archive at https://www.debian.org, and from thewaybackmachine at https://snapshot.debian.org.

Non-realtime
LinuxCNC can also be built and run on non-realtime platforms, such as a regular install of Debian
or Ubuntu without any special realtime kernel.
In this mode LinuxCNC is not useful for controlling machine tools, but it is useful for simulating
the execution of G-code and for testing the non-realtime parts of the system (such as the user
interfaces, and some kinds of components and device drivers).
To make use of the realtime capabilities of LinuxCNC, certain parts of LinuxCNC need to run
with root privileges. To enable root for these parts, run this extra command after the make that
builds LinuxCNC:

$ sudo make setuid

7.4 Build modes

There are two ways to build LinuxCNC: The developer-friendly ”run in place” mode and the user-
friendly Debian packaging mode.

7.4.1 Building for Run In Place

In a Run-In-Place build, the LinuxCNC programs are compiled from source and then run directly from
within the build directory. Nothing is installed outside the build directory. This is quick and easy, and
suitable for rapid iteration of changes. The LinuxCNC test suite runs only in a Run-In-Place build.
Most LinuxCNC developers primarily build using this mode.
Building for Run-In-Place follows the steps in the Quick Start section at the top of this document,
possibly with different arguments to src/configure and make.

7.4.1.1 src/configure arguments

The src/configure script configures how the source code will be compiled. It takes many optional
arguments. List all arguments to src/configure by running this:
$ cd linuxcnc-source-dir/src
$./configure --help

The most commonly used arguments are:

https://www.rtai.org
https://linuxcnc.org
https://xenomai.org
https://rt.wiki.kernel.org
https://www.debian.org
https://snapshot.debian.org

���� V2.10.0-pre0-5053-gfb14800741 55 / 78

--with-realtime=uspace
Build for any realtime platform, or for non-realtime. The resulting LinuxCNC executables will run
on both a Linux kernel with Preempt-RT patches (providing realtime machine control) and on a
vanilla (un-patched) Linux kernel (providing G-code simulation but no realtime machine control).

If development files are installed for Xenomai (typically from package ←↩
libxenomai-dev) or RTAI (typically from a package with a name starting ” ←↩
rtai-modules”), support for these real-time kernels will also be enabled.

--with-realtime=/usr/realtime-$VERSION
Build for the RTAI realtime platform using the older ”kernel realtime” model. This requires
that you have an RTAI kernel and the RTAI modules installed in /usr/realtime-$VERSION. The
resulting LinuxCNC executables will only run on the specified RTAI kernel. As of LinuxCNC 2.7,
this produces the best realtime performance.

--enable-build-documentation
Build the documentation, in addition to the executables. This option adds significantly to the time
required for compilation, as building the docs is quite time consuming. If you are not actively
working on the documentation you may want to omit this argument.

--disable-build-documentation-translation
Disable building the translated documentation for all available languages. The building of the
translated documentation takes a huge amount of time, so it is recommend to skip that if not
really needed.

7.4.1.2 make arguments

The make command takes two useful optional arguments.

Parallel compilation
make takes an optional argument -j N (where N is a number). This enables parallel compilation
with N simultaneous processes, which can significantly speed up your build.
A useful value for N is the number of CPUs in your build system.

You can discover the number of CPUs by running nproc.

Building just a specific target
If you want to build just a specific part of LinuxCNC, you can name the thing you want to build
on the make command line. For example, if you are working on a component named froboz, you
can build its executable by running:
$ cd linuxcnc-source-dir/src
$ make ../bin/froboz

7.4.2 Building Debian Packages

When building Debian packages, the LinuxCNC programs are compiled from source and then stored
in a Debian package, complete with dependency information. This process by default also includes
the building of the documentation, which takes its time because of all the I/O for many languages, but
that can be skipped. LinuxCNC is then installed as part of those packages on the same machines or on
whatever machine of the same architecture that the .deb files are copied to. LinuxCNC cannot be run
until the Debian packages are installed on a target machine and then the executables are available in
/usr/bin and /usr/lib just like other regular software of the system.

���� V2.10.0-pre0-5053-gfb14800741 56 / 78

This build mode is primarily useful when packaging the software for delivery to end users, and when
building the software for a machine that does not have the build environment installed, or that does
not have internet access.
For the impatient, try this:
$ sudo apt-get install build-essential
$ git clone https://github.com/LinuxCNC/linuxcnc.git linuxcnc-source-dir
$ cd linuxcnc-source-dir/src
$./debian/configure
$ sudo apt-get build-dep .
$ DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage -uc -B

Building Debian packages is performed with the dpkg-buildpackage tool that is provided by the
dpkg-dev package. Its execution comes with a series of prerequisites that are detailed below: *
general build infrastructure shall be installed, i.e. compilers, etc. * build-time dependencies are to
be installed, i.e. header files for external code libraries used, as described in the section Satisfying
Build Dependencies. * file in debian folder need to be complete that describe the package
Build tools have been gathered as a virtual package named build-essential. To install it, run:
$ sudo apt-get install build-essential

Once those prerequisites are met, building the Debian packages consists of two steps.
The first step is generating the Debian package scripts and meta-data from the git repo by running
this:
$ cd linuxcnc-dev
$./debian/configure

��
The debian/configure script is different from the src/configure script!
The debian/configure accepts arguments depending on the platform you are building on/for, see
the debian/configure arguments section. It defaults to LinuxCNC running in user space (”uspace”),
expecting the preempt_rt kernel to minimize latencies.

Once the Debian package scripts andmeta-data are configured, build the package by running dpkg-buildpackage:
$ dpkg-buildpackage -b -uc

��
dpkg-buildpackage needs to run from the root of the source tree, which you mave have named
linuxcnc-source-dir, not from within linuxcnc-source-dir/debian.
dpkg-buildpackage takes an optional argument ̀ ̀-j ̀ Ǹ (where N is a number). This enables to run
multiple jobs simultaneously.

7.4.2.1 LinuxCNC’s debian/configure arguments

The LinuxCNC source tree has a debian directory with all the info about how the Debian package shall
be built, but some key files within are only distributed as templates. The debian/configure script
readies those build instructions for the regular Debian packaging utilities and must thus be run prior
to dpkg-checkbuilddeps or dpkg-buildpackage.
The debian/configure script takes a single argument which specifies the underlying realtime or non-
realtime platform to build for. The regular values for this argument are:

���� V2.10.0-pre0-5053-gfb14800741 57 / 78

no-docs
Skip building documentation.

uspace
Configure the Debian package for Preempt-RT realtime or for non-realtime (these two are com-
patible).

noauto , rtai , xenomai
Normally, the lists of RTOSes for uspace realtime to support is detected automatically. However,
if you wish, youmay specify one ormore of these after uspace to enable support for these RTOSes.
Or, to disable autodetection, specify noauto.
If you want just the traditional RTAI ”kernel module” realtime, use -r or $KERNEL_VERSION in-
stead.

rtai=<package name>
If the development package for RTAI, lxrt, does not start with ”rtai-modules”, or if the first such
package listed by apt-cache search is not the desired one, then explicitly specify the package
name.

-r
Configure the Debian package for the currently running RTAI kernel. You must be running an
RTAI kernel on your build machine for this to work!

$KERNEL_VERSION
Configure the Debian package for the specified RTAI kernel version (for example ”3.4.9-rtai-686-
pae”). Thematching kernel headers Debian packagemust be installed on your buildmachine, e.g.
”linux-headers-3.4.9-rtai-686-pae”. Note that you can build LinuxCNC in this configuration, but
if you are not running the matching RTAI kernel you will not be able to run LinuxCNC, including
the test suite.

7.4.2.2 Satisfying Build Dependencies

On Debian-based platforms we provide packaging meta-data that knows what external software pack-
ages need to be installed in order to build LinuxCNC. These are referred to as the build dependencies
of LinuxCNC, i.e. those packages that need to be available such that

• the build succeeds and

• the build can be built reproducibly.

You can use this meta-data to easily list the required packages missing from your build system. First,
go to the source tree of LinuxCNC and initiate its default self-configuration, if not already performed:
$ cd linuxcnc-dev
$./debian/configure

This will prepare the file debian/control that contains lists of Debian packages to create with the
runtime dependencies for those packages and for our cause also the build-dependencies for those
to-be-created packages.
The most straightforward way to get all build-dependencies installed is to just execute (from the same
directory):
sudo apt-get build-dep .

which will install all the dependencies required, not yet installed, but available. The . is part of the
command line, i.e. an instruction to retrieve the dependencies for the source tree at hand, not for
dependencies of another package. This completes the installation of build-dependencies.

���� V2.10.0-pre0-5053-gfb14800741 58 / 78

The remainder of this section describes a semi-manual approach. The list of dependencies in debian/-
control is long and it is tedious to compare the current state of packages already installed with it.
Debian systems provide a program called dpkg-checkbuilddeps that parses the package meta-data
and compares the packages listed as build dependencies against the list of installed packages, and
tells you what’s missing.
First, install the dpkg-checkbuilddeps program by running:
$ sudo apt-get install dpkg-dev

This generates the file debian/control in a user-readable yaml-format which lists the build-dependencies
close to the top. You can use this meta-data to easily list the required packages missing from your
build system. You may decide to manually inspecting those files if you have a good understanding
what is already installed.
Alternatively, Debian systems provide a program called dpkg-checkbuilddeps that parses the pack-
age meta-data and compares the packages listed as build dependencies against the list of installed
packages, and tells you what’s missing. Also, dpkg-buildpackage would inform you about what is
missing, and it should be fine. However, it reports missing build-deps only after patches in the direc-
tory debian/patches have been automatically applied (if any). If you are new to Linux and git version
management, a clean start may be preferable to avoid complications.
The dpkg-checkbuilddeps (also from the dpkg-dev package that is installed as part of the build-
essential dependencies) program can be asked to do its job (note that it needs to run from the
linuxcnc-source-dir directory, not from linuxcnc-source-dir/debian):
$ dpkg-checkbuilddeps

It will emit a list of packages that are required to build LinuxCNC on your system but are not installed,
yet. You can now install missing build-dependencies

manually
Install them all with sudo apt-get install, followed by the package names. You can rerun
dpkg-checkbuilddeps any time you want, to list any missing packages, which has no effect on
the source tree.

automated
Run sudo apt build-dep . .

If in doubt about what a particular package of a build-dep may be providing, check out the package’s
description with ̀ ̀apt-cache show ̀ ̀ packagename.

7.4.2.3 Options for dpkg-buildpackage

For a typical Debian package to build, you would run dpkg-buildpackage without any arguments. As
introduced above, the command has two extra options passed to it. Like for all good Linux tools, the
man page has all the details with man dpkg-buildpackage.

-uc
Do not digitally sign the resulting binaries. You would want to sign your packages with a GPG
key of yours only if you would wanted to distribute them to others. Having that option not set
and then failing to sign the package would not affect the .deb file.

-b
Only compiles the architecture-dependent packages (like the linuxcnc binaries and GUIs). This
is very helpful to avoid compiling what is hardware-independent. For LinuxCNC this is the doc-
umentation, which is available online anyway.

���� V2.10.0-pre0-5053-gfb14800741 59 / 78

If you happen to run into difficulties while compiling, check the LinuxCNC forum online.
Currently emerging is the support for the DEB_BUILD_OPTIONS environment variable. Set it to

nodocs
to skip building the documentation, preferably instead use the -B flag to dpkg-buildpackage.

nocheck
to skip self-tests of the LinuxCNC build process. This saves some time and reduces the demand
for a few software packages that may not be available for your system, i.e. the xvfb in partic-
ular. You should not set this option to gain some extra confidence in your build to perform as
expected unless you are running into mere technical difficulties with the test-specific software
dependencies.

An environment variable can be set together with the execution of the command, e.g.
DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage -uc -B

would combine all the options introduced in this section.

7.4.2.4 Installing self-built Debian packages

A Debian package can be recognised by its .deb extension. The tool installing it, dpkg is part of every
Debian installation. The .deb files created by dpkg-buildpackage are found in the directory above
the linuxcnc-source-dir, i.e. in ... To see what files are provided in a package, run
dpkg -c ../linuxcnc-uspace*.deb

The version of LinuxCNC will be part of the file name, which is meant to be matched by the asterisk.
There may be too many files listed to fit on your screen. If you cannot scroll up in your terminal then
add | more to that command to have its output passed through a so-called ”pager”. Quit with ”q”.
To install the packages, run
sudo dpkg -i ../linuxcnc*.deb

7.5 Setting up the environment

This section describes the special steps needed to set up a machine to run the LinuxCNC programs,
including the tests.

7.5.1 Increase the locked memory limit

LinuxCNC tries to improve its realtime latency by locking the memory it uses into RAM. It does this
in order to prevent the operating system from swapping LinuxCNC out to disk, which would have bad
effects on latency. Normally, locking memory into RAM is frowned upon, and the operating system
places a strict limit on how much memory a user is allowed to have locked.
When using the Preempt-RT realtime platform LinuxCNC runs with enough privilege to raise its mem-
ory lock limit itself. When using the RTAI realtime platform it does not have enough privilege, and
the user must raise the memory lock limit.
If LinuxCNC displays the following message on startup, the problem is your system’s configured limit
on locked memory:

���� V2.10.0-pre0-5053-gfb14800741 60 / 78

RTAPI: ERROR: failed to map shmem
RTAPI: Locked memory limit is 32KiB, recommended at least 20480KiB.

To fix this problem, add a file named /etc/security/limits.d/linuxcnc.conf (as root) with your fa-
vorite text editor (e.g., sudo gedit /etc/security/limits.d/linuxcnc.conf). The file should con-
tain the following line:
* - memlock 20480

Log out and log back in to make the changes take effect. Verify that the memory lock limit is raised
using the following command:
$ ulimit -l

7.6 Building on Gentoo

Building on Gentoo is possible, but not supported. Be sure you are running a desktop profile. This
project uses the Tk Widget Set, asciidoc, and has some other dependencies. They should be installed
as root:
~ # euse -E tk imagequant
~ # emerge -uDNa world
~ # emerge -a dev-libs/libmodbus dev-lang/tk dev-tcltk/bwidget dev-tcltk/tclx
~ # emerge -a dev-python/pygobject dev-python/pyopengl dev-python/numpy
~ # emerge -a app-text/asciidoc app-shells/bash-completion

You can switch back to being a normal user for most of the rest of the install. As that user, create a
virtual environment for pip, then install the pip packages:
~/src $ python -m venv --system-site-packages ~/src/venv
~/src $. ~/src/venv/bin/activate
(venv) ~/src $ pip install yapps2
(venv) ~/src $

Then you can contrinue as normally:
(venv) ~/src $ git clone https://github.com/LinuxCNC/linuxcnc.git
(venv) ~/src $ cd linuxcnc
(venv) ~/src $ cd src
(venv) ~/src $./autogen.sh
(venv) ~/src $./configure --enable-non-distributable=yes
(venv) ~/src $ make

There is no need to run ”make suid”, just make sure your user is in the ”dialout” group. To start
linuxcnc, you must be in the Python Virtual Environment, and set up the linuxcnc environment:
~ $. ~/src/venv/bin/activate
(venv) ~ $. ~/src/linuxcnc/scripts/rip-environment
(venv) ~ $ ~/src/linuxcnc $ scripts/linuxcnc

7.7 Options for checking out the git repo

The Quick Start instructions at the top of this document clone our git repo at https://github.com/-
LinuxCNC/linuxcnc.git. This is the quickest, easiest way to get started. However, there are other
options to consider.

https://github.com/LinuxCNC/linuxcnc.git
https://github.com/LinuxCNC/linuxcnc.git

���� V2.10.0-pre0-5053-gfb14800741 61 / 78

7.7.1 Fork us on GitHub

The LinuxCNC project git repo is at https://github.com/LinuxCNC/linuxcnc. GitHub is a popular git
hosting service and code sharing website. You can easily (and at no costs) create a fork (a second
instance holding a copy that you control) of the LinuxCNC git repository at GitHub. You can then use
that fork of yours to track and publish your changes, receive comments to your changes and accept
patches from the community. .
After creating your own GitHub fork of LinuxCNC, clone it to your development machine and proceed
with your hacking as usual.
We of the LinuxCNC project hope that you will share your changes with us, so that the community
can benefit from your work. GitHub makes this sharing very easy: after you polish your changes and
push them to your GitHub fork, send us a Pull Request.

https://github.com/LinuxCNC/linuxcnc

���� V2.10.0-pre0-5053-gfb14800741 62 / 78

Chapter 8

Adding Configuration Selection Items

Example Configurations can be added to the Configuration Selector by two methods:

• Auxiliary applications — Applications installed independently with a deb package can place config-
uration subdirectories in a specified system directory. The directory name is specified using the
shell linuxcnc_var script:
$ linuxcnc_var LINUXCNC_AUX_EXAMPLES
/usr/share/linuxcnc/aux_examples

• Runtime settings — the configuration selector can also offer configuration subdirectories specified
at runtime using an exported environamental variable (LINUXCNC_AUX_CONFIGS). This variable
should be a path list of one or more configuration directories separated by a (:). Typically, this
variable would be set in a shell starting linuxcnc or in a user’s ~/.profile startup script. Example:
export LINUXCNC_AUX_CONFIGS=~/myconfigs:/opt/otherconfigs

���� V2.10.0-pre0-5053-gfb14800741 63 / 78

Chapter 9

Contributing to LinuxCNC

9.1 ��

This document contains information for developers about LinuxCNC infrastructure, and describes the
best practices for contributing code and documentation updates to the LinuxCNC project.
Throughout this document, ”source” means both the source code to the programs and libraries, and
the source text for the documentation.

9.2 Communication among LinuxCNC developers

The two main ways that project developers communicate with each other are:

• Via IRC, at #linuxcnc-devel on Libera.chat.

• Via email, on the developers’ mailing list

9.3 The LinuxCNC Source Forge project

We use Source Forge for mailing lists.

9.4 The Git Revision Control System

All of the LinuxCNC source is maintained in the Git revision control system.

9.4.1 LinuxCNC official Git repo

The official LinuxCNC git repo is at https://github.com/linuxcnc/linuxcnc/
Anyone can get a read-only copy of the LinuxCNC source tree via git:
git clone https://github.com/linuxcnc/linuxcnc linuxcnc-dev

irc://irc.libera.chat/%23linuxcnc-devel
https://libera.chat/
https://lists.sourceforge.net/lists/listinfo/emc-developers
https://sourceforge.net/p/emc/mailman/
https://git-scm.com/
https://github.com/linuxcnc/linuxcnc/

���� V2.10.0-pre0-5053-gfb14800741 64 / 78

If you are a developer with push access, then follow github’s instructions for setting up a repository
that you can push from.
Note that the clone command put the local LinuxCNC repo in a directory called linuxcnc-dev, instead
of the default linuxcnc. This is because the LinuxCNC software by default expects configs and G-code
programs in a directory called $HOME/linuxcnc, and having the git repo there too is confusing.
Issues and pull requests (abbreviated PRs) are welcome on GitHub: https://github.com/LinuxCNC/-
linuxcnc/issues https://github.com/LinuxCNC/linuxcnc/pulls

9.4.2 Use of Git in the LinuxCNC project

We use the ”merging upwards” and ”topic branches” git workflows described here:
https://www.kernel.org/pub/software/scm/git/docs/gitworkflows.html
We have a development branch called master, and one or more stable branches with names like 2.6
and 2.7 indicating the version number of the releases we make from it.
Bugfixes go in the oldest applicable stable branch, and that branch gets merged into the next newer
stable branch, and so on up to master. The committer of the bugfix may do the merges themselves,
or they may leave the merges for someone else.
New features generally go in the master branch, but some kinds of features (specifically well isolated
device drivers and documentation) may (at the discretion of the stable branch release managers) go
into a stable branch and get merged up just like bugfixes do.

9.4.3 git tutorials

There are many excellent, free git tutorials on the internet.
The first place to look is probably the ”gittutorial” manpage. This manpage is accessible by running
”man gittutorial” in a terminal (if you have the git manpages installed). The gittutorial and its follow-on
documentation are also available online here:

• git tutorial: https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html

• git tutorial 2: https://www.kernel.org/pub/software/scm/git/docs/gittutorial-2.html

• Everyday git with 20 commands or so: https://www.kernel.org/pub/software/scm/git/docs/giteveryday.html

• Git User’s Manual: https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

For a more thorough documentation of git see the ”Pro Git” book: https://git-scm.com/book
Another online tutorial that has been recommended is ”Git for the Lazy”: https://wiki.spheredev.org/-
index.php/Git_for_the_lazy

9.5 Overview of the process

The high-level overview of how to contribute changes to the source goes like this:

• Communicate with the project developers and let us know what you’re hacking on. Explain what
you are doing, and why.

• Clone the git repo.

• Make your changes in a local branch.

https://github.com/LinuxCNC/linuxcnc/issues
https://github.com/LinuxCNC/linuxcnc/issues
https://github.com/LinuxCNC/linuxcnc/pulls
https://www.kernel.org/pub/software/scm/git/docs/gitworkflows.html
https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
https://www.kernel.org/pub/software/scm/git/docs/gittutorial-2.html
https://www.kernel.org/pub/software/scm/git/docs/giteveryday.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://git-scm.com/book
https://wiki.spheredev.org/index.php/Git_for_the_lazy
https://wiki.spheredev.org/index.php/Git_for_the_lazy

���� V2.10.0-pre0-5053-gfb14800741 65 / 78

• Adding documentation and writing tests is an important part of adding a new feature. Otherwise,
others won’t know how to use your feature, and if other changes break your feature it can go
unnoticed without a test.

• Share your changes with the other project developers in one of these ways:

– Push your branch to github and create a github pull request to https://github.com/linuxcnc/-
linuxcnc (this requires a github account), or

– Push your branch to a publicly visible git repo (such as github, or your own publicly-accessible
server, etc) and share that location on the emc-developers mailing list, or

– Email your commits to the LinuxCNC-developersmailing list (<emc-developers@lists.sourceforge.net>)
(use git format-patch to create the patches).

• Advocate for your patch:

– Explain what problem it addresses and why it should be included in LinuxCNC.
– Be receptive to questions and feedback from the developer community.
– It is not uncommon for a patch to go through several revisions before it is accepted.

9.6 git configuration

In order to be considered for inclusion in the LinuxCNC source, commits must have correct Author
fields identifying the author of the commit. A good way to ensure this is to set your global git config:
git config --global user.name ”Your full name”
git config --global user.email ”you@example.com”

Use your real name (not a handle), and use an unobfuscated e-mail address.

9.7 Effective use of git

9.7.1 Commit contents

Keep your commits small and to the point. Each commit should accomplish one logical change to the
repo.

9.7.2 Write good commit messages

Keep commit messages around 72 columns wide (so that in a default-size terminal window, they don’t
wrap when shown by git log).
Use the first line as a summary of the intent of the change (almost like the subject line of an e-mail).
Follow it with a blank line, then a longer message explaining the change. Example:

9.7.3 Commit to the proper branch

Bugfixes should go on the oldest applicable branch. New features should go in the master branch. If
you’re not sure where a change belongs, ask on irc or on the mailing list.

https://github.com/linuxcnc/linuxcnc
https://github.com/linuxcnc/linuxcnc
mailto:emc-developers@lists.sourceforge.net

���� V2.10.0-pre0-5053-gfb14800741 66 / 78

9.7.4 Use multiple commits to organize changes

When appropriate, organize your changes into a branch (a series of commits) where each commit is
a logical step towards your ultimate goal. For example, first factor out some complex code into a new
function. Then, in a second commit, fix an underlying bug. Then, in the third commit, add a new
feature which is made easier by the refactoring and which would not have worked without fixing that
bug.
This is helpful to reviewers, because it is easier to see that the ”factor out code into new function”
step was right when there aren’t other edits mixed in; it’s easier to see that the bug is fixed when the
change that fixes it is separate from the new feature; and so on.

9.7.5 Follow the style of the surrounding code

Make an effort to follow the prevailing indentation style of surrounding code. In particular, changes
to whitespace make it harder for other developers to track changes over time. When reformatting
code must be done, do it as a commit separate from any semantic changes.

9.7.6 Get rid of RTAPI_SUCCESS, use 0 instead

The test ”retval < 0” should feel familiar; it’s the same kind of test you use in userspace (returns -1
for error) and in kernel space (returns -ERRNO for error).

9.7.7 Simplify complicated history before sharing with fellow developers

With git, it’s possible to record every edit and false start as a separate commit. This is very convenient
as a way to create checkpoints during development, but often you don’t want to share these false starts
with others.
Git provides two main ways to clean history, both of which can be done freely before you share the
change:
git commit --amend lets you make additional changes to the last thing you committed, optionally
modifying the commit message as well. Use this if you realized right away that you left something out
of the commit, or if you typo’d the commit message.
git rebase --interactive upstream-branch lets you go back through each commit made since you
forked your feature branch from the upstream branch, possibly editing commits, dropping commits,
or squashing (combining) commits with others. Rebase can also be used to split individual commits
into multiple new commits.

9.7.8 Make sure every commit builds

If your change consists of several patches, git rebase -i may be used to reorder these patches into
a sequence of commits which more clearly lays out the steps of your work. A potential consequence
of reordering patches is that one might get dependencies wrong - for instance, introducing a use of a
variable, and the declaration of that variable only follows in a later patch.
While the branch HEAD will build, not every commit might build in such a case. That breaks git
bisect - something somebody else might use later on to find the commit which introduced a bug. So
beyond making sure your branch builds, it is important to assure every single commit builds as well.
There’s an automatic way to check a branch for each commit being buildable - see https://dustin.sallings.org/-
2010/03/28/git-test-sequence.html and the code at https://github.com/dustin/bindir/blob/master/git-
test-sequence. Use as follows (in this case testing every commit from origin/master to HEAD, includ-
ing running regression tests):

https://dustin.sallings.org/2010/03/28/git-test-sequence.html
https://dustin.sallings.org/2010/03/28/git-test-sequence.html
https://github.com/dustin/bindir/blob/master/git-test-sequence
https://github.com/dustin/bindir/blob/master/git-test-sequence

���� V2.10.0-pre0-5053-gfb14800741 67 / 78

cd linuxcnc-dev
git-test-sequence origin/master.. ’(cd src && make && ../scripts/runtests)’

This will either report All is well or Broke on <commit>

9.7.9 Renaming files

Please use the ability to rename files very cautiously. Like running indent on single files, renames still
make it more difficult to follow changes over time. At a minimum, you should seek consensus on irc
or the mailing list that the rename is an improvement.

9.7.10 Prefer ”rebase”

Use git pull --rebase instead of bare git pull in order to keep a nice linear history. When you
rebase, you always retain your work as revisions that are ahead of origin/master, so you can do things
like git format-patch them to share with others without pushing to the central repository.

9.8 Translations

The LinuxCNC project uses gettext to translate the software into many languages. We welcome
contributions and help in this area! Improving and extending the translations is easy: you don’t need
to know any programming, and you don’t need to install any special translation programs or other
software.
The easiest way to help with translations is usingWeblate, an open-sourceweb service. Our translation
project is here:
https://hosted.weblate.org/projects/linuxcnc/
Documentation on how to use Weblate is here: https://docs.weblate.org/en/latest/user/basic.html

9.9 Other ways to contribute

There are many ways to contribute to LinuxCNC, that are not addressed by this document. These
ways include:

• Answering questions on the forum, mailing lists, and in IRC

• Reporting bugs on the bug tracker, forum, mailing lists, or in IRC

• Helping test experimental features

https://hosted.weblate.org/projects/linuxcnc/
https://docs.weblate.org/en/latest/user/basic.html

���� V2.10.0-pre0-5053-gfb14800741 68 / 78

Chapter 10

Glossary

A listing of terms and what they mean. Some terms have a general meaning and several additional
meanings for users, installers, and developers.

Acme Screw
A type of lead-screw that uses an Acme thread form. Acme threads have somewhat lower friction
and wear than simple triangular threads, but ball-screws are lower yet. Most manual machine
tools use acme lead-screws.

Axis
One of the computer controlled movable parts of the machine. For a typical vertical mill, the
table is the X axis, the saddle is the Y axis, and the quill or knee is the Z axis. Angular axes like
rotary tables are referred to as A, B, and C. Additional linear axes relative to the tool are called
U, V, and W respectively.

AXIS(GUI)
One of the Graphical User Interfaces available to users of LinuxCNC. It features the modern use
of menus and mouse buttons while automating and hiding some of the more traditional LinuxCNC
controls. It is the only open-source interface that displays the entire tool path as soon as a file is
opened.

GMOCCAPY (GUI)
A Graphical User Interfaces available to users of LinuxCNC. It features the use and feel of an
industrial control and can be used with touch screen, mouse and keyboard. It support embedded
tabs and hal driven user messages, it offers a lot of hal beens to be controlled with hardware.
GMOCCAPY is highly customizable.

Backlash
The amount of ”play” or lost motion that occurs when direction is reversed in a lead screw. or
other mechanical motion driving system. It can result from nuts that are loose on leadscrews,
slippage in belts, cable slack, ”wind-up” in rotary couplings, and other places where the mechan-
ical system is not ”tight”. Backlash will result in inaccurate motion, or in the case of motion
caused by external forces (think cutting tool pulling on the work piece) the result can be broken
cutting tools. This can happen because of the sudden increase in chip load on the cutter as the
work piece is pulled across the backlash distance by the cutting tool.

Backlash Compensation
Any technique that attempts to reduce the effect of backlash without actually removing it from
the mechanical system. This is typically done in software in the controller. This can correct the
final resting place of the part in motion but fails to solve problems related to direction changes
while in motion (think circular interpolation) and motion that is caused when external forces
(think cutting tool pulling on the work piece) are the source of the motion.

���� V2.10.0-pre0-5053-gfb14800741 69 / 78

Ball Screw
A type of lead-screw that uses small hardened steel balls between the nut and screw to reduce
friction. Ball-screws have very low friction and backlash, but are usually quite expensive.

Ball Nut
A special nut designed for use with a ball-screw. It contains an internal passage to re-circulate
the balls from one end of the screw to the other.

CNC
Computer Numerical Control. The general term used to refer to computer control of machinery.
Instead of a human operator turning cranks to move a cutting tool, CNC uses a computer and
motors to move the tool, based on a part program.

Halcompile
A tool used to build, compile and install LinuxCNC HAL components.

Configuration(n)
A directory containing a set of configuration files. Custom configurations are normally saved in
the users home/linuxcnc/configs directory. These files include LinuxCNC’s traditional INI file and
HAL files. A configuration may also contain several general files that describe tools, parameters,
and NML connections.

Configuration(v)
The task of setting up LinuxCNC so that it matches the hardware on a machine tool.

Coordinate Measuring Machine
A Coordinate Measuring Machine is used to make many accurate measurements on parts. These
machines can be used to create CAD data for parts where no drawings can be found, when a hand-
made prototype needs to be digitized for moldmaking, or to check the accuracy of machined or
molded parts.

Display units
The linear and angular units used for onscreen display.

DRO
A Digital Read Out is a system of position-measuring devices attached to the slides of a machine
tool, which are connected to a numeric display showing the current location of the tool with
respect to some reference position. DROs are very popular on hand-operated machine tools
because they measure the true tool position without backlash, even if the machine has very loose
Acme screws. Some DROs use linear quadrature encoders to pick up position information from
the machine, and some use methods similar to a resolver which keeps rolling over.

EDM
EDM is a method of removing metal in hard or difficult to machine or tough metals, or where
rotating tools would not be able to produce the desired shape in a cost-effective manner. An
excellent example is rectangular punch dies, where sharp internal corners are desired. Milling
operations can not give sharp internal corners with finite diameter tools. A wire EDM machine
can make internal corners with a radius only slightly larger than the wire’s radius. A sinker EDM
can make internal corners with a radius only slightly larger than the radius on the corner of the
sinking electrode.

EMC
The Enhanced Machine Controller. Initially a NIST project. Renamed to LinuxCNC in 2012.

EMCIO
The module within LinuxCNC that handles general purpose I/O, unrelated to the actual motion
of the axes.

EMCMOT
The module within LinuxCNC that handles the actual motion of the cutting tool. It runs as a
real-time program and directly controls the motors.

���� V2.10.0-pre0-5053-gfb14800741 70 / 78

Encoder
A device to measure position. Usually a mechanical-optical device, which outputs a quadrature
signal. The signal can be counted by special hardware, or directly by the parport with LinuxCNC.

Feed
Relatively slow, controlled motion of the tool used when making a cut.

Feed rate
The speed at which a cutting motion occurs. In auto or MDI mode, feed rate is commanded using
an F word. F10 would mean ten machine units per minute.

Feedback
A method (e.g., quadrature encoder signals) by which LinuxCNC receives information about the
position of motors.

Feedrate Override
A manual, operator controlled change in the rate at which the tool moves while cutting. Often
used to allow the operator to adjust for tools that are a little dull, or anything else that requires
the feed rate to be ”tweaked”.

Floating Point Number
A number that has a decimal point. (12.300) In HAL it is known as float.

G-code
The generic term used to refer to the most common part programming language. There are
several dialects of G-code, LinuxCNC uses RS274/NGC.

GUI
�������

General
A type of interface that allows communications between a computer and a human (in most
cases) via the manipulation of icons and other elements (widgets) on a computer screen.

LinuxCNC
An application that presents a graphical screen to the machine operator allowing manipula-
tion of the machine and the corresponding controlling program.

HAL
Hardware Abstraction Layer. At the highest level, it is simply a way to allow a number of building
blocks to be loaded and interconnected to assemble a complex system. Many of the building
blocks are drivers for hardware devices. However, HAL can domore than just configure hardware
drivers.

Home
A specific location in the machine’s work envelope that is used to make sure the computer and
the actual machine both agree on the tool position.

INI file
A text file that contains most of the information that configures LinuxCNC for a particular ma-
chine.

Instance
One can have an instance of a class or a particular object. The instance is the actual object
created at runtime. In programmer jargon, the ”Lassie” object is an instance of the ”Dog” class.

Joint Coordinates
These specify the angles between the individual joints of the machine. See also Kinematics

Jog
Manually moving an axis of a machine. Jogging either moves the axis a fixed amount for each
key-press, or moves the axis at a constant speed as long as you hold down the key. In manual
mode, jog speed can be set from the graphical interface.

���� V2.10.0-pre0-5053-gfb14800741 71 / 78

kernel-space
Code running inside the kernel, as opposed to code running in userspace. Some realtime sys-
tems (like RTAI) run realtime code in the kernel and non-realtime code in userspace, while other
realtime systems (like Preempt-RT) run both realtime and non-realtime code in userspace.

Kinematics
The position relationship between world coordinates and joint coordinates of a machine. There
are two types of kinematics. Forward kinematics is used to calculate world coordinates from joint
coordinates. Inverse kinematics is used for exactly the opposite purpose. Note that kinematics
does not take into account, the forces, moments etc. on the machine. It is for positioning only.

Lead-screw
An screw that is rotated by a motor to move a table or other part of a machine. Lead-screws are
usually either ball-screws or acme screws, although conventional triangular threaded screws
may be used where accuracy and long life are not as important as low cost.

Machine units
The linear and angular units used for machine configuration. These units are specified and used
in the INI file. HAL pins and parameters are also generally in machine units.

MDI
Manual Data Input. This is a mode of operation where the controller executes single lines of
G-code as they are typed by the operator.

NIST
National Institute of Standards and Technology. An agency of the Department of Commerce in
the United States.

NML
Neutral Message Language provides a mechanism for handling multiple types of messages in
the same buffer as well as simplifying the interface for encoding and decoding buffers in neutral
format and the configuration mechanism.

Offsets
An arbitrary amount, added to the value of something to make it equal to some desired value.
For example, G-code programs are often written around some convenient point, such as X0, Y0.
Fixture offsets can be used to shift the actual execution point of that G-code program to properly
fit the true location of the vice and jaws. Tool offsets can be used to shift the ”uncorrected” length
of a tool to equal that tool’s actual length.

Part Program
A description of a part, in a language that the controller can understand. For LinuxCNC, that
language is RS-274/NGC, commonly known as G-code.

Program Units
The linear and angular units used in a part program. The linear program units do not have to
be the same as the linear machine units. See G20 and G21 for more information. The angular
program units are always measured in degrees.

Python
General-purpose, very high-level programming language. Used in LinuxCNC for the Axis GUI,
the StepConf configuration tool, and several G-code programming scripts.

Rapid
Fast, possibly less precise motion of the tool, commonly used to move between cuts. If the tool
meets the workpiece or the fixturing during a rapid, it is probably a bad thing!

Rapid rate
The speed at which a rapid motion occurs. In auto or MDI mode, rapid rate is usually the max-
imum speed of the machine. It is often desirable to limit the rapid rate when testing a G-code
program for the first time.

���� V2.10.0-pre0-5053-gfb14800741 72 / 78

Real-time
Software that is intended to meet very strict timing deadlines. On Linux, in order to meet these
requirements it is necessary to install a realtime kernel such as RTAI or Preempt-RT, and build
the LinuxCNC software to run in the special real-time environment. Realtime software can run
in the kernel or in userspace, depending on the facilities offered by the system.

RTAI
Real Time Application Interface, see https://www.rtai.org/, the real-time extensions for Linux that
LinuxCNC can use to achieve real-time performance.

RTLINUX
See https://en.wikipedia.org/wiki/RTLinux, an older real-time extension for Linux that LinuxCNC
used to use to achieve real-time performance. Obsolete, replaced by RTAI.

RTAPI
A portable interface to real-time operating systems including RTAI and POSIX pthreads with
realtime extensions.

RS-274/NGC
The formal name for the language used by LinuxCNC part programs.

Servo Motor
Generally, any motor that is used with error-sensing feedback to correct the position of an actu-
ator. Also, a motor which is specially-designed to provide improved performance in such appli-
cations.

Servo Loop
A control loop used to control position or velocity of an motor equipped with a feedback device.

Signed Integer
A whole number that can have a positive or negative sign. In HAL it is usually a s32, but could
be also a s64.

Spindle
The part of a machine tool that spins to do the cutting. On a mill or drill, the spindle holds the
cutting tool. On a lathe, the spindle holds the workpiece.

Spindle Speed Override
A manual, operator controlled change in the rate at which the tool rotates while cutting. Often
used to allow the operator to adjust for chatter caused by the cutter’s teeth. Spindle Speed
Override assumes that the LinuxCNC software has been configured to control spindle speed.

StepConf
An LinuxCNC configuration wizard. It is able to handle many step-and-directionmotion command
based machines. It writes a full configuration after the user answers a few questions about the
computer and machine that LinuxCNC is to run on.

Stepper Motor
A type of motor that turns in fixed steps. By counting steps, it is possible to determine how far
the motor has turned. If the load exceeds the torque capability of the motor, it will skip one or
more steps, causing position errors.

TASK
The module within LinuxCNC that coordinates the overall execution and interprets the part pro-
gram.

Tcl/Tk
A scripting language and graphical widget toolkit with which several of LinuxCNCs GUIs and
selection wizards were written.

Traverse Move
A move in a straight line from the start point to the end point.

https://www.rtai.org/
https://en.wikipedia.org/wiki/RTLinux

���� V2.10.0-pre0-5053-gfb14800741 73 / 78

Units
See ”Machine Units”, ”Display Units”, or ”Program Units”.

Unsigned Integer
A whole number that has no sign. In HAL it is usually a u32 but could be also a u64.

World Coordinates
This is the absolute frame of reference. It gives coordinates in terms of a fixed reference frame
that is attached to some point (generally the base) of the machine tool.

���� V2.10.0-pre0-5053-gfb14800741 74 / 78

Chapter 11

Legal Section

Translations of this file provided in the source tree are not legally binding.

11.1 Copyright Terms

Copyright (c) 2000-2022 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNUFree
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled ”GNU Free Documentation License”.

11.2 GNU Free Documentation License

GNU Free Documentation License Version 1.1, March 2000
Copyright © 2000 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document ”free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.
This License is a kind of ”copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

���� V2.10.0-pre0-5053-gfb14800741 75 / 78

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The ”Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as ”you”.
A ”Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.
A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.
The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.
The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.
A ”Transparent” copy of the Document means amachine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not ”Transparent” is called
”Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII withoutmarkup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced
by some word processors for output purposes only.
The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.
Youmay also lend copies, under the same conditions stated above, and youmay publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

���� V2.10.0-pre0-5053-gfb14800741 76 / 78

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete Transpar-
ent copy of the Document, free of added material, which the general network-using public has access
to download anonymously at no charge using public-standard network protocols. If you use the lat-
ter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the
Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission. B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice
for your modifications adjacent to the other copyright notices. F. Include, immediately after the
copyright notices, a license notice giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum below. G. Preserve in that license
notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license
notice. H. Include an unaltered copy of this License. I. Preserve the section entitled ”History”,
and its title, and add to it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section entitled ”History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous
sentence. J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the ”History” section. You may omit
a network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission. K. In any section entitled
”Acknowledgements” or ”Dedications”, preserve the section’s title, and preserve in the section
all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section titles. M.
Delete any section entitled ”Endorsements”. Such a section may not be included in the Modified
Version. N. Do not retitle any existing section as ”Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

���� V2.10.0-pre0-5053-gfb14800741 77 / 78

You may add a section entitled ”Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.
In the combination, you must combine any sections entitled ”History” in the various original docu-
ments, forming one section entitled ”History”; likewise combine any sections entitled ”Acknowledge-
ments”, and any sections entitled ”Dedications”. Youmust delete all sections entitled ”Endorsements.”
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this Li-
cense, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an ”aggregate”, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permis-
sion from their copyright holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include a translation of

���� V2.10.0-pre0-5053-gfb14800741 78 / 78

this License provided that you also include the original English version of this License. In case of a
disagreement between the translation and the original English version of this License, the original
English version will prevail.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License ”or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.
ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES,
with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license
is included in the section entitled ”GNU Free Documentation License”.
If you have no Invariant Sections, write ”with no Invariant Sections” instead of saying which ones
are invariant. If you have no Front-Cover Texts, write ”no Front-Cover Texts” instead of ”Front-Cover
Texts being LIST”; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing these exam-
ples in parallel under your choice of free software license, such as the GNU General Public License,
to permit their use in free software.

https://www.gnu.org/copyleft/

	简介
	HAL General Reference
	HAL Entity Names
	HAL General Naming Conventions
	Hardware Driver Naming Conventions
	Pins/Parameters names
	Function Names

	Code Notes
	Intended audience
	Organization
	Terms and definitions
	Architecture overview
	LinuxCNC software architecture

	Motion Controller Introduction
	Motion Controller Modules

	Block diagrams and Data Flow
	Homing
	Homing state diagram
	Another homing diagram

	Commands
	ABORT
	Requirements
	Results

	FREE
	Requirements
	Results

	TELEOP
	Requirements
	Results

	COORD
	Requirements
	Results

	ENABLE
	Requirements
	Results

	DISABLE
	Requirements
	Results

	ENABLE_AMPLIFIER
	Requirements
	Results

	DISABLE_AMPLIFIER
	Requirements
	Results

	ACTIVATE_JOINT
	Requirements
	Results

	DEACTIVATE_JOINT
	Requirements
	Results

	ENABLE_WATCHDOG
	Requirements
	Results

	DISABLE_WATCHDOG
	Requirements
	Results

	PAUSE
	Requirements
	Results

	RESUME
	Requirements
	Results

	STEP
	Requirements
	Results

	SCALE
	Requirements
	Results

	OVERRIDE_LIMITS
	Requirements
	Results

	HOME
	Requirements
	Results

	JOG_CONT
	Requirements
	Results

	JOG_INCR
	Requirements
	Results

	JOG_ABS
	Requirements
	Results

	SET_LINE
	SET_CIRCLE
	SET_TELEOP_VECTOR
	PROBE
	CLEAR_PROBE_FLAG
	SET_xix

	Backlash and Screw Error Compensation
	Task controller (EMCTASK)
	State

	IO controller (EMCIO)
	用户界面
	libnml Introduction
	LinkedList
	LinkedListNode
	SharedMemory
	ShmBuffer
	Timer
	Semaphore
	CMS
	Configuration file format
	Buffer line
	Type specific configs
	Process line
	Configuration Comments

	NML base class
	NML internals
	NML constructor
	NML read/write
	NMLmsg and NML relationships

	Adding custom NML commands
	The Tool Table and Toolchanger
	Toolchanger abstraction in LinuxCNC
	Nonrandom Toolchangers
	Random Toolchangers

	The Tool Table
	G-codes affecting tools
	Txxx
	M6
	G43/G43.1/G49
	G10 L1/L10/L11
	M61
	G41/G41.1/G42/G42.1
	G40

	Internal state variables
	IO
	interp

	Reckoning of joints and axes
	In the status buffer
	In Motion

	NML Messages
	OPERATOR
	JOINT
	AXIS
	JOG
	TRAJ
	MOTION
	TASK
	TOOL
	AUX
	SPINDLE
	COOLANT
	LUBE
	IO (Input/Output)
	Others

	Coding Style
	Do no harm
	Tab Stops
	Indentation
	Placing Braces
	Naming
	Functions
	Commenting
	Shell Scripts & Makefiles
	C++ Conventions
	Specific method naming conventions

	Python coding standards
	Comp coding standards

	GUI Development Reference
	Language
	Localization of float numbers in GUIs
	Basic Configuration
	INI [DISPLAY]
	Display
	Cycle Time
	File Paths
	Jog Increments
	Machine Type Hint
	Overrides
	Jog Rate
	Spindle Manual Controls

	INI [MDI_COMMAND]
	INI [FILTER]
	INI [HAL]
	Postgui Halfile
	Postgui Halcmd

	Extended Configuration
	Embedding GUI Elements
	User Message Dialogs

	Building LinuxCNC
	简介
	Downloading source tree
	Quick Start

	Supported Platforms
	Realtime

	Build modes
	Building for Run In Place
	src/configure arguments
	make arguments

	Building Debian Packages
	LinuxCNC’s debian/configure arguments
	Satisfying Build Dependencies
	Options for dpkg-buildpackage
	Installing self-built Debian packages

	Setting up the environment
	Increase the locked memory limit

	Building on Gentoo
	Options for checking out the git repo
	Fork us on GitHub

	Adding Configuration Selection Items
	Contributing to LinuxCNC
	简介
	Communication among LinuxCNC developers
	The LinuxCNC Source Forge project
	The Git Revision Control System
	LinuxCNC official Git repo
	Use of Git in the LinuxCNC project
	git tutorials

	Overview of the process
	git configuration
	Effective use of git
	Commit contents
	Write good commit messages
	Commit to the proper branch
	Use multiple commits to organize changes
	Follow the style of the surrounding code
	Get rid of RTAPI_SUCCESS, use 0 instead
	Simplify complicated history before sharing with fellow developers
	Make sure every commit builds
	Renaming files
	Prefer "rebase"

	Translations
	Other ways to contribute

	Glossary
	Legal Section
	Copyright Terms
	GNU Free Documentation License

