LinuxCNC V2.10.0-pre0-4994-g913129ce3c

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

Table des matieres

I Démarrage et configuration

1 Premiers pas avec LinuxCNC

1.1 Aproposde LINUXCNC o ottt e e
1.1.1 The Software e
1.1.2 The Operating System e
1.1.3 Getting Help e e e e
1.1.3.1 TRC . . .

1.1.3.2 Mailing List e e

1.1.3.3 Web Forum e e e e

1.1.3.4 LinuxCNC Wiki

1.1.3.5 Bug Reports e e e e e

1.2 System Requirements e e e e e
1.2.1 Minimum Requirements e e e
1.2.2 Kernel and Version requirementso
1.2.2.1 Preempt-RT with linuxcnc-uspace package

1.2.2.2 RTAI with linuxcnc package i i ittt

1.2.2.3 Xenomai with linuxcnc-uspace package

1.2.2.4 RTAI with linuxcnc-uspace package

1.2.3 Problematic Hardware i e e e e
1.2.3.1 Laptops o e e e e e e e e e

1.2.3.2 Video Cards e

1.3 Getting LInuxCNC e e e e e e e e e e e e
1.3.1 Download theimage @ . . . i e e
1.3.1.1 Normal Download

1.3.1.2 Download using zSync v v i i i e e e e e e e

1.3.1.3 Verifytheimage e

1.3.2 Write the image to a bootabledevice
1.3.2.1 Raspberry Pilmage e e

W W W W w w N NN -

T NN

N 99 o0 o0 o0 g O O1

LinuxCNC V2.10.0-pre0-4994-g913129ce3c iii

1.3.2.2 AMD-64 (x86-64, PC) Image using GUItools 7
1.3.2.3 Command line - Linux e 7
1.3.2.4 Command line - MacOS 8

1.3.3 Testing LInuxCNC e e e e e e e 8
1.3.4 Installing LinuxCNC e e e e e e 9
1.3.5 Updates to LInuxCNC e e e e e e 9
1.3.6 Install Problems e 9
1.3.7 Alternate Install Methods 9
1.3.7.1 Installing on Debian Bookworm (with Preempt-RT kernel) 10
1.3.7.2 Installing on Debian Bookworm (with experimental RTAI kernel) 11
1.3.7.3 Installing on Raspbian 12 11

1.4 Running LInuxCNC e e e e e e 11
1.4.1 Invoking LInuxCNC e e e e e 11
1.4.2 Configuration Launcher e 12
1.4.3 Next steps in configuration 14
1.4.4 Simulator Configurations e 14
1.4.5 Configuration Resources. i i e e e 15
1.5 Updating LInuxCNC e e e e e e e 15
1.5.1 Upgrade tothenew version 15
1.5.1.1 Apt Sources Configuration, 16
1.5.1.2 Upgrading to thenew version 17
1.5.1.3 Ubuntu e e e e e e 18

1.5.2 Updating without Network 18
1.5.3 Updating Configuration Filesfor2.9 18
1.5.3.1 Stricter handling of pluggable interpreters 18
1.5.3.2 Canterp e e e e e e e e e 19

1.5.4 Updating Configuration Files (for 2.10.y) oo, 19
1.6 Linux FAQ 19
1.6.1 Automatic Login e e e e e 19
1.6.1.1 Debian. 19
1.6.1.2 Ubuntu 19

1.6.2 Démarrage automatique e e e e 20
1.6.3 Terminal e e e e e e e e e e e e e e e e e 20
1.6.4 Pagesde manuel e e 20
1.6.5 Listedesmodules e e e e e e e 20
1.6.6 Editerun fichierenroot 21
1.6.6.1 Alalignedecommande 21
1.6.6.2 En mode graphique e e 21

1.6.6.3 ROOt ACCESS o i i e e e e e e e e e 21

LinuxCNC V2.10.0-pre0-4994-g913129ce3c iv

1.6.7 Commandes duterminal 21
1.6.7.1 Répertoiredetravail 21

1.6.7.2 Changing Directories e 21

1.6.7.3 Lister les fichiers du répertoire courant 22

1.6.7.4 Trouverun fichier L 22

1.6.7.5 Rechercheruntexte 22

1.6.7.6 Messages de diagnostic 22

1.6.8 Articles de commodité 23
1.6.8.1 Terminal Launcher 23

1.6.9 Problemes de matériel e 23
1.6.9.1 Informations sur le matériel 23

1.6.9.2 Résolution du moniteur 23
1.6.10Chemins e e 23

2 Informations générales pour l'utilisateur 24
2.1 User Foreword. e e e e e 24
2.2 LinuxCNC User Introduction et e 25
2.2.1 Introduction e e e e 25
2.2.2 How LinuxCNC Works o e e e e e 25
2.2.3 Graphical User Interfaces e 27
2.2.4 Interfaces utilisateur L 35
2.2.5 Panneaux de controOle virtuels 35
2.2.6 Languages ot e 38
2.2.7 Think Like a CNC Operator it et e e e e e e e e 38
2.2.8 Modes of Operation i i e e e e e 39

2.3 Important User Concepts o o i i i i i e e e e e e e e e e e e 39
2.3.1 Trajectory Control e 39
2.3.1.1 Trajectory Planning e 39

2.3.1.2 Path Following e e e e e e 40

2.3.1.3 Programming the Planner, 40

2.3.1.4 Planning MOVES i i i e e e e e e e e e e 41

2.3.2 G-COoAe o e e e 41
2.3.2.1 Defaults e e e 41

2.3.2.2 Feed Rate e e e e 42

2.3.2.3 ToolRadius Offset 42

2.3.3 Homing o e e e e e e e e e e e 42
2.3.4 Tool Changes i e e e e e e e e e e 42
2.3.5 Coordinate Systems e e e 42

2.3.5.1 G53 Machine Coordinate 42

LinuxCNC V2.10.0-pre0-4994-g913129ce3c \Y

2.4

2.5

2.6

2.3.5.2 Gb4-59.3 User Coordinates 43
2.3.5.3 WhenYou Are Lost e 43
2.3.6 Machine Configurations e 43
Starting LInuxCNC e e e e e e e e e e 45
2.4.1 Running LInuxCNC e e e e e e e e e e e 45
2.4.1.1 Configuration Selector e 46
CNC Machine OVEIVIEW v it e 47
2.5.1 Mechanical Components i e e e e e 47
2.5.1.1 AXES e e e e e e e e e 47
2.5.1.2 Broche. e 48
2.5.1.3 Coolant e e 48
2.5.1.4 Feed and Speed Override ittt 48
2.5.1.5 Block Delete Switch 48
2.5.1.6 Optional Program Stop Switch 48
2.5.2 Control and Data Components i 48
2.5.2.1 Linear AXeS o o i e e e e e 48
2.5.2.2 Rotational AXes e e e 49
2.5.2.3 Controlled Point 49
2.5.2.4 Coordinated Linear Motion 49
2.5.25 Feed Rate e 49
2.5.2.6 Cooling o o i e e e 50
2.5.2.7 Dwell . . e e e e e e e 50
2.5.2.8 Unités o e e e e e e e e 50
2.5.2.9 Current Position 50
2.5.2.10Selected Plane e 50
2.5.2.11Tool Carousel e 50
2.5.2.12Tool Change e e e e e e e e 50
2.5.2.13Pallet Shuttle e 50
2.5.2.14Speed Override e e e e e e 51
2.5.2.15Path Control Mode e 51
2.5.3 Interpreter Interaction with Switches 51
2.5.3.1 Feed and Speed Override Switches 51
2.5.3.2 Block Delete Switch 51
2.5.3.3 Optional Program Stop Switch 51
2.5.4 Tool Table 52
2.5.5 Parameters e e 52
Lathe User Information 53
2.6.1 Lathe Mode. e e 53

2.6.2 Lathe Tool Table e 53

LinuxCNC V2.10.0-pre0-4994-g913129ce3c Vi

2.6.3 Lathe Tool Orientation e 53
2.6.4 Tool Touch Off o e 55
2.6.4.1 XTouch Off e 55
2.6.4.2 ZTouch Off e e 55
2.6.4.3 The ZMachine Offset. e 56

2.6.5 Spindle Synchronized Motion e 56
2.6.6 ATCS e e e e e 56
2.6.6.1 Arcsand Lathe Design e 56
2.6.6.2 Radius & Diameter Mode 57

2.6.7 Tool Path e 57
2.6.7.1 Control point e e 57
2.6.7.2 Cutting Angles without CutterComp 57
2.6.7.3 Cuttinga Radius e 59
2.6.7.4 Using Cutter Comp i i i e e e e e e 61

2.7 Plasma Cutting Primer for LInuxCNC Users o o i i i i i i i e e 61
2.7.1 WhatIsPlasma? e 61
2.7.2 Arc Initialisation L 62
2.7.2.1 High Frequency Start i 62
2.7.2.2 Blowback Start 62

2.7.3 CNCPlasma e e e e e e 63
2.7.4 Choosing a Plasma Machine for CNC operations 64
2.7.5 Types Of Torch Height Control, 65
2.7.6 Arc OK Signal e e e 65
2.7.7 Initial Height Sensing e 66
2.7.7.1 Float Switches e 66
2.7.7.2 Ohmic Sensing i e e e e e e e e e e 66
2.7.7.3 Hypersensing witha MESATHCAD-5. 67
2.7.7.4 Example HAL Code for Hypersensing 68

2.7.8 THC Delay i e e e e e e e e e e e e e e 68
2.7.9 Torch Voltage Sampling e e 69
2.7.10Torch Breakaway i i i i e e e e e e e e e e e 69
2.7.11Corner Lock / Velocity Anti-Dive e 69
2.7.12Void / Kerf Crossing o i i e e e e e e e e e e e e 69
2.7.13Hole And Small Shape Cutting i 70
2.7.141/0 Pins For Plasma Controllers 71
2.7.14.1Arc OK (input) o o o e e e e e e e e e e 71
2.7.14.2Torch On (output) e e 71
2.7.14.3Float switch (input) e 71

2.7.14.40hmic Sensor enable (output), 72

LinuxCNC V2.10.0-pre0-4994-g913129ce3c vii

2.7.14.50hmic Sensing (input) 72
2.7.14.6Torch Breakaway Sensor i i i i it ittt et 72
2.7.15G-code For Plasma Controllers 72
2.7.15.1Enable/Disable THC Operation: 73
2.7.16External Offsets and Plasma Cutting 73
2.7.17Reading Arc Voltage With The Mesa THCAD 74
2.7.17.1THCAD Connections vttt it 74
2.7.17.2THCAD Initial Testing i e 74
2.7.17.3Which Model THCAD To UsSe? ittt it ittt 75
2.7.18Post Processors And Nesting i i it 75
2.7.19Designing For Noisy Electrical Environments 76
2.7.20Water Tables e e e e 76
2.7.21Downdraft Tables L 77
2.7.22Designing For Speed And Acceleration, 77
2.7.23Distance Travelled Per Motor Revolution 77
2.7.24QtPlasmaC LinuxCNC Plasma Configuration 77
2.7.25Hypertherm RS485 Control e 77
2.7.26Post Processors For Plasma Cutting 78
3 Assistants de configuration 79
3.1 Stepper Configuration Wizard e 79
3.1.1 Introduction e e e 79
3.1.2 Start Page e e e e e e e e e 80
3.1.3 Basic Information 81
3.1.4 Latency Test e e e e e e e e e e e e 82
3.1.5 Parallel Port Setup e e e 84
3.1.6 Parallel Port 2 Setup e e 85
3.1.7 Axis Configuration e e e 86
3.1.7.1 Finding Maximum Velocity 88
3.1.7.2 Finding Maximum Acceleration 88

3.1.8 Spindle Configuration e 89
3.1.8.1 Spindle Speed Control 89
3.1.8.2 Spindle-synchronized motion 90
3.1.8.3 Determining Spindle Calibration 90

3.1.9 Options e e e e e e 91
3.1.10Complete Machine Configuration 92
3.1.11Axis Travels and Homes e 92
3.1.11.10perating without Limit Switches 93

3.1.11.20perating without Home Switches 93

LinuxCNC V2.10.0-pre0-4994-g913129ce3c viii

3.1.11.3Home and Limit Switch wiring options 93

3.2 Mesa Configuration Wizard e e e e e e 94
3.2.1 Step by Step Instructions 95
3.2.2 Createor Edit 95
3.2.3 Basic Machine Information o 96
3.2.4 External Configuration e 98
3.2.5 GUI Configuration e e e e e e 100
3.2.6 Mesa Configuration e e e e 103
3.2.7 Mesal/O Setup e e e 104
3.2.8 Parallel port configuration. e 108
3.2.9 Axis Configuration e 109
3.2.10Spindle Configuration e 116
3.2.11Advanced Options e e e e e e e e e e e e 118
3.2.12HAL Components e e e e e e e e e e e 119
3.2.13Advanced Usage Of PnCconf 120

4 Configuration 122
4.1 Integrator Concepts i e e e e e e e e e e e 122
4.1.1 File Locations i e e e 122
4.1.1.1 Installed o 122

4.1.1.2 Command Line e 122

4.1.2 Files . . . o o o e e e e e 123
4.1.3 Stepper Systems e e e e e e e e 123
4.1.3.1 Base Period 123

4.1.3.2 Step Timing o e e e e e e e e e e e e e e 124

4.1.4 Servo Systems e e e e e e e e 124
4.1.4.1 Basic Operation e e 124

4.1.4.2 Proportional term e 125

4.1.4.3 Integralterm e e e 126

4.1.4.4 Derivative term e e e 126

4.1.4.5 Looptuning e e e e e e e e e e e e e e 126

4.1.4.6 Manualtuning e e e 126

4.1.5 RTAL . . . o e e e e e e e 126
4.1.5.1 ACPI o 126

4.1.6 Computer/Machine Interface Hardware Options 127
4.1.6.1 litehm?2/rvO01t e e 127

4.2 Latency Testing e e e e e e e e e e e e e e 127
4.2.1 Whatislatency? e e e e 127

LinuxCNC V2.10.0-pre0-4994-g913129ce3c ix

4.2.2.1 Latency Test e e e e e e e 128
4.2.2.2 Latency Plot e 129
4.2.2.3 Latency Histogram ittt 130

4.2.3 Latency tuning e e e e e e e e e 131
4.2.3.1 Tuning the BIOS forlatency. 131
4.2.3.2 Tuning Preempt-RT forlatency 132

4.3 Stepper Tuning e e e e e e e e e e e e e e e 132
4.3.1 Getting the most out of Software Stepping 132
4.3.1.1 RunalatencyTest i s 132
4.3.1.2 Figure out what yourdrivesexpect 133
4.3.1.3 Choose your BASE PERIOD 133
4.3.1.4 Use steplen, stepspace, dirsetup, and/or dirhold 134
4.3.1.5 No Guessing! e e e e e e e e e 135

4.4 INI Configuration e e e e e e e 135
4.4.1 TheINIFile Components @ i i ittt e e e e 135
4.4.1.1 Comments i e e e e e 135
4.4.1.2 SeCtiOnS ot i i e e e e e e e e 136
4.4.1.3 Variables e 136
4.4.1.4 Custom Sections and Variables, 137
4.4.1.5 Include Files. o o 138

4.4.2 INIFile Sections e 138
4.42.1 [EMC]Section e 138
4.4.2.2 [DISPLAY] Section i e e 139
4.4.2.3 [FILTER] Section e 143
4.4.2.4 [RS274ANGC]Section 144
4.4.2.5 [EMCMOT] Section i 146
4.4.2.6 [TASK] Section 146
4.4.2.77 [HAL]section e 146
4.4.2.8 [HALUIlsection. 148
4.4.2.9 [APPLICATIONS] Section 148
4.42. 10 [TRAJI Section e e e e 148
44211 [KINS]Section e 151
4.4.2.12 [AXIS <letter>]Section 151
4.4.2.13[JOINT <num>]Sections 152
4.4.2.14 [SPINDLE <num>] Section(s)) 158

442 15[EMCIO] Section e 159

4.5 Homing Configuration e e 159
4.5.1 OVEIVIEBW i it ittt it e e e e e e e e e 159
4.5.2 Prerequisite e e e e e e e e e 159

LinuxCNC V2.10.0-pre0-4994-g913129ce3c X

4.6

4.7

4.8

4.5.3 Separate Home Switch Example Layout 160
4.5.4 Shared Limit/Home Switch Example Layout 161
4.5.5 Homing Sequence i i i i i i e e e e e e e e e e e 162
4.5.6 Configuration e e e e e 164
4.5.6.1 HOME SEARCH VEL, 164
4.5.6.2 HOME LATCH VEL e 164
4.5.6.3 HOME FINAL VEL it 164
4.5.6.4 HOME IGNORE LIMITS 165
4.5.6.5 HOME USE INDEX 165
4.5.6.6 HOME INDEX NO ENCODER RESET 165
4.5.6.7 HOME OFFSET ettt 165
4.5.6.8 HOME 165
4.5.6.9 HOME IS SHARED it 166
4.5.6.10HOME ABSOLUTE ENCODER 166
4.5.6.11HOME SEQUENCE ittt 166
4.5.6.12VOLATILE HOME e 167
4.5.6.13LOCKING INDEXER ittt 167
4.5.6.14Immediate Homing e 167
4.5.6.15Inhibiting Homing e 168
Lathe Configuration e e e e 169
4.6.1 Default Plane e e e 169
4.6.2 INI Settings o . i i e e e e e e 169
Stepper Quickstart e e e 170
4.7.1 Latency Test e e e e e e 170
4.7.2 Sherline L 170
4.7.3 XyloteXo e 170
4.7.4 Machine Information L L 170
4.7.5 Pinout Information 171
4.7.6 Mechanical Information o o L L 171
Stepper Configuration e e e 172
4.8.1 Introduction 172
4.8.2 Maximum steprate e e e e e e e e e e 173
4.8.3 Pinout e e 173
4.8.3.1 Standard Pinout HAL 173
4.8.3.2 OVEIVIEW e e e e 175
4.8.3.3 Modifier le fichier standard pinout.hal 175
4.8.3.4 Modifier la polarité d’'unsignal 175
4.8.3.5 Ajouter le controle de vitesse broche en PWM 175

4.8.3.6 Ajouter un signal de validationenable, ..., 176

LinuxCNC V2.10.0-pre0-4994-g913129ce3c Xi

4.8.3.7 Ajouter un bouton d’Arrét d’'Urgence externe 176

4.9 Stepper DiagnostiCs L e e e e e e e e e e e e e 176
4.9.1 Problémes COMMUNS v v v vttt i e e e e e e e e e e e e 176
4.9.1.1 Le moteur n’avance que d’UNPas v« v v vttt e 176

4.9.1.2 Lemoteurnebouge pas« o o i i i i e e e e 176

4.9.1.3 Distance incorrecte L e e e 177

4.9.2 Messages d’eITEUT v v v v i e i e e e e e e e e e e e e e e e e e e 177
4.9.2.1 Erreurdesuivi. o e 177

4.9.2.2 RTAPLError e 177

4.9.3 Testing o e e e e e e e e e e e e e e 178
4.9.3.1 Step TImMINg o i e e e e e e e e e e e 178

4.10Filter Programs i e e e e e e e e e e e e e 178
4.10.1Introduction L. e e 178
4.10.2Setting up the INI for Program Filters 178
4.10.3Making Python Based Filter Programs 179

5 HAL (Hardware Abstraction Layer, Couche d’Abstraction Matériel) 182
5.1 HAL Introduction e e 182
5.1.1 HAL OVETVIEW o ot e e e e e e e e e e e e s s 182
5.1.2 Communication e e 184
5.1.3 HAL System Design i e e e e e e e 185
5.1.3.1 Part Selection 186

5.1.3.2 Interconnection Design 187

5.1.3.3 Implementation e e 187

5.1.3.4 Testing o o e e e e e e e e e e 187

5.1.3.5 Summary e e e e e e e e e e e e 187

5.1.4 HAL Concepts i e e e e e e 188
5.1.5 HAL components i it e e e e e e e 190
5.1.6 Timing Issues In HAL e e 190

5.2 HAL BasSiCS o o i e e e e e e 191
5.2.1 HAL Commandst vttt e e e e e e e e e e e e e e e e e e e 191
5.2.1.1 loadrt e e e e e e e e e e 192

5.2.1.2 addf e e e e e e e 192

5.2.1.3 loadusr e e e e e e e e e e e e 193

5.2.1.4 met. . . . e e e e e e e e 194

5.2.1.5 setp e e e e e e e e 195

5.2.1.6 sets e 196

5.2.1.7 unlinkp e e e e e 196

5.2.1.8 Obsolete Commands i i i i e e 196

LinuxCNC V2.10.0-pre0-4994-g913129ce3c Xii

5.3

5.4

5.2.2 HALData e e e e e e e e e e 197
5.2.2.1 Bit . . e e e e e 197
5.2.2.2 Float e e e e e e 197
5.2.2.3 S32 L e e 197
5.2.2.4 U32 . e 197
5.2.2.5 SBA L e e 197
5.2.2.6 UGB . .. e e e e e 197

5.2.3 HALFiles 197

5.2.4 HAL Parameter i i i i e e e e e e e e e e e e 198

5.2.5 Basic Logic Components e e e e e e 198
5.2.5.1 and2 e e e e e 198
5.2.5.2 mot. . . 199
5.2.5.3 012 . . e e 199
5.2.5.4 XOT2 . . L o i e e e e e 200

5.2.6 Logic Examples e e e e e e 200

5.2.7 Conversion Components e e e e e e e 200
5.2.7.1 weighted sum e 200

HAL TWOPASS . . . 201

5.3.1 TWOPASS e e e 201

5.3.2 Post GUL e 203

5.3.3 Excluding .halfiles e 203

5.3.4 Examples e e e e e e e e e e e e e e e e e 204

HAL Tutorial o e e e e e 204

5.4.1 Introduction e e e 204

5.4.2 Halcmd e 204
5.4.2.1 Notation 205
5.4.2.2 Tab-completion e 205
5.4.2.3 The RTAPI environment 205

5.4.3 ASimple Example e e e e 205
5.4.3.1 Loadingacomponent. i 205
5.4.3.2 Examining the HAL e 206
5.4.3.3 Making realtimecoderun 207
5.4.3.4 Changing Parameters 209
5.4.3.5 Saving the HAL configuration 209
5.4.3.6 Exiting halrun 210
5.4.3.7 Restoring the HAL configuration 210
5.4.3.8 Removing HAL from memory i i i it 210

5.4.4 Halmeter e e e 210

5.4.5 Stepgen Example e e e 213

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xiii

5.5

5.6

5.7

5.4.5.1 Installing the components 213
5.4.5.2 Connecting pins with signals 214
5.4.5.3 Setting up realtime execution - threads and functions 215
5.4.5.4 Setting parameters e 216
5.4.5.5 Runit! e e e e e 217
5.4.6 HalsSCope i e e e e e e e e e e e 217
5.4.6.1 Hooking up the scopeprobes 219
5.4.6.2 Capturing our first waveforms 222
5.4.6.3 Vertical Adjustments 223
5.4.6.4 TTiggering o v v i i i i e e e e e e e e e e e e e 224
5.4.6.5 Horizontal Adjustments 226
5.4.6.6 More Channels e 227
5.4.6.7 More samples e e e e e e e 228
HAL Examples e e e e e e e e e e e e 228
5.5.1 Connecting Two Outputs. e e 228
5.5.2 Manual Toolchange e 229
5.5.3 Compute Velocity e e e 230
5.5.4 Soft Start Details e 231
5.5.5 Stand Alone HAL e e e 233
Core Components e e e e e e e e e e e e e e e 234
5.6.1 Motion e e e e e e e e e e 234
5.6.1.1 Options e e e e e e e 235
5.6.1.2 PInS e e e e 235
5.6.1.3 Parameters e e e e e 237
5.6.1.4 Fonctions e e e 237
5.6.2 Broche. e 237
5.6.2.1 PINS) o o e e e e e e e e e e 237
5.6.3 Axis and Joint Pins and Parameters 239
5.6.4 iocontrol e 239
5.6.4.1 PINS) o e e e e e e e e e 239
5.6.5 INIsettings 0 e e e e e e e e e 239
5.6.5.1 PInS) o e e e e e e e e e e 239
HAL Component List e e e e e e e e e 240
5.7.1 Components e e e e e e e e e e e e 240
5.7.1.1 User Interfaces (non-realtime) 241
5.7.1.2 Motion (non-realtime) 241
5.7.1.3 Pilotes matériels. 241
5.7.1.4 Mesa and other I/O Cards (Realtime) 242

5.7.1.5 Utilities (non-realtime) e 243

LinuxCNC V2.10.0-pre0-4994-g913129ce3c Xiv

5.7.1.6 Signal processing (Realtime) 244
5.7.1.7 Signal generation (Realtime) 245
5.7.1.8 Kinematics (Realtime) e 246
5.7.1.9 Motion control (Realtime) 247
5.7.1.10Motor control (Realtime) @ e 247
5.7.1.11Simulation/Testing e 247
5.7.1.120ther (Realtime) e e e 247

5.7.2 HAL API calls e e 248
5.7.3 RTAPI calls e e e 249
5.8 HAL Component Descriptions e e e e 250
5.8.1 StepGen e e e e e e e e 250
5.8.1.1 PInS o e e e 252
5.8.1.2 Parameters e e e 252
5.8.1.3 Step TyPes o i e e e e e e 253
5.8.1.4 Fonctions e e e 258

5.8.2 PWM@eEn e e e e e e e e e 258
5.8.2.1 Output Types o o e e e e e e e e e e e 258
5.8.2.2 PINS L e e 259
5.8.2.3 Parameters e e e 259
5.8.2.4 Fonctions e e e e 259

5.8.3 Encoder e e e e 260
5.8.3.1 PInS L e e 261
5.8.3.2 Parameters e e 262
5.8.3.3 Fonctions L e 262

5.8.4 PID 262
5.8.4.1 PINS L. e e e 263
5.8.4.2 Fonctions e e 265

5.8.5 Simulated Encoder e 265
5.8.5.1 PINS L. e e 265
5.8.5.2 Parameters 265
5.8.5.3 Fonctions 265

5.8.6 Debounce e e 266
5.8.6.1 PINS e e 266
5.8.6.2 Parameters 266
5.8.6.3 Fonctions 266

5.8.7 SigGen e e 267
5.8.7.1 PINS e e e 267
5.8.7.2 Parameters 267

5.8.7.3 Fonctions e e e e e e 267

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XV

5.8.8 LULS .« . L L e 268
5.9 HAL Component Generator i i it et et e e e e 269
5.9.1 Introduction e e e 269
5.9.2 Installing e e e e e 269
5.9.3 Compiling e e e e e 270
5.9.3.1 Inside the sourcetree 270
5.9.3.2 Realtime components outside the sourcetree 270
5.9.3.3 Non-realtime components outside the sourcetree 271

5.9.4 Usinga Component i i it e e e e e e e e e e e 271
5.9.5 Definitions e e 271
5.9.6 Instance creation e e e e e e e e e 271
5.9.7 Implicit Parameters e e e e e e e e e 272
5.9.8 Syntax e e e e e e e e e e e e e e e e 272
5.9.8.1 HAL functions e 273
5.9.8.2 Oplions L e e e e e e e 274
5.9.8.3 License and Authorship 275
5.9.8.4 Per-instance datastorage 275
5.9.8.5 Comments e 276

5.9.9 Restrictions e e e e e e e e e e 276
5.9.10Convenience Macros i e e e e e 276
5.9.11Components with one function, 277
5.9.12Component Personality e 277
5.9.13Examples e e e e e e e e 277
5.9.13.1constant L e e 277
5.9.13.2SINC0OS L e e e e e 278
5.9.13.30ut8 278
5.9.13.4hal 100D o e e e e e 279
5.9.13.5arraydemo e e e e e e e e e e 279
5.9.13.6rand e e e e e e e e e e e 279
5.9.13.7logic (using personality) e 280
5.9.13.8General Functions e 280
5.9.14Command Line Usage o i i i i i e e e e e e e e 281
5.10HALTCL Files o o o i i ittt e e e e e 281
5.10.1Compatibility 282
5.10.2Haltcl Commands e e e e e e e 282
5.10.3Haltcl INI-file variables 282
5.10.4Converting HAL filesto Tclfiles 283
5.10.5Haltcl Notes o e e e 284

5.10.6Haltcl Examples e e e e e e e 284

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XVi

5.10.7Haltcl Interactive e e e 285
5.10.8Haltcl Distribution Examples (sim) e 285
5.11HAL User Interface e e e e 285
5.11.1Introduction e e e e 285
5.11.2MDI e e e e 285
5.11.3Example Configuration e 286
5.11.4Halui Pin Reference e e 286
5.11.4.TADOTE . . . o e e e e e e e e e e 286
5.11.4.2E-StOD . . o o o o e e e e e e e e e 286
5.11.4.3Feed Override o . i i e e e 286

5. 11.4.4MISt . . . o o o e e e e e e e e e e e e 287
5.11.4.5Flood e e e e e e e e 287
5.11.4.6Homing e e e e e e e e 287
5.11.4.7Machine L e 287
5.11.4.8Max Velocity e e e e 287
5.11.4.9MDI . . L e e e e e e e e 288
5.11.4.1I0Int o e e e e e e e e e e 288
5.11.4.1Joint Jogging o . e e e e e e e e e e e e e 288
5114 IRXIS o o o o o e e e e e e e e e e e e e e e e e 289
5.11.4.1BXIS JOggIng o v i e e e e e e e e e e e e 289
5.11.4.1Mode e e e e e e 290

5. 11.4.1Brogram v v v e e e e e e e e e e e e e e e e 290
5.11.4.1Bapid Override o 0 i i i e e e e e 290
5.11.4.18pindle Override e e e 291
5.11.4.1Broche e e e 291
5.11.4.1T00L e e e e e e e e e 291
5.12Halui Examples e e e e e e 292
5.12.1Remote Start e e 292
5.12.2Pause & Resume e 292
5.13Creating Non-realtime Python Components 293
5.13.1Basic usage example e e e 293
5.13.2Non-realtime components anddelays 294
5.13.3Create pins and parameters e e 294
5.13.3.1Changing the prefix 295
5.13.4Reading and writing pins and parameters 295
5.13.4.1Driving output (HAL OUT)pins i v it e i 295
5.13.4.2Driving bidirectional (HAL IO)pins 295

5. 13.5EXIting e 296

5.13.6Helpful Functions e e 296

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XVii

5.13.7Constants L e e e e e e e e e e 296
5.13.8System Information e e e 296
5.14Canonical Device Interfaces 296
5.14.1Introduction L e 296
5.14.2Digital Input e e e e e e e e e 297
5.14.2.1PINS . . . o o o e e e e e e e e e e 297
5.14.2.2Parameters e e e e e 297
5.14.2.3F0NCLIONS L e e e e e e e 297
5.14.3Digital Output e e e 297

5. 14.3.1PINS . . . o o e e e e e e e e e e e 297
5.14.3.2Parameters e e e e 297
5.14.3.3F0onctions e e e e e e e e e 297
5.14.4Analog Input L. e e e e e e e e e e e e 297
5.14.4.1PINS . . . o o o e e e e e e e 298
5.14.4.2Parameters e e e e e 298
5.14.4.3F0NCLIONS L e e e e e e 298
5.14.5Analog Output e e e 298

5. 14.5.1PINS . . . o o e e e e e e e e e e e e e 298
5.14.5.2Parameters L e e 298
5.14.5.3F0nctions e e e e e e e e e e 299

5.10HAL TOOIS o e e 299
5.15.1Halcmd e 299
5.15.2Halmeter 299
5.15.3Halshow e 301
5.15.4HalSCOPe e e e e e e e e 303
5.15.5SIm Pin L 303
5.15.6Simulate Probe L 304

5. 15.7HAL Histogram ot it e e e e e e e e e e e e e e e e 304
5.15.8Halreport e e e e e e e e 306

6 Pilotes matériels 309
6.1 Parallel Port Driver L e e e e 309
6.1.1 Loading e e e e e e 309
6.1.2 PCIPort Address ot i i e e e e e e e e 312
6.1.3 PIns e 313
6.1.4 Parameters e e e e e e e e e e e e e e e e e e 313
6.1.5 Fonctions e e e 313
6.1.6 Common problems e e e e 313

6.1.7 Using DoubleStep e e e 314

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XViii

6.2

6.3

6.1.8 probe parport e e e e 314
6.1.8.1 Installing probe parport 314
AXB2TAH DTIIVET . . . o o o o e e e e e e e e e e e e e e e e e e e 315
6.2.1 Installing e e e e e e 315
6.2.2 PINS e e e 315
6.2.3 Parameters e e e e 315
6.2.4 Foncltions e e e e e e e e e e e e e 315
General Mechatronics Driver e 316
6.3.1 I/O CONNECtOTS ot e e e e e e e e e e e e e e e e e 317
6.3.1.1 PInS e e e e e e e e e 318
6.3.1.2 Parameters e e e e e e e e 318
6.3.2 AXIS CONNECLOTS o o ittt e e e e e e e 318
6.3.2.1 Axisinterfacemodules 319
6.3.2.2 Encoder e e e 320
6.3.2.3 StepGenmodule e 322
6.3.2.4 Enable and Faultsignals, 325
6.3.2.5 AXiS DAC e e e 325
6.3.3 CAN-bus servo amplifiers e 326
6.3.3.1 PINS e e e e e e e e e 327
6.3.3.2 Parameters e e e e 327
6.3.4 Watchdog timer e e 327
6.3.4.1 PINS e e e e e e 327
6.3.4.2 Parameters e e e 327
6.3.5 End-, homing- and E-stop switches, 328
6.3.50.1 PIns e e e e e e e e e e 329
6.3.5.2 Parameters 329
6.3.6 Status LEDS e e 329
6.3.6.1 CAN . . . e e e 329
6.3.6.2 RS4A85 e e e e e e e e e 329
6.3.6.3 EMC e e e e e e e 330
6.3.6.4 B0OOt e e e e e e e e e e 330
6.3.6.5 Error. e 330
6.3.7 RS485 I/O expander modules 330
6.3.7.1 Relayoutputmodule 331
6.3.7.2 Digitalinput module 331
6.3.7.3 DAC & ADCmodulettt 332
6.3.7.4 Teach Pendantmodule 333
6.3.8 Errata e e 334

6.3.8.1 GM6-PCIcard Errata i it 334

LinuxCNC V2.10.0-pre0-4994-g913129ce3c Xix

6.4

6.5

6.6

6.7

GS2VED DIIVET o o o e e e e e e e e e e e e e e 334
6.4.1 Command Line Options i i e e e 335
6.4.2 PINS e e e e e 335
6.4.3 Parameters e e e e e e 336
HAL Driver for Raspberry Pi GPIO pins it 336
6.5.1 PUuIrpose e e e e e e e e e e 336
6.5.2 Utilisation e e e 336
6.5.3 PINS e e 337
6.5.4 Parameters L e e e e 337
6.5.5 Fonctions e e 338
6.5.6 Pin Numbering e e e 338
6.5.7 Known Bugs e e e e e 338
Generic driver for any GPIO supported by gpiod. 338
6.6.1 PUIPOSEe e e e e e e e e e e e e 338
6.6.2 Utilisation e e e 339
6.6.3 PINS e e 340
6.6.4 Parameters L e e e e e 340
6.6.5 Fonctions e e 340
6.6.6 Pin Identification e 340
6.6.7 Troubleshooting permissions problems. 340
6.6.8 Author L e e e 341
6.6.9 Known Bugs e e e 341
Mesa HostMot2 Driver o e e e e e e e e 341
6.7.1 Introduction e e e e 341
6.7.2 Firmware Binaries e e e e e 341
6.7.3 Installing Firmware e e e e e 342
6.7.4 Loading HostMot2 e 342
6.7.5 Watchdog e e e 342

6.7.5.1 PINS e e e e e e e e e e 343

6.7.5.2 Parameters L 343
6.7.6 HostMot2 Functions e 343
6.7.7 PInouts 343
6.7.8 PIN Files 344
6.7.9 Firmware e e e e e e e 344
6.7.10HAL Pins e e e e e e e e 345
6.7.11Configurations e e e e e e e e e e 345
6.7.12GPIO e 347

6.7.12.1PINS e e e e e e e e e e e 348

6.7.12.2Parameters e e e e e e e e e e e e 348

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XX

6.8

6.9

6.7.135tepGen e e e e e e e 348
6.7.13.1PINS o e e e e e e e e e e e 348
6.7.13.2Parameters e e e e e e e e 349
6.7.13.30utput Parameters e e 349

6.7.14PWMGEN e e e e e 349
6.7.14.1PINS o e e e e e e e e e e e e 350
6.7.14.2Parameters e e e e e e e e e e e 350
6.7.14.30utput Parameters e e e e 350

6.7.15Encoder e e e e e e e 351
6.7.15.1PINS e e e e e e 351
6.7.15.2Parameters e e e e e e e e e e 351

6.7.165I25 Configuration e e e 352
6.7.16.1Firmware e e e e e e e e e e e e e e e 352
6.7.16.2Configuration e e e 352
6.7.16.3SSERIAL Configuration 352
6.7.16.47177 Limits e e e e e e e e e e e e 352

6.7.17Example Configurations 353

MB2HAL . . . 353

6.8.1 Introduction e e 353

6.8.2 Utilisation e e 353

6.8.3 OpPLIONS e e e e e e e 354
6.8.3.1 Init Section e 354
6.8.3.2 Transaction Sections e 354
6.8.3.3 Errorcodes e e 355

6.8.4 Example configfile e 356

6.8.5 PIns e 361
6.8.5.1 fnct 01 read coils e 361
6.8.5.2 fnct 02 read discrete inputs 361
6.8.5.3 fnct 03 read holding registers 361
6.8.5.4 fnct 04 read input registers e 361
6.8.5.5 fnct 05 write single coil o 361
6.8.5.6 fnct 06 write single register 361
6.8.5.7 fnct 15 write multiple coils o o 362
6.8.5.8 fnct 16 write multiple registers 362

Mitsub VED Driver i e 362

6.9.1 Command Line Options @ i e e e 362

6.9.2 PIns 363

6.9.3 HAL example e e e e e e e e e e 363

6.9.4 Configuring the Mitsubishi VFD for serialusage 364

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXi

6.9.4.1 Connecting the Serial Port 364

6.9.4.2 Modbussetup e e e e 364
6.10Motenc Driver e e e e e e e e 364
6.10.1PINS 364
6.10.2Parameters L e e e e 365
6.10.3F0nCtions L e e e e e e 365
6.110Ppt022 DIIVET o o e 366
6.11.1The Adapter Card e e e e e e e e e e e e 366
6.11.2The Driver e e e e e 366
6.11.3PIns 366
6.11.4Parameters L e e e e e e e e 367
6.11.5FUNCTIONS e e e e e e e e e 367
6.11.6Configuring I/O Ports e 367
6.11.7Pin Numbering e e e 368
6.12Pico Drivers e e e e e e 368
6.12.1Command Line Options e e e e e 368
6.12.2PINS e e e e e 369
6.12.3Parameters e e e e e e e 370
6.12.4F0onctions e e e e e e e e e e e 371
6.13Pluto P Driver e e e e e 371
6.13.1Informations générales. 371
6.13.1.1EXIgENCES v v i e e e e e e e e e e e e e 371
6.13.1.2C0NNectors e e e e e e e e e 372
6.13.1.3Physical Pins e e e e e 372
6.13.1.ALED e e e e e e e e e e e 372
6.13.1.5POWET o e e e e e e e e e e 372
6.13.1.6PCinterface e e e 372
6.13.1.7Rebuilding the FPGA firmware 373
6.13.1.8For more information 373
6.13.2PIuto Servo e e e 373
6.13.2.1PIn0Ut e e e e e e e e e e e e e 373
6.13.2.2Input latching and output updating 375
6.13.2.3HAL Functions, Pins and Parameters 375
6.13.2.4Compatible driver hardware 375
6.13.3Pluto Step e e e e 375
6.13.3.1PIn0out e e e e e e e e e e e e 376
6.13.3.2Input latching and output updating 376
6.13.3.3Step Waveform Timings i 377

6.13.3.4HAL Functions, Pins and Parameters 377

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXii

6.14Powermax Modbus Driver e e e e 377
6.14.1PINS e e e e e e e e e e 378
6.14.2Description L e e e e e e e 378
6.14.3Reference: e e e e e e e 378

6.15Servo To GO DIIVET o . e e e e e e e e e e e e 379
6.15.1Installing e e e e e e e 379
6.15.2PINS e e e e e e e e e 379
6.15.3Parameters e e e e e e e e e e e e e e e 380
6.15.4F0onctions e e e e e e e e 380

6.16Shuttle e e e e e 380
6.16.1Description e e e e e e e e e e e e e e 380
6.16.25etUp e e e e e 381
6.16.3PINS e e e e e e e 381

6.17VFS11 VED DrIiver e e e e e e e e e e e e e e e e 381
6.17.1Command Line Options e e e 382
6.17.2PINS e e e e e e e e e 382
6.17.3Parameters e e e e e e 383
6.17.4INI file configuration e 383
6.17.5HAL example e e e e e e e e e e 384
6.17.6Panel operation e e e 385
0.17.7E1T0or RECOVETY o e e e e e e e e e e e e e e e e e e e 385
6.17.8Configuring the VFS11 VFD for Modbususage 385

6.17.8.1Connecting the Serial Port 385
6.17.8.2Modbus setup e e e e e e 386
6.17.9Programming Note e e e e e e e e 386

7 Exemples de matériels 387

7.1 PCIParallel Port. e e e e 387

7.2 Spindle Control e e e e e e 388
7.2.1 0-10 Volt Spindle Speed e 388
7.2.2 PWM Spindle Speed e e e e e 388
7.2.3 Spindle Enable e e e e e 388
7.2.4 Spindle Direction e e 389
7.2.5 Spindle Soft Start 389
7.2.6 Spindle Feedback e 390

7.2.6.1 Spindle Synchronized Motion, 390
7.2.6.2 Spindle At Speed e e 390
7.3 MPG Pendant e e e e e 391
7.4 GS2 Spindle e e e e e 393

7.4.1 Exemple e e e e e e e e e e 393

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xXxiii

8 ClassicLadder 395
8.1 ClassicLadder Introduction e 395
8.1.1 History e e e 395
8.1.2 Introduction e e 395
8.1.3 Exemple e e e e e e 396
8.1.4 Basic Latching On-Off Circuit e 396
8.2 ClassicLadder Programming 0 i i i it e e e e e 397
8.2.1 Ladder Concepts i i i i i e e e e e e e e e e e 397
8.2.2 Languages e 398
8.2.3 Components e e e e e e e e e e e e e e e 398
8.2.3.1 Files o e e e 398
8.2.3.2 Realtime Module 398
8.2.3.3 Variables e 399

8.2.4 Loading the ClassicLadder non-realtime module 399
8.2.5 ClassicLadder GUI e e e s e e e e 400
8.2.5.1 Sections Manager i e e e e e e e e e e e e 400
8.2.5.2 Section Display e e 401
8.2.5.3 The Variable Windows 402
8.2.5.4 Symbol Window e e 404
8.2.5.5 The Editor window e 405
8.2.5.6 Config Window e e 406

8.2.6 Ladderobjects e e e 408
8.2.6.1 CONTACTS e 408
8.2.6.2 IEC TIMERS e e 408
8.2.6.3 TIMERS e e e e e e e e e 408
8.2.6.4 MONOSTABLES et e e 409
8.2.6.5 COUNTERS e e e e e e e e e e e 409
8.2.6.6 COMPARE e e e e e 410
8.2.6.7 VARIABLE ASSIGNMENT ettt et et e e 410
8.2.6.8 COILS e e e e 412

8.2.7 ClassicLadder Variables 413
8.2.8 GRAFCET (State Machine) Programming 414
8.2.9 Modbus 416
8.2.10MODBUS Settings o o o i i e 419
8.2.10.IMODBUS Info e e e e e e e e e e e 419
8.2.10.2Communication Errors L 420
8.2.11Debugging modbus problems 420
8.2.11.1Request e e e e e e e e 422

8.2.11.2ETTOTr TESPONSE v v v v e 423

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXV

8.2.11.3Data response i i e e e e e e e e e e 424
8.2.11.AMODBUS BUQGS . .« o o o o e 424
8.2.12Setting up ClassicLadder e 425
8.2.12.1Add the Modules e e 425
8.2.12.2Adding Ladder Logic e 425

8.3 ClassicLadder Examples i e e e e e e e e 431
8.3.1 Wrapping Counter e e e e e e e 431
8.3.2 Reject Extra Pulses e e e 432
8.3.3 External E-Stop e e e e 433
8.3.4 Timer/Operate Example e 436

9 Sujets avancés 438
9.1 KinematiCs e e e e e 438
9.1.1 Introduction e e e 438
9.1.1.1 JointS VS AXES . . . o i v i e 438

9.1.2 Trivial Kinematics e 439
9.1.3 Non-trivial kinematics e 440
9.1.3.1 Forward transformation 441

9.1.3.2 Inverse transformation Lo 442

9.1.4 Implementationdetails. e 442
9.1.4.1 Kinematics module using the userkins.comp template 443

9.2 Setting up "modified” Denavit-Hartenberg (DH) parameters for genserkins 443
9.2.1 Prelude 443
0.2.2 Gémnéral e e 444
9.2.3 Modified DH-Parameters e 444
9.2.4 Modified DH-Parameters as used in genserkins 444
9.2.5 Numbering of joints and parameters 445
9.2.6 Howtostart e 445
9.2.7 Special cases e e e e e e e e e e e e e e 445
9.2.8 Detailed Example (RV-6SL) e e e e 445
9.2.9 Credits 464

9.3 5-Axis Kinematics L e e e 464
9.3.1 Introduction e e 464
9.3.2 5-Axis Machine Tool Configurations 464
9.3.3 Tool Orientation and Location 464
9.3.4 Translation and Rotation Matrices 465
9.3.5 Table Rotary/Tilting 5-Axis Configurations 466
9.3.5.1 Transformations for a xyzac-trt machine tool with work offsets 468

9.3.5.2 Transformations for a xyzac-trt machine with rotary axis offsets 472

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXV

9.4

9.5

9.6

9.3.5.3 Transformations for a xyzbc-trt machine with rotary axis offsets 475
9.3.6 Table Rotary/Tilting Examples e 478
9.3.6.1 Vismach Simulation Models 478
9.3.6.2 Tool-Length Compensation 478
9.3.7 Custom Kinematics Components i ittt 478
9.3.8 FIgures it e e e e e e e e e e 480
9.3.9 REFERENCES e e e e e e e e e e 482
Switchable Kinematics (switchkins) e 482
9.4.1 Introduction e e e e 482
9.4.2 Switchable Kinematic Modules o 483
9.4.2.1 Identity letter assignments 483
9.4.2.2 Backwards compatibility o oL 484
9.4.3 HALPINS e e e e e 484
9.4.3.1 HAL Pin Summary i v ittt it et e et e et e e 484
9.4.4 Utilisation e e e e e e e 484
9.4.4.1 HAL Connections i it ittt et 484
9.4.4.2 G-/M-code commandst e e e e e 484
9.4.4.3 INI file limit settings e 485
9.4.4.4 Coordinate system offset considerations 487
9.4.4.5 External offset considerations 487
9.4.5 Simulation configs e e 487
9.4.6 User kinematics provisions i e e e 487
9.4.7 WarnIngs ¢ o v i i e e e e e e e e e e e e e e e e e e e 487
9.4.8 Remarques surles codes i i i i i e e e e 488
PID TURIngG o o e e e e e e e e e e e e e e e e e e e 488
9.5.1 PID Controller e 488
9.5.1.1 Controlloop basics e 488
9.5.1.2 Theory o 489
9.5.1.3 Loop Tuning o i e e e e e e e e e e 489
9.5.1.4 Automatic PID tuning 0 i i i e e e e 490
Remap Extending G-code e e e 492
9.6.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes 492
9.6.1.1 A Definition: Remapping Codes 492
9.6.1.2 Why would you want to extend the RS274NGC Interpreter? 492
9.6.2 Getting started e e e 493
9.6.2.1 Builtin Remaps e e e e e e e 493
9.6.2.2 Pickingacode e 494
9.6.2.3 Parameter handling 494

9.6.2.4 Handlingresults. e e 495

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXVi

9.6.2.5 Execution seqUENCING v v v v v v i it e e e e e e e e e 495
9.6.2.6 An minimal example remappedcode 495
9.6.3 Configuring Remapping i e e 495
9.6.3.1 The REMAP statement 495
9.6.3.2 Useful REMAP option combinations 496
9.6.3.3 The argspec parameter it 497
9.6.4 Upgrading an existing configuration for remapping 500
9.6.5 Remapping tool change-related codes: T, M6, M61 501
9.6.5.1 OVEIVIEW i i ittt e e e e e e e e e e e e e e e e e e 501
9.6.5.2 Understanding the role of iocontrol with remapped tool change codes . 502
9.6.5.3 Specifying the M6 replacement 502
9.6.5.4 Configuring iocontrol with a remapped M6 504
9.6.5.5 Writing the change and prepare O-word procedures 504
9.6.5.6 Making minimal changes to the built in codes, includingM6 505
9.6.5.7 Specifying the T (prepare) replacement 505
9.6.5.8 Error handling: dealing withabort. 506
9.6.5.9 Error handling: failing a remapped code NGC procedure 508
9.6.6 Remapping other existingcodes:. 508
9.6.6.1 Automatic gear selection be remapping S (set spindle speed) 508
9.6.6.2 Adjusting the behaviorof MO, M1 508
9.6.6.3 Adjusting the behaviorof M7, M8, M9 508
9.6.7 Creating new G-code cycles e 509
9.6.8 Configuring Embedded Python, 509
9.6.8.1 Python plugin : INI file configuration 509
9.6.8.2 Executing Python statements from the interpreter 510
9.6.9 Programming Embedded Python in the RS274NGC Interpreter 510
9.6.9.1 The Python plugin namespace 510
9.6.9.2 The Interpreter as seen from Python 511
9.6.9.3 The Interpreter init and delete functions 511
9.6.9.4 Calling conventions: NGCtoPython. 511
9.6.9.5 Calling conventions: Pythonto NGC 514
9.6.9.6 Builtinmodules 515
9.6.10Adding Predefined Named Parameters 516
9.6.11Standard Glue routines L 516
9.6.11.1T: prepare_prolog and prepare epilog 516
9.6.11.2M6: change prolog and change epilog 517
9.6.11.3G-code Cycles: cycle prolog and cycle epilog. 517
9.6.11.4S (Set Speed) : setspeed prolog and setspeed epilog 518

9.6.11.5F (Set Feed) : setfeed prolog and setfeed epilog 518

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXVil

9.7

9.8

9.9

9.6.11.6M61 Set tool number : settool prolog and settool epilog 518
9.6.12Remapped code execution e e e e 518
9.6.12.1NGC procedure call environment during remaps 518
9.6.12.2Nested remapped codes e e 519
9.6.12.3Sequence number during remaps e e e e e e . 519
9.6.12.4Debugging flags e e e 519
9.6.12.5Debugging Embedded Pythoncode 519
9.6.13Axis Preview and Remapped code execution 520
9.6.14Remappable Codes e e e e e 521
9.6.14.1Existing codes which can be remapped 521
9.6.14.2Currently unallocated G-codes:, 521
9.6.14.3Currently unallocated M-codes:, 524
9.6.15A short survey of LinuxCNC program execution 525
9.6.15.1Interpreterstate e 525
9.6.15.2Task and Interpreter interaction, Queuing and Read-Ahead 525
9.6.15.3Predicting the machine position 526
9.6.15.4Queue-busters break position prediction 526
9.6.15.5How queue-busters aredealtwith 526
9.6.15.6Word order and executionorder 527
9.6.15.7Parsing e e e e e e e e e e e 527
9.6.15.8Execution e e e e 527
9.6.15.9Procedure execution 527
9.6.15.1Bow tool change currently works 527
9.6.15.1How Tx (Prepare Tool) works 528
9.6.15.1Bow M6 (Change tool) works 528
9.6.15.1How M61 (Change tool number) works 529
9.6.16Status e 529
9.6.17Changes i i e e e e e e e e e e 530
9.6.18Debugging e e e e 530
Moveoff Component e e e e e e e e 530
9.7.1 Modifying an existing configurationo ... 531
Interprete autonome e e e e e 534
9.8.1 Utilisation e e 534
9.8.2 Exemple e e e e e e e e e e e 535
External Axis Offsets 535
9.9.1 INIFile Settings o o o i e e 535
9.9.2 HAL PINS e e e e e 536
9.9.2.1 Per-Axis Motion HALPins 536

9.9.2.2 Other Motion HAL Pins it e 536

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

XXViii

9.9.3 Utilisation
9.9.3.1 Offset Computation
9.9.3.2 Machine-off/Machine-on
9.9.3.3 Soft Limits
9.9.34 Notes e
9.9.35 Warning e

9.9.4 Related HAL Components
9.9.4.1 eoffset per angle.comp

9.9.5 Testing i i e

9.9.6 Examples
9.9.6.1 eoffsets.ini L.
9.9.6.2 jwp zini.o
9.9.6.3 dynamic offsets.ini
9.9.6.4 opa.ini (eoffset per angle)

9.10Tool Database Interface

9.10.1Interface L
9.10.1.1INI file Settings

9.10.1.2db_program operation (v2.1)

9.10.1.3Utilisation
9.10.1.4Example program v .t ...
9.10.1.5Python tooldb module
9.10.2Simulation configs
9.10.2.INotes

IT Utilisation

10Interfaces utilisateur

10.1AXIS GUI
10.1.1Introduction
10.1.2Getting Started e

10.1.2.1INIsettings
10.1.2.2A Typical Session
10.1.3AXIS Window o ot ittt et e e e
10.1.3.1Menultems.,
10.1.3.2Toolbar buttons,
10.1.3.3Graphical Display Area
10.1.3.4Text Display Area
10.1.3.5Manual Control
10.1.3.6MDI

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXiX

10.1.3.7Feed Override i i e e 556
10.1.3.8Correcteur de vitesse de broche oo oL, 556
10.1.3.9Jog Speed e e e e 557
10.1.3.10ax Velocity o e e e e e e 557
10.1.4Keyboard Controls e e 557
10.1.4.1Feed Override Keys i i i e e e e e e e 557
10.1.5Show LinuxCNC Status (linuxcnctop) i 558
10.1.6MDI interface e e 559
10.1.7axis-Temote e e e e e e e e e e e e e e 560
10.1.8Manual Tool Change i i e e e e e e e 560
10.1.9Python modules e 560
10.1.1Using AXIS in Lathe Mode e 561
10.1.1Using AXIS in Foam Cuttingmode 563
10.1.1Advanced Configuration e e 564
10.1.12.Program Filters e e 565
10.1.12.2he X Resource Database 566
10.1.12.Bogwheel e e e 566
10.1.12.4/.aXISTC o o e e e e e e 566
10.1.12.SER COMMAND FILE it ittt 567
10.1.12.Gser live update() o o e e e e 567
10.1.12.4ser hal pins()« o v v v e e e e e e 567
10.1.12.Bxternal Editor 567
10.1.12.9irtual Control Panel 567
10.1.12.PBeview Control e 567
10.1.12.Téuch Off using Actual Position. 568
10.11AXISUL & . o o o e 568
10.1.1AXIS Customization Hints o 569
10.1.14.The update function 569
10.1.14.Disable the Close Dialog i i ittt e i 569
10.1.14.8hangethe Text Font . e 569
10.1.14 Modify Rapid Rate with Keyboard Shortcuts 570
10.1.14.Bead the INIfile 570
10.1.14.Bead LinuxCNC Status 570
10.1.14.Change the current view e 570
10.1.14.8reating new AXISUT HAL Pins 570
10.1.14.@reating new HAL Componentand Pins 571
10.1.14.$Witch Tabs with HAL Pins 571
10.1.14.Afld a GOTO Home button 571

10.1.14.AAdd Button to manual frame 572

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXX

10.1.14.R8ading Internal Variables 572
10.1.14.H4de Widgets o e e e e e e 574
10.1.14.Change alabel 574
10.1.14.Redirect an existing command 574
10.1.14.Change the DRO color e 574
10.1.14.CAange the Toolbar Buttons., 574
10.1.14.Change Plotter Colors e e 575
10.2GMOCCAPY . . . o e e e 576
10.2.1Introduction e e e e e 576
10.2.2EXIQEINCES . & o v v v v e 577
10.2.3How to get GMOCCAPY e e e e e 577
10.2.4Basic Configuration e e e e e e e e 578
10.2.4.1The DISPLAY Section i ettt i e e e 578
10.2.4.2The TRAJ Section e e e 579
10.2.4.3Macro Buttons 580
10.2.4.4Embedded Tabsand Panels 582
10.2.4.5User Created MeSSAgES v v v v v v it e e e e e e e e e e e e e 585
10.2.4.6Preview Control 586
10.2.4.7User Command File 586
10.2.4.8User CSS File o . e 586
10.2.4.9L000INg ot e e e e e e e e e e e e e e e 587
10.2.5HAL PINS o o e e e e e e e e e e e e e e 587
10.2.5.1Right and Bottom Button Lists, 588
10.2.5.2Velocities and Overrides L e 590
10.2.5.3Jog HAL Pins o e e e e e e 592
10.2.5.4Jog Velocities and Turtle-Jog HALPin 593
10.2.5.5Jog Increment HAL Pins e 593
10.2.5.6Hardware Unlock Pin. 593
10.2.5.7Error/Warning Pins L e 594
10.2.5.8User Created Message HAL Pins 594
10.2.5.9Spindle Feedback Pins 595
10.2.5.1Bins to Indicate Program Progress Information 595
10.2.5.1Tool Related Pins 595
10.2.6Auto Tool Measurement 596
10.2.6.1Provided Pins 597
10.2.6.2INI File Modifications e 598
10.2.6.3Needed Files 598
10.2.6.4Needed HAL Connections vttt 599

10.2.7The Settings Page e e e e e 599

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXI

10.2.7.1APPEATANCE i i o e 600
10.2.7.2Hardware o e e e e e e 605
10.2.7.3Advanced Settings e 607
10.2.8Icon Theme L e e e e 609
10.2.8.1Custom Icon Theme i e 609
10.2.8.2Symbolic Icons e e e 610
10.2.9Lathe Specific Section e 611
10.2.18lasma Specific Section e 614
10.2.1Videos on YouTube e 614
10.2.11.Basic Usage v v v v i i e e e e e e e e e e e e e e e e e 614
10.2.11.8imulated Jog Wheels 615
10.2.11.8ettings Page e e e 615
10.2.11.8imulated Hardware Button, 615
10.2.11.8serTabs e 615
10.2.11. %00l Measurement Videos e 615
10.2.1Known Problems e 615
10.2.12.$trange numbers in the infoarea 615
10.2.12. R0t ending MacCTO v v v v e e e e e e e e e e e e e e e e e e 616
10.3The Touchy Graphical User Interface 616
10.3.1Panel Configuration e e e 617
10.3.1.1HAL connections o v i i ittt e e e e e 617
10.3.1.2Recommended forany setup 618
10.3.25etup e e e e e e 618
10.3.2.1Enabling Touchy e e 618
10.3.2.2Preferences e e 618
10.3.2.3MACIOS o o o e e e e e e e e e e 619
10.4GSCreen o o e e e e 619
10.4.1Introduction e e e 619
10.4.1.1Glade File o 624
10.4.1.2PyGTK o o 624
10.4.2GladeVCP e e e e e e e e e e e e e e e e e e 625
10.4.2.10VeTVIEW L L 625
10.4.2.2Build a GladeVCP Panel, 626
10.4.3Building a simple clean-sheet custom screen, 627
10.4.4Handler file example e e e e 629
10.4.4.1Adding Keybindings Functions, 629
10.4.4.2Linuxcnc State Status oL oL 630
10.4.4.3Jogging Keys L e e e e e e e 631

10.4.5Gscreen Start Up L e e e e e 631

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXil

10.4.6INI Settings o o o e e e e e e e e e e e e e 632
10.4.7User Dialog MeSSages v v v i i i i e e e e e e e e e e e e 632
10.4.7.1Copy the Stock Handler/Glade File For Modification 634
10.5QtDragon GUI e e e e e 634
10.5.1Introduction e e e e 634
10.5.1.1QtDTagon e e e e e e e e e e e e 635
10.5.1.2QtDragon lathe e 636
10.5.1.3QtDragon_ hd e e e 637
10.5.1.4QtDragon _hd vertical 637
10.5.2Getting Started - The INI File i i 637
10.5.2.1Display e e e e e e 638
10.5.2.2Preferences 638
10.5.2.3L0gging o o e e e e e e e e e e e e e e e e 638
10.5.2.40verride controls 638
10.5.2.5Spindle controls e e 638
10.5.2.6Jogging increments L e e e e 639
10.5.2.7Grid Incrementso e e e e 639
10.5.2.8Jog speed e e e e e e e e e e 639
10.5.2.9User message dialog system 639
10.5.2.1Bmbed Custom VCP Panels 640
10.5.2.1%ubroutine Paths 641
10.5.2.1Rreview Control L 641
10.5.2.1Brogram Extensions/Filters 641
10.5.2.1Brobe/Touchplate/Laser Settings, 642
10.5.2.1Bbort detection 642
10.5.2. 16tartup codes e e e e e e e 643
10.5.2.1Macro Buttons e 643
10.5.2.1Bost GUIT HAL File. e 643
10.5.2.1Bost GUIT HAL Command 643
10.5.2.2BIAL Bridge 644
10.5.2.2Builtin Sample Configurations 644
10.5.3Key Bindings o e e e e e e 645
10.5.4Buttons e e 645
10.5.5Virtual Keyboard e e 645
10.5.6HAL PINS o o e 645
10.5.7HAL files o o e e e e e e e e e e e e e 647
10.5.8Manual Tool Changes @ i i i i e e e e e e e e 647
10.5.9Broche e 647

10.5.18uto Raise Z Axis on Program Pause 647

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXiii

10.5.1Z level compensation e e e 648
10.5.11.Using G-code Ripper for Z level Compensation 649
10.5.1Probing e e e e e e e e 651
10.5.12.Versa Probe 652
10.5.12.Basicprobe e e 654
10.5.12.Bustomizing Probe Screen Widget, 656
10.5.1Fouch plate e e e e e 657
10.5.1Auto Tool Measurement e 657
10.5.14.0VErVIEW L it e e e e e e e e e e e 657

10.5.14. Workflow Overview e 658
10.5.14.Betailed Workflow Example 660
10.5.14 Work Piece Height Probing in QtDragon hd 661
10.5.14.Work Piece Height Probing 661
10.5.14.%001 Measurement Pins L 662
10.5.14.Tool Measurement INI File Modifications 663
10.5.14.Bequired HAL Connections 664
10.5.1Runfrom Line e e e e e 664
10.5.16aser buttons L 665
10.5.1Tabs Description. e e e 665
10.5.17.Maintab 665
10.5.17.File Tab e 665
10.5.1708ffsets Tab o e 665
10.5.17 300l Tab e e 665
10.5.17.Status Tab 666
10.5.17.Brobe Tab e 666
10.5.17.€amview Tab 666
10.5.17.8-codes Tab 666
10.5.17.8etupTab 666
10.5.17.%6ttings Tab e e 667
10.5.17.Utilities Tab 667
10.5.17.W8erTab 667
10.5.18tyles o e e e e e e e e e e e e 668
10.5.10nternationalisation L L e e e 668
10.5.2Customization e e e 669
10.5.20.8tylesheets e 669
10.5.20.0t Designer and Pythoncode, 672
10.6NGCGUI e e e e 674
10.6.10VEIVIBW o v o o et e 674

10.6.2Demonstration Configurations 675

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXV

10.6.3Library Locations e e 677
10.6.4Standalone Usage i i it e e e e e e e e e e 678
10.6.4.1Standalone NGCGUI 678
10.6.4.2Standalone PyNGCGUI ittt ittt 678
10.6.5Embedding NGCGUIttt ittt ettt e e 679
10.6.5.1Embedding NGCGUIin AXIS 679
10.6.5.2Embedding PyYNGCGUI as a GladeVCP tab pageina GUI 679
10.6.5.3Additional INI File items required for NCGUI or PyNGCGUI 680
10.6.5.4Truetype Tracer i e e e e e e e e e e 681
10.6.5.5INT spécifications du chemin de fichier 682
10.6.5.6Summary of INI File item details for NGCGUlI usage 683
10.6.6File Requirements for NGCGUI Compatibility 684
10.6.6.1Single-File Gcode (.ngc) Subroutine Requirements 684
10.6.6.2Gcode-meta-compiler (.gcmc) file requirements. 687
10.6.7DB25 Example e e e e e e e e e e 688
10.6.8Creating a subroutine 690
10.7TKLinuxCNC GUI e e e e e e e e 691
10.7.1Introduction e e e e e 691
10.7.2Getting Started e e e e 691
10.7.2.1A typical session with TKLinuxCNC 691
10.7.3Elements of the TkLinuxCNC window 692
10.7.3.1Main buttons e e e 692
10.7.3.20ffset display status bar 692
10.7.3.3Coordinate Display Area e e 693
10.7.3.4TkLinuxCNC Interpreter / Automatic Program Control 693
10.7.3.5Manual Control e 693
10.7.3.6Code Entry e e e e 694
10.7.3.7Jog Speed 695
10.7.3.8Feed Override i e e e e e 695
10.7.3.9Spindle speed Override e 695
10.7.4Keyboard Controls e e e e e e 695
10.8QtPlasmaC e e e e 695
10.8.1Preamble L e 695
10.8.2L0CeNnse e e e e e e 696
10.8.3Introduction e e e e e 696
10.8.4Installing LinuxCNC e e e e e 699
10.8.4.11f The User Does Not Have Linux Installed 700

10.8.4.2Package Installation (Buildbot) If The User Has Linux on Debian 12 (Book-
WOLITL) © v v v v et e 700

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXV

10.8.4.3Package Installation (Buildbot) If The User Has Linux on Debian 12 (Book-

worm) or Debian 11 (Bullseye) 700

10.8.4.4Run In Place Installation If The User Has Linux Installed 700
10.8.5Creating A QtPlasmaC Configuration 700
10.8.5.1Modeso 700
10.8.5.2Available I/Os 701
10.8.5.3Recommended Settings: e 702
10.8.5.4Configuring e e e e e e e 703
10.8.5.5Qt Dependency Errors e e e 708
10.8.5.6Initial Setup e e 708
10.8.6Migrating to QtPlasmaC From PlasmaC (AXIS or GMOCCAPY) 711
10.8.70ther QtPlasmaC Setup Considerations 711
10.8.7.1Low-pass Filter e 711
10.8.7.2Contact Bounce e 711
10.8.7.3Contact Load 712
10.8.7.4Desktop Launcher. oo 713
10.8.7.5QtPlasmaC Files o e e 713
10.8.7.6INI File 714
10.8.8QtPlasmaC GUI OVEIVIEW v v v it e e e e e e e e e e e e e e e 716
10.8.8.1Exiting QtPlasmaC e 716
10.8.8.2MAIN Tab 716
10.8.8.3Preview Views e e e 723
10.8.8.4CONVERSATIONAL Tab 723
10.8.8.5PARAMETERS Tab, 724
10.8.8.6SETTINGS Tab e 730
10.8.8.7STATISTICS Tab e 733
10.8.9Using QtPlasmaC e e e e e e e e e e 733
10.8.9.1Units Systems e e e e e 734
10.8.9.2Preamble and Postamble Codes, 734
10.8.9.3Mandatory Codes e e e e 735
10.8.9.4Co00rdinates e e e e 735
10.8.9.5CutFeed Rate 735
10.8.9.6Material File 735
10.8.9.7Manual Material Handling 737
10.8.9.8Automatic Material Handling, 737
10.8.9.9Material Addition Via Magic Comments In G-code 738
10.8.9.1Material Converter e 739
10.8.9.1LASER 742

10.8.9.1CAMERA 743

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXVi

10.8.9.1Bath Tolerance e e 744
10.8.9.1Baused Motion 745
10.8.9.1Bause At End Of Cut e 745
10.8.9.1BMultiple Tools e e e e e e 745
10.8.9.1Velocity Reduction e 746
10.8.9.18HC (Torch Height Controller) 747
10.8.9.1@utter Compensation e e e e 747
10.8.9.2mhitial Height Sense (IHS) Skip v i v i 748
10.8.9.2Probing e e e e e 748
10.8.9.20ffset Probing e e e e e e 749
10.8.9.2But Types o o e e e e e e 749
10.8.9.2Hole Cutting - Intro e e 750
10.8.9.2Ho0le Cutting e e e e e 750
10.8.9.2H0le Cutting - Automatic e 752
10.8.9.23ingle Cut e 753
10.8.9.28hick Materials 754
10.8.9.2Blesh Mode (Expanded Metal Cutting) 755
10.8.9.30gnore Arc OK L e e e e e e e 755
10.8.9.3Cut Recovery e e e e e e e e e e e e 756
10.8.9.3Run From Line e 757
10.8.9.3Scribe 759
10.8.9.38potting e e e e 760
10.8.9.3%ube Cutting 761
10.8.9.3Wirtual Keyboard Custom Layouts 761
10.8.9.3Keyboard Shortcuts 762
10.8.9.3BIDI 764
10.8.1Conversational Shape Library 764
10.8.10.Conversational Settings e 766
10.8.10.2onversational Lines And Arcs 767
10.8.10.8onversational Single Shape 767
10.8.10.€onversational Group Of Shapes 769
10.8.10.6onversational Block 769
10.8.10.6onversational Saving AJob 770
10.8.1Messages A’ ITEUL . . . v v v v v v v e 770
10.8.11.Error Logging i e e e e e e e e e e e e e e e 770
10.8.11.Error Message Display e e e 770
10.8.11.8ritical Errors 771
10.8.11.Warning Messages o i i e e e e e e e e e 772

10.8.1Ppdating QtPlasmaC e e e e 773

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXVii

10.8.12.$tandard Update e 773
10.8.12.€ontinuous Update e e 773
10.8.1B8Modify An Existing QtPlasmaC Configuration 773
10.8.1€ustomizing QtPlasmaC GUI et 773
10.8.14. Add ACustom Style 774
10.8.14.Create ANew Style e e 774
10.8.14.Beturning To The Default Styling 775
10.8.14.€ustom Python Code e 775
10.8.14.6ustom G-code Filter e 776
10.8.10tPlasmaC Advanced TOpiCS i i i i i i e e e e e 776
10.8.15.Custom User Buttons e 776
10.8.15.Reripheral Offsets (Laser, Camera, Scribe, Offset Probe) 783
10.8.15.Beep Z Motion e e e e e e e e e e e 785
10.8.15.BExternal HAL Pins e 785
10.8.15.Hide Program Buttons 787
10.8.15.6uning Mode O Arc OK e e 787
10.8.15.Zost Arc Delay e e e 788
10.8.15.8ero Window L L e e e 788
10.8.15.%uning Void Sensing 788
10.8.15.Mhax Offset 789
10.8.15.Ehable Tabs During Automated Motion 789
10.8.15.0%erride Jog Inhibit ViaZ+ Jog. e 789
10.8.15.08PlasmaC State Outputs 789
10.8.15.4PlasmaC Debug Print 790
10.8.15.Hypertherm PowerMax Communications 790
10.8.15.Mving Pierce L. e e e 791
10.8.1&nternationalisation L e e e 794
10.8.1Appendix e e e e e e 796
10.8.17.Example Configurations 796
10.8.17.BIGC Samples o e e e e e e e e e e e e 796
10.8.17.@tPlasmaC Specific G-codes 796
10.8.17.@tPlasmaC G-code Examples 798
10.8.17.Mesa THCAD 800
10.8.17.BS485 Connections o e e e e 801
10.8.17.Arc OKWithAReed Relay. 804
10.8.17.8ontact Load Schematics 806
10.8.18nown ISsues e e e e 806
10.8.18.Keyboard Jogging o i i e e e e e e e e 806

10.8.18.00 FORCE HOMING i, 807

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXViii

10.8.1@ontributing Code To QtPlasmaC 807
10.8.28Upport e e e e e e e e 808
10.9MDRO GUI e e e e 808
10.9.1Introduction L e e e e e e e e e e e e e e e e 808
10.9.2Getting Started L e e e e 809
10.9.2.1INI File Options e 809
10.9.2.2Command Line Options i 810
10.9.2.3PIins 810
10.9.3MDRO WIindow o i e e e e e e e e e e e e e e 810
10.9.4Index operations e e e e e e e e 811
10.9.5Simulation L e e 811

11 Programmation G-code 812
11.1Coordinate Systems e e e e e e e e e 812
11.1.1Introduction e e e e e e e e e e e e e e e e e e 812
11.1.2Machine Coordinate System e 812
11.1.2.1Machine coordinates moves: G53 812
11.1.3Coordinate Systems e e e e e e 813
11.1.3.1Default Coordinate System, 814
11.1.3.2Setting Coordinate System Offsets 815
11.1.4Local and Global Offsets 815
11.1.4.1The G52 command ittt 815
11.1.5G92 Axes Offsets o o i e e e e e e e e 816
11.1.5.1The G92 commands o ot ittt e e e 816
11.1.5.2Setting G92 Values e 817
11.1.5.3G92 Persistence Cautions 817
11.1.5.4G92 and G52 Interaction Cautions, 818
11.1.6Sample Programs Using Offsets 818
11.1.6.1Sample Program Using Workpiece Coordinate Offsets. 818
11.1.6.2Sample Program Using G52 Offsets 819

11.2Tool Compensation e e e 819
11.2.1Touch Off e e e e e e e e e e 819
11.2.1.1Using G10 L1/L10/L11 o e 820
11.2.2Tool Table e e e e e e e e e e e e e e 820
11.2.2.1Tool Table Format 820
11.2.2.2Tool IO 822
11.2.2.3Tool Changers i i it e e e e e e e e e e e e e e 823
11.2.3Tool Length Compensation 824

11.2.4Cutter Radius Compensation 825

LinuxCNC V2.10.0-pre0-4994-g913129ce3c XXXiX

11.2.4.T0VEIVIEW . . . o o i it e 825
11.2.4.2Examples e e e e e e e e e e e e 827
11.3Tool Edit GUL e e e e e e e e e e e 828
11.3.10VEIVIBW . . . o o o o e 828
11.3.2Column Sorting e e e e e e e e e 829
11.3.3Columns Selection e 830
11.3.4Stand Alone USe o i i e e e e e e 830
11.40verview of G-Code Programming i i i i ittt e 831
11.4.10VEIVIEW o e e e e e e e e e e e e e e 831
11.4.2Formatofaline e 831
11.4.2.1/: Block Delete e 832
11.4.2.20ptional Line Number e 832
11.4.2.3Words, Parameters, Subroutines, Comments 832
11.4.24End of Line Marker 833
11.4.3Numbers e e e e 833
11.4.4Parameters e e e e 834
11.4.4.1Numbered Parameters 835
11.4.4.2Subroutine Codes and Parameters 836
11.4.4.3Named Parameters i e 837
11.4.4.4Predefined Named Parameters 837
11.4.4.5System Parameters e e e 839
11.4.5HAL pinsand INIvalues @ e e e e 840
11.4.6EXPTESSIONS v i it e i e e e e e e e e e e e e e e e e e e e 841
11.4.7Binary Operators o i i i e e e e e e e e e e e e e e e 841
11.4.8Equality and floating-pointvalues, 842
11.4.9F0nCtioNS o o e e e e e e e e e e 842
11.4.18epeated Items e e e e e e e 843
11.4.1tem order o o e e e e e e e 843
11.4.12ommands and Machine Modes 843
11.4.1Bolar Coordinates o i i i e e e e e 843
11.4.1Mo0dal GroupS v o e 845
11.4.18omments L e e e e 847
11.4.1B0ESSAgES . & v v v v e o e 847
11.4.1Probe Logging o o i e e e e e e e e e 847
11.4.1B0gging o v o e i e 847
11.4.18b0rt MESSages v v v v e e e e e e e e e e e e e e e e e e 848
11.4.20ebug MeSSages . . . v v v v i e e e e e e e e e e e e e e e e e e 848
11.4.2P1InE MESSAgES . . . o v i v i e e e e e e e e e e e e e e e e e e 848

11.4.28omment Parameters e e e e e e 848

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xI

11.4.2Bile Requirements e 849
11.42File SiZe o o o e e e e e e e e e e e e e e e e e e e 849
11.4.26-code Order of Execution 849
11.4.26-code Best Practices e 850
11.4.2Finear and Rotary AXis e e 850
11.4.280mmon Error MeSSages v v v v v i i e e e e e e e e e e e e e e e 851
11.5G-Codes o e e e e e e e e e e e e 851
11.5.1Conventions L e e e e 851
11.5.2G-Code Quick Reference Table 851
11.5.3G0 Rapid Move e e e 853
11.5.3.1Rapid Velocity Rate e 853
11.5.4G1 Linear Move i e e e e 853
11.5.5 G2, GBAIC MOVE o i e e e e e e 854
11.5.5.1Center Format Arcs e 855
11.5.5.2Center Format Examples i 856
11.5.5.3Radius Format Arcs 857
11.5.6GA Dwell e e e e e e e e e e e e 858
11.5.7G5 Cubic Spline e 858
11.5.8G5.1 Quadratic Spline e e e 859
11.5.9G5.2 G5.3 NURBS Block e 860
11.5.1@7 Lathe Diameter Mode e 861
11.5.1G8 Lathe Radius Mode e 861
11.5.1%510 LO Reload Tool Table Data i .. 862
11.5.1810 L1 Set Tool Table e 862
11.5.1610 L2 Set Coordinate System 862
11.5.1810 L10 Set Tool Table e 864
11.5.1610 L11 Set Tool Table e 864
11.5.1G10 L20 Set Coordinate System e 865
11.5.1817 - G19.1 Plane Select e 865
11.5.1820, G21 Units o o e e e e e e e e e e e e e 865
11.5.2G28, G28.1 Go/Set Predefined Position 865
11.5.26G30, G30.1 Go/Set Predefined Position, 866
11.5.28%:33 Spindle Synchronized Motion 866
11.5.2833.1 Rigid Tapping o o i it e e e e e e e e e e e 867
11.5.2638.n Straight Probe e 868
11.5.2640 Compensation Off 870
11.5.2641, G42 Cutter Compensation 870
11.5.2G41.1, G42.1 Dynamic Cutter Compensation 871

11.5.2843 Tool Length Offset e 871

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xli

11.5.2843.1 Dynamic Tool Length Offset 872
11.5.3343.2 Apply additional Tool Length Offset 872
11.5.3G49 Cancel Tool Length Compensation 873
11.5.3%:52 Local Coordinate System Offset 873
11.5.3853 Move in Machine Coordinates, 873
11.5.3654-G59.3 Select Coordinate System, 874
11.5.3661 Exact Path Mode e 875
11.5.3661.1 Exact Stop Mode e 875
11.5.3B64 Path Blending e e e e 875
11.5.3670 Lathe finishing cycle e 875
11.5.3871 G72 Lathe roughing cycles, 876
11.5.4@73 Drilling Cycle with Chip Breaking 877
11.5.4G74 Left-hand Tapping Cycle withDwell 878
11.5.4876 Threading Cycle e e e e e e 878
11.5.4880-G89 Canned Cycles i e e e e 881

11.5.43.Common Words i i i i e e e 881

11.5.43.3ticky Words 0 e e e e e e e 881

11.5.43.Bepeat Cycle e e e e e 882

11.5.43.Retract Mode e e 882

11.5.43.6anned Cycle Errors e e e 882

11.5.43.Breliminary and In-Between Motion 882

11.5.43.Why use a canned cycle? e 883
11.5.4680 Cancel Canned Cycle e 884
11.5.4881 Drilling Cycle e e e e 885
11.5.4682 Drilling Cycle, Dwell e 890
11.5.4G83 Peck Drilling Cycle e e e e e 890
11.5.4684 Right-hand Tapping Cycle, Dwell 890
11.5.49G85 Boring Cycle, Feed Out 891
11.5.50G86 Boring Cycle, Spindle Stop, Rapid Move Out 891
11.5.5G87 Back Boring CycCle e e e 891
11.5.52588 Boring Cycle, Spindle Stop, ManualOut 892
11.5.53589 Boring Cycle, Dwell, Feed Out 892
11.5.54590, G91 Distance Mode o i it e e e e e e e 892
11.5.5690.1, G91.1 Arc Distance Mode e 892
11.5.5692 Coordinate System Offset 892
11.5.57G92.1, G92.2 Reset G92 Offsets 893
11.5.5892.3 Restore G92 Offsets i 893
11.5.59593, G94, G95 Feed Rate Mode e 894

11.5.60G96, G97 Spindle Control Mode e 894

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xlii

11.5.61G98, G99 Canned Cycle Return Level 895
11.6M-Codes o e e e e e 895
11.6.1M-Code Quick Reference Table @ 0 i i i i it 895
11.6.2 MO, M1 Program Pause i e e 896
11.6.3M2, M30 Program End e 896
11.6.4M60 Pallet Change Pause e 896
11.6.5 M3, M4, M5 Spindle Control 897
11.6.6M6 Tool Change e e e e e e e 897
11.6.6.1Manual Tool Change it 897
11.6.6.2Tool Changer i i e e e e e e e e e 897
11.6.7 M7, M8, M9 Coolant Control e 898
11.6.8M19 Orient Spindle e 898
11.6.9 M48, M49 Speed and Feed Override Control 899
11.6.18150 Feed Override Control 899
11.6.1M51 Spindle Speed Override Control 899
11.6.1¥M52 Adaptive Feed Control 899
11.6.1B153 Feed Stop Control e 900
11.6.1M61 Set Current Tool L e 900
11.6.1862 - M65 Digital Output Control 900
11.6.18166 Wait on Input e e 901
11.6.1M67 Analog Output, Synchronized 901
11.6.18168 Analog Output, Immediate, 902
11.6.18170 Save Modal State e 902
11.6.28171 Invalidate Stored Modal State 903
11.6.2M72 Restore Modal State 903
11.6.2M73 Save and Autorestore Modal State L. 904
11.6.2B198 and M99 e e e e e e e e e e e e e 904
11.6.23.%electively Restoring Modal State 905
11.6.2M100-M199 User Defined Commands 905
11.70 Codes . . . o o o e e e e 907
11.7.1Use of O-codes o o i e e e e e e e e e e e e e e e 907
11.7.2Numbering o o e e e e e e e e e e e 907
11.7.3Comments e e e e 907
11.7.4Subroutines e e e 907
11.7.4.1 Fanuc-Style Numbered Programs 908
11.7.5 LOOPING . . . v v v o e 910
11.7.6 Conditional e e e e e e e e 910
11.7.7 Repeat e e e e e e e 911

11.7.8Indirection e e e e e 911

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xliii

11.7.9Calling Files e e e e e 912
11.7.18ubroutine return values L 912
R o o) o 912
11.80ther Codes e e 913
11.8.1F: Set Feed Rate e e e 913
11.8.2S: Set Spindle Speed 913
11.8.3T: Select Tool. e e e e e e e e 913
11.9G-Code Examples e e e e e e e e e e e e e e e 914
11.9.1Mill Examples e e e e e e e e e e 914
11.9.1.1Helical Hole Milling e e e e e e e e 914
11.9.1.2Slotting 914
11.9.1.3Grid Probe e 915
11.9.1.4Smart Probe e 916
11.9.1.5Tool Length Probe e 917
11.9.1.6Hole Probe e 917
11.9.1.7Cutter Compensation e 917
11.9.2Lathe Examples e e e e e 918
11.9.2.1Threading o i i e e e e e e e e e e 918
11.10mage to G-Code e e e e 918
11.10.What isa depthmap? e 918
11.10.Entegrating image-to-gcode with the AXIS user interface 918
11.10.8sing image-to-gcode e e e 919
11.10.@ption Reference e e 919
11.10.4.UMNItS . . . o v v o e e e 919
11.10.4.Invert Image o e e e e e e e 919
11.10.4.Blormalize Image i e e e 919
11.10.4.Expand Image Border 919
11.10.4.%olerance (UNitS) 0 i e e e e e 919
11.10.4.Bixel Size (units) 919
11.10.4.Plunge Feed Rate (units perminute) 919
11.10.4.Beed Rate (units perminute) 920
11.10.4.9pindle Speed (RPM) e e 920
11.10.4.$0an Pattern 920
11.10.4.$¢an Direction e 920
11.10.4.D2pth (units) 920
11.10.4.98:p Over (pixels) e e e e 920
11.10.4.Tdol Diameter i 920
11.10.4.88fety Height 920

11.10.4TO0LTYDE « o v o o e e e e e e e e e e e e 921

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xliv

11.10.4.1Ldce bounding e e e 921
11.10.4.C8ntact angle e e e e e e e 921
11.10.4.RBughing offset and depthperpass 921
11.1RS274/NGC Differences o o i i e e e e e 922
11.11.Changes from RS274/NGC ittt 922
11.11.Additions to RS274/NGC e e 923
12Panneaux de controle virtuels 924
12.1PYVCP . . o e e 924
12.1.1Introduction e e e e e 924
12.1.2Panel Construction e 925
12.1.3Security o e e e e e e e e e 926
12.1.4AXIS o e e e e e e e e e e e e e e e 926
12.1.4.1Example Panel 926
12.1.5Stand Alone e e e e e e e e e e e e e e e e e e 928
12.1.6WIdgets o o o e e e e e e e e e e e e e e e e e 928
12.1.6.1Syntax e e e e e e e e e e e e e e e e 929
12.1.6.2General Notes e 929
12.1.6.3Label 930
12.1.6.4Multi Label 930
12.1.6.5LEDS o oo 931
12.1.6.6BUttonS 932
12.1.6.7Number Displays e e 934
12.1.6.8Number Inputs e 937
12.1.6.9Images e e e e e e e e e e e e e e e e 940
12.1.6.100ontainers oL e e e 942
12.2PyVCP Examples e e e e e e e e 947
12.2.1AXIS e 947
12.2.2Floating Panels e e 947
12.2.3Jog Buttons Example e e e e 948
12.2.3.1Create the Widgets e 949
12.2.3.2Make Connections e 951
12.2.4Port Tester o . e e e e e e e e e e 951
12.25GS2 RPM Meter o ot o e 954
12.2.5.1The Panel 954
12.2.5.2The Connections 0 i i e e e e e 956
12.2.6Rapid to Home Button 956
12.3GladeVCP: Glade Virtual Control Panel 958

12.3.1What is GladeVCP? e e 958

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xlv

12.3.1.1PyVCP versus GladeVCP ataglance 958
12.3.2A Quick Tour with the Example Panel 959
12.3.2.1Exploring the example panel 961
12.3.2.2Exploring the User Interface description 962
12.3.2.3Exploring the Python callback 962
12.3.3Creating and Integrating a Glade user interface 962
12.3.3.1Prerequisite: Glade installation 962
12.3.3.2Running Glade to create a new user interface 962
12.3.3.3Testinga panel e 963
12.3.3.4Preparing the HAL command file 964
12.3.3.5Integrating into AXIS, like PyVCP 964
12.3.3.6EmbeddingasaTab e 965
12.3.3.7Integrating into Touchy 965
12.3.4GladeVCP command line options 966
12.3.5Understanding the GladeVCP startup process 966
12.3.6HAL Widget reference i e e 967
12.3.6.1Widget and HAL pin naming 968
12.3.6.2Python attributes and methods of HAL Widgets 968
12.3.6.3Setting pin and widget values 968
12.3.6.4The hal-pin-changed signal 969
12.3.6.5Buttons e e e e e e 969
12.3.6.6Scales e 970
12.3.6.7SpinButton 971
12.3.6.8Hal Dial 971
12.3.6.9Jog Wheel e e 973
12.3.6.18peed Control e e e 974
12.3.6.1Label 976
12.3.6.120ntainers L e e e 977
12.3.6.1BED 977
12.3.6.1BrogressBar e e e e e 978
12.3.6.160mboB0OX 979
12.3.6.1Bars o 979
12.3.6.1Fetero 981
12.3.6.1BIAL Graph 982
12.3.6.1@remlin tool path preview for NGCfiles 982
12.3.6.2BIAL Offset 985
12.3.6.2DRO widget 985
12.3.6.2Combi DROwidget 987

12.3.6.2BonView (File Select) e 990

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xIVi

12.3.6.2€@alculator widget e e 993
12.3.6.2%00leditor widget 994
12.3.6.20ffsetpage L 995
12.3.6.2AAL sourceview widget L L e 997
12.3.6.2BIDIL history e 998
12.3.6.28nimated function diagrams: HAL widgetsina bitmap 998
12.3.7Action Widgets Reference 999
12.3.7.1VCP Action Widgets e e e 1000
12.3.7.2VCP Action Python 1000
12.3.7.3VCP ToggleAction widgets i i e 1001
12.3.7.4The Action MDI Toggle and Action MDIwidgets 1001
12.3.7.5A simple example: Execute MDI command on button press. 1001
12.3.7.6Parameter passing with Action MDI and ToggleAction MDI widgets 1002
12.3.7.7An advanced example: Feeding parameters to an O-word subroutine ... 1003
12.3.7.8Preparing for an MDI Action, and cleaning up afterwards 1003
12.3.7.9Using the LinuxCNC Stat object to deal with status changes 1004
12.3.8GladeVCP Programming i i i it e e e e e e e e e e e e 1004
12.3.8.1User Defined Actions e 1004
12.3.8.2Core Library e e 1005
12.3.8.3An example: adding custom user callbacks in Python 1005
12.3.8.4HAL value change events, 1006
12.3.8.5Programming model 1006
12.3.8.6Initialization sequence 1007
12.3.8.7Multiple callbacks with the samename 1008
12.3.8.8The GladeVCP -U <useropts>flag 1008
12.3.8.9Persistent variables in GladeVCP oL, 1009
12.3.8.1Using persistent variables L L o oo 1009
12.3.8.1%aving the state on GladeVCP shutdown 1010
12.3.8.13aving state when Ctrl-Cispressed 1010
12.3.8.1Band-editing INI (.ini) files 1011
12.3.8.1Adding HAL pins i e e e e e 1011
12.3.8.1Adding timers e e e e e e e e 1011
12.3.8.1Betting HAL widget properties programmatically 1011
12.3.8.1Value-changed callback with hal glib 1012
12.3.8.1Bxamples, and rolling your own GladeVCP application 1012
12.3.9FAQ . . e e e 1013
12.3.10roubleshooting e e 1013
12.3.1Implementation note: Key handlingin AXIS 1014

12.3.1Adding Custom Widgets e e e 1014

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xIvii

12.3.1Auxiliary GladeVCP Applications 1014
12.4GladeVCP Library modules e e e 1015
12.4.1Inf0 . . . e e e 1015
12.4.2ACH0N . . . L L e e e 1017
12.5QtEVCP .« . e e 1019
12.5.1Showease o e e 1019
12.5.20VEIVIEW L e e e e e e e e e e 1025
12.5.2.1QtVCP Widgets e 1026
12.5.2.2INI Settings o . e e 1026
12.5.2.3Qt Designer UL File e e e 1027
12.5.2.4Handler Files e 1027
12.5.2.5Libraries Modules L 1027
12.5.2.6Themes e e e 1028
12.5.2.7Local Files o e 1028
12.5.2.8Modifying Stock Screens 1028
12.5.3VCP Panels e 1031
12.5.3.1Builtin Panels e 1031
12.5.3.2Custom Panels 1035
12.5.4Build A Simple Clean-sheet Custom Screen 1037
12.5.4.10VEIVIEW o L i e e e e e e e 1037
12.5.4.2Get Qt Designer To Include LinuxCNC Widgets 1037
12.5.4.3Build The Screen .ui File 1038
12.5.4.4Handlerfile. L 1041
12.5.4.5INI Configuration e e 1041
12.5.5Handler File In Detail e 1041
12.5.5.10Verview 1042
12.5.5.2IMPORT Section e 1045
12.5.5.3INSTANTIATE LIBRARIES Section 1045
12.5.5.4HANDLER CLASS Section 1045
12.5.5.5INITIALIZE Section i e 1045
12.5.5.6SPECIAL FUNCTIONS Section 1046
Bibliographie e 1046
12.5.5.7STATUS CALLBACKS Section. 1047
12.5.5.8CALLBACKS FROM FORM Section 1047
12.5.5.9GENERAL FUNCTIONS Section 1047
12.5.5.18EY BINDING Section, 1047
12.5.5.1CLOSING EVENT Section, 1047
12.5.6Connecting Widgets to Python Code 1047

12.5.6.10VEIVIEW o o o e e e e e e e e e e e e 1048

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

xIviii

12.5.6.2Using Qt Designertoadd Slots
12.5.6.3Python Handler Changes
12.5.7More Information e
12.6QtVCP Virtual Control Panels e
12.6.1Builtin Virtual Control Panels
12.6.1.1COPY . . o o o e e e e e e e
12.6.1.2spindle belts oL
12.6.1.3test dial e e e
12.6.1.4test button L
12.6.1.5test led e e e
12.6.1.6test panel e
12.6.1.7cam_align e e e e e e e e
12.6.1.85im panel e e
12.6.1.9tool dialog o e e e e e
12.6.2vismach 3D Simulation Panels o
12.6.2.1QtVCP vismach mill Xyz i i
12.6.2.2QtVCP vismach router atc
12.6.2.3QtVCP vismach scara 0 i i i it e e e
12.6.2.4QtVCP vismach millturn. i
12.6.2.5QtVCP vismach mill 5axis gantry
12.6.2.6QtVCP vismach fanuc 200f
12.6.3Custom Virtual Control Panels L oo,
12.6.4Embedding QtVCP Virtual Control Panels into QtVCP Screens
12.6.4.1Embedding Commands e e e
12.6.4.2Location of builtin Panels
12.6.4.3Location of Custom Panels,
12.6.4.4Handler Programming Tips i
12.6.4.5Designer Widget Tips. i i i e e e
12.6.4.6Handler Patching - Subclassing Builtin Panels
12.7QtVCP Widgets o o o
12.7.1HAL Only Widgets e e e e e e e e e
12.7.1.1CheckBox Widget e e e
12.7.1.2DetachTabWidget - Container Widget With User Detachable Panels
12.7.1.3DoubleScale - Spin Button Entry Widget
12.7.1.4FocusOverlay - Focus Overlay Widget
12.7.1.5Gauge - Round Dial Gauge Widget
12.7.1.6GeneralHALInput - General Signals/Slots Input Connection Widget
12.7.1.7GeneralHALOutput - General Signals/Slots Output Connection Widget . . .
12.7.1.8GridLayout - Grid Layout Widget

LinuxCNC V2.10.0-pre0-4994-g913129ce3c xlix

12.7.1.9HalBar - HAL Bar Level Indicator 1074
12.7.1.1BALPad - HAL Buttons Joypad e 1075
12.7.1.18ALLabel - HAL Label Widget 1077
12.7.1.1RCDNumber - LCD Style Number Readout Widget 1077
12.7.1.1BED - Indicator Widget 1078
12.7.1.1BushButton - HAL Pin Toggle Widget 1079
12.7.1.1BadioButton Widget 1079
12.7.1.16lider - HAL Pin Value Adjusting Widget 1079
12.7.1.1TabWidget - TabWidget 1079
12.7.1.18idgetSwitcher - Multi-widget Layout View Switcher Widget 1079
12.7.1.18Embed - Program Embedding Widget 1080
12.7.2Machine Controller Widgets e 1080
12.7.2.1ActionButton - Machine Controller Action Control Widget 1080
12.7.2.2ActionToolButton - Optional Actions Menu Button Widget 1082
12.7.2.3AxisToolButton - Select and Set Axis Widget 1083
12.7.2.4BasicProbe - Simple Mill Probing Widget 1084
12.7.2.5CamView - Workpiece Alignment and Origin Setting Widget 1084
12.7.2.6DR0OLabel - Axis Position Display Widget 1085
12.7.2.7FileManager - File Loading Selector Widget 1087
12.7.2.8GcodeDisplay - G-code Text Display Widget 1088
12.7.2.9GcodeEditor - G-code Program Editor Widget 1089
12.7.2.16CodeGraphics - G-code Graphic Backplot Widget 1090
12.7.2.1JointEnableWidget - FIXME 1094
12.7.2.120gIncrements - Jog Increments Value Selection Widget 1094
12.7.2.1MacroTab - Special Macros Widget 1095
12.7.2.1@peratorValueLine - Operator Value Line Entry Widget 1097
12.7.2.1BDILine - MDI Commands Line Entry Widget 1098
12.7.2.18DIHistory - MDI Commands History Widget 1099
12.7.2.1MDITouchy - Touch Screen MDI Entry Widget 1100
12.7.2.18rigin0ffsetView - Origins View and Setting Widget 1102
12.7.2.1RadioAxisSelector -FIXME 1103
12.7.2.2RoundButton - Round Shapped ActionButton Widget 1103
12.7.2.2%tatelLabel - Controller Modes State Label Display Widget 1103
12.7.2.28tatusLabel - Controller Variables State Label Display Widget 1104
12.7.2.28tatusImageSwitcher - Controller Status Image Switcher 1106
12.7.2.28tatusStacked - Mode Status Display Switching Widget 1108
12.7.2.25creen0Option - General Options Setting widget 1108
12.7.2.26tatusSlider - Controller Setting Adjustment Slider Widget 1112

12.7.2.2%tateLED - Controller State LED Widget 1113

LinuxCNC V2.10.0-pre0-4994-g913129ce3c |

12.7.2.28tatusAdjustmentBar - Controller Value Setting Widget 1114
12.7.2.29ystemToolButton - User System Selection Widget 1114
12.7.2.38tateEnableGridlayout - Controller State Enabled Container Widget . . 1114
12.7.2.3%tatusImageSwitcher - Controller Status Image Switching Widget 1115
12.7.2.320010ffsetView - Tools Offsets View And Edit Widget 1115
12.7.2.38ersaProbe - Mill Probing Widget 1117
12.7.3Dialog Widgets e e e e e e 1117
12.7.3.1LcncDialog - General Message Dialog Widget 1118
12.7.3.2ToolDialog - Manual Tool Change Dialog Widget 1119
12.7.3.3FileDialog - Load and Save File Chooser Dialog Widget 1120
12.7.3.40rigin0ffsetDialog - Origin Offset Setting Dialog Widget 1121
12.7.3.5Tool0ffsetDialog - Tool Offset Setting Dialog Widget 1122
12.7.3.6ToolChooserDialog - Tool Chooser Dialog Widget 1122
12.7.3.7MachinelLog - Machine Events Journal Display Widget 1123
12.7.3.8MacroTabDialog - Macro Launch Dialog Widget 1124
12.7.3.9CamViewDialog - WebCam Part Alignment Dialog Widget 1124
12.7.3.1BntryDialog - Edit Line Dialog Widget 1124
12.7.3.1CalculatorDialog - Calculator Dialog Widget 1124
12.7.3.1RunFromLine - Run-From-Line Dialog Widget 1126
12.7.3.18ersaProbeDialog - Part Touch Probing Dialog Widget 1127
12.7.3.1MachinelLogDialog - Machine and Debugging Logs Dialog Widget 1128
12.7.40ther Widgets e e e e e 1128
12.7.4.1NurbsEditor - NURBS Editing Widget 1129
12.7.4.2JoyPad - 5 button D-pad Widget 1129
12.7.4.3WebWidget« o e e e e e e 1131
12.7.5BaseClass/Mixin Widgets e 1131
12.7.5.1IndicatedPushButtons 1132
12.7.6Import-Only Widgets e 1134
12.7.6.1Auto Height e 1135
12.7.6.2G-code Utility 1135
12.7.6.3Facing e e e e e e e e e e e e e 1135
12.7.6.4Hole Circle o e 1135
12.7.6.5Hole Enlarge e e e e 1136
12.7.6.6Qt NGCGUIL. 1136
12.7.6.7Qt PDF o 1137
12.7.6.8Qt Vismach 1138
12.7.6.9Hal Selection Box 1138
12.8QtVCP Libraries modules e e 1138

12.8.1Status o 1138

LinuxCNC V2.10.0-pre0-4994-g913129ce3c li

12.8.1.1Utilisation e 1139
12.8.1.2Exemple e e e e e e e e e e e 1139
12.8.2INT0 . . o o e e e e e e e e e 1139
12.8.2.1Available data and defaults oL, 1139
12.8.2.2User message dialoginfo 1141
12.8.2.3Embedded programinfo 1141
12.8.2.4HeIpers e e e e e e 1141
12.8.2.5Utilisation L 1141
12.8.3ACtion e e e e e 1142
12.8.3.1Helpers e e e e e e e e e e e e e 1142
12.8.3.2Utilisation 1142
12.8.4Qhal e e e e e e e e 1144
12.8.4.1Attributes e e 1144
12.8.4.2Constants 1144
12.8.4.3References e e e e 1145
12.8.5QPIN L e e e e e e e e e e e e e 1145
12.8.5.1Signals e e e e 1145
12.8.5.2Attributes 1145
12.8.5.3References e e e e 1145
12.8.5.4Exemple e e e e e e e e e e e e e 1146
12.8.6T00L . . . o e e e e e e e e e e e e 1146
12.8.6.1Helpers e e e e e e e e e e e e 1146
12.8.7Path . . o e e e e e e e e e e e e e 1147
12.8.7.1Referenced Paths 1147
12.8.7.2Helpers e 1148
12.8.7.3Utilisation 1148
12.8. 8VCPWINAOW o e 1149
12.8.8.1Utilisation 1149
12.8.9Aux_program loader e e e e e 1149
12.8.9.1HeIpers e e e e e e e e e 1149
12.8.9.2Utilisation 1150
12.8. 1By LoOKUD e e e e e e 1150
12.8.10.Utilisation 1151
12.8.10.Rey Defines e e e e e 1152
12.8.1MeSSages i e e e e e e e e e e e e e e e e e 1154
12.8.11.Properties e e e e e e e e 1154
12.8.11.FIAL Pins o o o e 1155
12.8. 11.Bxamples e e e e e e e e e e 1155

12.8.1ultimessages it e e e e e e e e e e e e e 1155

LinuxCNC V2.10.0-pre0-4994-g913129ce3c lii

12.8.12.Properties e e e e e e e 1156
12.8.12.Examples e e e e e e e e e e e e 1156

12.8. M0t Yy . . . o o e e e e e e e e e e e 1157
12.8.13.Properties e e e e e e e e e e e 1157
12.8.1Breferences e e 1157
12.8. 1Blayer e e e e 1157
12.8.15.50unds e e e e e e e 1158
12.8.15.Ptilisation L 1158
12.8.15.Bxemple e e e e e e 1158
12.8.1¥irtual Keyboard e e 1159
12.8.1Toolbar Actions e e e e e e e e 1159
12.8.17.ACtiONS L e e e 1159
12.8.17.3ubmenus e e e e e e 1159
12.8.17.Btilisation L e 1159
12.8.17.Bxamples e e e e e e e 1159
12.8.18t Vismach Machine Graphics library 1160
12.8.18.Builtin Samples 1160
12.8.18.Brimitives Library e e 1160
12.8.18.Btilisation 1162
12.8.18 More Information L 1162
12.90QtVismach e 1163
12.9.1Introduction e 1163
12.9.2Hierarchy of Machine Design e 1164
12.9.3Start the script L e 1165
12.94HAL DINS. o o e e e e e e e e e e 1165
12.9.5Creating Parts oL e e 1165
12.9.5.1Import STLor OBJ Files it 1165
12.9.5.2Build from Geometric Primitives oL, 1166
12.9.6Moving Model Parts e e 1166
12.9.6.1Translating Model parts e 1167
12.9.6.2Rotating Model Parts 1167
12.9.7Animating Parts L e e e e e 1167
12.9.7.1HalTranslate 1167
12.9.7.2HalRotate 1168
12.9.7.3HalToolCylinder e e e e e e e e e e 1168
12.9.7.4HalToolTriangle e e e e e e e e e 1168
12.9.7.5HAL Adjustable Primitives. 1168
12.9.8Assembling themodel 1169

12.9.90ther functions e e e 1170

LinuxCNC V2.10.0-pre0-4994-g913129ce3c liii

12.9.9.1C0lor. 1170
12.9.9.2HALColorFlip 1170
12.9.9.3HALCOolorRGB e 1170
12.9.9.4Heads Up Display o o i i e e e e e 1171
12.9.9.5HAL Heads Up Display e e e et 1171
12.9.9.6HideCollection e 1171
12.9.9.7Plot Color Based on Motion Type 1172
12.9.9.8Capture e e e e e e e e e 1172
12.9.9.9main 1172
12.9.1TIPS .« . o o o e 1172
12.9.1Basic structure of a QtVismachscript, 1173
12.9.1Builtin Vismach Sample Panels 1174
12.1QtVCP: Building Custom Widgets e 1174
12.10.DVEIVIEW . . . o o o o e 1174
12.10.1.Widgets 1174
12.10.1.Qt Designer i e e e e e e e e e e 1174
12.10.1.hitialization Process e e 1175
12.10.1.dleanup PrOCESS v v v i e e e e e e e e e e e e e e e e e e e 1175
12.10.Zustom HAL Widgets e e e e e 1176
12.10.Bustom Controller Widgets Using STATUS 1177
12.10.3.In The Imports Section i 1178
12.10.3.In The Instantiate Libraries Section 1178
12.10.3..h The Custom Widget Class Definition Section 1179
12.10.€ustom Controller Widgets with Actions 1181
12.10.Stylesheet Property Changes Based On Events 1183
12.10.Use Stylesheets To Change Custom Widget Properties 1184
12.10.Widget Plugins e e e e e e 1184
12.10.7.Gridlayout Example e e e 1184
12.10.7.8ystemToolbutton Example 1185
12.10.7.Making a plugin with a MenuEntry dialogbox 1186
12.1DQtVCP Handler File Code Snippets e e 1188
12.11.Preference File Loading/Saving 1188
12.11.PJse QSettings To Read/Save Variables 1189
12.11.Add A Basic Style Editor e 1189
12.11.Request Dialog Entry e 1190
12.11.5peak a Startup Greeting e 1191
12.11.8001Bar Functions o i i i it e e e e e e e e e e e e e e 1191
12.11.Add HAL Pins That Call Functions 1192

12.11.Bead/Write System HAL Pins Directly 1192

LinuxCNC V2.10.0-pre0-4994-g913129ce3c liv

12.11.8dd A Special Max Velocity Slider Based On Percent 1193
12.11.TO6ggle Continuous Jog Onand Off 1193
12.11.Class Patch The File Manager Widget 1194
12.11.Adding Widgets Programmatically 1196
12.11.Update/Read Objects Periodically 1198
12.11.E4&ternal Control With ZMQ e e e 1199
12.11.14MQ Messages Reading 1199
12.11.14MQ Messages Writing i i e 1200
12.11.8bnding Messages To Status Bar Or Desktop Notify Dialogs 1201
12.11.Catch Focus Changes i i e e e e e e e e e 1202
12.11.Réad Command Line Load Time Options 1203
12.11.G8ode to read gt preferences 1204
12.1QLVCP Development e e e e e e e e e e e e e e e e e 1204
12.12.DVEIVIEBW . . . o o o o e 1204
12.12.Builtin Locations e e e e e e e e e e e e e e e e 1205
12.12.9tVCP Startup To Shutdown 1205
12.12.3.0tVCP Startup 1205
12.12.3.QtVCP Shutdown 1205
12.12.2ath Information e 1205
12.12.5diosyncrasies e e e e e e e e 1206
12.12.5.Error Code Collecting i ittt it i 1206
12125 g Rate 1206
12.12.5.Beybinding e 1207
12.12.5.Breference File 1207
12.12.5.Widget Special Setup Functions 1207
12.12.5.Bialogs e e e e e e 1207
12.12.5.3tyles (Themes) e e e e e e e 1208
13 Programmation d’interface utilisateur 1209

13.1Panelui e 1209
13.1.1Introduction e e e e e e e e e e e e e e e e e e 1209
13.1.2Loading Commands 0 i e e e e e e e e e e e e e e 1209
13.1.3panelui.ini file reference 1210
13.1.4Internal Command reference it 1212
13.1.5ZMQ MESSATES .« v v v o e 1214
13.1.6Handler File Extension e 1214
13.2The LinuxCNC Python module it 1215
13.2.1Introduction e e 1215

13.2.2Usage Patterns for the LinuxCNC NML interface 1216

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

13.2.3Reading LinuxCNC status with the linuxcnc Python module

13.2.3.1linuxcnc.stat attributeso o oo
13.2.3.2The axis dictionary
13.2.3.3The joint dictionary
13.2.3.4The spindle dictionary
13.2.4Preparing to send commands
13.2.5Sending commands through linuxcnc.command
13.2.5.1linuxcnc.command attributes
13.2.5.2linuxcnc.command methods:,
13.2.6Reading the error channel
13.2.7Reading INIfilevalues
13.2.8The linuxcnc.positionloggertype
13.2.8.1Imembers e
13.2.8.2methods
13.3The HAL Pythonmodule
13.3.1BaSICUSAFE . . .« . v i v i e e e e e e e e e e e e e e e e
13.3.2Fonctions L
13.4GStat Python Module
13.4.1Intro L e
13.4.2Sample GStat Code e
13.4.2.1Sample HAL component code pattern.
13.4.2.2GladeVCP Python extension code pattern
13.4.2.3QtVCP Python extension code pattern
13.4.3MESSAFES . &« v v v e
13.4.4Fonctions L
13.4.5Known Issues i e e e e e
13.5Vismach e
13.5.1Start the script
13.5.2Create the HAL pins. i i i it i it et et
13.5.3Creating Parts
13.5.4Moving Parts e e e e e
13.5.5Animating Parts
13.5.6Assembling themodel.,
13.5.70ther functions

13.5.8Basic structure of a Vismach script.

II1 Glossaire, droits d’auteur et historique

144-° de couverture

LinuxCNC V2.10.0-pre0-4994-g913129ce3c Ivi

15 Glossary 1250

16 Copyright 1255
16.1Legal Section e e e 1255
16.1.1Copyright Terms e e e e e e e e 1255
16.1.2GNU Free Documentation License 1255

17 Histoire de LinuxCNC 1260
17.10TIgIN o e e e e e e e e e e 1260
17.1.1Changement de nom i i e e e e e e e e 1261

17.1.2Informations complémentaires 1261

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 1/1261

Premiere partie

Démarrage et configuration

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 2/1261

Chapitre 1

Premiers pas avec LinuxCNC

1.1

A propos de LinuxCNC

1.1.1 The Software

— LinuxCNC (the Enhanced Machine Control) is a software system for computer control of machine
tools such as milling machines and lathes, robots such as puma and scara and other computer
controlled machines up to 9 axes.

— LinuxCNC is free software with open source code. Current versions of LinuxCNC are entirely li-
censed under the GNU General Public License and Lesser GNU General Public License (GPL and
LGPL).

— LinuxCNC provides:

easy discovery and testing without installation with the LiveCD,

easy installation from the Live CD,

easy to use graphical configuration wizards to rapidly create a configuration specific to the
machine,

directly available as regular packages of recent releases of Debian (since Bookworm) and Ubuntu
(since Kinetic Kudu),

a graphical user interface (actually several interfaces to choose from),

a graphical interface creation tool (Glade),

an interpreter for G-code (the RS-274 machine tool programming language),

a realtime motion planning system with look-ahead,

operation of low-level machine electronics such as sensors and motor drives,

an easy to use breadboard layer for quickly creating a unique configuration for your machine,
a software PLC programmable with ladder diagrams.

— It does not provide drawing (CAD - Computer Aided Design) or G-code generation from the drawing
(CAM - Computer Automated Manufacturing) functions.

— It can simultaneously move up to 9 axes and supports a variety of interfaces.

— The control can operate true servos (analog or PWM) with the feedback loop closed by the Li-
nuxCNC software at the computer, or open loop with step-servos or stepper motors.

— Motion control features include: cutter radius and length compensation, path deviation limited to
a specified tolerance, lathe threading, synchronized axis motion, adaptive feedrate, operator feed
override, and constant velocity control.

— Support for non-Cartesian motion systems is provided via custom kinematics modules. Available
architectures include hexapods (Stewart platforms and similar concepts) and systems with rotary
joints to provide motion such as PUMA or SCARA robots.

— LinuxCNC runs on Linux using real time extensions.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 3/1261

1.1.2 The Operating System

LinuxCNC is available as ready-to-use packages for the Ubuntu and Debian distributions.

1.1.3 Getting Help

1.1.3.1 IRC

IRC stands for Internet Relay Chat. It is a live connection to other LinuxCNC users. The LinuxCNC
IRC channel is #linuxcnc on libera.chat.

The simplest way to get on the IRC is to use the embedded web client client from libera.

Some IRC etiquette
— Ask specific questions... Avoid questions like “Can someone help me?”.

— If you're really new to all this, think a bit about your question before typing it. Make sure you
give enough information so someone can answer your question or solve your problem.

— Have some patience when waiting for an answer, sometimes it takes a while to formulate an
answer or everyone might be busy working or something.

— Set up your IRC account with your unique name so people will know who you are. If you use
the java client, use the same name every time you log in. This helps people remember who
you are and if you have been on before many will remember the past discussions which saves
time on both ends.

Sharing Files
The most common way to share files on the IRC is to upload the file to one of the following or a
similar service and paste the link:

— Fortext: https://pastebin.com/, https://gist.github.com/, https://Obin.net/, https://paste.debian.net/-

— For pictures: https://imagebin.org/, https://imgur.com/, https://bayimg.com/
— For files: https://filedropper.com/, https://filefactory.com/, https://1fichier.com/

1.1.3.2 Mailing List

An Internet Mailing List is a way to put questions out for everyone on that list to see and answer at
their convenience. You get better exposure to your questions on a mailing list than on the IRC but
answers take longer. In a nutshell you e-mail a message to the list and either get daily digests or
individual replies back depending on how you set up your account.

You can subscribe to the emc-users mailing list at: https://lists.sourceforge.net/lists/listinfo/emc-users.

1.1.3.3 Web Forum

A web forum can be found at https://forum.linuxcnc.org/ or by following the link at the top of the
https://linuxcnc.org/ home page.

This is quite active but the demographic is more user-biased than the mailing list. If you want to be
sure that your message is seen by the developers then the mailing list is to be preferred.

1.1.3.4 LinuxCNC Wiki

A Wiki site is a user maintained web site that anyone can add to or edit.
The user maintained LinuxCNC Wiki site contains a wealth of information and tips at https://wiki.linuxcnc.or¢

https://web.libera.chat/#linuxcnc
https://pastebin.com/
https://gist.github.com/
https://0bin.net/
https://paste.debian.net/
https://imagebin.org/
https://imgur.com/
https://bayimg.com/
https://filedropper.com/
https://filefactory.com/
https://1fichier.com/
https://lists.sourceforge.net/lists/listinfo/emc-users
https://forum.linuxcnc.org/
https://linuxcnc.org/
https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 4/1261

1.1.3.5 Bug Reports

Report bugs to the LinuxCNC github bug tracker.

1.2 System Requirements

1.2.1 Minimum Requirements

The minimum system to run LinuxCNC and Debian / Ubuntu may vary depending on the exact usage.
Stepper systems in general require faster threads to generate step pulses than servo systems. You
can use the Live CD to test the software before committing to a permanent installation on a computer.
Keep in mind that the Latency Test numbers are more important than the processor speed for software
step generation. More information on the Latency Test is here. In addition LinuxCNC needs to be run
on an operating system that uses a specially modified kernel, see Kernel and Version Requirements.

Additional information is on the LinuxCNC Wiki site: Hardware Requirements

LinuxCNC and Debian Linux should run reasonably well on a computer with the following minimum

hardware specification. These numbers are not the absolute minimum but will give reasonable per-

formance for most stepper systems.

— 700 MHz x86 processor (1.2 GHz x86 processor recommended) or Raspberry Pi 4 or better.

— LinuxCNC 2.8 or later from the Live CD expects a 64-bit capable system.

— 512 MB of RAM, 4 GB with GUI to avoid surprises

— No hard disk for Live CD, 8 GB or more for permanent installation

— Graphics card capable of at least 1024x768 resolution, which is not using the NVidia or ATI fglrx
proprietary drivers. Modern onboard graphic chipsets seem to generally be OK.

— Internet connection (not strictly needed, but very useful for updates and for communicating with
the LinuxCNC community)

Minimum hardware requirements change as Linux distributions evolve so check the Debian web site

for details on the Live CD you're using. Older hardware may benefit from selecting an older version

of the Live CD when available.

If you plan not to rely on the distribution of readily executable programs (“binaries”) and/or aim at
contributing to the source tree of LinuxCNC, then there is a good chance you want a second computer
to perform the compilation. Even though LinuxCNC and your developments could likely be executed
at the same time with respect to disk space, RAM and even CPU speed, a machine that is busy will
have worse latencies, so you are unlikely to compile your source tree and produce chips at the same
time.

1.2.2 Kernel and Version requirements

LinuxCNC requires a kernel modified for realtime use to control real machine hardware. It can, howe-
ver run on a standard kernel in simulation mode for purposes such as checking G-code, testing config
files and learning the system. To work with these kernel versions there are two versions of LinuxCNC
distributed. The package names are "linuxcnc” and “linuxcnc-uspace”.

The realtime kernel options are preempt-rt, RTAI and Xenomai.
You can discover the kernel version of your system with the command:

uname -a

If you see (as above) -rt- in the kernel name then you are running the preempt-rt kernel and should
install the "uspace” version of LinuxCNC. You should also install uspace for ”"sim” configs on non-
realtime kernels.

If you see -rtai- in the kernel name then you are running RTAI realtime. See below for the LinuxCNC
version to install.

https:///github.com/LinuxCNC/linuxcnc/issues
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Hardware_Requirements
https://www.debian.org/releases/stable/amd64/ch02.en.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 5/1261

1.2.2.1 Preempt-RT with linuxcnc-uspace package

Preempt-RT is the newest of the realtime systems, and is also the version that is closest to a mainline
kernel. Preempt-RT kernels are available as precompiled packages from the main repositories. The
search term "PREEMPT RT” will find them, and one can be downloaded and installed just like any
other package. Preempt-RT will generally have the best driver support and is the only option for
systems using the Mesa ethernet-connected hardware driver cards. In general preempt-rt has the
worst latency of the available systems, but there are exceptions.

1.2.2.2 RTAI with linuxcnc package

RTAI has been the mainstay of LinuxCNC distributions for many years. It will generally give the best
realtime performance in terms of low latency, but might have poorer peripheral support and not
as many screen resolutions. An RTAI kernel is available from the LinuxCNC package repository. If
you installed from the Live/Install image then switching kernel and LinuxCNC flavour is described in
[Installing-RTAI].

1.2.2.3 Xenomai with linuxcnc-uspace package

Xenomai is also supported, but you will have to find or build the kernel and compile LinuxCNC from
source to utilise it.

1.2.2.4 RTAI with linuxcnc-uspace package

It is also possible to run LinuxCNC with RTAI in user-space mode. As with Xenomai you will need to
compile from source to do this.

1.2.3 Problematic Hardware

1.2.3.1 Laptops

Laptops are not generally suited to real time software step generation. Again a Latency Test run for
an extended time will give you the info you need to determine suitability.

1.2.3.2 Video Cards

If your installation pops up with 800 x 600 screen resolution then most likely Debian does not recognize
your video card or monitor. This can sometimes be worked-around by installing drivers or creating /
editing Xorg.conf files.

1.3 Getting LinuxCNC

This section describes the recommended way to download and make a fresh install of LinuxCNC.
There are also Alternate Install Methods for the adventurous. If you have an existing install that you
want to upgrade, go to the Updating LinuxCNC section instead.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 6/1261

Note

To operate machinery LinuxCNC requires a special kernel with real-time extensions. There are three
possibilities here: preempt-rt, RTAl or Xenomai. In addition there are two versions of LinuxCNC which
work with these kernels. See the table below for details. However for code testing and simulation it
is possible to run the linuxcnc-uspace application on a stock kernel of the distribution.

Fresh installs of LinuxCNC are most easily created using the Live/Install Image. This is a hybrid ISO
filesystem image that can be written to a USB storage device or a DVD and used to boot a computer. At
boot time you will be given a choice of booting the ”Live” system (to run LinuxCNC without making any
permanent changes to your computer) or booting the Installer (to install LinuxCNC and its operating
system onto your computer’s hard drive).

The outline of the process looks like this:
1. Download the Live/Install Image.
2. Write the image to a USB storage device or DVD.
3. Boot the Live system to test out LinuxCNC.
4. Boot the Installer to install LinuxCNC.

1.3.1 Download the image

This section describes some methods for downloading the Live/Install image.

1.3.1.1 Normal Download

Software for LinuxCNC to download is presented on the project’s Downloads page. Most users will aim
for the disk image for Intel/AMD PCs, the URL will resemble https://www.linuxcnc.org/iso/linuxcnc 2.9.4-
amd64.hybrid.iso.

For the Raspberry Pi, multiple images are provided to address differences between the RPi4 and RPi5.

Note

Do not use the regular Raspbian distribution for LinuxCNC that may have shipped with your RPi starter
kit - that will not have the real-time kernel and you cannot migrate from Raspbian to Debian’s kernel
image.

1.3.1.2 Download using zsync

zsync is a download application that efficiently resumes interrupted downloads and efficiently trans-
fers large files with small modifications (if you have an older local copy). Please note, it needs to use
the http protocol, not https. Use zsync if your download of the image using the Normal Download
method is frequently interrupted.

zsync in Linux
1. Install zsync using Synaptic or, by running the following in a terminal

sudo apt-get install zsync

2. Then run this command to download the iso to your computer
zsync http://www.linuxcnc.org/iso/linuxcnc_2.9.4-amd64.hybrid.iso
Please remember to confirm the checksum of the downloaded iso as described below, since the au-
thenticity of the server is not guaranteed with the http protocol.

zsync in Windows There is a Windows port of zsync. It works as a console application and can be
downloaded from https://www.assembla.com/spaces/zsync-windows/documents .

https://linuxcnc.org/downloads/
https://www.linuxcnc.org/iso/linuxcnc_2.9.4-amd64.hybrid.iso
https://www.linuxcnc.org/iso/linuxcnc_2.9.4-amd64.hybrid.iso
https://www.assembla.com/spaces/zsync-windows/documents

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 7/1261

1.3.1.3 Verify the image

(This step is unnecessary if you used zsync)
1. After downloading, verify the checksum of the image to ensure integrity.
md5sum linuxcnc-2.9.4-amd64.1iso

ou

sha256sum linuxcnc-2.9.4-amd64.iso

1. Then compare to these checksums

amd64 (PC)

md5sum: 1815aceaac0e7861747aa34d61846e79

sha256sum: 08b3f59233e47c91cf1c9a85c41df48542¢c97b134efefa7446d3060c9a3e644b
arme4 (Pi)

md5sum: 4547e8a72433efb033f0a5cf166a5cd2

sha256sum: ff3ba9b8dfb93bafle2232746655f8521a606bcOfab91bffcO4ba74cc3bebbfO

Verify md5sum on Windows or Mac Windows and Mac OS X do not come with an md5sum program,
but there are alternatives. More information can be found at: How To MD5SUM

1.3.2 Write the image to a bootable device

The LinuxCNC Live/Install ISO Image is a hybrid ISO image which can be written directly to a USB
storage device (flash drive) or a DVD and used to boot a computer. The image is too large to fit on a
CD.

1.3.2.1 Raspberry Pi Image

The Raspberry Pi image is a complete SD card image and should be written to an SD card with the
Raspberry Pi Imager App.

1.3.2.2 AMD-64 (x86-64, PC) Image using GUI tools

Download and install Balena Etcher from https://etcher.balena.io/#download-etcher (Linux, Windows,
Mac) and write the downloaded image to a USB drive.

If your image fails to boot then please also try Rufus. It looks more complicated but seems to be more
compatible with various BIOSes.

1.3.2.3 Command line - Linux

1. Connect a USB storage device (for example a flash drive or thumb drive type device).

2. Determine the device file corresponding to the USB flash drive. This information can be found in
the output of dmesg after connecting the device. /proc/partitions may also be helpful.

3. Use the dd command to write the image to your USB storage device. For example, if your storage
device showed up as /dev/sde, then use this command:

dd if=linuxcnc 2.9.4-amd64.hybrid.iso of=/dev/sde

https://help.ubuntu.com/community/HowToMD5SUM
https://www.raspberrypi.com/software/
https://etcher.balena.io/#download-etcher
https://rufus.ie/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 8/1261

1.3.2.4 Command line - MacOS

1. Ouvrir un terminal depuis Applications = Accessoires — Terminal et tapez
diskutil list

2. Insert the USB and note the name of the new disk that appears, e.g. /dev/disk5.
3. Unmount the USB. The number found above should be substituted in place of the N.

diskutil unmountDisk /dev/diskN

4. Transfer the data with dd, as for Linux above. Note that the disk name has an added "r” at the
beginning.

sudo dd if=linuxcnc_2.9.4-amd64.hybrid.iso of=/dev/rdiskN bs=1m
5. Note that this may take a long time to complete and there will be no feedback during the process.

Writing the image to a DVD in Linux
1. Insert a blank DVD into your burner. A CD/DVD Creator or Choose Disc Type window will pop
up. Close this, as we will not be using it.
Browse to the downloaded image in the file browser.
Right click on the ISO image file and choose Write to Disc.
Select the write speed. It is recommended that you write at the lowest possible speed.
Start the burning process.
6. If a choose a file name for the disc image window pops up, just pick OK.

Ol

Writing the image to a DVD in Windows
1. Download and install Infra Recorder, a free and open source image burning program: https://infrarecorc

2. Insert a blank CD in the drive and select Do nothing or Cancel if an auto-run dialog pops up.
3. Open Infra Recorder, and select the Actions menu, then Burn image.

Writing the image to a DVD in Mac OSX

1. Download the .iso file

2. Right-click on the file in the Finder window and select "Burn to disc”. (The option to burn to disc
will only appear if the machine has an optical drive fitted or connected.)

1.3.3 Testing LinuxCNC

With the USB storage device plugged in or the DVD in the DVD drive, shut down the computer then
turn the computer back on. This will boot the computer from the Live/Install Image and choose the
Live boot option.

Note
If the system does not boot from the DVD or USB stick, it may be necessary to change the boot order
in the PC BIOS.

Once the computer has booted up you can try out LinuxCNC without installing it. You can not create
custom configurations or modify most system settings in a Live session, but you can (and should) run
the latency test.

To try out LinuxCNC: from the Applications/CNC menu pick LinuxCNC. A dialog box will open from
which you can choose one of many sample configurations. At this point it only really makes sense
to pick a "sim” configuration. Some of the sample configurations include onscreen 3D simulated ma-
chines, look for "Vismach” to see these.

https://infrarecorder.org/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 9/1261

To see if your computer is suitable for software step pulse generation run the Latency Test as shown
here.

At the time of writing the Live Image is only available with the preempt-rt kernel and a matching
LinuxCNC. On some hardware this might not offer good enough latency. There is an experimental
version available using the RTAI realtime kernel which will often give better latency.

1.3.4 Installing LinuxCNC

To install LinuxCNC from the Live CD select Install (Graphical) at bootup.

1.3.5 Updates to LinuxCNC

With the normal install the Update Manager will notify you of updates to LinuxCNC when you go on
line and allow you to easily upgrade with no Linux knowledge needed. It is OK to upgrade everything
except the operating system when asked to.

® AVERTISSEMENT
Do not upgrade the operating system to a new version if prompted to do so. You should accept
OS updates however, especially security updates.

1.3.6 Install Problems

In rare cases you might have to reset the BIOS to default settings if during the Live CD install it cannot
recognize the hard drive during the boot up.

1.3.7 Alternate Install Methods

The easiest, preferred way to install LinuxCNC is to use the Live/Install Image as described above. That
method is as simple and reliable as we can make it, and is suitable for novice users and experienced
users alike. However, this will typically replace any existing operating system. If you have files on the
target PC that you want to keep, then use one of the methods described in this section.

In addition, for experienced users who are familiar with Debian system administration (finding install
images, manipulating apt sources, changing kernel flavors, etc), new installs are supported on follo-
wing platforms: ("amd64” means ”64-bit”, and is not specific to AMD processors, it will run on any
64-bit x86 system)

Distribution Architecture Kernel Package name Typical use
Debian amd64 & arm64 | preempt-rt linuxcnc-uspace machine control
Bookworm & simulation
Debian amd64 RTAI linuxcnc machine control
Bookworm
Debian Bullseye amd64 preempt-rt linuxcnc-uspace machine control
& simulation
Debian Buster amd64 & arm64 | preempt-rt linuxcnc-uspace | machine control
& simulation
Debian Buster amd64 RTAI linuxcnc machine control
Any Any Stock linuxcnc-uspace simulation ONLY

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 10/1261

Note
LinuxCNC v2.9 is not supported on Debian 9 or older.

Preempt-RT kernels The Preempt-rt kernels are available for Debian from the regular debian.org
archive. The package is called linux-image-rt-*. Simply install the package in the same way as any
other package from the Synaptic Package manager or with apt-get at the command-line.

RTAI Kernels The RTAI kernels are available for download from the linuxcnc.org debian archive. The
apt source is:

— Debian Bookworm: deb https://linuxcnc.org bookworm base
— Debian Bullseye: deb https://linuxcnc.org bullseye base
— Debian Buster: deb https://linuxcnc.org buster base

LinuxCNC and the RTAI kernel are now only available for 64-bit OSes but there are very few surviving
systems that can not run a 64-bit OS.

1.3.7.1 Installing on Debian Bookworm (with Preempt-RT kernel)

1. Install Debian Bookworm (Debian 12), amd64 version. You can download the installer here:
https://www.debian.org/distrib/

2. After burning the iso and booting up if you don’t want Gnome desktop select Advanced Options
> Alternative desktop environments and pick the one you like. Then select Install or Graphical
Install.

® AVERTISSEMENT
Do not enter a root password, if you do sudo is disabled and you won’t be able to complete
the following steps.

3. Run the following in a terminal to bring the machine up to date with the latest packages.

sudo apt-get update
sudo apt-get dist-upgrade

Note
It is possible to download a version of LinuxCNC directly from Debian but this will install an old
pre-release version, and is not recommended at this time.

4. Install the Preempt-RT kernel and modules
sudo apt-get install linux-image-rt-amd64

5. Re-boot, and select the Linux 6.1.0-10-rt-amd64 kernel. The exact kernel version might be dif-
ferent, look for the ”-rt” suffix. This might be hidden in the "Advanced options for Debian Book-

worm” sub-menu in Grub. When you log in, verify that PREEMPT RT is reported by the following
command.

uname -v

https://www.debian.org/distrib/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 11/1261

6. Open Applications Menu > System > Synaptic Package Manager search for linux-image and right
click on the original non-rt and select Mark for Complete Removal. Reboot. This is to force the
system to boot from the RT kernel. If you prefer to retain both kernels then the other kernels
need not be deleted, but grub boot configuration changes will be needed beyond the scope of
this document.

7. Add the LinuxCNC Archive Signing Key to your apt keyring by downloading [the LinuxCNC ins-
taller script](https://www.linuxcnc.org/linuxcnc-install.sh). You will need to make the script exe-
cutable to run it:

chmod +x linuxcnc-install.sh
Then you can run the installer:

sudo ./linuxcnc-install.sh

1.3.7.2 Installing on Debian Bookworm (with experimental RTAIl kernel)

1. This kernel and LinuxCNC version can be installed on top of the Live DVD install, or alternatively
on a fresh Install of Debian Bookworm 64-bit as described above.

2. You can add the LinuxCNC archive signing key and repository information by downloading and
running the installer script as described above. If an RTAI kernel is detected it will stop before
installing any packages.

3. Update the package list from linuxcnc.org

sudo apt-get update

4. Install the new realtime kernel, RTAI and the RTAI-version of LinuxCNC.

sudo apt-get install linuxcnc

Reboot the machine, ensuring that the system boots from the new 5.4.258-rtai kernel.

1.3.7.3 Installing on Raspbian 12
Don’t do that. The latencies are too bad with the default kernel and the PREEMPT RT (the RT is
important) kernel of Debian does not boot on the Pi (as of 1/2024). Please refer to the .iso images

provided online on the regular LinuCNC download page. You can create them yourself following the
scripts provided online.

1.4 Running LinuxCNC

1.4.1 Invoking LinuxCNC

After installation, LinuxCNC starts just like any other Linux program: run it from the terminal by
issuing the command linuxcnc, or select it in the Applications -> CNC menu.

https://www.linuxcnc.org/linuxcnc-install.sh
https://linuxcnc.org/downloads/
https://github.com/rodw-au/rpi-img-builder-lcnc

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 12 /1261

1.4.2 Configuration Launcher

When starting LinuxCNC (from the CNC menu or from the command line without specifying an INI
file) the Configuration Selector dialog starts.

The Configuration Selector dialog allows the user to pick one of their existing configurations (My
Configurations) or select a new one (from the Sample Configurations) to be copied to their home
directory. Copied configurations will appear under My Configurations on the next invocation of the
Configuration Selector.

The Configuration Selector offers a selection of configurations organized:

— My Configurations - User configurations located in linuxcnc/configs in your home directory.

— Sample Configurations - Sample configurations, when selected, are copied to linuxcnc/configs.
Once a sample configuration was copied to your local directory, the launcher will offer it as My
Configurations. The names under which these local configurations are presented correspond to
the names of the directories within the configs/ directory:

— sim - Configurations that include simulated hardware. These can be used for testing or learning
how LinuxCNC works.

— by interface - Configurations organized by GUI.
— by machine - Configurations organized by machine.

— apps - Applications that do not require starting linuxcnc but may be useful for testing or trying
applications like PyVCP or GladeVCP.

— attic - Obsolete or historical configurations.

The sim configurations are often the most useful starting point for new users and are organized around
supported GUIs:

— axis - Keyboard and Mouse GUI

— craftsman - Touch Screen GUI (no longer maintained ?7?7?)

— gmoccapy - Touch Screen GUI

— gscreen - Touch Screen GUI

— pyvep _demo - Python Virtual Control Panel

— qtaxis - Touch Screen GUI, axis lookalike

— qtdragon - Touch Screen GUI

— qtdragon_hd - Touch Screen GUI, high definition

— gtplasmac - Touch Screen GUI, for plasma tables

— qttouchy - Touch Screen GUI

— tklinuxcnc - Keyboard and Mouse GUI (no longer maintained)
— touchy - Touch Screen GUI

— woodpecker - Touch Screen GUI

A GUI configuration directory may contain subdirectories with configurations that illustrate special
situations or the embedding of other applications.

The by interface configurations are organized around common, supported interfaces like:
— general mechatronics

— mesa

— parport

— pico

— pluto

— servotogo

— vigilant

— vitalsystems

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 13/1261

Related hardware may be required to use these configurations as starting points for a system.

The by machine configurations are organized around complete, known systems like:

— boss

— cooltool

— scortbot erlll

— sherline

— smithy

— tormach

A complete system may be required to use these configurations.

The apps items are typically either:

1. utilities that don’t require starting linuxcnc
2. demonstrations of applications that can be used with linuxcnc

— info - creates a file with system information that may be useful for problem diagnosis.
— gladevcp - Example GladeVCP applications.

— halrun - Starts halrun in an terminal.

— latency - Applications to investigate latency

— latency-histogram-1 - histogram for single servo thread
— latency-histogram - histogram

— latency-test - standard test

— latency-plot - stripchart

— parport - Applications to test parport.
— pyvcep - Example pyvcp applications.
— xhc-hb04 - Applications to test an xhc-hb04 USB wireless MPG

Note
Under the Apps directory, only applications that are usefully modified by the user are offered for
copying to the user’s directory.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 14 /1261

LinuxCNC Configuration Selector
Welcome to LinuxCNC.

Select a machine configuration from the list on the left.
Details about the selected configuration will appear in the display on the right.
Click "OK' to run the selected configuration

My Configura_tions_ Sim configurations make it possible to run
=+ Sample Configurations

sim LinuxCNC without special hardware on a

axis simulated basis.
craftsman
gmoccapy

gscreen LinuxCNC supports multiple guis and there

pyvcp_demo are multiple examples for the most popular

gtaxis guis.
gtdragon

g%g[:g&gzhd The sim configurations are meant to run

gttouchy with no special hardware requirements

tklinuxcnc
touchy
woodpecker
+— by _interface
4— by_machine
— apps
F— afttic

[Create Desktop Shortcut

Figure 1.1 - LinuxCNC Configuration Selector

Click any of the listed configurations to display specific information about it. Double-click a configu-
ration or click OK to start the configuration.

Select Create Desktop Shortcut and then click OK to add an icon on the Ubuntu desktop to directly
launch this configuration without showing the Configuration Selector screen.

When you select a configuration from the Sample Configurations section, it will automatically place a
copy of that config in the ~/linuxcnc/configs directory.

1.4.3 Next steps in configuration

After finding the sample configuration that uses the same interface hardware as your machine (or a
simulator configuration), and saving a copy to your home directory, you can customize it according to
the details of your machine. Refer to the Integrator Manual for topics on configuration.

1.4.4 Simulator Configurations

All configurations listed under Sample Configurations/sim are intended to run on any computer. No
specific hardware is required and real-time support is not needed.

These configurations are useful for studying individual capabilities or options. The sim configurations
are organized according to the graphical user interface used in the demonstration. The directory for
axis contains the most choices and subdirectories because it is the most tested GUI. The capabilities
demonstrated with any specific GUI may be available in other GUIs as well.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 15/1261

1.4.5 Configuration Resources

The Configuration Selector copies all files needed for a configuration to a new subdirectory of ~/li-
nuxcnc/configs (equivalently: /home/username/linuxcnc/configs). Each created directory will include
at least one INI file (iniflename.ini) that is used to describe a specific configuration.

File resources within the copied directory will typically include one or more INI file (filename.ini)
for related configurations and a tool table file (toolfilename.tbl). Additionally, resources may include
HAL files (filename.hal, filename.tcl), a README file for describing the directory, and configuration
specific information in a text file named after a specific configuration (inifilename.txt). That latter two
files are displayed when using the Configuration Selector.

The supplied sample configurations may specify the parameter HALFILE (filename.hal) in the confi-
guration INI file that are not present in the copied directory because they are found in the system HAL
file library. These files can be copied to the user configuration directory and altered as required by
the user for modification or test. Since the user configuration directory is searched first when finding
HAL files, local modifications will then prevail.

The Configuration selector makes a symbolic link in the user configuration directory (named hallib)
that points to the system HAL file library. This link simplifies copying a library file. For example, to
copy the library core sim.hal file in order to make local modifications:

cd ~/linuxcnc/configs/name of configuration
cp hallib/core sim.hal core sim.hal

1.5 Updating LinuxCNC

Updating LinuxCNC to a new minor release (i.e. to a new version in the same stable series, for example
from 2.9.1 to 2.9.2) is an automatic process if your PC is connected to the internet. You will see an
update prompt after a minor release along with other software updates. If you don’t have an internet
connection to your PC see Updating without Network.

1.5.1 Upgrade to the new version

This section describes how to upgrade LinuxCNC from version 2.8.x to a 2.9.y version. It assumes that
you have an existing 2.8 install that you want to update.

To upgrade LinuxCNC from a version older than 2.8, you have to first upgrade your old install to 2.8,
then follow these instructions to upgrade to the new version.

If you do not have an old version of LinuxCNC to upgrade, then you're best off making a fresh install
of the new version as described in the section Getting LinuxCNC.

Furthermore, if you are running Ubuntu Precise or Debian Wheezy it is well worth considering making
a backup of the "linuxcnc” directory on removable media and performing a clean install of a newer OS
and LinuxCNC version as these releases were EOL in 2017 and 2018 respectively. If you are running
on Ubuntu Lucid then you will have to do this, as Lucid is no longer supported by LinuxCNC (it was
EOL in 2013).

To upgrade major versions like 2.8 to 2.9 when you have a network connection at the machine you need
to disable the old linuxcnc.org apt sources in the file /etc/apt/sources.list and add a new linuxcnc.org
apt source for 2.9, then upgrade LinuxCNC.

The details will depend on which platform you’re running on. Open a terminal then type 1sb_release
-ic to find this information out:

lsb_release -ic
Distributor ID: Debian
Codename: Buster

https://linuxcnc.org/docs/2.8/html/getting-started/updating-linuxcnc.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 16 /1261

You should be running on Debian Buster, Bullseye or Bookworm or Ubuntu 20.04 "Focal Fossa” or
newer. LinuxCNC 2.9.y will not run on older distributions than these.

You will also need to check which realtime kernel is being used:

uname -r
6.1.0-10-rt-amd64

If you see (as above) -rt- in the kernel name then you are running the preempt-rt kernel and should
install the "uspace” version of LinuxCNC. You should also install uspace for ”"sim” configs on non-
realtime kernels.

If you see -rtai- in the kernel name then you are running RTAI realtime. See below for the LinuxCNC
version to install. RTAI packages are available for Bookworm and Buster but not currently for Bullseye.

1.5.1.1 Apt Sources Configuration

— Open the Software Sources window. The process for doing this differs slightly on the three sup-
ported platforms:

— Debian:

— Click on Applications Menu, then System, then Synaptic Package Manager.

— In Synaptic, click on the Settings menu, then click Repositories to open the Software
Sources window.

— Ubuntu Precise:

— Click on the Dash Home icon in the top left.
— In the Search field, type ”software”, then click on the Ubuntu Software Center icon.

— In the Ubuntu Software Center window, click on the Edit menu, then click on Software
Sources... to open the Software Sources window.

— Ubuntu Lucid:

— Click the System menu, then Administration, then Synaptic Package Manager.

— In Synaptic, click on the Settings menu, then click on Repositories to open the Software
Sources window.

— In the Software Sources window, select the Other Software tab.
— Delete or un-check all the old linuxcnc.org entries (leave all non-linuxcnc.org lines as they are).

— Click the Add button and add a new apt line. The line will be slightly different on the different
platforms:

Table 1.2: Tabular overview on variants of the Operating
System and the corresponding configuration of the repo-
sitory. The configuration can be performed in the GUI of
the package manager or in the file /etc/apt/sources.list.

OS / Realtime Version Repository

Debian Buster - preempt deb https://linuxcnc.org buster base 2.9-uspace
Debian Buster - RTAI deb https://linuxcnc.org buster base 2.9-rt
Debian Bullseye - preempt deb https://linuxcnc.org bullseye base 2.9-uspace
Debian Bookworm - preempt deb https://linuxcnc.org bookworm base 2.9-uspace
Debian Bookworm - RTAI deb https://linuxcnc.org bookworm base 2.9-rt

https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org
https://linuxcnc.org

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 17 /1261

Synaptic Package Manager (as superuser)

File Edit Package Settings Help

Search Reboms T

G 83 E
Reload MarkAllUpgrades Apply Properties
All S Package Installed Version Latest Version Descriptiot
Amateur Radio Repositories (as superuser) x) (o) (x t|_me |
Communication time ¢
Communication ({ |Enabled Type URI time
Cross Platform ~ deb https://www.linuxcnc.org/ -distr
Databases ® deb-src https://www.linuxcnc.org/ Lo -distr
Debug | deb cdrom:[Debian GNU/Linux 12.2.0 _Bookworm_ - Official am Free
Development ® deb http://ftp.uk.debian.org/debian/ — and a
Documentation 1 deb-src http.ffftpukdehlanDrg.lrdeblan.f ;J = ok

Editors # deb http://security.debian.org/debian-security/

Education - :

Electronics Binary (deb) M

| Sectiof URE: https://www.linuxcnc.org/ l

I Statud Distribution: | bookworm |

l Drit; Section(s): 2.9-uspace base |
Custom Fi

I ustom S I New ‘ I Delete ‘ I Cancel ‘ I oK ‘

Architecture ‘

63426 packages listed, 1590 installed, O broken. O to install/upgrade, O to remove

Figure 1.2 - Figure with a screenshot of the repository configuration of the synaptic package manager.

— Click Add Source, then Close in the Software Sources window. If it pops up a window informing
you that the information about available software is out-of-date, click the Reload button.

1.5.1.2 Upgrading to the new version

Now your computer knows where to get the new version of the software, next we need to install it.
The process again differs depending on your platform.
Debian uses the Synaptic Package Manager.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 18 /1261

— Open Synaptic using the instructions in Setting apt sources above.

— Click the Reload button.

— Use the Search function to search for linuxcnc.

— The package is called “linuxcnc” for RTAI kernels and “linuxcnc-uspace” for preempt-rt.

— Click the check box to mark the new linuxcnc and linuxcnc-doc-* packages for upgrade. The pa-
ckage manager may select a number of additional packages to be installed, to satisfy dependencies
that the new linuxcnc package has.

— Click the Apply button, and let your computer install the new package. The old linuxcnc package
will be automatically upgraded to the new one.

1.5.1.3 Ubuntu

— Click on the Dash Home icon in the top left.

— In the Search field, type “update”, then click on the Update Manager icon.

— Click the Check button to fetch the list of packages available.

— Click the Install Updates button to install the new versions of all packages.

1.5.2 Updating without Network

To update without a network connection you need to download the .deb then install it with dpkg. The
.debs can be found in https://linuxcnc.org/dists/ .

You have to drill down from the above link to find the correct deb for your installation. Open a terminal
and type in Isb_release -ic to find the release name of your OS.

> lsb release -ic
Distributor ID: Debian
Codename: bullseye

Pick the OS from the list then pick the major version you want like 2.9-rt for RTAI or 2.9-rtpreempt or
2.9-uspace for preempt-rt.

Next pick the type of computer you have: binary-amd64 for any 64-bit x86, binary-i386 for 32 bit,
binary-armhf (32bit) or binary-arm64 (64bit) for Raspberry Pi.

Next pick the version you want from the bottom of the list like linuxcnc-uspace 2.9.2 amd64.deb
(choose the latest by date). Download the deb and copy it to your home directory. You can rename the
file to something a bit shorter with the file manager like linuxcnc 2.9.2.deb then open a terminal and
install it with the package manager with this command:

sudo dpkg -i linuxcnc 2.9.2.deb

1.5.3 Updating Configuration Files for 2.9

1.5.3.1 Stricter handling of pluggable interpreters

If you just run regular G-code and you don’t know what a pluggable interpreter is, then this section
does not affect you.

A seldom-used feature of LinuxCNC is support for pluggable interpreters, controlled by the undocu-
mented [TASK]INTERPRETER INI setting.

Versions of LinuxCNC before 2.9.0 used to handle an incorrect [TASK]INTERPRETER setting by auto-
matically falling back to using the default G-code interpreter.

Since 2.9.0, an incorrect [TASK]INTERPRETER value will cause LinuxCNC to refuse to start up. Fix this
condition by deleting the [TASK]INTERPRETER setting from your INI file, so that LinuxCNC will use
the default G-code interpreter.

https://linuxcnc.org/dists/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 19/1261

1.5.3.2 Canterp

If you just run regular G-code and you don’t use the canterp pluggable interpreter, then this section
does not affect you.

In the extremely unlikely event that you are using canterp, know that the module has moved from
/usr/lib/libcanterp.so to /usr/lib/linuxcnc/canterp.so, and the [TASK]INTERPRETER setting
correspondingly needs to change from libcanterp.so to canterp.so.

1.5.4 Updating Configuration Files (for 2.10.y)

Touchy: the Touchy MACRO entries should now be placed in a [MACROS] section of the INI rather
than in the [TOUCHY] section. This is part of a process of commonising the INI setting between GUIs.

1.6 Linux FAQ

These are some basic Linux commands and techniques for new to Linux users. More complete infor-
mation can be found on the web or by using the man pages.

1.6.1 Automatic Login

1.6.1.1 Debian

Debian Stretch uses the Xfce desktop environment by default, with the lightDM display manager
lightDM. To get automatic login with Stretch:

— Dans un terminal, utiliser la commande:
$ /usr/sbin/lightdm --show-config

— Prendre note du chemin absolu du fichier de configuration lightdm.conf.
— Editer ce fichier avec un éditeur de texte pur (gedit, nano, etc), en tant que root.
— Rechercher et dé-commenter les lignes:

#autologin-user=
#autologin-user-timeout=0

— Configurer autologin-user=vote nom utilisateur
— Sauvegarder et redémarrer.

1.6.1.2 Ubuntu

Quand vous installez LinuxCNC avec le CD-Live Ubuntu, par défaut vous devez passer par la fenétre
de connexion a chaque démarrage du PC. Pour activer le login automatique ouvrez le menu Systéme
— Administration — Fenétre de connexion. Si l'installation est récente la fenétre de connexion peut
prendre quelques secondes pour s’ouvrir. Vous devez entrer le mot de passe utilisé pour l'installation
pour accéder a la fenétre des préférences. Ouvrez alors 'onglet Sécurité, cochez la case Activer
les connexions automatiques et saisissez votre nom d’utilisateur ou choisissez en un dans la liste
déroulante. Vous étes maintenant dispensé de la fenétre de connexion.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 20/1261

1.6.2 Démarrage automatique

To have LinuxCNC start automatically with your config after turning on the computer go to System
> Preferences > Sessions > Startup Applications, click Add. Browse to your config and select the .ini
file. When the file picker dialog closes, add linuxcnc and a space in front of the path to your .ini file.

Example:

linuxcnc /home/mill/linuxcnc/config/mill/mill.ini

The documentation refers to your respective .ini file as INI-file.

1.6.3 Terminal

Many things need to be done from the terminal like checking the kernel message buffer with dmesg.
Ubuntu and Linux Mint have a keyboard shortcut Ctrl + Alt + t. Debian Stretch does not have any
keyboard shortcuts defined. It can be easily created with the Configuration Manager. Most modern
file managers support the right key to open a terminal just make sure your right clicking on a blank
area or a directory not a file name. Most OS’s have the terminal as a menu item, usually in Accessories.

1.6.4 Pages de manuel

A man page (short for manual page) is a form of software documentation usually found on a UNIX or
UNIX-like operating system like Linux.

Pour visualiser une man page ouvrez un terminal depuis Applications = Accessoires — Terminal. Par
exemple si vous voulez trouver quelques choses concernant la commande find, tapez alors dans le
terminal:

man find

Use the Page Up and Page Down keys to view the man page and the Q key to quit viewing.

Note

Viewing the man page from the terminal may not get the expected man page. For example if you
type in man abs you will get the C abs not the LinuxCNC abs. It is best to view the LinuxCNC man
pages in the HTML documents.

1.6.5 Liste des modules

En cas de probleme il est parfois utile de connaitre la liste des modules du noyau qui sont chargés.
Ouvrez une console et tapez:

1smod

Si vous voulez, pour le consulter tranquillement, envoyer le résultat de la commande dans un fichier,
tapez la sous cette forme:

lsmod > mes_modules.txt

Le fichier mes modules.txt résultant, se trouvera alors dans votre répertoire home si c’est de la que
vous avez ouvert la console. It will be named mymod.txt or what ever you named it.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 21/1261

1.6.6 Editer un fichier en root

Editer certains fichiers du systéme en root peut donner des résultats inattendus! Soyez trés vigilant
quand vous éditez en root, une erreur peut compromettre tout le systeme et I’empécher de redémarrer.
Vous pouvez ouvrir et lire de nombreux fichiers systemes appartenant au root qui sont en mode lecture
seule.

1.6.6.1 A la ligne de commande

Ouvrir un terminal depuis Applications — Accessoires — Terminal et tapez
sudo gedit

Ouvrez un fichier depuis Fichiers — Ouvrir puis éditez le.

1.6.6.2 En mode graphique

1. Right click on the desktop and select Create Launcher.

2. Type a name in like sudo edit.

3. Type gksudo “gnome-open %u” as the command and save the launcher to your desktop.
4. Drag a file onto your launcher to open and edit.

1.6.6.3 Root Access

In Ubuntu you can become root by typing in “sudo -i” in a terminal window then typing in your pass-
word. Be careful, because you can really foul things up as root if you don’t know what you’re doing.

1.6.7 Commandes du terminal

1.6.7.1 Répertoire de travail

To find out the path to the present working directory in the terminal window, type:
pwd

1.6.7.2 Changing Directories

Pour changer le répertoire de travail a un niveau supérieur, c’est-a-dire le répertoire parent, dans la
fenétre du terminal, tapez:

cd ..

Pour remonter de deux niveaux de répertoire, tapez dans le terminal:
cd ../..

To move directly to your home directory, in the terrminal window use the cd command with no argu-
ments:

cd

Pour aller directement dans le sous-répertoire linuxcnc/configs tapez:

cd linuxcnc/configs

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 22 /1261

1.6.7.3 Lister les fichiers du répertoire courant

Pour voir le contenu du répertoire courant tapez:

dir

ou
1s

1.6.7.4 Trouver un fichier

La commande find peut étre un peu déroutante pour le nouvel utilisateur de Linux. La syntaxe de base
est:

find <répertoire de départ> <parametres> <actions>

Par exemple, pour trouver tous les fichiers .ini dans votre répertoire linuxcnc utilisez d’abord la com-
mande pwd pour trouver le répertoire courant.

Ouvrez un nouveau terminal et tapez:

pwd

il vous est retourné par exemple le résultat suivant:

/home/robert

Avec cette information vous pouvez taper, par exemple, la commande:

find /home/robert/linuxcnc -name *.ini -print

Le -name est le nom du fichier que vous recherchez et le -print indique a find d’afficher le résultat dans
le terminal. Le *.ini indique a find de retourner tous les fichiers portant 1’extension .ini The backslash
is needed to escape the shell meta-characters. See the find man page for more information on find.

1.6.7.5 Rechercher un texte

grep -lir "texte a rechercher” *

Pour trouver tous les fichiers contenant le texte “texte a rechercher” dans le répertoire courant,
tous ses sous-répertoires et en ignorant la casse. Le parametre -1 demande de ne pas afficher les
résultats normalement mais a la place, d’indiquer le nom des fichiers pour lesquels des résultats
auraient été affichés. Le parameétre -i demande d’ignorer la casse. Le parametre -r demande une
recherche récursive (qui inclus tous les sous-répertoires dans la recherche). Le caractere * est un
jocker indiquant tous les fichiers. See the grep man page for more information.

1.6.7.6 Messages de diagnostic

Pour visualiser les messages du boot utilisez la commande dmesg depuis un terminal. Pour enregistrer
ces messages dans un fichier, redirigez les avec:

dmesg > bootmsg.txt

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 23 /1261

Le contenu de ce fichier pourra alors étre copié et collé a destination des personnes en ligne qui vous
aideront a diagnostiquer votre probléme.

Pour nettoyer le tampon des messages tapez cette commande:

sudo dmesg -c

C’est utile avant de lancer LinuxCNC, pour que ne soit enregistrés que les messages relatifs au fonc-
tionnement courant de LinuxCNC.

Pour trouver les adresses des ports paralléles de la machine, tapez cette commande grep pour filtrer
les informations contenues dans dmesg.

Apres le démarrage, ouvrez un terminal et tapez:

dmesg|grep parport

1.6.8 Articles de commodité

1.6.8.1 Terminal Launcher

If you want to add a terminal launcher to the panel bar on top of the screen you typically can right click
on the panel at the top of the screen and select "Add to Panel”. Select Custom Application Launcher
and Add. Give it a name and put gnome-terminal in the command box.

1.6.9 Problemes de matériel

1.6.9.1 Informations sur le matériel

Pour savoir quel matériel est connecté a votre carte mere, tapez dans une fenétre de terminal:

lspci -v

1.6.9.2 Résolution du moniteur

Lors de l'installation d’'Ubuntu les réglages du moniteur sont automatiquement détectés. Il peut arri-
ver que la détection fonctionne mal et que la résolution ne soit que celle d’un moniteur générique en
800x600.

Pour résoudre ce cas, suivez les instructions données ici:

https://help.ubuntu.com/community/FixVideoResolutionHowto

1.6.10 Chemins

Chemins relatifs Un chemin relatif commence dans le répertoire de démarrage qui est celui conte-
nant le fichier ini. Lusage des chemins relatifs facilite 1’accés aux configurations mais requiert une
bonne compréhension de la fagon dont les chemins sont spécifiés sous Linux.

./T0 est identique a f0, par exemple, un fichier nommé f0 dans le répertoire de <+«
démarrage
../fl fait référence a un fichier f1l dans le répertoire parent

../../f2 fait référence a un fichier f2 dans le parent du répertoire parent
../../../f3 etc.

https://help.ubuntu.com/community/FixVideoResolutionHowto

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 24 /1261

Chapitre 2

Informations générales pour I'utilisa-
teur

2.1 User Foreword

LinuxCNC is modular and flexible. These attributes lead many to see it as a confusing jumble of little
things and wonder why it is the way it is. This page attempts to answer that question before you get
into the thick of things.

LinuxCNC started at the National Institute of Standards and Technology in the USA. It grew up using
UNIX as its operating system. UNIX made it different. Among early UNIX developers there grew a
set of code writing ideas that some call the UNIX way. These early LinuxCNC authors followed those
ways.

Eric S. Raymond, in his book The Art of UNIX Programming, summarizes the UNIX philosophy as the
widely-used engineering philosophy, “Keep it Simple, Stupid” (KISS Principle). He then describes how
he believes this overall philosophy is applied as a cultural UNIX norm, although unsurprisingly it is
not difficult to find severe violations of most of the following in actual UNIX practice:

— Rule of Modularity: Write simple parts connected by clean interfaces.

— Rule of Clarity: Clarity is better than cleverness.

— Rule of Composition: Design programs to be connected to other programs.

— Rule of Separation: Separate policy from mechanism; separate interfaces from engines. !

Mr. Raymond offered several more rules but these four describe essential characteristics of the Li-
nuxCNC motion control system.

The Modularity rule is critical. Throughout these handbooks you will find talk of the interpreter or
task planner or motion or HAL. Each of these is a module or collection of modules. It’s modularity that
allows you to connect together just the parts you need to run your machine.

The Clarity rule is essential. LinuxCNC is a work in progress — it is not finished nor will it ever be. It
is complete enough to run most of the machines we want it to run. Much of that progress is achieved
because many users and code developers are able to look at the work of others and build on what they
have done.

The Composition rule allows us to build a predictable control system from the many modules avai-
lable by making them connectable. We achieve connectability by setting up standard interfaces to sets
of modules and following those standards.

The Separation rule requires that we make distinct parts that do little things. By separating functions
debugging is much easier and replacement modules can be dropped into the system and comparisons
easily made.

1. Found at link:https://en.wikipedia.org/wiki/Separation of mechanism and policy, 2022-11-13

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 25 /1261

What does the UNIX way mean for you as a user of LinuxCNC. It means that you are able to make
choices about how you will use the system. Many of these choices are a part of machine integration,
but many also affect the way you will use your machine. As you read you will find many places where
you will need to make comparisons. Eventually you will make choices, “I'll use this interface rather
than that” or, “I'll write part offsets this way rather than that way.”. Throughout these handbooks we
describe the range of abilities currently available.

As you begin your journey into using LinuxCNC we offer two cautionary notes: 2

— Paraphrasing the words of Doug Gwyn on UNIX: "LinuxCNC was not designed to stop its users
from doing stupid things, as that would also stop them from doing clever things.”

— Likewise the words of Steven King: "LinuxCNC is user-friendly. It just isn’t promiscuous about
which users it’s friendly with.”

A series of videos on YouTube provide plenty of evidence a transition to LinuxCNC is possible no
matter what your regular computer operating system may be. That said, with the advent of additive
manufacturing like 3D printing there is an increasing interest by the broader IT community in CNC
machining and it should be possible to find someone with complementary skills/equipment near to
you to jointly overcome the initial hurdles.

2.2 LinuxCNC User Introduction

2.2.1 Introduction

This document is focused on the use of LinuxCNC, it is intended for readers who have already installed
and configured it. Some information on installation is given in the following chapters. The complete
documentation on installation and configuration can be found in the integrator’s manual.

2.2.2 How LinuxCNC Works

LinuxCNC is a suite of highly-customisable applications for the control of a Computer Numerically
Controlled (CNC) mills and lathes, 3D printers, robots, laser cutters, plasma cutters and other auto-
mated devices. It is capable of providing coordinated control of up to 9 axes of movement.

At its heart, LinuxCNC consists of several key components that are integrated together to form one
complete system:

— a Graphical User Interface (GUI), which forms the basic interface between the operator, the soft-
ware and the CNC machine itself;

— the Hardware Abstraction Layer (HAL), which provides a method of linking all the various internal
virtual signals generated and received by LinuxCNC with the outside world, and

— the high level controllers that coordinate the generation and execution of motion control of the CNC
machine, namely the motion controller (EMCMOT), the discrete input/output controller (EMCIO)
and the task executor (EMCTASK).

The below illustration is a simple block diagram showing what a typical 3-axis CNC mill with stepper
motors might look like:

2. Found at link:https://en.wikipedia.org/wiki/Unix philosophy, 07/06/2008

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 26 /1261

Power supply

Linux PC

Stepper Stepper
drives motors

Figure 2.1 - Simple LinuxCNC Controlled Machine

A computer running LinuxCNC sends a sequence of pulses via the parallel port to the stepper drives,
each of which has one stepper motor connected to it. Each drive receives two independent signals;
one signal to command the drive to move its associated stepper motor in a clockwise or anti-clockwise
direction, and a second signal that defines the speed at which that stepper motor rotates.

While a stepper motor system under parallel port control is illustrated, a LinuxCNC system can also
take advantage of a wide variety of dedicated hardware motion control interfaces for increased speed
and I/O capabilities. A full list of interfaces supported by LinuxCNC can be found on the Supported
Hardware page of the Wiki.

In most circumstances, users will create a configuration specific to their mill setup using either the
Stepper Configuration Wizard (for CNC systems operating using the computers’ parallel port) or the
Mesa Hardware Wizard (for more advanced systems utilising a Mesa Anything I/O PCI card). Running
either wizard will create several folders on the computers’ hard drive containing a number of configu-
ration files specific to that CNC machine, and an icon placed on the desktop to allow easy launching
of LinuxCNC.

For example, if the Stepper Configuration Wizard was used to create a setup for the 3-axis CNC
mill illustrated above entitled My CNC, the folders created by the wizard would typically contain the
following files:

— Folder: My CNC

— My CNC.ini
The INI file contains all the basic hardware information regarding the operation of the CNC
mill, such as the number of steps each stepper motor must turn to complete one full revolution,
the maximum rate at which each stepper may operate at, the limits of travel of each axis or the
configuration and behaviour of limit switches on each axis.

— My_CNC.hal
This HAL file contains information that tells LinuxCNC how to link the internal virtual signals
to physical connections beyond the computer. For example, specifying pin 4 on the parallel port

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 27 /1261

to send out the Z axis step direction signal, or directing LinuxCNC to cease driving the X axis
motor when a limit switch is triggered on parallel port pin 13.

custom. hal

Customisations to the mill configuration beyond the scope of the wizard may be performed by
including further links to other virtual points within LinuxCNC in this HAL file. When starting
a LinuxCNC session, this file is read and processed before the GUI is loaded. An example may
include initiating Modbus communications to the spindle motor so that it is confirmed as ope-
rational before the GUI is displayed.

custom_postgui.hal

The custom postgui HAL file allows further customisation of LinuxCNC, but differs from cus-
tom.HAL in that it is processed after the GUI is displayed. For example, after establishing Mod-
bus communications to the spindle motor in custom.hal, LinuxCNC can use the custom postgui
file to link the spindle speed readout from the motor drive to a bargraph displayed on the GUI.
postgui_backup.hal

This is provided as a backup copy of the custom postgui.hal file to allow the user to quickly
restore a previously-working postgui HAL configuration. This is especially useful if the user
wants to run the Configuration Wizard again under the same My CNC name in order to modify
some parameters of the mill. Saving the mill configuration in the Wizard will overwrite the
existing custom postgui file while leaving the postgui backup file untouched.

tool. thl

A tool table file contains a parameterised list of any cutting tools used by the mill. These para-
meters can include cutter diameter and length, and is used to provide a catalogue of data that
tells LinuxCNC how to compensate its motion for different sized tools within a milling operation.

— Folder: nc_files
The nc files folder is provided as a default location to store the G-code programs used to drive the

m

2.2.

ill. It also includes a number of subfolders with G-code examples.

3 Graphical User Interfaces

A graphical user interface is the part of the LinuxCNC that the machine tool operator interacts with.
LinuxCNC comes with several types of user interfaces which may be chosen from by editing certain
fields contained in the INI file:

AXIS

AXIS, the standard keyboard GUI interface. This is also the default GUI launched when a Confi-
guration Wizard is used to create a desktop icon launcher:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 28 /1261

File Machine View Help

Qe o b im =z NXIY[P&

Manual Control [F3] | MDI [F51] Preview | DRO

Axis: Y Z 1 LOQoo -a-
- | +||Continuous - : L0000
Home All Touch Off : .0000 ¢

.Qoo0

Spindle: Stop %

Feed Override: 100 %
Rapid Override: 100 %
Spindle Override: 100 %
Jog Speed: 12 in/min

Max Velocity: 300 in/min

[AXIS "splash g-code" Not intended for actual milling)

[To run this code anyway you might have to Touch Off the Z axis)

[depending on your setup. As if you had some material in your mill...)

[Hint jog the Z axis down a bit then touch off)

[Also press the Toggle Skip Lines with "/" to see that part)

[If the program is too big or small for your machine, change the scale below)
[LinuxCNC 19/1/2812 2:13:51 PM)

#adepth==2.0

#<scale>==1.0

oM Mo tool Position: Relative Actual

Figure 2.2 - AXIS, the standard keyboard GUI interface

Touchy
Touchy, a touch screens GUI:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

29 /1261

Relative Absolute DTG
X: 0.0000 X: 0.0000 X: 0.0000
= 0.0000 Wil 0.0000 X: 0.0000
Z: 1.2063 Z: 0.0000 Z: 0.0000
Power
Estop Reset Machine On Override Limits
Estop Machine Off
Homing
Home All Home Selected
Unhome All Unhome Selected

Startup MDI Manual Auto Status Preferences

Figure 2.3 - Touchy, a touch screen GUI

Gscreen
Gscreen, a user-configurable touch screen GUI:

Handwheel

FO: 100%

SQO: 100%

MV: 100

Jogging

X
Y
Z

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 30/1261

Unespectad realtime delay: check dmesg far details.

tain Level |Preferences | Cebug| Tosleditar ?‘Hset Estap -
age Maching of -
Marual Mode \ew - Tue, 18 Aug 2015 05:32:35 am
— .
= ©
= 1540 4
0.000% REL o o
A ipaa 2000 W= - i
0.0000:- S orem R
| |_ | -
=500 zs-m.:ll .
: ATS -v.: ¥ +
0.000¢ REL b LT
4 W 0.0
0.0000--
=
. AIE _
“] J g
0.0003% REL

0.0000:+

Igrare

Limnit= @
=
G Codes Active Status JvEmae
GR G17 G20 G40 G246 G54 GE4 Gao | OO 100% pMist @/ continucus
G390 Go1.1 GO GI7 G35 53: }EE fload G| 20.00 1M =raphies
W LG
r4C M5 M3 K48 W53 T
5 Jog mode . Launch
FO S0 WOO6D Arspead @ Keybaard

1e1ir caardir R Mt £F Flass Iricd] : ST
Mad yste Q;x l"i Ti Camtrala EELT Offsets AT {FApd 2

Figure 2.4 - Gscreen, a configurable base touch screen GUI

GMOCCAPY
GMOCCAPY, a touch screen GUI based on Gscreen. GMOCCAPY is also designed to work equally

well in applications where a keyboard and mouse are the preferred methods of controlling the
GUI:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 31/1261

®

gmoccapy for LinuxCNC 3.4.3 A 0O X
Mo Program loaded

©

Jogging

2100 mm/min] .

Tool information

Rapid Override Cooling

Vel. 0 z S0
0 0 0.000

No tool description available Ve= 0.00 . [e] A
G-Code Feed Override

MO M5 M9 M48 M53 F 0 F O

G8 G17 G21 G40 G49 G54 G64 G80 \

S 0 A 22:04:09
G90 G91.1 G92.2 G94 GI7 G99 o 0 sooo|@ 22.05.2023
5 &
b A *
"

Figure 2.5 - GMOCCAPY, a touch screen GUI based on Gscreen

Spindle [rpm]
Tool no. Diameter offset z

NGCGUI

NGCGUI, a subroutine GUI that provides wizard-style programming of G code. NGCGUI may be

run as a standalone program or embedded into another GUI as a series of tabs. The following
screenshot shows NGCGUI embedded into AXIS:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 32 /1261

Eile Machine View Help
@ U=z NIXIY[R& >
Manual Control [F3] I MDI [F5] | Preview | DRO simp I xyz |
s £ £ ngcgui-0 |mwe—:=-
—I—" =] simp - simple subroutine example - Ctrl-U to edit
| | Positional Parameters|
1/6 Radius A
2[04 |radius b
3/100 |feedrate
Create Feature
Feed Override: 100 %) I 0
Jog Speed: 16 in/min | I —
Max Velocity: 72 in/min | | |tk for Key bindings
1: [AXIS "splash g-code" Mot intended for actual milling) é
2: { To run this code anyway you might have to Touch Off the Z axis)
3. (depending on your setup. As if you had some material in your mill...)
4: [Hint jog the Z axis down a bit then touch off)
S: (Also press the Toggle Skip Lines with "/" to see that part)
{ If the program is too big or small for your machine, change the scale #3)
3. (font: fusr/share/fonts/truetype/freefont/FreeSerifBoldItalic.ttf)
J: (text: EMC2%#S*AXIS) i

ESTOP |Nu tool Position: Relative Actual

Figure 2.6 - NGCGUI, a graphical interface integrated into AXIS

TkLinuxCNC
TkLinuxCNC, another interface based on Tcl/Tk. Once the most popular interface after AXIS.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 33/1261

File View Settings Units Ulilities Scripts

MIST OFF SPINDLE OFF >

MAMUAL FLOOD OFF BRAKE ON

Tool: 0 10 d X0.0000 Y0.0000 Z0.0000 (inch)

Work Offsets: G54 X0.0000 Y0.0000 Z0.0000

X 0.0000 by
Y 0.0000 e

» world

Z continuous
. -

Linear Jog Speed (inch) /min:

Spindie speed Override:

G80 G17 G40 G20 G0 G94 G54 G49 G99 GE4 GI7 G91.1 GE M5 M3 M48 M53 MO FO S0
Program: none - Status: idle

| Open... Run Pause Resume | Step Verify | Optional Stop

Figure 2.7 - TkLinuxCNC graphical interface

QtDragon
QtDragon, a touch screen GUI based on QtVCP using the PyQt5 library. It comes in two versions

QtDragon and QtDragon_hd. They are very similar in features but QtDragon hd is made for larger
monitors.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 34 /1261

STATUS PROBE

Gate

User h
Wlew
W e, z

L

3000

INCREMENTS Continuous |+

(| MAXVELOCITY OVERRIDE
ALL HOME R
50 ol | 100
-
ZERD | REFX HOME RAPID CVERRIDE
-

SPINDLE RPH ATSPEED
50 me— 100

REFY HClME. 12000 L]

FEEDHRAT E OVERRIDE

ZERD
MIST FLOOD * L = = =
OFF CFF LS (50 ssese 100 100% REV swp ||
ZERD | REFZ HOME

-

RELOWD 3 SPIMDLE OVERRIDE 132000 AMPS 0.0 | MEERRORS o
- Gon
00 |FAULTCODE (0

s 2 mEd

MOTION RUN TIME 000000 TIME | OF:49:

Figure 2.8 - QtDragon, a touch screen GUI based on QtVCP

QtPlasmaC
QtPlasmaC, a touch screen plasma cutting GUI based on QtVCP using the PyQt5 library. It comes

in three aspect ratios, 16:9, 4:3, and 9:16.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 35/1261

metric wrench.ngc

. 1 1 (metric wrench)
o 1088 EsTOP | POWER {)
: 3.00

: 0.1
: l.00 I
: 0.00 ‘ ENABLE|

[T oles> = 4 (holes and arcs

(metric units)

4 2 e \

verocry anmioe enasLe(f) Pe'l‘,s (prida -erance)
2 P1 (enable reverse-run)

. hal[plasmac.cut-feed-rate
" |mESH MoDE
> hole)
GO Z[[#<_ini
3 X149.739 Y
4 Me3
enasteffl]) . e (arc d
X149.739 Y27 .4
? P3 (disable torch)
X146.9067 Y29.2686 I-2.00!
F3 0A (arc comnlete. weln:

8 M52 M53

Figure 2.9 - QtPlasmaC, a touch screen plasma cutting GUI based on QtVCP

2.2.4 Interfaces utilisateur

These User interfaces are a way to interact with LinuxCNC outside of the graphical user interfaces.

halui

A HAL based user interface allowing to control LinuxCNC using buttons and switches
linuxcncrsh

A telnet based user interface allowing to send commands from remote computers.

2.2.5 Panneaux de controle virtuels

As mentioned above, many of LinuxCNC’s GUIs may be customized by the user. This may be done to
add indicators, readouts, switches or sliders to the basic appearance of one of the GUIs for increased
flexibility or functionality. Two styles of Virtual Control Panel are offered in LinuxCNC:

PyVCP
PyVCP, a Python-based virtual control panel that can be added to the AXIS GUI. PyVCP only
utilises virtual signals contained within the Hardware Abstraction Layer, such as the spindle-at-
speed indicator or the Emergency Stop output signal, and has a simple no-frills appearance. This
makes it an excellent choice if the user wants to add a Virtual Control Panel with minimal fuss.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 36 /1261

File Machine View Help
QDA o/l +=1Z NIXIYI P& » THC Enable

THC Settings

Vel Tolerance [0.20
Volts Setting |1
Volis Tolerance 2.0

Arc Volts Status
Under OK Over

Manual Control [F3]1 | MDI [F5] Preview | DRO

Axis: I:I

AR AR Ap

I B
Spindle: € Status
Velocity Arc Offset
B B 00000
Actual Volts
Feed Override: 100 %
Jog Speed: 60 infmin

Max Velocity: 420 in/min

MDI Commands

Rapid to Home

ESTOP No tool Position: Relative Actual

Figure 2.10 - PyVCP Example Embedded Into AXIS GUI

GladeVCP
GladeVCP, a Glade-based virtual control panel that can be added to the AXIS or Touchy GUIs.
GladeVCP has the advantage over PyVCP in that it is not limited to the display or control of HAL
virtual signals, but can include other external interfaces outside LinuxCNC such as window or

network events. GladeVCP is also more flexible in how it may be configured to appear on the
GUI:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 37 /1261

axis.ngc = AXIS 2.5.0=pre auf Fraese Elippfeld K12 simuliert

Datel Maschine Ansicht Hife |
Do of pHuEn +=2zNx¥Y[EFE » | Spindie | Comersangle | 4z | Hole | Test |
sanuele Kentrote (73] | Moi [FS] Vorschiny | DAG | Camera GladeVCP | [Femce
S ae o G Modbus WFD onlime)
Button
- i @ @ @ e @
| Spindi APM: 0 VFDMHZ: 0.0
togiicbutton 0.0 300
oo 2000
o
: G bl perdtion
A r
; o) -
i il
— botbam
Scale (O =1 | - -
Vorschubil bvsteuerung: 100 %[| - . . L || [Ceolant . .
Schrittpeschwindigheit: 1823 mmymin I _| 000 Pump | -
Maximale Geschwindigheit: 720 mmyimin [1| -_-
1: | AXIS "splash g-cade™ Mot imtended for actual milling) -_'l- [Jerpad max jog mam/min
Z: | To run thes code anyvay you might have to Tewch Off the 7 amis) £0a
i: | depending on your sefep. As 1 yeu had sose saterzal im your mell...) __
1 | HLAT jog the 2 axid 5T 8 BiT 1BaEA TéwEh aff)
{ Ales press the Togqle Skip Lines with =/ 1o see that part] Limit vwitches
{ If the pregras 15 too big or ssall for your machime, change ihe scale #3) :H. 'l'. 2.. z'.
(font: Jusrishars/fontastrustypesd restont FressariiBeldItalic. uef)
1 (texl: EMCQARAXTS) '

Figure 2.11 - GladeVCP Example Embedded Into AXIS GUI

QtvCp
QtVCP, a PyQt5-based virtual control panel that can be added to most GUIs or run as a standalone
panel. QtVCP has the advantage over PyVCP in that it is not limited to the display or control of
HAL virtual signals, but can include other external interfaces outside LinuxCNC such as window
or network events by extending with python code. QtVCP is also more flexible in how it may be
configured to appear on the GUI with many special widgets:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 38/1261

MAIN FILE OFFSETS TOOL STATUS PROBE GCODES SETUP SETTINGS

FACING JHOLE CIRCLE] NGCGUI JWORKPIECE|Spindle Extras

Front Belts Back Belts
Belt1 Belt 5

Belt 2 Belt 6

RS485 Spindle

Is Connected
VFD Frequency
Motor Torque
Total Time on
Spindle Time On
Max Geared RPM

VFD Error Reset

Figure 2.12 - QtVCP Example Embedded Into QtDragon GUI

2.2.6 Languages

LinuxCNC uses translation files to translate LinuxCNC User Interfaces into many languages including
French, German, Italian, Finnish, Russian, Romanian, Portuguese and Chinese. Assuming a translation
has been created, LinuxCNC will automatically use whatever native language you log in with when
starting the Linux operating system. If your language has not been translated, contact a developer on
IRC, the mailing list or the User Forum for assistance.

2.2.7 Think Like a CNC Operator

This manual does not pretend to teach you how to use a lathe or a milling machine. Becoming an
experienced operator takes a lot of time and requires a lot of work. An author once said, We learn
by experience, if one possesses it all. Broken tools, vices attacked and the scars are evidence of the
lessons learned. A beautiful finish, tight tolerances and caution during the work are evidence of lessons
learned. No machine nor program can replace human experience.

Now that you start working with the LinuxCNC software, you have to put yourself in the shoes of an
operator. You must be in the role of someone in charge of a machine. It’s a machine that will wait
for your commands and then execute the orders that you will give it. In these pages, we will give the
explanations which will help you to become a good CNC operator with LinuxCNC.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 39/1261

2.2.8 Modes of Operation

When LinuxCNC is running, there are three different major modes used for inputting commands.
These are Manual, Auto, and Manual Data Input (MDI). Changing from one mode to another makes
a big difference in the way that the LinuxCNC control behaves. There are specific things that can be
done in one mode that cannot be done in another. An operator can home an axis in manual mode but
not in auto or MDI modes. An operator can cause the machine to execute a whole file full of G-codes
in the auto mode but not in manual or MDI.

In manual mode, each command is entered separately. In human terms a manual command might be
“turn on coolant” or ”jog X at 25 inches per minute”. These are roughly equivalent to flipping a switch
or turning the hand wheel for an axis. These commands are normally handled on one of the graphical
interfaces by pressing a button with the mouse or holding down a key on the keyboard. In auto mode,
a similar button or key press might be used to load or start the running of a whole program of G-code
that is stored in a file. In the MDI mode the operator might type in a block of code and tell the machine
to execute it by pressing the <return> or <enter> key on the keyboard.

Some motion control commands are available concurrently and will cause the same changes in motion
in all modes. These include Abort, Emergency Stop, and Feed Rate Override. Commands like these
should be self explanatory.

The AXIS user interface hides some of the distinctions between Auto and the other modes by making
auto-commands available at most times. It also blurs the distinction between Manual and MDI, be-
cause some Manual commands like Touch Off are actually implemented by sending MDI commands. It
does this by automatically changing to the mode that is needed for the action the user has requested.

2.3 Important User Concepts

This chapter covers important user concepts that should be understood before attempting to run a
CNC machine with G-code.

2.3.1 Trajectory Control

2.3.1.1 Trajectory Planning

Trajectory planning, in general, is the means by which LinuxCNC follows the path specified by your
G-code program, while still operating within the limits of your machinery.

A G-code program can never be fully obeyed. For example, imagine you specify as a single-line program
the following move:

Gl X1 F10 (Gl is linear move, X1 is the destination, F10 is the speed)

In reality, the whole move can’t be made at F10, since the machine must accelerate from a stop, move
toward X=1, and then decelerate to stop again. Sometimes part of the move is done at F10, but for
many moves, especially short ones, the specified feed rate is never reached at all. Having short moves
in your G-code can cause your machine to slow down and speed up for the longer moves if the naive
cam detector is not employed with G64 Pn.

The basic acceleration and deceleration described above is not complex and there is no compromise
to be made. In the INI file the specified machine constraints, such as maximum axis velocity and axis
acceleration, must be obeyed by the trajectory planner.

For more information on the Trajectory Planner INI options see the Trajectory Section in the INI
chapter.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 40 /1261

2.3.1.2 Path Following

A less straightforward problem is that of path following. When you program a corner in G-code, the
trajectory planner can do several things, all of which are right in some cases:

— It can decelerate to a stop exactly at the coordinates of the corner, and then accelerate in the new
direction.

— It can also do what is called blending, which is to keep the feed rate up while going through the
corner, making it necessary to round the corner off in order to obey machine constraints.

You can see that there is a trade off here: you can slow down to get better path following, or keep the
speed up and have worse path following. Depending on the particular cut, the material, the tooling,
etc., the programmer may want to compromise differently.

Rapid moves also obey the current trajectory control. With moves long enough to reach maximum
velocity on a machine with low acceleration and no path tolerance specified, you can get a fairly
round corner.

2.3.1.3 Programming the Planner

The trajectory control commands are as follows:

G61
(Exact Path Mode) G61 visits the programmed point exactly, even though that means it might
temporarily come to a complete stop in order to change direction to the next programmed point.
G61.1
(Exact Stop Mode) G61.1 tells the planner to come to an exact stop at every segment’s end. The
path will be followed exactly but complete feed stops can be destructive for the part or tool,
depending on the specifics of the machining.
G64
(Blend Without Tolerance Mode) G64 is the default setting when you start LinuxCNC. G64 is just
blending and the naive cam detector is not enabled. G64 and G64 PO tell the planner to sacrifice
path following accuracy in order to keep the feed rate up. This is necessary for some types of
material or tooling where exact stops are harmful, and can work great as long as the programmer
is careful to keep in mind that the tool’s path will be somewhat more curvy than the program
specifies. When using GO (rapid) moves with G64 use caution on clearance moves and allow
enough distance to clear obstacles based on the acceleration capabilities of your machine.
G64 P- Q-
(Blend With Tolerance Mode) This enables the naive cam detector and enables blending with a
tolerance. If you program G64 P0.05, you tell the planner that you want continuous feed, but at
programmed corners you want it to slow down enough so that the tool path can stay within 0.05
user units of the programmed path. The exact amount of slowdown depends on the geometry of
the programmed corner and the machine constraints, but the only thing the programmer needs to
worry about is the tolerance. This gives the programmer complete control over the path following
compromise. The blend tolerance can be changed throughout the program as necessary. Beware
that a specification of G64 PO has the same effect as G64 alone (above), which is necessary for
backward compatibility for old G-code programs. See the G64 section of the G-code chapter.
Blending without tolerance
The controlled point will touch each specified movement at at least one point. The machine will
never move at such a speed that it cannot come to an exact stop at the end of the current mo-
vement (or next movement, if you pause when blending has already started). The distance from
the end point of the move is as large as it needs to be to keep up the best contouring feed.
Naive CAM Detector
Successive G1 moves that involve only the XYZ axes that deviate less than Q- from a straight
line are merged into a single straight line. This merged movement replaces the individual G1
movements for the purposes of blending with tolerance. Between successive movements, the
controlled point will pass no more than P- from the actual endpoints of the movements. The

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 41 /1261

controlled point will touch at least one point on each movement. The machine will never move at
such a speed that it cannot come to an exact stop at the end of the current movement (or next
movement, if you pause when blending has already started). On G2/3 moves in the G17 (XY) plane,
when the maximum deviation of an arc from a straight line is less than the G64 Q- tolerance, the
arc is broken into two lines (from start of arc to midpoint, and from midpoint to end). Those lines
are then subject to the naive cam algorithm for lines. Thus, line-arc, arc-arc, and arc-line cases
as well as line-line benefit from the naive cam detector. This improves contouring performance
by simplifying the path.
In the following figure the blue line represents the actual machine velocity. The red lines are the
acceleration capability of the machine. The horizontal lines below each plot is the planned move.
The upper plot shows how the trajectory planner will slow the machine down when short moves are
encountered, to stay within the limits of the machines acceleration setting to be able to come to an
exact stop at the end of the next move. The bottom plot shows the effect of the Naive Cam Detector
to combine the moves and do a better job of keeping the velocity as planned.

Figure 2.13 - Naive CAM Detector

2.3.1.4 Planning Moves

Make sure moves are long enough to suit your machine/material. Principally because of the rule that
the machine will never move at such a speed that it cannot come to a complete stop at the end of
the current movement, there is a minimum movement length that will allow the machine to keep up
a requested feed rate with a given acceleration setting.

The acceleration and deceleration phase each use half the INI file MAX ACCELERATION. In a blend
that is an exact reversal, this causes the total axis acceleration to equal the INI file MAX ACCELERATION.
In other cases, the actual machine acceleration is somewhat less than the INI file acceleration.

To keep up the feed rate, the move must be longer than the distance it takes to accelerate from 0 to
the desired feed rate and then stop again. Using A as 1/2 the INI file MAX ACCELERATION and F as
the feed rate in units per second, the acceleration time is t; = F/A and the acceleration distance is
d, = F*t,/2. The deceleration time and distance are the same, making the critical distance d = d, +
dq = 2 *d, = F?/A.

For example, for a feed rate of 1 inch per second and an acceleration of 10 inches/sec?, the critical
distance is 12/10 = 1/10 = 0.1 inches.

For a feed rate of 0.5 inch per second, the critical distance is 52/100 = 25/100 = 0.025 inches.

2.3.2 G-code

2.3.2.1 Defaults

When LinuxCNC first starts up many G- and M-codes are loaded by default. The current active G- and
M-codes can be viewed on the MDI tab in the Active G-codes: window in the AXIS interface. These
G- and M-codes define the behavior of LinuxCNC and it is important that you understand what each
one does before running LinuxCNC. The defaults can be changed when running a G-code file and

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 42 /1261

left in a different state than when you started your LinuxCNC session. The best practice is to set the
defaults needed for the job in the preamble of your G-code file and not assume that the defaults have
not changed. Printing out the G-code Quick Reference page can help you remember what each one is.

2.3.2.2 Feed Rate

How the feed rate is applied depends on if an axis involved with the move is a rotary axis. Read and
understand the Feed Rate section if you have a rotary axis or a lathe.

2.3.2.3 Tool Radius Offset

Tool Radius Offset (G41/42) requires that the tool be able to touch somewhere along each programmed
move without gouging the two adjacent moves. If that is not possible with the current tool diameter
you will get an error. A smaller diameter tool may run without an error on the same path. This means
you can program a cutter to pass down a path that is narrower than the cutter without any errors.
See the Cutter Compensation section for more information.

2.3.3 Homing

After starting LinuxCNC each axis must be homed prior to running a program or running a MDI
command. If your machine does not have home switches a match mark on each axis can aid in homing
the machine coordinates to the same place each time. Once homed your soft limits that are set in the
INI file will be used.

If you want to deviate from the default behavior, or want to use the Mini interface, you will need to set
the option NO_FORCE HOMING = 1 in the [TRAJ] section of your INI file. More information on homing
can be found in the Integrator Manual.

2.3.4 Tool Changes

There are several options when doing manual tool changes. See the [EMCIO] section for information
on configuration of these options. Also see the G28 and G30 section of the G-code chapter.

2.3.5 Coordinate Systems

The Coordinate Systems can be confusing at first. Before running a CNC machine you must unders-
tand the basics of the coordinate systems used by LinuxCNC. In depth information on the LinuxCNC
Coordinate Systems is in the Coordinate System section of this manual.

2.3.5.1 G53 Machine Coordinate

When you home LinuxCNC you set the G53 Machine Coordinate System to O for each axis homed.
No other coordinate systems or tool offsets are changed by homing.

The only time you move in the G53 machine coordinate system is when you program a G53 on the
same line as a move. Normally you are in the G54 coordinate system.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 43 /1261

2.3.5.2 Gb54-59.3 User Coordinates

Normally you use the G54 Coordinate System. When an offset is applied to a current user coordinate
system, a small blue ball with lines will be at the machine origin when your DRO is displaying Posi-
tion: Relative Actual in AXIS. If your offsets are temporary use the Zero Coordinate System from the
Machine menu or program G10 L2 P1 X0 YO0 Z0 at the end of your G-code file. Change the P number
to suit the coordinate system you wish to clear the offset in.

— Offsets stored in a user coordinate system are retained when LinuxCNC is shut down.

— Using the Touch Off button in AXIS sets an offset for the chosen User Coordinate System.

2.3.5.3 When You Are Lost

If you're having trouble getting 0,0,0 on the DRO when you think you should, you may have some

offsets programmed in and need to remove them.

— Move to the Machine origin with G53 GO X0 Y0 Z0

— Clear any G92 offset with G92.1

— Use the G54 coordinate system with G54

— Set the G54 coordinate system to be the same as the machine coordinate system with G10 L2 P1
X0 Y0 Z0 RO.

— Turn off tool offsets with G49

— Turn on the Relative Coordinate Display from the menu

Now you should be at the machine origin X0 YO Z0 and the relative coordinate system should be the
same as the machine coordinate system.

2.3.6 Machine Configurations

The following diagram shows a typical mill showing direction of travel of the tool and the mill table and
limit switches. Notice how the mill table moves in the opposite direction of the Cartesian coordinate
system arrows shown by the Tool Direction image. This makes the tool move in the correct direction
in relation to the material.

Note also the position of the limit switches and the direction of activation of their cams. Several
combinations are possible, for example it is possible (contrary to the drawing) to place a single fixed
limit switch in the middle of the table and two mobile cams to activate it. In this case the limits will
be reversed, +X will be on the right of the table and -X on the left. This inversion does not change
anything from the point of view of the direction of movement of the tool.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 44 /1261

Tool Direction
+Z

+Y

+A

Rotary Table

Rntatinr/_‘
&

+X

Z Origin,
Home Switch &
Home Position

X Origin &

Home Switch
¥ Origin, Home Switch &
Home Position

Figure 2.14 - Typical Mill Configuration

The following diagram shows a typical lathe showing direction of travel of the tool and limit switches.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 45 /1261

-Z
-
T
P
'f”
+X
W
KR
oo S
it
N Ly 52
AT - +4 il S I';h
.\,,:hk - & __.--' I
D': h\l -'".-f “ e, -
& ._J_." ~, e, Al
o e ’,.ri‘r"??;}
{{\? El'\{"\ #___/'J, ‘\’
,’L{{\B A ;
o AR +6 " e }%

Figure 2.15 - Typical Lathe Configuration

2.4 Starting LinuxCNC

2.4.1 Running LinuxCNC

LinuxCNC is started with the script file linuxcnc.

linuxcnc [options] [<INI-file>]

linuxcnc script options
linuxcnc: Run LinuxCNC
Usage:

$ linuxcnc -h
This help

$ linuxcnc [Options]
Choose the configuration INI file graphically

$ linuxcnc [Options] path/to/your ini file
Name the configuration INI file using its path

$ linuxcnc [Options] -1
Use the previously used configuration INI file

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 46 / 1261

Options:
-d: Turn on "debug” mode
-v: Turn on "verbose” mode
-r: Disable redirection of stdout and stderr to ~/linuxcnc_print.txt and
~/linuxcnc_debug.txt when stdin is not a tty.
Used when running linuxcnc tests non-interactively.
-1: Use the last-used INI file
-k: Continue in the presence of errors in HAL files
-t "tpmodulename [parameters]”
specify custom trajectory planning module
overrides optional INI setting [TRAJ]TPMOD
-m "homemodulename [parameters]”
specify custom homing module
overrides optional INI setting [EMCMOT]HOMEMOD
-H "dirname”: search dirname for HAL files before searching
INI directory and system library:
/home/git/linuxcnc-dev/1lib/hallib
Note:
The -H "dirname” option may be specified multiple times

If the linuxcnc script is passed an INI file it reads the INI file and starts LinuxCNC. The INI file [HAL]
section specifies the order of loading up HAL files if more than one is used. Once the HAL=xxx.hal
files are loaded then the GUI is loaded then the POSTGUI=.xxx.hal file is loaded. If you create PyVCP
or GladeVCP objects with HAL pins you must use the postgui HAL file to make any connections to
those pins. See the [HAL] section of the INI configuration for more information.

2.4.1.1 Configuration Selector

If no INI file is passed to the linuxcnc script it loads the configuration selector so you can choose and
save a sample configuration. Once a sample configuration has been saved it can be modified to suit
your application. The configuration files are saved in linuxcnc/configs directory.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 47 /1261

LinuxCNC Configuration Selector
Welcome to LinuxCNC.

Select a machine configuration from the list on the left.
Details about the selected configuration will appear in the display on the right.
Click "OK' to run the selected configuration

My Configura_tions_ Sim configurations make it possible to run
=+ Sample Configurations

sim LinuxCNC without special hardware on a

axis simulated basis.
craftsman
gmoccapy

gscreen LinuxCNC supports multiple guis and there

pyvcp_demo are multiple examples for the most popular

gtaxis guis.
gtdragon

g%g[:g&gzhd The sim configurations are meant to run

gttouchy with no special hardware requirements

tklinuxcnc
touchy
woodpecker
+— by _interface
4— by_machine
— apps
F— afttic

[Create Desktop Shortcut

2.5 CNC Machine Overview

This section gives a brief description of how a CNC machine is viewed from the input and output ends
of the Interpreter.

2.5.1 Mechanical Components

A CNC machine has many mechanical components that may be controlled or may affect the way in
which control is exercised. This section describes the subset of those components that interact with
the Interpreter. Mechanical components that do not interact directly with the Interpreter, such as the
jog buttons, are not described here, even if they affect control.

2.5.1.1 Axes

Any CNC machine has one or more Axes. Different types of CNC machines have different combinations.
For instance, a 4-axis milling machine may have XYZA or XYZB axes. A lathe typically has XZ axes.
A foam-cutting machine may have XYUV axes. In LinuxCNC, the case of a XYYZ gantry machine with
two motors for one axis is better handled by kinematics rather than by a second linear axis.

Note

If the motion of mechanical components is not independent, as with hexapod machines, the
RS274/NGC language and the canonical machining functions will still be usable, as long as the lower
levels of control know how to control the actual mechanisms to produce the same relative motion of
tool and workpiece as would be produced by independent axes. This is called kinematics.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 48 / 1261

Note
With LinuxCNC, the case of the XYYZ gantry machine with two motors for one axis is better handled
by the kinematics than by an additional linear axis.

Primary Linear Axesaxesprimary linear primary linear The X, Y, and Z axes produce linear motion
in three mutually orthogonal directions.

Secondary Linear Axesaxessecondary linear secondary linear The U, V, and W axes produce
linear motion in three mutually orthogonal directions. Typically, X and U are parallel, Y and V are
parallel, and Z and W are parallel.

Rotational Axesaxesrotational rotational The A, B and C axes produce angular motion (rotation).
Typically, A rotates around a line parallel to X, B rotates around a line parallel to Y, and C rotates
around a line parallel to Z.

2.5.1.2 Broche

A CNC machine typically has a spindle which holds one cutting tool, probe, or the material in the case
of alathe. The spindle may or may not be controlled by the CNC software. LinuxCNC offers support for
up to 8 spindles, which can be individually controlled and can run simultaneously at different speeds
and in different directions.

2.5.1.3 Coolant

Flood coolant and mist coolant may each be turned on independently. The RS274/NGC language turns
them off together see section M7 M8 M9.

2.5.1.4 Feed and Speed Override

A CNC machine can have separate feed and speed override controls, which let the operator specify
that the actual feed rate or spindle speed used in machining at some percentage of the programmed
rate.

2.5.1.5 Block Delete Switch

A CNC machine can have a block delete switch. See the Block Delete section.

2.5.1.6 Optional Program Stop Switch

A CNC machine can have an optional program stop switch. See the Optional Program Stop section.

2.5.2 Control and Data Components

2.5.2.1 Linear Axes

The X, Y, and Z axes form a standard right-handed coordinate system of orthogonal linear axes. Posi-
tions of the three linear motion mechanisms are expressed using coordinates on these axes.

The U, Vand W axes also form a standard right-handed coordinate system. X and U are parallel, Y and
V are parallel, and Z and W are parallel (when A, B, and C are rotated to zero).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 49 /1261

2.5.2.2 Rotational Axes

The rotational axes are measured in degrees as wrapped linear axes in which the direction of positive
rotation is counterclockwise when viewed from the positive end of the corresponding X, Y, or Z-axis.
By wrapped linear axis, we mean one on which the angular position increases without limit (goes
towards plus infinity) as the axis turns counterclockwise and deceases without limit (goes towards
minus infinity) as the axis turns clockwise. Wrapped linear axes are used regardless of whether or not
there is a mechanical limit on rotation.

Clockwise or counterclockwise is from the point of view of the workpiece. If the workpiece is fastened
to a turntable which turns on a rotational axis, a counterclockwise turn from the point of view of the
workpiece is accomplished by turning the turntable in a direction that (for most common machine
configurations) looks clockwise from the point of view of someone standing next to the machine. 3

2.5.2.3 Controlled Point

The controlled point is the point whose position and rate of motion are controlled. When the tool length
offset is zero (the default value), this is a point on the spindle axis (often called the gauge point) that
is some fixed distance beyond the end of the spindle, usually near the end of a tool holder that fits into
the spindle. The location of the controlled point can be moved out along the spindle axis by specifying
some positive amount for the tool length offset. This amount is normally the length of the cutting tool
in use, so that the controlled point is at the end of the cutting tool. On a lathe, tool length offsets can
be specified for X and Z axes, and the controlled point is either at the tool tip or slightly outside it
(where the perpendicular, axis-aligned lines touched by the front and side of the tool intersect).

2.5.2.4 Coordinated Linear Motion

To drive a tool along a specified path, a machining center must often coordinate the motion of several
axes. We use the term coordinated linear motion to describe the situation in which, nominally, each
axis moves at constant speed and all axes move from their starting positions to their end positions at
the same time. If only the X, Y, and Z axes (or any one or two of them) move, this produces motion in a
straight line, hence the word linear in the term. In actual motions, it is often not possible to maintain
constant speed because acceleration or deceleration is required at the beginning and/or end of the
motion. It is feasible, however, to control the axes so that, at all times, each axis has completed the
same fraction of its required motion as the other axes. This moves the tool along same path, and we
also call this kind of motion coordinated linear motion.

Coordinated linear motion can be performed either at the prevailing feed rate, or at traverse rate, or
it may be synchronized to the spindle rotation. If physical limits on axis speed make the desired rate
unobtainable, all axes are slowed to maintain the desired path.

2.5.2.5 Feed Rate

The rate at which the controlled point moves is nominally a steady rate which may be set by the user. In
the Interpreter, the feed rate is interpreted as follows (unless inverse time feed or feed per revolution
modes are being used, in which case see section G93-G94-G95-Mode).

1. If any of XYZ are moving, F is in units per minute in the XYZ cartesian system, and all other axes
(ABCUVW) move so as to start and stop in coordinated fashion.

2. Otherwise, if any of UVW are moving, F is in units per minute in the UVW cartesian system, and
all other axes (ABC) move so as to start and stop in coordinated fashion.

3. Otherwise, the move is pure rotary motion and the F word is in rotary units in the ABC pseudo-
cartesian system.

3. If the parallelism requirement is violated, the system builder will have to say how to distinguish clockwise from counter-
clockwise.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 50/1261

2.5.2.6 Cooling

Flood or droplets cooling can be enabled separately. RS274/NGC language stops them together. See
section about cooling control.

2.5.2.7 Dwell

A machining center may be commanded to dwell (i.e., keep all axes unmoving) for a specific amount
of time. The most common use of dwell is to break and clear chips, so the spindle is usually turning
during a dwell. Regardless of the Path Control Mode (see section Path Control) the machine will stop
exactly at the end of the previous programmed move, as though it was in exact path mode.

2.5.2.8 Unités

Units used for distances along the X, Y, and Z axes may be measured in millimeters or inches. Units for
all other quantities involved in machine control cannot be changed. Different quantities use different
specific units. Spindle speed is measured in revolutions per minute. The positions of rotational axes
are measured in degrees. Feed rates are expressed in current length units per minute, or degrees per
minute, or length units per spindle revolution, as described in section G93 G94 G95.

2.5.2.9 Current Position

The controlled point is always at some location called the current position, and the controller always
knows where that is. The numbers representing the current position must be adjusted in the absence
of any axis motion if any of several events take place:

1. Length units are changed.
2. Tool length offset is changed.
3. Coordinate system offsets are changed.

2.5.2.10 Selected Plane

There is always a selected plane, which must be the XY-plane, the YZ-plane, or the XZ-plane of the
machining center. The Z-axis is, of course, perpendicular to the XY-plane, the X-axis to the YZ-plane,
and the Y-axis to the XZ-plane.

2.5.2.11 Tool Carousel

Zero or one tool is assigned to each slot in the tool carousel.

2.5.2.12 Tool Change

A machining center may be commanded to change tools.

2.5.2.13 Pallet Shuttle

The two pallets may be exchanged by command.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 51/1261

2.5.2.14 Speed Override

The speed override buttons can be activated (they function normally) or rendered inoperative (they no
longer have any effect). The RS274/NGC language has a command that activates all the buttons and
another that disables them. See inhibition and activation speed correctors. See also here for further
details.

2.5.2.15 Path Control Mode

The machining center may be put into any one of three path control modes:

mode d’arrét exact
In exact stop mode, the machine stops briefly at the end of each programmed move.

exact path mode
In exact path mode, the machine follows the programmed path as exactly as possible, slowing or
stopping if necessary at sharp corners of the path.

continuous mode
In continuous mode, sharp corners of the path may be rounded slightly so that the feed rate may
be kept up (but by no more than the tolerance, if specified).

See sections G61 and G64.
2.5.3 Interpreter Interaction with Switches

The Interpreter interacts with several switches. This section describes the interactions in more detail.
In no case does the Interpreter know what the setting of any of these switches is.

2.5.3.1 Feed and Speed Override Switches

The Interpreter will interpret RS274/NGC commands which enable M48 or disable M49 the feed and
speed override switches. For certain moves, such as the traverse out of the end of a thread during a
threading cycle, the switches are disabled automatically.

LinuxCNC reacts to the speed and feed override settings when these switches are enabled.

See the M48 M49 Override section for more information.

2.5.3.2 Block Delete Switch

If the block delete switch is on, lines of G-code which start with a slash (the block delete character)
are not interpreted. If the switch is off, such lines are interpreted. Normally the block delete switch
should be set before starting the NGC program.

2.5.3.3 Optional Program Stop Switch

If this switch is on and an M1 code is encountered, program execution is paused.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 52 /1261

2.5.4 Tool Table

A tool table is required to use the Interpreter. The file tells which tools are in which tool changer slots
and what the size and type of each tool is. The name of the tool table is defined in the INI file:

[EMCIO]
tool table file
TOOL_TABLE = tooltable.tbl

The default filename probably looks something like the above, but you may prefer to give your machine
its own tool table, using the same name as your INI file, but with a tbl extension:

TOOL TABLE = acme 300.tbl

or:
TOOL TABLE = EMC-AXIS-SIM.tbl

For more information on the specifics of the tool table format, see the Tool Table Format section.

2.5.5 Parameters

In the RS274/NGC language view, a machining center maintains an array of numerical parameters
defined by a system definition (RS274NGC_MAX PARAMETERS). Many of them have specific uses
especially in defining coordinate systems. The number of numerical parameters can increase as de-
velopment adds support for new parameters. The parameter array persists over time, even if the
machining center is powered down. LinuxCNC uses a parameter file to ensure persistence and gives
the Interpreter the responsibility for maintaining the file. The Interpreter reads the file when it starts
up, and writes the file when it exits.

All parameters are available for use in G-code programs.

The format of a parameter file is shown in the following table. The file consists of any number of
header lines, followed by one blank line, followed by any number of lines of data. The Interpreter
skips over the header lines. It is important that there be exactly one blank line (with no spaces or
tabs, even) before the data. The header line shown in the following table describes the data columns,
so it is suggested (but not required) that that line always be included in the header.

The Interpreter reads only the first two columns of the table. The third column, Comment, is not read
by the Interpreter.

Each line of the file contains the index number of a parameter in the first column and the value to
which that parameter should be set in the second column. The value is represented as a double-
precision floating point number inside the Interpreter, but a decimal point is not required in the file.
All of the parameters shown in the following table are required parameters and must be included in
any parameter file, except that any parameter representing a rotational axis value for an unused axis
may be omitted. An error will be signaled if any required parameter is missing. A parameter file may
include any other parameter, as long as its number is in the range 1 to 5400. The parameter numbers
must be arranged in ascending order. An error will be signaled if not. Any parameter included in the
file read by the Interpreter will be included in the file it writes as it exits. The original file is saved as
a backup file when the new file is written. Comments are not preserved when the file is written.

Table 2.1: Parameter File Format

Parameter Number Parameter Value Comment
5161 0.0 G28 Home X
5162 0.0 G28 Home Y

See the Parameters section for more information.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 53 /1261

2.6 Lathe User Information

This chapter will provide information specific to lathes.

2.6.1 Lathe Mode

If your CNC machine is a lathe, there are some specific changes you will probably want to make to
your INI file in order to get the best results from LinuxCNC.

If you are using the AXIS display, have AXIS display your lathe tools properly. See the INI Configuration
section for more details.

To set up AXIS for Lathe Mode.
[DISPLAY]

Tell the AXIS GUI our machine is a lathe.
LATHE = TRUE

Lathe Mode in AXIS does not set your default plane to G18 (XZ). You must program that in the preamble
of each G-code file or (better) add it to your INI file, like this:

[RS274NGC]

G-code modal codes (modes) that the interpreter is initialized with
on startup
RS274NGC_STARTUP_CODE = G18 G20 G90

If your using GMOCCAPY then see the the GMOCCAPY Lathe section.

2.6.2 Lathe Tool Table

The “Tool Table” is a text file that contains information about each tool. The file is located in the same
directory as your configuration and is called "tool.tbl” by default. The tools might be in a tool changer
or just changed manually. The file can be edited with a text editor or be updated using G10 .1,1.10,L.11.
There is also a built-in tool table editor in the AXIS display. The maximum number of entries in the
tool table is 56. The maximum tool and pocket number is 99999.

Earlier versions of LinuxCNC had two different tool table formats for mills and lathes, but since the
2.4.x release, one tool table format is used for all machines. Just ignore the parts of the tool table that
don’t pertain to your machine, or which you don’t need to use. For more information on the specifics
of the tool table format, see the Tool Table Section.

2.6.3 Lathe Tool Orientation

The following figure shows the lathe tool orientations with the center line angle of each orientation
and info on FRONTANGLE and BACKANGLE.

The FRONTANGLE and BACKANGLE are clockwise starting at a line parallel to Z+.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 54 /1261

= Position 8 270°

=3
g
P
q"l""
Frontangle 210" + - Fd Frantangle -30*
. x 1
Pasition 5 180" = = Position 7 0"
hackangle 1507 — l l\“‘- — 4~ Backangle 30°
L+ —»

positien 7 is an exception
far the frontangle degrees it
must be a minus valse,

Position 6 90° =

Figure 2.16 - Lathe Tool Orientations

In AXIS the following figures show what the Tool Positions look like, as entered in the tool table.
Tool Positions 1, 2, 3 & 4Tool Positions 123 & 423 &4 3 & 4

Y
X

Z+

Tool
Orientation 1

Tool
CL 135 deg

+

Y
X

Z+

Tool
Orientation 2

Tool
CL 45 deg

+

Y

Z+

Tool
Orientation 3

Tool
CL 315 deg

X+

Tool
Orie

Toal
CL 2

Tool Positions 5, 6, 7 & 8Tool Positions 567 & 8 67 & 8 7 & 8

Z+

Tool
Orientation 5

Tool
CL 180 deg

X+

Z+

Tool
Orientation 6

Tool
CL 90 deg

X+

Z+

Tool
Orientation 7

Tool
CL 0 deg

X+

Tool
Orie

Toal
CL 2

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 5571261

2.6.4 Tool Touch Off

When running in lathe mode in AXIS you can set the X and Z in the tool table using the Touch Off
window. If you have a tool turret you normally have Touch off to fixture selected when setting up your
turret. When setting the material Z zero you have Touch off to material selected. For more information
on the G-codes used for tools see M6, Tn, and G43. For more information on tool touch off options in
AXIS see Tool Touch Off.

2.6.4.1 X Touch Off

The X axis offset for each tool is normally an offset from the center line of the spindle.

One method is to take your normal turning tool and turn down some stock to a known diameter. Using
the Tool Touch Off window enter the measured diameter (or radius if in radius mode) for that tool.
Then using some layout fluid or a marker to coat the part bring each tool up till it just touches the dye
and set its X offset to the diameter of the part used using the tool touch off. Make sure any tools in the
corner quadrants have the nose radius set properly in the tool table so the control point is correct.
Tool touch off automatically adds a G43 so the current tool is the current offset.

A typical session might be:

1. Home each axis if not homed.
Set the current tool with Tn M6 G43 where n is the tool number.
Select the X axis in the Manual Control window.
Move the X to a known position or take a test cut and measure the diameter.
Select Touch Off and pick Tool Table then enter the position or the diameter.
6. Follow the same sequence to correct the Z axis.

oW

Note: if you are in Radius Mode you must enter the radius, not the diameter.

2.6.4.2 Z Touch Off

The Z axis offsets can be a bit confusing at first because there are two elements to the Z offset. There
is the tool table offset, and the machine coordinate offset. First we will look at the tool table offsets.
One method is to use a fixed point on your lathe and set the Z offset for all tools from this point. Some
use the spindle nose or chuck face. This gives you the ability to change to a new tool and set its Z
offset without having to reset all the tools.

A typical session might be:

1. Home each axis if not homed.

Make sure no offsets are in effect for the current coordinate system.
Set the current tool with Tn M6 G43 where n is the tool number.
Select the Z axis in the Manual Control window.

Bring the tool close to the control surface.

Using a cylinder move the Z away from the control surface until the cylinder just passes between
the tool and the control surface.

7. Select Touch Off and pick Tool Table and set the position to 0.0.
8. Repeat for each tool using the same cylinder.

SR

Now all the tools are offset the same distance from a standard position. If you change a tool like a drill
bit you repeat the above and it is now in sync with the rest of the tools for Z offset. Some tools might
require a bit of cyphering to determine the control point from the touch off point. For example, if you
have a 0.125” wide parting tool and you touch the left side off but want the right to be Z0, then enter
0.125” in the touch off window.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 56 /1261

2.6.4.3 The Z Machine Offset

Once all the tools have the Z offset entered into the tool table, you can use any tool to set the machine
offset using the machine coordinate system.

A typical session might be:

1. Home each axis if not homed.
2. Set the current tool with Tn M6 where n is the tool number.
3. Issue a G43 so the current tool offset is in effect.
4. Bring the tool to the work piece and set the machine Z offset.
If you forget to set the G43 for the current tool when you set the machine coordinate system offset,

you will not get what you expect, as the tool offset will be added to the current offset when the tool is
used in your program.

2.6.5 Spindle Synchronized Motion

Spindle synchronized motion requires a quadrature encoder connected to the spindle with one index
pulse per revolution. See the motion man page and the Spindle Control Example for more information.

Threading The G76 threading cycle is used for both internal and external threads. For more infor-
mation see the G76 Section.

Constant Surface Speed CSS or Constant Surface Speed uses the machine X origin modified by
the tool X offset to compute the spindle speed in RPM. CSS will track changes in tool offsets. The X
machine origin should be when the reference tool (the one with zero offset) is at the center of rotation.
For more information see the G96 Section.

Feed per Revolution Feed per revolution will move the Z axis by the F amount per revolution. This
is not for threading, use G76 for threading. For more information see the G95 Section.

2.6.6 Arcs

Calculating arcs can be mind challenging enough without considering radius and diameter mode on
lathes as well as machine coordinate system orientation. The following applies to center format arcs.
On a lathe you should include G18 in your preamble as the default is G17 even if you're in lathe mode,
in the user interface AXIS. Arcs in G18 XZ plane use I (X axis) and K (Z axis) offsets.

2.6.6.1 Arcs and Lathe Design

The typical lathe has the spindle on the left of the operator and the tools on the operator side of the
spindle center line. This is typically set up with the imaginary Y axis (+) pointing at the floor.

The following will be true on this type of setup:

— The Z axis (+) points to the right, away from the spindle.

— The X axis (+) points toward the operator, and when on the operator side of the spindle the X values
are positive.

Some lathes with tools on the back side have the imaginary Y axis (+) pointing up.

G2/G3 Arc directions are based on the axis they rotate around. In the case of lathes, it is the imaginary
Y axis. If the Y axis (+) points toward the floor, you have to look up for the arc to appear to go in the
correct direction. So looking from above you reverse the G2/G3 for the arc to appear to go in the
correct direction.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 57 /1261

2.6.6.2 Radius & Diameter Mode

When calculating arcs in radius mode you only have to remember the direction of rotation as it applies
to your lathe.

When calculating arcs in diameter mode X is diameter and the X offset (I) is radius even if you're in
G7 diameter mode.

2.6.7 Tool Path

2.6.7.1 Control point

The control point for the tool follows the programmed path. The control point is the intersection of a
line parallel to the X and Z axis and tangent to the tool tip diameter, as defined when you touch off the
X and Z axes for that tool. When turning or facing straight sided parts the cutting path and the tool
edge follow the same path. When turning radius and angles the edge of the tool tip will not follow the
programmed path unless cutter comp is in effect. In the following figures you can see how the control
point does not follow the tool edge as you might assume.

Control Point

Tool Tip Radius

Figure 2.17 - Control point

2.6.7.2 Cutting Angles without Cutter Comp

Now imagine we program a ramp without cutter comp. The programmed path is shown in the following
figure. As you can see in the figure the programmed path and the desired cut path are one and the
same as long as we are moving in an X or Z direction only.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 58 /1261

Control Point

Programmed Path \

Tool Tip Radius

Figure 2.18 - Ramp Entry

Now as the control point progresses along the programmed path the actual cutter edge does not follow
the programmed path as shown in the following figure. There are two ways to solve this, cutter comp
and adjusting your programmed path to compensate for tip radius.

Control Point

Programmed Path \

Actual Cut

Figure 2.19 - Ramp Path

In the above example it is a simple exercise to adjust the programmed path to give the desired actual
path by moving the programmed path for the ramp to the left the radius of the tool tip.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 59 /1261

2.6.7.3 Cutting a Radius

In this example we will examine what happens during a radius cut without cutter comp. In the next
figure you see the tool turning the OD of the part. The control point of the tool is following the pro-
grammed path and the tool is touching the OD of the part.

Control Point

I

Programmed Path

Figure 2.20 - Turning Cut

In this next figure you can see as the tool approaches the end of the part the control point still follows
the path but the tool tip has left the part and is cutting air. You can also see that even though a radius
has been programmed the part will actually end up with a square corner.

Control Point é}}

\J/?

Programmed Path

Figure 2.21 - Radius Cut

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 60 /1261

Now you can see as the control point follows the radius programmed the tool tip has left the part and
is now cutting air.

Control Point

Programmed Path

Figure 2.22 - Radius Cut

In the final figure we can see the tool tip will finish cutting the face but leave a square corner instead
of a nice radius. Notice also that if you program the cut to end at the center of the part a small amount
of material will be left from the radius of the tool. To finish a face cut to the center of a part you have
to program the tool to go past center at least the nose radius of the tool.

Programmed Path

N

Control Point

Figure 2.23 - Face Cut

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 61 /1261

2.6.7.4 Using Cutter Comp

— When using cutter comp on a lathe think of the tool tip radius as the radius of a round cutter.

— When using cutter comp the path must be large enough for a round tool that will not gouge into
the next line.

— When cutting straight lines on the lathe you might not want to use cutter comp. For example boring
a hole with a tight fitting boring bar you may not have enough room to do the exit move.

— The entry move into a cutter comp arc is important to get the correct results.

2.7 Plasma Cutting Primer for LinuxCNC Users

2.7.1 What Is Plasma?

Plasma is a fourth state of matter, an ionised gas which has been heated to an extremely high tem-
perature and ionised so that it becomes electrically conductive. The plasma arc cutting and gouging
processes use this plasma to transfer an electrical arc to the workpiece. The metal to be cut or re-
moved is melted by the heat of the arc and then blown away. While the goal of plasma arc cutting is
the separation of the material, plasma arc gouging is used to remove metals to a controlled depth and
width.

Plasma torches are similarin design to the automotive spark plug. They consist of negative and positive
sections separated by a center insulator. Inside the torch, the pilot arc starts in the gap between the
negatively charged electrode and the positively charged tip. Once the pilot arc has ionised the plasma
gas, the superheated column of gas flows through the small orifice in the torch tip, which is focused
on the metal to be cut.

In a Plasma Cutting Torch a cool gas enters Zone B, where a pilot arc between the electrode and the
torch tip heats and ionises the gas. The main cutting arc then transfers to the workpiece through the
column of plasma gas in Zone C. By forcing the plasma gas and electric arc through a small orifice, the
torch delivers a high concentration of heat to a small area. The stiff, constricted plasma arc is shown
in Zone C. Direct current (DC) straight polarity is used for plasma cutting, as shown in the illustration.
Zone A channels a secondary gas that cools the torch. This gas also assists the high velocity plasma
gas in blowing the molten metal out of the cut allowing for a fast, slag - free cut.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 62 /1261

®

WORKPIECE

TYPICAL TORCH HEAD DETAIL

2.7.2 Arc Initialisation

There are two main methods for arc initialisation for plasma cutters that are designed for CNC opera-
tion. Whilst other methods are used on some machines (such as scratch start where physical contact
with the material is required), they are unsuited for CNC applications..

2.7.2.1 High Frequency Start

This start type is widely employed, and has been around the longest. Although it is older technology, it
works well, and starts quickly. But, because of the high frequency high voltage power that is required
generated to ionise the air, it has some drawbacks. It often interferes with surrounding electronic
circuitry, and can even damage components. Also a special circuit is needed to create a Pilot arc.
Inexpensive models will not have a pilot arc, and require touching the consumable to the work to
start. Employing a HF circuit also can increase maintenance issues, as there are usually adjustable
points that must be cleaned and readjusted from time to time.

2.7.2.2 Blowback Start

This start type uses air pressure supplied to the cutter to force a small piston or cartridge inside the
torch head back to create a small spark between the inside surface of the consumable, ionising the
air, and creating a small plasma flame. This also creates a ”pilot arc” that provides a plasma flame
that stays on, whether in contact with the metal or not. This is a very good start type that is now used

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 63 /1261

by several manufacturers. It’s advantage is that it requires somewhat less circuitry, is a fairly reliable
and generates far less electrical noise.

For entry level air plasma CNC systems, the blowback style is much preferred to minimise electrical
interference with electronics and standard PCs, but the High frequency start still rules supreme in
larger machines from 200 A and up. These require industrial level PCs and electronics, and even com-
mercial manufacturers have had issues with faults because they have failed to account for electrical
noise in their designs.

2.7.3 CNC Plasma

Plasma operations on CNC machines is quite unique in comparison to milling or turning and is a bit of
an orphan process. Uneven heating of the material from the plasma arc will cause the sheet to bend
and buckle. Most sheets of metal do not come out of the mill or press in a very even or flat state.
Thick sheets (30 mm plus) can be out of plane as much as 50 mm to 100 mm. Most other CNC G-code
operations will start from a known reference or a piece of stock that has a known size and shape and
the G-code is written to rough the excess off and then finally cut the finished part. With plasma the
unknown state of the sheet makes it impossible to generate G-code that will cater for these variances
in the material.

A plasma Arc is oval in shape and the cutting height needs to be controlled to minimise bevelled edges.
If the torch is too high or too low then the edges can become excessively bevelled. It is also critical
that the torch is held perpendicular to the surface.

— Torch to work distance can impact edge bevel

ISSUE

NEGATIVE CUT ANGLE /

SQUARE CUT

POSITIVE CUT ANGLE \

— Negative cut angle: torch too low, increase torch to work distance.
— Positive cut angle: torch too high, decrease torch to work distance.

Note
A slight variation in cut angles may be normal, as long as it is within tolerance.

The ability to precisely control the cutting height in such a hostile and ever changing environment is
a very difficult challenge. Fortunately there is a very linear relationship between Torch height (Arc
length) and arc voltage as this graph shows.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 64 /1261

Plasma Cut Volts vs cut height

This graph was prepared from a sample of about 16,000 readings at varying cut height and the re-
gression analysis shows 7.53 V/mm with 99.4% confidence. In this particular instance this sample was
taken from an Everlast 50 A machine being controlled by LinuxCNC.

Torch voltage then becomes an ideal process control variable to use to adjust the cut height. Let’s
assume for simplicity that voltage changes by 10 V/mm. This can be restated to be 1 Volt per 0.1 mm
(0.004”). Major plasma machine manufacturers (eg Hypertherm, Thermal Dynamics and ESAB), pro-
duce cut charts that specify the recommended cut height and estimated arc voltage at this height as
well as some additional data. So if the arc voltage is 1 V higher than the manufacturers specification,
the controller simply needs to lower the torch by 0.1 mm (0.004”) to move back to the desired cut
height. A torch height control unit (THC) is traditionally used to manage this process.

2.7.4 Choosing a Plasma Machine for CNC operations

There are a plethora of plasma machines available on the market today and not all of them are suited
for CNC use. CNC Plasma cutting is a complex operation and it is recommended that integrators
choose a suitable plasma machine. Failure to do this is likely to cause hours and hours of fruitless
trouble shooting trying to work around the lack of what many would consider to be mandatory features.

Whilst rules are made to be broken if you fully understand the reasons the rule apply, we consider a

new plasma table builder should select a machine with the following features:

— Blowback start to minimise electrical noise to simplify construction

— A Machine torch is preferred but many have used hand torches.

— A fully shielded torch tip to allow ohmic sensing

If you have the budget, a higher end machines will supply:

— Manufacturer provided cut charts which will save many hours and material waste calibrating cut
parameters

— Dry Contacts for ArcOK

— Terminals for Arc On switch

— Raw arc voltage or divided arc voltage output

— Optionally a RS485 interface if using a Hypertherm plasma cutter and want to control it from the
LinuxCNC console.

— Higher duty cycles

In recent times, another class of machine which includes some of these features has become available
at around USD $550. One example is the Herocut55i available on Amazon but there is yet no feedback
from users. This Machine features a blowback torch, ArcOK output, torch start contacts and raw arc
voltage.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 65/1261

2.7.5 Types Of Torch Height Control

Most THC units are external devices and many have a fairly crude “bit bang” adjustment method.
They provide two signals back to the LinuxCNC controller. One turns on if the Z axis should move
up and the other turns on if the Z axis should move down. Neither signal is true if the torch is at
the correct height. The popular Proma 150 THC is one example of this type of THC. The LinuxCNC
THCUD component is designed to work with this type of THC.

With the release of the Mesa THCAD voltage to frequency interface, LinuxCNC was able to decode the
actual torch voltage via an encoder input. This allowed LinuxCNC to control the Z axis and eliminate
external hardware. Early implementations utilising the THCAD replicated the “bit bang” approach.
The LinuxCNC THC component is an example of this approach.

Jim Colt of Hypertherm is on record saying that the best THC controllers were fully integrated into the
CNC controller itself. Of course he was referring to high end systems manufactured by Hypertherm,
Esab, Thermal Dynamics and others such as Advanced Robotic Technology in Australia, little dreaming
that open source could produce systems using this approach that rival high end systems.

The inclusion of external offsets in LinuxCNC V2.8 allowed plasma control in LinuxCNC to rise to
a whole new level. External Offsets refers to the ability to apply an offset to the axis commanded
position external to the motion controller. This is perfect for plasma THC control as a method to adjust
the torch height in real time based on our chosen process control methodology. Following a number
of experimental builds, the Plasmac configuration was incorporated into LinuxCNC 2.8. QtPlasmaC
has superceded Plasmac in LinuxCNC 2.9. This has been an extremely ambitious project and many
people around the globe have been involved in testing and improving the feature set. QtPlasmaC is
unique in that its design goal was to support all THCs including the simple bit bang ones through
to sophisticated torch voltage control, if the voltage is made available to LinuxCNC via a THCAD or
some other voltage sensor. What’s more, QtPlasmaC is designed to be a stand alone system that does
not need any additional G-code subroutines and allows the user to define their own cut charts that
are stored in the system and accessible by a drop-down.

2.7.6 Arc OK Signal

Plasma machines that have a CNC interface contain a set of dry contacts (eg a relay) that close when a
valid arc is established and each side of these contacts are bought out onto pins on the CNC interface.
A plasma table builder should connect one side of these pins to field power and the other to an input
pin. This then allows the CNC controller to know when a valid arc is established and also when an
arc is lost unexpectedly. There is a potential trap here when the input is a high impedance circuit
such as a Mesa card. If the dry contacts are a simple relay, there is a high probability that the current
passing through the relay is less than the minimum current specification. Under these conditions, the
relay contacts can suffer from a buildup of oxide which over time can result in intermittent contact
operation. To prevent this from happening, a pull down resistor should be installed on the controller
input pin. Care should be taken to ensure that this resistor is selected to ensure the minimum current
passes through the relay and is of sufficient wattage to handle the power in the circuit. Finally, the
resistor should be mounted in such a way that the generated heat does not damage anything whilst
in operation.

If you have an ArcOK signal, it is recommended it is used over and above any synthesised signal to
eliminate potential build issues. A synthesised signal available from an external THC or QtPlasmaC’s
Mode 0 can’t fully replace the ArcOK circuitry in a plasma inverter. Some build issues have been
observed where misconfiguration or incompatibility with the plasma inverter has occurred from a
synthesised ArcOK signal. By and large however, a correctly configured synthesised ArcOK signal is
fine.

A simple and effective ArcOK signal can be achieved with a simple reed relay. Wrap 3 turns of one of
the plasma cutter’s thick cables, e.g. the material clamp cable, around it. Place the relay in an old pen
tube for protection and connect one side of the relay to field power and the other end to your ArcOK
input pin.

./qtplasmac.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 66 /1261

2.7.7 Initial Height Sensing

Because the cutting height is such a critical system parameter and the material surface is inherently
uneven, a Z axis mechanism needs a method to sense the material surface. There are three methods
this can be achieved:

1. Current sensing to detect increased motor torque,
2. a “float” switch and an electrical or
3. an “ohmic” sensing circuit that is closed when the torch shield contacts the material.

Current sensing is not a viable technique for DIY tables but float switches and ohmic sensing are
discussed below:

2.7.7.1 Float Switches

The torch is mounted on a sliding stage that can move up when the torch tip contacts the material
surface and trigger a switch or sensor. Often this is achieved under G-code control using the G38
commands. If this is the case, then after initial probing, it is recommended to probe away from the
surface until the probe signal is lost at a slower speed. Also, ensure the switch hysteresis is accounted
for.

Regardless of the probing method used, it is strongly recommended that float switch is implemented
so that there is a fallback or secondary signal to avoid damage to the torch from a crash.

2.7.7.2 Ohmic Sensing

Ohmic sensing relies on contact between the torch and the material acting as a switch to activate an
electrical signal that is sensed by the CNC controller. Provided the material is clean, this can be a
much more accurate method of sensing the material than a float switch which can cause deflection
of the material surface. This ohmic sensing circuit is operating in an extremely hostile environment
so a number of failsafes need to be implemented to ensure safety of both the CNC electronics and
the operator. In plasma cutting, the earth clamp attached to the material is positive and the torch is
negative. It is recommended that:

1. Ohmic sensing only be implemented where the torch has a shield that is isolated from the torch
tip that conveys the cutting arc.

2. The ohmic circuit uses a totally separate isolated power supply that activates an opto-isolated
relay to enable the probing signal to be transmitted to the CNC controller.

3. The positive side of the circuit should be at the torch

4. Both sides of the circuit needs to be isolated by opto-isolated relays until probing is being under-
taken

5. Blocking diodes be used to prevent arc voltage entering the ohmic sensing circuit.

The following is an example circuit that has been proven to work and is compatible with the LinuxCNC
QtPlasmaC configuration.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 67 /1261

2.7.7.3 Hypersensing with a MESA THCAD-5

A more sophisticated method of material sensing that eliminates the relays and diodes is to use another
THCAD-5 to monitor the material sensing circuit voltage from an isolated power supply. The advantage
this has is the THCAD is designed for the hostile plasma electrical environment and totally and safely
isolates the logic side from the high voltage side.

To implement this method, a second encoder input is required.

If using a mesa card, different firmware is available to provide 2 additional Encoder A inputs on the
Encoder B and Encoder Index pins. This firmware is available for download for the 7I76E and 7196
boards from the Mesa web site on the product pages.

The THCAD is sensitive enough to see the ramp up in circuit voltage as contact pressure increases.
The ohmic.comp component included in LinuxCNC can monitor the sensing voltage and set a voltage
threshold above which it is deemed contact is made and an output is enabled. By monitoring the vol-
tage, a lower “break circuit” threshold can be set to build in strong switch hysteresis. This minimises
false triggering. In our testing, we found the material sensing using this method was more sensitive
and robust as well as being simpler to implement the wiring. One further advantage is using software
outputs instead of physical I/O pins is that it frees up pins to use for other purposes. This advantage
is helpful to get the most out of the Mesa 7196 which has limited I/O pins.

The following circuit diagram shows how to implement a hypersensing circuit.

Torch

S Table]

B / THCAD-5
el FOUT to Encoder B
. +5V and GND to Stepgen power

Plasma Bit File Required

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 68 /1261

We used a 15W Mean Well HDR-15 Ultra Slim DIN Rail Supply 24 V DIN rail based isolated power
supply. This is a double insulated Isolation Class II device that will withstand any arc voltage that
might be applied to the terminals.

2.7.7.4 Example HAL Code for Hypersensing

The following HAL code can be pasted into your QtPlasmaC’s custom.hal to enable Ohmic sensing on
Encoder 2 of a 7I176E. Install the correct bit file and connect the THCAD to IDX+ and IDX-. Be sure to
change the calibration settings to agree with your THCAD-5.

--- Load the Component ---
loadrt ohmic names=ohmicsense
addf ohmicsense servo-thread

--- 7I76E ENCODER 2 SETUP FOR OHMIC SENSING- - -
setp hm2 7i76e.0.encoder.02.scale -1
setp hm2 7i76e.0.encoder.02.counter-mode 1

--- Configure the component ---
setp ohmicsense.thcad-0-volt-freq 140200
setp ohmicsense.thcad-max-volt-freq 988300

setp ohmicsense.thcad-divide 32
setp ohmicsense.thcad-fullscale 5
setp ohmicsense.volt-divider 4.9
setp ohmicsense.ohmic-threshold 22.0
setp ohmicsense.ohmic-low 1.0

net ohmic-vel ohmicsense.velocity-in <= hm2 7i76e.0.encoder.02.velocity

--- Replace QtPlasmaC’s Ohmic sensing signal ---
unlinkp db_ohmic.in

net ohmic-true ohmicsense.ohmic-on => db ohmic.in

net plasmac:ohmic-enable => ohmicsense.is-probing

2.7.8 THC Delay

When an arc is established, arc voltage peaks significantly and then settles back to a stable voltage
at cut height. As shown by the green line in the image below.

fo= @A E [} . ‘ [- T | i QF 8 b a

It is important for the plasma controller to “wait it out” before auto sampling the torch voltage and
commencing THC control. If enabled too early, the voltage will be above the desired cut Volts and the
torch will be driven down in an attempt to address a perceived over-height condition.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 69 /1261

In our testing this varies between machines and material from 0.5 to 1.5 seconds. Therefore a delay
of 1.5s after a valid ArcOK signal is received before enabling THC control is a safe initial setting. If
you want to shorten this for a given material, LinuxCNC’s Halscope will allow you to plot the torch
voltage and make informed decisions about the shortest safe delay is used.

Note
If the cut velocity is not near the desired cut speed at the end of this delay, the controller should wait
until this is achieved before enabling the THC.

2.7.9 Torch Voltage Sampling

Rather than relying on the manufacturer’s cut charts to set the desired torch voltage, many people
(the writer included) prefer to sample the voltage as the THC is enabled and use that as a set point.

2.7.10 Torch Breakaway

It is recommended that a mechanism is provided to allow the torch to “break away” or fall off in the
case of impact with the material or a cut part that has tipped up. A sensor should be installed to allow
the CNC controller to detect if this has occurred and pause the running program. Usually a break
away is implemented using magnets to secure the torch to the Z axis stage.

2.7.11 Corner Lock / Velocity Anti-Dive

The LinuxCNC trajectory planner is responsible for translating velocity and acceleration commands
into motion that obey the laws of physics. For example, motion will slow when negotiating a corner.
Whilst this is not a problem with milling machines or routers, this poses a particular problem for
plasma cutting as the arc voltage increases as motion slows. This will cause the THC to drive the
torch down. One of the enormous advantages of a THC control embedded within the LinuxCNC motion
controller is that it knows what is going on at all times. So it becomes a trivial matter to monitor the
current velocity (motion.current-velocity) and to hold THC operation if it falls below a set threshold
(e.g., 10% below the desired feedrate).

2.7.12 Void / Kerf Crossing

If the plasma torch passes over a void while cutting, arc voltage rapidly rises and the THC responds
by violent downward motion which can smash the torch into the material possibly damaging it. This is
a situation that is difficult to detect and handle. To a certain extent it can be mitigated by good nesting
techniques but can still occur on thicker material when a slug falls away. This is the one problem that
has yet to be solved within the LinuxCNC open source movement.

One suggested technique is to monitor the rate of change in torch Volts over time (dv/dt) because
this parameter is orders of magnitude higher when crossing a void than what occurs due to normal
warpage of the material. The following graph shows a low resolution plot of dv/dt (in blue) while
crossing a void. The red curve is a moving average of torch Volts.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 70 /1261

So it should be possible to compare the moving average with the dv/dt and halt THC operation once
the dv/dt exceeds the normal range expected due to warpage. More work needs to be done in this
area to come up with a working solution in LinuxCNC.

2.7.13 Hole And Small Shape Cutting

It is recommended that you slow down cutting when cutting holes and small shapes.

John Moore says: “If you want details on cutting accurate small holes look up the sales sheets on
Hypertherm’s True Hole Technology also look on PlasmaSpider, user seanp has posted extensively on
his work using simple air plasma.

The generally accepted method to get good holes from 37mm dia. and down to material thickness with
minimal taper using an air plasma is:
1. Use recommended cutting current for consumables.
Use fixed (no THC) recommended cutting height for consumables.
Cut from 60% to 70% of the recommended feed rate of consumables and materials.
Start lead in at or near center of hole.
Use perpendicular lead in.
6. No lead out, either a slight over burn or early torch off depending on what works best for you.

Al o

You will need to experiment to get exact hole size because the kerf with this method will be wider
than your usual straight cut.”

This slow down can be achieved by manipulating the feed rate directly in your post processor or by
using adaptive feed and an analog pin as input. This lets you use M67/M68 to set the percentage of
desired feed to cut at.

— Knowing The Feedrate

From the preceding discussion it is evident that the plasma controller needs to know the feed rate
set by the user. This poses a problem with LinuxCNC because the Feedrate is not saved by LinuxCNC
after the G-code is buffered and parsed. There are two approaches to work around this:

1. Remap the F command and save the commanded feedrate set in G-code via an M67/M68 com-
mand.

2. Storing the cut charts in the plasma controller and allow the current feedrate be queried by the
G-code program (as QtPlasmaC does).

A feature newly added to LinuxCNC 2.9 that is useful for plasma cutting are the state tags. This adds
a “tag” that is available to motion containing the current feed and speed rates for all active motion
commands.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 7171261

2.7.14 1/0 Pins For Plasma Controllers

Plasma cutters require several additional pins. In LinuxCNC, there are no hard and fast rules about
which pin does what. In this discussion we will assume the plasma inverter has a CNC interface and
the controller card has active high inputs are in use (e.g., Mesa 7176E).

Plasma tables can be large machines and we recommend that you take the time to install separate
max/min limit switches and homing switches for each joint. The exception might be the Z axis lower
limit. When a homing switch is triggered the joint decelerates fairly slowly for maximum accuracy.
This means that if you wish to use homing velocities that are commensurate with table size, you can
overshoot the initial trigger point by 50-100 mm. If you use a shared home/limit switch, you have to
move the sensor off the trigger point with the final HOME OFFSET or you will trigger a limit switch
fault as the machine comes out of homing. This means you could lose 50 mm or more of axis travel
with shared home/limit switches. This does not happen if separate home and limit switches are used.

The following pins are usually required (note that suggested connections may not be appropriate for
a QtPlasmaC configuration):

2.7.14.1 Arc OK (input)

— Inverter closes dry contacts when a valid arc is established

— Connect Field power to one Inverter ArcOK terminal.

— Connect other Inverter Ok Terminal to input pin.

— Usually connected to one of the ~ motion.digital-" <nn> pins for use from G-code with M66

2.7.14.2 Torch On (output)

— Triggers a relay to close the torch on switch in the inverter.

— Connect the torch on terminals on the inverter to the relay output terminals.
— Connect one side of the coil to the output pin.

— Connect the other side of the coil to Field Power ground.

— If a mechanical relay is used, connect a flyback diode (e.g., IN400x series) across the coil terminals
with the band on the diode pointing towards the output pin.

— If a Solid State Relay is used, polarity may need to be observed on the outputs.

— In some circumstances, the onboard spindle relay on a Mesa card can be used instead of an external
relay.

— Usually connected to spindle.0.on.

@ AVERTISSEMENT
It is strongly recommended that the torch cannot be enabled while this pin is false otherwise
the torch will not be extinguished when estop is pressed.

2.7.14.3 Float switch (input)

— Used for surface probing. A sensor or switch that is activated if the torch slides up when it hits the
material.

— Connect proximity sensor output to chosen input pin. If mechanical switches are used. Connect
one side of the switch to field power and the other side of the switch to input.

— Usually connected to motion.probe-input.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 72 /1261

2.7.14.4 Ohmic Sensor enable (output)

— See the ohmic sensing schematic.
— Connect output pin to one side of the isolation relays and the other side to field power ground.

— In a non-QtPlasmaC configuration, usually triggered by a ~motion.digital-out-" <nn> so it can be
controlled in G-code by M62/M63/M64/M65.

2.7.14.5 Ohmic Sensing (input)

— Take care to follow the ohmic sensing schematic shown previously.

— An isolated power supply triggers a relay when the torch shield contacts the material.
— Connect field power to one output terminal and the other to the input.

— Take care to observe relay polarity if opto-coupled solid State relays are used.

— Usually connected to motion.probe-input and may be or’d with the float switch.

As can be seen, plasma tables are pin intensive and we have already consumed about 15 inputs before
the normal estops are added. Others have other views but it is the writer’s opinion that the Mesa
7176E is preferred over the cheaper 7196 to allow for MPG'’s, scale and axis selection switch and other
features you may wish to add over time. If your table uses servos, there are a number of alternatives.
Whilst there are other suppliers, designing your machine around the Mesa ecosystem will simplify
use of their THCAD board to read arc voltage.

2.7.14.6 Torch Breakaway Sensor

— As mentioned earlier, a breakaway sensor should be installed that is triggered if the torch crashes
and falls off.

— Usually, this would be connected to halui.program-pause so the fault can be rectified and the
program resumed.

2.7.15 G-code For Plasma Controllers

Most plasma controllers offer a method to change settings from G-code. LinuxCNC support this via
M67/M68 for analog commands and M62-M65 for digital (on/off commands). How this is implemented is
totally arbitrary. Lets look at how the LinuxCNC QtPlasmaC configuration does this:

Select Material Settings in QtPlasmaC and Use the Feedrate for that Material.

M190 Pn

M66 P3 L3 Q1

F#< hal[plasmac.cut-feed-rate]>
M3 S1

Note
Users with a very large number of entries in the QtPlasmaC Materials Table may need to increase the
Q parameter (e.g., from Q1 to Q2).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 73 /1261

2.7.15.1 Enable/Disable THC Operation:

M62 P2 will disable THC (synchronised with motion)
M63 P2 will enable THC (synchronised with motion)
M64 P2 will disable THC (immediately)
M65 P2 will enable THC (immediately)

Reduce Cutting Speeds: (e.g., for hole cutting)

M67 E3 Q0 would set the velocity to 100% of requested~speed
M67 E3 Q40 would set the velocity to 40% of requested~speed
M67 E3 Q60 would set the velocity to 60% of requested~speed
M67 E3 Q100 would set the velocity to 100% of requested~speed

Cutter Compensation:

G41.1 D#< _hal[plasmac_run.kerf-width-f]> ; for left of programmed path
G42.1 D#< hal[plasmac_run.kerf-width-f]> for right of programmed path
G40 to turn compensation off

Note
Integrators should familiarise themselves with the LinuxCNC documentation for the various LinuxCNC
G-code commands mentioned above.

2.7.16 External Offsets and Plasma Cutting

External Offsets were introduced to LinuxCNC with version 2.8. By external, it means that we can
apply an offset external to the G-code that the trajectory planner knows nothing about. It easiest
to explain with an example. Picture a lathe with an external offset being applied by a mathematical
formula to machine a lobe on a cam. So the lathe is blindly spinning around with the cut diameter set
to a fixed diameter and the external offset moves the tool in and out to machine the cam lobe via an
applied external offset. To configure our lathe to machine this cam, we need to allocate some portion
of the axis velocity and acceleration to external offsets or the tool can’t move. This is where the INI
variable OFFSET AV RATIO comes in. Say we decide we need to allocate 20% of the velocity and
acceleration to the external offset to the Z axis. We set this equal to 0.2. The consequence of this is
that your maximum velocity and acceleration for the Lathe’s Z axis is only 80% of what it could be.

External offsets are a very powerful method to make torch height adjustments to the Z axis via a
THC. But plasma is all about high velocities and rapid acceleration so it makes no sense to limit these
parameters. Fortunately in a plasma machine, the Z axis is either 100% controlled by the THC or it
isn’t. During the development of LinuxCNC’s external offsets it was recognised that Z axis motion
by G-code and by THC were mutually exclusive. This allows us to trick external offsets into giving
100 % of velocity and acceleration all of the time. We can do this by doubling the machine’s Z axis
velocity and acceleration settings in the INI file and set OFFSET AV RATIO = 0.5. That way 100% of
the maximum velocity and acceleration will be available for both probing and THC.

Example: On a metric machine with a NEMA23 motor with a direct drive to a 5 mm ball screw, 60 mm/s
maximum velocity and 700 mm/s? acceleration were determined to be safe values without loss of steps.
For this machine, set the Z axis in the INI file as follows:

[AXIS Z]
OFFSET AV RATIO = 0.5
MAX_VELOCITY = 120
MAX_ACCELERATION = 1400

The joint associated with this axis would have the velocity and acceleration variables set as follows:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 74 /1261

[JOINT n]
MAX_VELOCITY = 60
MAX_ACCELERATION = 700

For further information about external offsets (for version 2.8 or later) please read the [AXIS <letter>]
Section of the INI file document and External Axis Offsets in the LinuxCNC documentation.

2.7.17 Reading Arc Voltage With The Mesa THCAD

The Mesa THCAD board is a remarkably well priced and accurate voltage to frequency converter that
is designed for the hostile noisy electrical environment associated with plasma cutting. Internally it
has a 0-10V range. This range can be simply extended by the addition of some resistors as described
in the documentation. This board is available in three versions, the newer THCAD-5 with a 0-5V
range, the THCAD-10 with a 0-10 Volt range and the THCAD-300 which is pre-calibrated for a 300 Volt
extended range. Each board is individually calibrated and a sticker is applied to the board that states
the frequency at 0 Volts and full scale. For use with LinuxCNC, it is recommended that the 1/32
divisor be selected by the appropriate link on the board. In this case, be sure to also divide the stated
frequencies by 32. This is more appropriate for the 1 kHz servo thread and also allows more time for
the THCAD to average and smooth the output.

There is a lot of confusion around how to decode the THCAD output. So let’s consider the Mesa 7176E
and the THCAD-10 for a moment with the following hypothetical calibration data:

— Full scale [] 928 kHz (928 kHz/32 = 29 kHz)
— 0V[121.6kHz (121.6kHz/32 = 3.8 kHz)

Because the full scale is 10 Volts, then the frequency per Volt is:

(29000 Hz - 3800Hz) / 10V = 2520 Hz per Volt

So assuming we have a 5 Volt input, the calculated frequency would be:

(2520 Hz/V * 5V) + 3800 Hz = 16400 Hz

So now it should be fairly clear how to convert the frequency to its voltage equivalent:
Voltage = (frequency [Hz] - 3800 Hz) / (2520 Hz/V)

2.7.17.1 THCAD Connections

On the high voltage side:

— Connect the divided or raw arc voltage to I+ and Iy-

— Connect the interconnect cable shield to the Shield connection.

— Connect the other Shield terminal to frame ground.

Assuming it is connected to a Mesa 7176E, connect the output to the spindle encoder input:
— THCAD +5V to TB3 Pin 6 (+5 VP)

— THCAD -5V to TB3 Pin 1 (GND)

— THCAD FOUT+ to TB3 Pin 7 (ENC A+)

— THCAD FOUT- to TB3 Pin 8 (ENC A-)

2.7.17.2 THCAD Initial Testing

Make sure you have the following lines in your INI file (assuming a Mesa 7176E):

setp hm2 7i76e.0.encoder.00.scale -1
setp hm2 7i76e.0.encoder.00.counter-mode 1

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 75 /1261

Power up your controller and open Halshow (AXIS: Show Homing Configuration), drill down to find
the hm2 7i76e.0.encoder.00.velocity pin. With 0 Volts applied, it should be hovering around the
0 Volt frequency (3,800 in our example). Grab a 9 Volt battery and connect it to I+ and Iy-. For a
THCAD-10 you can now calculate the expected velocity (26,480 in our hypothetical example). If you
pass this test, then you are ready to configure your LinuxCNC plasma controller.

2.7.17.3 Which Model THCAD To Use?

The THCAD-5 is useful if you intend to use it for ohmic sensing. There is no doubt the THCAD-10
is the more flexible device and it is easy to alter the scaling. However, there is one caveat that can
come into play with some cheaper plasma cutters with an inbuilt voltage divider. That is, the inter-
nal resistors may be sensed by the THCAD as being part of its own external resistance and return
erroneous results. For example, the 16:1 divider on the Everlast plasma cutters needs to be treated
as 24:1 (and 50:1 becomes 75:1). This is not a problem with more reputable brands (e.g., Thermal
Dynamics, Hypertherm, ESAB etc). So if you are seeing lower than expected cutting voltages, it might
be preferable to reconfigure the THCAD to read raw arc voltage.

Remembering that plasma arc voltages are potentially lethal, here are some suggested criteria.

Pilot Arc Start Because there is not likely to be any significant EMI, you should be able to safely
install the THCAD in your control panel if you have followed our construction guidelines.

— If you do not have a voltage divider, either install scaling resistors inside the plasma cutter and
install the THCAD in the control panel or follow the suggestions for HF start machines.

— If you have a voltage divider, install a THCAD-10 in your control panel. We’ve had no problems with
this configuration with a 120 A Thermal Dynamics plasma cutter.

HF Start Install the THCAD at the inverter as the frequency signal is far more immune to EMI noise.

— If you do not have a voltage divider and you have room inside the plasma cutter, install a THCAD-
300 inside the plasma cutter.

— If you do not have a voltage divider and you do not have room inside the plasma cutter, install a
THCAD-10 in a metal case outside the plasma cutter and install 50% of the scaling resistance on
each of the Iy+ and Iy- inside the plasma cutter case so no lethal voltages come out of the case.

— If you have a voltage divider, install a THCAD-10 in a metal case outside the plasma cutter

Raw Arc voltage presented on a connector In this case, regardless of the arc starting method,
there are probably already resistors included in the circuitry to avoid lethal shocks so a THCAD-10 is
advised so this resistance (typically 200 kQ) can be accounted for when choosing a scaling resistor as
these resistors will distort the voltage reported by the THCAD-300.

2.7.18 Post Processors And Nesting

Plasma is no different to other CNC operations in that it is:

1. Designed in CAD (where it is output as a DXF or sometimes SVG format).

2. Processed in CAM to generate final G-code that is loaded to the machine

3. Cutting the parts via CNC G-code commands.
Some people achieve good results with Inkscape and G-code tools but SheetCam is a very well priced
solution and there are a number of post processors available for LinuxCNC. SheetCam has a number

of advanced features designed for plasma cutting and for the price, is a no brainer for anybody doing
regular plasma cutting.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 76 /1261

2.7.19 Designing For Noisy Electrical Environments

Plasma cutting is inherently an extremely hostile and noisy electrical environment. If you have EMI
problems things won’t work correctly. You might fire the torch and the computer will reboot in a more
obvious example, but you can have any number of other odd symptoms. They will pretty much all
happen only when the torch is cutting - often when it is first fired.

Therefore, system builders should select components carefully and design from the ground up to cope
with this hostile environment to avoid the impact of Electro-Magnetic Interference (EMI). Failure to
do this could result in countless hours of fruitless troubleshooting.

Choosing ethernet boards such as the Mesa 7I76E or the cheaper 7196 helps by allowing the PC to
be located away from the electronics and the plasma machine. This hardware also allows the use of
24 Volt logic systems which are much more noise tolerant. Components should be mounted in a metal
enclosure connected to the mains earth. It is strongly recommended that an EMI filter is installed on
the mains power connection. The simplest way is to use a EMI filtered mains power IEC connector
commonly used on PC’s and electric appliances which allows this to be achieved with no extra work.
Plan the layout of components in the enclosure so that mains power, high voltage motor wires and
logic signals are kept as separate as possible from each other. If they do have to cross, keep them at
90 degrees.

Peter Wallace from Mesa Electronics suggests: "If you have a CNC compatible plasma source with a
voltage divider, I would mount the THCAD inside your electronics enclosure with all the other motion
hardware. If you have a manual plasma source and you are reading raw plasma voltage, I would mount
the THCAD as close to the plasma source as possible (even inside the plasma source case if it fits). In
this case, make sure that all low side THCAD connections are fully isolated from the plasma source. If
you use a shielded box for the THCAD, the shield should connect to your electronic enclosure ground,
not the plasma source ground.”

It is recommended to run a separate earth wire from motor cases and the torch back to a central star
grounding point on the machine. Connect the plasma ground lead to this point and optionally an earth
rod driven into the ground as close as possible to the machine (particularly if its a HF start plasma
machine).

External wiring to motors should be shielded and appropriately sized to handle the current passing
through the circuit. The shield should be left unconnected at the motor end and earthed at the control
box end. Consider using an additional pin on any connectors into the control box so the earth can
be extended through into the control box and earthed to the chassis right at the stepper/servo motor
controller itself.

We are aware of at least one commercial system builder who has had problems with induced electrical
noise on the ohmic sensing circuit. Whilst this can be mitigated by using ferrite beads and coiling the
cable, adding a feed through power line filter is also recommended where the ohmic sensing signal
enters the electronics enclosure.

Tommy Berisha, the master of building plasma machines on a budget says: “If on a budget, consider
using old laptop power bricks. They are very good, filtering is good, completely isolated, current
limited (this becomes very important when something goes wrong), and fitting 2 or 3 of them in series
is easy as they are isolated. Be aware that some do have the grounding wired to the negative output
terminal, so it has to be disconnected, simply done by using a power cable with no ground contacts.”

2.7.20 Water Tables

The minimum water level under the cut level of the torch should be around 40 mm, having space under
slats is nice so the water can level and escape during cutting, having a bit of water above the metal
plate being cut is really nice as it gets rid of the little bit of dust, running it submerged is the best way
but not preferable for systems with part time use as it will corrode the torch. Adding baking soda to
the water will keep the table in a nice condition for many years as it does not allow corrosion while
the slats are under water and it also reduces the smell of water vapour. Some people use a water

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 77 /1261

reservoir with a compressed air inlet so they can push the water from the reservoir up to the water
table on demand and thus allow changes in water levels.

2.7.21 Downdraft Tables

Many commercial tables utilise a down draft design so fans are used to suck air down through the
slats to capture fumes and sparks. Often tables are zoned so only a section below the torch is opened
to the outgoing vent, often using air rams and air solenoids to open shutters. Triggering these zones
is relatively straightforward if you use the axis or joint position from one of the motion pins and the
lincurve component to map downdraft zones to the correct output pin.

2.7.22 Designing For Speed And Acceleration

In plasma cutting, speed and acceleration are king. The higher the acceleration, the less the machine
needs to slow down when negotiating corners. This implies that the gantry should be as light as
possible without sacrificing torsional stiffness. A 100 mm x 100 mm x 2 mm aluminium box section has
equivalent torsional stiffness to an 80 mm x 80 mm T slot extrusion yet is 62% lighter. So does the
convenience of T slots outweigh the additional construction?

2.7.23 Distance Travelled Per Motor Revolution

Stepper motors suffer from resonance and a direct drive pinion is likely to mean that the motor is
operating under unfavourable conditions. Ideally, for plasma machines a distance of around 15-25 mm
per motor revolution is considered ideal but even around 30 mm per revolutions is still acceptable. A
5 mm pitch ball screw with a 3:1 or 5:1 reduction drive is ideal for the Z axis.

2.7.24 QtPlasmaC LinuxCNC Plasma Configuration

The QtPlasmaC which is comprised of a HAL component (plasmac.hal) plus a complete configurations
for the QtPlasmaC GUI has received considerable input from many in the LinuxCNC Open Source mo-
vement that have advanced the understanding of plasma controllers since about 2015. There has been
much testing and development work in getting QtPlasmaC to its current working state. Everything
from circuit design to G-code control and configuration has been included. Additionally, QtPlasmaC
supports external THC’s such as the Proma 150 but really comes into its own when paired with a
Mesa controller as this allows the integrator to include the Mesa THCAD voltage to frequency conver-
ter which is purpose built to deal with the hostile plasma environment.

QtPlasmaC is designed to stand alone and includes the ability to include your cutting charts yet also
includes features to be used with a post processor like SheetCam.

The QtPlasmaC system is now included in Version 2.9 and above of LinuxCNC. It is now quite mature
and has been significantly enhanced since the first version of this guide was written. QtPlasmaC
will define LinuxCNC’s plasma support for many years to come as it includes all of the features a
proprietary high end plasma control system at an open source price.

2.7.25 Hypertherm RS485 Control

Some Hypertherm plasma cutters have a RS485 interface to allow the controller (e.g., LinuxCNC)
to set amps.pressure and mode. A number of people have used a non-realtime component written in
Python to achieve this. More recently, QtPlasmaC now supports this interface natively. Refer to the
QtPlasmaC documentation for how to use it.

./qtplasmac.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 78 /1261

The combination of a slow baud rate used by Hypertherm and the non-realtime component, make this
fairly slow to alter machine states so it generally not viable to change settings on the fly while cutting.

When selecting a RS485 interface to use at the PC end, users have reported that USB to RS485
interfaces are not reliable. Good reliable results have been achieved using a hardware based RS232
interface (e.g., PCI/PCle or motherboard port) and an appropriate RS485 converter. Some users have
reported success with a Sunix P/N: SER5037A PCI RS2322 card a generic XC4136 RS232 to RS485
converter (which may sometimes include a USB cable as well).

2.7.26 Post Processors For Plasma Cutting

CAM programs (Computer Aided Manufacture) are the bridge between CAD (Computer Aided Design)
and the final CNC (Computer Numerical Control) operation. They often include a user configurable
post processor to define the code that is generated for a specific machine or dialect of G-code.

Many LinuxCNC users are perfectly happy with using Inkscape to convert SVG vector based files to
G-code. If you are using a plasma cutter for hobby or home use, consider this option.

However, if your needs are more complex, probably the best and most reasonably priced solution
is SheetCam. SheetCam supports both Windows and Linux and post processors are available for it
including the QtPlasmaC configuration. SheetCam allows you to nest parts over a full sheet of material
and allows you to configure toolsets and code snippets to suit your needs. SheetCam post processors
are text files written in the Lua programming language and are generally easy to modify to suit your
exact requirements. For further information, consult the SheetCam web site and their support forum.

Another popular post-processor is included with the popular Fusion360 package but the included
post-processors will need some customisation.

LinuxCNC is a CNC application and discussions of CAM techniques other than this introductory dis-
cussion are out of scope of LinuxCNC.

https://sheetcam.com

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 79 /1261

Chapitre 3

Assistants de configuration

3.1 Stepper Configuration Wizard

3.1.1 Introduction

LinuxCNC is capable of controlling a wide range of machinery using many different hardware inter-
faces.

StepConf is a program that generates configuration files for LinuxCNC for a specific class of CNC
machine: those that are controlled via a standard parallel port, and controlled by signals of type step
& direction.

StepConf is installed when you install LinuxCNC and is in the CNC menu.

StepConf places a file in the linuxcnc/config directory to store the choices for each configuration you
create. When you change something, you need to pick the file that matches your configuration name.
The file extension is .stepconf.

The StepConf Wizard works best with at least 800 x 600 screen resolution.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 80/1261

3.1.2 Start Page

cancer | () Start Back | Forward |

Do you wish to:
(@ Create a new configuration

() Modify a configuration already created with this program
(O Import a Mach file

If you have made modifications to this
) configuration outside this program, they will
' be lost when you select "Modify a
configuration”

[] Create a desktop shortcut (symlink) to configuration files.
[] Create a desktop launcher to start LinuxCNC with this configuration.

[] Create simulated hardware configuration.

Figure 3.1 - StepConf Entry Page

The three first radio buttons are self-explanatory:

— Create New - Creates a fresh configuration.

— Modify - Modify an existing configuration. After selecting this a file picker pops up so you can select
the .stepconf file for modification. If you made any modifications to the main HAL or the INI file
these will be lost. Modifications to custom.hal and custom postgui.hal will not be changed by the
StepConf Wizard. StepConf will highlight the lastconf that was built.

— Import - Import a Mach configuration file and attempt to convert it to a LinuxCNC config file. After
the import, you will go though the pages of StepConf to confirm/modify the entries. The original
mach XML file will not be changed.

These next options will be recorded in a preference file for the next run of StepConf.
— Create Desktop Shortcut - This will place a link on your desktop to the files.
— Create Desktop Launcher - This will place a launcher on your desktop to start your application.

— Create Simulated Hardware - This allows you to build a config for testing, even if you don’t have
the actual hardware.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 81/1261
3.1.3 Basic Information

| Stepconf -Stepper Configuration Wizard T - OX

Cancel Q Base Information Back | Forward

Machine Name: | -rmill

Configuration directory: ~/linuxcnc/configs/my-mill

Axis configuration: X¥YZ |1Ir

Reset Default machine units: Inch |‘r

Driver characteristics: (Multiply by 1000 for times specified in ps or microseconds)

Driver type: Other

= Driver Timing Settings

Step Time: 5000 ﬂﬂ ns

Step Space: 5000 ﬂﬂ ns

Direction Hold: |20000 =|dF|ns

Direction Setup: 20000 ﬂﬂ ns

(@ One Parport () Two Parports

Base Period Maximum |itter: 15000 ﬂﬂ ns
Test Base Min Base Period: 30000 ns
Period itter Max step rate: 33333 Hz

Figure 3.2 - Basic Information Page

— Create Simulated Hardware - This allows you to build a config for testing, even if you don’t have
the actual hardware.

— Machine Name - Choose a name for your machine. Use only uppercase letters, lowercase letters,
digits, - and .
— Axis Configuration - Choose XYZ (Mill), XYZA (4-axis mill) or XZ (Lathe).

— Machine Units - Choose Inch or mm. All subsequent entries will be in the chosen units. Changing
this also changes the default values in the Axes section. If you change this after selecting values in
any of the axes sections, they will be over-written by the default values of the selected units.

— Driver Type - If you have one of the stepper drivers listed in the pull down box, choose it. Otherwise,
select Other and find the timing values in your driver’s data sheet and enter them as nano seconds
in the Driver Timing Settings. If the data sheet gives a value in microseconds, multiply by 1000.
For example, enter 4.5 ps as 4500 ns.

A list of some popular drives, along with their timing values, is on the LinuxCNC.org Wiki under
Stepper Drive Timing.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 82 /1261

Additional signal conditioning or isolation such as optocouplers and RC filters on break out boards
can impose timing constraints of their own, in addition to those of the driver. You may find it ne-
cessary to add some time to the drive requirements to allow for this.

The LinuxCNC Configuration Selector has configs for Sherline already configured. * Step Time -
How long the step pulse is on in nano seconds. If your not sure about this setting a value of 20,000
will work with most drives. * Step Space - Minimum time between step pulses in nano seconds. If
your not sure about this setting a value of 20,000 will work with most drives. * Direction Hold - How
long the direction pin is held after a change of direction in nanoseconds. If your not sure about this
setting a value of 20,000 will work with most drives. * Direction Setup - How long before a direction
change after the last step pulse in nanoseconds. If your not sure about this setting a value of 20,000
will work with most drives. * One / Two Parport - Select how many parallel port are to be configured.
* Base Period Maximum Jitter - Enter the result of the Latency Test here. To run a latency test press
the Test Base Period Jitter button. See the Latency Test section for more details. * Max Step Rate
-StepConf automatically calculates the Max Step Rate based on the driver characteristics entered
and the latency test result. * Min Base Period - StepConf automatically determines the Min Base
Period based on the driver characteristics entered and latency test result.

3.1.4 Latency Test

While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are. Run the test at least a few minutes. The longer you run the test the better it
will be at catching events that might occur at less frequent intervals. This is a test for your computer
only, so no hardware needs to be connected to run the test.

AVERTISSEMENT
Do not attempt run LinuxCNC while the latency test is running.

- LinuxCNC / HAL Latency Test 4 0O X

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring LinuxCNC.

While the test is running, you should "abuse" the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1ms): 1001058 4578 996764

Base thread (25ps): 31605 6693 25001

Reset Statistics

Figure 3.3 - Latency Test

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 83 /1261

Latency is how long it takes the PC to stop what it is doing and respond to an external request. In our
case, the request is the periodic heartbeat that serves as a timing reference for the step pulses. The
lower the latency, the faster you can run the heartbeat, and the faster and smoother the step pulses
will be.

Latency is far more important than CPU speed. The CPU isn’t the only factor in determining latency.
Motherboards, video cards, USB ports, SMI issues, and a number of other things can hurt the latency.

Troubleshooting SMI Issues (LinuxCNC.org Wiki)

Fixing Realtime problems caused by SMI on Ubuntu

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

The important numbers are the max jitter. In the example above 9075 nanoseconds (ns), or 9.075
microseconds (us), is the highest jitter. Record this number, and enter it in the Base Period Maximum
Jitter box.

If your Max Jitter number is less than about 15-20 ns (15000-20000 ns), the computer should give very
nice results with software stepping. If the max latency is more like 30-50 ps, you can still get good
results, but your maximum step rate might be a little disappointing, especially if you use microstepping
or have very fine pitch leadscrews. If the numbers are 100 ps or more (100,000 ns), then the PC is not
a good candidate for software stepping. Numbers over 1 millisecond (1,000,000 ns) mean the PC is
not a good candidate for LinuxCNC, regardless of whether you use software stepping or not.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 84 /1261

3.1.5 Parallel Port Setup

- Stepconf -Stepper Configuration Wizard + - 0OX
Cancel @ Parallel Port 1 Back Forward

Outputs (PC to Mill): Invert Inputs (Mill to PC): Invert

Pin1: ESTOP Out I~ O Pin 10: Unused I~ O

Pin2: X Step I~ O Pin 11: Unused Adlm

Pin 3: X Direction I~ O Pin 12: Unused I~ O

Pin4: Y Step I~ O Pin 13: Unused Adlm

Pin5: Y Direction I~ O Pin 15: Unused I~ O

Pin6: Z Step I~ O

PinZ: Z Direction I~ O

Pin 8: A Step |v [] Parport Base Address:

Pin9: A Direction I~ O 0

Pin 14: Spindle CW |v [] Output pinout presets:

Pin 16: Spindle PWM |+ | Sherline v

Pin 17: Amplifier Enable |v [] Preset

Figure 3.4 - Parallel Port Setup Page

You may specify the address as a hexadecimal (often 0x378) or as linux’s default port number (probably
0)

For each pin, choose the signal which matches your parallel port pinout. Turn on the invert check box

if the signal is inverted (0V for true/active, 5V for false/inactive).

— Output pinout presets - Automatically set pins 2 through 9 according to the Sherline standard
(Direction on pins 2, 4, 6, 8) or the Xylotex standard (Direction on pins 3, 5, 7, 9).

— Inputs and Outputs - If the input or output is not used set the option to Unused.

— External E-Stop - This can be selected from an input pin drop down box. A typical E-Stop chain
uses all normally closed contacts.

— Homing & Limit Switches - These can be selected from an input pin drop down box for most confi-
gurations.

— Charge Pump - If your driver board requires a charge pump signal select Charge Pump from the
drop down list for the output pin you wish to connect to your charge pump input. The charge pump
output is connected to the base thread by StepConf. The charge pump output will be about 1/2 of
the maximum step rate shown on the Basic Machine Configuration page.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 85/1261

— Plasma Arc Voltage - If you require a Mesa THCAD to input a plasma arc voltage then select Plasma
Arc Voltage from the list of output pins. This will enable a THCAD page during the setup procedure
for the entry of the card parameters.

3.1.6 Parallel Port 2 Setup

| Stepconf -Stepper Configuration Wizard + - 0O X
Cancel Q Parallel Port 2 Back Forward

Outputs (PC to Mill): Invert Inputs (Mill to PC): Invert
Pin 1: Unused |v []
Fin 2: Unused |-- Sl EUHUEEd v u
Pin3: Unused |' []
Pin4: Unused |' [] Pin1l: Unused - |[]
Pin5: Unused |' []
Pin 6: Unused |'r []

Pin12: Unused * | []
Pin 7: Unused |‘lr []
Pin 8: Unused |'r []
Pin9: Unused |,,r [] Pin13: Unused | []
Pin 14: Unused |'r []
; . - |1
Pinlc: | Unused | L Pin15: Unused - | []

Out |+
Pin 17: Unused |v [] . |
Y

Figure 3.5 - Parallel Port 2 Setup Page

The second Parallel port (if selected) can be configured and It’s pins assigned on this page. No step and
direction signals can be selected. You may select in or out to maximizes the number of input/output
pins that are available. You may specify the address as a hexadecimal (often 0x378) or as linux’s
default port number (probably 1).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

86 /1261

3.1.7 Axis Configuration

- Stepconf -S5tepper Configuration Wizard + - 0O X

Motor steps per revolution:

Driver Microstepping:

Cancel O Axis X

Back ‘ Forward

[200

5% Test this axis

Home Switch location:

Home Search velocity:

Home Latch direction:

Bulley teeth (Motor:Leadscrew): : |1
Leadscrew Pitch: 20 rev /in
Maximum Velocity: 1 in/s
Maximum Acceleration: 30 in/fs?
Home location: 0

Table travel:] thE

I

| -

Time to accelerate to max speed:

Distance to accelerate to max speed:

Fulse rate at max speed:

Axis Scale: 200 x 2 x (1.0 + 1.0) x 20.000 =

0.0333 s
0.0167 in
8000.0 Hz
8000.0 Steps /in

Figure 3.6 - Axis Configuration Screen

— Motor Steps Per Revolution - The number of full steps per motor revolution. If you know how many
degrees per step the motor is (e.g., 1.8 degree), then divide 360 by the degrees per step to find the

number of steps per motor revolution.

— Driver Microstepping - The amount of microstepping performed by the driver. Enter 2 for half-

stepping.

— Pulley Ratio - If your machine has pulleys between the motor and leadscrew, enter the ratio here.

If not, enter 1:1.

— Leadscrew Pitch - Enter the pitch of the leadscrew here. If you chose Inch units, enter the number
of threads per inch. If you chose mm units, enter the number of millimeters per revolution (e.g.,
enter 2 for 2Zmmy/rev). If the machine travels in the wrong direction, enter a negative number here
instead of a positive number, or invert the direction pin for the axis.

— Maximum Velocity - Enter the maximum velocity for the axis in units per second.

— Maximum Acceleration - The correct values for these items can only be determined through expe-
rimentation. See Finding Maximum Velocity to set the speed and Finding Maximum Acceleration

to set the acceleration.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 87 /1261

— Home Location - The position the machine moves to after completing the homing procedure for
this axis. For machines without home switches, this is the location the operator manually moves
the machine to before pressing the Home button. If you combine the home and limit switches you
must move off of the switch to the home position or you will get a joint limit error.

— Table Travel - The range of travel for that axis based on the machine origin. The home location
must be inside the Table Travel and not equal to one of the Table Travel values.

— Home Switch Location - The location at which the home switch trips or releases relative to the
machine origin. This item and the two below only appear when Home Switches were chosen in the
Parallel Port Pinout. If you combine home and limit switches the home switch location can not be
the same as the home position or you will get a joint limit error.

— Home Search Velocity - The velocity to use when searching for the home switch. If the switch is
near the end of travel, this velocity must be chosen so that the axis can decelerate to a stop before
hitting the end of travel. If the switch is only closed for a short range of travel (instead of being
closed from its trip point to one end of travel), this velocity must be chosen so that the axis can
decelerate to a stop before the switch opens again, and homing must always be started from the
same side of the switch. If the machine moves the wrong direction at the beginning of the homing
procedure, negate the value of Home Search Velocity.

— Home Latch Direction - Choose Same to have the axis back off the switch, then approach it again
at a very low speed. The second time the switch closes, the home position is set. Choose Opposite
to have the axis back off the switch and when the switch opens, the home position is set.

— Time to accelerate to max speed - Time to reach maximum speed calculated from Max Acceleration
and Max Velocity.

— Distance to accelerate to max speed - Distance to reach maximum speed from a standstill.

— Pulse rate at max speed - Information computed based on the values entered above. The greatest
Pulse rate at max speed determines the BASE PERIOD. Values above 20000Hz may lead to slow
response time or even lockups (the fastest usable pulse rate varies from computer to computer)

— Axis SCALE - The number that will be used in the INI file [SCALE] setting. This is how many steps
per user unit.

— Test this axis - This will open a window to allow testing for each axis. This can be used after filling
out all the information for this axis.

- X Axis Test + X
Velaocity: i =|4r|in/s

Acceleration: 30.0 = |gp|in /52

w @]

Test Area: + |' |15.U =|dk|in 2% Run

@ Cancel -Qﬂ OK

Figure 3.7 - Axis Test

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 88 /1261

Test this axis is a basic tester that only outputs step and direction signals to try different values for
acceleration and velocity.

Important

In order to use test this axis you have to manually enable the axis if this is required. If your
driver has a charge pump you will have to bypass it. Test this axis does not react to limit switch
inputs. Use with caution.

3.1.7.1 Finding Maximum Velocity

Begin with a low Acceleration (for example, 2 inches/s? or 50 mm/s?) and the velocity you hope to
attain. Using the buttons provided, jog the axis to near the center of travel. Take care because with a
low acceleration value, it can take a surprising distance for the axis to decelerate to a stop.

After gauging the amount of travel available, enter a safe distance in Test Area, keeping in mind that
after a stall the motor may next start to move in an unexpected direction. Then click Run. The machine
will begin to move back and forth along this axis. In this test, it is important that the combination of
Acceleration and Test Area allow the machine to reach the selected Velocity and cruise for at least
a short distance — the more distance, the better this test is. The formulad = 0.5 * v * v/a gives
the minimum distance required to reach the specified velocity with the given acceleration. If it is
convenient and safe to do so, push the table against the direction of motion to simulate cutting forces.
If the machine stalls, reduce the speed and start the test again.

If the machine did not obviously stall, click the Run button off. The axis now returns to the position
where it started. If the position is incorrect, then the axis stalled or lost steps during the test. Reduce
Velocity and start the test again.

If the machine doesn’t move, stalls, or loses steps, no matter how low you turn Velocity, verify the
following:

— Correct step waveform timings

— Correct pinout, including Invert on step pins

— Correct, well-shielded cabling

— Physical problems with the motor, motor coupling, leadscrew, etc.

Once you have found a speed at which the axis does not stall or lose steps during this testing procedure,
reduce it by 10% and use that as the axis Maximum Velocity.

3.1.7.2 Finding Maximum Acceleration

With the Maximum Velocity you found in the previous step, enter the acceleration value to test. Using
the same procedure as above, adjust the Acceleration value up or down as necessary. In this test, it is
important that the combination of Acceleration and Test Area allow the machine to reach the selected
Velocity. Once you have found a value at which the axis does not stall or lose steps during this testing
procedure, reduce it by 10% and use that as the axis Maximum Acceleration.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 89 /1261

3.1.8 Spindle Configuration

Cancel @ Spindle Back Forward
PWM Rate: Ilf}ﬂ.ﬂ Hz Enter 0 Hz for "PDM" mode
Calibration:
Speed 1: 100.0 PWM 1:/0.2
Speed 2: 800.0 PWM 2:10.8

Figure 3.8 - Spindle Configuration Page

This page only appears when Spindle PWM is chosen in the Parallel Port Pinout page for one of the
outputs.

3.1.8.1 Spindle Speed Control

If Spindle PWM appears on the pinout, the following information should be entered:

— PWM Rate - The carrier frequency of the PWM signal to the spindle. Enter 0 for PDM mode, which
is useful for generating an analog control voltage. Refer to the documentation for your spindle
controller for the appropriate value.

— Speed 1 and 2, PWM 1 and 2 - The generated configuration file uses a simple linear relationship
to determine the PWM value for a given RPM value. If the values are not known, they can be
determined. For more information see Determining Spindle Calibration.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 90/1261

3.1.8.2 Spindle-synchronized motion

When the appropriate signals from a spindle encoder are connected to LinuxCNC via HAL, LinuxCNC
supports lathe threading. These signals are:
— Spindle Index - Is a pulse that occurs once per revolution of the spindle.

— Spindle Phase A - This is a pulse that occurs in multiple equally-spaced locations as the spindle
turns.

— Spindle Phase B (optional) - This is a second pulse that occurs, but with an offset from Spindle
Phase A. The advantages to using both A and B are direction sensing, increased noise immunity,
and increased resolution.

If Spindle Phase A and Spindle Index appear on the pinout, the following information should be ente-
red:

— Use Spindle-At-Speed - With encoder feedback one can choose to have LinuxCNC wait for the
spindle to reach the commanded speed before feed moves. Select this option and set the close
enough scale.

— Speed Display Filter Gain - Setting for adjusting the stability of the visual spindle speed display.

— Cycles per revolution - The number of cycles of the Spindle A signal during one revolution of the
spindle. This option is only enabled when an input has been set to Spindle Phase A

— Maximum speed in thread - The maximum spindle speed used in threading. For a high spindle RPM
or a spindle encoder with high resolution, a low value of BASE PERIOD is required.

3.1.8.3 Determining Spindle Calibration

Enter the following values in the Spindle Configuration page:

Speed 1: 0 PWM 1: 0
Speed 2: 1000 PWM 2: 1

Finish the remaining steps of the configuration process, then launch LinuxCNC with your configura-
tion. Turn the machine on and select the MDI tab. Start the spindle turning by entering: M3 S100.
Change the spindle speed by entering a different S-number: S800. Valid numbers (at this point) range
from 1 to 1000.

For two different S-numbers, measure the actual spindle speed in RPM. Record the S-numbers and
actual spindle speeds. Run StepConf again. For Speed enter the measured speed, and for PWM enter
the S-number divided by 1000.

Because most spindle drivers are somewhat nonlinear in their response curves, it is best to:
— Make sure the two calibration speeds are not too close together in RPM.
— Make sure the two calibration speeds are in the range of speeds you will typically use while milling.

For instance, if your spindle will go from 0 RPM to 8000 RPM, but you generally use speeds from 400
RPM (10%) to 4000 RPM (100%), then find the PWM values that give 1600 RPM (40%) and 2800 RPM
(70%).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

91/1261

3.1.9 Options

|_| Include Halui us
|| Include custom

Stepconf -Stepper Configuration Wizard

| Cancel ; Options

@ Use AXIS Screen () Use Gmoccapy Screen
'+ Onscreen prompt for manual tool change

er interface component
PyVCP GUI panel

= Set pyVCP options

Blank program

Spindle speed display _Display
o icting custorm broaram | |Easample
Existing custom progran panel
nclude connections to HAL

|| Include Classicladder PLC
b Set Ladder Options

W £ b4

Back || Forward I

-

Figure 3.9 - Advanced Options Configuration

— Include Halui - This will add the Halui user interface component. See the HALUI Chapter for more

information on.

— Include PyVCP - This option adds the PyVCP panel base file or a sample file to work on. See the
PyVCP Chapter for more information.

— Include ClassicLadder PLC - This option will add the ClassicLadder PLC (Programmable Logic

Controller). See the

ClassicLadder Chapter for more information.

— Onscreen Prompt For Tool Change - If this box is checked, LinuxCNC will pause and prompt you to
change the tool when M6 is encountered. This feature is usually only useful if you have presettable

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 92 /1261

tools.

3.1.10 Complete Machine Configuration

Click Apply to write the configuration files. Later, you can re-run this program and tweak the settings
you entered before.

3.1.11 Axis Travels and Homes

- < >+

s ' s I. |

@b

|||||I||| |||||I|||||||||I|||||||||I|||||||||I||||||||| |||||||||I ||||||||I|||||||||I|||||||||I|||||
-1 O 1

f A !

(d (

Figure 3.10 - Axis Travel and Home

For each axis, there is a limited range of travel. The physical end of travel is called the hard stop.

@ AVERTISSEMENT
If a mechanical hard stop were to be exceeded, the screw or the machine frame would be
damaged!

Before the hard stop there is a limit switch. If the limit switch is encountered during normal operation,
LinuxCNC shuts down the motor amplifier. The distance between the hard stop and limit switch must
be long enough to allow an unpowered motor to coast to a stop.

Before the limit switch there is a soft limit. This is a limit enforced in software after homing. If a MDI
command or G-code program would pass the soft limit, it is not executed. If a jog would pass the soft
limit, it is terminated at the soft limit.

The home switch can be placed anywhere within the travel (between hard stops). As long as external
hardware does not deactivate the motor amplifiers when the limit switch is reached, one of the limit
switches can be used as a home switch.

The zero position is the location on the axis that is 0 in the machine coordinate system. Usually the zero
position will be within the soft limits. On lathes, constant surface speed mode requires that machine
X=0 correspond to the center of spindle rotation when no tool offset is in effect.

The home position is the location within travel that the axis will be moved to at the end of the homing
sequence. This value must be within the soft limits. In particular, the home position should never be
exactly equal to a soft limit.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 93 /1261

3.1.11.1 Operating without Limit Switches

A machine can be operated without limit switches. In this case, only the soft limits stop the machine
from reaching the hard stop. Soft limits only operate after the machine has been homed.

3.1.11.2 Operating without Home Switches

A machine can be operated without home switches. If the machine has limit switches, but no home
switches, it is best to use a limit switch as the home switch (e.g., choose Minimum Limit + Home X in
the pinout). If the machine has no switches at all, or the limit switches cannot be used as home switches
for another reason, then the machine must be homed by eye or by using match marks. Homing by eye
is not as repeatable as homing to switches, but it still allows the soft limits to be useful.

3.1.11.3 Home and Limit Switch wiring options

The ideal wiring for external switches would be one input per switch. However, the PC parallel port
only offers a total of 5 inputs, while there are as many as 9 switches on a 3-axis machine. Instead,
multiple switches are wired together in various ways so that a smaller number of inputs are required.

The figures below show the general idea of wiring multiple switches to a single input pin. In each
case, when one switch is actuated, the value seen on INPUT goes from logic HIGH to LOW. However,
LinuxCNC expects a TRUE value when a switch is closed, so the corresponding Invert box must be
checked on the pinout configuration page. The pull up resistor show in the diagrams pulls the input
high until the connection to ground is made and then the input goes low. Otherwise the input might
float between on and off when the circuit is open. Typically for a parallel port you might use 47 kQ;.

olo

Pull-Up
Resistor

5

| INPUT .

olo

1

Figure 3.11 - Normally Closed Switches (N/C) wiring in series (simplified diagram)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 94 /1261

}_4

o
Q

Pull-Up
Resistor

}_4

O
o

| INPUT .

P

O
Q

Figure 3.12 - Normally Open Switches (N/O) wiring in parallel (simplified diagram)

The following combinations of switches are permitted in StepConf:
— Combine home switches for all axes

— Combine limit switches for all axes

— Combine both limit switches for one axis

— Combine both limit switches and the home switch for one axis
— Combine one limit switch and the home switch for one axis

The last two combinations are also appropriate when the type contact + home is used.

3.2 Mesa Configuration Wizard

PnCconf is made to help build configurations that utilize specific Mesa Anything I/O products.

It can configure closed loop servo systems or hardware stepper systems. It uses a similar wizard
approach as StepConf (used for software stepping, parallel port driven systems).

PnCconf is still in a development stage (Beta) so there are some bugs and lacking features. Please
report bugs and suggestions to the LinuxCNC forum page or mailing list.

There are two trains of thought when using PnCconf:

One is to use PnCconf to always configure your system - if you decide to change options, reload PnCconf
and allow it to configure the new options. This will work well if your machine is fairly standard and
you can use custom files to add non standard features. PnCconf tries to work with you in this regard.

The other is to use PnCconf to build a config that is close to what you want and then hand edit every-
thing to tailor it to your needs. This would be the choice if you need extensive modifications beyond
PnCconf’s scope or just want to tinker with / learn about LinuxCNC.

You navigate the wizard pages with the forward, back, and cancel buttons there is also a help button
that gives some help information about the pages, diagrams and an output page.

ASTUCE
PnCconf’s help page should have the most up to date info and has additional details.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 95/1261

3.2.1 Step by Step Instructions

EMC2 Configuration Wizard Beta 1 Version

This program creates configuration
files for "Closed Loop Servo"
and hardware stepper
machines

Cancel l[Back] [Forward

Figure 3.13 - PnCconf Splash

3.2.2 Create or Edit

This allows you to select a previously saved configuration or create a new one. If you pick Modify a
configuration and then press Next a file selection box will show. PnCconf preselects your last saved file.
Choose the config you wish to edit. If you made any changes to the main HAL or INI files PnCconf will
overwrite those files and those changes will be lost. Some files will not be over written and PnCconf
places a note in those files. It also allows you to select desktop shortcut / launcher options. A desktop
shortcut will place a folder icon on the desktop that points to your new configuration files. Otherwise
you would have to look in your home folder under linuxcnc/configs.

A Desktop launcher will add an icon to the desktop for starting your config directly. You can also
launch it from the main menu by using the Configuration Selector LinuxCNC found in CNC menu and
selecting your config name.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 96 /1261

3.2.3 Basic Machine Information

Machine Basics

Machine Name: my_EMC_machine

Configuration directory: ~femc2/configs/my_EMC_machine
Axis configuration: XYZ o
Machine units: Inch -

Computer Response Time
Test Base

Actual Servo Period: 1000000 |=| ns Period Jitter

Recommend servo period: 1000000
1/O Control Ports/ Boards
Mesa0 PCl / Parport Card: | 5i20

L

[Mesal PCl / Parport Card:

<3

First Parport Address: 0x0278 Out

Add-on PCI
[second Parport Address: Parport
Address
[[] Third Parport Address: Search
GUI frontend list
@ |Axis
1 TKemc
) Mini
) Touchy
Help Cancel Back Eorward

Figure 3.14 - PnCconf Basic

Machine Basics
If you use a name with spaces PnCconf will replace the spaces with underscore (as a loose rule
Linux doesn’t like spaces in names) Pick an axis configuration - this selects what type of machine
you are building and what axes are available. The Machine units selector allows data entry of
metric or imperial units in the following pages.

ASTUCE
Defaults are not converted when using metric so make sure they are sane values!

Computer Response Time
The servo period sets the heart beat of the system. Latency refers to the amount of time the
computer can be longer then that period. Just like a railroad, LinuxCNC requires everything
on a very tight and consistent time line or bad things happen. LinuxCNC requires and uses a
real time operating system, which just means it has a low latency (lateness) response time

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 97 /1261

when LinuxCNC requires its calculations and when doing LinuxCNCs calculations it cannot be
interrupted by lower priority requests (such as user input to screen buttons or drawing etc).

Testing the latency is very important and a key thing to check early. Luckily by using the Mesa card
to do the work that requires the fastest response time (encoder counting and PWM generation) we
can endure a lot more latency then if we used the parallel port for these things. The standard test
in LinuxCNC is checking the BASE period latency (even though we are not using a base period). If
you press the test base period jitter button, this launches the latency test window (you can also load
this directly from the applications/cnc panel). The test mentions to run it for a few minutes but the
longer the better. Consider 15 minutes a bare minimum and overnight even better. At this time use
the computer to load things, use the net, use USB etc we want to know the worst case latency and
to find out if any particular activity hurts our latency. We need to look at base period jitter. Anything
under 20000 is excellent - you could even do fast software stepping with the machine 20000 - 50000
is still good for software stepping and fine for us. 50000 - 100000 is really not that great but could still
be used with hardware cards doing the fast response stuff. So anything under 100000 is usable to us.
If the latency is disappointing or you get a bad hiccup periodically you may still be able to improve it.

ASTUCE

There is a user compiled list of equipment and the latency obtained on the LinuxCNC wiki:
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Latency-Test Please consider adding your info to the list. Also
on that page are links to info about fixing some latency problems.

Now we are happy with the latency and must pick a servo period. In most cases a servo period of
1000000 ns is fine (that gives a 1 kHz servo calculation rate - 1000 calculations a second). If you
are building a closed loop servo system that controls torque (current) rather then velocity (voltage)
a faster rate would be better - something like 200000 (5 kHz calculation rate). The problem with
lowering the servo rate is that it leaves less time available for the computer to do other things besides
LinuxCNC'’s calculations. Typically the display (GUI) becomes less responsive. You must decide on a
balance. Keep in mind that if you tune your closed loop servo system then change the servo period
you probably will need to tune them again.

I/O Control Ports/Boards
PnCconf is capable of configuring machines that have up to two Mesa boards and three parallel
ports. Parallel ports can only be used for simple low speed (servo rate) I/O.

Mesa
You must choose at least one Mesa board as PnCconf will not configure the parallel ports to count
encoders or output step or PWM signals. The mesa cards available in the selection box are based
on what PnCconf finds for firmware on the systems. There are options to add custom firmware
and/or blacklist (ignore) some firmware or boards using a preference file. If no firmware is found
PnCconf will show a warning and use internal sample firmware - no testing will be possible.
One point to note is that if you choose two PCI Mesa cards there currently is no way to predict
which card is 0 and which is 1 - you must test - moving the cards could change their order. If you
configure with two cards both cards must be installed for tests to function.

Parallel Port

Up to 3 parallel ports (referred to as parports) can be used as simple I/O. You must set the address
of the parport. You can either enter the Linux parallel port numbering system (0,1,or 2) or enter
the actual address. The address for an on board parport is often 0x0278 or 0x0378 (written in
hexadecimal) but can be found in the BIOS page. The BIOS page is found when you first start
your computer you must press a key to enter it (such as F2). On the BIOS page you can find
the parallel port address and set the mode such as SPP, EPP, etc on some computers this info is
displayed for a few seconds during start up. For PCI parallel port cards the address can be found
by pressing the parport address search button. This pops up the help output page with a list of
all the PCI devices that can be found. In there should be a reference to a parallel port device with
a list of addresses. One of those addresses should work. Not all PCI parallel ports work properly.
Either type can be selected as in (maximum amount of input pins) or out (maximum amount of
output pins).

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Latency-Test

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 98 /1261

GUI Front-end list
This specifies the graphical display screens LinuxCNC will use. Each one has different option.

AXIS

— fully supports lathes.

— is the most developed and used front-end

— is designed to be used with mouse and keyboard

— is tkinter based so integrates PyVCP (Python based virtual control panels) naturally.
— has a 3D graphical window.

— allows VCP integrated on the side or in center tab

TkLinuxCNC

— hi contrast bright blue screen

— separate graphics window

— no VCP integration

Touchy

— Touchy was designed to be used with a touchscreen, some minimal physical switches and a MPG
wheel.

— requires cycle-start, abort, and single-step signals and buttons

— It also requires shared axis MPG jogging to be selected.

— is GTK based so integrates GladeVCP (virtual control panels) naturally.

— allows VCP panels integrated in the center Tab

— has no graphical window

— look can be changed with custom themes

QtPlasmaC

— fully featured plasmac configuration based on the QtVCP infrastructure.
— mouse/keyboard operation or touchscreen operation
— no VCP integration

3.2.4 External Configuration

This page allows you to select external controls such as for jogging or overrides.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 99 /1261

[] USB Joystick Jogging

> Details

[External Button Jogging

[* Details

External MPG Jogging

= Details
@ Shared MPG / selectable axis
() Mpg per axis
selectable MPG increments
= increments

default | 0.0000 i . i Mux options
a) 0.0001 i) i
b) |0.0005 i . i use debounce :|Sec
ab) |0.0010 i . i use gray code
c) 0.0050 i . in [ignore all inputs false
ac) 0.0100 i i
bc) 0.0500
abc) | 0.1000

[External Feed Override

[* Details

[Max Velocity Override

[> Details

[External Spindle Override
[> Details

| Help | | Cancel || Back || Forward |

Figure 3.15 - External Controls

If you select a Joystick for jogging, You will need it always connected for LinuxCNC to load. To use
the analog sticks for useful jogging you probably need to add some custom HAL code. MPG jogging
requires a pulse generator connected to a MESA encoder counter. Override controls can either use
a pulse generator (MPG) or switches (such as a rotary dial). External buttons might be used with a
switch based OEM joystick.

Joystick jogging
Requires a custom device rule to be installed in the system. This is a file that LinuxCNC uses to
connect to Linux’s device list. PnCconf will help to prepare this file.

— Search for device rule will search the system for rules, you can use this to find the name of
devices you have already built with PnCconf.

— Add a device rule will allow you to configure a new device by following the prompts. You will
need your device available.

— test device allows you to load a device, see its pin names and check its functions with halmeter.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 100/1261

joystick jogging uses HALUI and hal input components.

External buttons

allows jogging the axis with simple buttons at a specified jog rate. Probably best for rapid jogging.
MPG Jogging

Allows you to use a Manual Pulse Generator to jog the machine’s axis.
MPG’s are often found on commercial grade machines. They output quadrature pulses that can be
counted with a MESA encoder counter. PnCconf allows for an MPG per axis or one MPG shared with
all axis. It allows for selection of jog speeds using switches or a single speed.

The selectable increments option uses the mux16 component. This component has options such as
debounce and gray code to help filter the raw switch input.

Overrides
PnCconf allows overrides of feed rates and/or spindle speed using a pulse generator (MPG) or
switches (eg. rotary).

3.2.5 GUI Configuration

Here you can set defaults for the display screens, add virtual control panels (VCP), and set some
LinuxCNC options..

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 101 /1261

Frontend
GUI Options
~ General GUI Defaults

Position_offset Relative v Max Spindle Override v| %
Position feedback | Actual Min Spindle Override | %
Max Feed Override o %

<>

[AXIS defaults
> Touchy
Virtual Control Panel
[Include custom PyVCP GUI panel

> Pyvcp Details
[Include custom GladeVCP GUI panel
> Gladevcp Details
= Defaults and Options

Require homing before MDI / Running [1 Move spindle up before tool change
Popup Toolchange Prompt [] Restore joint position after shutdown
[] Leave spindle on during tool change [Random position toolchanger

[Force individual manual homing

Help Cancel Back

Figure 3.16 - GUI Configuration

Front-end GUI Options
The default options allows general defaults to be chosen for any display screen.
AXIS defaults are options specific to AXIS. If you choose size, position or force maximize options then
PnCconf will ask if it is alright to overwrite a preference file (.axisrc). Unless you have manually added
commands to this file it is fine to allow it. Position and force max can be used to move AXIS to a second
monitor if the system is capable.

Touchy defaults are options specific to Touchy. Most of Touchy’s options can be changed while Touchy
is running using the preference page. Touchy uses GTK to draw its screen, and GTK supports themes.
Themes controls the basic look and feel of a program. You can download themes from the net or edit
them yourself. There are a list of the current themes on the computer that you can pick from. To help
some of the text to stand out PnCconf allows you to override the Themes’s defaults. The position and
force max options can be used to move Touchy to a second monitor if the system is capable.

QtPlasmaC options are specific to QtPlasmac, any common options that are not required will be di-
sabled. If QtPlasmac is selected then the following screen will be a user button setup screen that is
specific to QtPlasmaC and VCP options will not be available.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 102 /1261

VCP options
Virtual Control Panels allow one to add custom controls and displays to the screen. AXIS and
Touchy can integrate these controls inside the screen in designated positions. There are two
kinds of VCPs - PyVCP which uses Tkinter to draw the screen and GladeVCP that uses GTK to
draw the screen.

PyvCP
PyVCPs screen XML file can only be hand built. PyVCPs fit naturally in with AXIS as they both
use TKinter.

HAL pins are created for the user to connect to inside their custom HAL file. There is a sample spindle
display panel for the user to use as-is or build on. You may select a blank file that you can later add
your controls widgets to or select a spindle display sample that will display spindle speed and indicate
if the spindle is at requested speed.

PnCconf will connect the proper spindle display HAL pins for you. If you are using AXIS then the panel
will be integrated on the right side. If not using AXIS then the panel will be separate stand-alone from
the front-end screen.

You can use the geometry options to size and move the panel, for instance to move it to a second
screen if the system is capable. If you press the Display sample panel button the size and placement
options will be honored.

GladeVCP
GladeVCPs fit naturally inside of Touchy screen as they both use GTK to draw them, but by
changing GladeVCP’s theme it can be made to blend pretty well in AXIS (try Redmond).

It uses a graphical editor to build its XML files. HAL pins are created for the user to connect to, inside
of their custom HAL file.

GladeVCP also allows much more sophisticated (and complicated) programming interaction, which
PnCconf currently doesn’t leverage (see GladeVCP in the manual).

PnCconf has sample panels for the user to use as-is or build on. With GladeVCP PnCconf will allow
you to select different options on your sample display.

Under sample options select which ones you would like. The zero buttons use HALUI commands which
you could edit later in the HALUI section.

Auto Z touch-off also requires the classic ladder touch-off program and a probe input selected. It
requires a conductive touch-off plate and a grounded conductive tool. For an idea on how it works
see:

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?ClassicLadderExamples#Single button probe touchoff

Under Display Options, size, position, and force max can be used on a stand-alone panel for such
things as placing the screen on a second monitor if the system is capable.

You can select a GTK theme which sets the basic look and feel of the panel. You Usually want this to
match the front-end screen. These options will be used if you press the Display sample button. With
GladeVCP depending on the front-end screen, you can select where the panel will display.

You can force it to be stand-alone or with AXIS it can be in the center or on the right side, with Touchy
it can be in the center.

Defaults and Options
— Require homing before MDI / Running

— If you want to be able to move the machine before homing uncheck this checkbox.

— Popup Tool Prompt

— Choose between an on screen prompt for tool changes or export standard signal names for
a User supplied custom tool changer HAL file

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?ClassicLadderExamples#Single_button_probe_touchoff

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

103 /1261

— Leave spindle on during tool change:

— Used for lathes

— Force individual manual homing
— Move spindle up before tool change
— Restore joint position after shutdown

— Used for non-trivial kinematics machines

— Random position tool changers

— Used for tool changers that do not return the tool to the same pocket. You will need to add
custom HAL code to support tool changers.

3.2.6 Mesa Configuration

The Mesa configuration pages allow one to utilize different firmwares. On the basic page you selected
a Mesa card here you pick the available firmware and select what and how many components are

available.

Configuration 1[o]
Page

1o} f[e]

Connector 2 Connector 3 | Connector 4

Click on each page tab to configure signal names for each connector port.

The spin buttons below on this page allow you to select the amounts of
different types of components. Press the button to make the tabbed pages

accept the changes.

Board name 5i20

Firmware: SVST8_4 S |
Mesa parport address:

PWM base frequency: [20000 I;|Hz
PDM base frequency: [6000 @Hz
Watchdog timeout: 10000000 s

Num of encoders: [4

B

Num of pwm generators:[4

E

Num of step generators: [3

B

Num of GPIO: 42
Total number of pins: 72

Accept components

Changes

Help

Sanity Checks

[] 7i29 daughter board
[] 7i30 daughter board
[] 7i33 daughter board
[] 7i40 daughter board

| Cancel || Back

| | Forward

Figure 3.17 - Mesa Board Configuration

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 104 /1261

Parport address is used only with Mesa parport card, the 7i43. An on board parallel port usually uses
0x278 or 0x378 though you should be able to find the address from the BIOS page. The 7i43 requires
the parallel port to use the EPP mode, again set in the BIOS page. If using a PCI parallel port the
address can be searched for by using the search button on the basic page.

Note
Many PCI cards do not support the EPP protocol properly.

PDM PWM and 3PWM base frequency sets the balance between ripple and linearity. If using Mesa
daughter boards the docs for the board should give recommendations.

Important
It's important to follow these to avoid damage and get the best performance.

The 7i33 requires PDM and
The 7i29 requires PWM and
The 7130 requires PWM and
The 7i40 requires PWM and
The 7i48 requires UDM and

PDM base frequency of 6 MHz
PWM base frequency of 20 kHz
PWM base frequency of 20 kHz
PWM base frequency of 50 kHz
PWM base frequency of 24 kHz

[V« RV IR <V I o))

Watchdog time out
is used to set how long the MESA board will wait before killing outputs if communication is
interrupted from the computer. Please remember Mesa uses active low outputs meaning that
when the output pin is on, it is low (approx 0 volts) and if it is off the output in high (approx 5
volts) make sure your equipment is safe when in the off (watchdog bitten) state.

Number of coders/PWM generators/STEP generators
You may choose the number of available components by deselecting unused ones. Not all com-
ponent types are available with all firmware.

Choosing less then the maximum number of components allows one to gain more GPIO pins. If using
daughter boards keep in mind you must not deselect pins that the card uses. For instance some firm-
ware supports two 7i33 cards, If you only have one you may deselect enough components to utilize
the connector that supported the second 7i33. Components are deselected numerically by the highest
number first then down with out skipping a number. If by doing this the components are not where
you want them then you must use a different firmware. The firmware dictates where, what and the
max amounts of the components. Custom firmware is possible, ask nicely when contacting the Li-
nuxCNC developers and Mesa. Using custom firmware in PnCconf requires special procedures and is
not always possible - though I try to make PnCconf as flexible as possible.

After choosing all these options press the Accept Component Changes button and PnCconf will update
the I/O setup pages. Only I/O tabs will be shown for available connectors, depending on the Mesa
board.

3.2.7 Mesa I/O Setup

The tabs are used to configure the input and output pins of the Mesa boards. PnCconf allows one to
create custom signal names for use in custom HAL files.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

105/1261

Mesa0 Configuration-Board: 5i20 firmware: SVST8 4

Configuration /0 Ijo /o
Page Connector 2 | Connector 3 Connector 4

Num function Pin Type Inv Num function Pin Type Inv
[)(Encoder l Quad Encoder-B > l (] lMuIti Hand Wheel l Quad Encoder-B =] O

1: l X Encoder

l Quad EncoderA = l O 3:

l Multi Hand Wheel

l Quad Encoder-A =] O

[Spindle Encoder

l Quad Encoder-B - l (] l Quad Encoder-B -] O

[Unused Encoder

0: l Spindle Encoder

l Quad EncoderA = l [l 2 l Quad Encoder-A =] O

l Unused Encoder

[)(Encoder

l Quad Encoder-| - l (]

[Multi Hand Wheel

l Quad Encoder-| -] (|

[Spindle Encoder

l Quad Encoderl - l [l Quad Encoder-I 5] (|

[Unused Encoder

[x Axis PWM [Pulse Width Gen-P 2] o | 3 [Unused PWM Gen [Pulse Width Gen-P | 2] O
[Spindle PWM [Pulse Width Gen-P | &] o | 2 [Unused PWM Gen [Pulse Width Gen-P | &] O
[x Axis PWM [pulse Width Gen-D | &] O [Unused PWM Gen [pulse Width Gen-D | &] O
[Spindle PWM l Pulse Width Gen-D | & l O [Unused PWM Gen [Pulse Width Gen-D. |] O
[x Axis PWM [Pulse Width Gen-E | & l O [Unused PWM Gen [Pulse Width Gen-E | &] O
[Spindle PWM [Pulse Width Gen-E | 2] O [Unused PWM Gen [Pulse Width Gen-E | 2] O

[Launch test panel l

Cancel] [Back] [Forward

Figure 3.18 - Mesa I/O C2 Setup

On this tab with this firmware the components are setup for a 7i33 daughter board, usually used with
closed loop servos. Note the component numbers of the encoder counters and PWM drivers are not
in numerical order. This follows the daughter board requirements.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

Mesa0 Configuration-Board: 5i20 firmware: SVST8 4

106 /1261

Configuration 1jO 1o} /o
Page Connector 2 | Connector 3 | Connector 4
Num function Pin Type Inv Num function Pin Type Inv
024: [X Minimum Limit + Hm[GPIOInput | &] O 036 [Jog incr A [GPIO Input] 0
025: [X Maximum Limit [GPIO Input | &] O 037 [Jog incr B [GPIO Input] 0
026: [Unused Input [GPIO Input | 2] I [Jog incr C [GPIO Input] 0
027: Unused Input GPIOInput |2 |01 039 [Joint select A [GPIO Input] O
o2g;| Limits >lcPioiput |2 |01 o40: [Joint select B [GPIO Input] 0
Home
029: >Ieriomput 2|01 04w [Spindle ON [GPIO Output] 0
Limts/Home Shared >
030: GPIOInput | |1 04z: [Spindle CW [GPIO Output] 0
Digital >
031 , . celection y|GPOMput (o0 043: [Spindle CCW [GPIO Output] 0
032 overrides »[GPIoInput S| 044 unused Output | v | GPio output |2 |0
033: Spindle ylePomput ¢ |00 o4s: [Coolant Flood [GPIO Output l 0
034: Operation >lePioimput ¢ |00 o46: [Unused Output [GPIO Output l 0
035: Extemal Control >lpioimput ¢ |00 oar: [Unused Output [GPIO Output] O
Axis rapid >
X BLDC Control > | Launch test panel
Y BLDC Control >
Z BLDC Control >
A BLDC Control >
S BLDC Control >
Custom Signals
Help Cancel] [Back] [Forward

Figure 3.19 - Mesa I/O C3 Setup

On this tab all the pins are GPIO. Note the 3 digit numbers - they will match the HAL pin number.
GPIO pins can be selected as input or output and can be inverted.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

Mesa0 Configuration-Board: 5i20 firmware: SVST8 4

107 /1261

Configuration 1jO Ijo 1[0]
Page Connecter 2 | Connector 3 | Connector 4
Num function Pin Type Inv Num function Pin Type Inv
0: l‘rAxis StepGen Step Gen-A s | O 2: [AAxis StepGen | Step Gen-A s | O
[Y Axis StepGen v || Dir Gen-B - | O [F\ Axis StepGen ~ || Dir Gen-B - | O
050: [Unused Input [GPIOInput |2] O o62: [Unused Input [GPIOInput | &] 0
051:|Unused Input |v|ePomput ¢ |0 | o063: Unused input GPIOInput ¢ | O]
052: [Unused Input [GPIOInput |2]] 064: Umits ?>| GPio output | ¢] 0
Home
053: | Unused Input |v|cPomput e |0 oes: > [GPiooutput | ¢ |o
Limts/Home Shared >
I [ZAxis StepGen stepGen-A |2 |0 | o066y GPIO Output | &]D
.) Digital >
[Z Axis StepGen = || Dir Gen-B < | O 067: Axis Selection 3 GPIO Output | C l |
056: | Unused Input | v|ePomput ¢ |0 | o068: overrides » |GPIo output | ¢ |0
057: [Unused Input [GPIOInput | &] O | o069: B LeL
058: [Unused Input [GPIO Input | &]) | o070: Operation >| Manual spindle CW
059: [Unused Input [GPIOInput | &] O | o71: Extemal Control ?| Manual Spindle CCW
Axis rapid > Manual Spindle Stop
Launch test panel X BLDC Control ?| spindle Up-To-Speed
Y BLDC Control >
Z BLDC Control >
A BLDC Control >
S BLDC Control >
Custom Signals
l Cancel] [Back] [Forward

Figure 3.20 - Mesa I/O C4 Setup

On this tab there are a mix of step generators and GPIO. Step generators output and direction pins
can be inverted. Note that inverting a Step Gen-A pin (the step output pin) changes the step timing.
It should match what your controller expects.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

108 /1261

3.2.8 Parallel port configuration

First Parallel Port set for OUTPUT

Outputs (PC to Machine):

Pin 1: lDigitaI out 0

Pin 2: lMachine Is Enabled

Pin 3: l X Amplifier Enable

Pin 4: lZ Amplifier Enable

Pin 5: lUnused Output

Pin &: lUnused Output

Pin 7: lUnused Output

Pin 8: lUnused Output

Pin 9: lUnused Output

Pin 14:[Unused Output

Pin lﬁ:l Unused Output

Pin 17:[Unused Output

[Launch Test Panel

Inputs (Machine to PC):

Pin 2: lUnused Input

Pin 3: lUnused Input

Pin 4: lUnused Input

Pin 5: lUnused Input

Pin 6: lUnused Input

Pin 7: lUnused Input

Pin 8: lUnused Input

Pin 2: lUnused Input

Pin 1g:[Digital in 0

Pin 11:[Unused Input

Pin lg:l Unused Input

Pin 13:[Unused Input

Pin 1§:l Unused Input

Cancel] [Back] [Forward

The parallel port can be used for simple I/O similar to Mesa’s GPIO pins.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 109/1261

3.2.9 Axis Configuration

Servo Info

Bias

Deadband 0.0000 || Servo
Test

["] Use Brushless Motor Control

[Details
Calculate

Rapid Speed Following Error: | 0.0050 |Zjinch ~ encoder Scale: 4000.000 -

— . Scale
Feed Speed Following Error: | 0.0005 v|ir|.ch Stepper Scale:
Invert Motor Direction Maximum Velocity: 'hnch {min

[Invert Encoder Direction Maximum Acceleration: C|inch [sec?

< Test [Tune Axis|

| Help | | Cancel || Back || Forward

Figure 3.21 - Axis Drive Configuration

This page allows configuring and testing of the motor and/or encoder combination. If using a servo
motor an open loop test is available, if using a stepper a tuning test is available.

Open Loop Test
An open loop test is important as it confirms the direction of the motor and encoder. The motor

should move the axis in the positive direction when the positive button is pushed and also the
encoder should count in the positive direction. The axis movement should follow the Machinery’s
Handbook! standards or AXIS graphical display will not make much sense. Hopefully the help
page and diagrams can help figure this out. Note that axis directions are based on TOOL move-
ment not table movement. There is no acceleration ramping with the open loop test so start with
lower DAC numbers. By moving the axis a known distance one can confirm the encoder scaling.
The encoder should count even without the amp enabled depending on how power is supplied to

the encoder.
1. ”axis nomenclature” in the chapter "Numerical Control” in the “Machinery’s Handbook” published by Industrial Press.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 110/1261

@ AVERTISSEMENT
If the motor and encoder do not agree on counting direction then the servo will run away when
using PID control.

Since at the moment PID settings can not be tested in PnCconf the settings are really for when you
re-edit a config - enter your tested PID settings.

DAC scale
DAC scaling, max output and offset are used to tailor the DAC output.

Compute DAC
These two values are the scale and offset factors for the axis output to the motor amplifiers. The
second value (offset) is subtracted from the computed output (in volts), and divided by the first
value (scale factor), before being written to the D/A converters. The units on the scale value are
in true volts per DAC output volts. The units on the offset value are in volts. These can be used
to linearize a DAC.

Specifically, when writing outputs, the LinuxCNC first converts the desired output in quasi-SI units to
raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like: The value for scale can
be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.
Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from
the sensor readings. The value for this offset is obtained by finding the value of your output which
yields 0.0 for the actuator output. If the DAC is linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the
combined effects of amplifier gain, DAC non-linearity, DAC units, etc. To do this, follow this procedure:

— Build a calibration table for the output, driving the DAC with a desired voltage and measuring the
result:

Table 3.2: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.96
1 -0.03
9 9.87
10 10.07

— Do a least-squares linear fit to get coefficients a, b such that meas=a*raw+b

— Note that we want raw output such that our measured result is identical to the commanded output.
This means

— cmd=a*raw+b
— raw=(cmd-b)/a

— As a result, the a and b coefficients from the linear fit can be used as the scale and offset for the
controller directly.

MAX OUTPUT
The maximum value for the output of the PID compensation that is written to the motor am-
plifier, in volts. The computed output value is clamped to this limit. The limit is applied before
scaling to raw output units. The value is applied symmetrically to both the plus and the minus
side.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 111/1261

Tuning Test
The tuning test unfortunately only works with stepper based systems. Again confirm the di-
rections on the axis is correct. Then test the system by running the axis back and forth, If the
acceleration or max speed is too high you will lose steps. While jogging, Keep in mind it can
take a while for an axis with low acceleration to stop. Limit switches are not functional during
this test. You can set a pause time so each end of the test movement. This would allow you to
set up and read a dial indicator to see if you are losing steps.

Stepper Timing
Stepper timing needs to be tailored to the step controller’s requirements. PnCconf supplies
some default controller timing or allows custom timing settings. See https://wiki.linuxcnc.org/-
cgi-bin/wiki.pl?Stepper Drive Timing for some more known timing numbers (feel free to add
ones you have figured out). If in doubt use large numbers such as 5000 this will only limit max
speed.

Brushless Motor Control
These options are used to allow low level control of brushless motors using special firmware
and daughter boards. It also allows conversion of HALL sensors from one manufacturer to ano-
ther. It is only partially supported and will require one to finish the HAL connections. Contact
the mail-list or forum for more help.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?Stepper_Drive_Timing

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 112 /1261

Step Motor Scale _ _
Pulley teeth (motor:Leadscrew): |1 ELIE E|

] Worm tum ratio (Input:Outputl)

Microstep Multiplication Factor: | 5 E|

[] Leadscrew Metric Pitch mm J rev

Leadscrew TPl | 5.0000 <JTe
Motor steps per revolution: | 200 E|

Calculated Scale

motor steps per unit: 10000.0000
encoder pulses per unit:

Motion Data
Calculated Axis SCALE: 10000.0 Steps / inch
Resolution: 0.0001000 inch / Step
Time to accelerate to max speed: 0.8335 sec
Distance to acheave max speed: 0.6947 inch
Pulse rate at max speed: 16.7 Khz
Motor RPM at max speed: 1000 RPM

Cancel || Apply

Figure 3.22 - Axis Scale Calculation

The scale settings can be directly entered or one can use the calculate scale button to assist. Use the
check boxes to select appropriate calculations. Note that pulley teeth requires the number of teeth
not the gear ratio. Worm turn ratio is just the opposite it requires the gear ratio. If your happy with

the scale press apply otherwise push cancel and enter the scale directly.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 113/1261

X Axis Configuration

Positive Travel Distance (Machine zero Origin to end of + travel): [B.O]
Negative Travel Distance (Machine zero Origin to end of - travel): [0.0]
Home Position location (offset from machine zero Origin): [0.0]
Home Switch location (Offset from machine zero Origin): [0.0]
Home Search Velocity: [3 l inch / min

Home Search Direction: lTowards Negative limit o]

Home latch Velocity: [1 l inch / min

Home Latch Direction: l Same -]

Home Final Velocity: [0 l inch f min

Use Encoder Index For Home: l NO <]

[] Use Compensation File: | Type 1 - filename: [xcompensation

[] Use Backlash Compensation:

Cancel] [Back] [Forward

Figure 3.23 - Axis Configuration

Also refer to the diagram tab for two examples of home and limit switches. These are two examples
of many different ways to set homing and limits.

@ Important
It is very important to start with the axis moving in the right direction or else getting homing
right is very difficult!

Remember positive and negative directions refer to the TOOL not the table as per the Machinists
handbook.

On a typical knee or bed mill
— when the TABLE moves out that is the positive Y direction
— when the TABLE moves left that is the positive X direction
— when the TABLE moves down that is the positive Z direction
— when the HEAD moves up that is the positive Z direction

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 114 /1261

On a typical lathe

— when the TOOL moves right, away from the chuck

— that is the positive Z direction

— when the TOOL moves toward the operator

— that is the positive X direction. Some lathes have X opposite (e.g., tool on back side), that will

work fine but AXIS graphical display can not be made to reflect this.

When using homing and / or limit switches LinuxCNC expects the HAL signals to be true when the
switch is being pressed / tripped. If the signal is wrong for a limit switch then LinuxCNC will think the
machine is on end of limit all the time. If the home switch search logic is wrong LinuxCNC will seem
to home in the wrong direction. What it actually is doing is trying to BACK off the home switch.

Decide on limit switch location
Limit switches are the back up for software limits in case something electrical goes wrong, e.g.,
in case of a servo runaway. Limit switches should be placed so that the machine does not hit the
physical end of the axis movement. Remember the axis will coast past the contact point if moving
fast. Limit switches should be active low on the machine, i.e., power runs through the switches
all the time - a loss of power (open switch) trips. While one could wire them the other way, this
is fail safe. This may need to be inverted so that the HAL signal in LinuxCNC in active high - a
TRUE means the switch was tripped. When starting LinuxCNC if you get an on-limit warning, and
axis is NOT tripping the switch, inverting the signal is probably the solution. (use HALMETER to
check the corresponding HAL signal eg. joint.0.pos-lim-sw-in X axis positive limit switch)

Decide on the home switch location
If you are using limit switches You may as well use one as a home switch. A separate home switch
is useful if you have a long axis that in use is usually a long way from the limit switches or moving
the axis to the ends presents problems of interference with material. Note, a long shaft in a lathe
makes it hard to home to limits with out the tool hitting the shaft, so a separate home switch
closer to the middle may be better. If you have an encoder with index then the home switch acts
as a course home and the index will be the actual home location.

Decide on the MACHINE ORIGIN position
MACHINE ORIGIN is what LinuxCNC uses to reference all user coordinate systems from. I can
think of little reason it would need to be in any particular spot. There are only a few G-codes
that can access the MACHINE COORDINATE system.(G53, G30 and G28) If using tool-change-
at-G30 option having the origin at the tool change position may be convenient. By convention, it
may be easiest to have the ORIGIN at the home switch.

Decide on the (final) HOME POSITION
this just places the carriage at a consistent and convenient position after LinuxCNC figures out
where the ORIGIN is.

Measure / calculate the positive / negative axis travel distances
Move the axis to the origin. Mark a reference on the movable slide and the non-movable support
(so they are in line) move the machine to the end of limits. Measure between the marks that is
one of the travel distances. Move the table to the other end of travel. Measure the marks again.
That is the other travel distance. If the ORIGIN is at one of the limits then that travel distance
will be zero.

(machine) ORIGIN
The Origin is the MACHINE zero point. (not the zero point you set your cutter / material at).
LinuxCNC uses this point to reference everything else from. It should be inside the software
limits. LinuxCNC uses the home switch location to calculate the origin position (when using
home switches or must be manually set if not using home switches.

Travel distance
This is the maximum distance the axis can travel in each direction. This may or may not be able
to be measured directly from origin to limit switch. The positive and negative travel distances
should add up to the total travel distance.

POSITIVE TRAVEL DISTANCE
This is the distance the Axis travels from the Origin to the positive travel distance or the total
travel minus the negative travel distance. You would set this to zero if the origin is positioned at
the positive limit. The will always be zero or a positive number.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 115/1261

NEGATIVE TRAVEL DISTANCE
This is the distance the Axis travels from the Origin to the negative travel distance. or the total
travel minus the positive travel distance. You would set this to zero if the origin is positioned
at the negative limit. This will always be zero or a negative number. If you forget to make this
negative PnCconf will do it internally.

(Final) HOME POSITION
This is the position the home sequence will finish at. It is referenced from the Origin so can be
negative or positive depending on what side of the Origin it is located. When at the (final) home
position if you must move in the Positive direction to get to the Origin, then the number will be
negative.

HOME SWITCH LOCATION
This is the distance from the home switch to the Origin. It could be negative or positive depending
on what side of the Origin it is located. When at the home switch location if you must move in the
Positive direction to get to the Origin, then the number will be negative. If you set this to zero
then the Origin will be at the location of the limit switch (plus distance to find index if used).

Home Search Velocity
Course home search velocity in units per minute.

Home Search Direction
Sets the home switch search direction either negative (i.e., towards negative limit switch) or
positive (i.e., towards positive limit switch).

Home Latch Velocity
Fine Home search velocity in units per minute.

Home Final Velocity
Velocity used from latch position to (final) home position in units per minute. Set to 0 for max
rapid speed.

Home latch Direction
Allows setting of the latch direction to the same or opposite of the search direction.

Use Encoder Index For Home
LinuxCNC will search for an encoder index pulse while in the latch stage of homing.

Use Compensation File
Allows specifying a Comp filename and type. Allows sophisticated compensation. See AXIS Sec-
tion of the INI chapter.

Use Backlash Compensation

Allows setting of simple backlash compensation. Can not be used with Compensation File. See
AXIS Section of the INI chapter.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 116 /1261

Help Page | Diagram | Qutput
Mill
Lathe]

Total Travel =4 4+ 6 =10

Z Home Offset = Origin to Home Switch distance = 10

Z Meg Travel Distance = Origin to neg limit distance = 0

Z Pos Travel Distance = Total Travel - neg travel distance = 10
Z Home Position = Origin to Home Position distance = 4

X axis would be similar but not shown fully for clarity.
This is just a sample reference other switch combinations are
possible.

Figure 3.24 - AXIS Help Diagram

The diagram should help to demonstrate an example of limit switches and standard axis movement
directions. In this example the Z axis was two limit switches, the positive switch is shared as a home
switch. The MACHINE ORIGIN (zero point) is located at the negative limit. The left edge of the carriage
is the negative trip pin and the right the positive trip pin. We wish the FINAL HOME POSITION to be
4 inches away from the ORIGIN on the positive side. If the carriage was moved to the positive limit
we would measure 10 inches between the negative limit and the negative trip pin.

3.2.10 Spindle Configuration

If you select spindle signals then this page is available to configure spindle control.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 117 /1261

ASTUCE
Many of the option on this page will not show unless the proper option was selected on previous

pages!

Servo Info

Bias

Deadband 0.0000 || Servo
Test

] Use Brushless Motor Control
> Details
[] Use Spindle-At-Speed

Scale: | %

Rapid Speed Following Error: rev encoder Scale: 4000.000 2| calculate
Feed Speed Following Error: rev Stepper Scale: Scale
[Invert Motor Direction Maximum Velocity: rev / min
[Invert Encoder Direction Maximum Acceleration: rev f sec?
- Test [Tune Axis
Help | | Cancel || Back || Forward

Figure 3.25 - Spindle Motor/Encoder Configuration

This page is similar to the axis motor configuration page.

There are some differences:

Unless one has chosen a stepper driven spindle there is no acceleration or velocity limiting.
There is no support for gear changes or ranges.

If you picked a VCP spindle display option then spindle-at-speed scale and filter settings may be
shown.

Spindle-at-speed allows LinuxCNC to wait till the spindle is at the requested speed before moving
the axis. This is particularly handy on lathes with constant surface feed and large speed diameter
changes. It requires either encoder feedback or a digital spindle-at-speed signal typically connected
to a VFD drive.

If using encoder feedback, you may select a spindle-at-speed scale setting that specifies how close
the actual speed must be to the requested speed to be considered at-speed.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 118 /1261

— If using encoder feedback, the VCP speed display can be erratic - the filter setting can be used to
smooth out the display. The encoder scale must be set for the encoder count / gearing used.

— Ifyou are using a single input for a spindle encoder you must add the line: setp hm2 7i43.0.encoder.00.cot
mode 1 (changing the board name and encoder number to your requirements) into a custom HAL
file. See the Encoders Section in Hostmot2 for more info about counter mode.

3.2.11 Advanced Options

This allows setting of HALUI commands and loading of ClassicLadder and sample ladder programs.
If you selected GladeVCP options such as for zeroing axis, there will be commands showing. See the
HALUI Chapter for more info on using custom halcmds. There are several ladder program options.
The Estop program allows an external ESTOP switch or the GUI frontend to throw an Estop. It also
has a timed lube pump signal. The Z auto touch-off is with a touch-off plate, the GladeVCP touch-off
button and special HALUI commands to set the current user origin to zero and rapid clear. The serial
modbus program is basically a blank template program that sets up ClassicLadder for serial modbus.
See the ClassicLadder Chapter in the manual.

Include Halui user interface component f commands

cmd 1/G10 120 PO X0 |cmds | [emd 11 |
cmd 2| |cmd 7 | |cmd 12] |
cmd 3 |cmds| [cmd 13| |
cmd 4 |cmds | |cmd 14| |
cmd 5 cmd 10| |cmd 15| |

Include Classicladder PLC
~ Setup number of extenal pins

Nurmber of digital (bit) in pins:
Number of digital (bit) out pins:
Number of analog (s32) in pins:
Number of analog (s32) out pins:

Number of analog (float) in pins:

Number of analog (float) out pins:
[Include modbus master support

 Blank ladder program

@ |Estop ladder program

O Z Auto Touch off program - Edit ladder
 serial modbus program program

Include connections to HAL

Help | Cancel || Back || Forward

Figure 3.26 - PnCconf, advanced options

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 119/1261

3.2.12 HAL Components

On this page you can add additional HAL components you might need for custom HAL files. In this
way one should not have to hand edit the main HAL file, while still allowing user needed components.

Add HAL components with this page.
Componentnumber of components

Absolute
PID
scale

mux16

= Custom Components Commands
Load Command Thread Command Thread Speed
loadrt example_comp |~ laddf example_comp_calcs

Servo Thread

Help Cancel Back Forward

Figure 3.27 - HAL Components

The first selection is components that pncconf uses internally. You may configure pncconf to load extra
instances of the components for your custom HAL file.

Select the number of instances your custom file will need, PnCconf will add what it needs after them.

Meaning if you need 2 and PnCconf needs 1 PnCconf will load 3 instances and use the last one.

Custom Component Commands
This selection will allow you to load HAL components that PnCconf does not use. Add the loadrt
or loadusr command, under the heading loading command Add the addf command under the
heading Thread command. The components will be added to the thread between reading of inputs
and writing of outputs, in the order you write them in the thread command.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 120/ 1261

3.2.13 Advanced Usage Of PnCconf

PnCconf does its best to allow flexible customization by the user. PnCconf has support for custom
signal names, custom loading of components, custom HAL files and custom firmware.

There are also signal names that PnCconf always provides regardless of options selected, for user’s
custom HAL files With some thought most customizations should work regardless if you later select
different options in PnCconf.

Eventually if the customizations are beyond the scope of PnCconf’s frame work you can use PnCconf
to build a base config or use one of LinuxCNC’s sample configurations and just hand edit it to what
ever you want.

Custom Signal Names
If you wish to connect a component to something in a custom HAL file write a unique signal name
in the combo entry box. Certain components will add endings to your custom signal name:

Encoders will add < customname > +:
— position

— count

— velocity

— index-enable

— reset

Steppers add:

— enable

— counts

— position-cmd
— position-fb
— velocity-fb
PWM add:

— enable
— value

GPIO pins will just have the entered signal name connected to it

In this way one can connect to these signals in the custom HAL files and still have the option to move
them around later.

Custom Signal Names
The HAL Components page can be used to load components needed by a user for customization.

Loading Custom Firmware
PnCconf searches for firmware on the system and then looks for the XML file that it can convert
to what it understands. These XML files are only supplied for officially released firmware from
the LinuxCNC team. To utilize custom firmware one must convert it to an array that PnCconf
understands and add its file path to PnCconf’s preference file. By default this path searches the
desktop for a folder named custom firmware and a file named firmware.py.

The hidden preference file is in the user’s home file, is named .pncconf-preferences and require one
to select show hidden files in your file manager to see and edit it or on the command line you use Is
with the -a option. The contents of this file can be seen when you first load PnCconf - press the help
button and look at the output page.

Ask on the LinuxCNC mail-list or forum for info about converting custom firmware. Not all firmware
can be utilized with PnCconf.

Fichiers HAL Personnalisés
Il y a quatre fichiers personnalisés utilisables pour ajouter des commandes a HAL:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 121 /1261

— custom.hal est prévu pour les commandes HAL utilisées avant le chargement de l'interface
graphique. Il est exécuté apres le fichier HAL de configuration nommé : non-de-la-configuration.hal

— custom_postgui.hal est prévu pour les commandes qui doivent étre exécutées apres le char-
gement de l'interface graphique Axis ou PYVCP autonomes.

— custom_gvcp.hal est prévu pour les commandes qui doivent étre exécutées apres le charge-
ment de GladeVCP.

— shutdown.hal est prévu pour des commandes exécutées quand LinuxCNC se ferme de fagon
controlée.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 122 /1261

Chapitre 4

Configuration

4.1 Integrator Concepts

4.1.1 File Locations

LinuxCNC looks for the configuration and G-code files in a specific place. The location depends on
how you run LinuxCNC.

4.1.1.1 Installed

If your running LinuxCNC from the Live CD or you installed via a .deb and use the configuration picker
LinuxCNC from the menu LinuxCNC looks in the following directories:

— The LinuxCNC directory is located at /home/user-name/linuxcnc.

— The Configuration directories are located at /home/user-name/linuxcnc/configs.

— Configuration files are located at /home/user-name/linuxcnc/configs/name-of-config.

— G-code files are located at /home/user-name/linuxcnc/nc _files’.
For example for a configuration called Mill and a user name Fred the directory and file structure
would look like this.
— /home/fred/linuxcnc
— /home/fred/linuxcnc/nc _files
— /home/fred/linuxcnc/configs/mill
— /home/fred/linuxcnc/configs/mill/mill.ini
— /home/fred/linuxcnc/configs/mill/mill.hal
— /home/fred/linuxcnc/configs/mill/mill.var
— /home/fred/linuxcnc/configs/mill/tool.tbl

4.1.1.2 Command Line

If you run LinuxCNC from the command line and specify the name and location of the INI file the file
locations can be in a different place. To view the options for running LinuxCNC from the command
line run linuxcnc -h.

Note

Optional locations for some files can be configured in the |INI file. See the
<<sub:ini:sec:display, [DISPLAY]>> section and the <<sub:ini:sec:rs274ngc, [RS274NGC]>>
section.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 123 /1261

4.1.2 Files

Each configuration directory requires at least the following files:
— An INI file .ini
— A HAL file .hal or HALTCL file .tcl specified in the HAL section of the INI file.

Note
Other files may be required for some GUIs.

Optionally you can also have:
— A Variables file .var

— If you omit a .var file in a directory but include <<sub:ini:sec:rs274ngc, [RS274NGC]>> PARA-
METER FILE=somefilename.var, the file will be created for you when LinuxCNC starts.

— If you omit a .var file and omit the item [RS274NGC] PARAMETER FILE, a var file named
rs274ngc.var will be created when LinuxCNC starts. There may be some confusing messages if
[RS274NGC]JPARAMETER FILE is omitted.

— A Tool Table file .tbl if <<sub:ini:sec:emcmot, [EMCMOT]>> TOOL TABLE has been specified in the
INI file. Some configurations do not need a tool table.

4.1.3 Stepper Systems
4.1.3.1 Base Period

BASE PERIOD is the heartbeat of your LinuxCNC computer. ! Every period, the software step genera-
tor decides if it is time for another step pulse. A shorter period will allow you to generate more pulses
per second, within limits. But if you go too short, your computer will spend so much time generating
step pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper drive
requirements affect the shortest period you can use.

Worst case latencies might only happen a few times a minute, and the odds of bad latency happening
just as the motor is changing direction are low. So you can get very rare errors that ruin a part every
once in a while and are impossible to troubleshoot.

The simplest way to avoid this problem is to choose a BASE PERIOD that is the sum of the longest
timing requirement of your drive, and the worst case latency of your computer. This is not always the
best choice. For example, if you are running a drive with a 20 ps direction signal hold time requirement,
and your latency test said you have a maximum latency of 11 ps , then if you set the BASE PERIOD
to 20+11 = 31 ps you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per
second in another mode.

The problem is with the 20 ps hold time requirement. That plus the 11 ps latency is what forces us to
use a slow 31 ps period. But the LinuxCNC software step generator has some parameters that let you
increase the various times from one period to several. For example, if steplen? is changed from 1 to 2,
then there will be two periods between the beginning and end of the step pulse. Likewise, if dirhold 3
is changed from 1 to 3, there will be at least three periods between the step pulse and a change of
the direction pin.

If we can use dirhold to meet the 20 ps hold time requirement, then the next longest time is the 4.5 us
high time. Add the 11 ps latency to the 4.5 ps high time, and you get a minimum period of 15.5us

1. This section refers to using stepgen, LinuxCNC'’s built-in step generator. Some hardware devices have their own step
generator and do not use LinuxCNC'’s built-in one. In that case, refer to your hardware manual.

2. steplen refers to a parameter that adjusts the performance of LinuxCNC'’s built-in step generator, stepgen, which is a HAL
component. This parameter adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.

3. dirhold refers to a parameter that adjusts the length of the direction hold time.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 124 /1261

. When you try 15.5pus , you find that the computer is sluggish, so you settle on 16 ps . If we leave
dirhold at 1 (the default), then the minimum time between step and direction is the 16 ps period minus
the 11 ps latency = 5 us , which is not enough. We need another 15 s . Since the period is 16 us , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the
step pulse to the changing direction pin is 5+16=21 us , and we don’t have to worry about the drive
stepping the wrong direction because of latency.

For more information on stepgen see the stepgen section.

4.1.3.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes impor-
tant. If the drive steps on the falling edge then the output pin should be inverted.

4.1.4 Servo Systems
4.1.4.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are
more costly and complex. Unlike stepper systems, servo systems require some type of position feed-
back device, and must be adjusted or tuned, as they don’t quite work right out of the box as a stepper
system might. These differences exist because servos are a closed loop system, unlike stepper motors
which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram of
how a servomotor system is connected.

Summing amp Power amp
input signal + Z
[command signal] SUMMer amp
- drives power amp

input fcammand) signal
and leedback signal
drive surmming amp

Power amp
clrives

feedback signal molor

feedback device Motor

motor drives load
and feadback device

Figure 4.1 - Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the
summing amplifier drives the power amplifier, the power amplifier drives the motor, the motor drives
the load (and the feedback device), and the feedback device (and the input signal) drive the motor.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 125/1261

This looks very much like a circle (a closed loop) where A controls B, B controls C, C controls D, and
D controls A.

If you have not worked with servo systems before, this will no doubt seem a very strange idea at first,
especially as compared to more normal electronic circuits, where the inputs proceed smoothly to the
outputs, and never go back.* If everything controls everything else, how can that ever work, who’s
in charge? The answer is that LinuxCNC can control this system, but it has to do it by choosing one
of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is
called PID.

PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction
to the current error, the Integral value determines the reaction based on the sum of recent errors, and
the Derivative value determines the reaction based on the rate at which the error has been changing.
They are three common mathematical techniques that are applied to the task of getting a working
process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis
position and the set point is the commanded axis position.

» [0 K, et

—Setpoint@—errura- | KJ.J:E{TMT ¥ —>{ Process }—uutput—r

Figure 4.2 - PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action
designed for specific process requirements. The response of the controller can be described in terms
of the responsiveness of the controller to an error, the degree to which the controller overshoots the
set point and the degree of system oscillation.

4.1.4.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to
the current error value. A high proportional gain results in a large change in the output for a given
change in the error. If the proportional gain is too high, the system can become unstable. In contrast,
a small gain results in a small output response to a large input error. If the proportional gain is too
low, the control action may be too small when responding to system disturbances.

In the absence of disturbances, pure proportional control will not settle at its target value, but will
retain a steady state error that is a function of the proportional gain and the process gain. Despite the
steady-state offset, both tuning theory and industrial practice indicate that it is the proportional term
that should contribute the bulk of the output change.

4. If it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where
what the outputs are doing now depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then
nevermind.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 126 /1261

4.1.4.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude
of the error and the duration of the error. Summing the instantaneous error over time (integrating
the error) gives the accumulated offset that should have been corrected previously. The accumulated
error is then multiplied by the integral gain and added to the controller output.

The integral term (when added to the proportional term) accelerates the movement of the process
towards set point and eliminates the residual steady-state error that occurs with a proportional only
controller. However, since the integral term is responding to accumulated errors from the past, it can
cause the present value to overshoot the set point value (cross over the set point and then create a
deviation in the other direction).

4.1.4.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time
(i.e., its first derivative with respect to time) and multiplying this rate of change by the derivative gain.

The derivative term slows the rate of change of the controller output and this effect is most noticeable
close to the controller set point. Hence, derivative control is used to reduce the magnitude of the
overshoot produced by the integral component and improve the combined controller-process stability.

4.1.4.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are
chosen incorrectly, the controlled process input can be unstable, i.e., its output diverges, with or
without oscillation, and is limited only by saturation or mechanical breakage. Tuning a control loop
is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

4.1.4.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output
of the loop oscillates, then the P should be set to be approximately half of that value for a quarter
amplitude decay type response. Then increase I until any offset is correct in sufficient time for the
process. However, too much I will cause instability. Finally, increase D, if required, until the loop is
acceptably quick to reach its reference after a load disturbance. However, too much D will cause
excessive response and overshoot. A fast PID loop tuning usually overshoots slightly to reach the set
point more quickly; however, some systems cannot accept overshoot, in which case an over-damped
closed-loop system is required, which will require a P setting significantly less than half that of the P
setting causing oscillation.

4.1.5 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance.
The RTAI patched kernel lets you write applications with strict timing constraints. RTAI gives you the
ability to have things like software step generation which require precise timing.

4.1.5.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which
interfere with RT performance (for example: power management, CPU power down, CPU frequency

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 127 /1261

scaling, etc). The LinuxCNC kernel (and probably all RTAl-patched kernels) has ACPI disabled. ACPI
also takes care of powering down the system after a shutdown has been started, and that’s why you
might need to push the power button to completely turn off your computer. The RTAI group has been
improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

4.1.6 Computer/Machine Interface Hardware Options

4.1.6.1 litehm2/rv901t

Litehm?2 is a board-agnostic port of the HostMot2 FPGA firmware. The first board it supports is the
linsn rv901t, which was originally built as a LED controller board, but due to the available I/O it is
well suited to act as a machine controller. It offers around 80 5V-buffered I/O ports and can switch
between all input and all output. it is also easily modified to split the ports half/half between input and
output. The rv901t interfaces to the computer via Gigabit or 100Mbit Ethernet.

Litehm2 is based on the LiteX framework which supports a wide range of FPGA boards. Currently
only the rv901t is supported, but support for more boards is under development.

More information can be found at https://github.com/sensille/litehm?2.

4.2 Latency Testing

4.2.1 What is latency?

Latency is how long it takes the PC to stop what it is doing and respond to an external request, such
as running one of LinuxCNC'’s periodic realtime threads. The lower the latency, the faster you can run
the realtime threads, and the smoother motion will be (and potentially faster, in the case of software

stepping).
Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within

10 microseconds each and every time can give better results than the latest and fastest P4 Hyper-
threading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a
number of other things can hurt the latency. The best way to find out what you are dealing with is to
run the latency test.

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a
parallel port that is capable of outputting step pulses that are generated by the software. However,
software step pulses also have some disadvantages:

— limited maximum step rate

— jitter in the generated pulses

— loads the CPU

4.2.2 Latency Tests

LinuxCNC includes several latency tests. They all produce equivalent information. Running these tests
will help determine if a computers is suitable for driving a CNC machine.

Note
Do not run LinuxCNC or StepConf while the latency test is running.

https://github.com/sensille/litehm2

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 128 /1261

4.2.2.1 Latency Test

To run the test, open a terminal window (in Ubuntu, from Applications — Accessories — Terminal) and
run the following command:

latency-test

This will start the latency test with a base-thread period of 25 ps and a servo-thread period of 1 ms.
The period times may be specified on the command line:

latency-test 50000 1000000

This will start the latency test with a base-thread period of 50 us and a servo-thread period of 1 ms.
For available options, on the command line enter:

latency-test -h

After starting a latency test you should see something like this:

- LinuxCNC / HAL Latency Test 4 0O X

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring LinuxCNC.

While the test is running, you should "abuse" the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1ms): 1001058 4578 996764

Base thread (25us): 31605 6693 25001

Reset Statistics

Figure 4.3 - HAL Latency Test

While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are.

The important number for software stepping is the max jitter of the base thread. In the example
above, that is 6693 nanoseconds (ns), or 6.693 microseconds (us). Record this number, and enter it in
StepConf when it is requested.

In the example above, latency-test only ran for a few seconds. You should run the test for at least seve-

ral minutes; sometimes the worst case latency doesn’t happen very often, or only happens when you

do some particular action. For instance, one Intel motherboard worked pretty well most of the time, but
every 64 seconds it had a very bad 300 ps latency. Fortunately that was fixable, see https://wiki.linuxcnc.org/-
cgi-bin/wiki.pl?FixingSMIIssues .

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 129 /1261

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds (15000-
20000 nanoseconds), the computer should give very nice results with software stepping. If the max
latency is more like 30-50 microseconds, you can still get good results, but your maximum step rate
might be a little disappointing, especially if you use microstepping or have very fine pitch leadscrews.
If the numbers are 100 ps or more, i.e. >= 100,000 nanoseconds (ns), then the PC is not a good
candidate for software stepping. Numbers over 1 millisecond (1,000,000 ns) mean the PC is not a
good candidate for LinuxCNC, regardless of whether you use software stepping or not.

Note

If you get high numbers, there may be ways to improve them. Another PC had very bad latency
(several milliseconds) when using the onboard video. But a $5 used video card solved the problem.
LinuxCNC does not require bleeding edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.

ASTUCE
Additional command line tools are available for examining latency when LinuxCNC is not running.

4.2.2.2 Latency Plot

latency-plot makes a strip chart recording for a base and a servo thread. It may be useful to see spikes
in latency when other applications are started or used. Usage:

latency-plot --help

Usage:
latency-plot --help | -7
latency-plot --hal [Options]
Options:

--base ns (base thread interval in nanoseconds, default: 25000)
--servo ns (servo thread interval in nanoseconds, default: 1000000)
--time ms (report interval in milliseconds, default: 1000)
--relative (relative clock time (default))

--actual (actual clock time)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 130/1261

R | Pts:

240 - |+ Latency (uSeconds) vs Time (seconds) Wall:

Figure 4.4 - latency-plot Window

4.2.2.3 Latency Histogram

The application latency-histogram displays a histogram of latency (jitter) for a base and servo thread.

Usage:

latency-histogram --help | -7?
latency-histogram [Options]

Options:
--base ns (base thread interval in nanoseconds, default: 25000, min: 5000)
--Servo ns (servo thread interval in nanoseconds, default: 1000000, min: 25000)
--bbinsize ns (base bin size in nanoseconds, default: 100
--sbinsize ns (servo bin size in nanoseconds, default: 100
--bbins n (base bins, default: 200
--sbins n (servo bins, default: 200
--logscale 0|1 (y axis log scale, default: 1)
--text note (additional note, default: "")
- -show (show count of undisplayed bins)
--nobase (servo thread only)
--verbose (progress and debug)
--nox (no gui, display elapsed,min,max,sdev for each thread)
Note

When determining the latency, LinuxCNC and HAL should not be running, stop with halrun -U. Large
number of bins and/or small binsizes will slow updates. For single thread, specify --nobase (and
options for servo thread). Measured latencies outside of the +/- bin range are reported with special
end bars. Use - -show to show count for the off-chart [pos|neg] bin.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 131/1261

i Tusr/binflatency-histogram =
Date Hostname User CommandiineNote
Machine OSversion LinuxCNCversion Xdisplay
Ncores Isclcpus Vendor_id Model
Latency (uS) base thread (25.0 uSec period , binsize=0.1 uS) Latency (uS) servo thread (1000.0 uSec period , binsize=0.1 uS)
1E7
1E5
1E6
1E5 1E4
1E4 1E3
1E3
1E2
1E2
1E1
1E1
1ED 1E0
T T T T T 1 T] T T T T T T 1 T 1
20 -10 4 20 2 4 10 20 20 -10 4 20 2 4 10 20
min (us) 4.3 sdev (us): 0.3 max{us) 14.3 || min {us) | 141 sdev (us):| 0.3 max{us) | 14.8
0 =—off-chart neg bin ct offchart pos bin ct—> 0 0 =-off-chart neg bin ct off-chart pos bin ct—= 1]
Display +/-bins: — 2 — 4 10 7 20 40 © 100 ~ 200 _Display-t-f—hins: 2 4 10 20 40 100 = 200 |
Reset| ¥ ylogscale Screenshot| Glegears| 0 Elapsed Time:| 764 Exit]

Figure 4.5 - latency-histogram Window

4.2.3 Latency tuning

LinuxCNC can run on many different hardware platforms and with many different realtime kernels,
and they all may benefit from tuning for optimal latency.

A primary goal in tuning the system for LinuxCNC is to reserve a CPU for the exclusive use of Li-
nuxCNC'’s realtime tasks, so that other tasks (both user programs and kernel threads) do not interfere
with LinuxCNC'’s access to that CPU.

When specific tuning options are believed to be universally helpful LinuxCNC does this tuning auto-
matically at startup, but many tuning options are machine-specific and cannot be done automatically.
The person installing LinuxCNC will need to experimentally determine the optimal tuning for their
system.

4.2.3.1 Tuning the BIOS for latency

PC BIOSes vary wildly in their latency behavior.

Tuning the BIOS is tedious because you have to reboot the computer, make one small tweak in the
BIOS, boot Linux, and run the latency test (potentially for a long time) to see what effects your BIOS
change had. Then repeat for all the other BIOS settings you want to try.

Because BIOSes are all different and non-standard, providing a detailed BIOS tuning guide is not
practical. In general, some things to try tuning in the BIOS are:

— Disable ACPI, APM, and any other power-saving features. This includes anything related to power
saving, suspending, CPU sleep states, CPU frequency scaling, etc.

— Disable CPU ”"turbo” mode.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 132 /1261

— Disable CPU hyperthreading.
— Disable (or otherwise control) System Management Interrupt (SMI).
— Disable any hardware you do not intend to use.

4.2.3.2 Tuning Preempt-RT for latency

The Preempt-RT kernel may benefit from tuning in order to provide the best latency for LinuxCNC.
Tuning may be done via the kernel command line, sysctl, and via files in /proc and /sys.

Some tuning parameters to look into:

Kernel command line
Details here: https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

— isolcpus: Prevent most non-LinuxCNC processes from using these CPUs, leaving more CPU
time available for LinuxCNC.

— irgaffinity: Select which CPUs service interrupts, so that the CPUs reserved for LinuxCNC
realtime don’t have to perform this task.

— rcu_nocbs: Prevent RCU callbacks from running on these CPUs.
— rcu_nocb _poll: Poll for RCU callbacks instead of using sleep/wake.
— nohz_full: Disable clock tick on these CPUs.
Sysctl
Details here: https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

— sysctl.kernel.sched rt runtime us: Set to -1 to remove the limit on how much time real-
time tasks may use.

4.3 Stepper Tuning

4.3.1 Getting the most out of Software Stepping

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a
parallel port that is capable of outputting step pulses that are generated by the software. However,
software step pulses also have some disadvantages:

— limited maximum step rate

— jitter in the generated pulses

— loads the CPU

This chapter has some steps that can help you get the best results from software generated steps.

4.3.1.1 Run a Latency Test

The CPU is not the only factor determining latency. Motherboards, graphics cards, USB ports and
many other things can degrade it. The best way to know what to expect from a PC is to run the RT
latency tests.

Run the latency test as described in the Latency Test chapter.

While the test is running, you should abuse the computer. Move windows around on the screen. Surf
the web. Copy some large files around on the disk. Play some music. Run an OpenGL program such
as glxgears. The idea is to put the PC through its paces while the latency test checks to see what the
worst case numbers are.

The last number in the column labeled Max Jitter is the most important. Write it down - you will need
it later. It contains the worst latency measurement during the entire run of the test. In the example

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 133/1261

above, that is 6693 nano-seconds, or 6,69 micro-seconds, which is excellent. However the example
only ran for a few seconds (it prints one line every second). You should run the test for at least several
minutes; sometimes the worst case latency doesn’t happen very often, or only happens when you do
some particular action. I had one Intel motherboard that worked pretty well most of the time, but
every 64 seconds it had a very bad 300 ps latency. Fortunately that is fixable, see Fixing SMI issues
on the LinuxCNC Wiki

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds (15000-
20000 nanoseconds), the computer should give very nice results with software stepping. If the max
latency is more like 30-50 microseconds, you can still get good results, but your maximum step rate
might be a little disappointing, especially if you use microstepping or have very fine pitch leadscrews.
If the numbers are 100 ps or more (100,000 nanoseconds), then the PC is not a good candidate for
software stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC is not a good
candidate for LinuxCNC, regardless of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. For example, one PC had very
bad latency (several milliseconds) when using the onboard video. But a $5 used video card solved the
problem - LinuxCNC does not require bleeding edge hardware.

4.3.1.2 Figure out what your drives expect

Different brands of stepper drives have different timing requirements on their step and direction
inputs. So you need to dig out (or Google for) the data sheet that has your drive’s specs.

From the Gecko G202 manual:

Step Frequency: 0 to 200 kHz

Step Pulse "0” Time: 0.5 ps min (Step on falling edge)

Step Pulse "1” Time: 4.5 us min

Direction Setup: 1 ps min (20 ps min hold time after Step edge)

From the Gecko G203V manual:

Step Frequency: 0 to 333 kHz
Step Pulse "0” Time: 2.0 ps min (Step on rising edge)
Step Pulse "1” Time: 1.0 ps min

Direction Setup:
200 ns (0.2 ps) before step pulse rising edge
200 ns (0.2 ps) hold after step pulse rising edge

From the Xylotex datasheet:

Minimum DIR setup time before rising edge of STEP Pulse 200 ns Minimum
DIR hold time after rising edge of STEP pulse 200 ns

Minimum STEP pulse high time 2.0 pus

Minimum STEP pulse low time 1.0 us

Step happens on rising edge

Once you find the numbers, write them down too - you need them in the next step.

4.3.1.3 Choose your BASE_PERIOD

BASE PERIOD is the heartbeat of your LinuxCNC computer. Every period, the software step generator
decides if it is time for another step pulse. A shorter period will allow you to generate more pulses per
second, within limits. But if you go too short, your computer will spend so much time generating step

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 134 /1261

pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper drive
requirements affect the shortest period you can use, as we will see in a minute.

Let’s look at the Gecko example first. The G202 can handle step pulses that go low for 0.5 ps and high
for 4.5 ps, it needs the direction pin to be stable 1 ps before the falling edge, and remain stable for 20
ps after the falling edge. The longest timing requirement is the 20 ps hold time. A simple approach
would be to set the period at 20 ps. That means that all changes on the STEP and DIR lines are
separated by 20 ps. All is good, right?

Wrong! If there was ZERO latency, then all edges would be separated by 20 ps, and everything would
be fine. But all computers have some latency. Latency means lateness. If the computer has 11 us of
latency, that means sometimes the software runs as much as 11 ps later than it was supposed to. If
one run of the software is 11 pus late, and the next one is on time, the delay from the first to the second
is only 9 ps. If the first one generated a step pulse, and the second one changed the direction bit, you
just violated the 20 ps G202 hold time requirement. That means your drive might have taken a step
in the wrong direction, and your part will be the wrong size.

The really nasty part about this problem is that it can be very very rare. Worst case latencies might
only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you get very rare errors that ruin a part every once in a while and are impossible
to troubleshoot.

The simplest way to avoid this problem is to choose a BASE PERIOD that is the sum of the longest
timing requirement of your drive, and the worst case latency of your computer. If you are running a
Gecko with a 20 ps hold time requirement, and your latency test said you have a maximum latency of
11 ps, then if you set the BASE PERIOD to 20+11 = 31 us (31000 nano-seconds in the ini file), you
are guaranteed to meet the drive’s timing requirements.

But there is a tradeoff. Making a step pulse requires at least two periods. One to start the pulse, and
one to end it. Since the period is 31 ps, it takes 2x31 = 62 ps to create a step pulse. That means the
maximum step rate is only 16,129 steps per second. Not so good. (But don’t give up yet, we still have
some tweaking to do in the next section.)

For the Xylotex, the setup and hold times are very short, 200 ns each (0.2 ps). The longest time is the
2 ps high time. If you have 11 ps latency, then you can set the BASE PERIOD as low as 11+2=13 ps.
Getting rid of the long 20 ps hold time really helps! With a period of 13 ps, a complete step takes 2x13
= 26 ps, and the maximum step rate is 38,461 steps per second!

But you can’t start celebrating yet. Note that 13 ps is a very short period. If you try to run the step
generator every 13 ps, there might not be enough time left to run anything else, and your computer
will lock up. If you are aiming for periods of less than 25 ps, you should start at 25 ps or more, run
LinuxCNC, and see how things respond. If all is well, you can gradually decrease the period. If the
mouse pointer starts getting sluggish, and everything else on the PC slows down, your period is a
little too short. Go back to the previous value that let the computer run smoothly.

In this case, suppose you started at 25 ps, trying to get to 13 ps, but you find that around 16 ps is the
limit - any less and the computer doesn’t respond very well. So you use 16 ps. With a 16 ps period and
11 ps latency, the shortest output time will be 16-11 = 5 ps. The drive only needs 2 us, so you have
some margin. Margin is good - you don’t want to lose steps because you cut the timing too close.

What is the maximum step rate? Remember, two periods to make a step. You settled on 16 ps for the
period, so a step takes 32 ps. That works out to a not bad 31,250 steps per second.

4.3.1.4 Use steplen, stepspace, dirsetup, and/or dirhold

In the last section, we got the Xylotex drive to a 16 ps period and a 31,250 step per second maximum
speed. But the Gecko was stuck at 31 ps and a not-so-nice 16,129 steps per second. The Xylotex
example is as good as we can make it. But the Gecko can be improved.

The problem with the G202 is the 20 ps hold time requirement. That plus the 11 ps latency is what
forces us to use a slow 31 s period. But the LinuxCNC software step generator has some parameters

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 135/1261

that let you increase the various time from one period to several. For example, if steplen is changed
from 1 to 2, then it there will be two periods between the beginning and end of the step pulse. Likewise,
if dirhold is changed from 1 to 3, there will be at least three periods between the step pulse and a
change of the direction pin.

If we can use dirhold to meet the 20 ps hold time requirement, then the next longest time is the 4.5
ps high time. Add the 11 ps latency to the 4.5 ps high time, and you get a minimum period of 15.5 ps.
When you try 15.5 ps, you find that the computer is sluggish, so you settle on 16 pus. If we leave dirhold
at 1 (the default), then the minimum time between step and direction is the 16 ps period minus the 11
ps latency = 5 ps, which is not enough. We need another 15 ps. Since the period is 16 ps, we need one
more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the step pulse
to the changing direction pin is 5+16=21 ps, and we don’t have to worry about the Gecko stepping
the wrong direction because of latency.

If the computer has a latency of 11 ps, then a combination of a 16 ps base period, and a dirhold value
of 2 ensures that we will always meet the timing requirements of the Gecko. For normal stepping (no
direction change), the increased dirhold value has no effect. It takes two periods totalling 32 ps to
make each step, and we have the same 31,250 step per second rate that we got with the Xylotex.

The 11 ps latency number used in this example is very good. If you work through these examples with
larger latency, like 20 or 25 ps, the top step rate for both the Xylotex and the Gecko will be lower.
But the same formulas apply for calculating the optimum BASE PERIOD, and for tweaking dirhold or
other step generator parameters.

4.3.1.5 No Guessing!

For a fast AND reliable software based stepper system, you cannot just guess at periods and other
configuration parameters. You need to make measurements on your computer, and do the math to
ensure that your drives get the signals they need.

To make the math easier, I've created an Open Office spreadsheet Step Timing Calculator. You enter
your latency test result and your stepper drive timing requirements and the spreadsheet calculates
the optimum BASE PERIOD. Next, you test the period to make sure it won’t slow down or lock up
your PC. Finally, you enter the actual period, and the spreadsheet will tell you the stepgen parameter
settings that are needed to meet your drive’s timing requirements. It also calculates the maximum
step rate that you will be able to generate.

I've added a few things to the spreadsheet to calculate max speed and stepper electrical calculations.

4.4 INI Configuration

4.4.1 The INI File Components

Un fichier INI typique suit une organisation simple;
— les commentaires

— les sections

— les variables

Each of these elements is separated on single lines. Each end of line or newline character creates a
new element.

4.4.1.1 Comments

A comment line is started with a ; or a # mark. When the INI reader sees either of these marks at the
start a line, the rest of the line is ignored by the software. Comments can be used to describe what an
INI element will do.

https://wiki.linuxcnc.org/uploads/StepTimingCalculator.ods

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 136/1261

; Ceci est le fichier de configuration de ma petite fraiseuse.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different
variables.

DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone
carelessly edits a list like this and leaves two of the lines uncommented, the first one encountered will
be used.

Noter que dans une ligne de variables, les caractéres # et ; n’indiquent pas un commentaire:

INCORRECT = valeur # et un commentaire

Commentaire correct
CORRECT = valeur

4.4.1.2 Sections

Related parts of an INI file are separated into sections. A section name is enclosed in brackets like
this: [THIS SECTION]. The order of sections is unimportant. Sections begin at the section name and
end at the next section name.

Les sections suivantes sont utilisées par LinuxCNC :

— [EMC] general information

— [DISPLAY] settings related to the graphical user interface

— [FILTER] settings input filter programs

— [RS274NGC] settings used by the G-code interpreter

— [EMCMOT] settings used by the real time motion controller

— [TASK] settings used by the task controller

— [HAL] specifies .hal files

— [HALUI] MDI commands used by HALUI

— [APPLICATIONS] Other applications to be started by LinuxCNC
— [TRA]] additional settings used by the real time motion controller
— [JOINT n] individual joint variables

— [AXIS 1] individual axis variables

— [KINS] kinematics variables

— [EMCIOQO] settings used by the I/O Controller

4.4.1.3 \Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the
first non-white space character after the = up to the end of the line is passed as the value, so you can
embed spaces in string symbols if you want to or need to. A variable name is often called a keyword.

Exemple de variable
MACHINE = Ma Machine

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 137 /1261

Avariable line may be extended to multiple lines with a terminal backslash (\) character. A maximum of
MAX_ EXTEND LINES (==20) are allowed. There must be no whitespace following the trailing backslash
character.

Les identifiants de section ne peuvent pas étre étendus a plusieurs lignes.

Variable with Line extends Example

APP = sim pin \
ini.0.max_acceleration \
ini.l.max_acceleration \
ini.2.max_acceleration \
ini.0.max_velocity \
ini.l.max_velocity \
ini.2.max _velocity

Variables booléennes Boolean values can be on one of TRUE, YES or 1 for true/enabled and one of
FALSE, NO or 0O for false/disabled. The case is ignored.

Les paragraphes suivants détaillent chaque section du fichier de configuration, en utilisant des exemples
de variables dans les lignes de configuration.

Variables that are used by LinuxCNC must always use the section names and variable names as shown.

4.4.1.4 Custom Sections and Variables

Certaines configurations utilisent des sections utilisateur et des variables personnalisées pour regrou-
per les parametres en un seul emplacement pour améliorer la lisibilité du fichier INI.

Pour ajouter une variable utilisateur a une section LinuxCNC, inclure simplement cette variable dans
la section souhaitée.

Custom Variable Example, assigning the value LINEAR to the variable TYPE, and the value
16000 to the variable SCALE.

[JOINT 0]
TYPE = LINEAR

SCALE = 16000

Pour introduire une section personnalisée avec ses propres variables, ajoutez la section et les variables
au fichier INL

Exemple de section utilisateur

[PROBE]

Z FEEDRATE = 50

Z OFFSET = 12

Z SAFE_DISTANCE = -10

Pour utiliser une variable utilisateur dans un fichier HAL, utiliser les noms de section et de variable
en lieu et place de leurs valeurs.

Exemple d’utilisation dans un fichier HAL

setp offset.l.offset [PROBE]Z OFFSET
setp stepgen.0.position-scale [JOINT O]SCALE

Note
La valeur stockée dans la variable doit correspondre au type spécifié pour la pin du composant.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 138 /1261

To use the custom variables in G-code, use the global variable syntax #< ini[section]variable>.
The following example shows a simple Z-axis touch-off routine for a router or mill using a probe plate.

G-code Example

G91

G38.2 Z#< ini[probe]z safe distance> F#< ini[probe]z feedrate>
G90

Gl Z#5063

G10 L20 PO Z#< ini[probe]z offset>

4.4.1.5 Include Files

Un fichier INT peut inclure le contenu d’un autre fichier en utilisant une directive #INCLUDE.
Format #INCLUDE
#INCLUDE nom de fichier

Le nom du fichier peut étre spécifié comme :

— un fichier dans le méme répertoire que le fichier INI

— un fichier situé par rapport au répertoire de travail

— un nom de fichier absolu (commence par un /)

— un nom de fichier relatif au domicile de 1'utilisateur (commence par un ~)
Plusieurs directives #INCLUDE sont supportées.

Exemples #INCLUDE

#INCLUDE joint 0.inc

#INCLUDE ../parallel/joint 1l.inc

#INCLUDE below/joint 2.inc

#INCLUDE /home/myusername/myincludes/display.inc
#INCLUDE ~/linuxcnc/myincludes/rs274ngc.inc

The #INCLUDE directives are supported for one level of expansion only — an included file may not
include additional files. The recommended file extension is .inc. Do not use a file extension of .ini for
included files.

4.4.2 INI File Sections

4.4.2.1 [EMC] Section

— VERSION = 1.1 - The format version of this configuration. Any value other than 1.1 will cause the
configuration checker to run and try to update the configuration to the new style joint axes type of
configuration.

— MACHINE = My Controller - This is the name of the controller, which is printed out at the top of
most graphical interfaces. You can put whatever you want here as long as you make it a single line
long.

— DEBUG = 0 - Debug level 0 means no messages will be printed when LinuxCNC is run from a termi-
nal. Debug flags are usually only useful to developers. See src/emc/nml intf/debugflags.h for other
settings.

— RCS DEBUG = 1 RCS debug messages to show. Print only errors (1) by default if EMC DEBUG _RCS
and EMC DEBUG RCS bits in DEBUG are unset, otherwise print all (-1). Use this to select RCS
debug messages. See src/libnml/rcs/rcs_print.hh for all MODE flags.

— RCS_DEBUG _DEST = STDOUT - how to output RCS DEBUG messages (NULL, STDOUT, STDERR,
FILE, LOGGER, MSGBOX).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 139/1261

— RCS_MAX ERR = -1 - Number after which RCS errors are not reported anymore (-1 = infinite).

— NML_FILE = /usr/share/linuxcnc/linuxcnc.nml - Set this if you want to use a non-default NML
configuration file.

4.4.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every
user interface. There are several interfaces, like AXIS, GMOCCAPY, Touchy, QtVCP’s QtDragon and
Gscreen. AXIS is an interface for use with normal computer and monitor, Touchy is for use with touch
screens. GMOCCAPY can be used both ways and offers also many connections for hardware controls.
Descriptions of the interfaces are in the Interfaces section of the User Manual.

— DISPLAY = axis - The file name of the executable providing the user interface to use. Prominent va-
lid options are (all in lower case): axis, touchy, gmoccapy, gscreen, tklinuxcnc, gtvcp, gtvcp-qtdragon
or qtvcp-gtplasmac.

— POSITION OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show on the DRO
when the user interface starts. The RELATIVE coordinate system reflects the G92 and G5x coordi-
nate offsets currently in effect.

— POSITION FEEDBACK = COMMANDED - The coordinate value (COMMANDED or ACTUAL) to show on the
DRO when the user interface starts. In AXIS this can be changed from the View menu. The COM-
MANDED position is the position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors if they have feedback like most servo systems. Typically the COMMANDED
value is used.

— DRO_FORMAT MM = %+08.6f - Override the default DRO formatting in metric mode (normally 3 de-
cimal places, padded with spaces to 6 digits to the left). The example above will pad with zeros,
display 6 decimal digits and force display of a + sign for positive numbers. Formatting follows
Python practice: https://docs.python.org/2/library/string.html#format-specification-mini-language
. An error will be raised if the format can not accept a floating-point value.

— DRO_FORMAT IN = % 4.1f - Override the default DRO formatting in imperial mode (normally 4 deci-
mal places, padded with spaces to 6 digits to the left). The example above will display only one deci-
mal digit. Formatting follows Python practice: https://docs.python.org/2/library/string.html#format-
specification-mini-language . An error will be raised if the format can not accept a floating-point
value.

— CONE_BASESIZE = .25 - Override the default cone/tool base size of .5 in the graphics display.

— MAX _FEED OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of
the programmed feed rate.

— MIN SPINDLE OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means
50% of the programmed spindle speed. (This is used to set the minimum spindle speed.)

— MIN SPINDLE 0 OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means
50% of the programmed spindle speed. (This is used to set the minimum spindle speed.) On multi
spindle machine there will be entries for each spindle number. Only used by the QtVCP based user
interfaces.

— MAX_SPINDLE OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means
100% of the programmed spindle speed.

— MAX_SPINDLE O OVERRIDE = 1.0 - The maximum feed override the user may select. 1.2 means
120% of the programmed feed rate. On multi spindle machine there will be entries for each spindle
number. Only used by the QtVCP based user interfaces.

— DEFAULT _SPINDLE SPEED = 100 - The default spindle RPM when the spindle is started in manual
mode. If this setting is not present, this defaults to 1 RPM for AXIS and 300 RPM for GMOCCAPY.

— déprécié - utilisez plutét la section [SPINDLE n].

— DEFAULT SPINDLE O SPEED = 100 - The default spindle RPM when the spindle is started in manual
mode. On multi spindle machine there will be entries for each spindle number. Only used by the
QtVCP-based user interfaces.

https://docs.python.org/2/library/string.html#format-specification-mini-language
https://docs.python.org/2/library/string.html#format-specification-mini-language
https://docs.python.org/2/library/string.html#format-specification-mini-language

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 140/ 1261

— déprécié - utilisez la section [SPINDLE n] a la place.

— SPINDLE INCREMENT = 200 - The increment used when clicking increase/decrease buttons. Only
used by the QtVCP based user interfaces.

— déprécié - utilisez la section [SPINDLE n] a la place.

— MIN SPINDLE O SPEED = 1000 - The minimum RPM that can be manually selected. On multi spindle
machine there will be entries for each spindle number. Only used by the QtVCP-based user inter-
faces.

— déprécié - utilisez la section [SPINDLE n] a la place.

— MAX_SPINDLE O SPEED = 20000 - The maximum RPM that can be manually selected. On multi
spindle machine there will be entries for each spindle number. Only used by the QtVCP-based
user interfaces.

— déprécié - utilisez la section [SPINDLE n] a la place.

— PROGRAM_PREFIX = ~/linuxcnc/nc_files - The default directory for G-code files, named subrou-
tines, and user-defined M-codes. The PROGRAM PREFIX directory is searched before the directories
listed in [RS274]SUBROUTINE PATH and [RS274]JUSER M PATH.

— INTRO GRAPHIC = emc2.gif - The image shown on the splash screen.

— INTRO TIME = 5 - The maximum time to show the splash screen, in seconds.

— CYCLE TIME = 100 - Cycle time of the display GUI. Depending on the screen, this can be in seconds
or ms (ms preferred). This is often the update rate rather then sleep time between updates. If the
update time is not set right the screen can become unresponsive or very jerky. A value of 100 ms
(0.1 s) is a common setting though a range of 50 - 200 ms (.05 - .2 s) may be useable. An under
powered CPU may see improvement with a longer setting. Usually the default is fine.

— PREVIEW TIMEOUT = 5 - Timeout (in seconds) for loading graphical preview of G-code. Currently
AXIS only.

— HOMING PROMPT = TRUE - Show prompt message with homing request, when the Power On button
is pressed in AXIS GUI. Pressing the "Ok” button in prompt message is equivalent to pressing the
"Home All” button(or the Ctrl-HOME key).

— FOAM W = 1.5 sets the foam W height.

— FOAM_Z = 0 sets the foam Z height.

— GRAPHICAL MAX FILE SIZE = 20 largest size (in mega bytes) that will be displayed graphically. If
the program is bigger than this setting, a bounding box will be displayed. By default, this setting
is at 20 MB or 1/4 of the system memory, which ever is smaller. A negative value is interpreted as
unlimited.

Note
Les éléments [DISPLAY] suivants sont utilisés par GladeVCP et PyVCP, voir la section embedding a
tab du chapitre GladeVCP ou le PyVCP Chapter pour plus d’informations.

— EMBED TAB NAME = GladeVCP demo

— EMBED TAB COMMAND = halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID\} -u ./gla
./gladevcp/manual-example.ui

Note

Les différents programmes d’interface utilisateur utilisent différentes options, et toutes les options
ne sont pas prises en charge par toutes les interfaces utilisateur. Voir le document AXIS GUI pour
les détails sur AXIS. Voir le document GMOCCAPY pour les détails sur GMOCCAPY.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 141 /1261

DEFAULT LINEAR VELOCITY = .25 - Vitesse minimum par défaut pour les jogs linéaires, en unités
machine par seconde.

MIN VELOCITY = .01 - Valeur approximative minimale du curseur de vitesse de jog.

‘MAX LINEAR VELOCITY = 1.0’ - Vitesse maximum par défaut pour les jogs linéaires, en unités
machine par seconde.

MIN LINEAR VELOCITY = .01 - Approximativement la valeur minimale du curseur de vitesse de
Jog.

DEFAULT ANGULAR VELOCITY = .25 - Vitesse minimum par défaut pour les jogs angulaires, en uni-
tés machine par seconde.

MIN ANGULAR VELOCITY
jog.
MAX_ANGULAR_VELOCITY
machine par seconde.

INCREMENTS = 1 mm, .5 in, ... -Defines the increments available for incremental jogs. The IN-
CREMENTS can be used to override the default. The values can be decimal numbers (e.g., 0.1000)
or fractional numbers (e.g., 1/16), optionally followed by a unit (cm, mm, um, inch, in or mil). If
a unit is not specified the machine unit is assumed. Metric and imperial distances may be mixed:
INCREMENTS = 1inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

GRIDS = 10 mm, 1 in, ... - Définit les valeurs prédéfinies pour les lignes de la grille. La valeur
est interprétée de la méme maniere que INCREMENTS.

OPEN FILE = /chemin/complet/du/fichier.ngc - Le fichier ngc a utiliser au démarrage d’AXIS.
Utilisez une chaine vide ”” et aucun fichier ne sera chargé au démarrage. GMOCCAPY n’utilisera
pas ce parametre, car il propose une entrée correspondante sur sa page de parametres.

EDITOR = gedit - The editor to use when selecting File > Edit to edit the G-code from the AXIS
menu. This must be configured for this menu item to work. Another valid entry is gnome-terminal
-e vim. This entry does not apply to GMOCCAPY, as GMOCCAPY has an integrated editor.

TOOL _EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting
“File > Edit tool table...” in AXIS). Other valid entries are gedit, gnome-terminal -e vim, and
gvim. This entry does not apply to GMOCCAPY, as GMOCCAPY has an integrated editor.

PYVCP = /nomdufichier.xml - Le fichier de description du panneau PyVCP. Voir le PyVCP Chap-
terpour plus d’informations.

PYVCP_POSITION = BOTTOM - The placement of the PyVCP panel in the AXIS user interface. If this
variable is omitted the panel will default to the right side. The only valid alternative is BOTTOM. See
the PyVCP Chapter for more information.

LATHE = 1 - Passe l'affichage en mode tour, avec vue de dessus et la visu soit en rayon, soit en
diametre.

BACK TOOL LATHE = 1 - Any non-empty value (including ”0”) causes axis to use ”"back tool lathe
mode” with inverted X axis.

FOAM = 1 - Any non-empty value (including "0”) causes axis to change the display for foam-cutter
mode.

GEOMETRY = XYZABCUVW - Controle le preview et le backplot du mouvement. Cet élément consiste
en une séquence de lettres d’axe et de caracteres de controle, éventuellement précédés d’'un signe

wono,

.01 - Valeur approximative minimale du curseur de vitesse angulaire de

1.0 - Vitesse maximum par défaut pour les jogs angulaires, en unités

Les lettres X, Y, Z indiquent la translation le long de la coordonnée nommée.

Les lettres A, B, C indiquent la rotation autour des axes correspondants X, Y, Z.

Les lettres U, V, W indiquent la translation le long des axes X, Y, Z.

Chaque lettre spécifiée doit étre présente dans [TRAJ]COORDINATES pour avoir un effet.
Le caractere ”-” précédant une lettre inverse le sens de 1’opération.

The translation and rotation operations are evaluated right-to-left. So using GEOMETRY=XYZBC
specifies a C rotation followed by a B rotation followed by Z, Y, X translations. The ordering of
consecutive translation letters is immaterial.

Uk wbe=

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 142 /1261

7. La chaine GEOMETRIE appropriée dépend de la configuration de la machine et de la cinéma-
tique utilisée pour la controler. Lordre des lettres est important. Par exemple, une rotation
autour de C puis de B est différente d’une rotation autour de B puis de C.

8. Les rotations sont par défaut appliquées par rapport a l'origine de la machine. Exemple :
GEOMETRY=CXYZ traduit d’abord le point de contréle en X, Y, Z et effectue ensuite une rota-
tion C autour de I’axe Z centré sur l'origine de la machine.

9. UVW translation example: GEOMETRY=XYZUVW causes UVW to move in the coordinate system of
the tool and XYZ to move in the coordinate system of the material.

10. Foam-cutting machines (FOAM = 1) should specify "XY;UV” or leave the value blank even though
this value is presently ignored in foam-cutter mode. A future version may define what ”;”
means, but if it does "XY;UV” will mean the same as the current foam default.

11. Experimental: If the exclamation mark (!) character is included in the GEOMETRY string, dis-
play points for A, B, C rotations respect the X, Y, Z offsets set by G5x, G92 codes. Example:
Using GEOMETRY = !CXZ for a machine with [TRAJ]COORDINATES=XZC. This provision applies
for liveplots only — G-code previews should be done with zero G5x, G92 offsets. This can be fa-
cilitated by setting offsets in programs only when task is running as indicated by #< task> ==
1. If nonzero offsets exist at startup due to persistence, offsets should be zeroed and preview
reloaded.

Note
If no [DISPLAY]GEOMETRY is included in the INI file, a default is provided by the [DISPLAY]DISPLAY
GUI program (typically "XYZABCUVW").

— ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into
a number of straight lines; a semicircle is divided into ARCDIVISION parts. Larger values give
a more accurate preview, but take longer to load and result in a more sluggish display. Smaller
values give a less accurate preview, but take less time to load and may result in a faster display.
The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).

— MDI HISTORY_ FILE =-The name of alocal MDI history file. If this is not specified, AXIS will save the
MDI history in .axis_mdi_history in the user s home directory. This is useful if you have multiple
configurations on one computer.

— JOG_AXES = - The order in which jog keys are assigned to axis letters. The left and right ar-
rows are assigned to the first axis letter, up and down to the second, page up/page down to the
third, and left and right bracket to the fourth. If unspecified, the default is determined from the
[TRAJ]1COORDINATES, [DISPLAY]LATHE and [DISPLAY]FOAM values.

— JOG_INVERT = - For each axis letter, the jog direction is inverted. The default is X" for lathes and
blank otherwise.

Note

The settings for J0G_AXES and JOG_INVERT apply to world mode jogging by axis coordinate letter
and are in effect while in world mode after successful homing. When operating in joint mode prior
to homing, keyboard jog keys are assigned in a fixed sequence: left/right: joint0, up/down: jointl,
page up/page down: joint2, left/right bracket: joint3

— USER COMMAND FILE = mycommands.py - The name of an optional, configuration-specific Python file
sourced by the AXIS GUI instead of the user-specific file ~/.axisrc.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

— HELP_FILE = tklinucnc.txt - Path to help file.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 143 /1261

4.4.2.3 [FILTER] Section

AXIS and GMOCCAPY have the ability to send loaded files through a filter program. This filter can
do any desired task: Something as simple as making sure the file ends with M2, or something as
complicated as detecting whether the input is a depth image, and generating G-code to mill the shape it
defines. The [FILTER] section of the INI file controls how filters work. First, for each type of file, write
a PROGRAM EXTENSION-line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write RS274NGC code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by LinuxCNC when Run.

— PROGRAM EXTENSION = .extension Description
If your post processor outputs files in all caps you might want to add the following line:
PROGRAM_EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-G-code converter included with LinuxCNC.

PROGRAM _EXTENSION = .png,.gif,.jpg # Greyscale Depth Image
png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode

An example of a custom G-code converter located in the linuxcnc directory.

PROGRAM EXTENSION = .gcode 3D Printer
gcode = /home/mill/linuxcnc/convert.py

Note
Le fichier programme associé a une extension doit avoir le chemin d’accés complet au programme
ou se trouver dans un répertoire qui se trouve sur le chemin d’accés systeme.

Il est également possible de spécifier un interpréteur:

PROGRAM EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle. Many more G-code generators are on the LinuxCNC Wiki site
https://wiki.linuxcnc.org/.

Python filters should use the print function to output the result to AXIS.

This example program filters a file and adds a W axis to match the Z axis. It depends on there being
a space between each axis word to work.

#!/usr/bin/env python3

import sys

def main(argv):
openfile = open(argv[0], 'r’)
file in = openfile.readlines()

openfile.close()

file out = []
for line in file in:

https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 144 /1261

print(line)
if line.find(’'Z’') != -1:
words = line.rstrip(’\n’")
words = words.split(’ ")
newword = '’
for i in words:
if i[0] == 'Z":
newword = 'W'+ i[1:]
if len(newword) > 0:
words.append(newword)
newline = ' ’'.join(words)
file out.append(newline)
else:
file out.append(line)
for item in file out:
print(”%s” % item)

”n ”

if name_ == " main ":
main(sys.argv([1l:])

— FILTER PROGRESS=%d
If the environment variable AXIS PROGRESS BAR is set, then lines written to stderr of the form
above sets the AXIS progress bar to the given percentage. This feature should be used by any filter
that runs for a long time.

4.4.2.4 [RS274NGC] Section

— PARAMETER_FILE = myfile.var-The filelocated in the same directory as the INI file which contains
the parameters used by the interpreter (saved between runs).

— ORIENT OFFSET = 0 - A float value added to the R word parameter of an M19 Orient Spindle ope-
ration. Used to define an arbitrary zero position regardless of encoder mount orientation.

— RS274NGC_STARTUP CODE = G17 G20 G40 G49 G64 P0.001 G80 G90 G92.1 G94 G97 G98- A string
of NC codes that the interpreter is initialized with. This is not a substitute for specifying modal G-
codes at the top of each NGC file, because the modal codes of machines differ, and may be changed
by G-code interpreted earlier in the session.

— SUBROUTINE PATH = ncsubroutines:/tmp/testsubs:lathesubs:millsubs - Specifies a colon (:)
separated list of up to 10 directories to be searched when single-file subroutines are specified in G-
code. These directories are searched after searching [DISPLAY]PROGRAM PREFIX (if it is specified)
and before searching [WIZARD]WIZARD ROOT (if specified). The paths are searched in the order
that they are listed. The first matching subroutine file found in the search is used. Directories are
specified relative to the current directory for the INI file or as absolute paths. The list must contain
no intervening whitespace.

— G64 DEFAULT TOLERANCE = n (Default: 0) Default P value for G64 if P is not called out.

— G64 DEFAULT NAIVETOLERANCE = n (Default: 0) Default Q value for G64 if Q is not called out.

— CENTER ARC RADIUS TOLERANCE INCH = n (Default: 0.00005)

— CENTER _ARC_RADIUS TOLERANCE MM = n (Default: 0.00127)

— USER M PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separa-
ted directories for user defined functions. Directories are specified relative to the current directory
for the INI file or as absolute paths. The list must contain no intervening whitespace.

A search is made for each possible user defined function, typically (M100-M199). The search order
is:

1. [DISPLAY]PROGRAM PREFIX (if specified)
2. If [DISPLAY]PROGRAM PREFIX is not specified, search the default location: nc_files

Li

nuxCNC V2.10.0-pre0-4994-g913129ce3c 145 /1261

3. Then search each directory in the list [RS274NGC]JUSER M PATH.

The first executable M1xx found in the search is used for each M1xx.

Note
The maximum number of USER M PATH directories is defined at compile time (typ:
USER DEFINED FUNCTION MAX DIRS == 5).

INI VARS = 1 (Default: 1)

Allows G-code programs to read values from the INI file using the format #<_ini[section]lname>.
See G-code Parameters.

HAL PIN VARS = 1 (Default: 1)

Allows G-code programs to read the values of HAL pins using the format #< hal[HAL item]>.
Variable access is read-only. See G-code Parameters for more details and an important caveat.
RETAIN G43 = 0 (Default: 0)

When set, you can turn on G43 after loading the first tool, and then not worry about it through the
program. When you finally unload the last tool, G43 mode is canceled.

OWORD NARGS = 0 (Default: 0)

If this feature is enabled then a called subroutine can determine the number of actual positional
parameters passed by inspecting the #<n_args> parameter.

NO_DOWNCASE _OWORD = 0 (Default: 0)

Preserve case in O-word names within comments if set, enables reading of mixed-case HAL items
in structured comments like (debug, #< hal[MixedCaseltem]).

OWORD WARNONLY = 0 (Default: 0)

Warn rather than error in case of errors in O-word subroutines.

DISABLE G92 PERSISTENCE = 0 (Default: 0) Allow to clear the G92 offset automatically when config
start-up.

DISABLE FANUC STYLE SUB = 0 (Default: 0) If there is reason to disable Fanuc subroutines set it
to 1.

PARAMETER G73 PECK CLEARANCE = .020 (default: Metric machine: 1mm, imperial machine:
.050 inches) Chip breaking back-off distance in machine units
PARAMETER G83 PECK CLEARANCE = .020 (default: Metric machine: 1mm, imperial machine:
.050 inches) Clearance distance from last feed depth when machine rapids back to bottom of hole,
in machine units.

Note

The above six options were controlled by the FEATURES bitmask in versions of LinuxCNC prior to 2.8.
This INI tag will no longer work.

For reference:

FEATURES & 0x1 -> RETAIN G43
FEATURES & 0x2 -> OWORD_ NARGS
FEATURES & 0x4 -> INI VARS

FEATURES & 0x8 -> HAL PIN VARS
FEATURES & 0x10 -> NO DOWNCASE OWORD
FEATURES & 0x20 -> OWORD WARNONLY

Note
[WIZARD]WIZARD ROOT is a valid search path but the Wizard has not been fully implemented and the
results of using it are unpredictable.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 146 /1261

— LOG_LEVEL = 0 Specify the log level (default: 0)

— LOG_FILE = file-name.log
For specify the file used for log the data.

— REMAP=M400 modalgroup=10 argspec=Pq ngc=myprocedure See Remap Extending G-code chap-
ter for details.

— ON_ABORT_COMMAND=0 <on_abort> call See Remap Extending G-code chapter for details.

4.4.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values
from this section to load the motion controller. For more information on the motion controller see the
Motion section.

— EMCMOT = motmod - the motion controller name is typically used here.

— BASE_PERIOD = 50000 - the Base task period in nanoseconds.

— SERVO_PERIOD = 1000000 - This is the ”"Servo” task period in nanoseconds.

— TRAJ PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

— COMM_TIMEOUT = 1.0 - Number of seconds to wait for Motion (the realtime part of the motion
controller) to acknowledge receipt of messages from Task (the non-realtime part of the motion
controller).

— HOMEMOD = alternate homing module [home parms=value] The HOMEMOD variable is optional. If
specified, use a specified (user-built) module instead of the default (homemod). Module parameters
(home parms) may be included if supported by the named module. The setting may be overridden
from the command line using the -m option ($ linuxcnc -h).

4.4.2.6 [TASK] Section

— TASK = milltask - Specifies the name of the task executable. The task executable does various
things, such as

— communicate with the Uls over NML,
— communicate with the realtime motion planner over non-HAL shared memory, and

— interpret G-code. Currently there is only one task executable that makes sense for 99.9% of
users, milltask.

— CYCLE TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the
polling interval when waiting for motion to complete, when executing a pause instruction, and
when accepting a command from a user interface. There is usually no need to change this number.

4.4.2.7 [HAL] section

— HALFILE = example.hal - Execute the file example.hal at start up.

If HALFILE is specified multiple times, the files are interpreted in the order they appear in the
INI file. HAL files are descriptive, the execution of what is described in HAL files is triggered
by the threads in which functions are embedded, not by the reading of the HAL file. Almost all
configurations will have at least one HALFILE, and stepper systems typically have two such files, i.e.,
one which specifies the generic stepper configuration (core_stepper.hal) and one which specifies
the machine pin out (xxx_pinout.hal).

HAL files specified in the HALFILES variable are found using a search. If the named file is found in
the directory containing the INI file, it is used. If the named file is not found in this INI file directory,
a search is made using a system library of HAL files.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 147 /1261

If LinuxCNC is started with the linuxcnc script using the ”-H dirname” option, the specified dir-
name is prepended to the search described above so that dirname is searched first. The ”-H dir-
name” option may be specified more than once, directories are prepended in order.

A HALFILE may also be specified as an absolute path (when the name starts with a / character).
Absolute paths are not recommended as their use may limit relocation of configurations.

— HALFILE = texample.tcl [argl [arg2] ...] - Execute the tcl file texample.tcl at start up with argl,
arg2, etc. as argv list. Files with a .tcl suffix are processed as above but use haltcl for processing.
See the HALTCL Chapter for more information.

— HALFILE = LIB:sys example.hal - Execute the system library file sys example.hal at start up.
Explicit use of the LIB: prefix causes use of the system library HALFILE without searching the INI
file directory.

— HALFILE = LIB:sys texample.tcl[argl [arg2...]1]- Execute the system library file sys texample.tcl
at start up. Explicit use of the LIB: prefix causes use of the system library HALFILE without sear-
ching the INI file directory.

HALFILE items specify files that loadrt HAL components and make signal connections between com-
ponent pins. Common mistakes are

1. omission of the addf statement needed to add a component’s function(s) to a thread,

2. incomplete signal (net) specifiers.
Omission of required addf statements is almost always an error. Signals usually include one or more
input connections and a single output (but both are not strictly required). A system library file is
provided to make checks for these conditions and report to stdout and in a pop-up GUI:

HALFILE = LIB:halcheck.tcl [nopopup]

Note

The LIB:halcheck.tcl line should be the last [HAL]JHALFILE. Specify the nopopup option to suppress
the popup message and allow immediate starting. Connections made using a POSTGUI_HALFILE are
not checked.

— TWOPASS = ON - Use twopass processing for loading HAL components. With TWOPASS processing,
lines of files specified in [HAL]JHALFILE are processed in two passes. In the first pass (pass0), all
HALFILES are read and multiple appearances of loadrt and loadusr commands are accumulated.
These accumulated load commands are executed at the end of passO. This accumulation allows
load lines to be specified more than once for a given component (provided the names= names used
are unique on each use). In the second pass (pass1), the HALFILES are reread and all commands
except the previously executed load commands are executed.

— TWOPASS = nodelete verbose - The TWOPASS feature can be activated with any non-null string
including the keywords verbose and nodelete. The verbose keyword causes printing of details to
stdout. The nodelete keyword preserves temporary files in /tmp.

For more information see the HAL TWOPASS chapter.

— HALCMD = command - Execute command as a single HAL command. If HALCMD is specified mul-
tiple times, the commands are executed in the order they appear in the INI file. HALCMD-lines are
executed after all HALFILE-lines.

— SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending
on the hardware drivers used, this may make it possible to set outputs to defined values when
LinuxCNC is exited normally. However, because there is no guarantee this file will be executed (for
instance, in the case of a computer crash), it is not a replacement for a proper physical e-stop chain
or other protections against software failure.

— POSTGUI HALFILE = example2.hal - Execute exampleZ2.hal after the GUI has created its HAL pins.
Some GUIs create HAL pins and support the use of a postgui halfile to use them. GUIs that support
postgui HAL files include Touchy, AXIS, Gscreen, and GMOCCAPY.

See section PyVCP with AXIS for more information.

— HALUI = halui - adds the HAL user interface pins.

For more information see the HAL User Interface chapter.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 148 /1261

4.4.2.8 [HALUI] section

— MDI COMMAND = G53 GO X0 YO Z0-An MDIcommand can be executed by using halui.mdi-command-00.
Increment the number for each command listed in the [HALUI] section. It is also possible to start
subroutines. MDI COMMAND = o<yoursub> CALL [#<yourvariable>]

4.4.2.9 [APPLICATIONS] Section

LinuxCNC can start other applications before the specified GUI is started. The applications can be
started after a specified delay to allow for GUI-dependent actions (like creating GUI-specific HAL
pins).

— DELAY = value - seconds to wait before starting other applications. A delay may be needed if an
application has dependencies on [HAL]POSTGUI HALFILE actions or GUI-created HAL pins (default
DELAY=0).

— ‘APP = appname [arg]l [arg2 ...]]’ - Application to be started. This specification can be included
multiple times. The appname can be explicitly named as an absolute or tilde specified filename
(first character is / or ~), a relative filename (first characters of filename are ./), or as a file in the
INI file directory. If no executable file is found using these names, then the user search PATH is
used to find the application.

Examples:

— Simulate inputs to HAL pins for testing (using sim pin — a simple GUI to set inputs to parame-
ters, unconnected pins, or signals with no writers):
APP = sim pin motion.probe-input halui.abort motion.analog-in-00

— Invoke halshow with a previuosly saved watchlist. Since LinuxCNC sets the working directory
to the directory for the INI file, you can refer to files in that directory (example: my.halshow):

APP = halshow my.halshow

— Alternatively, a watchlist file identified with a full pathname could be specified:
APP = halshow ~/saved shows/spindle.halshow

— Open halscope using a previously saved configuration:

APP = halscope -i my.halscope

4.4.2.10 [TRA]] Section

AVERTISSEMENT

The new Trajectory Planner (TP) is on by default. If you have no TP settings in your [TRAJ]
section - LinuxCNC defaults to:

ARC_BLEND _ENABLE =1

ARC_BLEND_FALLBACK ENABLE =0

ARC_BLEND_OPTIMIZATION_DEPTH = 50

ARC_BLEND_GAP_CYCLES = 4
ARC_BLEND_RAMP_FREQ = 100

The [TRA]] section contains general parameters for the trajectory planning module in motion.

— ARC _BLEND ENABLE = 1 - Turn on new TP. If set to 0 TP uses parabolic blending (1 segment look
ahead) (Default: 1).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 149 /1261

— ARC BLEND FALLBACK ENABLE = 0 - Optionally fall back to parabolic blends if the estimated speed
is faster. However, this estimate is rough, and it seems that just disabling it gives better perfor-
mance (Default: 0).

— ARC_BLEND OPTIMIZATION DEPTH = 50 - Look ahead depth in number of segments.

To expand on this a bit, you can choose this value somewhat arbitrarily. Here’s a formula to estimate
how much depth you need for a particular config:

#n=vmax / (2.0 * a max * t c)

where:

n = optimization depth

v_max = max axis velocity (UU / sec)

a _max = max axis acceleration (UU / sec)
t c = servo period (seconds)

So, a machine with a maximum axis velocity of 10 IPS, a max acceleration of 100 IPS?, and a servo
period of 0.001 s would need:

10/ (2.0 * 100 * 0.001) = 50 segments to always reach maximum velocity along the fastest axis.

In practice, this number isn’t that important to tune, since the look ahead rarely needs the full
depth unless you have lots of very short segments. If during testing, you notice strange slowdowns
and can’t figure out where they come from, first try increasing this depth using the formula above.

If you still see strange slowdowns, it may be because you have short segments in the program. If
this is the case, try adding a small tolerance for Naive CAM detection. A good rule of thumb is this:

min length ~= v req * t c

where:

v _req = desired velocity in UU / sec
t c = servo period (seconds)

If you want to travel along a path at 1IPS = 60IPM, and your servo period is 0.001 s, then any
segments shorter than min length will slow the path down. If you set Naive CAM tolerance to
around this min length, overly short segments will be combined together to eliminate this bot-
tleneck. Of course, setting the tolerance too high means big path deviations, so you have to play
with it a bit to find a good value. I'd start at 1/2 of the min length, then work up as needed. *
ARC BLEND GAP CYCLES = 4 How short the previous segment must be before the trajectory plan-
ner consumes it.

Often, a circular arc blend will leave short line segments in between the blends. Since the geometry
has to be circular, we can’t blend over all of a line if the next one is a little shorter. Since the
trajectory planner has to touch each segment at least once, it means that very tiny segments will
slow things down significantly. My fix to this way to “consume” the short segment by making it a
part of the blend arc. Since the line+blend is one segment, we don’t have to slow down to hit the
very short segment. Likely, you won’t need to touch this setting. * ARC_ BLEND RAMP_FREQ = 20 -
This is a cutoff frequency for using ramped velocity.

Ramped velocity in this case just means constant acceleration over the whole segment. This is less
optimal than a trapezoidal velocity profile, since the acceleration is not maximized. However, if
the segment is short enough, there isn’t enough time to accelerate much before we hit the next
segment. Recall the short line segments from the previous example. Since they’re lines, there’s no
cornering acceleration, so we’re free to accelerate up to the requested speed. However, if this line
is between two arcs, then it will have to quickly decelerate again to be within the maximum speed
of the next segment. This means that we have a spike of acceleration, then a spike of deceleration,
causing a large jerk, for very little performance gain. This setting is a way to eliminate this jerk for
short segments.

Basically, if a segment will complete in less time than 1 / ARC BLEND RAMP FREQ, we don’t
bother with a trapezoidal velocity profile on that segment, and use constant acceleration. (Setting
ARC_BLEND RAMP_FREQ = 1000 is equivalent to always using trapezoidal acceleration, if the servo
loop is 1 kHz).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 150/1261

You can characterize the worst-case loss of performance by comparing the velocity that a trapezoi-
dal profile reaches vs. the ramp:

v _ripple = a max / (4.0 * f)

where:

v _ripple = average velocity "loss” due to ramping
a_max = max axis acceleration

f = cutoff frequency from INI

For the aforementioned machine, the ripple for a 20 Hz cutoff frequency is 100 / (4 * 20) = 1.25 IPS.
This seems high, but keep in mind that it is only a worst-case estimate. In reality, the trapezoidal
motion profile is limited by other factors, such as normal acceleration or requested velocity, and so
the actual performance loss should be much smaller. Increasing the cutoff frequency can squeeze
out more performance, but make the motion rougher due to acceleration discontinuities. A value
in the range 20 Hz to 200 Hz should be reasonable to start.

Finally, no amount of tweaking will speed up a tool path with lots of small, tight corners, since you're
limited by cornering acceleration.

— SPINDLES = 3 - The number of spindles to support. It is imperative that this number matches the
“num_spindles” parameter passed to the motion module.

— COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are
valid. Only axes named in COORDINATES are accepted in G-code. It is permitted to write an axis
name more than once (e.g., X Y Y Z for a gantry machine). For the common trivkins kinematics,
joint numbers are assigned in sequence according to the trivkins parameter coordinates=. So, for
trivkins coordinates=xz, joint0 corresponds to X and jointl corresponds to Z. See the kinematics
man page ($ man kins) for information on trivkins and other kinematics modules.

— LINEAR UNITS = <units> - Specifies the machine units for linear axes. Possible choices are mm
or inch. This does not affect the linear units in NC code (the G20 and G21 words do this).

— ANGULAR _UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are
deg, degree (360 per circle), rad, radian (2*mu per circle), grad, or gon (400 per circle). This does
not affect the angular units of NC code. In RS274NGC, A-, B- and C- words are always expressed
in degrees.

— DEFAULT LINEAR VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per
second. The value shown in AXIS equals machine units per minute.

— DEFAULT_LINEAR ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration
used for “teleop” (Cartesian space) jogs, in machine units per second per second.

— MAX_LINEAR VELOCITY = 5.0 -The maximum velocity for any axis or coordinated move, in machine
units per second. The value shown equals 300 units per minute.

— MAX_LINEAR ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis
move, in machine units per second per second.

— POSITION FILE = position.txt - Si réglée a une valeur non vide, les positions des axes (joins)
sont enregistrées dans ce fichier. Cela permet donc de redémarrer avec les mémes coordonnées
que lors de l'arrét, ce qui suppose, que hors puissance, la machine ne fera aucun mouvement
pendant tout son arrét. C’est utile pour les petites machines sans contact d’origine machine. Si
vide, les positions ne seront pas enregistrées et commenceront a 0 a chaque fois que LinuxCNC
démarrera.

— NO_FORCE_HOMING = 1 - LinuxCNC oblige implicitement 1'utilisateur a référencer la machine par
une prise d’origine machine avant de pouvoir lancer un programme ou exécuter une commande
dans le MD], seuls les mouvements de Jog sont autorisés avant les prises d’origines. Mettre NO FORCE H
= 1 permet a I'opérateur averti de s’affranchir de cette restriction de sécurité lors de la phase de
mise au point de la machine.

@ AVERTISSEMENT
NO FORCE HOMING = 1 permettra a la machine de franchir les limites logicielles pendant les
mouvements ce qui n’est pas souhaitable pour un fonctionnement normal.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 151/1261

— HOME = 0 0 0 0 0 0@ 0 O - Position de base du monde nécessaire pour les modules cinématiques
qui calculent les coordonnées du monde en utilisant kinematicsForward() lors du passage du mode
joint au mode téléop. Jusqu'a neuf valeurs de coordonnées (XY Z A B C U V W) peuvent étre
spécifiées, les éléments de fin non utilisés peuvent étre omis. Cette valeur n’est utilisée que pour les
machines dont la cinématique n’est pas triviale. Sur les machines a cinématique triviale (fraiseuse,
tour, portique), cette valeur est ignorée. Note: La configuration de 1’hexapode sim nécessite une
valeur non nulle pour la coordonnée Z.

— TPMOD = alternate trajectory planning module [tp parms=value]
La variable TPMOD est optionnelle. Si elle est spécifiée, un module spécifié (construit par 1'utilisa-
teur) sera utilisé a la place du module par défaut (tpmod). Les parametres du module (tp parms)
peuvent étre inclus s’ils sont supportés par le module nommé. Ce parametre peut étre remplacé a
partir de la ligne de commande en utilisant 1’option -t ($ linuxcnc -h).

— NO_PROBE_JOG_ERROR = 0 - Allow to bypass probe tripped check when you jog manually.

— NO_PROBE_HOME ERROR = 0 - Allow to bypass probe tripped check when homing is in progress.

4.4.2.11 [KINS] Section

— JOINTS = 3 - Spécifie le nombre de joints (moteurs) dans le systéme. Par exemple, une machine
trivkins XYZ avec un seul moteur pour chaque axe a 3 articulations. Une machine a portique avec
un moteur sur chacun des deux axes et deux moteurs sur le troisieme axe possede 4 articula-
tions. (Cette variable de configuration peut étre utilisée par une interface graphique pour définir
le nombre d’articulations (num_joints) spécifié au module de mouvement (motmod).)

— KINEMATICS = trivkins - Specify a kinematics module for the motion module. Guis may use this
variable to specify the loadrt line in hal files for the motmod module. For more information on
kinematics modules see the manpage: $ man kins.

4.4.2.12 [AXIS_<letter>] Section

The <letter> specifiesone of: X YZABCUVW

— TYPE = LINEAR-The type of this axis, either LINEAR or ANGULAR. Required if this axis is not a default
axis type. The default axis types are X,Y,Z, U,V W = LINEAR and A,B,C = ANGULAR. This setting is
effective with the AXIS GUI but note that other GUI’s may handle things differently.

— MAX _VELOCITY = 1.2 - Vitesse maximum pour cet axe en unités machine par seconde.

— MAX_ACCELERATION = 20.0 - Accélération maximum pour cet axe en unités machine par seconde
au carreé.

— MIN LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion. The axis must be homed before MIN LIMIT is
in force. For a rotary axis (A,B,C typ) with unlimited rotation having no MIN LIMIT for that axis in
the [AXIS <letter>] section a value of -1€99 is used.

— MAX LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion. The axis must be homed before MAX LIMIT is
in force. For a rotary axis (A,B,C typ) with unlimited rotation having no MAX LIMIT for that axis in
the [AXIS <letter>] section a value of 199 is used.

— WRAPPED ROTARY = 1 - Lorsque ce parametre est réglé a 1 pour un axe angulaire I’axe se déplace
de 0 a 359.999 degrés. Les nombres positifs déplacent 1’axe dans le sens positif et les nombres
négatifs dans le sens négatif.

— LOCKING INDEXER JOINT = 4 - This value selects a joint to use for a locking indexer for the speci-
fied axis <letter>. In this example, the joint is 4 which would correspond to the B axis for a XYZAB
system with trivkins (identity) kinematics. When set, a GO move for this axis will initiate an unlock
with the joint.4.unlock pin then wait for the joint.4.is-unlocked pin then move the joint at
the rapid rate for that joint. After the move the joint.4.unlock will be false and motion will wait
for joint.4.1is-unlocked to go false. Moving with other joints is not allowed when moving a locked
rotary joint. To create the unlock pins, use the motmod parameter:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 152 /1261

unlock joints mask=jointmask

Les bits du masque de jointure sont les suivants : (LSB)0:joint0, 1:joint1, 2:joint2, ...

Example: loadrt motmod ... unlock joints mask=0x38 creates unlock-pins for joints 3,4,5.

OFFSET AV _RATIO = 0.1 - S’il est différent de zéro, cet élément permet d’utiliser les broches d’en-
trée HAL pour les décalages d’axe externes :

axis.<letter>.eoffset-enable
axis.<letter>.eoffset-count
axis.<letter>.eoffset-scale

See the chapter: External Axis Offsets for usage information.

4.4.2.13 [JOINT_<num>] Sections

The <num> specifies the joint number 0 ... (num_joints-1) The value of num jointsis set by [KINS]JOINTS=.

The [JOINT 0], [JOINT 1], etc. sections contains general parameters for the individual components
in the joint control module. The joint section names begin numbering at 0, and run through the number
of joints specified in the [KINSTJOINTS entry minus 1.

Typically (for systems using trivkins kinematics, there is a 1:1 correspondence between a joint and an
axis coordinate letter):

JOINT 0 = X
JOINT 1 =Y
JOINT 2 =727
JOINT 3 = A
JOINT 4 = B
JOINT 5 =C
JOINT 6 = U
JOINT 7 =V
JOINT 8 = W

Other kinematics modules with identity kinematics are available to support configurations with partial
sets of axes. For example, using trivkins with coordinates=XZ, the joint-axes relationships are:

JOINT 0 = X
JOINT 1 =2

For more information on kinematics modules see the manpage kins (on the UNIX terminal type man
kins).

TYPE = LINEAR - The type of joint, either LINEAR or ANGULAR.

UNITS = INCH -If specified, this setting overrides the related [TRAJ] UNITS setting, e.g., [TRAJ]LINEAR L
if the TYPE of this joint is LINEAR, [TRAJJANGULAR UNITS if the TYPE of this joint is ANGULAR.

MAX VELOCITY = 1.2 - Maximum velocity for this joint in machine units per second.

MAX ACCELERATION = 20.0 - Maximum acceleration for this joint in machine units per second squa-
red.

BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to
make up for small deficiencies in the hardware used to drive an joint. If backlash is added to an
joint and you are using steppers the STEPGEN MAXACCEL must be increased to 1.5 to 2 times the
MAX ACCELERATION for the joint. Excessive backlash compensation can cause an joint to jerk as it
changes direction. If a COMP FILE is specified for a joint BACKLASH is not used.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 153 /1261

— COMP_FILE = file.extension - The compensation file consists of map of position information for the
joint. Compensation file values are in machine units. Each set of values are are on one line separated
by a space. The first value is the nominal value (the commanded position). The second and third
values depend on the setting of COMP_FILE TYPE. Points in between nominal values are interpolated
between the two nominals. Compensation files must start with the smallest nominal and be in
ascending order to the largest value of nominals. File names are case sensitive and can contain
letters and/or numbers. Currently the limit inside LinuxCNC is for 256 triplets per joint.

If COMP_FILE is specified for a joint, BACKLASH is not used.

— COMP_FILE TYPE = 0 or 1 - Specifies the type of compensation file. The first value is the nominal
(commanded) position for both types.
A COMP_FILE TYPE must be specified for each COMP FILE.

— Type 0: The second value specifies the actual position as the joint is moving in the positive
direction (increasing value). The third value specifies the actual position as the joint is moving
in the negative direction (decreasing value).

Type 0 Example

-1.000 -1.005 -0.995
0.000 0.002 -0.003
1.000 1.003 0.998

— Type 1: The second value specifies positive offset from nominal while traveling in the positive
direction. The third value specifies the negative offset from nominal while traveling in a negative
direction.

Type 1 Example

-1.000 0.005 -0.005
0.000 0.002 -0.003
1.000 0.003 -0.004

— MIN_LIMIT = -1000 - The minimum limit for joint motion, in machine units. When this limit is
reached, the controller aborts joint motion. For a rotary joint with unlimited rotation having no
MIN LIMIT for that joint in the [JOINT N] section a the value -1€99 is used.

— MAX_LIMIT = 1000 - The maximum limit for joint motion, in machine units. When this limit is
reached, the controller aborts joint motion. For a rotary joint with unlimited rotation having no
MAX LIMIT for that joint in the [JOINT N] section a the value 1e99 is used.

Note

For identity kinematics, the [JOINT NJMIN LIMIT/MAX LIMIT settings must equal or exceed the
corresponding (one-to-one identity) [AXIS L] limits. These settings are verified at startup when the
trivkins kinematics modules is specified.

Note

The [JOINT N]JMIN LIMIT/MAX LIMIT settings are enforced while jogging in joint mode prior to ho-
ming. After homing, [AXIS L]JMIN LIMIT/MAX LIMIT coordinate limits are used as constraints for axis
(coordinate letter) jogging and by the trajectory planning used for G-code moves (programs and MDI
commands). The trajectory planner works in Cartesian space (XYZABCUVW) and has no information
about the motion of joints implemented by any kinematics module. It is possible for joint limit viola-
tions to occur for G-code that obeys trajectory planning position limits when non identity kinematics
are used. The motion module always detects joint position limit violations and faults if they occur
during the execution of G-code commands. See also related GitHub issue #97.

https://github.com/LinuxCNC/linuxcnc/issues/97

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 154 /1261

— MIN_FERROR = 0.010 - This is the value in machine units by which the joint is permitted to deviate
from commanded position at very low speeds. If MIN FERROR is smaller than FERROR, the two
produce a ramp of error trip points. You could think of this as a graph where one dimension is
speed and the other is permitted following error. As speed increases the amount of following error
also increases toward the FERROR value.

— FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the diffe-
rence between commanded and sensed position exceeds this amount, the controller disables servo
calculations, sets all the outputs to 0.0, and disables the amplifiers. If MIN FERROR is present in the
INI file, velocity-proportional following errors are used. Here, the maximum allowable following er-
ror is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJ]MAX VELOCITY,
and proportionally smaller following errors for slower speeds. The maximum allowable following
error will always be greater than MIN FERROR. This prevents small following errors for stationary
axes from inadvertently aborting motion. Small following errors will always be present due to vi-
bration, etc.

— LOCKING INDEXER = 1 - Indicates the joint is used as a locking indexer.

These parameters are Homing related, for a better explanation read the Homing Configuration Chap-

ter.

— HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

— HOME_OFFSET = 0.0 - The joint position of the home switch or index pulse, in machine units. When
the home point is found during the homing process, this is the position that is assigned to that point.
When sharing home and limit switches and using a home sequence that will leave the home/limit
switch in the toggled state, the home offset can be used define the home switch position to be other
than 0 if your HOME position is desired to be 0.

— HOME_SEARCH VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direc-
tion of travel. A value of zero means assume that the current location is the home position for the
machine. If your machine has no home switches you will want to leave this value at zero.

— HOME_LATCH VEL = 0.0 - Homing velocity in machine units per second to the home switch latch
position. Sign denotes direction of travel.

— HOME_FINAL VEL = 0.0 - Velocity in machine units per second from home latch position to home
position. If left at 0 or not included in the joint rapid velocity is used. Must be a positive number.

— HOME_USE_INDEX = NO - If the encoder used for this joint has an index pulse, and the motion card
has provision for this signal you may set it to yes. When it is yes, it will affect the kind of home
pattern used. Currently, you can’t home to index with steppers unless you're using StepGen in
velocity mode and PID.

— HOME_INDEX NO ENCODER RESET = NO - Use YES if the encoder used for this joint does not reset
its counter when an index pulse is detected after assertion of the joint index enable HAL pin.
Applicable only for HOME USE INDEX = YES.

— HOME_IGNORE_LIMITS = NO - When you use the limit switch as a home switch and the limit switch
this should be set to YES. When set to YES the limit switch for this joint is ignored when homing.
You must configure your homing so that at the end of your home move the home/limit switch is not
in the toggled state you will get a limit switch error after the home move.

— HOME_IS_SHARED = <n> -If the home input is shared by more than one joint set <n> to 1 to prevent
homing from starting if the one of the shared switches is already closed. Set <n> to 0 to permit
homing if a switch is closed.

— HOME_ABSOLUTE _ENCODER = 0] 1| 2 - Used to indicate the joint uses an absolute encoder. At a re-
quest for homing, the current joint value is set to the HOME_OFFSET value. If the HOME_ABSOLUTE_ENCODER
setting is 1, the machine makes the usual final move to the HOME value. If the HOME_ ABSOLUTE_ENCODER
setting is 2, no final move is made.

— HOME_SEQUENCE = <n> - Used to define the "Home All” sequence. <n> must start at 0 or 1 or -1.
Additional sequences may be specified with numbers increasing by 1 (in absolute value). Skipping
of sequence numbers is not allowed. If a HOME_SEQUENCE is omitted, the joint will not be homed
by the "Home All” function. More than one joint can be homed at the same time by specifying the
same sequence number for more than one joint. A negative sequence number is used to defer the
final move for all joints having that (negative or positive) sequence number. For additional info,
see: HOME SEQUENCE.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 155/1261

— VOLATILE HOME = 0O - When enabled (set to 1) this joint will be unhomed if the Machine Power is
off or if E-Stop is on. This is useful if your machine has home switches and does not have position
feedback such as a step and direction driven machine.

These parameters are relevant to joints controlled by servos.

AVERTISSEMENT

® The following are custom INI file entries that you may find in a sample INI file or a wizard
generated file. These are not used by the LinuxCNC software. They are only there to put all the
settings in one place. For more information on custom INI file entries see the Custom Sections
and Variables subsection.

The following items might be used by a PID component and the assumption is that the output is volts.

— DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine
units.

This is often set to a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict
rules. Looser (larger) settings allow less servo hunting at the expense of lower accuracy. Tighter
(smaller) settings attempt higher accuracy at the expense of more servo hunting. Is it really more
accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.

Be careful about going below 1 encoder count, since you may create a condition where there is no
place that your servo is happy. This can go beyond hunting (slow) to nervous (rapid), and even to
squealing which is easy to confuse with oscillation caused by improper tuning. Better to be a count
or two loose here at first, until you’ve been through gross tuning at least.

Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

1 revolution 1line 0.2units _ 0.200units _ 0.00005 units
1000lines ~ 4 pulse/line” 1revolution 4000 pulses 1 pulse

— BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is
added to the output. In most cases it should be left at zero. However, it can sometimes be useful
to compensate for offsets in servo amplifiers, or to balance the weight of an object that moves
vertically. Bias is turned off when the PID loop is disabled, just like all other components of the
output.

— P = 50 - The proportional gain for the joint servo. This value multiplies the error between com-
manded and actual position in machine units, resulting in a contribution to the computed voltage

volts

for the motor amplifier. The units on the P gain are volts per machine unit, e.g., unit

— I = 0-Theintegral gain for the joint servo. The value multiplies the cumulative error between com-
manded and actual position in machine units, resulting in a contribution to the computed voltage
volts

for the motor amplifier. The units on the I gain are volts per machine unit second, e.g., unit second

— D = 0 - The derivative gain for the joint servo. The value multiplies the difference between the
current and previous errors, resulting in a contribution to the computed voltage for the motor
volts

amplifier. The units on the D gain are volts per machine unit per second, e.g., unit second

— FFO = 0 - The 0 order feed forward gain. This number is multiplied by the commanded position,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF0
volts

gain are volts per machine unit, e.g., unit

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 156 /1261

— FF1 = 0 - The 1% order feed forward gain. This number is multiplied by the change in commanded
position per second, resulting in a contribution to the computed voltage for the motor amplifier.
volts

The units on the FF1 gain are volts per machine unit per second, e.g., unit second
— FF2 = 0 - The 2™ order feed forward gain. This number is multiplied by the change in comman-
ded position per second per second, resulting in a contribution to the computed voltage for the
motor amplifier. The units on the FF2 gain are volts per machine unit per second per second, e.g.,
volts

B 2
unit second

— OUTPUT SCALE = 1.000
— OUTPUT _OFFSET = 0.000

These two values are the scale and offset factors for the joint output to the motor amplifiers.

The second value (offset) is subtracted from the computed output (in volts), and divided by the first
value (scale factor), before being written to the D/A converters. The units on the scale value are
in true volts per DAC output volts. The units on the offset value are in volts. These can be used to
linearize a DAC. Specifically, when writing outputs, the LinuxCNC first converts the desired output
in quasi-SI units to raw actuator values, e.g., Volts for an amplifier DAC. This scaling looks like:
- output— offset

ra
scale

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI
units]/[actuator units]. For example, on a machine with a velocity mode amplifier such that 1V
results in 250 mm/s velocity.

mm
secvolt

. mm . mm
li lts |=(t|—|— t|—1)/250
amplifier| volts |={ outpu |ser:' offset| woc

Note that the units of the offset are in machine units, e.g. mm/s, and they are pre-subtracted from
the sensor readings. The value for this offset is obtained by finding the value of your output which
yields 0.0 for the actuator output. If the DAC is linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the
combined effects of amplifier gain, DAC non-linearity, DAC units, etc.

To do this, follow this procedure.

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring
the result.

3. Note that we want raw output such that our measured result is identical to the commanded
output. This means

a. command =a*raw +b
b. raw=(command—b)/a

4. As a result, the a and b coefficients from the linear fit can be used as the scale and offset for
the controller directly.

See the following table for an example of voltage measurements.

Table 4.1: Output Voltage Measurements

Raw Measured
-10 -9.93

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 157 /1261

Table 4.1: (continued)

Raw Measured
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

— MAX _OUTPUT = 10 - The maximum value for the output of the PID compensation that is written
to the motor amplifier, in volts. The computed output value is clamped to this limit. The limit is
applied before scaling to raw output units. The value is applied symmetrically to both the plus and
the minus side.

— INPUT SCALE = 20000 - in Sample configs

— ENCODER SCALE = 20000 - in PnCconf built configs

Specifies the number of pulses that corresponds to a move of one machine unit as set in the [TRAJ]
section. For a linear joint one machine unit will be equal to the setting of LINEAR _UNITS. For an angular
joint one unit is equal to the setting in ANGULAR UNITS. A second number, if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we
have:

input scale=2000 2425 4 10 L&Y —2000p S
rev inch inch

These parameters are relevant to joints controlled by steppers.

AVERTISSEMENT

@ The following are custom INI file entries that you may find in a sample INI file or a wizard
generated file. These are not used by the LinuxCNC software and meant only to put all the
settings in one place. For more information on custom INI file entries see the Custom Sections
and Variables subsection.

The following items might be used by a StepGen component.

— SCALE = 4000 - in Sample configs
— STEP_SCALE = 4000 - in PnCconf built configs

Specifies the number of pulses that corresponds to a move of one machine unit as set in the [TRAJ]
section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
joint one machine unit will be equal to the setting of LINEAR UNITS. For an angular joint one unit is
equal to the setting in ANGULAR UNITS. For servo systems, this is the number of feedback pulses per
machine unit. A second number, if specified, is ignored.

For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired
machine units of inch, we have:

2steps 50 degree 10— 4000 steps

input scale = ; =
nputscate 1.8 degrees rev inch inch

Note
Old INI and HAL files used INPUT SCALE for this value.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 158 /1261

— ENCODER SCALE = 20000 (Optionally used in PnCconf built configs) - Specifies the number of pulses
that corresponds to a move of one machine unit as set in the [TRAJ] section. For a linear joint one
machine unit will be equal to the setting of LINEAR UNITS. For an angular joint one unit is equal
to the setting in ANGULAR _UNITS. A second number, if specified, is ignored. For example, on a 2000
counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale=2000 2415 4 10 L&Y~ 20000 S241E
rev inch inch

— STEPGEN_MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10%
larger than the joint MAX ACCELERATION. This value improves the tuning of StepGen’s "position
loop”. If you have added backlash compensation to an joint then this should be 1.5 to 2 times
greater than MAX ACCELERATION.

— STEPGEN_MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as
well. If specified, it should also be 1% to 10% larger than the joint MAX VELOCITY. Subsequent
testing has shown that use of STEPGEN_MAXVEL does not improve the tuning of StepGen’s position
loop.

4.4.2.14 [SPINDLE_<num>] Section(s))

The <num> specifies the spindle number O ... (num_spindles-1)

The value of num_spindles is set by [TRAJ]SPINDLES=.

By default maximum velocity of the spindle in forward and reverse is approximately 2147483000 RPM.
By default minimum velocity of the spindle in forward and reverse is 0 RPM.

By default the increment is 100 RPM.

You change these default by setting the following INI variables:

Note
These settings are for the motion controller component. Control screens can limit these settings
further.

— MAX_FORWARD VELOCITY = 20000 The maximum spindle speed (in rpm) for the specified spindle.
Optional. This will also set MAX REVERSE VELOCITY to the negative value unless overridden.

— MIN_FORWARD VELOCITY = 3000 The minimum spindle speed (in rpm) for the specified spindle.
Optional. Many spindles have a minimum speed below which they should not be run. Any spindle
speed command below this limit will be /increased/ to this limit.

— MAX REVERSE_VELOCITY = 20000 This setting will default to MAX_FORWARD VELOCITY if omitted. It
can be used in cases where the spindle speed is limited in reverse. Set to zero for spindles which
must not be run in reverse. In this context “max” refers to the absolute magnitude of the spindle
speed.

— MIN REVERSE VELOCITY = 3000 ‘This setting is equivalent to MIN_FORWARD VELOCITY but for re-
verse spindle rotation. It will default to the MIN FORWARD VELOCITY if omitted.

— INCREMENT = 200 Sets the step size for spindle speed increment / decrement commands. This can
have a different value for each spindle. This setting is effective with AXIS and Touchy but note that
some control screens may handle things differently.

— HOME_SEARCH VELOCITY = 100 - FIXME: Spindle homing not yet working. Sets the homing speed
(rpm) for the spindle. The spindle will rotate at this velocity during the homing sequence until the
spindle index is located, at which point the spindle position will be set to zero. Note that it makes
no sense for the spindle home position to be any value other than zero, and so there is no provision
to do so.

— HOME_SEQUENCE = 0 - FIXME: Spindle homing not yet working Controls where in the general ho-
ming sequence the spindle homing rotations occur. Set the HOME SEARCH VELOCITY to zero to avoid
spindle rotation during the homing sequence.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 159/1261

4.4.2.15 [EMCIO] Section

— TOOL TABLE = tool.tbl - The file which contains tool information, described in the User Manual.

— DB_PROGRAM = db_program- Path to an executable program that manages tool data. When a DB PROGRA
is specified, a TOOL TABLE entry is ignored.

— TOOL CHANGE POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool
change if three digits are used. Specifies the XYZABC location when 6 digits are used. Specifies
the XYZABCUVW location when 9 digits are used. Tool Changes can be combined. For example if
you combine the quill up with change position you can move the Z first then the X and Y.

— TOOL CHANGE _WITH SPINDLE ON = 1 - The spindle will be left on during the tool change when the
value is 1. Useful for lathes or machines where the material is in the spindle, not the tool.

— TOOL CHANGE QUILL UP = 1 - The Z axis will be moved to machine zero prior to the tool change
when the value is 1. This is the same as issuing a GO G53 Z0.

— TOOL_CHANGE_AT G30 = 1 - The machine is moved to reference point defined by parameters 5181-
5186 for G30 if the value is 1. For more information see G-code Parameters and G-code G30-G30.1.

— RANDOM_TOOLCHANGER = 1 - This is for machines that cannot place the tool back into the pocket it
came from. For example, machines that exchange the tool in the active pocket with the tool in the
spindle.

4.5 Homing Configuration

4.5.1 Overview

Homing sets the zero origin of the G53 machine coordinates. Soft limits are defined relative to the
machine origin. The soft limits automatically decelerate and stop the axes before they hit the limits
switches A properly configured and functioning machine will not move beyond soft(ware) limits and
will have the machine origin set as repeatable as the home switch/index mechanism is. Linuxcnc can
be homed by eye (alignment marks), with switches, with switches and an encoder index, or by using
absolute encoders. Homing seems simple enough - just move each joint to a known location, and set
LinuxCNC'’s internal variables accordingly. However, different machines have different requirements,
and homing is actually quite complicated.

Note
While it is possible to use LinuxCNC without homing switches/home procedures or limit switches, It
defeats the extra security of the soft limits.

4.5.2 Prerequisite

Homing relies on some fundamental machine assumptions.
— The negative and positive directions are based on Tool Movement which can be different from the
actual machine movement. I.e., on a mill typically the table moves rather then the tool.

— Everything is referenced from the G53 machine zero origin, the origin can be anywhere (even
outside where you can move)

— The G53 machine zero origin is typically inside the soft limits area but not necessarily.

— The homing switch offset sets where the origin is, but even it is referenced from the origin.

— When using encoder index homing, the home switch offset is calculated from the encoder reference
position, after the home switch has been tripped.

— The negative soft(ware) limits are the most you can move in the negative direction after homing.
(but they might not be negative in the absolute sense)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 160/1261

— The positive soft(ware) limits are the most you can move in the positive direction after homing. (but
they might not be positive in the absolute sense, though it is usual to set it as a positive number)

— Soft(ware) limits are inside the limit switch area.

— (Final) Homed Position is inside the soft limit area

— (If using switch based homing) the homing switch(es) either utilize the limit switches (shared home
/ limit switch), or when using a separate home switch, are inside the limit switch area.

— If using a separate homing switch, it is possible to start homing on the wrong side of the home
switch, which combined with HOME IGNORE LIMITS option will lead to a hard crash. You can
avoid this by making the home switch toggle its state when the trip dog is on a particular side until
it returns passed the trip point again. Said another way, the home switch state must represent the
position of the dog relative to the switch (i.e. before or after the switch), and must stay that way
even if the dog coasts past the switch in the same direction.

Note

While it is possible to use LinuxCNC with the G53 machine origin outside the soft machine limits, if
you use G28 or G30 without setting the parameters it goes to the origin by default. This would trip
the limit switches before getting to position.

4.5.3 Separate Home Switch Example Layout

This example shows minimum and maximum limit switches with a separate home switch.

> >+

||||||||:||||||I||| il |||| ||I||u|||||ﬁ|u| il III|IIII|I:I||IIII||[:I|I1I||IIII|:]|I|II|I|I|II|IIII||I|I|III[||:||||||||:||I|||||
-5
-L

Figure 4.6 - Demonstrative Separate Switch Layout

— A is the negative soft limit

— B is the G53 machine coordinate Origin

— C is the home switch trip point

— D is the positive soft limit

— H is the final home position (HOME) = 0 units

— The -L and +L are the limit switches trip points

— A<->B is the negative soft limits (MIN LIMITS) = -3 units
— B<->C is the home offset (HOME OFFSET) = -2.3 units
— B<->D is the positive soft limits (MAX LIMITS) = 7 units

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 161 /1261

— A<->D is the total travel = 10 units

— The distance between the limit switches and soft limits (-L<->A and D<-+L) is magnified in this
example

— Note that there is distance between the limit switches and actual physical hard contact for coasting
after the amplifier is disabled.

Note

Homing sets the G53 coordinate system, while the machine origin (zero point) can be anywhere,
setting the zero point at the negative soft limit makes all G53 coordinates positive, which is probably
easiest to remember. Do this by setting MIN_LIMIT = 0 and make sure MAX_LIMIT is positive.

4.5.4 Shared Limit/Home Switch Example Layout

This example shows a maximum limit switch and a combined minimum limit/home switch.

> >+

A S
e
()
||¢|| :|||||||||||||I||||‘|| |||||||||||I |||‘||||I[||||||||I||.||||||||||||||||||||||||||||||||||||]|||| :|||I||||||||'.I|||||
-2 L 0 1 +L 12
D 6 >0

Figure 4.7 - Demonstrative Shared Switch Layout

— A is the negative soft limit.

— B is the G53 machine coordinate Origin.

— C is the home switch trip point shared with (-L) minimum limit trip.

— D is the positive soft limit.

— H is the final home position (HOME) = 3 units.

— The -L and +L are the limit switch trip points.

— A<->B is the negative soft limits (MIN LIMITS) = O units.

— B<->C is the home offset (HOME OFFSET) = -0.7 units.

— B<->D is the positive soft limits (MAX LIMITS) 10 units.

— A<->D is the total travel = 10 units.

— The distance between the limits switches and soft limits (-L<->A and D<->+L) is magnified in this
example.

— Note that there is distance between the limit switches and actual physical hard contact for coasting
after the amplifier is disabled.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 162 /1261

4.5.5 Homing Sequence

There are four possible homing sequences defined by the sign of HOME SEARCH VEL and HOME LATCH V
along with the associated configuration parameters as shown in the following table. Two basic condi-

tions exist, HOME SEARCH VEL and HOME LATCH VEL are the same sign or they are opposite
signs. For a more detailed description of what each configuration parameter does, see the following
section.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

163 /1261

SEARCH_WEL = POSITWE HOME__OFFSET = 3000
LATCH _VEL = MEGATIVE HOME = 1000
USE__INDEX = FALSE

/=

HOME SWITCH RELEASES
HOME SWITCH TRIFS

/—D'I.-’ERSHDEIT

== &ELRCH FOR HOME SWITCH [HOME_ SEARCH_ WEL)

1006 3000

FIMAL CETECTION OF SWITCH [HOME__LATCH WEL}

G0 TO HOME POSITION [HOME __FINAL _ WEL)

SEARCH_WEL = POSITWE HOME__OFFSET = 3000
LATCH__VEL = POZITIVE HOME = 1.000
USE__INDEX = FALSE

S

HOME SWITCH RELEASES
HOME SWITCH TRIPS

SEARCH FOR HOME SWITCH [HOME_ SERRCH_ WEL)

BaCk OFF OF HOME SWITCH [HOME__SEARCH_WEL]

-

FIMAL CETECTION DF SWITCH [HOME__LATCH _ WEL}

s

1000

3000

G0 TO HOME POSITION [HOME __FINAL _ WEL)

SEARCH__VEL = POSITIVE HOME_ OFFSET = 2000
LATCH__WEL = MEGATIVE HOME = 1400
USE__INDEX = TRUE

/=

HOME %WITCH RELEASES
HOME SWITCH TRIPS

[

SEARCH FOR HOME SWITCH [HOME_ SEARCH_WEL)
FINAL DETECTION OF SWITCH AMD

"

N

1000

3'DMNDE}{ FULSES

INOE¥ PULZE {HOME__LATCH_ WEL|
GO TO HOME POSITION [HOME_ FIMAL_ WEL)

SEARCH_VEL = POSITIVE HOME__QOFFSET = 2000
LATCH__YEL = PORITWE HOME = 1000
USE__INDEX = TRUE

'

HOME SWITCH RELEASES
HOME SWITCH TRIPS

—

[

il

SEARCH FOR HOME SWITCH [HOME__SEARCH__WEL)

"

BACK OFF OF HOME SWITCH (HOME_ SEARCH_ VEL)
FINAL DETECTION OF SWITCH AMD

INOEX FUL3E (HOME__LATCH__WEL|

1000

G0 TO HOME POSITION [HOME_FINAL_ “EL)
I

3.QMNDE}{ PULSES

Figure 4.8 - Homing Sequences

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 164 /1261

4.5.6 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [JOINT n]
section of the INI file.

Homing Type HOME_SEARCH VWOME _ILATCH_VEHOME_USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES
Switch-only nonzero nonzero NO
Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

4.5.6.1 HOME_SEARCH_VEL

This variable has units of machine-units per second.

The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch;
the search stage of homing is skipped.

If HOME SEARCH VEL is non-zero, then LinuxCNC assumes that there is a home switch. It be-

gins by checking whether the home switch is already tripped. If tripped it backs off the switch at

HOME SEARCH VEL. The direction of the back-off is opposite the sign of HOME SEARCH VEL. Then

it searches for the home switch by moving in the direction specified by the sign of HOME SEARCH VEL,
at a speed determined by its absolute value. When the home switch is detected, the joint will stop as

fast as possible, but there will always be some overshoot. The amount of overshoot depends on the

speed. If it is too high, the joint might overshoot enough to hit a limit switch or crash into the end of

travel. On the other hand, if HOME SEARCH VEL is too low, homing can take a long time.

4.5.6.2 HOME_LATCH_VEL

This variable has units of machine-units per second.

Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination
of the home switch (if present) and index pulse location (if present). It will usually be slower than
the search velocity to maximize accuracy. If HOME SEARCH VEL and HOME LATCH VEL have the
same sign, then the latch phase is done while moving in the same direction as the search phase. (In
that case, LinuxCNC first backs off the switch, before moving towards it again at the latch velocity.)
If HOME SEARCH VEL and HOME LATCH VEL have opposite signs, the latch phase is done while
moving in the opposite direction from the search phase. That means LinuxCNC will latch the first pulse
after it moves off the switch. If HOME SEARCH VEL is zero (meaning there is no home switch), and
this parameter is nonzero, LinuxCNC goes ahead to the index pulse search. If HOME SEARCH VEL
is non-zero and this parameter is zero, it is an error and the homing operation will fail. The default
value is zero.

4.5.6.3 HOME_FINAL_VEL

This variable has units of machine-units per second.

It specifies the speed that LinuxCNC uses when it makes its move from HOME OFFSET to the HOME
position. If the HOME FINAL VEL is missing from the INI file, then the maximum joint speed is used
to make this move. The value must be a positive number.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 165/1261

4.5.6.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether
LinuxCNC will ignore the limit switch input for this joint while homing. This setting will not ignore
limit inputs for other joints. If you do not have a separate home switch set this to YES and connect the
limit switch signal to the joint home switch input in HAL. LinuxCNC will ignore the limit switch input
for this joint while homing. To use only one input for all homing and limits you will have to block the
limit signals of the joints not homing in HAL and home one joint at a time.

4.5.6.5 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME USE INDEX = YES),
LinuxCNC will latch on the rising edge of the index pulse. If false, LinuxCNC will latch on either
the rising or falling edge of the home switch (depending on the signs of HOME SEARCH VEL and
HOME LATCH VEL). The default value is NO.

Note
HOME_USE_INDEX requires connections in your HAL file to joint.n.index-enable from the
encoder.n.index-enable.

4.5.6.6 HOME_INDEX_NO_ENCODER_RESET

Default is NO. Use YES if the encoder used for this joint does not reset its counter when an index pulse
is detected after assertion of the joint index enable HAL pin. Applicable only for HOME USE INDEX
= YES.

4.5.6.7 HOME_OFFSET

This defines the location of the origin zero point of the G53 machine coordinate system. It is the dis-
tance (offset), in joint units, from the machine origin to the home switch trip point or index pulse.
After detecting the switch trip point/index pulse, LinuxCNC sets the joint coordinate position to
HOME OFFSET, thus defining the origin, which the soft limits references from. The default value
is zero.

Note
The home switch location, as indicated by the HOME_OFFSET variable, can be inside or outside the
soft limits. They will be shared with or inside the hard limit switches.

4.5.6.8 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the home
switch or home switch then index pulse (depending on configuration), and setting the coordinate of
that point to HOME OFFSET, LinuxCNC makes a move to HOME as the final step of the homing
process. The default value is zero. Note that even if this parameter is the same as HOME OFFSET,
the joint will slightly overshoot the latched position as it stops. Therefore there will always be a small
move at this time (unless HOME SEARCH VEL is zero, and the entire search/latch stage was skipped).
This final move will be made at the joint’s maximum velocity unless HOME FINAL VEL has been set.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 166 /1261

Note

The distinction between HOME _OFFSET and HOME is that HOME OFFSET first establishes the origin
location and scale on the machine by applying the HOME _OFFSET value to the location where home
was found, and then HOME says where the joint should move to on that scale.

4.5.6.9 HOME_IS_SHARED

If there is not a separate home switch input for this joint, but a number of momentary switches wired
to the same pin, set this value to 1 to prevent homing from starting if one of the shared switches is
already closed. Set this value to 0 to permit homing even if the switch is already closed.

4.5.6.10 HOME_ABSOLUTE_ENCODER

Use for absolute encoders. When a request is made to home the joint, the current joint position is set
to the [JOINT n]JHOME OFFSET value.

The final move to the [JOINT n]JHOME position is optional according to the HOME ABSOLUTE ENCODER
setting:

HOME ABSOLUTE_ENCODER
HOME _ABSOLUTE_ENCODER
HOME_ABSOLUTE_ENCODER

0 (Default) joint does not use an absolute encoder
1 Absolute encoder, final move to [JOINT n]HOME
2 Absolute encoder, NO final move to [JOINT n]HOME

Note
A HOME_IS SHARED setting is silently ignored.

Note
A request to rehome the joint is silently ignored.

4.5.6.11 HOME_SEQUENCE

Used to define a multi-joint homing sequence HOME ALL and enforce homing order (e.g., Z may not
be homed if X is not yet homed). A joint may be homed after all joints with a lower (absolute value)
HOME SEQUENCE have already been homed and are at the HOME OFFSET. If two joints have the
same HOME SEQUENCE, they may be homed at the same time.

Note
If HOME_SEQUENCE is not specified then the joint will not be homed by the HOME ALL sequence
(but may be homed by individual joint-specific homing commands).

The initial HOME SEQUENCE number may be 0, 1 (or -1). The absolute value of sequence numbers
must increment by one — skipping sequence numbers is not supported. If a sequence number is omit-
ted, HOME ALL homing will stop upon completion of the last valid sequence number.

Negative HOME SEQUENCE values indicate that joints in the sequence should synchronize the
final move to [JOINT n]JHOME by waiting until all joints in the sequence are ready. If any joint has a
negative HOME SEQUENCE value, then all joints with the same absolute value (positive or negative)
of the HOME SEQUENCE item value will synchronize the final move.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 167 /1261

Anegative HOME SEQUENCE also applies to commands to home a single joint. If the HOME SEQUENCE
value is negative, all joints having the same absolute value of that HOME SEQUENCE will be ho-
med together with a synchronized final move. If the HOME SEQUENCE value is zero or positive,

a command to home the joint will home only the specified joint.

Joint mode jogging of joints having a negative HOME SEQUENCE is disallowed. In common gantry
applications, such jogging can lead to misalignment (racking). Note that conventional jogging in world
coordinates is always available once a machine is homed.

Examples for a 3 joint system
Two sequences (0,1), no synchronization

[JOINT ©]HOME SEQUENCE = ©
[JOINT 1]HOME SEQUENCE = 1
[JOINT 2]HOME SEQUENCE = 1

Two sequences, joints 1

[JOINT O]HOME SEQUENCE
[JOINT 1]HOME SEQUENCE
[JOINT 2]HOME SEQUENCE

Q
5
a
N
9]
<
=
o
=
2
o
B
N
)
A

nun
1 1
= o

With mixed positive and negative values, joints 1 and 2 synchronized

[JOINT O]HOME SEQUENCE = 0
[JOINT 1]HOME SEQUENCE = -1
[JOINT 2]HOME SEQUENCE = 1

One sequence, no synchronization

[JOINT ©]HOME SEQUENCE = 0
[JOINT 1]HOME SEQUENCE = 0
[JOINT 2]HOME_SEQUENCE = 0

One sequence, all joints synchronized

[JOINT O]HOME SEQUENCE
[JOINT 1]HOME SEQUENCE
[JOINT 2]HOME SEQUENCE

I mnn
1 1 1
(RS

4.5.6.12 VOLATILE_HOME

If this setting is true, this joint becomes unhomed whenever the machine transitions into the OFF
state. This is appropriate for any joint that does not maintain position when the joint drive is off. Some
stepper drives, especially microstep drives, may need this.

4.5.6.13 LOCKING_INDEXER

If this joint is a locking rotary indexer, it will unlock before homing, and lock afterward.

4.5.6.14 Immediate Homing

If a joint does not have home switches or does not have a logical home position like a rotary joint and
you want that joint to home at the current position when the "Home All” button is pressed in the AXIS
GUI, then the following INI entries for that joint are needed.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 168 /1261

HOME SEARCH VEL = 0

HOME LATCH VEL = 0

HOME_USE_INDEX = NO

HOME OFFSET = 0 (Or the home position offset (HOME))
HOME SEQUENCE = 0 (or other valid sequence number)

Note

The default values for unspecified HOME_SEARCH_VEL, HOME_LATCH_VEL, HOME_USE_INDEX, HOME,
and HOME_OFFSET are zero, so they may be omitted when requesting immediate homing. A valid
HOME_SEQUENCE number should usually be included since omitting a HOME_SEQUENCE eliminates
the joint from HOME ALL behavior as noted above.

4.5.6.15 Inhibiting Homing

A HAL pin (motion.homing-inhibit) is provided to disallow homing initiation for both “Home All” and
individual joint homing.

Some systems take advantage of the provisions for synchronizing final joint homing moves as control-
led by negative [JOINT NJHOME SEQUENCE= INI file items. By default, the synchronization pro-
visions disallow joint jogging prior to homing in order to prevent joint jogs that could misalign the
machine (gantry racking for example).

System integrator can allow joint jogging prior to homing with HAL logic that switches the [JOINT NJHOME
items. This logic should also assert the motion.homing-inhibit pin to ensure that homing is not in-
advertently initiated when joint jogging is enabled.

Example: Synced joints 0,1 using negative sequence (-1) for synchronized homing with a switch (al-
low_jjog) that selects a positive sequence (1) for individual joint jogging prior to homing (partial HAL
code):

loadrt mux2 names=home_sequence mux
loadrt conv_float s32 names=home_ sequence s32
setp home_sequence mux.in@ -1

setp home sequence mux.inl 1

addf home_sequence mux servo-thread

addf home_sequence s32 servo-thread

net home seq float <= home sequence mux.out
net home seq float => home sequence s32.in
net home seq s32 <= home sequence s32.out
net home seq s32 => ini.0.home_sequence
net home seq s32 => ini.l.home_sequence

allow_jjog: pin created by a virtual panel or hardware switch
net hsequence select <= allow_jjog

net hsequence select => home sequence mux.sel

net hsequence select => motion.homing-inhibit

Note
INI HAL pins (like ini.N.home_sequence) are not available until milltask starts so execution of the
above HAL commands should be deferred using a postgui HAL file or a delayed [APPLICATION]JAPP=
script.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 169 /1261

Note

Realtime synchronization of joint jogging for multiple joints requires additional HAL connec-
tions for the Manual-Pulse-Generator (MPG) type jog pins (joint.N.enable, joint.N.scale,
joint.N.counts).

An example simulation config (gantry jjog.ini) that demonstrates joint jogging when using negative
home sequences is located in the: configs/sim/axis/gantry/ directory.

4.6 Lathe Configuration

4.6.1 Default Plane

When LinuxCNC'’s interpreter was first written, it was designed for mills. That is why the default
plane is XY (G17). A normal lathe only uses the XZ plane (G18). To change the default plane place the
following line in the INI file in the RS274NGC section.

RS274NGC_STARTUP_CODE = G18

The above can be overwritten in a G-code program so always set important things in the preamble of
the G-code file.

4.6.2 INI Settings

The following INI settings are needed for lathe mode in Axis in addition to or replacing normal set-
tings in the INI file. These historical settings use identity kinematics (trivkins) and three joints (0,1,2)
corresponding to coordinates x, y, z. The joint 1 for the unused y axis is required but not used in these
historical configurations. Simulated lathe configs may use these historical settings. GMOCCAPY also
uses the mentioned settings, but does offer additional settings, check the GMOCCAPY section for
details.

[DISPLAY]
DISPLAY

= axis
LATHE = 1

[KINS]

KINEMATICS = trivkins

JOINTS = 3

[TRAJ]

COORDINATES = X Z

[JOINT 0]

[JOINT 2]

[AXIS X]

[AXIS Z]

With joints axes incorporation, a simpler configuration can be made with just the two required joints
by specifying trivkins with the coordinates= parameter:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 170/ 1261

[DISPLAY]
DISPLAY

= axis
LATHE = 1

[KINS]

KINEMATICS = trivkins coordinates=xz
JOINTS = 2

[TRAJ]

COORDINATES = X Z

[JOINT 0]

[JOINT 1]

[AXIS X]

[AXTS_Z]

4.7 Stepper Quickstart

This section assumes you have done a standard install from the Live CD. After installation it is recom-
mended that you connect the computer to the Internet and wait for the update manager to pop up
and get the latest updates for LinuxCNC and Ubuntu before continuing.

4.7.1 Latency Test

The Latency Test determines how late your computer processor is in responding to a request. Some
hardware can interrupt the processing which could cause missed steps when running a CNC machine.
This is the first thing you need to do. Follow the instructions here to run the latency test.

4.7.2 Sherline

If you have a Sherline several predefined configurations are provided. This is on the main menu
CNC/EMC then pick the Sherline configuration that matches yours and save a copy.

4.7.3 Xylotex

If you have a Xylotex you can skip the following sections and go straight to the Stepper Config Wizard.
LinuxCNC has provided quick setup for the Xylotex machines.

4.7.4 Machine Information

Gather the information about each axis of your machine.

Drive timing is in nano seconds. If you're unsure about the timing many popular drives are included
in the stepper configuration wizard. Note some newer Gecko drives have different timing than the
original one. A list is also on the user maintained LinuxCNC wiki site of more drives.

https://wiki.linuxcnc.org/

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 171/1261
Axis Drive Type Step Time Step Space Dir. Hold Dir. Setup
(ns) (ns) (ns) (ns)
X
Y
Z
4.7.5 Pinout Information
Gather the information about the connections from your machine to the PC parallel port.
Output Pin Typ. If Different Input Pin Typ. If Different
Function Function
1 E-Stop Out 10 X Limit/Home
2 X Step 11 Y Limit/Home
3 X Direction 12 Z Limit/Home
4 Y Step 13 A Limit/Home
5 Y Direction 15 Probe In
§] Z Step
7 Z Direction
8 A Step
9 A Direction
14 Spindle CW
16 Spindle PWM
17 Amplifier
Enable

Note any pins not used should be set to Unused in the drop down box. These can always be changed

later by running StepConf again.

4.7.6 Mechanical Information

Gather information on steps and gearing. The result of this is steps per user unit which is used for
SCALE in the INI file.

Axis

Steps/Rev.

Micro Steps

Motor Teeth

Leadscrew
Teeth

Leadscrew
Pitch

N | >4

— Steps per revolution - is how many stepper-motor-steps it takes to turn the stepper motor one
revolution. Typical is 200.
— Micro Steps - is how many steps the drive needs to move the stepper motor one full step. If micros-
tepping is not used, this number will be 1. If microstepping is used the value will depend on the
stepper drive hardware.
— Motor Teeth and Leadscrew Teeth - is if you have some reduction (gears, chain, timing belt, etc.)
between the motor and the leadscrew. If not, then set these both to 1.

— Leadscrew Pitch - is how much movement occurs (in user units) in one leadscrew turn. If you're
setting up in inches then it is inches per turn. If you're setting up in millimeters then it is millimeters

per turn.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 172 /1261

The net result you're looking for is how many CNC-output-steps it takes to move one user unit (inches
or mm).

Exemple 4.1 Units inches

Stepper = 200 steps per revolution
Drive = 10 micro steps per step
Motor Teeth = 20
Leadscrew Teeth = 40

Leadscrew Pitch 0.2000 inches per turn

From the above information, the leadscrew moves 0.200 inches per turn. - The motor turns 2.000
times per 1 leadscrew turn. - The drive takes 10 microstep inputs to make the stepper step once. -
The drive needs 2000 steps to turn the stepper one revolution.

So the scale needed is:

200motor steps 107 terosteps 2motorrevs licadscrewrevs _ 20.000m tcrasteps
lmotorrev lmotorstep lleadscrewrewv 0. 2000 nch T trich

Exemple 4.2 Units mm

Stepper = 200 steps per revolution
Drive = 8 micro steps per step
Motor Teeth = 30
Leadscrew Teeth = 90

Leadscrew Pitch 5.00 mm per turn

From the above information: - The leadscrew moves 5.00 mm per turn. - The motor turns 3.000 times
per 1 leadscrew turn. - The drive takes 8 microstep inputs to make the stepper step once. - The drive
needs 1600 steps to turn the stepper one revolution.

So the scale needed is:

200 full steps . 8 microsteps . 3revs . Lleadscrew rev 960 steps
lrev 1step 1 leadscrew rev 500mm 1mm

4.8 Stepper Configuration

4.8.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See
the Stepper Configuration Wizard Chapter.

This chapter describes some of the more common settings for manually setting up a stepper based
system. These systems are using stepper motors with drives that accept step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the
motors), yet the system needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on a sample config released along with LinuxCNC. The config is called
stepper inch, and can be found by running the Configuration Picker.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 173 /1261

4.8.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE PERIODs for step-
and-direction output. The maximum requested step rate is the product of an axis’ MAX VELOCITY and
its INPUT SCALE. If the requested step rate is not attainable, following errors will occur, particularly
during fast jogs and GO moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one step
is possible for each BASE PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE PERIOD (setting this too low will cause
the machine to become unresponsive or even lock up), the INPUT SCALE (if you can select different
step sizes on your stepper driver, change pulley ratios, or leadscrew pitch), or the MAX VELOCITY
and STEPGEN MAXVEL.

If no valid combination of BASE PERIOD, INPUT SCALE, and MAX VELOCITY is acceptable, then
consider using hardware step generation (such as with the LinuxCNC-supported Universal Stepper
Controller, Mesa cards, and others).

4.8.3 Pinout

One of the major flaws in EMC was that you couldn’t specify the pinout without recompiling the source
code. EMC2 was far more flexible, and thus now in LinuxCNC (thanks to the Hardware Abstraction
Layer) you can easily specify which signal goes where. See the HAL Basics for more information on
HAL.

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside
the HAL.

Note
We are presenting one axis to keep it short, all others are similar.

The ones relevant for our pinout are:

signals: Xstep, Xdir & Xen
pins: parport.0.pin-XX-out & parport.0.pin-XX-in

Depending on what you have chosen in your INI file you are using either standard pinout.hal or xylo-
tex pinout.hal. These are two files that instruct the HAL how to link the various signals & pins. Further
on we’ll investigate the standard pinout.hal.

4.8.3.1 Standard Pinout HAL

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers
using a parport for I/0

#

first load the parport driver

loadrt hal parport cfg="0x0378"

#

next connect the parport functions to threads
read inputs first

addf parport.0.read base-thread 1

write outputs last

addf parport.0.write base-thread -1

#

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 174 /1261

finally connect physical pins to the signals
net Xstep => parport.0.pin-03-out
net Xdir => parport.0.pin-02-out
net Ystep => parport.0.pin-05-out
net Ydir => parport.0.pin-04-out
net Zstep => parport.0.pin-07-out
net Zdir => parport.0.pin-06-out

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

connect "spindle on” motion controller pin to a physical pin
net spindle-on spindle.0.on => parport.0.pin-09-out

#it#

You might use something like this to enable chopper drives when machine ON
the Xen signal is defined in core stepper.hal

#it#

net Xen => parport.0.pin-01-out

#it#
If you want active low for this pin, invert it like this:
#Hit#

setp parport.0.pin-01l-out-invert 1

#t#

A sample home switch on the X axis (axis 0). make a signal,

1ink the incoming parport pin to the signal, then link the signal
to LinuxCNC’'s axis O home switch input pin.

#it#

net Xhome parport.0.pin-10-in => joint.0.home-sw-in

#it#

Shared home switches all on one parallel port pin?

that's ok, hook the same signal to all the axes, but be sure to
set HOME IS SHARED and HOME SEQUENCE in the INI file.

Ht#

net homeswitches <= parport.0.pin-10-in
net homeswitches => joint.0.home-sw-in
net homeswitches => joint.l.home-sw-in
net homeswitches => joint.2.home-sw-in

i
Echantillon d’'interrupteurs de fin de course séparés sur 1'axe X (axe 0)
H#it#

net X-neg-limit parport.0.pin-11-in => joint.0.neg-lim-sw-in
net X-pos-limit parport.0.pin-12-in => joint.0.pos-lim-sw-in

#it#

Just like the shared home switches example, you can wire together

1imit switches. Beware if you hit one, LinuxCNC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this
extreme position to avoid a hard stop.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 175/1261

#H##

net Xlimits parport.0.pin-13-in => joint.0.neg-lim-sw-in joint.0.pos-lim-sw-in

Les lignes commengcant par # sont des commentaires, aident a la lecture du fichier.

4.8.3.2 Overview

Voici les opérations qui sont exécutées quand le fichier standard pinout.hal est lu par I'interpréteur:

— Le pilote Parport est chargé (voir Chapitre Parport pour plus de détails).
— The read & write functions of the parport driver get assigned to the base thread?®.

— Les signaux du générateur de pas et de direction des axes X,Y,Z sont raccordés aux broches du
port parallele.

— D’autres signaux d’entrées/sorties sont connectés (boucle d’arrét d’'urgence, boucle du changeur
d’outil).
— Un signal de marche broche est défini et raccordé a une broche du port parallele.

4.8.3.3 Modifier le fichier standard_pinout.hal
If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and locate
the parts you want to change.

Si vous voulez par exemple, modifier les broches de pas et de direction de 1’axe X, il vous suffit de
modifier le numéro de la variable nommée parport.0.pin-XX-out:

net Xstep parport.0.pin-03-out
net Xdir parport.0.pin-02-out
peut étre modifiée pour devenir:
net Xstep parport.0.pin-02-out
net Xdir parport.0.pin-03-out
ou de maniere générale n’importe quel numéro que vous souhaiteriez.

Attention : il faut étre certain de n’avoir qu’'un seul signal connecté a une broche.

4.8.3.4 Modifier la polarité d’un signal

If external hardware expects an "active low” signal, set the corresponding -invert parameter. For
instance, to invert the spindle control signal:

setp parport.0.pin-09-out-invert TRUE

4.8.3.5 Ajouter le controle de vitesse broche en PWM

Si votre vitesse de broche peut étre controlée par un signal de PWM, utilisez le composant pwmgen
pour créer ce signal :

5. The fastest thread in the LinuxCNC setup, usually the code gets executed every few tens of microseconds.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 176 /1261

loadrt pwmgen output type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd spindle.0.speed-out => pwmgen.0.value

net spindle-on spindle.0.on => pwmgen.0.enable

net spindle-pwm pwmgen.0Q.pwm => parport.0.pin-09-out

setp pwmgen.0.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

4.8.3.6 Ajouter un signal de validation enable

Some amplifiers (drives) require an enable signal before they accept and command movement of the
motors. For this reason there are already defined signals called Xen, Yen, Zen.

Pour les connecter vous pouvez utilisez I’exemple suivant :

net Xen parport.0.pin-08-out
You can either have one single pin that enables all drives; or several, depending on the setup you

have. Note, however, that usually when one axis faults, all the other drives will be disabled as well, so
having only one enable signal / pin for all drives is a common practice.

4.8.3.7 Ajouter un bouton d’Arrét d’Urgence externe

The standard pinout.hal file assumes no external ESTOP button. For more information on an external
E-Stop see the estop latch man page.

4.9 Stepper Diagnostics

Sice que vous obtenez ne correspond pas a ce que vous espériez, la plupartdu temps c¢’est juste un petit
manque d’expérience. Accroitre son expérience permet souvent une meilleure compréhension globale.
Porter un diagnostic sur plusieurs problemes est toujours plus facile en les prenant séparément, de
méme qu'une équation dont on a réduit le nombre de variables est toujours plus rapide a résoudre.
Dans le monde réel ce n’est pas toujours le cas mais c’est une bonne voie a suivre.

4.9.1 Problemes communs

4.9.1.1 Le moteur n’avance que d’un pas

La raison la plus fréquente dans une nouvelle installation pour que le moteur ne bouge pas est l'inter-
version entre le signal de pas et le signal de direction. Si, quand vous pressez le bouton de jog dans
un sens puis dans l'autre, le moteur n’avance que d’un pas a chaque fois et toujours dans la méme
direction, vous étes dans ce cas.

4.9.1.2 Le moteur ne bouge pas

Certaine interfaces de pilotage de moteurs ont une broche d’activation (enable) ou demandent un
signal de pompe de charge pour activer leurs sorties.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 177 /1261

4.9.1.3 Distance incorrecte

Si vous commandez une distance de déplacement précise sur un axe et que le déplacement réel ne
correspond pas, alors I’échelle de I’axe n’est pas bonne.

4.9.2 Messages d’erreur

4.9.2.1 Erreur de suivi

Le concept d’erreur de suivi est étrange quand il s’agit de moteurs pas a pas. Etant un systéme en
boucle ouverte, aucune contre réaction ne permet de savoir si le suivi est correct ou non. LinuxCNC
calcule si il peut maintenir le suivi demandé par une commande, si ce n’est pas possible il stoppe
le mouvement et affiche une erreur de suivi. Les erreurs de suivi sur les systémes pas a pas sont
habituellement les suivantes.

— FERROR to small - (FERROR trop petit)

— MIN FERROR to small - (MIN FERROR trop petit)

— MAX VELOCITY to fast - (MAX VELOCITY trop rapide)

— MAX ACCELERATION to fast - (MAX ACCELERATION trop rapide)

— BASE PERIOD set to long - (BASE _PERIOD trop longue)

— Backlash ajouté a un axe (rattrapage de jeu)

Any of the above can cause the real-time pulsing to not be able to keep up the requested step rate.

This can happen if you didn’t run the latency test long enough to get a good number to plug into the
StepConf Wizard, or if you set the Maximum Velocity or Maximum Acceleration too high.

Ifyou added backlash you need to increase the STEPGEN MAXACCEL up to double the MAX ACCELERATIO
in the AXIS section of the INI file for each axis you added backlash to. LinuxCNC uses "extra accelera-

tion” at a reversal to take up the backlash. Without backlash correction, step generator acceleration

can be just a few percent above the motion planner acceleration.

4.9.2.2 RTAPI Error

When you get this error:
RTAPI: ERROR: Unexpected realtime delay on task n

This error is generated by rtapi based on an indication from RTAI that a deadline was missed. It is
usually an indication that the BASE PERIOD in the [EMCMOT] section of the ini file is set too low. You
should run the Latency Test for an extended period of time to see if you have any delays that would
cause this problem. If you used the StepConf Wizard, run it again, and test the Base Period Jitter again,
and adjust the Base Period Maximum Jitter on the Basic Machine Information page. You might have to
leave the test running for an extended period of time to find out if some hardware causes intermittent
problems.

LinuxCNC tracks the number of CPU cycles between invocations of the real-time thread. If some
element of your hardware is causing delays or your realtime threads are set too fast you will get this
error.

Note
This error is only displayed once per session. If you had your BASE_PERIOD too low you could get
hundreds of thousands of error messages per second if more than one was displayed.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 178 /1261

4.9.3 Testing
4.9.3.1 Step Timing

If you are seeing an axis ending up in the wrong location over multiple moves, it is likely that you
do not have the correct direction hold times or step timing for your stepper drivers. Each direction
change may be losing a step or more. If the motors are stalling, it is also possible you have either the
MAX ACCELERATION or MAX VELOCITY set too high for that axis.

The following program will test the Z axis configuration for proper setup. Copy the program to your
\~/emc2/nc files directory and name it TestZ.ngc or similar. Zero your machine with Z = 0.000 at the
table top. Load and run the program. It will make 200 moves back and forth from 0.5 to 1”. If you have
a configuration issue, you will find that the final position will not end up 0.500” that the axis window
is showing. To test another axis just replace the Z with your axis in the GO lines.

(test program to see if Z axis loses position)
(msg, test 1 of Z axis configuration)
G20 #1000=100 (loop 100 times)
(this loop has delays after moves)
(tests acc and velocity settings)
0100 while [#1000]
GO Z1.000
G4 P0O.250
GO Z0.500
G4 P0.250
#1000 = [#1000 - 1]
0100 endwhile
(msg, test 2 of Z axis configuration S to continue)
M1 (stop here)
#1000=100 (loop 100 times)
(the next loop has no delays after moves)
(tests direction hold times on driver config and also max accel setting)
0101 while [#1000]
GO Z1.000
GO Z0.500
#1000 = [#1000 - 1]
0101 endwhile
(msg, Done...Z should be exactly .5"” above table)
M2

4.10 Filter Programs

4.10.1 Introduction

Most of LinuxCNC'’s screens have the ability to send loaded files through a filter program or use the
filter program to make G-code. Such a filter can do any desired task: Something as simple as making
sure the file ends with M2, or something as complicated as generating G-code from an image.

4.10.2 Setting up the INI for Program Filters

The [FILTER] section of the INI file controls how filters work. First, for each type of file, write a
PROGRAM EXTENSION line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write rs274ngc code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by LinuxCNC when Run. The following lines add support for the image-to-gcode converter
included with LinuxCNC:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 179 /1261

[FILTER]

PROGRAM EXTENSION = .png,.gif Greyscale Depth Image
png = image-to-gcode

gif = image-to-gcode

Il est également possible de spécifier un interpréteur:

PROGRAM EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as G-code. One such example
script is available at nc files/holecircle.py. This script creates G-code for drilling a series of holes
along the circumference of a circle.

Circular Holes
Units @0 {im) hd
* e, Center ¥ 1.0
® 9 Center 0.0
Start Angle 3
Increment Angle (17.0
Radius 1.0
Haole Count a
Feed Rate g.0
Haole Depth -0.1
Ol (O=no dwell) (1.0
Retract Height 0.1
‘ Dk Cancel

Figure 4.9 - Circular Holes

If the filter program sends lines to stderr of the form:
FILTER PROGRESS=10

It will set the screens progress bar to the given (10 in this case) percentage. This feature should be
used by any filter that runs for a long time.

4.10.3 Making Python Based Filter Programs

Here is a very basic example of the filtering mechanics: When run through a Linucnc screen that
offers program filtering, it will produce and write a line of G-code every 100" of a second to standard
output. It also sends a progress message out to the UNIX standard error stream. If there was an error
it would post an error message and exit with an exitcode of 1.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 180/1261

import time
import sys

for i in range(0,100):
try:
simulate calculation time
time.sleep(.1)

output a line of G-code
print('Go X1', file=sys.stdout)

update progress

print('FILTER PROGRESS={}'.format(i), file=sys.stderr)
except:

This causes an error message

print('Error; But this was only a test’, file=sys.stderr)

raise SystemExit(1)

Here is a similar program but it actually could filter. It puts up a PyQt5 dialog with a cancel button.
Then it reads the program line by line and passes it to standard output. As it goes along, it updates
any process listening to standard error output.

#!/usr/bin/env python3

import sys
import os
import time

from PyQt5.QtWidgets import (QApplication, QDialog, QDialogButtonBox,
QVBoxLayout,QDialogButtonBox)
from PyQt5.QtCore import QTimer, Qt

class CustomDialog(QDialog):

def init (self, path):
super(CustomDialog, self). init (None)
self.setWindowFlags(self.windowFlags() | Qt.WindowStaysOnTopHint)
self.setWindowTitle(”Filter-with-GUI Test”)

QBtn = QDialogButtonBox.Cancel

self.buttonBox = QDialogButtonBox(QBtn)
self.buttonBox.rejected.connect(self.reject)

self.layout = QVBoxLayout()
self.layout.addWidget(self.buttonBox)
self.setlLayout(self.layout)

self.line = 0
self. percentDone = 0

if not os.path.exists(path):
print(”Path: '{}' doesn’t exist:”.format(path), file=sys.stderr)
raise SystemExit(1)

self.infile = open(path, "r")

self.temp = self.infile.readlines()

calculate percent update interval
self.bump = 100/float(len(self.temp))

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 181 /1261

self. timer = QTimer()
self. timer.timeout.connect(self.process)
self. timer.start(100)

def reject(self):
This provides an error message
print(’'You asked to cancel before finished.’, file=sys.stderr)
raise SystemExit(1)

def process(self):
try:
get next line of code
codeLine = self.temp[self.line]

process the line somehow

push out processed code
print(codeLine, file=sys.stdout)
self.line +=1

update progress
self. percentDone += self.bump
print('FILTER PROGRESS={}’'.format(int(self. percentDone)), file=sys.stderr)

if done end with no error/error message

if self. percentDone >= 99:
print(’FILTER PROGRESS=-1’, file=sys.stderr)
self.infile.close()
raise SystemExit(0)

except Exception as e:
This provides an error message
print(('Something bad happened:’,e), file=sys.stderr)
this signals the error message should be shown
raise SystemExit(1)
if name == " main_ ":
if (len(sys.argv)>1):
path = sys.argv[1l]
else:
path = None
app = QApplication(sys.argv)
w = CustomDialog(path=path)
w.show()
sys.exit(app.exec ())

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 182 /1261

Chapitre 5

HAL (Hardware Abstraction Layer, Couc
d’Abstraction Matériel)

5.1 HAL Introduction

LinuxCNC is about interacting with hardware. But few users have the same exact hardware speci-
fications - similar, but not the same. And even for the exact same hardware, there may be different
ways to use it, say for different materials or with different mills, which would require adaptations to
the control of an already running system. An abstraction was needed to make it easier to configure
LinuxCNC for a wide variety of hardware devices. At the highest level, it could simply be a way to
allow a number of building blocks to be loaded and interconnected to assemble a complex system.

This chapter introduces to that Hardware Abstraction Layer. You will see that many of the building
blocks are indeed, drivers for hardware devices. However, HAL can do more than just configure hard-
ware drivers.

5.1.1 HAL Overview

The Hardware Abstraction Layer (or with a reference to the 2001 Space Odyssey movie just "HAL’) is
a software to

— provide the infrastructure for the communication with and between the many software and hard-
ware components of the system.

— optionally process and/or override that information as it flows from component to component.

In itself, this Middleware is agnostic about its application on CNC. An Internet search, for example,

found an astronomical application to control telescopes using LinuxCNC. Motors move the telescope

into the right position, and it needs to know how to map motor activity with the effect of that positioning

with the real world. Such a synchronisation of motor positions with real-world positions is reminiscent
of what CNC machines need to do, or space craft.

Any machine controller needs to know:

— about its internal state and how this maps to the environment (machine coordinates, state of swit-
ches/regulators),

— how actuators are expected to change that state,

— how allow for updates of the internal state by sensors (encoders, probes).

The HAL layer consists of parts (referred to as “components”) that

— are connected with each other, e.g., to update position data or have the planning algorithm tell the
motors about the next step.

https://en.wikipedia.org/wiki/2001:_A_Space_Odyssey_(film)
https://en.wikipedia.org/wiki/Middleware

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 183 /1261

— may know how to communicate with hardware,
— may simply process incoming data and provide data outputs to other components,
— are always periodically executed either

— with a very high frequency of a few microseconds (j1s) execution time, called base thread, e.g.,
to

1. give a stepper motor a trigger to step ahead, or to
2. read out the position presented by an encoder.

— with a lower frequency every millisecond (ms), e.g. to

1. adjust the planning for the next moves to complete a G-code instruction.

— as non-realtime "user-space” components that run a "main loop” just like any other software,
and may be interrupted or delayed when the rest of the system is busy or overloaded.

Taken together, HAL allows

1. to program for a machine that the programmer does not know directly, but may rely on a pro-
gramming interface with well-specified effect on the machine. That interface may be used to

— tell the machine what to do
— listen to what the machine wants to tell about the state it is in.

2. Vertical Abstractions: The human system integrator of such machine uses HAL

— to describe what the machine is looking like and how what cable controls which motor that
drives which axis.

— The description of the machine, the programmer’s interfaces and the user’s interface somehow
"meet” in that abstract layer.

3. Horizontal Abstractions:

— Not all machines have all kinds of features
— Mills, Lathes and Robots share many

— features (motors, joints, ...),
— planning algorithms for their movements.

HAL has no direct interaction with the user. But multiple interfaces have been provided that allow
HAL to be manipulated

— from the command line using the "halcmd” command.
— from Python scripts and
— from within C/C++ programs,

but none of these interfaces are HAL itself.

HAL itself is not a program, it consists of one or more lists of loaded programs (the components) that
are periodically executed (in strict sequence), and an area of shared-memory that these components
use to interchange data. The main HAL script runs only once at machine startup, setting up the real-
time threads and the shared-memory locations, loading the components and setting up the data links
between them (the ”signals” and ”pins”).

In principle multiple machines could share a common HAL to allow them to inter-operate, however
the current implementation of LinuxCNC is limited to a single interpreter and a single Task module.
Currently this is almost always a G-code interpreter and “milltask” (which was found to also work well
for lathes and adequately for robots) but these modules are selectable at load-time. With an increasing
interest in the control of multiple cooperating machines, to overcome this limitation is likely one of

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 184 /1261

the prime steps for the future development of LinuxCNC to address. It is a bit tricky though and the
community is still organizing its thoughts on this.

HAL lies at the core of LinuxCNC and is used and/or extended by all the parts of LinuxCNC, which
includes the GUIs. The G-code (or alternative language) interpreter knows how to interpret the G-code
and translates it into machine operations by triggering signals in HAL. The user may query HAL in
various ways to gain information about its state, which then also represents the state of the machine.
Whilst writing during the development of version 2.9, the GUIs still make bit of an exception to that
rule and may know something that HAL does not (need to) know.

5.1.2 Communication

HAL is special in that it can communicate really fast

— with other programs, but in particular
— with its components that typically run in one of the realtime threads.

And while communicating, the part of LinuxCNC that is talked to does not need to prepare for the
communication: All these actions are performed asynchronously, i.e. no component is interrupting
its regular execution to receive a signal and signals can be sent rightaway, i.e., an application may
wait until a particular message has arrived - like an enable-signal, but it does not need to prepare for
receiving that message.

The communication system

— represents and controls all the hardware attached to the system,
— starts and stops other communicating programs.

The communication with the hardware of the machine itself is performed by respective dedicated HAL
components.

The HAL layer is a shared space in which all the many parts that constitute LinuxCNC are exchanging
information. That space features pins that are identified by a name, though a LinuxCNC engineer
may prefer the association with a pin of an electronic circuit. These pins can carry numerical and
logical values, boolean, float and signed and unsigned integers. There is also a (relatively new) pin
type named hal port intended for byte streams, and a framework for exchanging more complex data
called hal stream (which uses a private shared memory area, rather than a HAL pin). These latter two
types are used relatively infrequently.

With HAL you can send a signal to that named pin. Every part of HAL can read that pin that holds that
value of the signal. That is until a new signal is sent to the same named pin to substitute the previous
value. The core message exchange system of HAL is agnostic about CNC, but HAL ships with a large
number of components that know a lot about CNC and present that information via pins. There are
pins representing

— static information about the machine

— the current state of the machine

— end switches
— positions counted by steppers or as measured by encoders

— recipients for instructions

— manual control of machine position (”jogging”)
— positions that stepper motors should take next

In a analogy to electronic cables, pins can be wired, so the value changing in one pin serves as input to
another pin. HAL components prepare such input and output pins and are thus automatically triggered
to perform.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 185/1261

HAL Components The many "expert” software parts of LinuxCNC are typically implemented as com-
ponents of HAL, conceptually also referred to as modules. These computer-implemented experts per-
petually read from HAL about a state that the machine should strive to achieve and compare that
desired state with the state the machine is in at the current moment. When there is a difference
between what should be and what the current state is then some action is performed to reduce that
difference, while perpetually writing updates of the current states back to the HAL data space.

There are components specializing on how to talk to stepper motors, and other components know how
to control servos. On a higher level, some components know how the machine’s axes are arranged
in 3D and yet others know how to perform a smooth movement from one point in space to another.
Lathes, mills and robots will differ in the LinuxCNC component that are active, i.e. that are loaded
by a HAL configuration file for that machine. Still, two machines may be looking very different since
built for very different purposes, but when they both use servo motors then they can still both use the
same HAL servo component.

Origin of the Incentive to Move On the lowest (closest to hardware) level, e.g. for stepper motors,
the description of a state of that motor is very intuitive: It is the number of steps in a particular direc-
tion. A difference between the desired position and the actual position translates into a movement.
Speeds, acceleration and other parameters may be internally limited in the component itself, or may
optionally be limited by upstream components. (For example, in most cases the moment-by-moment
axis position values sent to the step-generator components have already been limited and shaped to
suit the configured machine limits or the current feed rate.)

Any G-code line is interpreted and triggers a set of routines that in turn know how to communicate
with components that are on a middle layer, e.g., to create a circle.

Pins and Signals HAL has a special place in the heart of its programmers for the way that the data
flow between modules is represented. When traditional programmers think of variables, addresses or
I/0O ports, HAL refers to “pins”. And those pins are connected or assigned values to via signals. Much
like an electrical engineer would connect wires between pins of components of a mill, a HAL engineer
establishes the data flow between pins of module instances.

The LinuxCNC GUIS (AXIS, GMOCCAPY, Touchy, etc.) will represent the states of some pins (such as
limit switches) but other graphical tools also exist for troubleshooting and configuration: Halshow,
Halmeter, Halscope and Halreport.

The remainder of this introduction presents

— the syntax of how pins of different components are connected in the HAL configuration files, and
— software to inspect the values of pins

— at any given moment,
— developing over time.

5.1.3 HAL System Design

HAL is based on traditional system design techniques. HAL is based on the same principles that
are used to design hardware circuits and systems, so it is useful to examine those principles first.
Any system, including a CNC machine, consists of interconnected components. For the CNC machine,
those components might be the main controller, servo amps or stepper drives, motors, encoders, limit
switches, pushbutton pendants, perhaps a VED for the spindle drive, a PLC to run a toolchanger, etc.
The machine builder must aselect, mount and wire these pieces together to make a complete system.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 186 /1261

component.0.pinl-in .,
R

pmponent. l.pinl-out

signal-red

component.l.pin3-in
* component.1.pind-in

component.0

component.l

Figure 5.1 - HAL Concept - Connecting like electrical circuits.

Figure one would be written in HAL code like this:

net signal-blue component.0.pinl-in component.l.pinl-out
net signal-red component.0.pin3-out component.l.pin3-in component.l.pin4-in

5.1.3.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them as
black boxes. During the design stage, he decides which parts he is going to use - steppers or servos,
which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s decisions
about which specific components to use is based on what that component does and the specifications
supplied by the manufacturer of the device. The size of a motor and the load it must drive will affect the
choice of amplifier needed to run it. The choice of amplifier may affect the kinds of feedback needed
by the amp and the velocity or position signals that must be sent to the amp from a control.

In the HAL world, the integrator must decide what HAL components are needed. Usually every inter-
face card will require a driver. Additional components may be needed for software generation of step
pulses, PLC functionality, and a wide variety of other tasks.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 187 /1261

5.1.3.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will be
interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens for a
servo drive or PLC. They need to be wired together. The motors connect to the servo amps, the limit
switches connect to the controller, and so on. As the machine builder works on the design, he creates
a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which signals
are needed, and what they should connect.

5.1.3.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired
and mounted, and then they are interconnected according to the wiring diagram. In a physical system,
each interconnection is a piece of wire that needs to be cut and connected to the appropriate terminals.

HAL provides a number of tools to help build a HAL system. Some of the tools allow you to connect
(or disconnect) a single wire. Other tools allow you to save a complete list of all the parts, wires, and
other information about the system, so that it can be rebuilt with a single command.

5.1.3.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see whether
a limit switch is working or to measure the DC voltage going to a servo motor. He may hook up an
oscilloscope to check the tuning of a drive, or to look for electrical noise. He may find a problem
that requires the wiring diagram to be changed; perhaps a part needs to be connected differently or
replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools
needed for testing and tuning a system. The same commands used to build the system can be used to
make changes as needed.

5.1.3.5 Summary

This document is aimed at people who already know how to do this kind of hardware system integra-
tion, but who do not know how to connect the hardware to LinuxCNC. See the Remote Start Example
section in the HAL UI Examples documentation.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 188 /1261

Femote
Hun Btn

| halui.made, auta

and?.0.ind

halui.mode.is-auta andZ.0.in

andz.0ouf hialui.program.run

Figure 5.2 - Remote Start Example (Schema)

The traditional hardware design as described above ends at the edge of the main control. Outside the
control are a bunch of relatively simple boxes, connected together to do whatever is needed. Inside,
the control is a big mystery — one huge black box that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes
device drivers and even some internal part of the controller into smaller black boxes that can be
interconnected and even replaced just like the external hardware. It allows the system wiring diagram
to show part of the internal controller, rather than just a big black box. And most importantly, it allows
the integrator to test and modify the controller using the same methods he would use on the rest of
the hardware.

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk about
using extra flexible eight conductor shielded cable to connect an encoder to the servo input board in
the computer, the reader immediately understands what it is and is led to the question, what kinds of
connectors will I need to make up each end. The same sort of thinking is essential for the HAL but the
specific train of thought may take a bit to get on track. Using HAL words may seem a bit strange at
first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If
you are comfortable with the idea of interconnecting hardware black boxes, you will probably have
little trouble using HAL to interconnect software black boxes.

5.1.4 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional glossary
because these terms are not arranged in alphabetical order. They are arranged by their relationship
or flow in the HAL way of things.

Component
When we talked about hardware design, we referred to the individual pieces as parts, building
blocks, black boxes, etc. The HAL equivalent is a component or HAL component. This document
uses HAL component when there is likely to be confusion with other kinds of components, but
normally just uses component. A HAL component is a piece of software with well-defined inputs,

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 189 /1261

outputs, and behavior, that can be installed and interconnected as needed. + + Many HAL Com-
ponents model the behaviour of a tangible part of a machine, and a pin may indeed be meant to
be connected to a physical pin on the device to communicate with it, hence the names. But most
often this is not the case. Imagine a retrofit of a manual lathe/mill. What LinuxCNC implements
is how the machine presents itself to the outside world, and it is secondary if the implementation
how to draw a circle is implemented on the machine already or provided from LinuxCNC. And
it is common to add buttons to the imaginary retrofit that signal an action, like an emergency
stop. LinuxCNC and the machine become one. And that is through the HAL.

Parameter
Many hardware components have adjustments that are not connected to any other components
but still need to be accessed. For example, servo amps often have trim pots to allow for tuning
adjustments, and test points where a meter or scope can be attached to view the tuning results.
HAL components also can have such items, which are referred to as parameters. There are two
types of parameters: Input parameters are equivalent to trim pots - they are values that can be
adjusted by the user, and remain fixed once they are set. Output parameters cannot be adjusted
by the user - they are equivalent to test points that allow internal signals to be monitored.

Pin
Hardware components have terminals which are used to interconnect them. The HAL equivalent
is a pin or HAL pin. HAL pin is used when needed to avoid confusion. All HAL pins are named,
and the pin names are used when interconnecting them. HAL pins are software entities that exist
only inside the computer.

Physical_Pin
Many I/O devices have real physical pins or terminals that connect to external hardware, for
example the pins of a parallel port connector. To avoid confusion, these are referred to as physical
pins. These are the things that stick out into the real world.

Note

You may be wondering what relationship there is between the HAL pins, physical_pins and external
elements like encoders or a STG card: we are dealing here with interfaces of data translation/conver-
sion type.

Signal
In a physical machine, the terminals of real hardware components are interconnected by wires.
The HAL equivalent of a wire is a signal or HAL signal. HAL signals connect HAL pins together
as required by the machine builder. HAL signals can be disconnected and reconnected at will
(even while the machine is running).

Type
When using real hardware, you would not connect a 24 Volt relay output to the +/-10V analog
input of a servo amp. HAL pins have the same restrictions, which are based upon their type.
Both pins and signals have types, and signals can only be connected to pins of ffvthe same type.
Currently there are 4 types, as follows:

— bit - a single TRUE/FALSE or ON/OFF value
— float - a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits
of dynamic range.
— u32 - a 32 bit unsigned integer, legal values are 0 to 4,294,967,295
— s32 - a 32 bit signed integer, legal values are -2,147,483,648 to +2,147,483,647
— ub64 - a 64 bit unsigned integer, legal values are 0 to 18,446,744,073,709,551,615
— s64 - a 64 bit signed integer, legal values are -9,223,372,036,854,775,808 to +9,223,372,036,854,77!

Function
Real hardware components tend to act immediately on their inputs. For example, if the input
voltage to a servo amp changes, the output also changes automatically. However software com-
ponents cannot act automatically. Each component has specific code that must be executed to

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 190/1261

do whatever that component is supposed to do. In some cases, that code simply runs as part of
the component. However in most cases, especially in realtime components, the code must run in
a specific sequence and at specific intervals. For example, inputs should be read before calcula-
tions are performed on the input data, and outputs should not be written until the calculations
are done. In these cases, the code is made available to the system in the form of one or more
functions. Each function is a block of code that performs a specific action. The system integra-
tor can use threads to schedule a series of functions to be executed in a particular order and at
specific time intervals.

Thread
A thread is a list of functions that runs at specific intervals as part of a realtime task. When a
thread is first created, it has a specific time interval (period), but no functions. Functions can be
added to the thread, and will be executed in order every time the thread runs.

As an example, suppose we have a parport component named hal parport. That component defines
one or more HAL pins for each physical pin. The pins are described in that component’s doc section:
Their names, how each pin relates to the physical pin, are they inverted, can you change polarity, etc.
But that alone doesn’t get the data from the HAL pins to the physical pins. It takes code to do that, and
that is where functions come into the picture. The parport component needs at least two functions:
One to read the physical input pins and update the HAL pins, the other to take data from the HAL pins
and write it to the physical output pins. Both of these functions are part of the parport driver.

5.1.5 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that
can be installed and interconnected as needed. The section HAL Components List lists all available
components and a brief description of what each does.

5.1.6 Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon,
simply connecting two pins with a HAL-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current
flows (or stops) immediately. Other coils may change state, etc., and it all just happens. But in PLC
style ladder logic, it doesn’t work that way. Usually in a single pass through the ladder, each rung is
evaluated in the order in which it appears, and only once per pass. A perfect example is a single rung
ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and
de-energize it. That means the contacts close again, etc., etc. The relay becomes a buzzer.

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung,
then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact
feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open, and
de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate determined
by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version
of ClassicLadder exports a function to do exactly that. Meanwhile, a thread is the thing that runs the
function at specific time intervals. Just like you can choose to have a PLC evaluate all its rungs every
10 ms, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is not what the thread does - that is determined by which
functions are connected to it. The real distinction is simply how often a thread runs.

In LinuxCNC you might have a 50 us thread and a 1 ms thread. These would be created based on
BASE PERIOD and SERVO PERIOD, the actual times depend on the values in your INI file.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 191 /1261

The next step is to decide what each thread needs to do. Some of those decisions are the same in
(nearly) any LinuxCNC system. For instance, motion-command-handler is always added to servo-
thread.

Other connections would be made by the integrator. These might include hooking the STG driver’s
encoder read and DAC write functions to the servo thread, or hooking StepGen'’s function to the base-
thread, along with the parport function(s) to write the steps to the port.

5.2 HAL Basics

This document provides a reference to the basics of HAL.

5.2.1 HAL Commands

More detailed information can be found in the man page for halcmd: run man halcmd in a terminal
window.

To see the HAL configuration and check the status of pins and parameters use the HAL Configuration
window on the Machine menu in AXIS. To watch a pin status open the Watch tab and click on each
pin you wish to watch and it will be added to the watch window.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 192 /1261

- HAL Configuration BiEE
Tree View
Components SHOW | waATCH
Fins
axis Component Pins:
axisui Owner Type Dirc Value Name
hal_manualtoolchange 6 hit IN FALSE parport. 0. pin-0l-out <{==
incontrol estop-out
. 6 hit IN FALSE parport. 0. pin-02-out <{== xstep
motion 6 hit IN FALSE parport. 0. pin-03-out <{== =xdir
parport 6 hit IN FALSE parport. 0. pin-04-out <{== ystep
0 6 hit IN FALSE parport. 0. pin-05-out <{== wdir
pywrmgen & bit 1IN FALSE parport. 0 pin-06-out <== =zstep
stepgen & bit 1IN FALSE parport. 0. pin-07-out <== =zdir
E— Parameters 6 hit IN FALSE parport. 0. pin-08-out <{== astep
- 6 hit IN FALSE parport. 0. pin-09-out <{== adir
b= Slg"a!s 6 hit OUT TRUE parport. 0. pin-10-in
&— Functions & hit OUT FALSE parport. 0. pin-10-in-not
E— Threads & bit OUT TRUE parport. 0. pin-11-in
6 hit OUT FALSE parport. 0. pin-11-in-not
6 hit OUT TRUE parport. 0. pin-12-in
6 hit OUT FALSE parport. 0. pin-12-in-not
6 hit OUT TRUE parport. 0. pin-13-in
6 hit OUT FALSE parport. 0. pin-13-in-not
6 hit IN FALSE parport. 0. pin-14-out <{==
spindle-cw
6 hit OUT TRUE parport. 0. pin-15-in
6 hit OUT FALSE parport. 0. pin-15-in-not
6 hit IN FALSE parport. 0. pin-16-out <{==
spindle-puwm
Test HAL command : Execute
Commands may be tested here but they will NOT be sawed

Figure 5.3 - HAL Configuration Window

5.2.1.1 loadrt

The command loadrt loads a real time HAL component. Real time component functions need to be
added to a thread to be updated at the rate of the thread. You cannot load a non-realtime component
into the realtime space.

loadrt Syntax and Example

loadrt <component> <options>
loadrt mux4 count=1

5.2.1.2 addf

The addf command adds a function to a real-time thread. If the StepConf wizard was used to create
the configuration, two threads have been created (base-thread” and ~servo-thread).

addf adds function functname to thread threadname. Default is to add the function in the order they
are in the file. If position is specified, adds the function to that spot in the thread. A negative position
indicates the position with respect to the end of the thread. For example 1 is start of thread, -1 is the
end of the thread, -3 is third from the end.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 193 /1261

For some functions it is important to load them in a certain order, like the parport read and write
functions. The function name is usually the component name plus a number. In the following example
the component or2 is loaded and show function shows the name of the or2 function.

$ halrun

halcmd: loadrt or2

halcmd: show function

Exported Functions:

Owner CodeAddr Arg FP Users Name
00004 f8bc5000 f8f950c8 NO 0 or2.0

You have to add a function from a HAL real time component to a thread to get the function to update at
the rate of the thread. Usually there are two threads as shown in this example. Some components use
floating point math and must be added to a thread that supports floating point math. The FP indicates
if floating point math is supported in that thread.

$ halrun

halcmd: loadrt motmod base period nsec=55555 servo period nsec=1000000 num_joints=3
halcmd: show thread

Realtime Threads:

Period FP Name (Time, Max-Time)
995976 YES servo-thread (0, 0)
55332 NO base-thread (0, 0)

— base-thread (the high-speed thread): This thread handles items that need a fast response, like
making step pulses, and reading and writing the parallel port. Does not support floating point
math.

— servo-thread (the slow-speed thread): This thread handles items that can tolerate a slower res-
ponse, like the motion controller, ClassiclL.adder, and the motion command handler and supports
floating point math.

addf Syntax and Example

addf <function> <thread>
addf mux4.0 servo-thread

Note
If the component requires a floating point thread that is usually the slower servo-thread.

5.2.1.3 loadusr

The command loadusr loads a non-realtime HAL component. Non-realtime programs are their own
separate processes, which optionally talk to other HAL components via pins and parameters. You
cannot load realtime components into non-realtime space.

Flags may be one or more of the following:

-W to wait for the component to become ready. The component is assumed to have
the same name as the first argument of the command.

-Wn <name> to wait for the component, which will have the given <name>. This only applies
if the component has a name option.

-w to wait for the program to exit
-1 to ignore the program return value (with -w)
-n name a component when it is a valid option for that component.

Syntax and Examples of loadusr

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 194 /1261

loadusr <component> <options>
loadusr halui
loadusr -Wn spindle gs2 vfd -n spindle

In English it means loadusr wait for name spindle component gs2 vfd name spindle.

5.2.1.4 net

The command net creates a connection between a signal and one or more pins. If the signal does not
exist net creates the new signal. This replaces the need to use the command newsig. The optional
direction arrows <=, => and <=> make it easier to follow the logic when reading a net command line
and are not used by the net command. The direction arrows must be separated by a space from the
pin names.

Syntax and Examples of net

net signal-name pin-name <optional arrow> <optional second pin-name>
net home-x joint.0.home-sw-in <= parport.0.pin-11-in

In the above example home-x is the signal name, joint.0.home-sw-1in is a Direction IN pin, <= is the
optional direction arrow, and parport.0.pin-11-inis a Direction OUT pin. This may seem confusing
but the in and out labels for a parallel port pin indicates the physical way the pin works not how it is
handled in HAL.

A pin can be connected to a signal if it obeys the following rules:

— An IN pin can always be connected to a signal.

— An IO pin can be connected unless there’s an OUT pin on the signal.

— An OUT pin can be connected only if there are no other OUT or IO pins on the signal.

The same signal-name can be used in multiple net commands to connect additional pins, as long as
the rules above are obeyed.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 195/1261

Signal
Source
Dir
Out
Signal
Dir Dir
* In In +
Signal Signal
Reader Reader

Figure 5.4 - Signal Direction

This example shows the signal xStep with the source being stepgen.0.out and with two readers,
parport.0.pin-02-out and parport.0.pin-08-out. Basically the value of stepgen.0.out is sent to
the signal xStep and that value is then sent to parport.0.pin-02-out and parport.0.pin-08-out.

signal source destination destination
net xStep stepgen.0.out => parport.0.pin-02-out parport.0.pin-08-out

Since the signal xStep contains the value of stepgen.0.out (the source) you can use the same signal
again to send the value to another reader. To do this just use the signal with the readers on another
line.

signal destination2
net xStep => parport.0.pin-06-out

I/0 pins An I/O pin like encoder.N.index-enable can be read or set as allowed by the component.

5.2.1.5 setp

The command setp sets the value of a pin or parameter. The valid values will depend on the type of
the pin or parameter. It is an error if the data types do not match.

Some components have parameters that need to be set before use. Parameters can be set before use
or while running as needed. You cannot use setp on a pin that is connected to a signal.

Syntax and Examples of setp

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 196 /1261

setp <pin/parameter-name> <value>
setp parport.0.pin-08-out TRUE

5.2.1.6 sets

The command sets sets the value of a signal.
Syntax and Examples of sets

sets <signal-name> <value>
net mysignal and2.0.in0® pyvcp.my-led
sets mysignal 1

It is an error if:

— The signal-name does not exist

— If the signal already has a writer

— If value is not the correct type for the signal

5.2.1.7 unlinkp

The command unlinkp unlinks a pin from the connected signal. If no signal was connected to the pin
prior running the command, nothing happens. The unlinkp command is useful for trouble shooting.

Syntax and Examples of unlinkp

unlinkp <pin-name>
unlinkp parport.0.pin-02-out

5.2.1.8 Obsolete Commands

The following commands are depreciated and may be removed from future versions. Any new confi-
guration should use the net command. These commands are included so older configurations will still
work.

The command linksp creates a connection between a signal and one pin.
Syntax and Examples of linksp

linksp <signal-name> <pin-name>

linksp X-step parport.0.pin-02-out

The linksp command has been superseded by the net command.

The command linkps creates a connection between one pin and one signal. It is the same as linksp
but the arguments are reversed.

Syntax and Examples of linkps

linkps <pin-name> <signal-name>

linkps parport.0.pin-02-out X-Step

The linkps command has been superseded by the net command.

the command newsig creates a new HAL signal by the name <signame> and the data type of <type>.
Type must be bit, s32, u32, s64, u64 or float. Error if <signame> already exists.

Syntax and Examples of newsig
newsig <signame> <type>
newsig Xstep bit

More information can be found in the HAL manual or the man pages for halrun.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 197 /1261

5.2.2 HAL Data

5.2.2.1 Bit

A bit value is an on or off.
— bit values = true or 1 and false or 0 (True, TRUE, true are all valid)

5.2.2.2 Float

A float is a floating point number. In other words the decimal point can move as needed.

— float values = a 64 bit floating point value, with approximately 53 bits of resolution and over 210
(~ 1000) bits of dynamic range.

For more information on floating point numbers see:

https://en.wikipedia.org/wiki/Floating point

5.2.2.3 s32

An s32 number is a whole number that can have a negative or positive value.
— s32 values = integer numbers from -2147483648 to 2147483647

5.2.2.4 u32

A u32 number is a whole number that is positive only.
— u32 values = integer numbers from 0 to 4294967295

5.2.2.5 s64

An s64 number is a whole number that can have a negative or positive value.
— s64 values = integer numbers from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

5.2.2.6 u64

A u64 number is a whole number that is positive only.
— u64 values = integer numbers from 0 to 18,446,744,073,709,551,615

5.2.3 HAL Files

If you used the Stepper Config Wizard to generate your config you will have up to three HAL files in

your config directory.

— my-mill.hal (if your config is named my-mill) This file is loaded first and should not be changed if
you used the Stepper Config Wizard.

— custom.hal This file is loaded next and before the GUI loads. This is where you put your custom
HAL commands that you want loaded before the GUI is loaded.

— custom_postgui.hal This file is loaded after the GUI loads. This is where you put your custom HAL
commands that you want loaded after the GUI is loaded. Any HAL commands that use PyVCP
widgets need to be placed here.

https://en.wikipedia.org/wiki/Floating_point

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 198 /1261

5.2.4 HAL Parameter

Two parameters are automatically added to each HAL component when it is created. These parameters
allow you to scope the execution time of a component.

.time Time is the number of CPU cycles it took to execute the function.
. tmax Tmax is the maximum number of CPU cycles it took to execute the function.

tmax is a read/write parameter so the user can set it to 0 to get rid of the first time initialization on
the function’s execution time.

5.2.5 Basic Logic Components

HAL contains several real time logic components. Logic components follow a Truth Table that states
what the output is for any given input. Typically these are bit manipulators and follow electrical logic
gate truth tables.

For further components see HAL Components List or the man pages.

5.2.5.1 and2

The and2 component is a two input and-gate. The truth table below shows the output based on each
combination of input.

Syntax

and2 [count=N] | [names=namel[,name2...]]

Fonctions

and2.n

Pins

and2.N.in® (bit, in)
and2.N.inl (bit, in)
and2.N.out (bit, out)

Table 5.3: Truth Table of and2

in0 inl out

False False False
True False False
False True False
True True True

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

199 /1261

5.2.5.2 not

The not component is a bit inverter.
Syntax

not [count=n] | [names=namel[,name2...]]

Fonctions

not.all
not.n

Pins

not.n.in (bit, in)
not.n.out (bit, out)

Table 5.4: Truth Table of not

in out

True False

False True
5.2.5.3 or2

The or2 component is a two input or-gate.
Syntax

or2[count=n] | [names=namel[,name2...]]

Fonctions

or2.n

Pins

or2.n.in0® (bit, in)
or2.n.inl (bit, in)
or2.n.out (bit, out)

Table 5.5: or2 Truth Table

in0 inl out

True False True
True True True
False True True
False False False

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

200 /1261

5.2.5.4 xor2

The xor2 component is a two input xor (exclusive or)-gate.
Syntax

xor2[count=n] | [names=namel[,name2...]]

Fonctions

Xxor2.n

Pins

xor2.n.in® (bit, in)
xor2.n.inl (bit, in)
xor2.n.out (bit, out)

Table 5.6: xor2 Truth Table

in0 inl out

True False True
True True False
False True True
False False False

5.2.6 Logic Examples

Example using and2

loadrt and2 count=1

addf and2.0 servo-thread

net my-siginl and2.0.in@ <= parport.0.pin-11-in
net my-sigin2 and2.0.inl <= parport.0.pin-12-in
net both-on parport.0.pin-14-out <= and2.0.out

In the above example one copy of and2 is loaded into real time space and added to the servo thread.
Next pin-11 of the parallel port is connected to the in0 bit of the and gate. Next pin-12 is connected
to the inl bit of the and gate. Last we connect the and2 out bit to the parallel port pin-14. So following

the truth table for and2 if pin 11 and pin 12 are on then the output pin 14 will be on.

5.2.7 Conversion Components

5.2.7.1 weighted_sum

The weighted sum converts a group of bits into an integer. The conversion is the sum of the weights of
the bits present plus any offset. It’s similar to binary coded decimal but with more options. The hold

bit interrupts the input processing, so that the sum value no longer changes.

Syntax for loading component weighted_sum

loadrt weighted sum wsum sizes=size[,size,...]

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 201 /1261

Creates groups of “weighted sum™ s, each with the given number of input bits (size).
To update the weighted sum, the process wsums must be attached to a thread.
Add process_wsums to servo thread

addf process wsums servo-thread

Which updates the weighted sum component.

In the following example, a copy of the AXIS HAL configuration window, bits 0 and 2 are TRUE, they
have no offset. The weight (weight) of bit 0 is 1, that of bit 2 is 4, so the sum is 5.

Table 5.7: Component pins of weighted sum

Owner Type Dir Value Name

10 bit In TRUE wsum.0.bit.0.in

10 s32 I/0 1 wsum.0.bit.0.weight
10 bit In FALSE wsum.0.bit.1.1in

10 s32 1/0 2 wsum.0.bit.1.weight
10 bit In TRUE wsum.0.bit.2.in

10 s32 1/0 4 wsum.0.bit.2.weight
10 bit In FALSE wsum.0.bit.3.in

10 s32 I/0 8 wsum.0.bit.3.weight
10 bit In FALSE wsum.0.hold

10 s32 I/O 0 wsum.0.offset

10 s32 Out 5 wsum.0.sum

5.3 HAL TWOPASS

5.3.1 TWOPASS

This section describes an option to have multiple load-commands for multiple instances of the same
component at different positions in the file or among different files. Internally, this requires to read
the HAL file twice, hence the name TWOPASS. Supported since LinuxCNC version 2.5, the TWOPASS
processing of LinuxCNC configuration files helps with their modularization and readability. To recall,
LinuxCNC configuration files are specified in a LinuxCNC INI file as [HAL]HALFILE=filename.

Normally, a set of one or more LinuxCNC configuration files must use a single, unique loadrt line to
load a realtime component, which may create multiple instances of the component. For example, if
you use a two-input AND gate component (and?2) in three different places in your setup, you would
need to have a single line somewhere to specify:

Example resulting in real-time components with default names and2.0, and2.1, and2.2.

loadrt and2 count=3

Configurations are more readable if you specify with the names= option for components where it is
supported, e.g.:

Example load command resulting in explicitly named components aa, ab, ac.

loadrt and2 names=aa,ab,ac

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 202 /1261

It can be a maintenance problem to keep track of the components and their names, since when you
add (or remove) a component, you must find and update the single loadrt directive applicable to the
component.

TWOPASS processing is enabled by including an INI file parameter in the [HAL] section,
where ”“anystring” can be any non-null string.

[HAL]

TWOPASS = anystring

With TWOPASS enabled, you can have multiple specifications like:

loadrt and2 names=aa
loadrt and2 names=ab,ac

loadrt and2 names=ad

These commands can appear in different HAL files. The HAL files are processed in the order of their
appearance in the INI file, in multiple HALFILE assignments.

The TWOPASS option can be specified with options to add output for debugging (verbose) and to
prevent deletion of temporary files (nodelete). The options are separated with commas.

Exemple

[HAL]
TWOPASS = on,verbose,nodelete

With TWOPASS processing, all [HALJHALFILES are first read and multiple appearances of loadrt
directives for each module are accumulated. Non-realtime components (loadusr) are loaded in order
but no other LinuxCNC commands are executed in the initial pass.

Note
Non-realtime components should use the wait (-W) option to ensure the component is ready before
other commands are executed.

After the initial pass, the realtime modules are loaded (loadrt) automatically

— with a number equal to the total number when using the count= option or
— with all of the individual names specified when using the names= option.

A second pass is then made to execute all of the other LinuxCNC instructions specified in the HAL-
FILES. The addf commands that associate a component’s functions with thread execution are executed
in the order of appearance with other commands during this second pass.

While you can use either the count= or names= options, they are mutually exclusive — only one type
can be specified for a given module.

TWOPASS processing is most effective when using the names= option. This option allows you to pro-
vide unique names that are mnemonic or otherwise relevant to the configuration. For example, if you
use a derivative component to estimate the velocities and accelerations on each (x,y,z) coordinate,
using the count= method will give arcane component names like ddt.0, ddt.1, ddt.2, etc.

Alternatively, using the names= option like:

loadrt ddt names=xvel,yvel, zvel

loadrt ddt names=xaccel,yaccel,zaccel

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 203 /1261

results in components sensibly named xvel, yvel, zvel, xaccel, yaccel, zaccel.

Many comps supplied with the distribution are created with the halcompile utility and support the
names= option. These include the common logic components that are the glue of many LinuxCNC
configurations.

User-created comps that use the halcompile utility automatically support the names= option as well. In
addition to comps generated with the halcompile utility, numerous other comps support the names=option.
Comps that support names= option include: at pid, encoder, encoder ratio, pid, siggen, and sim encoder.

Two-step processing occurs before the GUI is loaded. When using a [HAL]JPOSTGUI HALFILE, it is
convenient to place all the [HAL]JPOSTGUI HALFILE loadrt declarations for the necessary compo-
nents in a preloaded HAL file.

Example of a HAL section when using a POSTGUI_HALFILE

[HAL]

TWOPASS = on

HALFILE = core sim.hal

HALFILE = sim spindle_encoder.hal

HALFILE = axis manualtoolchange.hal

HALFILE = simulated home.hal

HALFILE = load for postgui.hal <- loadrt lines for components in postgui.hal

POSTGUI HALFILE = postgui.hal
HALUI = halui

5.3.2 Post GUI

Some GUIs support HAL files that are processed after the GUI is started in order to connect LinuxCNC
pins that are created by the GUI. When using a postgui HAL file with TWOPASS processing, include
all loadrt items for components added by postgui HAL files in a separate HAL file that is processed
before the GUI. The addf commands can also be included in the file.

Exemple

[HAL]

TWOPASS = on

HALFILE = file 1.hal

HALFILE = file n.hal

HALFILE = file with all loads for postgui.hal

POSTGUI HALFILE = the postgui file.hal

5.3.3 Excluding .hal files

TWOPASS processing converts .hal files to equivalent .tcl files and uses haltcl to find loadrt and addf
commands in order to accumulate and consolidate their usage. Loadrt parameters that conform to
the simple names= (or count=) parameters accepted by the HAL Component Generator (halcompile)
are expected. More complex parameter items included in specialized LinuxCNC components may not
be handled properly.

A .hal file may be excluded from TWOPASS processing by including a magic comment line anywhere in
the .hal file. The magic comment line must begin with the string: #NOTWOPASS. Files specified with this
magic comment are sourced by halcmd using the -k (keep going if failure) and -v (verbose) options.

This exclusion provision can be used to isolate problems or for loading any special LinuxCNC com-
ponent that does not require or benefit from TWOPASS processing.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 204 /1261

Ordinarily, the loadrt ordering of realtime components is not critical, but loadrt ordering for special
components can be enforced by placing the such loadrt directives in an excluded file.

Note
While the order of loadrt directives is not usually critical, ordering of addf directives is often very
important for proper operation of servo loop components.

Excluded HAL file example

$ cat twopass_excluded.hal

The following magic comment causes this file to
be excluded from twopass processing:

NOTWOPASS

debugging component with complex options:
loadrt mycomponent parml="abc def” parm2=ghi
show pin mycomponent

ordering special components
loadrt component 1
loadrt component 2

Note

Case and whitespace within the magic comment are ignored. The loading of components that use
names= or count= parameters (typically built by halcompile) should not be used in excluded files,
as that would eliminate the benefits of TWOPASS processing. The LinuxCNC commands that create
signals (net) and commands that establish execution order (addf) should not be placed in excluded
files. This is especially true for addf commands since their ordering may be important.

5.3.4 Examples

Examples of TWOPASS usage for a simulator are included in the directories:

configs/sim/axis/twopass/
configs/sim/axis/simtcl/

5.4 HAL Tutorial

5.4.1 Introduction

Configuration moves from theory to device — HAL device that is. For those who have had just a bit of
computer programming, this section is the Hello World of the HAL.

halrun can be used to create a working system. It is a command line or text file tool for configuration
and tuning. The following examples illustrate its setup and operation.

5.4.2 Halcmd

halcmd is a command line tool for manipulating HAL. A more complete man page exists for halcmd
and installed together with LinuxCNC, from source or from a package. If LinuxCNC has been compiled
as run-in-place, the man page is not installed but is accessible in the LinuxCNC main directory with
the following command:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 205/1261

$ man -M docs/man halcmd

5.4.2.1 Notation

For this tutorial, commands for the operating system are typically shown without the prompt provided
by the UNIX shell, i.e typically a dollar sign ($) or a hash/double cross (#). When communicating
directly with the HAL through halcmd or halrun, the prompts are shown in the examples. The terminal
window is in Applications/Accessories from the main Ubuntu menu bar.

Terminal Command Example - prompts

me@computer:~linuxcnc$ halrun
(will be shown like the following line)
halrun

(the halcmd: prompt will be shown when running HAL)
halcmd: loadrt counter
halcmd: show pin

5.4.2.2 Tab-completion

Your version of halcmd may include tab-completion. Instead of completing file names as a shell does,
it completes commands with HAL identifiers. You will have to type enough letters for a unique match.
Try pressing tab after starting a HAL command:

Tab-completion

halcmd: loa<TAB>
halcmd: load

halcmd: loadrt

halcmd: loadrt cou<TAB>
halcmd: loadrt counter

5.4.2.3 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in real-
time, and all HAL components store data in shared memory so realtime components can access it.
Regular Linux does not support realtime programming or the type of shared memory that HAL needs.
Fortunately, there are realtime operating systems (RTOS’s) that provide the necessary extensions to
Linux. Unfortunately, each RTOS does things a little differently.

To address these differences, the LinuxCNC team came up with RTAPI, which provides a consistent
way for programs to talk to the RTOS. If you are a programmer who wants to work on the internals
of LinuxCNC, you may want to study linuxcnc/src/rtapi/rtapi.h to understand the API. But if you are
a normal person, all you need to know about RTAPI is that it (and the RTOS) needs to be loaded into
the memory of your computer before you do anything with HAL.

5.4.3 A Simple Example

5.4.3.1 Loading a component

For this tutorial, we are going to assume that you have successfully installed the Live CD and, if using
a RIP', invoke the rip-environment script to prepare your shell. In that case, all you need to do is load

1. Run In Place, when the source files have been downloaded to a user directory and are compiled and executed directly
from there.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 206 /1261

the required RTOS and RTAPI modules into memory. Just run the following command from a terminal
window:

Loading HAL

cd linuxcnc
halrun
halcmd:

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the prompt is
now shown as halecmd:. This is because subsequent commands will be interpreted as HAL commands,
not shell commands.

For the first example, we will use a HAL component called siggen, which is a simple signal generator.
A complete description of the siggen component can be found in the SigGen section of this Manual.
It is a realtime component. To load the "siggen” component, use the HAL command loadrt.

Loading siggen
halcmd: loadrt siggen

5.4.3.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd, the command line tool used to configure
the HAL. This tutorial will introduce only a selection of halcmd features. For a more complete des-
cription try man halcmd, or see the reference in HAL Commands section of this document. The first
halcmd feature is the show command. This command displays information about the current state of
the HAL. To show all installed components:

Show Components with halrun/halcmd

halcmd: show comp

Loaded HAL Components:

ID Type Name PID State
3 RT siggen ready
2 User halcmd2177 2177 ready

Since halcmd itself is also a HAL component, it will always show up in the list. The number after
”"halcmd” in the component list is the UNIX process ID. It is possible to run more than one copy of
halcmd at the same time (in different terminal windows for example), so the PID is added to the end of
the name to make it unique. The list also shows the siggen component that we installed in the previous
step. The RT under Type indicates that siggen is a realtime component. The User under Type indicates
it is a non-realtime component.

Next, let’s see what pins siggen makes available:
Show Pins

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float 1IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0.clock
3 float OUT 0 siggen.0.cosine
3 float 1IN 1 siggen.0.frequency
3 float 1IN 0 siggen.0.offset
3 float OUT 0 siggen.0.sawtooth
3 float OUT 0 siggen.0.sine
3 float OUT 0 siggen.0.square
3 float OUT 0 siggen.0.triangle

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 207 /1261

This command displays all of the pins in the current HAL. A complex system could have dozens or
hundreds of pins. But right now there are only nine pins. Of these pins eight are floating point and
one is bit (boolean). Six carry data out of the siggen component and three are used to transfer settings
into the component. Since we have not yet executed the code contained within the component, some
the pins have a value of zero.

The next step is to look at parameters:
Show Parameters

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 0 siggen.0.update.time
3 s32 RwW 0 siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now, each parameter has
the default value it was given when the component was loaded. Note the column labeled Dir. The
parameters labeled -W are writable ones that are never changed by the component itself, instead
they are meant to be changed by the user to control the component. We will see how to do this
later. Parameters labeled R- are read only parameters. They can be changed only by the component.
Finally, parameter labeled RW are read-write parameters. That means that they are changed by the
component, but can also be changed by the user. Note: The parameters siggen.0.update.time and
siggen.0.update.tmax are for debugging purposes and won’t be covered in this section.

Most realtime components export one or more functions to actually run the realtime code they contain.
Let’s see what function(s) siggen exported:

Show Functions with halcimnd

halcmd: show funct

Exported Functions:
Owner CodeAddr Arg FP Users Name
00003 f801b00O fae820b8 YES 0 siggen.0.update

The siggen component exported a single function. It requires floating point. It is not currently linked
to any threads, so users is zero 2.

5.4.3.3 Making realtime code run

To actually run the code contained in the function siggen.0.update, we need a realtime thread. The
component called threads that is used to create a new thread. Lets create a thread called "test-thread”
with a period of 1 ms (1,000 ps or 1,000,000 ns):

halcmd: loadrt threads namel=test-thread periodl=1000000

Let’s see if that worked:
Show Threads

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
999855 YES test-thread (0, 0)

2. CodeAddr and Arg fields were used during development and should probably disappear.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 208 /1261

It did. The period is not exactly 1,000,000 ns because of hardware limitations, but we have a thread
that runs at approximately the correct rate, and which can handle floating point functions. The next
step is to connect the function to the thread:

Add Function
halcmd: addf siggen.0.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the addf
(add function) command to actually change something in the HAL. We told halcmd to add the function
siggen.0.update to the thread test-thread, and if we look at the thread list again, we see that it
succeeded:

halcmd: show thread
Realtime Threads:
Period FP Name (Time, Max-Time)

999855 YES test-thread (0, 0)
1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the HAL
is first started, the thread(s) are not actually running. This is to allow you to completely configure the
system before the realtime code starts. Once you are happy with the configuration, you can start the
realtime code like this:

halcmd: start

Now the signal generator is running. Let’s look at its output pins:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT -0.1640929 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.4475303 siggen.0.sawtooth
3 float OUT 0.9864449 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT -0.1049393 siggen.0.triangle
And let’s look again:
halcmd: show pin
Component Pins:
Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT 0.0507619 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.516165 siggen.0.sawtooth
3 float OUT 0.9987108 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT 0.03232994 siggen.0.triangle

We did two show pin commands in quick succession, and you can see that the outputs are no longer
zero. The sine, cosine, sawtooth, and triangle outputs are changing constantly. The square output is
also working, however it simply switches from +1.0 to -1.0 every cycle.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 209/1261

5.4.3.4 Changing Parameters

The real power of HAL is that you can change things. For example, we can use the setp command to
set the value of a parameter. Let’s change the amplitude of the signal generator from 1.0 to 5.0:

Set Pin

halcmd: setp siggen.0.amplitude 5

Check the parameters and pins again

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 1754 siggen.0.update.time
3 s32 RW 16997 siggen.0.update.tmax

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 5 siggen.0.amplitude
3 bit OUT FALSE siggen.0.clock
3 float OUT 0.8515425 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT 2.772382 siggen.0.sawtooth
3 float OUT -4.926954 siggen.0.sine
3 float OUT 5 siggen.0.square
3 float OUT 0.544764 siggen.0.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5, and that the pins now have
larger values.

5.4.3.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show command.
However two of the commands actually changed things. As we design more complex systems with HAL,
we will use many commands to configure things just the way we want them. HAL has the memory of
an elephant, and will retain that configuration until we shut it down. But what about next time? We
don’t want to manually enter a bunch of commands every time we want to use the system.

Saving the configuration of the entire HAL with a single command.

halcmd: save

components

loadrt threads namel=test-thread periodl=1000000
loadrt siggen

pin aliases

signals

nets

parameter values

setp siggen.0.update.tmax 14687

realtime thread/function links

addf siggen.0.update test-thread

The output of the save command is a sequence of HAL commands. If you start with an empty HAL
and run all these commands, you will get the configuration that existed when the save command was
issued. To save these commands for later use, we simply redirect the output to a file:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 210/ 1261

Save configuration to a file with halcmd

halcmd: save all saved.hal

5.4.3.6 Exiting halrun

When you’re finished with your HAL session type exit at the "halcmd:” prompt. This will return you to
the system prompt and close down the HAL session. Do not simply close the terminal window without
shutting down the HAL session.

Exit HAL

halcmd: exit

5.4.3.7 Restoring the HAL configuration

To restore the HAL configuration stored in the file “saved.hal”, we need to execute all of those HAL
commands. To do that, we use ”-f <file name> ” which reads commands from a file, and ”-I”
(upper case i) which shows the halcmd prompt after executing the commands:

Run a Saved File

halrun -I -f saved.hal

Notice that there is not a ”start” command in saved.hal. It's necessary to issue it again (or edit the
file saved.hal to add it there).

5.4.3.8 Removing HAL from memory

If an unexpected shutdown of a HAL session occurs you might have to unload HAL before another
session can begin. To do this type the following command in a terminal window.

Removing HAL
halrun -U

5.4.4 Halmeter

You can build very complex HAL systems without ever using a graphical interface. However there is
something satisfying about seeing the result of your work. The first and simplest GUI tool for the HAL
is halmeter. It is a very simple program that is the HAL equivalent of the handy multimeter (or analog
meter for the old timers).

It allows to observe the pins, signals or parameters by displaying the current value of these entities.
It is very easy to use application for graphical environments. In a console type:

halmeter

Two windows will appear. The selection window is the largest and includes three tabs:
— One lists all the pins currently defined in HAL,

— one lists all the signals,

— one lists all the parameters.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 211 /1261

Click on a tab, then click on one of the items to select it. The small window will show the name and
value of the selected item. The display is updated approximately 10 times per second. To free screen
space, the selection window can be closed with the Close button. On the little window, hidden under
the selection window at program launch, the Select button, re-opens the selection window and the
EXxit button stops the program and closes both windows.

It is possible to run several halmeters simultaneously, which makes it possible to visualize several
items at the same time. To open a halmeter and release the console by running it in the background,
run the following command:

halmeter &

It is possible to launch halmeter and make it immediately display an item. For this, add pin|sig|parfam]
name arguments on the command line. It will display the signal, pin, or parameter name as soon as it
will start. If the indicated item does not exist, it will start normally.

Finally, if an item is specified for display, it is possible add -s in front of pin|sig|param to tell halmeter
to use an even smaller window. The item name will be displayed in the title bar instead of below the
value and there will be no button. This is useful for displaying a lot of halmeters in a small space.

We will use the siggen component again to check out halmeter. If you just finished the previous
example, then you can load siggen using the saved file. If not, we can load it just like we did before:

halrun

halcmd: loadrt siggen

halcmd: loadrt threads namel=test-thread period1=1000000
halcmd: addf siggen.0.update test-thread

halcmd: start

halcmd: setp siggen.0Q.amplitude 5

At this point we have the siggen component loaded and running. It’s time to start halmeter.
Starting Halmeter

halcmd: loadusr halmeter

The first window you will see is the ”Select Item to Probe” window.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

212 /1261

Pins

siggen.0.sine

siggen.0.amplitude
siggen.0.frequency
siggen.0.offset
siggen.0.sawtooth

siggen.0.square
siggen.0.triangle

Close

Figure 5.5 - Halmeter Select Window

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one
displays all the signals, and the third displays all the parameters. We would like to look at the pin
siggen.0.cosine first, so click on it then click the "Close” button. The probe selection dialog will
close, and the meter looks something like the following figure.

Hal Meter
-0.6874131

siggen.0.cosine

Select

Exit

Figure 5.6 - Halmeter Window

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 213 /1261

To change what the meter displays press the ”"Select” button which brings back the ”Select Item to
Probe” window.

You should see the value changing as siggen generates its cosine wave. Halmeter refreshes its display
about 5 times per second.

To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more
halmeters. The halmeter window was intentionally made very small so you could have a lot of them
on the screen at once.

5.4.5 Stepgen Example

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow
you to load and connect a number of simple components to make up a complex system. The next
example will use two components.

Before we can begin building this new example, we want to start with a clean slate. If you just finished
one of the previous examples, we need to remove the all components and reload the RTAPI and HAL
libraries.

halcmd: exit

5.4.5.1 |Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this com-
ponent refer to the stepgen section of the Integrator Manual. In this example we will use the velocity
control type of StepGen. For now, we can skip the details, and just run the following commands.

In this example we will use the velocity control type from the stepgen component.

halrun

halcmd: loadrt stepgen step type=0,0 ctrl type=v,v

halcmd: loadrt siggen

halcmd: loadrt threads namel=fast fpl=0 periodl=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The second
command loads our old friend siggen, and the third one creates two threads, a fast one with a period
of 50 microseconds (us) and a slow one with a period of 1 millisecond (ms). The fast thread doesn’t
support floating point functions.

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins and
parameters than before:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
4 float IN 1 siggen.0.amplitude
4 bit OUT FALSE siggen.0.clock
4 float OUT 0 siggen.0.cosine
4 float IN 1 siggen.0.frequency
4 float IN 0 siggen.0.offset
4 float OUT 0 siggen.0.sawtooth
4 float OUT 0 siggen.0.sine
4 float OUT 0 siggen.0.square
4 float OUT 0 siggen.0.triangle
3 s32 0OUT 0 stepgen.0.counts
3 bit OUT FALSE stepgen.0.dir

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

214 /1261

3 bit IN
3 float OUT
3 bit ouT
3 float IN
3 s32 ouT
3 bit ouT
3 bit IN
3 float OUT
3 bit ouT
3 float IN
halcmd: show param

Parameters:

Owner Type Dir
4 s32 RO
4 s32 RW
3 u32 RW
3 u32 RW
3 float RO
3 float RW
3 float RW
3 float RW
3 s32 RO
3 u32 RW
3 u32 RW
3 u32 RW
3 u32 RW
3 float RO
3 float RW
3 float RW
3 float RW
3 s32 RO
3 u32 RW
3 u32 RW
3 s32 RO
3 s32 RW
3 s32 RO
3 s32 RW
3 s32 RO
3 s32 RW

FALSE

FALSE

FALSE
FALSE

FALSE

Value

0

0
0x00000001
0x00000001
0

0

0

1

0
0x00000001
0x00000001
0x00000001
0x00000001
0

0

0

1

0
0x00000001
0x00000001

[cNoNoNoNoNo]

stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.

Name

HFHRRRRHOOO®O

.enable
.position-fb
.step
.velocity-cmd
.counts

.dir

.enable
.position-fb
.step
.velocity-cmd

siggen.0.update.time
siggen.0.update. tmax

stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.
stepgen.

5.4.5.2 Connecting pins with signals

[Ty o Ro R Re Re Re Re Re Ko

.dirhold
.dirsetup
.frequency
.maxaccel
.maxvel
.position-scale
. rawcounts
.steplen
.stepspace
.dirhold
.dirsetup
.frequency
.maxaccel
.maxvel
.position-scale
. rawcounts
.steplen
.stepspace

capture-position
capture-position
make-pulses.time
make-pulses.tmax
update-freq.time
update-freq.tmax

.time
.tmax

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL
signals to connect the two components. We are going to pretend that the two step pulse generators
are driving the X and Y axis of a machine. We want to move the table in circles. To do this, we will send
a cosine signal to the X axis, and a sine signal to the Y axis. The siggen module creates the sine and
cosine, but we need wires to connect the modules together. In the HAL, wires are called signals. We
need to create two of them. We can call them anything we want, for this example they will be X-vel and
Y-vel. The signal X-vel is intended to run from the cosine output of the signal generator to the velocity
input of the first step pulse generator. The first step is to connect the signal to the signal generator
output. To connect a signal to a pin we use the net command.

net command

halcmd: net X-vel <= siggen.0.cosine

To see the effect of the net command, we show the signals again.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 215/1261

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine

When a signal is connected to one or more pins, the show command lists the pins immediately follo-
wing the signal name. The arrow shows the direction of data flow - in this case, data flows from pin
siggen.0.cosine to signal X-vel. Now let’s connect the X-vel to the velocity input of a step pulse
generator.

halcmd: net X-vel => stepgen.0.velocity-cmd

We can also connect up the Y axis signal Y-vel. It is intended to run from the sine output of the signal
generator to the input of the second step pulse generator. The following command accomplishes in
one line what two net commands accomplished for X-vel.

halcmd: net Y-vel siggen.0.sine => stepgen.l.velocity-cmd

Now let’s take a final look at the signals and the pins connected to them.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine
==> stepgen.0O.velocity-cmd
float 0 Y-vel <== siggen.0.sine

==> stepgen.l.velocity-cmd

The show sig command makes it clear exactly how data flows through the HAL. For example, the X-vel
signal comes from pin siggen.0.cosine, and goes to pin stepgen.0.velocity-cmd.

5.4.5.3 Setting up realtime execution - threads and functions

Thinking about data flowing through “wires” makes pins and signals fairly easy to understand. Threads
and functions are a little more difficult. Functions contain the computer instructions that actually get
things done. Thread are the method used to make those instructions run when they are needed. First
let’s look at the functions available to us.

halcmd: show funct

Exported Functions:

Owner CodeAddr Arg FP Users Name
00004 9992000 fc731278 YES 0 siggen.0.update
00003 f998b20f fc73106b8 YES 0 stepgen.capture-position
00003 f998b00O fc7316b8 NO 0 stepgen.make-pulses
00003 f998b307 fc7310b8 YES 0 stepgen.update-freq

In general, you will have to refer to the documentation for each component to see what its functions
do. In this case, the function siggen.0.update is used to update the outputs of the signal generator.
Every time it is executed, it calculates the values of the sine, cosine, triangle, and square outputs. To
make smooth signals, it needs to run at specific intervals.

The other three functions are related to the step pulse generators.

The first one, stepgen.capture position, is used for position feedback. It captures the value of an
internal counter that counts the step pulses as they are generated. Assuming no missed steps, this
counter indicates the position of the motor.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 216 /1261

The main function for the step pulse generator is stepgen.make pulses. Every time make pulses runs
it decides if it is time to take a step, and if so sets the outputs accordingly. For smooth step pulses, it
should run as frequently as possible. Because it needs to run so fast, make pulses is highly optimized
and performs only a few calculations. Unlike the others, it does not need floating point math.

The last function, stepgen.update-freq, is responsible for doing scaling and some other calculations
that need to be performed only when the frequency command changes.

What this means for our example is that we want to run siggen.0.update at a moderate rate to
calculate the sine and cosine values. Immediately after we run siggen.0.update, we want to run
stepgen.update freq to load the new values into the step pulse generator. Finally we need to run
stepgen.make pulses as fast as possible for smooth pulses. Because we don’t use position feedback,
we don’t need to run stepgen.capture position at all.

We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what threads
we have available.

halcmd: show thread

Realtime Threads:

Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
49849 NO fast (0, 0)

The two threads were created when we loaded threads. The first one, slow, runs every millise-
cond, and is capable of running floating point functions. We will use it for siggen.0.update and
stepgen.update freq. The second thread is fast, which runs every 50 microseconds (us), and does
not support floating point. We will use it for stepgen.make pulses. To connect the functions to the
proper thread, we use the addf command. We specify the function first, followed by the thread.

halcmd: addf siggen.0.update slow
halcmd: addf stepgen.update-freq slow
halcmd: addf stepgen.make-pulses fast

After we give these commands, we can run the show thread command again to see what happened.

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
1 siggen.0.update
2 stepgen.update-freq
49849 NO fast (0, 0)
1 stepgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will
run.

5.4.5.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By
default, the siggen component generates signals that swing from +1 to -1. For our example that is
fine, we want the table speed to vary from +1 to -1 inches per second. However the scaling of the step
pulse generator isn’t quite right. By default, it generates an output frequency of 1 step per second
with an input of 1.0. It is unlikely that one step per second will give us one inch per second of table
movement. Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200 step
per rev stepper with 10x microstepping. So it takes 2000 steps for one revolution of the screw, and
5 revolutions to travel one inch. That means the overall scaling is 10000 steps per inch. We need
to multiply the velocity input to the step pulse generator by 10000 to get the proper output. That is

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 217 /1261

exactly what the parameter stepgen.n.velocity-scaleis for. In this case, both the X and Y axis have
the same scaling, so we set the scaling parameters for both to 10000.

halcmd: setp stepgen.0.position-scale 10000
halcmd: setp stepgen.l.position-scale 10000
halcmd: setp stepgen.0.enable 1
halcmd: setp stepgen.l.enable 1

This velocity scaling means that when the pin stepgen.0.velocity-cmdis 1.0, the step generator will
generate 10000 pulses per second (10 kHz). With the motor and leadscrew described above, that will
result in the axis moving at exactly 1.0 inches per second. This illustrates a key HAL concept - things
like scaling are done at the lowest possible level, in this case in the step pulse generator. The internal
signal X-vel is the velocity of the table in inches per second, and other components such as siggen
don’t know (or care) about the scaling at all. If we changed the leadscrew, or motor, we would change
only the scaling parameter of the step pulse generator.

5.4.5.5 Run it!

We now have everything configured and are ready to start it up. Just like in the first example, we use
the start command.

halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out
step pulses, varying from 10 kHz forward to 10 kHz reverse and back again every second. Later in this
tutorial we’ll see how to bring those internal signals out to run motors in the real world, but first we
want to look at them and see what is happening.

5.4.6 Halscope

The previous example generates some very interesting signals. But much of what happens is far too
fast to see with halmeter. To take a closer look at what is going on inside the HAL, we want an oscil-
loscope. Fortunately HAL has one, called halscope.

Halscope has two parts - a realtime part that reads the HAL signals, and a non-realtime part that
provides the GUI and display. However, you don’t need to worry about this because the non-realtime
part will automatically load the realtime part when needed.

With LinuxCNC running in a terminal you can start halscope with the following command.
Starting Halscope

halcmd loadusr halscope

If LinuxCNC is not running or the autosave.halscope file does not match the pins available in the
current running LinuxCNC the scope GUI window will open, immediately followed by a Realtime
function not linked dialog that looks like the following figure. To change the sample rate left click on
the samples box.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 218 /1261

”

o

Realtime function not linked A X

The HALSCOPE realtime sampling function
must be called from a HAL thread in to
determine the sampling rate.

Please do one of the following:
Select athread name and multiplier then click 'OK'

ar
Click 'Quit’ to exit HALSCOPE

Thread: slow
Sample Period: 1.00 ms
Sample Rate: 1.00 kHz

Thread | Period

slow 1.00 ms

fast 50.0 pus
Multiplier: 1 -+
Record Length
16000 samples (1 channel)
8000 samples (2 channels)
'ﬂ' 4000 samples (4 channels)

2000 samples (8 channels)
1000 samples (16 channels)

OK Quit

Figure 5.7 - Realtime function not linked dialog

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample once
per millisecond, so click on the 1.00 ms thread slow and leave the multiplier at 1. We will also leave
the record length at 4000 samples, so that we can use up to four channels at one time. When you

select a thread and then click OK, the dialog disappears, and the scope window looks something like
the following figure.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 219 /1261

— HAL Oscilloscope A _OX
File Help
Horizontal Run Mode— Trigger
MNormal GNormaI
Zoom 500 ms 4000 samples)
) Single Auto
Pos per div at 1.00 kHz
Roll Force

Vertical
..... Gain Pos | |

1
|EE| IDLE (o] Stop Level Pos

Level

1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 Scale .
Rising

Selected Channel
Offset Source

""" None

Figure 5.8 - Initial scope window

5.4.6.1 Hooking up the scope probes

At this point, Halscope is ready to use. We have already selected a sample rate and record length, so
the next step is to decide what to look at. This is equivalent to hooking virtual scope probes to the
HAL. Halscope has 16 channels, but the number you can use at any one time depends on the record
length - more channels means shorter records, since the memory available for the record is fixed at
approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button 1, and you will see the
Select Channel Source dialog as shown in the following figure. This dialog is very similar to the one
used by Halmeter. We would like to look at the signals we defined earlier, so we click on the Signals
tab, and the dialog displays all of the signals in the HAL (only two for this example).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 220 /1261

Select Channel 1 Source A X

Pins Signals Parameters

fast.time
scope.sample.time
sogenvampige |
siggen.D.clock
siggen.D.cosine
siggen.0.frequency
siggen.0.offset
siggen.0.reset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle

siggen.0.update.time

OK Cancel

Figure 5.9 - Select Channel Source

To choose a signal, just click on it. In this case, we want channel 1 to display the signal X-vel. Click on
the Signals tab then click on X-vel and the dialog closes and the channel is now selected.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

221 /1261

Y-yel|

Select Channel 1 Source

Pins Signals

OK

"

Parameters

Cancel

o

Figure 5.10 - Select Signal

The channel 1 button is pressed in, and channel number 1 and the name X-vel appear below the row
of buttons. That display always indicates the selected channel - you can have many channels on the

screen, but the selected one is highlighted, and the various controls like vertical position and scale
always work on the selected one.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 222 /1261

L] HAL Oscilloscope A _ O X
File Help
Horizontal Run Mode—Trigger
Za0m Normal GNUI’I’TIEH
500 ms 4000 samples .
. Single Auto
Pos per div at 1.00 kHz
. Roll Force
St
I ! —— O oP Level Pos
: Vertical

Gain Pos | |

Level
Scale -
1 /div il
Selected Channel
Offset Source
1 X-vel 0.000 None

Figure 5.11 - Halscope

To add a signal to channel 2, click the 2 button. When the dialog pops up, click the Signals tab, then
click on Y-vel. We also want to look at the square and triangle wave outputs. There are no signals
connected to those pins, so we use the Pins tab instead. For channel 3, select siggen.0.triangle and
for channel 4, select siggen.0.square.

5.4.6.2 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start
the scope, click the Normal button in the Run Mode section of the screen (upper right). Since we have
a 4000 sample record length, and are acquiring 1000 samples per second, it will take halscope about
2 seconds to fill half of its buffer. During that time a progress bar just above the main screen will show
the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we haven’t configured
one yet, it will wait forever. To manually trigger it, click the Force button in the Trigger section at the
top right. You should see the remainder of the buffer fill, then the screen will display the captured
waveforms. The result will look something like the following figure.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 223 /1261

- HAL Oscilloscope A _ O X
File Help
Horizontal Run Mode— Trigger
O Normal | © Normal
Zoom 500 ms 4000 samples ,
: Single Auto
Pos per div at 1.00 kHz
. Roll Farce
] TRIGGER? %tﬂp Level Pos
Vertical

R R SRR S Gain Pos | |

Level
Scale o
1 /div rIsing
Selected Channel
Offset Source
4 siggen.0.square f(-1.99800) = -1.00000 (ddt @.00000) p.000 None

Figure 5.12 - Captured Waveforms

The Selected Channel box at the bottom tells you that the purple trace is the currently selected one,
channel 4, which is displaying the value of the pin siggen.0.square. Try clicking channel buttons 1
through 3 to highlight the other three traces.

5.4.6.3 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we use
the Vertical controls in the box to the right of the screen. These controls act on the currently selected
channel. When adjusting the gain, notice that it covers a huge range - unlike a real scope, this one
can display signals ranging from very tiny (pico-units) to very large (Tera-units). The position control
moves the displayed trace up and down over the height of the screen only. For larger adjustments the
offset button should be used.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 224 /1261

- HAL Oscilloscope A — O X
File Help
Harizontal Run Mode— Trigger
Zoom G Normal G Normal
500 ms 4000 samples :
. Single Auto
Pos per div at 1.00 kHz
. Roll Force
. - 7 St
] TRIGGER? .Up Level Pos
; B ; i ; : N : : g \Vertical
S . S : S — wew Gain Pos | |

......... Level

0.000
. 2 3 - 5 6 7 8 9 10 1 12 || 13 || 14 || 15 || 16 Scale .
r Rising

1 fdiv

Selected Channel
Offset Source

1 X-vel £(-0.10700) = -0.62279 (ddt 4.90358) 0.000 None

Figure 5.13 - Vertical Adjustment

The large Selected Channel button at the bottom indicates that channel 1 is currently selected channel
and that it matches the X-vel signal. Try clicking on the other channels to put their traces in evidence
and to be able to move them with the Pos cursor.

5.4.6.4 Triggering

Using the Force button is a rather unsatisfying way to trigger the scope. To set up real triggering, click
on the Source button at the bottom right. It will pop up the Trigger Source dialog, which is simply a
list of all the probes that are currently connected. Select a probe to use for triggering by clicking on
it. For this example we will use channel 3, the triangle wave as shown in the following figure.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 225/1261

” !

L] Trigger Source A - X

Select a channel to use for triggering.

Chan | Source

1 X-vel
2 ¥-vel
3 siggen.0.triangle I

siggen.0.square

4
5
G _—
7
8

9 —
10 —
11 —
12 ---

Cancel

Figure 5.14 - Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders
in the Trigger box along the right edge. The level can be adjusted from the top to the bottom of the
screen, and is displayed below the sliders. The position is the location of the trigger point within
the overall record. With the slider all the way down, the trigger point is at the end of the record,
and halscope displays what happened before the trigger point. When the slider is all the way up, the
trigger point is at the beginning of the record, displaying what happened after it was triggered. The
trigger point is visible as a vertical line in the progress box above the screen. The trigger polarity can
be changed by clicking the button just below the trigger level display. It will then become descendant.
Note that changing the trigger position stops the scope once the position has been adjusted, you
relaunch the scope by clicking on the Normal button of Run mode the group.

Now that we have adjusted the vertical controls and triggering, the scope display looks something
like the following figure.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 226 /1261

- HAL Oscilloscope A — O X
File Help
Harizontal Run Mode— Trigger
Zoom G Normal G Normal
500 ms 4000 samples .
. Single Auto
Pos per div at 1.00 kHz
. Roll Farce
. - 7 St
| TRIGGER? : op Level Pos
Vertical

P . el : ; - wew Cain Pos | |
......... PR | 1

......... Level
: : : : : : : : : 0.000

. 2 3 - 5 6 7 8 9 10 11 12 || 13 || 14 || 15 || 16 Scale .
r Rising
1 /div

Selected Channel
Offset Source

1 K-vel f(-0.10700) = -0.62279 (ddt 4.90358) p.000 Chan 3

Figure 5.15 - Waveforms with Triggering

5.4.6.5 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to expand
the waveforms horizontally, and the position slider to determine which part of the zoomed waveform is
visible. However, sometimes simply expanding the waveforms isn’t enough and you need to increase
the sampling rate. For example, we would like to look at the actual step pulses that are being generated
in our example. Since the step pulses may be only 50 ps long, sampling at 1 kHz isn’t fast enough. To
change the sample rate, click on the button that displays the number of samples and sample rate to
bring up the Select Sample Rate dialog figure. For this example, we will click on the 50 ps thread,
fast, which gives us a sample rate of about 20 kHz. Now instead of displaying about 4 seconds worth
of data, one record is 4000 samples at 20 kHz, or about 0.20 seconds.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 227 /1261

” !

L] Select Sample Rate P

Select athread name and multiplier then click 'OK'

or
Click 'Quit' to exit HALSCOPE
Thread: fast
Sample Period: 50.0 ps
Sample Rate: 20.0 kHz

Thread | Period

slow 1.00 ms

fast 50.0 us

Multiplier: 1 4+
Record Length
16000 samples (1 channel)
8000 samples (2 channels)
'ﬂ' 4000 samples (4 channels)
2000 samples (8 channels)
1000 samples (16 channels)

OK Quit

Figure 5.16 - Sample Rate Dialog

5.4.6.6 More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only
4 at a time. Before we select any more channels, we need to turn off a couple. Clicking on a selected
channel button (black border) will turn the channel off. So click on the channel 2 button, then click
again on this button and the channel will turn off. Then click twice on channel 3 and do the same
for channel 4. Even though the channels are turned off, they still remember what they are connected
to, and in fact we will continue to use channel 3 as the trigger source. To add new channels, select
channel 5, and choose pin stepgen.0.dir, then channel 6, and select stepgen.0.step. Then click run
mode Normal to start the scope, and adjust the horizontal zoom to 5 ms per division. You should see
the step pulses slow down as the velocity command (channel 1) approaches zero, then the direction
pin changes state and the step pulses speed up again. You might want toincrease the gain on channel
1 to about 20 milli per division to better see the change in the velocity command. The result should
look like the following figure.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 228 /1261

- HAL Oscilloscope A O X
File Help
Horizontal Run Mode — Trigger
700m e— O Normal | © Normal
5.00ms 4000 samples !
i - Single Auto
Pos per div at 20.0 kHz
Roll Force
— TRIGGER? $t0p Level Pos
: : : : : : g /o rtical
B Gain Fos | |
Level
0.000
Scale o
20m/div | eing
Selected Channel
Offset Source
1 X-vel f(-0.00690) = -8.04397 (ddt ©.00000) 0.000 Chan 3

Figure 5.17 - Step Pulses

5.4.6.7 More samples

If you want to record more samples at once, restart realtime and load halscope with a numeric argu-
ment which indicates the number of samples you want to capture.

halcmd loadusr halscope 80000

If the scope rt component was not already loaded, halscope will load it and request 80000 total
samples, so that when sampling 4 channels at a time there will be 20000 samples per channel. (If
scope_rt was already loaded, the numeric argument to halscope will have no effect).

5.5 HAL Examples

All of these examples assume you are starting with a StepConf-based configuration and have two
threads base-thread and servo-thread. The StepConf wizard will create an empty custom.hal and a
custom postgui.hal file. The custom.hal file will be loaded after the configuration HAL file and the
custom_postgui.hal file is loaded after the GUI has been loaded.

5.5.1 Connecting Two Outputs

To connect two outputs to an input you can use the or2 component. The or2 works like this, if either
input to or2 is on then the or2 output is on. If neither input to or2 is on the or2 output is off.

For example to have two PyVCP buttons both connected to one LED.

The .xml file to instruct PyVCP to prepare a GUI that features two buttons (named "button-1"
and “button-2”) and an LED (named ”led-1").

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 229 /1261

<pyvcp>
<button>
<halpin>"button-1"</halpin>
<text>"Button 1"</text>
</button>

<button>
<halpin>"button-2"</halpin>
<text>"Button 2"</text>
</button>

<led>
<halpin>"1led-1"</halpin>
<size>50</size>
<on color>"green”</on color>
<off_color>"red"</off_color>
</led>
</pyvcp>

The postgui.hal file, read after the GUI is set up and ports ready to accept the logic described
in HAL.

loadrt or2

addf or2.0 servo-thread

net button-1 or2.0.in0@ <= pyvcp.button-1
net button-2 or2.0.inl <= pyvcp.button-2
net led-1 pyvcp.led-1 <= or2.0.out

When you run this example in an axis simulator created with the StepConf Wizard, you can open a
terminal and see the pins created with loadrt or2 by typing in halcmd show pin or2 in the terminal.

Running halcmd on the UNIX command line to show the pins crafted with module or2.

$ halcmd show pin or2
Component Pins:

Owner Type Dir Value Name
22 bit IN FALSE 0r2.0.in0@ <== button-1
22 bit IN FALSE o0r2.0.inl <== button-2
22 bit OUT FALSE o0r2.0.out ==> led-1

You can see from the HAL command show pin or2thatthe button-1 pinisconnectedtotheor2.0.in0
pin. From the direction arrow you can see that the button is and output and the or2.0.1in0 is an input.
The output from or2 goes to the input of the LED.

5.5.2 Manual Toolchange

In this example it is assumed that you're rolling your own configuration and wish to add the HAL
Manual Toolchange window. The HAL Manual Toolchange is primarily useful if you have presettable
tools and you store the offsets in the tool table. If you need to touch off for each tool change then it is
best just to split up your G-code. To use the HAL Manual Toolchange window you basically have to

1. load the hal manualtoolchange component,

2. then send the iocontrol tool change to the hal manualtoolchange change and

3. send the hal manualtoolchange changed back to the iocontrol tool changed.

A pin is provided for an external input to indicate the tool change is complete.

This is an example of manual toolchange with the HAL Manual Toolchange component:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 230/1261

loadusr -W hal manualtoolchange

net tool-change iocontrol.0.tool-change => hal manualtoolchange.change

net tool-changed iocontrol.0.tool-changed <= hal manualtoolchange.changed

net external-tool-changed hal manualtoolchange.change button <= parport.0.pin-12-in
net tool-number iocontrol.0.tool-prep-number => hal manualtoolchange.number

net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

This is an example of manual toolchange without the HAL Manual Toolchange component:

net tool-number <= iocontrol.0.tool-prep-number
net tool-change-loopback iocontrol.0.tool-change => iocontrol.0.tool-changed
net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

5.5.3 Compute Velocity

This example uses ddt, mult2 and abs to compute the velocity of a single axis. For more information
on the real time components see the man pages or the HAL Components List (Section 5.1.5).

The first thing is to check your configuration to make sure you are not using any of the real time
components all ready. You can do this by opening up the HAL Configuration window and look for the
components in the pin section. If you are then find the HAL file that they are being loaded in and
increase the counts and adjust the instance to the correct value. Add the following to your custom.hal
file.

Load the realtime components.

loadrt ddt count=1
loadrt mult2 count=1
loadrt abs count=1

Add the functions to a thread so it will get updated.

addf ddt.0 servo-thread
addf mult2.0 servo-thread
addf abs.0 servo-thread

Make the connections.

setp mult2.inl 60

net xpos-cmd ddt.0.in

net X-IPS mult2.0.in0® <= ddt.0.out
net X-ABS abs.0.in <= mult2.0.out
net X-IPM abs.0.out

In this last section we are setting the mult2.0.inl to 60 to convert the inch per second to inch per
minute (IPM) that we get from the ddt.0.out.

The xpos-cmd sends the commanded position to the ddt.0.in. The ddt computes the derivative of the
change of the input.

The ddt2.0.out is multiplied by 60 to give IPM.
The mult2.0.o0ut is sent to the abs to get the absolute value.

The following figure shows the result when the X axis is moving at 15 IPM in the minus direction.
Notice that we can get the absolute value from either the abs.0.out pin or the X-IPM signal.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 231/1261

Tree Views

Components SHOW WATCH
Fins
ahs -0.2a dot.0.out

0 -15 multz.0.out
13 ahs.0.out
sign -15 H-ABS
axis 15 H-IPM
X-IPS

ddt -0.25

out
hal_manualtoolchange
iocontrol
motion
mult2
1]

in0

inl

out
parport
pwmygen
stepgen
F— Parameters
E Signals
x
X-ABS
*-1PM
*-IPS

Figure 5.18 - HAL: Velocity Example

5.5.4 Soft Start Details

This example shows how the HAL components lowpass, limit2 or limit3 can be used to limit how fast
a signal changes.

In this example we have a servo motor driving a lathe spindle. If we just used the commanded
spindle speeds on the servo it will try to go from present speed to commanded speed as fast as it
can. This could cause a problem or damage the drive. To slow the rate of change we can send the
spindle.N.speed-out through a limiter before the PID, so that the PID command value changes to
new settings more slowly.

Three built-in components that limit a signal are:

— limit2 limits the range and first derivative of a signal.

— limit3 limits the range, first and second derivatives of a signal.

— lowpass uses an exponentially-weighted moving average to track an input signal.
To find more information on these HAL components check the man pages.

Place the following in a text file called softstart.hal. If you're not familiar with Linux place the file in
your home directory.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 232 /1261

loadrt threads periodl1=1000000 namel=thread
loadrt siggen

loadrt lowpass

loadrt limit2

loadrt limit3

net square siggen.0.square => lowpass.0.in 1imit2.0.in 1imit3.0.in
net lowpass <= lowpass.0.out

net limit2 <= limit2.0.out

net 1imit3 <= 1imit3.0.out

setp siggen.0.frequency .1

setp lowpass.0.gain .01

setp limit2.0.maxv 2

setp limit3.0.maxv 2

setp limit3.0.maxa 10

addf siggen.0.update thread

addf lowpass.0 thread

addf 1imit2.0 thread

addf 1imit3.0 thread

start

loadusr halscope

Open a terminal window and run the file with the following command.
halrun -I softstart.hal

When the HAL Oscilloscope first starts up click OK to accept the default thread.

Next you have to add the signals to the channels. Click on channel 1 then select square from the
Signals tab. Repeat for channels 2-4 and add lowpass, limit2, and limit3.

Next to set up a trigger signal click on the Source None button and select square. The button will
change to Source Chan 1.

Next click on Single in the Run Mode radio buttons box. This will start a run and when it finishes you
will see your traces.

To separate the signals so you can see them better click on a channel then use the Pos slider in the
Vertical box to set the positions.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 233 /1261

‘= HAILOscilloscope SEE)
File Help
Horizontal Run Mode- Trigger
Zoom === 200 mSec | 4000 samples © Normal | & Normal
Pos m per div at 1.00 KHz) Single | @ Auto
; : ! pLe | © Rol Force
. @ Stop || evel Pos
g \ertical I |
Gain Pos
Scale Level
1 /div +3.000
10 11 12| 13 |[14 | 15 16 Offset Rising
Selected Channel 0.000 Source
1 square f(0.97785) = 1.00000 chan off || chan 1

To see the effect of changing the set point values of any of the components you can change them in
the terminal window. To see what different gain settings do for lowpass just type the following in the
terminal window and try different settings.

setp lowpass.0.gain *.01

After changing a setting run the oscilloscope again to see the change.

When you’re finished type exit in the terminal window to shut down halrun and close the halscope.
Don’t close the terminal window with halrun running as it might leave some things in memory that
could prevent LinuxCNC from loading.

For more information on Halscope see the HAL manual and the tutorial.

5.5.5 Stand Alone HAL

In some cases you might want to run a GladeVCP screen with just HAL. For example say you had a
stepper driven device that all you need is to run a stepper motor. A simple Start/Stop interface is all
you need for your application so no need to load up and configure a full blown CNC application.

In the following example we have created a simple GladeVCP panel with one stepper.

Basic Syntax

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 234 /1261

load the winder.glade GUI and name it winder
loadusr -Wn winder gladevcp -c winder -u handler.py winder.glade

load realtime components

loadrt threads namel=fast periodl=50000 fpl=0 name2=slow period2=1000000
loadrt stepgen step type=0 ctrl type=v

loadrt hal parport cfg="0x378 out”

add functions to threads

addf stepgen.make-pulses fast

addf stepgen.update-freq slow

addf stepgen.capture-position slow
addf parport.0.read fast

addf parport.0.write fast

make HAL connections

net winder-step parport.0.pin-02-out <= stepgen.0.step
net winder-dir parport.0.pin-03-out <= stepgen.0.dir
net run-stepgen stepgen.0.enable <= winder.start button

start the threads
start

comment out the following lines while testing and use the interactive
option halrun -I -f start.hal to be able to show pins etc.

wait until the GladeVCP GUI named winder terminates
waitusr winder

stop HAL threads
stop

unload HAL all components before exiting
unloadrt all

5.6 Core Components

Voir aussi les pages de manuel motion(9).

5.6.1 Motion

Ces pins et parametres sont créés par le module motmod en temps réel.
This module provides a HAL interface for LinuxCNC’s motion planner.

Basically motmod takes in a list of waypoints and generates a nice blended and constraint-limited
stream of joint positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio,
default is 4 each. The number of Spindles is set with num_spindles, default is 1.

Pin and parameter names starting with axis.L and joint.N are read and updated by the motion-controller
function.

Motion is loaded with the motmod command. A kins should be loaded before motion.

loadrt motmod base period nsec=['period’] servo period nsec=['period’]
traj period nsec=['period’] num_joints=['0-9"]

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 235/1261

num _dio=['1-64'] num _aio=['1-16"] unlock joints mask=['OxNN’]
num_spindles=['1-8"]

— base period nsec = 50000’ - période de la tache "de base” en nanosecondes. C’est le thread le plus
rapide de la machine.

Note

On servo-based systems, there is generally no reason for base period nsec to be smaller than
servo_period_nsec. On machines with software step generation, the base_period_nsec determines
the maximum number of steps per second. In the absence of long step length and step space
requirements, the absolute maximum step rate is one step per base period nsec. Thus, the
base period nsec shown above gives an absolute maximum step rate of 20,000 steps per second.
50,000 ns (50 us) is a fairly conservative value. The smallest usable value is related to the Latency
Test result, the necessary step length, and the processor speed. Choosing a base_period_nsec that is
too low can lead to the "Unexpected real time delay” message, lockups, or spontaneous reboots.

— servo_period nsec = 1000000 - This is the Servo task period in nanoseconds. This value will be
rounded to an integer multiple of base period nsec. This period is used even on systems based on
stepper motors.

This is the rate at which new motor positions are computed, following error is checked, PID output
values are updated, and so on. Most systems will not need to change this value. It is the update
rate of the low level motion planner.

— traj period nsec = 100000 - This is the Trajectory Planner task period in nanoseconds. This value
will be rounded to an integer multiple of servo period nsec. Except for machines with unusual
kinematics (e.g., hexapods) there is no reason to make this value larger than servo period nsec.

5.6.1.1 Options

If the number of digital I/O needed is more than the default of 4 you can add up to 64 digital I/O by
using the num dio option when loading motmod.

If the number of analog I/O needed is more than the default of 4 you can add up to 16 analog I/O by
using the num aio option when loading motmod.

The unlock joints mask parameter is used to create pins for a joint used as a locking indexer (typically
a rotary). The mask bits select the joint(s). The LSB of the mask selects joint 0. Example:

unlock joints mask=0x38 selects joints 3,4,5

5.6.1.2 Pins

These pins, parameters, and functions are created by the realtime motmod module.

— motion.adaptive-feed - (float, in) When adaptive feed is enabled with M52 P1 , the commanded
velocity is multiplied by this value. This effect is multiplicative with the NML-level feed override
value and motion.feed-hold. As of version 2.9 of LinuxCNC it is possible to use a negative adaptive
feed value to run the G-code path in reverse.

— motion.analog-in-00 - (float, in) These pins (00, 01, 02, 03 or more if configured) are controlled by
M66.

— motion.analog-out-00 - (float, out) These pins (00, 01, 02, 03 or more if configured) are controlled
by M67 or M68.

— motion.coord-error - (bit, out) TRUE when motion has encountered an error, such as exceeding a
soft limit

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 236 /1261

— motion.coord-mode - (bit, out) TRUE when motion is in coordinated mode, as opposed to teleop
mode

— motion.current-vel - (float, out) The current tool velocity in user units per second.

— motion.digital-in-00 - (bit, in) These pins (00, 01, 02, 03 or more if configured) are controlled by
M62-65.

— motion.digital-out-00 - (bit, out) These pins (00, 01, 02, 03 or more if configured) are controlled by
the M62-65.

— motion.distance-to-go - (float,out) The distance remaining in the current move.

— motion.enable - (bit, in) If this bit is driven FALSE, motion stops, the machine is placed in the
machine off state, and a message is displayed for the operator. For normal motion, drive this bit
TRUE.

— motion.feed-hold - (bit, in) When Feed Stop Control is enabled with M53 P1, and this bit is TRUE,
the feed rate is set to O.

— motion.feed-inhibit - (bit, in) When this bit is TRUE, the feed rate is set to 0. This will be delayed
during spindle synch moves till the end of the move.

— motion.in-position - (bit, out) TRUE if the machine is in position.
— motion.motion-enabled - (bit, out) TRUE when in machine on state.
— motion.motion-type - (s32, out) These values are from src/emc/nml intf/motion types.h

: Idle (no motion)

: Traverse

: Linear feed

: Arc feed

: Tool change

: Probing

— 6: Rotary axis indexing

I
O W N~ O

— motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

— motion.probe-input - (bit, in) G38.n uses the value on this pin to determine when the probe has
made contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

— motion.program-line - (s32, out) The current program line while executing. Zero if not running or
between lines while single stepping.

— motion.requested-vel - (float, out) The current requested velocity in user units per second. This
value is the F-word setting from the G-code file, possibly reduced to accommodate machine velo-
city and acceleration limits. The value on this pin does not reflect the feed override or any other
adjustments.

— motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated
mode

— motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect;
it could come from the tool table (G43 active), or it could come from the G-code (G43.1 active)

— motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

— motion.probe-input - (bit, in) G38.n uses the value on this pin to determine when the probe has
made contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

— motion.program-line - (s32, out) The current program line while executing. Zero if not running or
between lines while single stepping.

— motion.requested-vel - (float, out) The current requested velocity in user units per second. This
value is the F-word setting from the G-code file, possibly reduced to accommodate machine velo-
city and acceleration limits. The value on this pin does not reflect the feed override or any other
adjustments.

— motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated
mode

— motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect;
it could come from the tool table (G43 active), or it could come from the G-code (G43.1 active)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 237 /1261

5.6.1.3 Parameters

Many of these parameters serve as debugging aids, and are subject to change or removal at any time.
— motion-command-handler.time - (s32, RO)

— motion-command-handler.tmax - (s32, RW)

— motion-controller.time - (s32, RO)

— motion-controller.tmax - (s32, RW)

— motion.debug-bit-0 - (bit, RO) This is used for debugging purposes.

— motion.debug-bit-1 - (bit, RO) This is used for debugging purposes.

— motion.debug-float-0 - (float, RO) This is used for debugging purposes.
— motion.debug-float-1 - (float, RO) This is used for debugging purposes.
— motion.debug-float-2 - (float, RO) This is used for debugging purposes.
— motion.debug-float-3 - (float, RO) This is used for debugging purposes.
— motion.debug-s32-0 - (s32, RO) This is used for debugging purposes.
— motion.debug-s32-1 - (s32, RO) This is used for debugging purposes.

— motion.servo.last-period - (u32, RO) The number of CPU cycles between invocations of the servo
thread. Typically, this number divided by the CPU speed gives the time in seconds, and can be used
to determine whether the realtime motion controller is meeting its timing constraints

— motion.servo.last-period-ns - (float, RO)

5.6.1.4 Fonctions

Generally, these functions are both added to the servo-thread in the order shown.

— motion-command-handler - Receives and processes motion commands
— motion-controller - Runs the LinuxCNC motion controller

5.6.2 Broche

LinuxCNC can control upto eight spindles. Motion will produce the following pins: The N (integer
between 0 and 7) substitutes the spindle number.

5.6.2.1 Pins)

— spindle.N.at-speed - (bit, in) Motion will pause until this pin is TRUE, under the following conditions:

— before the first feed move after each spindle start or speed change;
— before the start of every chain of spindle-synchronized moves;

— and if in CSS mode, at every rapid to feed transition. This input can be used to ensure that
the spindle is up to speed before starting a cut, or that a lathe spindle in CSS mode has slowed
down after a large to small facing pass before starting the next pass at the large diameter. Many
VFDs have an at speed output. Otherwise, it is easy to generate this signal with the HAL near
component, by comparing requested and actual spindle speeds.

— spindle.N.brake - (bit, out) TRUE when the spindle brake should be applied.
— spindle.N.forward - (bit, out) TRUE when the spindle should rotate forward.

— spindle.N.index-enable - (bit, I/O) For correct operation of spindle synchronized moves, this pin
must be hooked to the index-enable pin of the spindle encoder.

— spindle.N.inhibit - (bit, in) When this bit is TRUE, the spindle speed is set to 0.
— spindle.N.on - (bit, out) TRUE when spindle should rotate.
— spindle.N.reverse - (bit, out) TRUE when the spindle should rotate backward

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 238 /1261

— spindle.N.revs - (float, in) For correct operation of spindle synchronized moves, this signal must
be hooked to the position pin of the spindle encoder. The spindle encoder position should be sca-
led such that spindle-revs increases by 1.0 for each rotation of the spindle in the clockwise (M3)
direction.

— spindle.N.speed-in - (float, in) Feedback of actual spindle speed in rotations per second. This is
used by feed-per-revolution motion (G95). If your spindle encoder driver does not have a velocity
output, you can generate a suitable one by sending the spindle position through a ddt component.
If you do not have a spindle encoder, you can loop back spindle.N.speed-out-rps.

— spindle.N.speed-out - (float, out) Commanded spindle speed in rotations per minute. Positive for
spindle forward (MJ3), negative for spindle reverse (M4).

— spindle.N.speed-out-abs - (float, out) Commanded spindle speed in rotations per minute. This will
always be a positive number.

— spindle.N.speed-out-rps - (float, out) Commanded spindle speed in rotations per second. Positive
for spindle forward (M3), negative for spindle reverse (M4).

— spindle.N.speed-out-rps-abs - (float, out) Commanded spindle speed in rotations per second. This
will always be a positive number.

— spindle.N.orient-angle - (float,out) Desired spindle orientation for M19. Value of the M19 R word
parameter plus the value of the [RS274NGC]ORIENT OFFSET INI parameter.

— spindle.N.orient-mode - (s32,out) Desired spindle rotation mode M19. Default 0.

— spindle.N.orient - (out,bit) Indicates start of spindle orient cycle. Set by M19. Cleared by any of
M3, M4, or M5. If spindle-orient-fault is not zero during spindle-orient true, the M19 command
fails with an error message.

— spindle.N.is-oriented - (in, bit) Acknowledge pin for spindle-orient. Completes orient cycle. If spindle-
orient was true when spindle-is-oriented was asserted, the spindle-orient pin is cleared and the
spindle-locked pin is asserted. Also, the spindle-brake pin is asserted.

— spindle.N.orient-fault - (s32, in) Fault code input for orient cycle. Any value other than zero will
cause the orient cycle to abort.

— spindle.N.lock - (bit, out) Spindle orient complete pin. Cleared by any of M3, M4, or M5.

HAL pin usage for M19 orient spindle Conceptually the spindle is in one of the following modes:

— rotation mode (the default)
— searching for desired orientation mode
— orientation complete mode.

When an M19 is executed, the spindle changes to searching for desired orientation, and the spindle. N

HAL pin is asserted. The desired target position is specified by the spindle. N .orient-angle and
spindle. N .orient-fwd pins and driven by the M19 R and P parameters.

The HAL support logic is expected to react to spindle. N .orient by moving the spindle to the
desired position. When this is complete, the HAL logic is expected to acknowledge this by asserting
the spindle. N .is-oriented pin.

Motion then acknowledges this by deasserting the spindle. N .orient pinand assertsthe spindle.
pin to indicate orientation complete mode. It also raises the spindle. N .brake pin. The spindle
now is in orientation complete mode.

If, during spindle. N .orient being true, and spindle. N .is-oriented not yet asserted the
spindle. N .orient-fault pin has a value other than zero, the M19 command is aborted, a mes-
sage including the fault code is displayed, and the motion queue is flushed. The spindle reverts to
rotation mode.

Also, any of the M3, M4 or M5 commands cancel either searching for desired orientation or orientation
complete mode. This is indicated by deasserting both the spindle-orient and spindle-locked pins.

The spindle-orient-mode pin reflects the M19 P word and shall be interpreted as follows:
— 0: rotate clockwise or counterclockwise for smallest angular movement

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 239/1261

— 1: always rotate clockwise
— 2: always rotate counterclockwise

It can be used with the orient HAL component which provides a PID command value based on spindle
encoder position, spindle-orient-angle and spindle-orient-mode.

5.6.3 Axis and Joint Pins and Parameters

These pins and parameters are created by the realtime motmod module. [In trivial kinematics ma-
chines, there is a one-to-one correspondence between joints and axes.] They are read and updated by
the motion-controller function.

See the motion man page motion(9) for details on the pins and parameters.

5.6.4 iocontrol

iocontrol - accepts non-realtime I/O commands via NML, interacts with HAL.

iocontrol’s HAL pins are turned on and off in non-realtime context. If you have strict timing requi-
rements or simply need more I/O, consider using the realtime synchronized I/O provided by motion
instead.

5.6.4.1 Pins)

— iocontrol.0.coolant-flood (bit, out) TRUE when flood coolant is requested.
— iocontrol.0.coolant-mist (bit, out) TRUE when mist coolant is requested.

— iocontrol.0.emc-enable-in (bit, in) Should be driven FALSE when an external E-Stop condition
exists.

— iocontrol.0.tool-change (bit, out) TRUE when a tool change is requested.

— iocontrol.0.tool-changed (bit, in) Should be driven TRUE when a tool change is completed.

— iocontrol.0.tool-number (s32, out) The current tool number.

— iocontrol.0.tool-prep-number (s32, out) The number of the next tool, from the RS274NGC T-word.
— iocontrol.0.tool-prepare (bit, out) TRUE when a tool prepare is requested.

— iocontrol.0.tool-prepared (bit, in) Should be driven TRUE when a tool prepare is completed.

— iocontrol.0.user-enable-out (bit, out) FALSE when an internal E-Stop condition exists.

— iocontrol.0.user-request-enable (bit, out) TRUE when the user has requested that E-Stop be clea-
red.

5.6.5 INI settings

A number of INI settings are made available as HAL input pins.

5.6.5.1 Pins)

N refers to a joint number, L refers to an axis letter.

— ini.N.ferror - (float, in) [JOINT N]JFERROR

— ini.N.min_ferror - (float, in) [JOINT N]JMIN FERROR
— ini.N.backlash - (float, in) [JOINT N]BACKLASH

— ini.N.min_limit - (float, in) [JOINT N]MIN LIMIT

— ini.N.max_limit - (float, in) [JOINT N]MAX LIMIT

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 240/ 1261

— ini.N.max velocity - (float, in) [JOINT N]MAX VELOCITY

— ini.N.max_acceleration - (float, in) [JOINT NJMAX ACCELERATION
— ini.N.home - (float, in) [JOINT NJHOME

— ini.N.home offset - (float, in) [JOINT NJHOME OFFSET

— ini.N.home offset - (s32, in) [JOINT NJHOME SEQUENCE

— ini.L.min_limit - (float, in) [AXIS LIMIN LIMIT

— ini.L.max limit - (float, in) [AXIS LIMAX LIMIT

— ini.L.max velocity - (float, in) [AXIS L]MAX VELOCITY

— ini.L.max_acceleration - (float, in) [AXIS LIMAX ACCELERATION

Note

The per-axis min_limit and max_limit pins are honored continuously after homing. The per-axis ferror
and min_ferror pins are honored when the machine is on and not in position. The per-axis max_velocity
and max_acceleration pins are sampled when the machine is on and the motion_state is free (homing
or jogging) but are not sampled when in a program is running (auto mode) or in MDI mode. Conse-
quently, changing the pin values when a program is running will not have effect until the program is
stopped and the motion_state is again free.

— ini.traj arc blend enable - (bit, in) [TRAJJARC BLEND ENABLE

— ini.traj arc blend fallback enable - (bit, in) [TRAJJARC BLEND FALLBACK ENABLE

— ini.traj arc blend gap cycles - (float, in) [TRAJJARC BLEND GAP CYCLES

— ini.traj arc_blend optimization _depth - (float, in) [TRAJJARC BLEND OPTIMIZATION DEPTH
— ini.traj arc blend ramp freq - (float, in) [TRAJJARC BLEND RAMP FREQ

Note
The traj_arc_blend pins are sampled continuously but changing pin values while a program is running
may not have immediate effect due to queueing of commands.

— ini.traj default acceleration - (float, in) [TRAJIDEFAULT ACCELERATION
— ini.traj default velocity - (float, in) [TRAJIDEFAULT VELOCITY
— ini.traj max_acceleration - (float, in) [TRAJIMAX ACCELERATION

5.7 HAL Component List

5.7.1 Components

Most of the commands in the following list have their own dedicated man pages. Some will have
expanded descriptions, some will have limited descriptions. From this list you know what components
exist, and you can use man name on your UNIX command line to get additional information. To view
the information in the man page, in a terminal window type:

man axis

The one or other setup of a UNIX system may require to explicitly specify the section of the man page.
If you do not find the man page or the name of the man page is already taken by another UNIX tool
with the LinuxCNC man page residing in another section, then try to explicitly specify the section, as
inman _section-no_ axis, with section-no = 1 for non-realtime and 9 for realtime components.

Note
See also the Man Pages section of the docs main page or the directory listing. To search in the man
pages, use the UNIX tool apropos.

../index.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 241 /1261

5.7.1.1 User Interfaces (non-realtime)

axis AXIS LinuxCNC (The Enhanced Machine Controller) GUI
axis-remote AXIS Remote Interface

gmoccapy Touchy LinuxCNC Graphical User Interface

gscreen Touchy LinuxCNC Graphical User Interface

halui Observe HAL pins and command LinuxCNC through NML

mdro manual only Digital Read Out (DRO)

ngcgui Framework for conversational G-code generation on the controller
panelui

pyngcgui Python implementation of NGCGUI

touchy AXIS - TOUCHY LinuxCNC Graphical User Interface

gladevcp Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets

gladevcp_deméladeVCP - used by sample configs to demonstrate Glade Virtual demo

gremlin_view
moveoff_gui

G-code graphical preview
GUI for the moveoff component

pyui Utility for panelui

pyvcp Virtual Control Panel for LinuxCNC
pyvcp_demo Python Virtual Control Panel demonstration component
qtvcp Qt based virtual control panel
S5axisgui Vismach Virtual Machine GUI

hbmgui Vismach Virtual Machine GUI

hexagui Vismach Virtual Machine GUI
lineardelta Vismach Virtual Machine GUI
maho600gui hexagui - Vismach Virtual Machine GUI
max5gui hexagui - Vismach Virtual Machine GUI
melfagui Vismach Virtual Machine GUI
puma560gui pumab560agui - Vismach Virtual Machine GUI
pumagui Vismach Virtual Machine GUI
rotarydelta Vismach Virtual Machine GUI
scaragui Vismach Virtual Machine GUI
xyzac-trt- Vismach Virtual Machine GUI

gui

xyzbc-trt- Vismach Virtual Machine GUI

gui

xyzab-tdr- Vismach Virtual Machine GUI

gui

5.7.1.2 Motion

(non-realtime)

io iocontrol - interacts with HAL or G-code in non-realtime

iocontrol Interacts with HAL or G-code in non-realtime

mdi Send G-code commands from the terminal to the running LinuxCNC
instance

milltask Non-realtime task controller for LinuxCNC

5.7.1.3 Pilotes

elbpcom

matériels

Communicate with Mesa Ethernet cards

../man/man1/axis.1.html
../man/man1/axis-remote.1.html
../man/man1/gmoccapy.1.html
../man/man1/gscreen.1.html
../man/man1/halui.1.html
../man/man1/mdro.1.html
../man/man1/ngcgui.1.html
../man/man1/panelui.1.html
../man/man1/pyngcgui.1.html
../man/man1/touchy.1.html
../man/man1/gladevcp.1.html
../man/man1/gladevcp_demo.1.html
../man/man1/gremlin_view.1.html
../man/man1/moveoff_gui.1.html
../man/man1/pyui.1.html
../man/man1/pyvcp.1.html
../man/man1/pyvcp_demo.1.html
../man/man1/qtvcp.1.html
../man/man1/5axisgui.1.html
../man/man1/hbmgui.1.html
../man/man1/hexagui.1.html
../man/man1/lineardelta.1.html
../man/man1/maho600gui.1.html
../man/man1/max5gui.1.html
../man/man1/melfagui.1.html
../man/man1/puma560gui.1.html
../man/man1/pumagui.1.html
../man/man1/rotarydelta.1.html
../man/man1/scaragui.1.html
../man/man1/xyzac-trt-gui.1.html
../man/man1/xyzac-trt-gui.1.html
../man/man1/xyzbc-trt-gui.1.html
../man/man1/xyzbc-trt-gui.1.html
../man/man1/xyzab-tdr-gui.1.html
../man/man1/xyzab-tdr-gui.1.html
../man/man1/io.1.html
../man/man1/iocontrol.1.html
../man/man1/mdi.1.html
../man/man1/milltask.1.html
../man/man1/elbpcom.1.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

gs2_vid
hy gt vid
hy vid
mb2hal

mitsub_vfd

monitor-
xhc-hb04
pi500_vfd
pmx485
pmx485-
test
shuttle

svd-ps_vid
vidb_vfd
visl1 vid
wj200_vid
xhc-hb04
xhc-hb04-
accels

xhc-
whb04b-6

hal ppmc
hal bb_gpio
hal parport
hm2 7i43
hm?2_7i90
hm2_eth

hm2_pci

hm?2_rpspi
hm?2_spi

hostmot?2
max31855

mesa_7i65

HAL non-realtime component for Automation Direct GS2 VFDs

HAL non-realtime component for Huanyang GT-series VFDs

HAL non-realtime component for Huanyang VFDs

MB2HAL is a generic non-realtime HAL component to communicate with
one or more Modbus devices. Modbus RTU and Modbus TCP are supported.
HAL non-realtime component for Mitsubishi A500 F500 E500 A500 D700
E700 F700-series VFDs (others may work)

Monitors the XHC-HB04 pendant and warns of disconnection

Powtran PI500 modbus driver
Modbus communications with a Powermax Plasma Cutter
Modbus communications testing with a Powermax Plasma Cutter

control HAL pins with the ShuttleXpress, ShuttlePRO, and ShuttlePRO2
device made by Contour Design

HAL non-realtime component for SVD-P(S) VFDs

HAL non-realtime component for Delta VFD-B Variable Frequency Drives
HAL non-realtime component for Toshiba-Schneider VF-S11 Variable
Frequency Drives

Hitachi wj200 Modbus driver

Non-realtime HAL component for the xhc-hb04 pendant

Obsolete script for jogging wheel

Non-realtime jog dial HAL component for the wireless XHC WHB04B-6
USB device

5.7.1.4 Mesa and other 1/0 Cards (Realtime)

Pico Systems driver for analog servo, PWM and Stepper controller
Driver for BeagleBone GPIO pins

Realtime HAL component to communicate with one or more PC parallel
ports

Mesa Electronics driver for the 7143 EPP Anything 10 board with
HostMot2. (See the man page for more information)

LinuxCNC HAL driver for the Mesa Electronics 7190 EPP Anything IO
board with HostMot2 firmware

LinuxCNC HAL driver for the Mesa Electronics Ethernet Anything 10
boards, with HostMot2 firmware

Mesa Electronics driver for the 5120, 5122, 5123, 4165, and 4168 Anything
I/O boards, with HostMot2 firmware. (See the man page for more
information)

LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards,
with HostMot2 firmware

LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards,
with HostMot2 firmware

Mesa Electronics driver for the HostMot2 firmware.

Support for the MAX31855 Thermocouple-to-Digital converter using
bitbanged SPI

Mesa Electronics driver for the 7165 eight-axis servo card. (See the man
page for more information)

mesa_pktgyro ReSUART simple test with Microstrain 3DM-GX3-15 gyro

mesa_uart
opto_ach
pluto_servo
pluto_step

An example component demonstrating how to access the Hostmot2 UART
Realtime driver for opto22 PCI-AC5 cards

Pluto-P driver and firmware for the parallel port FPGA, for servos

Pluto-P driver for the parallel port FPGA, for steppers

242 /1261

../man/man1/gs2_vfd.1.html
../man/man1/hy_gt_vfd.1.html
../man/man1/hy_vfd.1.html
../man/man1/mb2hal.1.html
../man/man1/mitsub_vfd.1.html
../man/man1/monitor-xhc-hb04.1.html
../man/man1/monitor-xhc-hb04.1.html
../man/man1/pi500_vfd.1.html
../man/man1/pmx485.1.html
../man/man1/pmx485-test.1.html
../man/man1/pmx485-test.1.html
../man/man1/shuttle.1.html
../man/man1/svd-ps_vfd.1.html
../man/man1/vfdb_vfd.1.html
../man/man1/vfs11_vfd.1.html
../man/man1/wj200_vfd.1.html
../man/man1/xhc-hb04.1.html
../man/man1/xhc-hb04-accels.1.html
../man/man1/xhc-hb04-accels.1.html
../man/man1/xhc-whb04b-6.1.html
../man/man1/xhc-whb04b-6.1.html
../man/man9/hal_bb_gpio.9.html
../man/man9/hal_parport.9.html
../man/man9/hm2_7i43.9.html
../man/man9/hm2_7i90.9.html
../man/man9/hm2_eth.9.html
../man/man9/hm2_pci.9.html
../man/man9/hm2_rpspi.9.html
../man/man9/hm2_spi.9.html
../man/man9/hostmot2.9.html
../man/man9/max31855.9.html
../man/man9/mesa_7i65.9.html
../man/man9/mesa_pktgyro_test.9.html
../man/man9/mesa_uart.9.html
../man/man9/opto_ac5.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 243 /1261

serport Hardware driver for the digital I/O bits of the 8250 and 16550 serial port
setsserial An utility for setting Smart Serial NVRAM parameters
sserial hostmot2 - Smart Serial LinuxCNC HAL driver for the Mesa Electronics

HostMot2 Smart-Serial remote cards

5.7.1.5 Utilities (non-realtime)

hal- Plots the value of a HAL pin as a histogram
histogram

halcompile Build, compile and install LinuxCNC HAL components
halmeter Observe HAL pins, signals, and parameters

halcmd Manipulate the LinuxCNC HAL from the command line

halcmd_twopas#ility script used when parsing HAL files. It allows to have multiple
load-commands for multiple instances of the same component.
halreport Creates a report on the status of the HAL

halrmt Remote-control interface for LinuxCNC

halrun Manipulate the LinuxCNC HAL from the command line

halsampler Sample data from HAL in realtime

halscope Software oscilloscope for viewing real time waveforms of HAL pins and
signals

halshow Show HAL parameters, pins and signals

halstreamer Stream file data into HAL in real time

haltcl Manipulates the LinuxCNC HAL from the command line using Tcl

image-to- Converts bitmap images to G-code

gcode

inivar Query an INI file

latency- Plots histogram of machine latency

histogram

latency-plot Another way to view latency numbers
latency-test Tests the realtime system latency
linuxcncmkde<kage a desktop icon for LinuxCNC
modcompile Utility for compiling Modbus drivers

motion- Log motion commands sent from LinuxCNC

logger

pncconf Configuration wizard for Mesa cards

sim_pin GUI for displaying and setting one or more HAL inputs
stepconf Configuration wizard for parallel-port based machines

update_ini Converts 2.7 format INI files to 2.8 format

debuglevel Sets the debug level for the non-realtime part of LinuxCNC
emccalib Adjust ini tuning variables on the fly with save option

hal input Control HAL pins with any Linux input device, including USB HID devices
linuxcnc_info Collects information about the LinuxCNC version and the host
linuxcnc_modulenhelipevot access for system hardware

linuxcnc_var Retrieves LinuxCNC variables

linuxcnc LinuxCNC (The Enhanced Machine Controller)

linuxcncled LinuxCNC Graphical User Interface for LCD character display
linuxcncrsh Text-mode interface for commanding LinuxCNC over the network
linuxcncsvr Allows network access to LinuxCNC internals via NML
linuxcnctop Live LinuxCNC status description

rs274 Standalone G-code interpreter

schedrmt Telnet based scheduler for LinuxCNC
setup_designe? script to configure the system for use of Qt Designer
teach-in Jog the machine to a position, and record the state

tool_mmap_readcomponent of the tool database system (an alternative to the classic
tooltable)

../man/man9/serport.9.html
../man/man9/setsserial.9.html
../man/man9/sserial.9.html
../man/man1/hal-histogram.1.html
../man/man1/hal-histogram.1.html
../man/man1/halcompile.1.html
../man/man1/halmeter.1.html
../man/man1/halcmd.1.html
../man/man1/halcmd_twopass.1.html
../man/man1/halreport.1.html
../man/man1/halrmt.1.html
../man/man1/halrun.1.html
../man/man1/halsampler.1.html
../man/man1/halscope.1.html
../man/man1/halshow.1.html
../man/man1/halstreamer.1.html
../man/man1/haltcl.1.html
../man/man1/image-to-gcode.1.html
../man/man1/image-to-gcode.1.html
../man/man1/inivar.1.html
../man/man1/latency-histogram.1.html
../man/man1/latency-histogram.1.html
../man/man1/latency-plot.1.html
../man/man1/latency-test.1.html
../man/man1/linuxcncmkdesktop.1.html
../man/man1/modcompile.1.html
../man/man1/motion-logger.1.html
../man/man1/motion-logger.1.html
../man/man1/pncconf.1.html
../man/man1/sim_pin.1.html
../man/man1/stepconf.1.html
../man/man1/update_ini.1.html
../man/man1/debuglevel.1.html
../man/man1/emccalib.1.html
../man/man1/hal_input.1.html
../man/man1/linuxcnc_info.1.html
../man/man1/linuxcnc_module_helper.1.html
../man/man1/linuxcnc_var.1.html
../man/man1/linuxcnc.1.html
../man/man1/linuxcnclcd.1.html
../man/man1/linuxcncrsh.1.html
../man/man1/linuxcncsvr.1.html
../man/man1/linuxcnctop.1.html
../man/man1/rs274.1.html
../man/man1/schedrmt.1.html
../man/man1/setup_designer.1.html
../man/man1/teach-in.1.html
../man/man1/tool_mmap_read.1.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

244 /1261

tool_watch

tooledit

and2
bitwise
dbounce
debounce
demux
edge
estop_latch
flipflop
logic

lutb
match8
multiclick
multiswitch
not
oneshot
or2

reset
select8

tof

toggle
toggle2nist
ton
timedelay
tp
tristate_bit

tristate_float

xor2

abs_s32
abs_s64
abs
biquad
blend
comp
constant
counter
ddt
deadzone
div2
hypot
ilowpass
integ
invert

filter_kalman

knob2float

A component of the tool database system (an alternative to the classic
tooltable)
Tooltable editor

5.7.1.6 Signal processing (Realtime)

Two-input AND gate. For out to be true both inputs must be true. (and?2)
Computes various bitwise operations on the two input values

Filter noisy digital inputs Details

Filter noisy digital inputs Details description

Select one of several output pins by integer and/or or individual bits
Edge detector

E-stop latch

D-type flip-flop

General logic function component

5-input logic function based on a look-up table description

8-bit binary match detector

Single-, double-, triple-, and quadruple-click detector

Toggles between a specified number of output bits

Inverter

One-shot pulse generator

Two-input OR gate

Resets an IO signal

8-bit binary match detector.

IEC TOF timer - delay falling edge on a signal

Push-on, push-off from momentary pushbuttons

Toggle button to nist logic

IEC TON timer - delay rising edge on a signal

Equivalent of a time-delay relay.

IEC TP timer - generate a high pulse of defined duration on rising edge
Places signal on an I/O pin only when enabled, similar to a tristate buffer in
electronics

Places signal on an I/O pin only when enabled, similar to a tristate buffer in
electronics

Two-input XOR (exclusive OR) gate

Computes the absolute value and sign of a integer input signal
Computes the absolute value and sign of a 64 bit integer input signal
Computes the absolute value and sign of a float input signal

Biquad IIR filter

Perform linear interpolation between two values

Two input comparator with hysteresis

Uses parameter to set the value of a pin

Counts input pulses (deprecated). Use the encoder component.
Computes the derivative of the input function.

Returns the center if within the threshold.

Quotient of two floating point inputs.

Three-input hypotenuse (Euclidean distance) calculator.

Low-pass filter with integer inputs and outputs

Integrator

Computes the inverse of the input signal.

Unidimensional Kalman filter, also known as linear quadratic estimation
(LQE)

Converts counts (probably from an encoder) to a float value.

../man/man1/tool_watch.1.html
../man/man1/tooledit.1.html
../man/man9/and2.9.html
../man/man9/and2.9.html
../man/man9/bitwise.9.html
../man/man9/dbounce.9.html
../man/man9/dbounce.9.html
../man/man9/debounce.9.html
../man/man9/debounce.9.html
../man/man9/demux.9.html
../man/man9/edge.9.html
../man/man9/estop_latch.9.html
../man/man9/flipflop.9.html
../man/man9/logic.9.html
../man/man9/lut5.9.html
../man/man9/match8.9.html
../man/man9/multiclick.9.html
../man/man9/multiswitch.9.html
../man/man9/not.9.html
../man/man9/oneshot.9.html
../man/man9/or2.9.html
../man/man9/reset.9.html
../man/man9/select8.9.html
../man/man9/tof.9.html
../man/man9/toggle.9.html
../man/man9/toggle2nist.9.html
../man/man9/ton.9.html
../man/man9/timedelay.9.html
../man/man9/tp.9.html
../man/man9/tristate_bit.9.html
../man/man9/tristate_float.9.html
../man/man9/xor2.9.html
../man/man9/abs_s32.9.html
../man/man9/abs_s64.9.html
../man/man9/abs.9.html
../man/man9/biquad.9.html
../man/man9/blend.9.html
../man/man9/comp.9.html
../man/man9/constant.9.html
../man/man9/counter.9.html
../man/man9/ddt.9.html
../man/man9/deadzone.9.html
../man/man9/div2.9.html
../man/man9/hypot.9.html
../man/man9/ilowpass.9.html
../man/man9/integ.9.html
../man/man9/invert.9.html
../man/man9/filter_kalman.9.html
../man/man9/knob2float.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 245 /1261

led_dim HAL component for dimming LEDs

lowpass Low-pass filter

limit1l Limits the output signal to fall between min and max. 3

limit2 Limits the output signal to fall between min and max. Limit its slew rate to
less than maxv per second. *

limit3 Limit the output signal to fall between min and max. Limit its slew rate to

less than maxv per second. Limit its second derivative to less than MaxA
per second squared®.

lincurve One-dimensional lookup table

maj3 Compute the majority of 3 inputs

minmax Tracks the minimum and maximum values of the input to the outputs.
mult2 Product of two inputs.

mux16 Select from one of 16 input values (multiplexer).

mux2 Select from one of two input values (multiplexer).

mux4 Select from one of four input values (multiplexer).

mux8 Select from one of eight input values (multiplexer).

mux_generic Select one from several input values (multiplexer).

near Determine whether two values are roughly equal.

offset Adds an offset to an input, and subtracts it from the feedback value.

safety latch latch for error signals
sample_hold Sample and Hold.
scaled_s32 suifsm of four inputs (each with a scale)

scale Applies a scale and offset to its input.

sum?2 Sum of two inputs (each with a gain) and an offset.

time Accumulated run-time timer counts HH:MM:SS of active input.
timedelta Component that measures thread scheduling timing behavior.
updown Counts up or down, with optional limits and wraparound behavior.
wcomp Window comparator.

watchdog Monitor one to thirty-two inputs for a heartbeat.

weighted_sumConvert a group of bits to an integer.
xhc_hb04_util xhc-hb04 convenience utility

5.7.1.7 Signal generation (Realtime)

charge pump Creates a square-wave for the charge pump input of some controller

boards.
pwmgen Software PWM/PDM generation, see description.
siggen Signal generator, see description.
sim_encoder Simulated quadrature encoder, see description.
stepgen Software step pulse generation, see description.
bin2gray Converts a number to the gray-code representation
bitmerge Converts individual input bits into an unsigned-32
bitslice Converts an unsigned-32 input into individual bits

conv_bit_float Converts from bit to float
conv_bit_s32 Converts from bit to s32
conv_bit u32 Converts from bit to u32
conv_float_s32Converts from float to s32
conv_float_u32Converts from float to u32
conv_s32 bit Converts from s32 to bit

3. When the input is a position, this means that the position is limited.
4. When the input is a position, this means that position and velocity are limited.
5. When the input is a position, this means that position, velocity, and acceleration are limited.

../man/man9/led_dim.9.html
../man/man9/lowpass.9.html
../man/man9/limit1.9.html
../man/man9/limit2.9.html
../man/man9/limit3.9.html
../man/man9/lincurve.9.html
../man/man9/maj3.9.html
../man/man9/minmax.9.html
../man/man9/mult2.9.html
../man/man9/mux16.9.html
../man/man9/mux2.9.html
../man/man9/mux4.9.html
../man/man9/mux8.9.html
../man/man9/mux_generic.9.html
../man/man9/near.9.html
../man/man9/offset.9.html
../man/man9/safety_latch.9.html
../man/man9/sample_hold.9.html
../man/man9/scaled_s32_sums.9.html
../man/man9/scale.9.html
../man/man9/sum2.9.html
../man/man9/time.9.html
../man/man9/timedelta.9.html
../man/man9/updown.9.html
../man/man9/wcomp.9.html
../man/man9/watchdog.9.html
../man/man9/weighted_sum.9.html
../man/man9/xhc_hb04_util.9.html
../man/man9/charge_pump.9.html
../man/man9/pwmgen.9.html
../man/man9/siggen.9.html
../man/man9/sim_encoder.9.html
../man/man9/stepgen.9.html
../man/man9/bin2gray.9.html
../man/man9/bitmerge.9.html
../man/man9/bitslice.9.html
../man/man9/conv_bit_float.9.html
../man/man9/conv_bit_s32.9.html
../man/man9/conv_bit_u32.9.html
../man/man9/conv_float_s32.9.html
../man/man9/conv_float_u32.9.html
../man/man9/conv_s32_bit.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 246 /1261

conv_s32_floatConverts from s32 to float
conv_s32 u32 Converts from s32 to u32
conv_u32_bit Converts from u32 to bit
conv_u32_floatConverts from u32 to float
conv_u32_s32 Converts from u32 to s32
conv_bit s64 Convert a value from bit to s64
conv_bit u64 Convert a value from bit to u64
conv_float_s64Convert a value from float to s64
conv_float_u64Convert a value from float to u64
conv_s32_s64 Convert a value from s32 to s64
conv_s32_u64 Convert a value from s32 to u64
conv_s64_bit Convert a value from s64 to bit
conv_s64 floatConvert a value from s64 to float
conv_s64_s32 Convert a value from s64 to s32
conv_s64_u32 Convert a value from s64 to u32
conv_s64_u64 Convert a value from s64 to u64
conv_u32_s64 Convert a value from u32 to s64
conv_u32 u64 Convert a value from u32 to u64
conv_u64_bit Convert a value from u64 to bit
conv_u64_floatConvert a value from u64 to float
conv_u64_s32 Convert a value from u64 to s32
conv_ub64_s64 Convert a value from u64 to s64
conv_u64_u32 Convert a value from u64 to u32
gray2bin Converts gray-code input to binary

5.7.1.8 Kinematics (Realtime)

corexy_by hal CoreXY kinematics

differential Kinematics for a differential transmission

gantry LinuxCNC HAL component for driving multiple joints from a single axis

gantrykins Kinematics module that maps one axis to multiple joints.

genhexkins Gives six degrees of freedom in position and orientation (XYZABC). The
location of the motors is defined at compile time.

genserkins Kinematics that can model a general serial-link manipulator with up to 6
angular joints.

gentrivkins 1:1 correspondence between joints and axes. Most standard milling
machines and lathes use the trivial kinematics module.

kins Kinematics definitions for LinuxCNC.

lineardeltakin&Kinematics for a linear delta robot

matrixkins Calibrated kinematics for 3-axis machines

maxkins Kinematics for a tabletop 5 axis mill named max with tilting head (B axis)
and horizontal rotary mounted to the table (C axis). Provides UVW motion
in the rotated coordinate system.

millturn Switchable kinematics for a mill-turn machine

pentakins

pumakins Kinematics for PUMA-style robots.

rosekins Kinematics for a rose engine

rotatekins The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.
scarakins Kinematics for SCARA-type robots.

tripodkins The joints represent the distance of the controlled point from three
predefined locations (the motors), giving three degrees of freedom in
position (XYZ).

userkins Template for user-built kinematics

xyzab_tdr_kinsSwitchable kinematics for 5 axis machine with rotary table A and B

../man/man9/conv_s32_float.9.html
../man/man9/conv_s32_u32.9.html
../man/man9/conv_u32_bit.9.html
../man/man9/conv_u32_float.9.html
../man/man9/conv_u32_s32.9.html
../man/man9/conv_bit_s64.9.html
../man/man9/conv_bit_u64.9.html
../man/man9/conv_float_s64.9.html
../man/man9/conv_float_u64.9.html
../man/man9/conv_s32_s64.9.html
../man/man9/conv_s32_u64.9.html
../man/man9/conv_s64_bit.9.html
../man/man9/conv_s64_float.9.html
../man/man9/conv_s64_s32.9.html
../man/man9/conv_s64_u32.9.html
../man/man9/conv_s64_u64.9.html
../man/man9/conv_u32_s64.9.html
../man/man9/conv_u32_u64.9.html
../man/man9/conv_u64_bit.9.html
../man/man9/conv_u64_float.9.html
../man/man9/conv_u64_s32.9.html
../man/man9/conv_u64_s64.9.html
../man/man9/conv_u64_u32.9.html
../man/man9/gray2bin.9.html
../man/man9/corexy_by_hal.9.html
../man/man9/differential.9.html
../man/man9/gantry.9.html
../man/man9/gantrykins.9.html
../man/man9/genhexkins.9.html
../man/man9/genserkins.9.html
../man/man9/gentrivkins.9.html
../man/man9/kins.9.html
../man/man9/lineardeltakins.9.html
../man/man9/matrixkins.9.html
../man/man9/maxkins.9.html
../man/man9/millturn.9.html
../man/man9/pentakins.9.html
../man/man9/pumakins.9.html
../man/man9/rosekins.9.html
../man/man9/rotatekins.9.html
../man/man9/scarakins.9.html
../man/man9/tripodkins.9.html
../man/man9/userkins.9.html
../man/man9/xyzab_tdr_kins.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 247 /1261

xyzacbh_trsrn Switchable kinematics for 6 axis machine with a rotary table C, rotary
spindle B and nutating spindle A

xyzbca_trsrn Switchable kinematics for 6 axis machine with a rotary table B, rotary
spindle C and nutating spindle A

5.7.1.9 Motion control (Realtime)

feedcomp Multiply the input by the ratio of current velocity to the feed rate.
homecomp Homing module template

limit_axis Dynamic range based axis limits

motion Accepts NML motion commands, interacts with HAL in realtime

simple_tp This component is a single axis simple trajectory planner, same as used for
jogging in LinuxCNC.

tpcomp Trajectory Planning (tp) module skeleton

5.7.1.10 Motor control (Realtime)

at_pid Proportional/integral/derivative controller with auto tuning.

bldc BLDC and AC-servo control component

clarke2 Two input version of Clarke transform

clarke3 Clarke (3 phase to Cartesian) transform

clarkeinv Inverse Clarke transform

encoder Software counting of quadrature encoder signals, see description.
pid Proportional/integral/derivative controller, description.

pwmgen Software PWM/PDM generation, see description.

stepgen Software step pulse generation, see description.

5.7.1.11 Simulation/Testing

axistest Used to allow testing of an axis. Used In PnCConf.
rtapi_app creates a simulated real time environment
sim-torch A simulated plasma torch

sim_axis_hardwao@mponent to simulate home and limit switches
sim_home_switélime switch simulator

sim_matrix kbconvert HAL pin inputs to key codes

sim_parport A component to simulate the pins of the hal parport component
sim_spindle Simulated spindle with index pulse

simulate_probeimulate a probe input

5.7.1.12 Other (Realtime)

anglejog Jog two axes (or joints) at an angle

classicladder Realtime software PLC based on ladder logic. See ClassicLadder chapter
for more information.

charge pump Creates a square-wave for the charge pump input of some controller

boards.
encoder_ratio Electronic gear to synchronize two axes.
enum Enumerate integer values into bits

eoffset_per_an@bmpute External Offset Per Angle

../man/man9/xyzacb_trsrn.9.html
../man/man9/xyzbca_trsrn.9.html
../man/man9/feedcomp.9.html
../man/man9/homecomp.9.html
../man/man9/limit_axis.9.html
../man/man9/motion.9.html
../man/man9/simple_tp.9.html
../man/man9/tpcomp.9.html
../man/man9/at_pid.9.html
../man/man9/bldc.9.html
../man/man9/clarke2.9.html
../man/man9/clarke3.9.html
../man/man9/clarkeinv.9.html
../man/man9/encoder.9.html
../man/man9/pid.9.html
../man/man9/pwmgen.9.html
../man/man9/stepgen.9.html
../man/man9/axistest.9.html
../man/man1/rtapi_app.1.html
../man/man1/sim-torch.1.html
../man/man9/sim_axis_hardware.9.html
../man/man9/sim_home_switch.9.html
../man/man9/sim_matrix_kb.9.html
../man/man9/sim_parport.9.html
../man/man9/sim_spindle.9.html
../man/man1/simulate_probe.1.html
../man/man9/anglejog.9.html
../man/man9/classicladder.9.html
../man/man9/charge_pump.9.html
../man/man9/encoder_ratio.9.html
../man/man9/enum.9.html
../man/man9/eoffset_per_angle.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 248 /1261

gladevcp displays Virtual control Panels built with GTK / GLADE

(Realtime)

histobins Histogram bins utility for scripts/hal-histogram

joyhandle Sets nonlinear joypad movements, deadbands and scales.

latencybins Comp utility for scripts/latency-histogram

message Display a message

moveoff Component for HAL-only offsets

raster Outputs laser power based upon pre programmed rastering data

sampler Sample data from HAL in real time.

siggen Signal generator, see description.

sphereprobe Probe a pretend hemisphere.

threads Creates hard realtime HAL threads.

threadtest Component for testing thread behavior.

steptest Used by StepConf to allow testing of acceleration and velocity values for an
axis.

streamer Stream file data into HAL in real time.

supply Set output pins with values from parameters (deprecated).

laserpower Scales laser power output based upon velocity input power and distance to

go
lcd Stream HAL data to an LCD screen
matrix_kb Convert integers to HAL pins. Optionally scan a matrix of I/O ports to

create those integers.

gearchange Select from one of two speed ranges.

orient Provide a PID command input for orientation mode based on current
spindle position, target angle and orient mode
spindle Control a spindle with different acceleration and deceleration and optional

gear change scaling
spindle_monité&pindle at-speed and underspeed detection

carousel Orient a toolchanger carousel using various encoding schemes
hal_manualtodiitiange realtime component to enable manual tool changesé&.

thc Torch Height Control using a Mesa THC card or any analog to velocity input

thcud Torch Height Control Up/Down Input

ohmic LinuxCNC HAL component that uses a Mesa THCAD (A/D card) for ohmic
sensing

plasmac A plasma cutter controller

5.7.2 HAL API calls

hal add funct to thread.3
hal bit t.3

hal create thread.3

hal del funct from thread.3
hal exit.3

hal export funct.3

hal export functf.3

hal float t.3

hal get lock.3

hal init.3

../man/man9/gladevcp.9.html
../man/man9/gladevcp.9.html
../man/man9/histobins.9.html
../man/man9/joyhandle.9.html
../man/man9/latencybins.9.html
../man/man9/message.9.html
../man/man9/moveoff.9.html
../man/man9/raster.9.html
../man/man9/sampler.9.html
../man/man9/siggen.9.html
../man/man9/sphereprobe.9.html
../man/man9/threads.9.html
../man/man9/threadtest.9.html
../man/man9/steptest.9.html
../man/man9/streamer.9.html
../man/man9/supply.9.html
../man/man9/laserpower.9.html
../man/man9/lcd.9.html
../man/man9/matrix_kb.9.html
../man/man9/gearchange.9.html
../man/man9/orient.9.html
../man/man9/spindle.9.html
../man/man9/spindle_monitor.9.html
../man/man9/carousel.9.html
../man/man1/hal_manualtoolchange.1.html
../man/man9/thc.9.html
../man/man9/thcud.9.html
../man/man9/ohmic.9.html
../man/man9/plasmac.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

249 /1261

hal link.3

hal malloc.3

hal param bit new.3
hal param bit newf.3
hal param float new.3
hal param float newf.3
hal param new.3

hal param s32 new.3
hal param s32 newf.3
hal param u32 new.3
hal param u32 newf.3
hal parport.3

hal pin bit new.3
hal pin bit newf.3
hal pin float new.3
hal pin float newf.3
hal pin new.3

hal pin s32 new.3
hal pin s32 newf.3
hal pin u32 new.3
hal pin u32 newf.3
hal ready.3

hal s32 t.3

hal set constructor.3
hal set lock.3

hal signal delete.3
hal signal new.3

hal start threads.3
hal type t.3

hal u32 t.3

hal unlink.3

hal.3

5.7.3 RTAPI calls

EXPORT_FUNCTION.3
MODULE_AUTHOR. 3
MODULE_DESCRIPTION.3
MODULE_LICENSE.3

RTAPI MP_ARRAY INT.3
RTAPI MP_ARRAY LONG.3
RTAPI MP_ARRAY STRING.3
RTAPI MP _INT.3

RTAPI MP_LONG.3
RTAPI MP STRING.3
rtapi.3
rtapi app exit.3
rtapi app main.3
rtapi_clock set period.3
rtapi delay.3

rtapi delay max.3

rtapi exit.3
rtapi get clocks.3
rtapi get msg level.3
rtapi_get time.3

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

250 /1261

rtapi inb.3

rtapi init.3

rtapi module param.3
RTAPI_MP_ARRAY INT.3
RTAPI_MP_ARRAY LONG.3
RTAPI_MP_ARRAY STRING.3
RTAPI_MP_INT.3
RTAPI_MP_LONG.3
RTAPI_MP_STRING.3
rtapi_mutex.3

rtapi outb.3

rtapi print.3

rtapi prio.3
rtapi prio highest.3
rtapi_prio lowest.3
rtapi_prio_next higher.3
rtapi prio next lower.3
rtapi region.3

rtapi release region.3
rtapi request region.3
rtapi_set msg level.3
rtapi_shmem.3

rtapi shmem delete.3
rtapi shmem getptr.3
rtapi_shmem new.3
rtapi snprintf.3
rtapi task delete.3
rtapi task new.3
rtapi task pause.3
rtapi task resume.3
rtapi task start.3
rtapi_task wait.3

5.8 HAL Component Descriptions

This chapter provides details on core functionalities of LinuxCNC that demand exact timing for

— the generation of signals that is interpreted by hardware (like motors) or
— for the interpretation of signals sent by the hardware (like encoders).

5.8.1 StepGen

This component provides software based generation of step pulses in response to position or velocity
commands. In position mode, it has a built in pre-tuned position loop, so PID tuning is not required. In
velocity mode, it drives a motor at the commanded speed, while obeying velocity and acceleration li-
mits. It is a realtime component only, and depending on CPU speed, etc., is capable of maximum step
rates of 10 kHz to perhaps 50 kHz. The step pulse generator block diagram shows three block dia-
grams, each is a single step pulse generator. The first diagram is for step type 0, (step and direction).
The second is for step type 1 (up/down, or pseudo-PWM), and the third is for step types 2 through
14 (various stepping patterns). The first two diagrams show position mode control, and the third one
shows velocity mode. Control mode and step type are set independently, and any combination can be

selected.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 251/1261

stepgen.Q

capture_position() make_pulsesi)

T
I
I
I STERTYPE =0
i
I
i
!
I
I
|

COUnts
lateh
step

position-fio

update freq()
CTRL TYPE = POSITION

stepplen

stepspace

step/dir
logic
and dirsetup

timing dimold

I
i

I

!

|

I

|

i

I

| " I
: ramp b= pasition o

|

|

|

|

|

I

!

I

I

— ,l', >—'
A

maxfreg

position-scale

cantrol
equation [

positian-cond

accumulator

i

maxaccel T

StePgen'O capture_position()

make_pulses()

srep e =1

maxireq

| maxaccel ii

T
1
|
[
1
s —
counts : up
latch :
position-fib - T down
1
[
L
i
update_freq() : tepidir stepplen
CTRL TYPE = POSITION : ’ logie stepspace
| 1 and
l timing

! !

= i
= contral Vi | pesiton | hold
l: position-cmd equation ™™ ., T Jl" .i’ :' ramp -"accumulator
d | |

at :
|
1
|
1
1
]

make_pulsesi)
STEP TYPE = 2-14

|Stepgen'0 capture_position()

rawcounts

I
I
|
I
|
[phase-A
I
counts] : |ookip phase-B
latch 1 table
positien-fb :
I
i
""""""""""""""""""""""""" i Istate
update_freq()
CTRL TYPE = VELOCITY

stepfdir
— / lovgic
and -
timing stepplen
| dirdelay
ramp position | hold I

accumulator)

position-cmd ramp

maxaccel

Figure 5.19 - Step Pulse Generator Block Diagram position mode

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 252 /1261

Loading stepgen component

halcmd: loadrt stepgen step type=<type-array> [ctrl type=<ctrl array>]

<type-array>
is a series of comma separated decimal integers. Each number causes a single step pulse gene-
rator to be loaded, the value of the number determines the stepping type.

<ctrl_array>
is a comma separated series of p or v characters, to specify position or velocity mode.

ctrl_type
is optional, if omitted, all of the step generators will be position mode.

For example:

halcmd: loadrt stepgen step type=0,0,2 ctrl type=p,p,v

Will install three step generators. The first two use step type 0 (step and direction) and run in position
mode. The last one uses step type 2 (quadrature) and runs in velocity mode. The default value for
<config-array> is 0,0,0 which will install three type 0 (step/dir) generators. The maximum number of
step generators is 8 (as defined by MAX CHAN in stepgen.c). Each generator is independent, but all
are updated by the same function(s) at the same time. In the following descriptions, <chan> is the
number of a specific generator. The first generator is number 0.

Unloading stepgen component

halcmd: unloadrt stepgen

5.8.1.1 Pins

On the step type and control type selected.

— (float) stepgen. = <chan> .position-cmd - Desired motor position, in position units (position
mode only).
— (float) stepgen. ~ <chan> .velocity-cmd - Desired motor velocity, in position units per second

(velocity mode only).

— s32) stepgen. = <chan>_ .counts - Feedback position in counts, updated by capture position().

— (float) stepgen. = <chan> .position-fb - Feedback position in position units, updated by cap-
ture position().

— (bit) stepgen. = <chan> .enable - Enables output steps - when false, no steps are generated.

— (bit) stepgen. = <chan> .step - Step pulse output (step type 0 only).

— (bit) stepgen. = <chan>_ .dir - Direction output (step type 0 only).

— (bit) stepgen. = <chan>_ .up - UP pseudo-PWM output (step type 1 only).

— (bit) stepgen. = <chan>_ .down - DOWN pseudo-PWM output (step type 1 only).

— (bit) stepgen. = <chan> .phase-A" - Phase A output (step types 2-14 only).

— (bit) stepgen. = <chan> .phase-B - Phase B output (step types 2-14 only).

— (bit) stepgen. = <chan> .phase-C - Phase C output (step types 3-14 only).

— (bit) stepgen. = <chan> .phase-D - Phase D output (step types 5-14 only).

— (bit) stepgen. = <chan> .phase-E - Phase E output (step types 11-14 only).

5.8.1.2 Parameters

— (float) stepgen. = <chan> .position-scale - Steps per position unit. This parameter is used for
both output and feedback.
— (float) stepgen. = <chan>_ .maxvel - Maximum velocity, in position units per second. If 0.0, has

no effect.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 253 /1261

— (float) stepgen. ~ <chan>_ .maxaccel - Maximum accel/decel rate, in positions units per second
squared. If 0.0, has no effect.

— (float) stepgen. = <chan>_ .frequency - The current step rate, in steps per second.

— (float) stepgen. ~ <chan> .steplen - Length of a step pulse (step type 0 and 1) or minimum time
in a given state (step types 2-14), in nano-seconds.

— (float) stepgen. = <chan> .stepspace - Minimum spacing between two step pulses (step types 0
and 1 only), in nano-seconds. Set to 0 to enable the stepgen doublefreq function. To use doublefreq
the parport reset function must be enabled.

— (float) stepgen. = <chan> .dirsetup - Minimum time from a direction change to the beginning
of the next step pulse (step type 0 only), in nanoseconds.

— (float) stepgen. = <chan> .dirhold - Minimum time from the end of a step pulse to a direction
change (step type 0 only), in nanoseconds.

— (float) stepgen. ~ <chan> .dirdelay - Minimum time any step to a step in the opposite direction
(step types 1-14 only), in nano-seconds.

— (s32) stepgen. = <chan> .rawcounts - The raw feedback count, updated by make pulses().

In position mode, the values of maxvel and maxaccel are used by the internal position loop to avoid
generating step pulse trains that the motor cannot follow. When set to values that are appropriate for
the motor, even a large instantaneous change in commanded position will result in a smooth trape-
zoidal move to the new location. The algorithm works by measuring both position error and velocity
error, and calculating an acceleration that attempts to reduce both to zero at the same time. For more
details, including the contents of the control equation box, consult the code.

In velocity mode, maxvel is a simple limit that is applied to the commanded velocity, and maxaccel is
used to ramp the actual frequency if the commanded velocity changes abruptly. As in position mode,
proper values for these parameters ensure that the motor can follow the generated pulse train.

5.8.1.3 Step Types

Step generator supports 15 different step sequences:

Step Type 0 Step type 0 is the standard step and direction type. When configured for step type O,
there are four extra parameters that determine the exact timing of the step and direction signals. In the
following figure the meaning of these parameters is shown. The parameters are in nanoseconds, but
will be rounded up to an integer multiple of the thread period for the threaed that calls make pulses().
For example, if make pulses() is called every 16 ps, and steplen is 20000, then the step pulses will be
2x 16 = 32 ps long. The default value for all four of the parameters is 1 ns, but the automatic rounding
takes effect the first time the code runs. Since one step requires steplen ns high and stepspace ns low,
the maximum frequency is 1,000,000,000 divided by (steplen + stepspace)’. If maxfreq is set higher
than that limit, it will be lowered automatically. If maxfreq is zero, it will remain zero, but the output
frequency will still be limited.

When using the parallel port driver the step frequency can be doubled using the parport reset function
together with StepGen’s doublefreq setting.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 254 /1261

L

step
-q-stepleﬁp-(— Stﬁﬁlﬂa}ce% steplerpe—— Stﬁﬁ’ii"’;ce —b%{-steplerih%
dirsetup dirhold dirsetup
:‘ {min) _"' ‘ (min) >} ‘ (min) ":
direction

X)

Figure 5.20 - Step and Direction Timing

Step Type 1 Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending
on the direction of travel. Each pulse is steplen ns long, and the pulses are separated by at least
stepspace ns. The maximum frequency is the same as for step type 0. If maxfreq is set higher than
the limit it will be lowered. If maxfreq is zero, it will remain zero but the output frequency will still be
limited.

AVERTISSEMENT
Do not use the parport reset function with step types 2 - 14. Unexpected results can happen.

Step Type 2 - 14 Step types 2 through 14 are state based, and have from two to five outputs. On
each step, a state counter is incremented or decremented. The Two-and-Three-Phase, Four-Phase,
and Five-Phase show the output patterns as a function of the state counter. The maximum frequency
is 1,000,000,000 divided by steplen, and as in the other modes, maxfreq will be lowered if it is above
the limit.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 255/1261

STEP TYPE 2 0o i 11 2 | 3 o i 14 2 i 3 0

phase-A

phase-B

STEP TYPE 3 o {1 {2 {0 1 | 2 o 1 2 [0 |

phase-A

phase-B

phase-C

STEPTYPE4 = 0 | 1 © 2 ¢+ 3 ¢+ 4 ¢+ 5 ¢+ 0 ¢ 1 2 ¢ 3 ¢+ 4 |

Figure 5.21 - Two-and-Three-Phase Step Types

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 256 /1261

STEPTYPE5S 0 1 2 3 0 1 2 3 0 STEPTYPES o0 1 2 3 0 12 3 0

phase-A _\ _\ _\ phase-A |\

phase-B

phase-C

phase-D

STEP TYPE 6

phase-A |

phase-B

phase-C j’

phase-D \

STEPTYPE9 & 0

phase-A

phase-B

phase-C _/——__/——___ phase-C :

STEPTYPE7 0 1 2 3 0 1 2 3 o STEPTYPE10 0 1 2 3 4 5 6 7 0

phase-A : : phase-A

Figure 5.22 - Four-Phase Step Types

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 257 /1261

STEP TYPE 11 o, 1, 2 3 4 0 1 2 .3 4 0

STEPTYPE12 o 1 2 3 4 0 1 2 3 4 0

phase-A

phase-B

phase-C

phase-D

phase-E

STEP TYPE 13 o b, 1 , 2z 3 4 5 & 7 ; 8 | 9 0

peeo T N

STEPTYPE14 . o , 1 , 2 , 3 4 ., 5 ., 6 , 7 .8 .9 , 0

e i

Figure 5.23 - Five-Phase Step Types

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 258 /1261

5.8.1.4 Fonctions

The component exports three functions. Each function acts on all of the step pulse generators - running
different generators in different threads is not supported.

— (funct) stepgen.make-pulses - High speed function to generate and count pulses (no floating
point).

— (funct) stepgen.update-freq - Low speed function does position to velocity conversion, scaling
and limiting.

— (funct) stepgen.capture-position - Low speed function for feedback, updates latches and scales
position.

The high speed function stepgen.make-pulses should be run in a very fast thread, from 10 to 50 ps
depending on the capabilities of the computer. That thread’s period determines the maximum step
frequency, since steplen, stepspace, dirsetup, dirhold, and dirdelay are all rounded up to a integer
multiple of the thread periond in nanoseconds. The other two functions can be called at a much lower
rate.

5.8.2 PWMgen

This component provides software based generation of PWM (Pulse Width Modulation) and PDM
(Pulse Density Modulation) waveforms. It is a realtime component only, and depending on CPU speed,
etc., is capable of PWM frequencies from a few hundred Hertz at pretty good resolution, to perhaps
10 kHz with limited resolution.

Loading PWMgen

loadrt pwmgen output type=<config-array>

The <config-array> is a series of comma separated decimal integers. Each number causes a single
PWM generator to be loaded, the value of the number determines the output type. The following
example will install three PWM generators. There is no default value, if <config-array> is not specified,
no PWM generators will be installed. The maximum number of frequency generators is 8 (as defined by
MAX CHAN in pwmgen.c). Each generator is independent, but all are updated by the same function(s)
at the same time. In the following descriptions, <chan> is the number of a specific generator. The first
generator is number 0.

Loading PWMgen Example
loadrt pwmgen output type=0,1,2

Will install three PWM generators. The first will use an output of type 0 (PWM only), the next one will
use a type 1 output (PWM and direction) and the third will use a type 2 output (UP and DOWN). There
is no default value, if <config-array> is not not specified, no PWM generator will be installed. The
maximum number of frequency generators is 8 (as defined by MAX CHAN in pwmgen.c). Each gene-
rator is independent, but all are updated by the same function(s), at the same time. In the descriptions
that follow, <chan> is the number of specific generators. The numbering of PWM generators starts
at 0.

Unloading PWMgen

unloadrt pwmgen

5.8.2.1 Output Types

The PWM generator supports three different output types.

— Output type 0 - PWM output pin only. Only positive commands are accepted, negative values are
treated as zero (and will be affected by the parameter min-dc if it is non-zero).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 259/1261

— Output type 1 - PWM/PDM and direction pins. Positive and negative inputs will be output as po-
sitive and negative PWM. The direction pin is false for positive commands, and true for negative
commands. If your control needs positive PWM for both CW and CCW use the abs component to
convert your PWM signal to positive value, when a negative input is input.

— Output type 2 - UP and DOWN pins. For positive commands, the PWM signal appears on the up
output, and the down output remains false. For negative commands, the PWM signal appears on the
down output, and the up output remains false. Output type 2 is suitable for driving most H-bridges.

5.8.2.2 Pins

Each PWM generator will have the following pins:

— (float) pwmgen. ~ <chan> .value - Command value, in arbitrary units. Will be scaled by the scale
parameter (see below).

— (bit) pwmgen. = <chan> .enable - Enables or disables the PWM generator outputs.

Each PWM generator will also have some of these pins, depending on the output type selected:

— (bit) pwmgen. = <chan> .pwm - PWM (or PDM) output, (output types 0 and 1 only).

— (bit) pwmgen. = <chan> .dir - Direction output (output type 1 only).

— (bit) pwmgen. = <chan>_ .up - PWM/PDM output for positive input value (output type 2 only).

— (bit) pwmgen. *~ <chan> .down - PWM/PDM output for negative input value (output type 2 only).

5.8.2.3 Parameters

— (float) pwmgen. = <chan> .scale - Scaling factor to convert value from arbitrary units to duty
cycle. For example if scale is set to 4000 and the input value passed to the pwmgen. ~ <chan> .value
is 4000 then it will be 100% duty-cycle (always on). If the value is 2000 then it will be a 50% 25 Hz
square wave.

— (float) pwmgen. ~ <chan> .pwm-freq - Desired PWM frequency, in Hz. If 0.0, generates PDM
instead of PWM., If set higher than internal limits, next call of update freq() will set it to the internal
limit. If non-zero, and dither is false, next call of update freq() will set it to the nearest integer
multiple of the make_ pulses() function period.

— (bit) pwmgen. = <chan> .dither-pwm’' - If true, enables dithering to achieve average PWM fre-
quencies or duty cycles that are unobtainable with pure PWM. If false, both the PWM frequency
and the duty cycle will be rounded to values that can be achieved exactly.

— (float) pwmgen. ~ <chan>_ .min-dc - Minimum duty cycle, between 0.0 and 1.0 (duty cycle will go
to zero when disabled, regardless of this setting).

— (float) pwmgen. = <chan>_ .max-dc - Maximum duty cycle, between 0.0 and 1.0.

— (float) pwmgen. = <chan> .curr-dc - Current duty cycle - after all limiting and rounding (read
only).

5.8.2.4 Fonctions

The component exports two functions. Each function acts on all of the PWM generators - running

different generators in different threads is not supported.

— (funct) pwmgen.make-pulses - High speed function to generate PWM waveforms (no floating point).
The high speed function pwmgen.make-pulses should be run in the base (fastest) thread, from 10 to
50 ps depending on the capabilities of the computer. That thread’s period determines the maximum
PWM carrier frequency, as well as the resolution of the PWM or PDM signals. If the base thread
is 50,000 ns then every 50 ps the module decides if it is time to change the state of the output. At
50% duty cycle and 25 Hz PWM frequency this means that the output changes state every (1/25) s
/ 50 s * 50% = 400 iterations. This also means that you have a 800 possible duty cycle values
(without dithering).

— (funct) pwmgen.update - Low speed function to scale and limit value and handle other parameters.
This is the function of the module that does the more complicated mathematics to work out how
many base-periods the output should be high for, and how many it should be low for.

../man/man9/abs.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 260/1261

5.8.3 Encoder

This component provides software based counting of signals from quadrature (or single-pulse) en-
coders. It is a realtime component only, and depending on CPU speed, latency, etc., is capable of
maximum count rates of 10 kHz to perhaps up to 50 kHz.

The base thread should be 1/2 count speed to allow for noise and timing variation. For example if you
have a 100 pulse per revolution encoder on the spindle and your maximum RPM is 3000 the maximum
base thread should be 25ps. A 100 pulse per revolution encoder will have 400 counts. The spindle
speed of 3000 RPM = 50 RPS (revolutions per second). 400 * 50 = 20,000 counts per second or 50 ps
between counts.

The Encoder Counter Block Diagram is a block diagram of one channel of an encoder counter.

capture-posiBon) updabe-counters ()

posiion

phaze-A
upidn quad
t decode
o phase-B

L
L
L
[
L
[
L
L
[
L
i
L
L
o [_raweourts]
. courter
[
L
[
L
i
L
[
L
L
L
L
[
L

courts 'l—— lateh
clear e
E reset i
C index-enable i :jil f— phae-d :|
encoder.0 ;

Figure 5.24 - Encoder Counter Block Diagram

Loading Encoder

halcmd: loadrt encoder [num_chan=<counters>]

<counters> is the number of encoder counters that you want to install. If num_chan is not specified,
three counters will be installed. The maximum number of counters is 8 (as defined by MAX CHAN
in encoder.c). Each counter is independent, but all are updated by the same function(s) at the same

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 261 /1261

time. In the following descriptions, <chan> is the number of a specific counter. The first counter is
number 0.

Unloading Encoder

halcmd: unloadrt encoder

5.8.3.1 Pins

— encoder. _<chan>_.counter-mode (bit, I/O) (default: FALSE) - Enables counter mode. When true,
the counter counts each rising edge of the phase-A input, ignoring the value on phase-B. This is
useful for counting the output of a single channel (non-quadrature) sensor. When false, it counts
in quadrature mode.

— encoder. <chan> .missing-teeth (s32, In) (default: 0) - Enables the use of missing-tooth index.
This allows a single IO pin to provide both position and index information. If the encoder wheel
has 58 teeth with two missing, spaced as if there were 60(common for automotive crank sensors)
then the position-scale should be set to 60 and missing-teeth to 2. To use this mode counter-mode
should be set true. This mode will work for lathe threading but not for rigid tapping.

— encoder. <chan>_.counts (s32, Out) - Position in encoder counts.

— encoder. _<chan>_.counts-latched (s32, Out) - Not used at this time.

— encoder. <chan> .index-enable (bit, I/O) - When True, counts and position are reset to zero

on next rising edge of Phase Z.
At the same time, index-enab'le is reset to zero to indicate that the rising edge has occurred. The
index-enable pinis bi-directional. If index-enable is False, the Phase Z channel of the encoder will
be ignored, and the counter will count normally. The encoder driver will never set index-enable
True. However, some other component may do so.

— encoder. _<chan>_ .latch-falling (bit, In) (default: TRUE) - Not used at this time.

— encoder. <chan> .latch-input (bit, In) (default: TRUE) - Not used at this time.

— encoder. <chan>_ .latch-rising (bit, In) - Not used at this time.

— encoder. <chan> .min-speed-estimate (float, in) - Determine the minimum true velocity magni-
tude, at which velocity will be estimated as nonzero and position-interpolated will be interpolated.
The units of min-speed-estimate are the same as the units of velocity. Scale factor, in counts
per length unit. Setting this parameter too low will cause it to take a long time for velocity to go to
0 after encoder pulses have stopped arriving.

— encoder._<chan>_.phase-A (bit, In) - Phase A of the quadrature encoder signal.

— encoder. <chan> .phase-B (bit, In) - Phase B of the quadrature encoder signal.

— encoder._<chan>_.phase-Z (bit, In) - Phase Z (index pulse) of the quadrature encoder signal.

— encoder. <chan>_.position (float, Out) - Position in scaled units (see position-scale).

— encoder. <chan> .position-interpolated (float, Out) - Position in scaled units, interpolated bet-
ween encoder counts.

The position-interpolated attempts to interpolate between encoder counts, based on the most
recently measured velocity. Only valid when velocity is approximately constant and above min-speed-est
Do not use for position control, since its value is incorrect at low speeds, during direction reversals,

and during speed changes.

However, it allows a low ppr encoder (including a one pulse per revolution encoder) to be used for
lathe threading, and may have other uses as well.

— encoder. <chan> .position-latched (float, Out) - Not used at this time.

— encoder. <chan> .position-scale (float, I/O) - Scale factor, in counts per length unit. For example,
if position-scale is 500, then 1000 counts of the encoder will be reported as a position of 2.0 units.

— encoder. <chan> .rawcounts (s32, In) - The raw count, as determined by update-counters. This
value is updated more frequently than counts and position. It is also unaffected by reset or the
index pulse.

— encoder. <chan> .reset (bit, In) - When True, force counts and position to zero immediately.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 262 /1261

— encoder. <chan> .velocity (float, Out) - Velocity in scaled units per second. encoder uses an
algorithm that greatly reduces quantization noise as compared to simply differentiating the position
output. When the magnitude of the true velocity is below min-speed-estimate, the velocity output
is 0.

— encoder. <chan>_.x4-mode (bit, I/O) (default: TRUE) - Enables times-4 mode. When true, the coun-
ter counts each edge of the quadrature waveform (four counts per full cycle). When false, it only
counts once per full cycle. In counter-mode, this parameter is ignored. The 1x mode is useful for
some jogwheels.

5.8.3.2 Parameters

— encoder. <chan> .capture-position.time (s32, RO)
— encoder. <chan> .capture-position.tmax (s32, RW)
— encoder. <chan> .update-counters.time (s32, RO)
— encoder. <chan>_ .update-counter.tmax (s32, RW)

5.8.3.3 Fonctions

The component exports two functions. Each function acts on all of the encoder counters - running
different counters in different threads is not supported.

— (funct) encoder.update-counters - High speed function to count pulses (no floating point).

— (funct) encoder.capture-position - Low speed function to update latches and scale position.

5.8.4 PID

This component provides Proportional/Integral/Derivative control loops. It is a realtime component
only. For simplicity, this discussion assumes that we are talking about position loops, however this
component can be used to implement other feedback loops such as speed, torch height, temperature,
etc. The PID Loop Block Diagram is a block diagram of a single PID loop.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 263 /1261

<, leedback

Ermir I

oL TaE x
——
L . H_/f]\X

| max-emoil I— | bias ’——@ __/ij/- 'T}

—T—

e

Figure 5.25 - PID Loop Block Diagram

Loading PID
halcmd: loadrt pid [num_chan=<loops>] [debug=1]

<loops> is the number of PID loops that you want to install. If num_chan is not specified, one loop
will be installed. The maximum number of loops is 16 (as defined by MAX CHAN in pid.c). Each loop
is completely independent. In the following descriptions, <loopnum> is the loop number of a specific
loop. The first loop is number 0.

If debug=1 is specified, the component will export a few extra pins that may be useful during debug-
ging and tuning. By default, the extra pins are not exported, to save shared memory space and avoid
cluttering the pin list.

Unloading PID
halcmd: unloadrt pid

5.8.4.1 Pins

The three most important pins are

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 264 /1261

— (float) pid. = <loopnum>_ .command - The desired position, as commanded by another system
component.
— (float) pid. = <loopnum>_ .feedback - The present position, as measured by a feedback device

such as an encoder.
— (float) pid. ~ <loopnum>_ .output - A velocity command that attempts to move from the present
position to the desired position.

For a position loop, .command and .feedback are in position units. For a linear axis, this could be
inches, mm, meters, or whatever is relevant. Likewise, for an angular axis, it could be degrees, ra-
dians, etc. The units of the .output pin represent the change needed to make the feedback match the
command. As such, for a position loop .output is a velocity, in inches/s, mm/s, degrees/s, etc. Time
units are always seconds, and the velocity units match the position units. If command and feedback
are in meters, then output is in meters per second.

Each loop has two pins which are used to monitor or control the general operation of the component.

— (float) pid.<loopnum>.error - Equals .command minus .feedback.
— (bit) pid.<loopnum>.enable - A bit that enables the loop. If .enable is false, all integrators are reset,
and the output is forced to zero. If .enable is true, the loop operates normally.

Pins used to report saturation. Saturation occurs when the output of the PID block is at its maximum

or minimum limit.

— (bit) pid.<loopnum>.saturated - True when output is saturated.

— (float) pid.<loopnum>.saturated s - The time the output has been saturated.

— (832) pid.<loopnum>.saturated count - The time the output has been saturated.

The PID gains, limits, and other tunable features of the loop are available as pins so that they can be

adjusted dynamically for more advanced tuning possibilities.

— (float) pid.<loopnum=>.Pgain - Proportional gain

— (float) pid.<loopnum>.Igain - Integral gain

— (float) pid.<loopnum>.Dgain - Derivative gain

— (float) pid.<loopnum>.bias - Constant offset on output

— (float) pid.<loopnum>.FFQ - Zeroth order feedforward - output proportional to command (position).

— (float) pid.<loopnum>.FF1] - First order feedforward - output proportional to derivative of command
(velocity).

— (float) pid.<loopnum>.FF2 - Second order feedforward - output proportional to 2™ derivative of
command (acceleration).

— (float) pid.<loopnum>.deadband - Amount of error that will be ignored
— (float) pid.<loopnum>.maxerror - Limit on error

— (float) pid.<loopnum>.maxerrorl - Limit on error integrator

— (float) pid.<loopnum>.maxerrorD - Limit on error derivative

— (float) pid.<loopnum>.maxcmdD - Limit on command derivative

— (float) pid.<loopnum>.maxcmdDD - Limit on command 2" derivative
— (float) pid.<loopnum>.maxoutput - Limit on output value

All max* limits are implemented so that if the value of this parameter is zero, there is no limit.

If debug=1 was specified when the component was installed, four additional pins will be exported:
— (float) pid.<loopnum>.errorl - Integral of error.

— (float) pid.<loopnum>.errorD - Derivative of error.

— (float) pid.<loopnum>.commandD - Derivative of the command.

— (float) pid.<loopnum>.commandDD - 24 derivative of the command.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 265/1261

5.8.4.2 Fonctions

The component exports one function for each PID loop. This function performs all the calculations
needed for the loop. Since each loop has its own function, individual loops can be included in different
threads and execute at different rates.

— (funct) pid.<loopnum>.do pid calcs - Performs all calculations for a single PID loop.

If you want to understand the exact algorithm used to compute the output of the PID loop, refer to
— figure PID Loop Block Diagram,

— the comments at the beginning of emc2/src/hal/components/pid.c, and of course to

— the code itself.

The loop calculations are in the C function calc pid().

5.8.5 Simulated Encoder

The simulated encoder is exactly that. It produces quadrature pulses with an index pulse, at a speed
controlled by a HAL pin. Mostly useful for testing.

Loading sim-encoder

halcmd: loadrt sim-encoder num_chan=<number>

<number> is the number of encoders that you want to simulate If not specified, one encoder will be
installed. The maximum number is 8 (as defined by MAX CHAN in sim _encoder.c).

Unloading sim-encoder
halcmd: unloadrt sim-encoder

5.8.5.1 Pins

— (float) sim-encoder. ~ <chan-num> .speed - The speed command for the simulated shaft.
— (bit) sim-encoder. * <chan-num> .phase-A" - Quadrature output.
— (bit) sim-encoder. ° <chan-num> .phase-B - Quadrature output.
— (bit) sim-encoder. ° <chan-num> .phase-Z - Index pulse output.

When . speed is positive, .phase-A leads .phase-B.

5.8.5.2 Parameters

— (u32) sim-encoder. *~ <chan-num>_ .ppr - Pulses Per Revolution.

— (float) sim-encoder. = <chan-num>_ .scale - Scale Factor for .speed. The default is 1.0, which
means that .speed is in revolutions per second. Change to 60 for RPM, to 360 for degrees per
second, 6.283185 (= 2*m) for radians per second, etc.

Note that pulses per revolution is not the same as counts per revolution. A pulse is a complete qua-
drature cycle. Most encoder counters will count four times during one complete cycle.

5.8.5.3 Fonctions

The component exports two functions. Each function affects all simulated encoders.

— (funct) sim-encoder.make-pulses - High speed function to generate quadrature pulses (no floating
point).

— (funct) sim-encoder.update-speed - Low speed function to read .speed, do scaling, and set up
.make-pulses.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 266 /1261

5.8.6 Debounce

Debounce is a realtime component that can filter the glitches created by mechanical switch contacts.
It may also be useful in other applications where short pulses are to be rejected.

Loading debounce

halcmd: loadrt debounce cfg=<config-string>

<config-string>
Is a series of comma separated decimal integers. Each number install a group of identical de-
bounce filters, the number determines how many filters are in the group.

Loading debounce Example
halcmd: loadrt debounce cfg=1,4,2

will install three groups of filters. Group O contains one filter, group 1 contains four, and group 2
contains two filters. The default value for <config-string> is ”1” which will install a single group
containing a single filter. The maximum number of groups 8 (as defined by MAX GROUPS in de-
bounce.c). The maximum number of filters in a group is limited only by shared memory space. Each
group is completely independent. All filters in a single group are identical, and they are all updated
by the same function at the same time. In the following descriptions, <G> is the group number and
<F> is the filter number within the group. The first filter is group 0, filter O.

Unloading debounce

halcmd: unloadrt debounce

5.8.6.1 Pins

Each individual filter has two pins.

— (bit) debounce. = <G> . <F> .in - Input of filter <F> in group <G>.
— (bit) debounce. = <G> . <F> .out - Output of filter <F> in group <G>.

5.8.6.2 Parameters

Each group of filters has one parameter®.
— (s32) debounce. ~ <G> .delay - Filter delay for all filters in group <G>.

The filter delay is in units of thread periods. The minimum delay is zero. The output of a zero delay filter
exactly follows its input - it doesn’t filter anything. As .delay increases, longer and longer glitches
are rejected. If .delay is 4, all glitches less than or equal to four thread periods will be rejected.

5.8.6.3 Fonctions

Each group of filters has one function, which updates all the filters in that group simultaneously.
Different groups of filters can be updated from different threads at different periods.

— (funct) debounce. <G> - Updates all filters in group <G>.

6. Each individual filter also has an internal state variable. There is a compile time switch that can export that variable as a
parameter. This is intended for testing, and simply wastes shared memory under normal circumstances.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 267 /1261

5.8.7 SigGen

SigGen is a realtime component that generates square, triangle, and sine waves. It is primarily used
for testing.

Loading siggen

halcmd: loadrt siggen [num_chan=<chans>]

<chans>
is the number of signal generators that you want to install. If numchan is not specified, one signal
generator will be installed. The maximum number of generators is 16 (as defined by MAX CHAN
in siggen.c). Each generator is completely independent. In the following descriptions is

<chan>
the number of a specific signal generator (the numbers start at 0).

Unloading siggen

halcmd: unloadrt siggen

5.8.7.1 Pins

Each generator has five output pins.

— (float) siggen. = <chan>_.sine - Sine wave output.

— (float) siggen. *~ <chan> .cosine - Cosine output.

— (float) siggen. = <chan>_ .sawtooth - Sawtooth output.

— (float) siggen. = <chan>_ .triangle - Triangle wave output.
— (float) siggen. = <chan>_ .square - Square wave output.

All five outputs have the same frequency, amplitude, and offset.

In addition to the output pins, there are three control pins:

— (float) siggen. *~ <chan> .frequency - Sets the frequency in Hertz, default value is 1 Hz.

— (float) siggen. ~ <chan> .amplitude - Sets the peak amplitude of the output waveforms, default
is 1.

— (float) siggen. = <chan>_ .offset - Sets DC offset of the output waveforms, default is 0.

For example, if siggen.0.amplitude is 1.0 and siggen.0.offset is 0.0, the outputs will swing from
-1.0to +1.0. If siggen.0.amplitude is 2.5 and siggen.0.offset is 10.0, then the outputs will swing
from 7.5 to 12.5.

5.8.7.2 Parameters

None.’

5.8.7.3 Fonctions

— (funct) siggen. ~ <chan>_ .update - Calculates new values for all five outputs.

7. Prior to version 2.1, frequency, amplitude, and offset were parameters. They were changed to pins to allow control by
other components.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 268 /1261

5.8.8 1lut5

The lut5 component is a 5 input logic component based on a look up table.
— 1ut5 does not require a floating point thread.
Loading lut5

loadrt lut5 [count=N|names=namel[,name2...]]
addf lut5.N servo-thread | base-thread
setp lut5.N.function OxN

lIut5 Computing Function To compute the hexadecimal number for the function starting from the
top put a 1 or O to indicate if that row would be true or false. Next write down every number in
the output column starting from the top and writing them from right to left. This will be the binary
number. Using a calculator with a program view like the one in Ubuntu enter the binary number and
then convert it to hexadecimal and that will be the value for function.

Table 5.28: 1ut5 Look Up Table

N

B

w

Bit 2

=

e = = E = E = E = E N = = I s = T e =
[y

Bit 0 | Outpult

l—\Hl—\l—\Hl—\Hl—\l—\Hl—\l—\l—\l—\l—\l—\OOOOOOOOOOOOOOOO:
l—‘l—\HlﬂMHHHOOOOOOOOD—‘l—\HDﬂﬁHHI—‘OOOOOOOO:
= =O OO0 OO = O OO QO OO OO
R OO OO RO ORORO RO RO RO RO PO O OO

Iut5 Two Inputs Example In the following table we have selected the output state for each line that
we wish to be true.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 269/1261

Table 5.29: 1ut5 Two Inputs Example Look Up Table

Bit4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Outpult
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1

Looking at the output column of our example we want the output to be on when Bit 0 or Bit 0 and
Bitl is on and nothing else. The binary number is b1010 (rotate the output 90 degrees CW). Enter
this number into the calculator then change the display to hexadecimal and the number needed for
function is Oxa. The hexadecimal prefix is Ox.

5.9 HAL Component Generator

5.9.1 Introduction

This section introduces to the compilation HAL components, i.e. the addition of some machinists’
knowledge on how to deal with the machine. It should be noted that such components do not ne-
cessarily deal with the hardware directly. They often do, but not necessarily, e.g. there could be a
component to convert between imperial and metric scales, so this section does not require to dive
into the interaction with hardware.

Writing a HAL component can be a tedious process, most of it in setup calls to rtapi and hal functions
and associated error checking. halcompile will write all this code for you, automatically. Compiling
a HAL component is also much easier when using halcompile, whether the component is part of the
LinuxCNC source tree, or outside it.

For instance, when coded in C, a simple component such as “ddt” is around 80 lines of code. The
equivalent component is very short when written using the halcompile preprocessor:

Simple Component Example

component ddt "Compute the derivative of the input function”;
pin in float in;

pin out float out;

variable double old;

option period no;

function ;

license "GPL”; // indicates GPL v2 or later

float tmp = in;
out (tmp - old) / fperiod;
old tmp;

5.9.2 Installing

To compile a component, if a packaged version of LinuxCNC is used, development packages have to
be installed using either Synaptic from the main menu System -> Administration -> Synaptic package
manager or by running one of the following commands in a terminal window:

Installation of Development packages for LinuxCNC

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 270 /1261

sudo apt install linuxcnc-dev
or
sudo apt install linuxcnc-uspace-dev

Another method is using the Synaptic package manager, from the Applications menu, to install the
linuxcnc-dev or linuxcnc-uspace-dev packages.

5.9.3 Compiling
5.9.3.1 Inside the source tree

Place the .comp file in the source directory linuxcnc/src/hal/components and re-run make. Comp
files are automatically detected by the build system.

If a .comp file is a driver for hardware, it may be placed in linuxcnc/src/hal/drivers and will be
built unless LinuxCNC is configured as a non-realtime simulator.

5.9.3.2 Realtime components outside the source tree

halcompile can process, compile, and install a realtime component in a single step, placing rtexample. ko
in the LinuxCNC realtime module directory:

[sudo] halcompile --install rtexample.comp

Note
sudo (for root permission) is needed when using LinuxCNC from a deb package install. When using a
Run-In-Place (RIP) build, root privileges should not be needed.

Or, it can process and compile in one step, leaving example.ko (or example.so for the simulator) in
the current directory:

halcompile --compile rtexample.comp

Or it can simply process, leaving example. c in the current directory:

halcompile rtexample.comp

halcompile can also compile and install a component written in C, using the --install and - -compile
options shown above:

[sudo] halcompile --install rtexample2.c

man-format documentation can also be created from the information in the declaration section:

halcompile --document -o example.9 rtexample.comp

The resulting manpage, example.9 can be viewed with

man ./example.9

or copied to a standard location for manual pages.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 271 /1261

5.9.3.3 Non-realtime components outside the source tree

halcompile can process, compile, install, and document non-realtime components:

halcompile non-rt-example.comp

halcompile --compile non-rt-example.comp

[sudo] halcompile --install non-rt-example.comp
halcompile --document non-rt-example.comp

For some libraries (for example modbus) it might be necessary to add extra compiler and linker argu-
ments to enable the compiler to find and link the libraries. In the case of .comp files this can be done
via “option” statements in the . comp file. For . c files this is not possible so the - -extra-compile-args
and --extra-link-args parameters can be used instead. As an example, this command line can be
used to compile the vfdb_vfd.c component out-of-tree.

halcompile --userspace --install --extra-compile-args="-I/usr/include/modbus” --extra-link- <«
args="-lm -1lmodbus -1linuxcncini” vfdb vfd.c

Note
The effect of using both command-line and in-file extra-args is undefined.

5.9.4 Using a Component

Components need to be loaded and added to a thread before it can be employed. The provided func-
tionality can then be invoked directly and repeatedly by one of the threads or it is called by other
components that have their own respective triggers.

Example HAL script for installing a component (ddt) and executing it every millisecond.

loadrt threads namel=servo-thread periodl=1000000
loadrt ddt
addf ddt.0 servo-thread

More information on loadrt and addf can be found in the HAL Basics.
To test your component you can follow the examples in the HAL Tutorial.

5.9.5 Definitions

— component - A component is a single real-time module, which is loaded with Halcmd loadrt. One
.comp file specifies one component. The component name and file name must match.

— instance - A component can have zero or more instances. Each instance of a component is created
equal (they all have the same pins, parameters, functions, and data) but behave independently
when their pins, parameters, and data have different values.

— singleton - It is possible for a component to be a "singleton”, in which case exactly one instance is
created. It seldom makes sense to write a singleton component, unless there can literally only be
a single object of that kind in the system (for instance, a component whose purpose is to provide a
pin with the current UNIX time, or a hardware driver for the internal PC speaker).

5.9.6 Instance creation

For a singleton, the one instance is created when the component is loaded.

For a non-singleton, the count module parameter determines how many numbered instances are crea-
ted. If count is not specified, the names module parameter determines how many named instances
are created. If neither count nor names is specified, a single numbered instance is created.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 272 /1261

5.9.7 Implicit Parameters

Functions are implicitly passed the period parameter which is the time in nanoseconds of the last
period to execute the component. Functions which use floating-point can also refer to fperiod which
is the floating-point time in seconds, or (period*1e-9). This can be useful in components that need the
timing information. See also option period below.

5.9.8 Syntax

A . comp file consists of a number of declarations, followed by ;; on a line of its own, followed by C
code implementing the module’s functions.

Declarations include:

— component HALNAME (DOC);
— pin PINDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (= START-
VALUE) (DOC) ;

— param PARAMDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (=
STARTVALUE) (DOC) ;

— function HALNAME (fp | nofp) (DOC);

— option OPT (VALUE);

— variable CTYPE STARREDNAME ([SIZE]);
— description DOC;

— examples DOC;

— notes DOC;

— see _also DOC;

— license LICENSE;

— author AUTHOR;

— include HEADERFILE;

Parentheses indicate optional items. A vertical bar indicates alternatives. Words in CAPITALS indicate
variable text, as follows:

— NAME - A standard C identifier

— STARREDNAME - A C identifier with zero or more * before it. This syntax can be used to declare ins-
tance variables that are pointers. Note that because of the grammar, there may not be whitespace
between the * and the variable name.

— HALNAME - An extended identifier. When used to create a HAL identifier, any underscores are
replaced with dashes, and any trailing dash or period is removed, so that “this name ” will be
turned into “this-name”, and if the name is ” ”, then a trailing period is removed as well, so that
“function ” gives a HAL function name like “component.<num>" instead of “component.<num>.”"

If present, the prefix hal is removed from the beginning of the component name when creating
pins, parameters and functions.

In the HAL identifier for a pin or parameter, # denotes an array item, and must be used in conjunction
with a [SIZE] declaration. The hash marks are replaced with a 0-padded number with the same length
as the number of # characters.

When used to create a C identifier, the following changes are applied to the HALNAME:

»wonoonon

1. Any "#” characters, and any ”.”, ” ” or characters immediately before them, are removed.
2. Any remaining ”.” and ”-” characters are replaced with ”_”.
3. Repeated ” ” characters are changed to a single ”\ ” character.

o

»on

A trailing ” ” is retained, so that HAL identifiers which would otherwise collide with reserved names
or keywords (e.g., min) can be used.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

273 /1261

HALNAME C Identifier HAL Identifier
Xy Z Xy Z X-y-Z

X-y.Z Xy z X-y.Z

Xy 2z Xy Z X-y-Z

X.##Yy x y(MM) x.MM.z

X.H# x(MM) x.MM

— if CONDITION - An expression involving the variable personality which is nonzero when the pin or

parameter should be created.

SIZE - A number that gives the size of an array. The array items are numbered from 0 to SIZE-1.
MAXSIZE : CONDSIZE - A number that gives the maximum size of the array, followed by an expres-
sion involving the variable personality and which always evaluates to less than MAXSIZE. When
the array is created its size will be CONDSIZE.

DOC - A string that documents the item. String can be a C-style “double quoted” string, like:

"Selects the desired edge: TRUE means falling, FALSE means rising”

or a Python-style "triple quoted” string, which may include embedded newlines and quote charac-
ters, such as:

"""The effect of this parameter, also known as "the orb of zot”,
will require at least two paragraphs to explain.

Hopefully these paragraphs have allowed you to understand "zot”
better.”"””

Or a string may be preceded by the literal character r, in which case the string is interpreted like
a Python raw-string.

The documentation string is in “"groff -man” format. For more information on this markup format,
see groff man(7). Remember that halcompile interprets backslash escapes in strings, so for ins-
tance to set the italic font for the word example, write:

"\\fIexample\\fB"”

In this case, r-strings are particularly useful, because the backslashes in an r-string need not be
doubled:

r’"\fIexample\fB”

TYPE - One of the HAL types: bit, s32, u32, s64, u64 or float. The names signed and unsigned may
also be used for s32 and u32 but s32 and u32 are preferred.

PINDIRECTION - One of the following: in, out, or io. A component sets a value for an out pin, it
reads a value from an in pin, and it may read or set the value of an io pin.

PARAMDIRECTION - One of the following: r or rw. A component sets a value for a r parameter,
and it may read or set the value of a rw parameter.

STARTVALUE - Specifies the initial value of a pin or parameter. If it is not specified, then the default
is 0 or FALSE, depending on the type of the item.

HEADERFILE - The name of a header file, either in double-quotes (include "myfile.h”;) or in
angle brackets (include <systemfile.h>;). The header file will be included (using C’s #include)
at the top of the file, before pin and parameter declarations.

5.9.8.1 HAL functions

— fp - Indicates that the function performs floating-point calculations.
— nofp - Indicates that it only performs integer calculations. If neither is specified, fp is assumed.

Neither halcompile nor gcc can detect the use of floating-point calculations in functions that are
tagged nofp, but the use of such operations results in undefined behavior.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 274 /1261

5.9.8.2 Options

The currently defined options are:

— option singleton yes - (default: no)
Do not create a count module parameter, and always create a single instance. With singleton, items
are named component-name.item-name and without singleton, items for numbered instances are
named component-name.<num>.item-name.

— option default count number - (default: 1)
Normally, the module parameter count defaults to 1. If specified, the count will default to this value
instead.

— option count_function yes - (default: no)
Normally, the number of instances to create is specified in the module parameter count; if count_function
is specified, the value returned by the function int get count(void) is used instead, and the count
module parameter is not defined.

— option rtapi_app no - (default: yes)
Normally, the functions rtapi app main() and rtapi app_exit() are automatically defined. With
option rtapi_app no, they are not, and must be provided in the C code. Use the following prototypes:

‘int rtapi_app main(void);

‘void rtapi _app_exit(void);"

When implementing your own rtapi app main(), call the function int export(char *prefix,
long extra arg) to register the pins, parameters, and functions for prefix.

— option data TYPE - (default: none) deprecated
If specified, each instance of the component will have an associated data block of type TYPE (which
can be a simple type like float or the name of a type created with typedef). In new components,
variable should be used instead.

— option extra _setup yes - (default: no)
If specified, call the function defined by EXTRA SETUP for each instance. If using the automatically
defined rtapi_app main, extra arg is the number of this instance.

— option extra_cleanup yes - (default: no)
If specified, call the function defined by EXTRA CLEANUP from the automatically defined rtapi_app exit
or, in case of a detected error, in the automatically defined rtapi app main.

— option userspace yes - (default: no)
If specified, this file describes a non-realtime (formerly known as ”"userspace”) component, ra-
ther than a regular (i.e., realtime) one. A non-realtime component may not have functions de-
fined by the function directive. Instead, after all the instances are constructed, the C function
void user mainloop(void); is called. When this function returns, the component exits. Typically,
user mainloop() will use FOR ALL INSTS() to perform the update action for each instance, then
sleep for a short time. Another common action in user mainloop() may be to call the event handler
loop of a GUI toolkit.

— option userinit yes - (default: no)
This option is ignored if the option userspace (see above) is set to no. If userinit is specified, the
function userinit(argc,argv) is called before rtapi_app main() (and thus before the call to hal init()
). This function may process the commandline arguments or take other actions. Its return type is
void; it may call exit() if it wishes to terminate rather than create a HAL component (e.g., because
the commandline arguments were invalid).

— option extra link_args ”...” - (default: ””)
This option is ignored if the option userspace (see above) is set to no. When linking a non-realtime
component, the arguments given are inserted in the link line. Note that because compilation takes
place in a temporary directory, ”-L.” refers to the temporary directory and not the directory where
the .comp source file resides. This option can be set in the halcompile command-line with -extra-
link-args="-L.....”. This alternative provides a way to set extra flags in cases where the input file is
a .c file rather than a .comp file.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 275 /1261

— option extra_compile args ”...” - (default: ””)
This option is ignored if the option userspace (see above) is set to no. When compiling a non-
realtime component, the arguments given are inserted in the compiler command line. If the input
file is a .c file this option can be set in the halcompile command-line with --extra-compile-args="-
I.....”. This alternative provides a way to set extra flags in cases where the input file is a .c file
rather than a .comp file.

— option homemod yes - (default: no)
Module is a custom Homing module loaded using [EMCMOT JHOMEMOD=modulename .

— option tpmod yes - (default: no)
Module is a custom Trajectory Planning (tp) module loaded using [TRAJ]TPMOD=modulename .

— option period no - (default: yes)
Control the implicit period parameter of the function(s) defined in the component. A standard
function has an implicit parameter period. Many components do no use the period parameter and
would cause a "unused parameter” compiler warning. Setting option period no creates a function
declaration omitting the period parameter preventing the warning. Setting this option will also
prevent fperiod from being defined, as it depends on period.

If an option’s VALUE is not specified, then it is equivalent to specifying option ... yes.
The result of assigning an inappropriate value to an option is undefined.
The result of using any other option is undefined.

5.9.8.3 License and Authorship

— LICENSE - Specify the license of the module for the documentation and for the MODULE LICENSE()
module declaration. For example, to specify that the module’s license is GPL v2 or later:

‘license "GPL"; // indicates GPL v2 or later’

For additional information on the meaning of MODULE LICENSE() and additional license identi-
fiers, see <linux/module.h> or the manual page rtapi module param(3).

This declaration is required.
— AUTHOR - Specify the author of the module for the documentation.

5.9.8.4 Per-instance data storage

— variable CTYPE STARREDNAME; + variable CTYPE STARREDNAME[SIZE]; + variable CTYPE STARREI
= DEFAULT; + variable CTYPE STARREDNAME[SIZE] = DEFAULT;

Declare a per-instance variable STARREDNAME of type CTYPE, optionally as an array of SIZE
items, and optionally with a default value DEFAULT. Items with no DEFAULT are initialized to all-
bits-zero. CTYPE is a simple one-word C type, such as float, u32, s32, int, etc. Access to array
variables uses square brackets.

If a variable is to be of a pointer type, there may not be any space between the ”"*” and the variable
name. Therefore, the following is acceptable:

variable int *example;

But the following are not:

variable int* badexample;
variable int * badexample;

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 276 /1261

5.9.8.5 Comments

C++-style one-line comments (//...) and C-style multi-line comments (/* ... */) are both suppor-
ted in the declaration section.

5.9.9 Restrictions

Though HAL permits a pin, a parameter, and a function to have the same name, halcompile does not.

Variable and function names that can not be used or are likely to cause problems include:
— Anything beginning with comp.

— comp _id

— fperiod

— rtapi_app_main

— rtapi_app_exit

— extra_setup

— extra_cleanup

5.9.10 Convenience Macros

Based on the items in the declaration section, halcompile creates a C structure called struct _ comp_ state.
However, instead of referring to the members of this structure (e.g., *(inst->name)), they will gene-

rally be referred to using the macros below. The details of struct comp state and these macros

may change from one version of halcompile to the next.

— FUNCTION(~ name_) - Use this macro to begin the definition of a realtime function, which was
previously declared with function NAME. The function includes a parameter period which is the
integer number of nanoseconds between calls to the function. See also option period above.

— EXTRA SETUP() - Use this macro to begin the definition of the function called to perform extra setup
of this instance. Return a negative UNIX errno value to indicate failure (e.g., return -EBUSY on
failure to reserve an I/O port), or O to indicate success.

— EXTRA CLEANUP() - Use this macro to begin the definition of the function called to perform extra
cleanup of the component. Note that this function must clean up all instances of the component,

oo

not just one. The "pin name”, “parameter name”, and “data” macros may not be used here.

— pin_name or parameter name - For each pin pin name or param parameter name there is a macro
which allows the name to be used on its own to refer to the pin or parameter. When pin name or
parameter name is an array, the macro is of the form pin name(idx) or param _name(idx), where
idx is the index into the pin array. When the array is a variable-sized array, it is only legal to refer
to items up to its condsize.

When the item is a conditional item, it is only legal to refer to it when its condition evaluated to a
nonzero value.

— variable_name - For each variable variable name there is a macro which allows the name to be used
on its own to refer to the variable. When variable name is an array, the normal C-style subscript is
used: variable name[idx].

— data - If "option data” is specified, this macro allows access to the instance data.

— fperiod - The floating-point number of seconds between calls to this realtime function. See also
option period above.

— FOR _ALL INSTS() {...} - For non-realtime components. This macro iterates over all the defined
instances. Inside the body of the loop, the pin name, parameter name, and data macros work as
they do in realtime functions.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 277 /1261

5.9.11 Components with one function

If a component has only one function and the string "FUNCTION” does not appear anywhere after ;;,
then the portion after ; ; is all taken to be the body of the component’s single function. See the Simple
Comp for an example of this.

5.9.12 Component Personality

If a component has any pins or parameters with an ”if condition” or “[maxsize : condsize]”, it is called a
component with personality. The personality of each instance is specified when the module is loaded.
Personality can be used to create pins only when needed. For instance, personality is used in the logic
component, to allow for a variable number of input pins to each logic gate and to allow for a selection
of any of the basic boolean logic functions and, or, and xor.

The default number of allowed personality items is a compile-time setting (64). The default applies to
numerous components included in the distribution that are built using halcompile.

To alter the allowed number of personality items for user-built components, use the --personalities
option with halcompile. For example, to allow up to 128 personality times:

[sudo] halcompile --personalities=128 --install ...

When using components with personality, normal usage is to specify a personality item for each spe-
cified component instance. Example for 3 instances of the logic component:

loadrt logic names=and4,or3,nand5, personality=0x104,0x203,0x805

Note

If a loadrt line specifies more instances than personalities, the instances with unspecified persona-
lities are assigned a personality of 0. If the requested number of instances exceeds the number of
allowed personalities, personalities are assigned by indexing modulo the number of allowed perso-
nalities. A message is printed denoting such assignments.

5.9.13 Examples

5.9.13.1 constant

Note that the declaration “function ” creates functions named ”constant.0”, etc. The file name must
match the component name.

component constant;

pin out float out;

param r float value = 1.0;
option period no;

function ;

license "GPL"”; // indicates GPL v2 or later

FUNCTION() { out = value; }

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 278 /1261

5.9.13.2 sincos

This component computes the sine and cosine of an input angle in radians. It has different capabilities
than the ”sine” and ”cosine” outputs of siggen, because the input is an angle, rather than running
freely based on a “frequency” parameter.

The pins are declared with the names sin_and cos_in the source code so that they do not interfere
with the functions sin() and cos(). The HAL pins are still called sincos.<num>.sin.

component sincos;

pin out float sin ;

pin out float cos_;

pin in float theta;

option period no;

function ;

license "GPL"”; // indicates GPL v2 or later

#include <rtapi math.h>

FUNCTION() { sin_ = sin(theta); cos_ = cos(theta); }

5.9.13.3 out8

This component is a driver for a fictional card called “out8”, which has 8 pins of digital output which
are treated as a single 8-bit value. There can be a varying number of such cards in the system, and they
can be at various addresses. The pin is called out because out is an identifier used in <asm/io.h>. It
illustrates the use of EXTRA SETUP and EXTRA CLEANUP to request an I/O region and then free it
in case of error or when the module is unloaded.

component out8;
pin out unsigned out_ "Output value; only low 8 bits are used”;
param r unsigned ioaddr;

function _;

option period no;
option count function;
option extra setup;
option extra cleanup;
option constructable no;

license "GPL"”; // indicates GPL v2 or later
#include <asm/io.h>

#define MAX 8
int io[MAX] = {0,};
RTAPI_MP_ARRAY INT(io, MAX, "I/0 addresses of out8 boards”);

int get count(void) {
int 1 = 0;
for(i=0; i<MAX && io[i]; i++) { /* Nothing */ }
return i;

}

EXTRA SETUP() {
if(!rtapi_request region(io[extra arg], 1, "out8”)) {
// set this I/0 port to O so that EXTRA CLEANUP does not release the IO
// ports that were never requested.
io[extra_arg] = 0;
return -EBUSY;

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

279 /1261

ioaddr = io[extra_argl;

return 0;
}
EXTRA_CLEANUP() {
int i;
for(i=0; i < MAX && io[i]; i++) {
rtapi_release region(io[i], 1);
}
}

FUNCTION() { outb(out , ioaddr); }

5.9.13.4 hal_loop

component hal loop;
pin out float example;

This fragment of a component illustrates the use of the hal prefix in a component name.

loop is a common name, and the hal prefix avoids potential name collisions with other unrelated
software. For example, on RTAI realtime systems realtime code runs in the kernel, so if the component

were named just loop it could easily conflict with the standard loop kernel module.

When loaded, halcmd show comp will show a component called hal loop. However, the pin shown by

halecmd show pin will be loop.0.example, not hal-loop.0.example.

5.9.13.5 arraydemo

This realtime component illustrates use of fixed-size arrays:

component arraydemo "4-bit Shift register”;

pin in bit in;

pin out bit out-# [4];
option period no;
function nofp;

license "GPL"”; // indicates GPL v2 or later

int i;
for(i=3; i>0; i--) out(i) = out(i-1);
out(0) = in;

5.9.13.6 rand

This non-realtime component changes the value on its output pin to a new random value in the range

(0,1) about once every 1 ms.

component rand;
option userspace;

pin out float out;

license "GPL"”; // indicates GPL v2 or later

r

#include <unistd.h>

void user _mainloop(void) {

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 280/1261

while(1l) {
usleep(1000);
FOR _ALL INSTS() out = drand48();

5.9.13.7 logic (using personality)

This realtime component shows how to use ”"personality” to create variable-size arrays and optional
pins.

component logic "LinuxCNC HAL component providing experimental logic functions”;
pin in bit in-##[16 : personality & Oxff];

pin out bit and if personality & 0x100;

pin out bit or if personality & 0x200;

pin out bit xor if personality & 0x400;

option period no;

function _ nofp;

description """

Experimental general ’'logic function’ component. Can perform ’'and’, 'or’
and 'xor’ of up to 16 inputs. Determine the proper value for ’'personality’
by adding:

.IP \\(bu 4

The number of input pins, usually from 2 to 16

.IP \\(bu

256 (0x100) if the ’'and’ output is desired

.IP \\(bu

512 (0x200) if the ’'or’ output is desired

.IP \\(bu

1024 (0x400) if the ’'xor’ (exclusive or) output is desired”””;
license "GPL"”; // indicates GPL v2 or later

FUNCTION() {

int i, a=1, 0=0, x=0;

for(i=0; i < (personality & Oxff); i++) {
if(in(i)) { o =1; x = Ix; }
else { a =0; }

}

if(personality & 0x100) and = a;

if(personality & 0x200) or = o;

if(personality & 0x400) xor = x;

A typical load line for this component might be
loadrt logic count=3 personality=0x102,0x305,0x503

which creates the following pins:

— A 2-input AND gate: logic.0.and, logic.0.in-00, logic.0.in-01

— b-input AND and OR gates: logic.1l.and, logic.1l.0or, logic.1.in-00, logic.1.in-01, logic.1.in-02,
logic.1.in-03, logic.1.in-04,

— 3-input AND and XOR gates: logic.2.and, logic.2.xor, logic.2.in-00, logic.2.in-01, logic.2.in-0

5.9.13.8 General Functions

This example shows how to call functions from the main function. It also shows how to pass reference
of HAL pins to those functions.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

281 /1261

component example;
pin in s32 in;

pin out bit outl;
pin out bit out2;

option period no;
function ;

license "GPL";

r

// general pin set true function
void set(hal bit t *p){

*p = 1;
}

// general pin set false function
void unset(hal bit t *p){

*p = 0;
}

//main function
FUNCTION() {
if (in < 0){
set(&outl);
unset (&out2);
}else if (in >0){
unset (&out2);
set(&out2);
}else{
unset(&outl);
unset (&out2);

This component uses two general function to manipulate a HAL bit pin referenced to it.

5.9.14 Command Line Usage

The halcompile man page gives details for invoking halcompile.

$ man halcompile

A brief summary of halcompile usage is given by:

$ halcompile --help

5.10 HALTCL Files

halcmd excels in specifying components and connections but these scripts offer no computational
capabilities. As a result, INI files are limited in the clarity and brevity that is possible with higher level

languages.

The haltcl facility provides a means to use Tcl scripting and its features for computation, looping,
branching, procedures, etc. in INI files. To use this functionality, you use the Tcl language and the

extension .tcl for HAL files.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 282 /1261

The .tcl extension is understood by the main script (Linuxcnc) that processes INI files. Haltcl files are
identified in the the HAL section of INI files (just like HAL files).

Exemple

[HAL]
HALFILE
HALFILE

conventional file.hal
tcl based file.tcl

With appropriate care, HAL and Tcl files can be intermixed.

5.10.1 Compatibility

The halcmd language used in HAL files has a simple syntax that is actually a subset of the more
powerful general-purpose Tcl scripting language.

5.10.2 Haltcl Commands

Haltcl files use the Tcl scripting language augmented with the specific commands of the LinuxCNC
hardware abstraction layer (HAL). The HAL-specific commands are:

addf, alias,
delf, delsig,
getp, gets
ptype,

stype,

help,

linkpp, linkps, linksp, list, loadrt, loadusr, lock,
net, newsig,

save, setp, sets, show, source, start, status, stop,
unalias, unlinkp, unload, unloadrt, unloadusr, unlock,
waitusr

Two special cases occur for the gets and list commands due to conflicts with Tcl builtin commands.
For haltcl, these commands must be preceded with the keyword hal:

halcmd haltcl

gets hal gets
list hal list

5.10.3 Haltcl INI-file variables

INI file variables are accessible by both halcmd and haltcl but with differing syntax. LinuxCNC INI
files use SECTION and ITEM specifiers to identify configuration items:

[SECTION A]
ITEM1 = value 1
ITEM2 = value 2

[SECTION B]

The INI file values are accessible by text substitution in HAL files using the form:
[SECTION]ITEM

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 283 /1261

The same INI file values are accessible in Tcl files using the form of a Tcl global array variable:
$::SECTION(ITEM)

For example, an INI file item like:

[JOINT 0]
MAX_VELOCITY = 4

is expressed as [JOINT O]MAX VELOCITY in HAL files for halcmd
and as $::JOINT O(MAX VELOCITY) in Tcl files for haltcl.

Because INI files can repeat the same ITEM in the same SECTION multiple times, $: : SECTION(ITEM)
is actually a Tcl list of each individual value.

When there is just one value and it is a simple value (all values that are just letters and numbers
without whitespace are in this group), then it is possible to treat $::SECTION(ITEM) as though it is
not a list.

When the value could contain special characters (quote characters, curly-brace characters, embedded
whitespace, and other characters that have special meaning in Tcl) then it is necessary to distinguish
between the list of values and the initial (and possibly only) value in the list.

In Tcl, this is written [lindex $::SECTION(ITEM) 0O].
For example: given the following INI values

[HOSTMOT2]

DRIVER=hm2 eth

IPADDR="10.10.10.10"

BOARD=7192

CONFIG="num_encoders=0 num_pwmgens=0 num_ stepgens=6"

And this loadrt command:
loadrt $::HOSTMOT2(DRIVER) board ip=$::HOSTMOT2(IPADDR) config=$::HOSTMOT2(CONFIG)

Here is the actual command that is run:

loadrt hm2_eth board ip={"10.10.10.10"} config={"num_encoders=0 num_pwmgens=0 num_stepgens <«
=6"}

This fails because loadrt does not recognize the braces.

So to get the values just as entered in the INI file, re-write the loadrt line like this:

loadrt $::HOSTMOT2(DRIVER) board ip=[lindex $::HOSTMOT2(IPADDR) @] config=[lindex <«
$::HOSTMOT2 (CONFIG) 0]

5.10.4 Converting HAL files to Tcl files

Existing HAL files can be converted to Tcl files by hand editing to adapt to the differences mentioned
above. The process can be automated with scripts that convert using these substitutions.

[SECTION]ITEM ---> $::SECTION(ITEM)
gets ---> hal gets
list ---> hal list

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 284 /1261

5.10.5 Haltcl Notes

In haltcl, the value argument for the sets and setp commands is implicitly treated as an expression in
the Tcl language.

Exemple

set gain to convert deg/sec to units/min for JOINT O radius
setp scale.0.gain 6.28/360.0*$::JOINT O(radius)*60.0

Whitespace in the bare expression is not allowed, use quotes for that:

setp scale.0.gain ”6.28 / 360.0 * $::JOINT O(radius) * 60.0"

In other contexts, such as loadrt, you must explicitly use the Tcl expr command ([expr {}]) for com-
putational expressions.

Exemple
loadrt motion base period=[expr {500000000/%::TRAJ(MAX PULSE RATE)}]

5.10.6 Haltcl Examples

Consider the topic of stepgen headroom. Software stepgen runs best with an acceleration constraint
that is ”a bit higher” than the one used by the motion planner. So, when using halcmd files, we force
INI files to have a manually calculated value.

[JOINT 0]
MAXACCEL = 10.0
STEPGEN MAXACCEL = 10.5

With haltcl, you can use Tcl commands to do the computation and eliminate the STEPGEN MAXACCEL
INI file item altogether:

setp stepgen.0.maxaccel $::JOINT O(MAXACCEL)*1.05

Another haltcl feature is looping and testing. For example, many simulator configurations use “core sim.ha
or "core sim9.hal” HAL files. These differ because of the requirement to connect more or fewer axes.
The following haltcl code would work for any combination of axes in a trivkins machine.

Create position, velocity and acceleration signals for each axis
set ddt 0
for {set jnum 0} {$jnum < $::KINS(JOINTS)} {incr jnum} {
'list pin’' returns an empty list if the pin doesn’t exist
if {[hal list pin joint.${jnum}.motor-pos-cmd] == {}} {
continue
}
net ${jnum}pos joint.${jnum}.motor-pos-cmd => joint.$axno.motor-pos-fb \
=> ddt.$ddt.in
net ${axis}vel <= ddt.$ddt.out
incr ddt
net ${axis}vel => ddt.$ddt.in
net ${axis}acc <= ddt.$ddt.out
incr ddt
}
puts [show sig *vell
puts [show sig *acc]

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 285/1261

5.10.7 Haltcl Interactive

The halrun command recognizes haltcl files. With the -T option, haltcl can be run interaactively as a
Tcl interpreter. This capability is useful for testing and for standalone HAL applications.

Exemple
$ halrun -T haltclfile.tcl

5.10.8 Haltcl Distribution Examples (sim)

The configs/sim/axis/simtcl directory includes an INI file that uses a .tcl file to demonstrate a haltcl
configuration in conjunction with the usage of twopass processing. The example shows the use of Tcl
procedures, looping, the use of comments and output to the terminal.

5.11 HAL User Interface

5.11.1 Introduction

Halui is a HAL based user interface for LinuxCNC, it connects HAL pins to NML commands. Most of
the functionality (buttons, indicators etc.) that is provided by a traditional GUI (AXIS, GMOCCAPFY,
QtDragon, etc.), is provided by HAL pins in Halui.

The easiest way to add halui is to add the following to the [HAL] section of the INI file:

[HAL]
HALUI = halui

An alternate way to invoke it (specially if you generate the configuration with StepConf) is to include
the following in your custom.hal file.
Make sure you use the correct path to your INI file.

loadusr halui -ini /path/to/inifile.ini

5.11.2 MDI

Sometimes the user wants to add more complicated tasks to be performed by the activation of a HAL
pin. This is possible by adding MDI commands to the INI file in the [HALUI] section. Example:

[HALUI]

MDI COMMAND = GO X0
MDI COMMAND = GO G53 Z0
MDI COMMAND = G28

= o<mysub>call

MDI_COMMAND

When halui starts it will read the MDI COMMAND fields in the INI and export pins from 00 to the number
of MDI COMMAND s found in the INI, up to a maximum of 64 commands. These pins can be connected
like any HAL pins. A common method is to use buttons provided by virtual control panels like shown
in the example Example for MDI COMMAND connections.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 286 /1261

Exemple 5.1 Example for MDI COMMAND connections

HAL file

net quill-up halui.mdi-command-00 <= pyvcp.quillup

net reference-pos halui.mdi-command-01 <= pyvcp.referencepos
net call-mysub halui.mdi-command-02 <= pyvcp.callmysub

Nets connecting the halui.mdi-command-NN pins provided by halui.

$ halcmd show pin halui.mdi

Component Pins:

Owner Type Dir Value Name
10 bit IN FALSE halui.mdi-command-00 <== quill-up
10 bit IN FALSE halui.mdi-command-01 <== reference-pos
10 bit IN FALSE halui.mdi-command-02 <== call-mysub

When a halui MDI pin is set (pulsed) true, halui will send the MDI command defined in the INI. This
will not always succeed depending on the current operating mode (e.g., while in AUTO halui can’t
successfully send MDI commands).

5.11.3 Example Configuration

An example sim config (configs/sim/axis/halui pyvcp/halui.ini) is included in the distribution.

5.11.4 Halui Pin Reference

All halui pins are also documented in the halui man page:

$ man halui

Or see http://linuxcnc.org/docs/stable/html/man/mani/halui.1.html

5.11.4.1 Abort

— halui.abort (bit, in) - pin to send an abort message (clears out most errors)

5.11.4.2 E-Stop

— halui.estop.activate (bit, in) - pin for requesting E-Stop
— halui.estop.is-activated (bit, out) - indicates E-stop reset
— halui.estop.reset (bit, in) - pin for requesting E-Stop reset

5.11.4.3 Feed Override

— halui.feed-override.count-enable (bit, in) - must be true for counts or direct-value to work.

— halui.feed-override.counts (s32, in) - counts * scale = FO percentage. Can be used with an encoder
or direct-value.

— halui.feed-override.decrease (bit, in) - pin for decreasing the FO (-=scale)
— halui.feed-override.increase (bit, in) - pin for increasing the FO (+=scale)
— halui.feed-override.reset (bit, in) - pin for resetting the FO (scale=1.0)

http://linuxcnc.org/docs/stable/html/man/man1/halui.1.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 287 /1261

— halui.feed-override.direct-value (bit, in) - false when using encoder to change counts, true when
setting counts directly.

— halui.feed-override.scale (float, in) - pin for setting the scale for increase and decrease of feed-
override.

— halui.feed-override.value (float, out) - current FO value

5.11.4.4 Mist

— halui.mist.is-on (bit, out) - indicates mist is on
— halui.mist.off (bit, in) - pin for requesting mist off
— halui.mist.on (bit, in) - pin for requesting mist on

5.11.4.5 Flood

— halui.flood.is-on (bit, out) - indicates flood is on
— halui.flood.off (bit, in) - pin for requesting flood off
— halui.flood.on (bit, in) - pin for requesting flood on

5.11.4.6 Homing

— halui.home-all (bit, in) - pin for requesting all axis to home. This pin will only be there if HOME SEQUENC]
is set in the INI file.

5.11.4.7 Machine

— halui.machine.units-per-mm (float out) - pin for machine units-per-mm (inch:1/25.4, mm:1) accor-
ding to inifile setting: [TRAJILINEAR UNITS

— halui.machine.is-on (bit, out) - indicates machine on
— halui.machine.off (bit, in) - pin for requesting machine off
— halui.machine.on (bit, in) - pin for requesting machine on

5.11.4.8 Max Velocity

The maximum linear velocity can be adjusted from 0 to the MAX VELOCITY that is set in the [TRAJ]
section of the INI file.
— halui.max-velocity.count-enable (bit, in) - must be true for counts or direct-value to work.

— halui.max-velocity.counts (s32, in) - counts * scale = MV percentage. Can be used with an encoder
or direct-value.

— halui.max-velocity.direct-value (bit, in) - false when using encoder to change counts, true when
setting counts directly.

— halui.max-velocity.decrease (bit, in) - pin for decreasing max velocity
— halui.max-velocity.increase (bit, in) - pin for increasing max velocity

— halui.max-velocity.scale (float, in) - the amount applied to the current maximum velocity with each
transition from off to on of the increase or decrease pin in machine units per second.

— halui.max-velocity.value (float, out) - is the maximum linear velocity in machine units per second.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 288 /1261

5.11.4.9 MDI

— halui.mdi-command-<nn> (bit, in) - halui will try to send the MDI command defined in the INL
<nn> is a two digit number starting at 00.
If the command succeeds then it will place LinuxCNC in the MDI mode and then back to Manual
mode.
If no [HALUIIMDI COMMAND variables are set in the ini file, no halui.mdi-command-<nn> pins
will be exported by halui.

— halui.halui-mdi-is-running (bit, out) - execution status of MDI commands sent by halui. The status
is active even during mode switching. If no [HALUIIMDI COMMAND variables are set in the ini
file, this pins will not be exported by halui.

5.11.4.10 Joint

N = joint number (0 ... num joints-1)

Example:

— halui.joint.N.select (bit in) - pin for selecting joint N

— halui.joint.N.is-selected (bit out) - status pin that joint N is selected

— halui joint.N.has-fault (bit out) - status pin telling that joint N has a fault

— halui.joint.N.home (bit in) - pin for homing joint N

— halui.joint.N.is-homed (bit out) - status pin telling that joint N is homed

— halui.joint.N.on-hard-max-limit (bit out) - status pin telling that joint N is on the positive hardware
limit

— halui joint.N.on-hard-min-limit (bit out) - status pin telling that joint N is on the negative hardware
limit

— halui.joint.N.on-soft-max-limit (bit out) - status pin telling that joint N is on the positive software
limit

— halui.joint.N.on-soft-min-limit (bit out) - status pin telling that joint N is on the negative software
limit

— halui joint.N.override-limits (bit out) - status pin telling that joint N’s limits are temporarily over-
ridden

— halui.joint.N.unhome (bit in) - pin for unhoming joint N

— halui joint.selected (u32 out) - selected joint number (0 ... num _joints-1)

— halui.joint.selected.has-fault (bit out) - status pin selected joint is faulted

— halui.joint.selected.home (bit in) - pin for homing the selected joint

— halui.joint.selected.is-homed (bit out) - status pin telling that the selected joint is homed

— halui joint.selected.on-hard-max-limit (bit out) - status pin telling that the selected joint is on the
positive hardware limit

— halui.joint.selected.on-hard-min-limit (bit out) - status pin telling that the selected joint is on the
negative hardware limit

— halui.joint.selected.on-soft-max-limit (bit out) - status pin telling that the selected joint is on the
positive software limit

— halui.joint.selected.on-soft-min-limit (bit out) - status pin telling that the selected joint is on the
negative software limit

— halui.joint.selected.override-limits (bit out) - status pin telling that the selected joint’s limits are
temporarily overridden

— halui joint.selected.unhome (bit in) - pin for unhoming the selected joint

5.11.4.11)oint Jogging

N = joint number (0 ... num joints-1)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 289/1261

halui.joint.jog-deadband (float in) - pin for setting jog analog deadband (jog analog inputs smal-
ler/slower than this - in absolute value - are ignored)

halui.joint.jog-speed (float in) - pin for setting jog speed for plus/minus jogging.

halui joint.N.analog (float in) - pin for jogging the joint N using a float value (e.g. joy-stick). The
value, typically set between 0.0 and *=1.0, is used as a jog-speed multiplier.
halui.joint.N.increment (float in) - pin for setting the jog increment for joint N when using increment-
plus/minus

halui.joint.N.increment-minus (bit in) - a rising edge will will make joint N jog in the negative
direction by the increment amount

halui.joint.N.increment-plus (bit in) - a rising edge will will make joint N jog in the positive direction
by the increment amount

haluijoint.N.minus (bit in) - pin for jogging joint N in negative direction at the halui.joint.jog-speed
velocity

halui.joint.N.plus (bit in) - pin for jogging joint N in positive direction at the halui.joint.jog-speed
velocity

halui.joint.selected.increment (float in) - pin for setting the jog increment for the selected joint
when using increment-plus/minus

halui.joint.selected.increment-minus (bit in) - a rising edge will will make the selected joint jog in
the negative direction by the increment amount

halui.joint.selected.increment-plus (bit in) - a rising edge will will make the selected joint jog in the
positive direction by the increment amount

halui.joint.selected.minus (bit in) - pin for jogging the selected joint in negative direction at the
halui.joint.jog-speed velocity

halui.joint.selected.plus (bit in) - pin for jogging the selected joint in positive direction at the
halui.joint.jog-speed velocity

5.11.4.12 Axis

L = axis letter (xyzabcuvw)

halui.axis.L.select (bit) - pin for selecting axis by letter

halui.axis.L.is-selected (bit out) - status pin that axis L is selected
halui.axis.L.pos-commanded (float out) - Commanded axis position in machine coordinates
halui.axis.L.pos-feedback float out) - Feedback axis position in machine coordinates
halui.axis.L.pos-relative (float out) - Feedback axis position in relative coordinates

5.11.4.13 Axis Jogging

L = axis letter (xyzabcuvw)

halui.axis jog-deadband (float in) - pin for setting jog analog deadband (jog analog inputs smaller/s-
lower than this (in absolute value) are ignored)

halui.axis.jog-speed (float in) - pin for setting jog speed for plus/minus jogging.
halui.axis.L.analog (float in) - pin for jogging the axis L using an float value (e.g. joystick). The
value, typically set between 0.0 and 1.0, is used as a jog-speed multiplier.
halui.axis.L.increment (float in) - pin for setting the jog increment for axis L when using increment-
plus/minus

halui.axis.L.increment-minus (bit in) - a rising edge will will make axis L jog in the negative direction
by the increment amount

halui.axis.L.increment-plus (bit in) - a rising edge will will make axis L jog in the positive direction
by the increment amount

halui.axis.L.minus (bit in) - pin for jogging axis L in negative direction at the halui.axis.jog-speed
velocity

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 290/1261

— halui.axis.L.plus (bit in) - pin for jogging axis L in positive direction at the halui.axis.jog-speed
velocity
— halui.axis.selected (u32 out) - selected axis (by index: 0:x 1:y 2:z 3:a 4:b 5:cr 6:u 7:v 8:w)

— halui.axis.selected.increment (float in) - pin for setting the jog increment for the selected axis when
using increment-plus/minus

— halui.axis.selected.increment-minus (bit in) - a rising edge will will make the selected axis jog in
the negative direction by the increment amount

— halui.axis.selected.increment-plus (bit in) - a rising edge will will make the selected axis jog in the
positive direction by the increment amount

— halui.axis.selected.minus (bit in) - pin for jogging the selected axis in negative direction at the
halui.axis.jog-speed velocity

— halui.axis.selected.plus (pin in) - for jogging the selected axis bit in in positive direction at the
halui.axis.jog-speed velocity

5.11.4.14 Mode

— halui.mode.auto (bit, in) - pin for requesting auto mode

— halui.mode.is-auto (bit, out) - indicates auto mode is on

— halui.mode.is-joint (bit, out) - indicates joint by joint jog mode is on
— halui.mode.is-manual (bit, out) - indicates manual mode is on

— halui.mode.is-mdi (bit, out) - indicates MDI mode is on

— halui.mode.is-teleop (bit, out) - indicates coordinated jog mode is on
— halui.mode . joint (bit, in) - pin for requesting joint by joint jog mode
— halui.mode.manual (bit, in) - pin for requesting manual mode

— halui.mode.mdi (bit, in) - pin for requesting MDI mode

— halui.mode.teleop (bit, in) - pin for requesting coordinated jog mode

5.11.4.15 Program

— halui.program.block-delete.is-on (bit, out) - status pin telling that block delete is on
— halui.program.block-delete.off (bit, in) - pin for requesting that block delete is off
— halui.program.block-delete.on (bit, in) - pin for requesting that block delete is on

— halui.program.is-idle (bit, out) - status pin telling that no program is running

— halui.program.is-paused (bit, out) - status pin telling that a program is paused

— halui.program.is-running (bit, out) - status pin telling that a program is running

— halui.program.optional-stop.is-on (bit, out) - status pin telling that the optional stop is on
— halui.program.optional-stop.off (bit, in) - pin requesting that the optional stop is off
— halui.program.optional-stop.on (bit, in) - pin requesting that the optional stop is on
— halui.program.pause (bit, in) - pin for pausing a program

— halui.program.resume (bit, in) - pin for resuming a paused program

— halui.program.run (bit, in) - pin for running a program

— halui.program.step (bit, in) - pin for stepping in a program

— halui.program.stop (bit, in) - pin for stopping a program

5.11.4.16 Rapid Override

— halui.rapid-override.count-enable (bit in (default: TRUE)) - When TRUE, modify Rapid Override
when counts changes.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 291 /1261

— halui.rapid-override.counts (s32 in) - counts X scale = Rapid Override percentage. Can be used
with an encoder or direct-value.

— halui.rapid-override.decrease (bit in) - pin for decreasing the Rapid Override (-=scale)

— halui.rapid-override.direct-value (bit in) - pin to enable direct value Rapid Override input

— halui.rapid-override.increase (bit in) - pin for increasing the Rapid Override (+=scale)

— halui.rapid-override.scale (float in) - pin for setting the scale on changing the Rapid Override
— halui.rapid-override.value (float out) - current Rapid Override value

— halui.rapid-override.reset (bit, in) - pin for resetting the Rapid Override value (scale=1.0)

5.11.4.17 Spindle Override

— halui.spindle.N.override.count-enable (bit, in) - must be true for counts or direct-value to work.

— halui.spindle.N.override.counts (s32, in) - counts * scale = SO percentage. Can be used with an
encoder or direct-value.

— halui.spindle.N.override.decrease (bit, in) - pin for decreasing the SO (-=scale)

— halui.spindle.N.override.direct-value (bit, in) - false when using encoder to change counts, true
when setting counts directly.

— halui.spindle.N.override.increase (bit, in) - pin for increasing the SO (+=scale)

— halui.spindle.N.override.scale (float, in) - pin for setting the scale on changing the SO

— halui.spindle.N.override.value (float, out) - current SO value

— halui.spindle.N.override.reset (bit, in) - pin for resetting the SO value (scale=1.0)

5.11.4.18 Broche

— halui.spindle.N.brake-is-on (bit, out) - indicates brake is on

— halui.spindle.N.brake-off (bit, in) - pin for deactivating spindle/brake

— halui.spindle.N.brake-on (bit, in) - pin for activating spindle-brake

— halui.spindle.N.decrease (bit, in) - decreases spindle speed

— halui.spindle.N.forward (bit, in) - starts the spindle with CW motion

— halui.spindle.N.increase (bit, in)- increases spindle speed

— halui.spindle.N.is-on (bit, out) - indicates spindle is on (either direction)

— halui.spindle.N.reverse (bit, in)- starts the spindle with a CCW motion

— halui.spindle.N.runs-backward (bit, out) - indicates spindle is on, and in reverse
— halui.spindle.N.runs-forward (bit, out) - indicates spindle is on, and in forward
— halui.spindle.N.start (bit, in) - starts the spindle

— halui.spindle.N.stop (bit, in) - stops the spindle

5.11.4.19 Tool

— halui.tool.length-offset.a (float out) - current applied tool length offset for the A axis
— halui.tool.length-offset.b (float out) - current applied tool length offset for the B axis
— halui.tool.length-offset.c (float out) - current applied tool length offset for the C axis
— halui.tool.length-offset.u (float out) - current applied tool length offset for the U axis
— halui.tool.length-offset.v (float out) - current applied tool length offset for the V axis
— halui.tool.length-offset.w (float out) - current applied tool length offset for the W axis
— halui.tool.length-offset.x (float out) - current applied tool length offset for the X axis
— halui.tool.length-offset.y (float out) - current applied tool length offset for the Y axis
— halui.tool.length-offset.z (float out) - current applied tool length offset for the Z axis
— halui.tool.diameter (float out) - Current tool diameter, or 0 if no tool is loaded.

— halui.tool.number (u32, out) - indicates current selected tool

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 292 /1261

5.12 Halui Examples

For any Halui examples to work you need to add the following line to the [HAL] section of the INI file.
HALUI = halui

5.12.1 Remote Start

To connect a remote program start button to LinuxCNC you use the halui.program. run pin and the
halui.mode.auto pin. You have to ensure that it is OK to run first by using the halui.mode.is-auto
pin. You do this with an and2 component. The following figure shows how this is done. When the
Remote Run Button is pressed it is connected to both halui.mode.auto and and2.0.in0. If it is OK
for auto mode the pin halui.mode.is-auto will be on. If both the inputs to the and2.0 component are
on the and2.0.out will be on and this will start the program.

Femote
Hun Btn

| haluimade, auta

and?.0.inf

halui.mode.is-auta andZ.0.in

andZ.0ouf halul,pragram.run

Figure 5.26 - Remote Start Example

The hal commands needed to accomplish the above are:

net program-start-btn halui.mode.auto and2.0.in® <= <your input pin>
net program-run-ok and2.0.inl <= halui.mode.is-auto
net remote-program-run halui.program.run <= and2.0.out

Notice on line one that there are two reader pins, this can also be split up to two lines like this:

net program-start-btn halui.mode.auto <= <your input pin>
net program-start-btn and2.0.in0

5.12.2 Pause & Resume

This example was developed to allow LinuxCNC to move a rotary axis on a signal from an external
machine. The coordination between the two systems will be provided by two Halui components:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 293 /1261

— halui.program.is-paused
— halui.program.resume

In your customized HAL file, add the following two lines that will be connected to your I/O to turn on
the program pause or to resume when the external system wants LinuxCNC to continue.

net ispaused halui.program.is paused => "your output pin”
net resume halui.program.resume <= "your input pin”

Your input and output pins are connected to the pins wired to the other controller. They may be parallel
port pins or any other I/O pins that you have access to.

This system works in the following way. When an MO0 is encountered in your G-code, the halui.program.

signal goes true. This turns on your output pin so that the external controller knows that LinuxCNC
is paused.

To resume the LinuxCNC G-code program, when the external controller is ready it will make its output
true. This will signal LinuxCNC that it should resume executing G-code.

Difficulties in timing

— The "resume” input return signal should not be longer than the time required to get the G-code
running again.

— The ”is-paused” output should no longer be active by the time the “resume” signal ends.

These timing problems could be avoided by using ClassicLadder to activate the ”is-paused” output via
a monostable timer to deliver one narrow output pulse. The “resume” pulse could also be received via
a monostable timer.

5.13 Creating Non-realtime Python Components

This section explains principles behind the implementation of HAL components with the Python pro-
gramming language.

5.13.1 Basic usage example

A non-realtime component begins by creating its pins and parameters, then enters a loop which will
periodically drive all the outputs from the inputs. The following component copies the value seen on
its input pin (passthrough.in) to its output pin (passthrough.out) approximately once per second.

#!/usr/bin/env python3

import hal, time

h = hal.component(”passthrough”)
h.newpin(”in”, hal.HAL FLOAT, hal.HAL IN)
h.newpin(”out”, hal.HAL FLOAT, hal.HAL _OUT)

h.ready()
try:
while 1:
time.sleep (1)
h[’out’] = h['in"]

except KeyboardInterrupt:
raise SystemExit

Copy the above listing into a file named ”"passthrough”, make it executable (chmod +x), and place it
on your $PATH. Then try it out:

Screen copy with details on the execution of the newly created passthrough HAL module.

is-p

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 294 /1261

$ halrun
halcmd: loadusr passthrough
halcmd: show pin

Component Pins:

Owner Type Dir Value Name
03 float IN 0 passthrough.in
03 float OUT 0 passthrough.out

halcmd: setp passthrough.in 3.14
halcmd: show pin

Component Pins:

Owner Type Dir Value Name
03 float IN 3.14 passthrough.in
03 float OUT 3.14 passthrough.out

5.13.2 Non-realtime components and delays

If you typed “show pin” quickly, you may see that passthrough.out still had its old value of 0. This is
because of the call to time.sleep(1), which makes the assignment to the output pin occur at most once
per second. Because this is a non-realtime component, the actual delay between assignments can be
much longer if the memory used by the passthrough component is swapped to disk, as the assignment
could be delayed until that memory is swapped back in.

Thus, non-realtime components are suitable for user-interactive elements such as control panels (de-
lays in the range of milliseconds are not noticed, and longer delays are acceptable), but not for sending
step pulses to a stepper driver board (delays must always be in the range of microseconds, no matter
what).

5.13.3 Create pins and parameters
h = hal.component(”passthrough”)

The component itself is created by a call to the constructor hal.component. The arguments are the
HAL component name and (optionally) the prefix used for pin and parameter names. If the prefix is
not specified, the component name is used.

h.newpin(”in”, hal.HAL FLOAT, hal.HAL IN)

Then pins are created by calls to methods on the component object. The arguments are: pin name suf-
fix, pin type, and pin direction. For parameters, the arguments are: parameter name suffix, parameter
type, and parameter direction.

Table 5.31: HAL Option Names

Pin and Parameter Types: HAL BIT HAL FLOAT | HAL S32 HAL U32
HAL_S64 HAL Uoc4 Pin HAL IN HAL OUT
Directions:
HAL 10 Parameter
Directions:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 295/1261

Table 5.31: (continued)
\ HAL RO \ HAL RW \

” o

The full pin or parameter name is formed by joining the prefix and the suffix with a ”.”, so in the
example the pin created is called passthrough.in.

h.ready()

Once all the pins and parameters have been created, call the .ready() method.

5.13.3.1 Changing the prefix

The prefix can be changed by calling the .setprefix() method. The current prefix can be retrieved by
calling the .getprefix() method.

5.13.4 Reading and writing pins and parameters

For pins and parameters which are also proper Python identifiers, the value may be accessed or set
using the attribute syntax:

h.out = h.in

For all pins, whether or not they are also proper Python identifiers, the value may be accessed or set
using the subscript syntax:

h[{’'out’] = h["in"]

To see all pins with their values, getpins returns all values in a dictionary of that component.

h.getpins()
>>>{'in’': 0.0, 'out’': 0.0}

5.13.4.1 Driving output (HAL_OUT) pins

Periodically, usually in response to a timer, all HAL OUT pins should be “driven” by assigning them a
new value. This should be done whether or not the value is different than the last one assigned. When
a pin is connected to a signal, its old output value is not copied into the signal, so the proper value
will only appear on the signal once the component assigns a new value.

5.13.4.2 Driving bidirectional (HAL_IO) pins

The above rule does not apply to bidirectional pins. Instead, a bidirectional pin should only be driven
by the component when the component wishes to change the value. For instance, in the canonical
encoder interface, the encoder component only sets the index-enable pin to FALSE (when an index
pulse is seen and the old value is TRUE), but never sets it to TRUE. Repeatedly driving the pin FALSE
might cause the other connected component to act as though another index pulse had been seen.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 296 /1261

5.13.5 Exiting

A halecmd unload request for the component is delivered as a KeyboardInterrupt exception. When an
unload request arrives, the process should either exit in a short time, or call the .exit() method on
the component if substantial work (such as reading or writing files) must be done to complete the
shutdown process.

5.13.6 Helpful Functions

See Python HAL Interface for an overview of available functions.

5.13.7 Constants

Use these to specify details rather then the value they hold.
— HAL BIT

— HAL FLOAT
— HAL S32

— HAL U32
— HAL S64

— HAL U64
— HAL IN

— HAL OUT
— HAL RO

— HAL RW

— MSG NONE
— MSG ALL
— MSG DBG
— MSG ERR
— MSG INFO
— MSG WARN

5.13.8 System Information

Read these to acquire information about the realtime system.
— is_kernelspace

— isrt

— is sim

— is userspace

5.14 Canonical Device Interfaces

5.14.1 Introduction

The following sections show the pins, parameters, and functions that are supplied by ”“canonical de-
vices”. All HAL device drivers should supply the same pins and parameters, and implement the same
behavior.

Note that only the <io-type> and <specific-name> fields are defined for a canonical device. The
<device-name>, <device-num> , and <chan-num> fields are set based on the characteristics of
the real device.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 297 /1261

5.14.2 Digital Input
The canonical digital input (I/O type field: digin) is quite simple.
5.14.2.1 Pins
(bit) in
State of the hardware input.

(bit) in-not
Inverted state of the input.

5.14.2.2 Parameters
None
5.14.2.3 Fonctions

(funct) read
Read hardware and set in and in-not HAL pins.

5.14.3 Digital Output
The canonical digital output (I/O type field: digout) is also very simple.
5.14.3.1 Pins

(bit) out
Value to be written (possibly inverted) to the hardware output.

5.14.3.2 Parameters

(bit) invert
If TRUE, out is inverted before writing to the hardware.

5.14.3.3 Fonctions

(funct) write
Read out and invert, and set hardware output accordingly.

5.14.4 Analog Input

The canonical analog input (I/O type: adcin). This is expected to be used for analog to digital conver-
ters, which convert e.g. voltage to a continuous range of values.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 298 /1261

5.14.4.1 Pins

(float) value
The hardware reading, scaled according to the scale and offset parameters.
value = ((input reading, in hardware-dependent units) * scale) - offset

5.14.4.2 Parameters

(float) scale
The input voltage (or current) will be multiplied by scale before being output to value.

(float) offset
This will be subtracted from the hardware input voltage (or current) after the scale multiplier
has been applied.
(float) bit_weight
The value of one least significant bit (LSB). This is effectively the granularity of the input reading.
(float) hw_offset
The value present on the input when 0 Volts is applied to the input pin(s).

5.14.4.3 Fonctions

(funct) read
Read the values of this analog input channel. This may be used for individual channel reads, or
it may cause all channels to be read.

5.14.5 Analog Output

The canonical analog output (I/O Type: adcout). This is intended for any kind of hardware that can
output a more-or-less continuous range of values. Examples are digital to analog converters or PWM
generators.

5.14.5.1 Pins

(float) value
The value to be written. The actual value output to the hardware will depend on the scale and
offset parameters.

(bit) enable
If false, then output 0 to the hardware, regardless of the value pin.

5.14.5.2 Parameters

(float) offset
This will be added to the value before the hardware is updated.

(float) scale
This should be set so that an input of 1 on the value pin will cause the analog output pin to read
1 volt.

(float) high _limit (optional)
When calculating the value to output to the hardware, if value + offset is greater than high_limit,
then high_limit will be used instead.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 299 /1261

(float) low_limit (optional)
When calculating the value to output to the hardware, if value + offset is less than low_limit,
then low_limit will be used instead.
(float) bit_weight (optional)
The value of one least significant bit (LSB), in volts (or mA, for current outputs).
(float) hw_offset (optional)
The actual voltage (or current) that will be output if O is written to the hardware.

5.14.5.3 Fonctions

(funct) write
This causes the calculated value to be output to the hardware. If enable is false, then the output
will be 0, regardless of value, scale, and offset. The meaning of ”0” is dependent on the hard-
ware. For example, a bipolar 12-bit A/D may need to write O0x1FF (mid scale) to the D/A get O
volts from the hardware pin. If enable is true, read scale, offset and value and output to the adc
(scale * value) + offset. If enable is false, then output 0.

5.15 HAL Tools

5.15.1 Halcmd

halcmd is a command line tool for manipulating the HAL. There is a rather complete man page for
halcmd, which will be installed if you have installed LinuxCNC from either source or a package. The
manpage provides usage info:

man halcmd

If you have compiled LinuxCNC for “"run-in-place”, you must source the rip-environment script to make
the man page available:

cd toplevel directory for rip build
. scripts/rip-environment
man halcmd

The HAL Tutorial has a number of examples of halcmd usage, and is a good tutorial for halcmd.

5.15.2 Halmeter

Halmeter is a voltmeter for the HAL. It lets you look at a pin, signal, or parameter, and displays the
current value of that item. It is pretty simple to use. Start it by typing halmeter in an X windows shell.
Halmeter is a GUI application. It will pop up a small window, with two buttons labeled ”"Select” and
"Exit”. Exit is easy - it shuts down the program. Select pops up a larger window, with three tabs. One
tab lists all the pins currently defined in the HAL. The next lists all the signals, and the last tab lists all
the parameters. Click on a tab, then click on a pin/signal/parameter. Then click on "OK”. The lists will
disappear, and the small window will display the name and value of the selected item. The display is
updated approximately 10 times per second. If you click “Accept” instead of "OK”, the small window
will display the name and value of the selected item, but the large window will remain on the screen.
This is convenient if you want to look at a number of different items quickly.

You can have many halmeters running at the same time, if you want to monitor several items. If
you want to launch a halmeter without tying up a shell window, type halmeter & to run it in the
background. You can also make halmeter start displaying a specific item immediately, by adding
pin|sig|par[am] <name> tothe command line. It will display the pin, signal, or parameter <name>

../man/man1/halcmd.1.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 300/1261

as soon as it starts - if there is no such item, it will simply start normally. And finally, if you specify an
item to display, you can add -s before the pin|sig|param to tell halmeter to use a small window. The
item name will be displayed in the title bar instead of under the value, and there will be no buttons.
Useful when you want a lot of meters in a small amount of screen space.

Refer to Halmeter Tutorial section for more information.

halmeter can be loaded from a terminal or from AXIS. halmeter is faster than halshow at displaying
values. halmeter has two windows, one to pick the pin, signal, or parameter to monitor and one that
displays the value. Multiple " halmeter"s can be open at the same time. If you use a script to open
multiple “halmeter s you can set the position of each one with -g X Y relative to the upper left corner
of your screen. For example:

loadusr halmeter pin hm2.0.stepgen.00.velocity-fb -g 0 500

See the man page for more options and the section Halmeter.

Bins Signals | Parameters

—

=Rl R vl -1 Ry ™
axis.0.index-enable
axis.0.jog-counts
axis.0.jog-enable
axis.0.jog-scale
axis.0.jog-vel-mode
axis.0.joint-pos-cmd
axis.0.joint-pos-fb
axis.0.joint-vel-crmd
axis.0.kb-jog-active
axis.0.motor-pos-crmd
axis.0.motor-pos-fb
axis.0.neg-hard-limit
axis.0.neg-lim-sw-in
axis.0.pos-hard-limit
axis.0.pos-lim-sw-in
axis.0.wheel-jog-active
axis.l.active
axis.l.amn-enable-out

(4]

Close

Figure 5.27 - Halmeter selection window

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 301/1261

1.010344
axis.0.motor-pos-cmd
.................... T | | = |

Figure 5.28 - Halmeter watch window

5.15.3 Halshow

halshow (complete usage description) can be started from the command line to show details for selec-
ted components, pins, parameters, signals, functions, and threads of a running HAL. The WATCH tab
provides a continuous display of selected pin, parameters, and signal items. The File menu provides
buttons to save the watch items to a watch list and to load an existing watch list. The watch list items
can also be loaded automatically on startup. For command line usage:

halshow --help

Usage:
halshow [Options] [watchfile]
Options:
--help (this help)
--fformat format string for float
--iformat format string for int
Notes:

Create watchfile in halshow using: 'File/Save Watch List’.
LinuxCNC must be running for standalone usage.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 302 /1261

L] my.halshow - HAL Show AT
File Tree View Watch ‘
gpmponents " syow WATCH
ins
g;;se_thread 0 halui.max-velocity.counts I
charge-pump 33.33334 halui.max-velocity.value
Elt.jatssmladder @ halui.mode.auto set][CIr
gmoccapy] halui.mode.manual
hal_manualtoolchan| | @ halui.mode.mdi set|[CIr
hzlgén P halui.program.is-idle
axis @ halui.program.is-paused
estop @ halui.program.is-running
?sc—ggﬁtr%ted @ halui.program.pause
reset @ halui.program.resume Set||Clr
feed-override @ halui.program.run
Egr?]de—all] halui.program.stop set|[CIr
joint () iocontrol.0.emc-enable-in
lube @ parport.0.pin-01-out
m:;mﬁocit}; @ parport.0.pin-02-out
mist @ parport.0.pin-03-out =
mode .
Test HAL command : Execute

Commands may be tested here but they will NOT be saved

Figure 5.29 - Halshow Watch Tab

A watchfile created using the File/Save Watch List menu item is formatted as a single line with tokens

"pin+”, "param+"”, “sig=+", followed by the appropriate pin, param, or signal name. The token-name

pairs are separated by a space character.
Single Line Watchfile Example

pin+joint.0.pos-hard-limit pin+joint.1l.pos-hard-limit sig+estop-loop

A watchfile created using the File/Save Watch List (multiline) menu item is formatted with separate
lines for each item identified with token-name pairs as described above.

Separated Lines Watchfile Example

pin+joint.0.pos-hard-limit
pin+joint.1l.pos-hard-1limit
sig+estop-loop

When loading a watchfile with the File/Load Watch List menu item, the token-name pairs may appear
as single or multiple lines. Blank lines and lines beginning with a # character are ignored.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 303/1261

5.15.4 Halscope

Halscope is an oscilloscope for the HAL. It lets you capture the value of pins, signals, and parameters
as a function of time. Complete operating instructions should be located here eventually. For now,
refer to section Halscope in the tutorial chapter, which explains the basics.

The halscope “File” menu selector provides buttons to save a configuration or open a previously sa-
ved configuration. When halscope is terminated, the last configuration is saved in a file named auto-
save.halscope.

Configuration files may also be specified when starting halscope from the commandline. Commandline
help (-h) usage:

halscope -h
Usage:
halscope [-h] [-i infile] [-o0 outfile] [num_samples]

5.15.5 Sim Pin

sim pin is a command line utility to display and update any number of writable pins, parameters or
signals.

sim_pin Usage

Usage:
sim pin [Options] namel [name2 ...] &

Options:
--help (this text)
--title title string (window title, default: sim pin)

Note: LinuxCNC (or a standalone HAL application) must be running
A named item can specify a pin, param, or signal
The item must be writable, e.g.:
pin: IN or I/0 (and not connected to a signal with a writer)
param: RW
signal: connected to a writable pin

HAL item types bit,s32,u32,float are supported.

When a bit item is specified, a pushbutton is created
to manage the item in one of three manners specified
by radio buttons:

toggle: Toggle value when button pressed

pulse: Pulse item to 1 once when button pressed

hold: Set to 1 while button pressed
The bit pushbutton mode can be specified on the command
line by formatting the item name:

namei/mode=[toggle | pulse | hold]
If the mode begins with an uppercase letter, the radio
buttons for selecting other modes are not shown

For complete information, see the man page:

man sim pin

sim_pin Example (with LinuxCNC running)

halcmd loadrt mux2 names=example; halcmd net sig example example.in@
sim pin example.sel example.inl sig example &

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

304 /1261

5.15.6 Simulate Probe

example_sel
Tog_gle I
Initial=0 Current=0
" OnePulse
+ ToggleValue
" 1 WhilePressed

example.inl

Set | Reset |

Initial=0 Current=0

sig_example

Set | Reset |

Initial=0 Current=0

Figure 5.30 - sim_pin Window

simulate probe is a simple GUI to simulate activation of the pin motion.probe-input. Usage:

simulate probe &

5.15.7 HAL Histogram

hal-histogram is a command line utility to display histograms for HAL pins.

Usage:

B simulate probe - O X

Push to simulate
Probe touch

[~ Pulse

Figure 5.31 - simulate probe Window

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 305/1261

hal-histogram --help | -7
or
hal-histogram [Options] [pinname]

Table 5.32: Options:

Option Value Description

--minvalue minvalue minimum bin, default: 0

--binsize binsize binsize, default: 100

--nbins nbins number of bins, default: 50

--logscale 0/1 y axis log scale, default: 1

--text note text display, default: ””

--show show count of undisplayed
nbins, default off

--verbose progress and debug, default
off

Notes:

1. LinuxCNC (or another HAL application) must be running.

If no pinname is specified, default is: motion-command-handler.time.
This app may be opened for 5 pins.

Pintypes float, s32, u32, bit are supported.

The pin must be associated with a thread supporting floating point. For a base thread, this may
require using loadrt motmod ... base thread fp=1.

oW

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

306 /1261

i fusr/bin/hal-histogram (histo_s32-0)

Pin: motion-command-handler.time Sig: hhs-0 (histo_s32-0)
Date LinuxCNC: Version 05: Version Hostname
Commandline Note Text

1E5

1E4

1E3

1E2

1E1

[[[
0 4000 10000

Bins: | 20 Minvalue: | 0 Maxvalue:| 2|1][][][]| Update

Restart| v ylogscale Screenshot Elapsed Time: 993 %

Figure 5.32 - hal-histogram Window

5.15.8 Halreport

halreport is a command-line utility that generates a report about HAL connections for a running
LinuxCNC (or other HAL) application. The report shows all signal connections and flags potential
problems. Information included:

1.

N WD

9.
10.

System description and kernel version.

Signals and all connected output, io, and input pins.

Each pin’s component function, thread, and addf-order.

Non-realtime component pins having non-ordered functions.
Identification of unknown functions for unhandled components.
Signals with no output.

Signals with no inputs.

Functions with no addf.

Warning tags for components marked as deprecated/obsolete in docs.
Real names for pins that use alias names.

The report can be generated from the command line and directed to an output file (or stdout if no
outfilename is specified):

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 307 /1261

halreport Usage

Usage:

halreport -h | --help (this help)
or

halreport [outfilename]

To generate the report for every LinuxCNC startup, include halreport and an output filename as an
[APPLICATIONS]APP entry in the INI file.

halreport Example

[APPLICATIONS]
APP = halreport /tmp/halreport.txt

The function addf-ordering can be important for servo loops where the sequence of the functions
computed at each servo period is important. Typically, the order is:

1. Read input pins,

2. do the motion command-handler and motion-controller functions,

3. perform pid calculations, and finally

4. write output pins.
For each signal in a critical path, the addf-order of the output pin should be numerically lower than
the addf-order of the critical input pins that it connects to.

For routine signal paths that handle switch inputs, non-realtime pins, etc., the addf-ordering is often
not critical. Moreover, the timing of non-realtime pin value changes cannot be controlled or guaran-
teed at the intervals typically employed for HAL threads.

Example report file excerpts showing a pid loop for a hostmot2 stepgen operated in velocity mode on
a trivkins machine with joint.0 corresponding to the X axis coordinate:

SIG: pos-fb-0
OuT: h.00.position-fb hm2_7192.0. read servo-thread 001
(=hm2_7i92.0.stepgen.00.position-fb)
IN: X _pid.feedback X pid.do-pid-calcs servo-thread 004
IN: joint.0.motor-pos-fb motion-command-handler servo-thread 002
.................... motion-controller servo-thread 003
SIG: pos-cmd-0
OUT: joint.0@.motor-pos-cmd motion-command-handler servo-thread 002
..................... motion-controller servo-thread 003
IN: X _pid.command X pid.do-pid-calcs servo-thread 004
SIG: motor-cmd-0
ouT: X pid.output X pid.do-pid-calcs servo-thread 004
IN: h.00.velocity-cmd hm2_7192.0.write servo-thread 008

(=hm2_7i192.0.stepgen.00.velocity-cmd)

In the example above, the HALFILE uses halcmd aliases to simplify pin names for an hostmot2 FPGA
board with commands like:

alias pin hm2 7i92.0.stepgen.00.position-fb h.00.position-fb

Note
Questionable component function detection may occur for

1. unsupported (deprecated) components,
2. user-created components that use multiple functions or unconventional function naming, or

3. GUI-created non-realtime components that lack distinguishing characteristics such as a prefix
based on the GUI program name.

Questionable functions are tagged with a question mark "?".

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 308/1261

Note
Component pins that cannot be associated with a known thread function report the function as "Unk-
nown”.

halreport generates a connections report (without pin types, and current values) for a running HAL
application to aid in designing and verifying connections. This helps with the understanding what the
source of a pin value is. Use this information with applications like halshow, halmeter, halscope or
the halcmd show command in a terminal.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 309/1261

Chapitre 6

Pilotes matéeériels

6.1 Parallel Port Driver

The hal parport component is a driver for the traditional PC parallel port. The port has a total of 17
physical pins. The original parallel port divided those pins into three groups: data, control, and status.
The data group consists of 8 output pins, the control group consists of 4 pins, and the status group
consists of 5 input pins.

In the early 1990s, the bidirectional parallel port was introduced, which allows the data group to be
used for output or input. The HAL driver supports the bidirectional port, and allows the user to set
the data group as either input or output. If configured as out, a port provides a total of 12 outputs and
5 inputs. If configured as in, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an
external gate. On a board with open collector control pins. If configured as x, it provides 8 outputs,
and 9 inputs.

In some parallel ports, the control group has push-pull drivers and cannot be used as an input.

HAL and Open Collectors

HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors (OC).
If they are not, they cannot be used as inputs, and attempting to drive them LOW from an external
source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no device
attached, HAL should read the pin as TRUE. Next, insert a 470 Q resistor from one of the control pins
to GND. If the resulting voltage on the control pin is close to 0V, and HAL now reads the pin as FALSE,
then you have an OC port. If the resulting voltage is far from 0V, or HAL does not read the pin as
FALSE, then your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates, e.g. 74LS05.
On some computers, BIOS settings may affect whether x mode can be used. SPP mode is most likely
to work.

No other combinations are supported, and a port cannot be changed from input to output once the
driver is installed.

The parport driver can control up to 8 ports (defined by MAX PORTS in hal parport.c). The ports are
numbered starting at zero.

6.1.1 Loading

The hal parport driver is a real time component so it must be loaded into the real time thread with
loadrt. The configuration string describes the parallel ports to be used, and (optionally) their types. If

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 310/1261

the configuration string does not describe at least one port, it is an error.

loadrt hal parport cfg="port [type] [port [type] ...1"

Specifying the Port Numbers below 16 refer to parallel ports detected by the system. This is the
simplest way to configure the hal parport driver and cooperates with the Linux parport pc driver if
it is loaded. A port of 0 is the first parallel port detected on the system, 1 is the next and so on.

Basic configuration This will use the first parallel port Linux detects:

loadrt hal parport cfg="0"

Using the Port Address Instead, the port address may be specified using the hex notation with the
Ox prefix.

The config string represents the hexadecimal address of the port, optionally followed by a direction,
all repeated for each port. The directions are in, out, or x, and determine the direction of the physical
pins 2 to 9 of the D-Sub 25 connector. If the direction is not specified, the data group will by default
be configured as outputs. For example:

Command to load the real-time module hal partport with the additional <config-string> to
specify the port at which the parallel-port card is expected.

loadrt hal parport cfg="0x278 0x378 in 0x20A0 out”

This example installs the drivers for a port 0x0278, with pins 2 to 9 as outputs (by default, since
neither in nor out is specified), a port 0x0378, with pins 2 to 9 as inputs and a 0x20A0 port, with pins
2 to 9 explicitly specified as outputs. Note that you must know the base address of the parallel ports
to configure the drivers correctly. For ISA bus ports, this is usually not a problem, since the ports
are almost always at a well-known address, such as 0x278 or 0x378 which are typically configured
in the BIOS. The addresses of PCI bus cards are usually found with lspci -v in an I/O ports line, or
in a kernel message after running sudo modprobe -a parport pc. There is no default address, so if
<config-string> does not contain at least one address, it is an error.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 311/1261

parpart.0 parport.0
pI|-I=-I|| -i. ‘
T
T SR P

% T MRl %
e By i@ S awaa &
LIH:QD LHeg| =< o)
== 8 T | %@
[T ¥ = jD_l @ T < @
— . [Comemtims I—JD_l @ ¢ pntiena | ‘ '1 @
[Gy o < o)
Comm | e =N
\Ch=g

LI_;, [D ®// IWHD

pn-I7-0u | dn 17l

__ IR g [mI [CFmmm

pin-1%-0u- warl

Iml—jD n e D

Figure 6.1 - Parport block diagram

Type For each parallel port handled by the hal parport driver, a type can optionally be specified. The
type is one of in, out, epp, or x.

Table 6.1: Parallel Port Direction

Pin in out/epp X
1 out out in
2 in out out
3 in out out
4 in out out
5 in out out
§] in out out
7 in out out
8 in out out
9 in out out

10 in in in
11 in in in
12 in in in
13 in in in

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 312 /1261

Table 6.1: (continued)

Pin in out/epp X
14 out out in
15 in in in
16 out out in
17 out out in

If the type is not specified, the default is out.

A type of epp is the same as out, but the hal parport driver requests that the port switch into EPP
mode. The hal parport driver does not use the EPP bus protocol, but on some systems EPP mode
changes the electrical characteristics of the port in a way that may make some marginal hardware
work better. The Gecko G540’s charge pump is known to require this on some parallel ports.

See the Note above about mode x.

Example with two parallel ports This will enable two system-detected parallel ports, the first in
output mode and the second in input mode:

loadrt hal parport cfg="0 out 1 in”

Parport R/W Functions You must also direct LinuxCNC to run the read and write functions.

addf parport.0.read base-thread
addf parport.0.write base-thread

6.1.2 PCI Port Address

One good PCI parport card is made with the Netmos 9815 chipset. It has good +5V signals, and can
come in a single or dual ports.

To find the I/O addresses for PCI cards open a terminal window and use the list pci command:

lspci -v

Look for the entry with "Netmos” in it. Example of a 2-port card:

0000:01:0a.0 Communication controller: \

Netmos Technology PCI 9815 Multi-I/0 Controller (rev 01)
Subsystem: LSI Logic / Symbios Logic 2P0S (2 port parallel adapter)
Flags: medium devsel, IRQ 5
I/0 ports at b800 [size=8]

I/0 ports at bc@O [size=8]
I/0 ports at c000 [size=8]
I/0 ports at c400 [size=8]
I/0 ports at c800 [size=8]
I/0 ports at ccO0 [size=16]

From experimentation, I've found the first port (the on-card port) uses the third address listed (c000),
and the second port (the one that attaches with a ribbon cable) uses the first address listed (b800).
The following example shows the onboard parallel port and a PCI parallel port using the default out
direction.

loadrt hal parport cfg="0x378 0xc0600”

Please note that your values will differ. The Netmos cards are Plug-N-Play, and might change their
settings depending on which slot you put them into, so if you like to get under the hood and re-arrange
things, be sure to check these values before you start LinuxCNC.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 313/1261

6.1.3 Pins

— parport.<p>.pin- ~ <n> -out (bit) Drives a physical output pin.
— parport.<p>.pin- ~ <n> -in (bit) Tracks a physical input pin.
— parport.<p>.pin- = <n> -in-not (bit) Tracks a physical input pin, but inverted.

For each pin, <p> is the port number, and <n> is the physical pin number in the 25 pin D-shell
connector.

For each physical output pin, the driver creates a single HAL pin, for example: parport.0.pin-14-out.

For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin-12-in and
parport.0.pin-12-in-not.

The -in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The -in-not
HAL pin is inverted and is FALSE if the physical pin is high.

6.1.4 Parameters

— parport. = <p> .pin- <n> -out-invert (bit) Inverts an output pin.

— parport. = <p> .pin- <n> -out-reset (bit) (only for -out pins) TRUE if this pin should be reset
when the -reset function is executed.

— parport. = <p> .reset-time (U32) The time (in nanoseconds) between a pin is set by -write and
reset by the - reset function if it is enabled.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL -out pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL -out pin TRUE will drive the physical pin low.

6.1.5 Fonctions

— parport. = <p> .read (funct) Reads physical input pins of port number <p> and updates HAL
-in and -in-not pins.

— parport.read-all (funct) Reads physical input pins of all ports and updates HAL -in and -in-not
pins.

— parport. = <p> .write (funct) Reads HAL -out pins of port number <p> and updates that port’s
physical output pins.

— parport.write-all (funct) Reads HAL -out pins of all ports and updates all physical output pins.

— parport. = <p> .reset (funct) Waits until reset-time has elapsed since the associated write,
then resets pins to values indicated by -out-invert and -out-invert settings. reset must be later
in the same thread aswrite. If -reset is TRUE, then the reset function will set the pin to the value
of -out-invert. This can be used in conjunction with stepgen’s doublefreq to produce one step
per period. The stepgen stepspace for that pin must be set to 0 to enable doublefreq.

The individual functions are provided for situations where one port needs to be updated in a very fast
thread, but other ports can be updated in a slower thread to save CPU time. It is probably not a good
idea to use both an -all function and an individual function at the same time.

6.1.6 Common problems

If loading the module reports

insmod: error inserting ’'/home/jepler/emc2/rtlib/hal parport.ko’:
-1 Device or resource busy

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 314 /1261

then ensure that the standard kernel module parport pc is not loaded! and that no other device in
the system has claimed the I/O ports.

If the module loads but does not appear to function, then the port address is incorrect.

6.1.7 Using DoubleStep

To setup DoubleStep on the parallel port you must add the function parport.n.reset after parport.n.write
and configure stepspace to 0 and the reset time wanted. So that step can be asserted on every period in
HAL and then toggled off by parport after being asserted for time specified by parport. = n_ .reset-
time .

For example:

loadrt hal parport cfg="0x378 out”
setp parport.0.reset-time 5000
loadrt stepgen step type=0,0,0

addf
addf
addf
addf
addf
setp
setp

parport
stepgen
parport
parport
stepgen

stepgen
stepgen

.0.read base-thread
.make-pulses base-thread
.0.write base-thread

.0.reset base-thread
.capture-position servo-thread

.0.steplen 1
.0.stepspace 0

More information on DoubleStep can be found on the wiki.

6.1.8 probe_parport

In today’s PCs, parallel ports may require a plug and play (PNP) configuration before they can be
used. The kernel module probe parport configures all PNP ports present. It must be loaded before
hal parport. On machines without a PNP port, it can be loaded but will have no effect.

6.1.8.1

Installing probe_parport

If, when parport pc kernel module is loaded with command:

sudo modprobe -a parport pc; sudo rmmod parport pc

Linux kernel outputs a message similar to:

parport: PnPBIOS parport detected.

Then use of this module will probably be necessary.

Finally, HAL parport components should be loaded:

loadrt probe parport
loadrt hal parport ...

1. In the LinuxCNC packages for Ubuntu, the file /etc/modprobe.d/emc2 generally prevents parport pc from being automa-
tically loaded.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?TweakingSoftwareStepGeneration

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 315/1261

6.2 AX5214H Driver

The Axiom Measurement & Control AX5214H is a 48 channel digital I/O board. It plugs into an ISA
bus, and resembles a pair of 8255 chips. In fact it may be a pair of 8255 chips, but I'm not sure. If/when
someone starts a driver for an 8255 they should look at the ax5214 code, much of the work is already
done.

6.2.1 Installing

loadrt hal ax5214h cfg="<config-string>"

The config string consists of a hex port address, followed by an 8 character string of ”I” and "O” which
sets groups of pins as inputs and outputs. The first two character set the direction of the first two 8
bit blocks of pins (0-7 and 8-15). The next two set blocks of 4 pins (16-19 and 20-23). The pattern then
repeats, two more blocks of 8 bits (24-31 and 32-39) and two blocks of 4 bits (40-43 and 44-47). If
more than one board is installed, the data for the second board follows the first. As an example, the
string “0x220 ITIOIIO0 0x300 OIOOIOIO” installs drivers for two boards. The first board is at address
0x220, and has 36 inputs (0-19 and 24-39) and 12 outputs (20-23 and 40-47). The second board is
at address 0x300, and has 20 inputs (8-15, 24-31, and 40-43) and 28 outputs (0-7. 16-23, 32-39, and
44-47). Up to 8 boards may be used in one system.

6.2.2 Pins

— (bit) ax5214.<boardnum>.out-<pinnum> — Drives a physical output pin.
— (bit) ax5214.<boardnum>.in-<pinnum> — Tracks a physical input pin.
— (bit) ax5214.<boardnum>.in-<pinnum>-not — Tracks a physical input pin, inverted.

For each pin, <boardnum> is the board number (starts at zero), and <pinnum> is the I/O channel
number (0 to 47).

Note that the driver assumes active LOW signals. This is so that modules such as OPTO-22 will work
correctly (TRUE means output ON, or input energized). If the signals are being used directly without
buffering or isolation the inversion needs to be accounted for. The in- HAL pin is TRUE if the physical
pin is low (OPTO-22 module energized), and FALSE if the physical pin is high (OPTO-22 module off).
The in-<pinnum>-not HAL pin is inverted — it is FALSE if the physical pin is low (OPTO-22 module
energized). By connecting a signal to one or the other, the user can determine the state of the input.

6.2.3 Parameters

— (bit) ax5214.<boardnum>.out-<pinnum>-invert — Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is
FALSE, setting the HAL out- pin TRUE drives the physical pin low, turning ON an attached OPTO-22
module, and FALSE drives it high, turning OFF the OPTO-22 module. If -invert is TRUE, then setting
the HAL out- pin TRUE will drive the physical pin high and turn the module OFF.

6.2.4 Fonctions

— (funct) ax5214.<boardnum>.read — Reads all digital inputs on one board.
— (funct) ax5214.<boardnum=>.write — Writes all digital outputs on one board.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 316/1261

6.3 General Mechatronics Driver

General Mechatronics GM6-PCI card based motion control system
For detailed description, please refer to the System integration manual.

The GMG6-PCI motion control card is based on an FPGA and a PCI bridge interface ASIC. A small
automated manufacturing cell can be controlled, with a short time system integration procedure. The
following figure demonstrating the typical connection of devices related to the control system:

— It can control up to six axis, each can be stepper or CAN bus interface or analogue servo.

— GPIO: Four time eight I/O pins are placed on standard flat cable headers.

— RS485 I/O expander modules: RS485 bus was designed for interfacing with compact DIN-rail moun-
ted expander modules. An 8-channel digital input, an 8-channel relay output and an analogue I/O
(4x +/-10 Volts output and 8x +/-5 Volts input) modules are available now. Up to 16 modules can
be connected to the bus altogether.

— 20 optically isolated input pins: Six times three for the direct connection of two end switch and one
homing sensor for each joint. And additionally, two optically isolated E-stop inputs.

Analogue

servo systemﬂ ‘

. End/
L homing
sWwitches

Incremental
servo system

Analogue I/0

PLC functions

Digital input

Installing:

loadrt hal gm

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel
log, which can be viewed with dmesg.

Up to 3 boards may be used in one system.

The following connectors can be found on the GM6-PCI card:

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 317 /1261

RS485 4x8 GPIO CAN-bus 6x Axis
(RJ12) {2x5pin header) :rmz: {RJ50)
| u:ln u:lrz | m:ﬁ
1 f 1] 11] ' '
L — 0
_ Eigaﬂ__w”;] HIH i I:Hl= HE='H=I"IE",u'
ppady gl "_'Eﬁﬂ- - uﬂ'nu —11
®sags | | - i - [::3m Sa0 = :Fﬂ
CEMC) 0 % —2
- _ : ol
- w5 o 3
0 e o Fs 0 —
M 1) e
LEDs | | O o ° 0 28y —
Dl 2w G,
Ceemicanasman o o —15
| ” D??un ﬂi]“
@ | L]]
{ End SW & Homing
for 6 axis

;l (2x13 pin header)
Figure 6.2 - GM6-PCI card connectors and LEDs

6.3.1 1/0 connectors

Figure 6.3 - Pin numbering of GPIO connectors

Table 6.2: Pinout of GPIO connectors

9 7 5 3 1
10x/7 | 10x/5 | 10%/3 | 10x/1 | VCC

10 8 6 4 2
GND | I0x/6 | I0x/4 | I0x/2 | I0x/0

Each pin can be configured as digital input or output. GM6-PCI motion control card has 4 general
purpose I/O (GPIO) connectors, with eight configurable I/O on each. Every GPIO pin and parameter
name begins as follows:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 318 /1261

gm.<card no>.gpio.<gpio_con_no>

where <gpio _con_no> is from 0 to 3.
State of the first pin of the first GPIO connector on the GM6-PCI card.
gm.0.gpio.0.in-0

HAL pins are updated by function

gm.<card _no>.read

6.3.1.1 Pins
Table 6.4: GPIO pins
Pins Type and Pin description
direction
.in-<0-7> (bit, Out) Input pin
.in-not-<0-7> (bit, Out) Negated input pin
.out-<0-7> (bit, In) Output pin. Used only when GPIO is
set to output.

6.3.1.2 Parameters

Table 6.5: GPIO parameters

Pins Type and Parameter description
direction
.is-out-<0-7> (bit, R/W) When True, the corresponding GPIO is

set to totem-pole output, other wise
set to high impedance input.
.invert-out-<0-7>| (bit, R/W) When True, pin value will be inverted.
Used when pin is configured as output.

6.3.2 AXxis connectors

Figure 6.4 - Pin numbering of axis connectors

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 319/1261

Table 6.6: Pinout of axis connectors

Encoder A

+5 Volt (PC)
Encoder B
Encoder Index
Fault

Power Enabled
Step/CCW/B
Direction/CW/A
Ground (PC)
DAC serial line

o ©| 0o < o U1l il Lo N =

6.3.2.1 Axis interface modules

Small sized DIN rail mounted interface modules gives easy way of connecting different types of servo
modules to the axis connectors. Seven different system configurations are presented in the System in-
tegration manual for evaluating typical applications. Also the detailed description of the Axis modules
can be found in the System integration manual.

For evaluating the appropriate servo-drive structure the modules have to be connected as the following
block diagram shows:

RJ:lﬁ
| SK10P Enco
RsO| L
oo
————— 24V i s ——— - _———_— ————
PCl Card! E_llso “«—TTL—»/ RIS s 4 ar [1 Enc 1
| Isolator [

| Axis connectar UART-DAG

1 S
i BERVO SERVO &
[y [SK10P ==+i- 10V output-p= AnRel |
————— —SVins sk | RJSD «-TTLk RSO | _°°'_""_°' o _ '_'OB_"'"EI-_W —>! Drve | E:‘":"_) Ana'og"e
RME -7
| SK10P E
0 \—— - Differential output
U ercms —— e P ——— ———— - Encoder feedback
[A RS0 —TTL—p RSO R4S 3 I g422 Step/Dir | e ol Enc. Enc Jorovon
- v Schaor R150 e TTL-! Relso | Line Driver SK:GP‘_DHe-enhaI_-ch'?;'wm Dnlwe L m]'e Encoder |
et L a L oD Incremental
RMS R
e SK;G") fneader - TTL output
oo - m———— - Encoder feedback
S eicad oL = r= e - B —=emmy
I dods " RJE0 T L= RJE] | RJ4E RM5 Step/Dir SERVO. Enc. Enc. SERVO &
! [Isalator . | Breakout SK10P 'I—TTL—FCW@CWm | | E
DRRRNS —en{xl R0 T e L O Incremental
- Differential output
T . ———— === - Without encoder feedback
i Em I Otronta e s S‘f@ssmjr Iy E’|'° servos 1|
connesior — = ereniia AB |mnu"[m—rmm i ' t '
[— = L —_—=) ncremenia
_____ _ o o o - TTL output
[RJa5 1 [Step/Dir | Enc. l«—] Enc 1 - Wi
I[s comacter "> < S s i 4> o JEEEL o T oseos Without encoder feedback
T TTL—» RJS0 o A MO Drive d
L ol __2) L |00 Incremental
S CAN = e - Encoder feedback
lr_ Pei Cardill - |- an | SERVO ﬂ';""’ " °"|‘"° SERVOE |
Axis — MODUL Encoder
Soooow T Absolut - CAN bus

Figure 6.5 - Servo axis interfaces

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 320/1261

6.3.2.2 Encoder

The GM6-PCI motion control card has six encoder modules. Each encoder module has three channels:

— Channel-A
— Channel-B
— Channel-I (index)

It is able to count quadrature encoder signals or step/dir signals. Each encoder module is connected
to the inputs of the corresponding RJ50 axis connector.

Every encoder pin and parameter name begins as follows:

gm.<card no>.encoder.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.encoder.0.position refers to the position of
encoder module of axis 0.

The GM6-PCI card counts the encoder signal independently from LinuxCNC. HAL pins are updated
by function:

gm.<card no>.read

Table 6.7: Encoder pins

Pins Type and Pin description
direction

.reset (bit, In) When True, resets counts and position
to zero.

. rawcounts (s32, Out) The raw count is the counts, but
unaffected by reset or the index pulse.

.counts (s32, Out) Position in encoder counts.

.position (float, Out) Position in scaled units
(=.counts/.position-scale).

.index-enabled (bit, I0) When True, counts and position are

rounded or reset (depends on
index-mode) on next rising edge of
channel-I. Every time position is reset
because of Index, the index-enabled
pin is set to 0 and remains 0 until
connected HAL pin does not set it.
.velocity (float, Out) | Velocity in scaled units per second.
GM encoder uses high frequency
hardware timer to measure time
between encoder pulses in order to
calculate velocity. It greatly reduces
quantization noise as compared to
simply differentiating the position
output. When the measured velocity is
below min-speed-estimate, the
velocity output is 0.

LinuxCNC V2.10.0-pre0-4994-g9

13129ce3c

321/1261

Table 6.8: Encoder parameters

Parameters

Type and
Read/Write

Parameter description

.counter-mode

(bit, R/W)

When True, the counter counts each
rising edge of the channel-A input to
the direction determined by
channel-B. This is useful for counting
the output of a single channel
(non-quadrature) or step/dir signal
sensor. When false, it counts in
quadrature mode.

.1ndex-mode

(bit, R/W)

When True and .index-enabled is also
true, .counts and .position are
rounded (based on .counts-per-rev) at
rising edge of channel-I. This is useful
to correct few pulses error caused by
noise. In round mode, it is essential to
set .counts-per-rev parameter
correctly. When .index-mode is False
and .index-enabled is true, .counts and
.position are reset at channel-I pulse.

.counts-per-rev

(s32, R/V)

Determine how many counts are
between two index pulses. It is used
only in round mode, so when both
.index-enabled and .index-mode
parameters are True. GM encoder
process encoder signal in 4x mode, so
for example in case of a 500 CPR
encoder it should be set to 2000. This
parameter can be easily measured by
setting .index-enabled True and
.index-mode False (so that .counts
resets at channel-I pulse), than move
axis by hand and see the maximum
magnitude of .counts pin in halmeter.

.index-invert

(bit, R/W)

When True, channel-I event (reset or
round) occur on falling edge of
channel-I signal, otherwise on rising
edge.

.min-speed-estimat

te (float, R/W)

Determine the minimum measured
velocity magnitude at which .velocity
will be set as nonzero. Setting this
parameter too low will cause it to take
a long time for velocity to go to zero
after encoder pulses have stopped
arriving.

.position-scale

(float, R/W)

Scale in counts per length unit.
.position=.counts/.position-scale. For
example, if position-scale is 2000, then
1000 counts of the encoder will
produce a position of 0.5 units.

Setting encoder module of axis 0 to receive 500 CPR quadrature encoder signal and use

reset to round position.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 322 /1261

setp gm.0.encoder.0.counter-mode 0 # 0: quad, 1: stepDir

setp gm.0.encoder.0.index-mode 1 # 0: reset pos at index, 1l:round pos at index

setp gm.0.encoder.0.counts-per-rev 2000 # GM process encoder in 4x mode, 4x500=2000

setp gm.0.encoder.0.index-invert 0 #

setp gm.0.encoder.0.min-speed-estimate 0.1 # in position unit/s

setp gm.0.encoder.0.position-scale 20000 # 10 encoder rev cause the machine to move one <+

position unit (10x2000)

Connect encoder position to LinuxCNC joint position feedback

net Xpos-fb gm.0.encoder.0.position => joint.0.motor-pos-fb

6.3.2.3 StepGen module

The GM6-PCI motion control card has six StepGen modules, one for each joint. Each module has two
output signals. It can produce Step/Direction, Up/Down or Quadrature (A/B) pulses. Each StepGen
module is connected to the pins of the corresponding RJ50 axis connector.

Every StepGen pin and parameter name begins as follows:

gm.<card no>.stepgen.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.stepgen.0.position-cmd refers to the position
command of StepGen module of axis 0 on card 0.

The GMG6-PCI card generates step pulses independently from LinuxCNC. HAL pins are updated by
function

gm.<card no>.write

Table 6.9: StepGen module pins

Pins Type and Pin description
direction

.enable (bit, In) StepGen produces pulses only when this pin
is true.

.count-fb (s32, Out) Position feedback in counts unit.

.position-fb (float, Out) Position feedback in position unit.

.position-cmd (float, In) Commanded position in position units. Used
in position mode only.

.velocity-cmd (float, In) Commanded velocity in position units per
second. Used in velocity mode only.

Table 6.10: StepGen module parameters

Parameters Type and Parameter description
Read/Write
.step-type (u32, R/W) When 0, module produces Step/Dir signal.

When 1, it produces Up/Down step signals.
And when it is 2, it produces quadrature
output signals.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 323/1261

Table 6.10: (continued)

Parameters Type and Parameter description
Read/Write
.control-type (bit, R/W) When True, .velocity-cmd is used as

reference and velocityvcontrol calculate
pulse rate output. When False,
.position-cmd is used as reference and
position control calculate pulse rate output.

.invert-stepl (bit, R/W) Invert the output of channel 1 (Step signal
in StepDir mode)

.invert-step2 (bit, R/W) Invert the output of channel 2 (Dir signal in
StepDir mode)

.maxvel (float, R/W) Maximum velocity in position units per
second. If it is set to 0.0, .maxvel parameter
is ignored.

.maxaccel (float, R/W) Maximum acceleration in position units per

second squared. mf it is set to 0.0,
.maxaccel parameter is ignored.

.position-scale (float, R/W) Scale in steps per length unit.

.steplen (u32, R/W) Length of step pulse in nano-seconds.

.stepspace (u32, R/W) Minimum time between two step pulses in
nano-seconds.

.dirdelay (u32, R/W) Minimum time between step pulse and

direction change in nanoseconds.

For evaluating the appropriate values see the timing diagrams below:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

324 /1261

Step ’ \

Staplan DirDeday DirDalay
Direction |
Step/Dir type reference
S A Y R
Staplen |StepSpace DirDalay
Down Il ‘ ' N
Up/Down count (CW/CCW) reference
| A [_
Steplen Steplen_| Stepleq Steplen+DirDelay _ . Steplen

|

B J \

Quadrant (A/B) type reference

Figure 6.6 - Reference signal timing diagrams

Setting StepGen module of axis 0 to generate 1000 step pulse per position unit

setp
setp
setp
setp
setp

setp
setp

setp
setp

gm.
gm.
gm.
gm.
gm.

gm.
gm.

gm.
gm.

0.stepgen.
0.stepgen.
0.
0
0

stepgen

.stepgen.
.stepgen.

.stepgen.
.stepgen.

.stepgen.
.stepgen.

0
0
@
0
0

[ocNoNo]

.maxvel

.step-type 0

.control-type 0
invert-stepl 0
.invert-step2 0

0

.maxaccel 0

.position-scale 1000
.steplen 1000
.stepspacelO00

* H#

0O:stepDir, 1:UpDown, 2:Quad
0:Pos. control, 1:Vel. Control

do not set maxvel for step

generator, let interpolator control it.

do not set max acceleration for

step generator, let interpolator control it.
1000 step/position unit

1000 ns 1 us

1000 ns 1 ps

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 325/1261

setp gm.0.stepgen.0.dirdelay 2000 # 2000 ns = 2 pus

Connect StepGen to axis 0 position reference and enable pins

net Xpos-cmd joint.0.motor-pos-cmd => gm.0.stepgen.0.position-cmd
net Xen joint.0.amp-enable-out => gm.0.stepgen.0.enable

6.3.2.4 Enable and Fault signals

The GM6-PCI motion control card has one enable output and one fault input HAL pins, both are
connected to each R]J50 axis connector and to the CAN connector.
HAL pins are updated by function:

gm.<card no>.read

Table 6.11: Enable and Fault signal pins

Pins Type and Pin description
direction
gm.<card no>.powdr- (bit, In) If this pin is True,
enable * and Watch Dog Timer is not expired

* and there is no power fault

then power enable pins of axis- and
CAN connectors are set to high,
otherwise set to low.

gm.<card no>.powdr- (bit, Out) Power fault input.

fault

6.3.2.5 Axis DAC

The GMG6-PCI motion control card has six serial axis DAC driver modules, one for each joint. Each
module is connected to the pin of the corresponding RJ50 axis connector. Every axis DAC pin and
parameter name begins as follows:

gm.<card no>.dac.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.dac.0.value refers to the output voltage of DAC
module of axis 0.

HAL pins are updated by function:

gm.<card no>.write

Table 6.12: Axis DAC pins

Pins Type and Pin description
direction
.enable (bit, In) Enable DAC output. When enable is
false, DAC output is 0.0 V.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

326 /1261

Table 6.12: (continued)

Pins Type and Pin description
direction
.value (float, In) Value of DAC output in Volts.
Table 6.13: Axis DAC parameters
Parameters Type and Parameter description
direction
.0offset (float, R/W) | Offset is added to the value before the
hardware is updated.
.high-limit (float, R/W) | Maximum output voltage of the
hardware in Volts.
.low-limit (float, R/W) | Minimum output voltage of the
hardware in Volts.
.invert-serial (float, R/W) | GM6-PCI card is communicating with

DAC hardware via fast serial
communication to highly reduce time
delay compared to PWM. DAC module
is recommended to be isolated which
is negating serial communication line.
In case of isolation, leave this
parameter to default (0), while in case
of none-isolation, set this parameter to
1.

6.3.3 CAN-bus servo amplifiers

The GM6-PCI motion control card has CAN module to drive CAN servo amplifiers. Implementation of
higher level protocols like CANopen is further development. Currently GM produced power amplifiers
has upper level driver which export pins and parameters to HAL. They receive position reference and
provide encoder feedback via CAN bus.

The frames are standard (11 bit) ID frames, with 4 byte data length. The baud rate is 1 Mbit/s. The po-
sition command IDs for axis 0..5 are 0x10..0x15. The position feedback IDs for axis 0..5 are 0x20..0x25.

These configuration can be changed with the modification of hal gm.c and recompiling LinuxCNC.

Every CAN pin and parameter name begins as follows:

gm.<card no>.can-gm.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.can-gm.0.position refers to the output position

of axis 0 in position units.

HAL pins are updated by function:

gm.<card no>.write

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 327 /1261

6.3.3.1 Pins
Table 6.14: CAN module pins
Pins Type and Pin description
direction
.enable (bit, In) Enable sending position references.
.position-cmd (float, In) Commanded position in position units.
.position-fb (float, In) Feed back position in position units.

6.3.3.2 Parameters

Table 6.15: CAN module parameters

Parameters Type and Parameter description
direction

.position-scale (float, R/W) | Scale in per length unit.

6.3.4 Watchdog timer

Watchdog timer resets at function:

gm.<card no>.read

6.3.4.1 Pins
Table 6.16: Watchdog pins
Pins Type and Pin description
direction
gm.<card no>.watchdog-egpit, exit) Indicates that watchdog timer is expired.

Watchdog timer overrun causes the set of power-enable to low in hardware.

6.3.4.2 Parameters

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 328 /1261

Table 6.17: Watchdog parameters

Parameters Type and Parameter description
direction
gm.<card no>.watchdog-efablB/W) Enables watchdog timer.

It is strongly recommended to enable the
watchdog timer, because it can disable all
the servo amplifiers by pulling down all
enable signals in case of a PC error.
gm.<card no>.watchdqg- thoeh R N3 Time interval in within the

gm.<card no>.read function must be
executed. The gm.<card no>.read is
typically added to servo-thread, so watch
timeout is typically set to 3 times of the
servo period.

6.3.5 End-, homing- and E-stop switches

GNDY|

V' f:::amn
Gossssasessk |

'
3

3

@ /|l

lag V25 1/ 2

Figure 6.7 - Pin numbering of homing & end switch connector

Table 6.18: End- and homing switch connector pinout

25 | 23 21 19 17 15 13 11 9 7 5 3 1
E-
GND 1/End- 2/End+ 2/Homr 3/End- 4/End+ 4/Hom; 5/End- 6/End+ 6/Homr Stop V+
ing ing ing 5 (Ext.)
26 | 24 22 20 18 16 14 12 10 8 6 4 2
E-
GND 1/End+ 1/Hom; 2/End- 3/End+ 3/Hom: 4/End- 5/End+ 5/Hom; 6/End- Stop V+
ing ing ing 1 (Ext.)

The GM6-PCI motion control card has two limit- and one homing switch input for each joint. All the
names of these pins begin as follows:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 329/1261

gm.<card no>.joint.<axis no>

where <axis no> is from 0 to 5. For example, gm.0.joint.0.home-sw-in indicates the state of the
axis 0 home switch.

HAL pins are updated by function:

gm.<card no>.read

6.3.5.1 Pins
Table 6.20: End- and homing switch pins
Pins Type and Pin description
direction
.home-sw-in (bit, Out) Home switch input
.home-sw-in-not (bit, Out) Negated home switch input
.neg-lim-sw-1in (bit, Out) Negative limit switch input
.neg-lim-sw-in-not (bit, Out) Negated negative limit switch input
.pos-lim-sw-in (bit, Out) Positive limit switch input
.pos-lim-sw-in-not (bit, Out) Negated positive limit switch input

6.3.5.2 Parameters

Table 6.21: E-stop switch parameters

Parameters Type and Parameter description
direction

gm.0.estop.0.1in (bit, Out) Estop 0 input

gm.0.estop.0.in-not (bit, Out) Negated Estop 0 input

gm.0.estop.1l.1in (bit, Out) Estop 1 input

gm.0.estop.l.in-not (bit, Out) Negated Estop 1 input

6.3.6 Status LEDs

6.3.6.1 CAN

Color: Orange

— Blink, during data communication.

— On, when any of the buffers are full - communication error.
— Off, when no data communication.

6.3.6.2 RS485

Color: Orange

— Blink, during initialization of modules on the bus

— On, when the data communication is up between all initialized modules.
— Off, when any of the initialized modules dropped off because of an error.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 330/1261

6.3.6.3 EMC

Color: White
— Blink, when LinuxCNC is running.
— Otherwise off.

6.3.6.4 Boot

Color: Green
— On, when system booted successfully.
— Otherwise off.

6.3.6.5 Error

Color: Red

— Off, when there is no fault in the system.
— Blink, when PCI communication error.
— On, when watchdog timer overflowed.

6.3.7 RS485 1I/0 expander modules

These modules were developed for expanding the I/O and function capability along an RS485 line of
the GM6-PCI motion control card.

Available module types:

— 8-channel relay output module - gives eight NO-NC relay output on a three pole terminal connector
for each channel.

— 8-channel digital input module - gives eight optical isolated digital input pins.

— 8 channel ADC and 4-channel DAC module - gives four digital-to-analogue converter outputs and
eight analogue-to-digital inputs. This module is also optically isolated from the GM6-PCI card.
Automatic node recognizing Each node connected to the bus was recognized by the GM6-PCI card
automatically. During starting LinuxCNC, the driver export pins and parameters of all available mo-

dules automatically.

Fault handling If a module does not answer regularly the GM6-PCI card drops down the module. If
a module with output do not gets data with correct CRC regularly, the module switch to error state
(green LED blinking), and turns all outputs to error state.

Connecting the nodes The modules on the bus have to be connected in serial topology, with termi-
nation resistors on the end. The start of the topology is the PCI card, and the end is the last module.

—— — — — ——— —— —— — — —

[First node1 | [MNode N [Last Node

\{ RJ12 | RJ12 P \{ RJ12 | RJ12 |J RJ12
7 N

PCI Card/ _ 1
| Rs485 connector | RJ12 | End |
[[RJ12]) LT |

Figure 6.8 - Connecting the RS485 nodes to the GM6-PCI card

Addressing Each node on the bus has a 4 bit unique address that can be set with a red DIP switch.
Status LED A green LED indicates the status of the module:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 331/1261

— Blink, when the module is only powered, but not jet identified, or when module is dropped down.
— Off, during identification (computer is on, but LinuxCNC not started)
— On, when it communicates continuously.

6.3.7.1 Relay output module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>
where <module ID> is from 00 to 15.

Table 6.22: Relay output module pins

Pins Type and Pin description
direction
.relay-<0-7> (bit, Out) Output pin for relay

Table 6.23: Relay output module parameters

Parameters Type and Parameter description
direction
.invert-relay-<0-7> (bit, R/W) Negate relay output pin

HAL example
gm.0.rs485.0.relay-0 # First relay of the node.

gm.0 # Identifies the first GM6-PCI motion control card (PCI card <«
address = 0)

.rs485.0 # Selects node with address 0 on the RS485 bus

.relay-0 # Selects the first relay

6.3.7.2 Digital input module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.

All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 332 /1261

gm.<card no>.rs485.<module ID>
where <module ID> is from 00 to 15.

Table 6.24: Digital input output module pins

Pins Type and Pin description
direction

.in-<0-7> (bit, Out) Input pin

.in-not-<0-7> (bit, Out) Negated input pin

HAL example
gm.0.rs485.0.in-0 # First input of the node.

gm.0 # Identifies the first GM6-PCI motion control card (PCI card address <«
= 0)

.rs485.0 # Selects node with address 0 on the RS485 bus

.in-0 # Selects the first digital input module

6.3.7.3 DAC & ADC module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.
All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>
where <module ID> is from 00 to 15.

Table 6.25: DAC & ADC module pins

Pins Type and Pin description
direction
.adc-<0-7> (float, Out) Value of ADC input in Volts.
.dac-enable-<0-3> (bit, In) Enable DAC output. When enable is false then
DAC output is set to 0.0 V.
.dac-<0-3> (float, In) Value of DAC output in Volts.

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

333/1261

Table 6.26: DAC & ADC module parameters

Parameters Type and Parameter description
direction

.adc-scale-<0-7> (float, R/W) The input voltage will be multiplied by scale
before being output to .adc- pin.

.adc-offset-<0-7> (float, R/W) Offset is subtracted from the hardware input
voltage after the scale multiplier has been
applied.

.dac-offset-<0-3> (float, R/W) Offset is added to the value before the hardware
is updated.

.dac-high-limit-<0-3> (float, R/W) Maximum output voltage of the hardware in Volts.

.dac-low-limit-<0-3> (float, R/W) Minimum output voltage of the hardware in Volts.

HAL example

gm.0.rs485.0.adc-0

gm.0
= 0)
.rs485.0
.adc-0

6.3.7.4 Teach Pendant module

First analogue channel of the node.
Identifies the first GM6-PCI motion control card (PCI card address «

Selects node with address 0 on the RS485 bus
Selects the first analogue input of the module

For pinout, connection and electrical charasteristics of the module, please refer to the System inte-
gration manual.

All the pins and parameters are updated by the following function:

gm.<card no>.rs485

It should be added to servo thread or other thread with larger period to avoid CPU overload. Every
RS485 module pin and parameter name begins as follows:

gm.<card no>.rs485.<module ID>

where <module ID> is from 00 to 15. Note that on the Teach Pendant module it cannot be changed, and
pre-programmed as zero. Upon request it can be delivered with firmware pre-programmed different

ID.
Table 6.27: Teach Pendant module pins
Pins Type and Pin description
direction
.adc-<0-5> (float, Out) Value of ADC input in Volts.
.enc-reset (bit, In) When True, resets counts and position to zero.
.enc-counts (s32, Out) Position in encoder counts.
.enc-rawcounts (s32, Out) The raw count is the counts, but unaffected by
reset.
.enc-position (float, Out) Position in scaled units
(=.enc-counts/.enc-position-scale).
.1n-<0-7> (bit, Out) Input pin
.in-not-<@-7> (bit, Out) Negated input pin

https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf
https://www.generalmechatronics.com/data/products/robot_controller/PCI_UserManual_eng.pdf

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 334 /1261

Table 6.28: Teach Pendant module parameters

Parameters Type and Parameter description
direction

.adc-scale-<0-5> (float, R/W) The input voltage will be multiplied by scale
before being output to .adc- pin.

.adc-offset-<0-5> (float, R/W) Offset is subtracted from the hardware input
voltage after the scale multiplier has been
applied.

.enc-position-scale (float, R/W) Scale in per length unit.

HAL example
gm.0.rs485.0.adc-0 # First analogue channel of the node.

gm.0o # Identifies the first GM6-PCI motion control card (PCI card address <«
= 0)

.rs485.0 # Selects node with address 0 on the RS485 bus

.adc-0 # Selects the first analogue input of the module

6.3.8 Errata

6.3.8.1 GM6-PCI card Errata

The revision number in this section refers to the revision of the GM6-PCI card device.

Rev. 1.2

— Error: The PCI card do not boot, when Axis 1. END B switch is active (low). Found on November
16, 2013.

— Reason: This switch is connected to a boot setting pin of FPGA

— Problem fix/workaround: Use other switch pin, or connect only normally open switch to this switch
input pin.

6.4 GS2 VFD Driver

This is a non-realtime HAL program for the GS2 series of VFDs at Automation Direct. 2
This component is loaded using the halcmd ”loadusr” command:

loadusr -Wn spindle-vfd gs2 vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component gs2 vfd, named spindle-vfd.
The HAL loadusr command is described in the loadusr chapter.

2. In Europe the equivalent can be found under the brand name Omron.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 335/1261

6.4.1 Command Line Options

— -b or --bits <n> (default: 8) Set number of data bits to n, where n must be from 5 to 8 inclusive.
— -d or --device <path> (default: /dev/ttyS0) Set the file path to the serial device node to use.

— -g or --debug Turn on debugging messages. This will also set the verbose flag. Debug mode will
cause all modbus messages to be printed in hex on the terminal.

— -n or --name <string> (default: gs2 vfd) Set the name of the HAL module. The HAL comp name
will be set to <string>, and all pin and parameter names will begin with <string>.

— -p or --parity {even,odd,none} (default: odd) Set serial parity to even, odd, or none.

— -r or --rate <n> (default: 38400) Set baud rate to n. It is an error if the rate is not one of the
following: 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.

— -s or --stopbits {1,2} (default: 1) Set serial stop bits to 1 or 2

— -t or --target <n> (default: 1) Set MODBUS target (slave) number. This must match the device
number you set on the GS2.

— -v or --verbose Turn on debug messages.

— -A or --accel-seconds <n> (default: 10.0) Seconds to accelerate the spindle from 0 to max. RPM.

— -D or --decel-seconds <n> (default: 0.0) Seconds to decelerate the spindle from max. RPM to 0. If
set to 0.0 the spindle will be allowed to coast to a stop without controlled deceleration.

— -R or --braking-resistor This argument should be used when a braking resistor is installed on the
GS2 VFD (see Appendix A of the GS2 manual). It disables deceleration over-voltage stall prevention
(see GS2 modbus Parameter 6.05), allowing the VFD to keep braking even in situations where the
motor is regenerating high voltage. The regenerated voltage gets safely dumped into the braking
resistor.

Note
That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

6.4.2 Pins

With <name> being “gs2 vfd” or the name given during loading with the -n option:

— <name>.DC-bus-volts (float, out) DC bus voltage of the VFD

— <name>.at-speed (bit, out) when drive is at commanded speed
— <name>.err-reset (bit, in) reset errors sent to VFD

— <name>.firmware-revision (s32, out) from the VFD

— <name>.frequency-command (float, out) from the VFD

— <name>.frequency-out (float, out) from the VFD

— <name>.is-stopped (bit, out) when the VFD reports 0 Hz output
— <name>.load-percentage (float, out) from the VFD

— <name>.motor-RPM (float, out) from the VFD

— <name>.output-current (float, out) from the VFD

— <name>.output-voltage (float, out) from the VFD

— <name>.power-factor (float, out) from the VFD

— <name>.scale-frequency (float, out) from the VFD

— <name>.speed-command (float, in) speed sent to VFD in RPM It is an error to send a speed faster
than the Motor Max RPM as set in the VFD.

— <name>.spindle-fwd (bit, in) 1 for FWD and 0 for REV sent to VFD
— <name>.spindle-rev (bit, in) 1 for REV and O if off
— <name>.spindle-on (bit, in) 1 for ON and O for OFF sent to VFD

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 336/1261

— <name>.status-1 (s32, out) Drive Status of the VFD (see the GS2 manual)
— <name>.status-2 (s32, out) Drive Status of the VFD (see the GS2 manual)

Note
The status value is a sum of all the bits that are on. So a 163 which means the drive is in the run
mode is the sum of 3 (run) + 32 (freq set by serial) + 128 (operation set by serial).

6.4.3 Parameters

With <name> being gs2_vfd or the name given during loading with the -n option:

— <name>.error-count (s32, RW)

— <name>.loop-time (float, RW) how often the modbus is polled (default: 0.1)

— <name>.nameplate-HZ (float, RW) Nameplate Hz of motor (default: 60)

— <name>.nameplate-RPM (float, RW) Nameplate RPM of motor (default: 1730)

— <name>.retval (s32, RW) the return value of an error in HAL

— <name>.tolerance (s32, RW) speed tolerance (default: 0.01)

— <name>.ack-delay (s32, RW) number of read/write cycles before checking at-speed (default 2)

For an example of using this component to drive a spindle see the GS2 Spindle example.

6.5 HAL Driver for Raspberry Pi GPIO pins

Note: This driver will not be compiled into images aimed at non-ARM CPUS. It is only really intended
to work on the Raspberry Pi. It may, or may not, work on similar boards or direct clones.

6.5.1 Purpose

This driver allows the use of the Rapberry Pi GPIO pins in a way analogous to the parallel port driver
on x86 PCs. It can use the same step generators, encoder counters and similar components.

6.5.2 Utilisation

loadrt hal pi gpio dir=0x13407 exclude=0x1F64BF8

The ”dir” mask determines whether the pins are inputs and outputs, the exclude mask prevents the
driver from using the pins (and so allows them to be used for their normal RPi purposes such as SPI
or UART).

The mask can be in decimal or hexadecimal (hex may be easier as there will be no carries).

To determine the value of the masks, add up the hex/decimal values for all pins that should be confi-
gured as output, and analogously for all pins that should be excluded according to the following table.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 337 /1261

Table 6.29: GPIO masks - mapping of GPIO numbers (left-
most column) to physical pin numbers as printed on the
Raspberry Pi board (rightmost column) and the decimal/-
hexadecimal values that contribute to the value of the

mask.
GPIO Num Decimal Hex Pin Num
2 1 | 0x00000001 3
3 2 | 0x00000002 5
4 4 | 0x00000004 7
5 8 | 0x00000008 29
6 16 | 0x00000010 31
7 32 | 0x00000020 26
8 64 | 0x00000040 24
9 128 | 0x00000080 21
10 256 | 0x00000100 19
11 512 | 0x00000200 23
12 1024 | 0x00000400 32
13 2048 | 0x00000800 33
14 4096 | 0x00001000 8
15 8192 | 0x00002000 10
16 16384 | 0x00004000 36
17 32768 | 0x00008000 11
18 65536 | 0x00010000 12
19 131072 | 0x00020000 35
20 262144 | 0x00040000 38
21 524288 | 0x00080000 40
22 1048576 | 0x00100000 15
23 2097152 | 0x00200000 16
24 4194304 | 0x00400000 18
25 8388608 | 0x00800000 22
26 16777216 | 0x01000000 37
27 33554432 | 0x02000000 13

Note: In the calculation of the individual pin’s mask value its GPIO numbers are used, the value being
derived as 27 (GPIO number - 2), whereas in the naming of the HAL pins it is the Raspberry Pi header
pin numbers.

So, for example, if you enable GPIO 17 as an output (dir=0x8000) then that output will be controlled
by the hal pin hal pi_gpio.pin-11-out.

6.5.3 Pins

— hal pi gpio.pin-NN-out
— hal pi gpio.pin-NN-in

Depending on the dir and exclude masks.

6.5.4 Parameters

Only the standard timing parameters which are created for all components exist:
— hal pi gpio.read.tmax

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 338/1261

— hal pi gpio.read.tmax-increased
— hal pi gpio.write.tmax
— hal pi gpio.write.tmax-increased

For unknown reasons the driver also creates HAL pins to indicate timing:

— hal pi gpio.read.time
— hal pi gpio.write.time

6.5.5 Fonctions

— hal pi gpio.read - Add this to the base thread to update the HAL pin values to match the physical
input values.

— hal pi gpio.write - Add this to the base thread to update the physical pins to match the HAL
values.

Typically the read function will be early in the call list, before any encoder counters and the write
function will be later in the call list, after stepgen.make-pulses.

6.5.6 Pin Numbering

The GPIO connector and the pinout has been consistent since around 2015. These older Pi models
are probably a poor choice for LinuxCNC anyway. However, this driver is designed to work with them,
and will detect and correctly configure for the two alternative pinouts.

The current pinout mapping between GPIO numbers and connector pin numbers is included in the
table above.

Note that the config string uses GPIO numbers, but once the driver is loaded the HAL pin names refer
to connector pin numbers.

This may be more logical than it first appears. When setting up you need to configure enough pins
of each type, whilst avoiding overwriting any other functions that your system needs. Then once the
driver is loaded, in the HAL layer you just want to know where to connect the wires for each HAL pin.

6.5.7 Known Bugs

At the moment (2023-07-16) this driver only seems to work on Raspbian as the generic Debian image
does not set up the correct interfaces in /dev/gpiomem and restricts access to the /sys/mem interface.

6.6 Generic driver for any GPIO supported by gpiod.

This driver has been tested on the Raspberry Pi, and should also work on Banana Pi, BeagleBone,
Pine64 (et al.) and other single board computers, and potentially on other platforms.

6.6.1 Purpose

This driver allows the use of GPIO pins in a way analogous to the parallel port driver on x86 PCs. It
can use the same step generators, encoder counters and similar components.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 339/1261

6.6.2 Utilisation

loadrt hal gpio inputs=GPIO5,GPI06,GPI012,GPI013,GPI016,GPI017,GPI018,GPI019 \
outputs=GPI1020,GPI1021,GPI1022,GPI1023,GP1024,GPI025,GPI026, «+
GPI027 \
invert=GPI020,GPI027 \
reset=GPI021,GPI022

This driver relies on the libgpiod-dev library and the gpiod package, which contains a number of
utilities for configuring and querying GPIO. The GPIO pin names in the "loadrt” line of the HAL given
above should be the names given by the gpioinfo command.

Sample output (truncated):

$ gpioinfo
gpiochip® - 54 lines:
line 0: "ID SDA” unused input active-high
line 1: "ID SCL” unused input active-high
line 2: "SDA1” unused input active-high
line 3: "SCL1"” unused input active-high
line 4: "GPIO GCLK” unused input active-high
line 5: "GPIO5” unused input active-high
line 6: "GPI06"” unused input active-high
line 7: "SPI CE1 N” unused input active-high
line 8: "SPI CEO N” unused input active-high
line 9: "SPI_MISO” unused input active-high
line 10: "SPI_MOSI” unused input active-high
line 11: "SPI_ SCLK” unused input active-high
line 12: "GPIO12"” unused input active-high
line 13: "GPIO13"” unused input active-high
line 14: "TXD1"” unused input active-high
line 15: "RXD1"” unused input active-high
line 16: "GPIO016"” unused input active-high
line 17: "GPIO17"” unused input active-high
line 18: "GPI018"” unused input active-high
line 19: "GPI019” unused input active-high
line 20: "GPI020"” unused output active-high

A list of input and/or output pins should be specified as shown in the sample above. The \ character is
used for line continuation in HAL, and is used to improve readability. The pin names are case-sensitive
and there must be no spaces in the strings, neither between the comma-separated pins lists nor the

”__

=" signs.

Additional modifiers are

invert
(valid for outputs only). Inverts the sense of the physical pin relative to the value in HAL.
reset
(valid for outputs only). If any pins are allocated to the "reset” list then a HAL parameter
hal_gpio.reset_ns will be created. This will have no effect unless the hal_gpio.reset func-
tion is added to a realtime thread. This should be placed after the hal_gpio.write function
and must be in the same thread. The behaviour of this function is equivalent to the same
function in the hal_parport driver, and it allows a step pulse every thread cycle. If the
hal_gpio.reset_ns time is set longer than 1/4 of the period of the thread that it is added to,
then the value will be reduced to 1/4 the thread period. There is a lower limit to how long
the pulse can be. With 8 pins in the output list the pulse width can not reduce lower than
5000 ns on an RPi4, for example.
The following functions are accepted in all versions, but are only effective if a version of libgpiod dev
>= 1.6 is installed. They should be used in the same way as the parameters described above, and will
alter the electrical parameters of the GPIO pins if this is supported by the hardware.

https://tracker.debian.org/pkg/libgpiod

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 340/1261

opendrain
opensource
biasdisable
pulldown
pullup

The version of libgpiod-dev installed can be determined by the command gpioinfo -v

6.6.3 Pins

— hal gpio.NAME-in - HAL OUT The value of an input pin presented in to HAL
— hal gpio.NAME-in-not - HAL OUT An inverted version of the above, for convenience
— hal gpio.NAME-out - HAL IN use this pin to transfer a HAL bit value to a physical output

6.6.4 Parameters

— hal gpio.reset ns - HAL RW - “setp” this parameter to control the pulse length of pins added to the
"reset” list. The value will be limited between 0 and thread-period / 4.

6.6.5 Fonctions

— hal gpio.read - Add this to the base thread to update the HAL pin values to match the physical
input values.

— hal gpio.write - Add this to the base thread to update the physical pins to match the HAL values.

— hal gpio.reset - Only exported if there are pins defined in the reset list. This should be placed after
the "write” function, and should be in the same thread.

Typically, the read function will be early in the call list, before any encoder counters and the write
function will be later in the call list, after stepgen.make-pulses.

6.6.6 Pin ldentification

Use the pin names returned by the gpioinfo utility. This uses the device-tree data. If the installed OS
does not have a device-tree database then the pins will all be called “unnamed” (or similar) and this
driver can not be used.

A further update to this driver might allow access by index number, but this is not currently supported.

6.6.7 Troubleshooting permissions problems.

If "access denied” messages are returned on loading the driver, try the following recipe: (Should not
be needed for Raspbian, and will need to be modified to match the actual GPIO chip name on non-Pi
platforms)

1. Create a new group gpio with the command
sudo groupadd gpio
2. Then to setup permissions for the “gpio” group, create a file called 90-gpio-access in the

/etc/udev/rules.d/ directory with the following contents (this is copied from the Raspbian
install)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 341 /1261

SUBSYSTEM=="bcm2835-gpiomem”, GROUP="gpio”, MODE="0660"
SUBSYSTEM=="gpio”, GROUP="gpio”, MODE="0660"
SUBSYSTEM=="gpio*"”, PROGRAM="/bin/sh -c '\
chown -R root:gpio /sys/class/gpio && chmod -R 770 /sys/class/gpio;\
chown -R root:gpio /sys/devices/virtual/gpio &&\
chmod -R 770 /sys/devices/virtual/gpio;\
chown -R root:gpio /sys$devpath && chmod -R 770 /sys$devpath\

SUBSYSTEM=="pwm*", PROGRAM="/bin/sh -c '\
chown -R root:gpio /sys/class/pwm && chmod -R 770 /sys/class/pwm;\
chown -R root:gpio /sys/devices/platform/soc/*.pwm/pwm/pwmchip* &&\
chmod -R 770 /sys/devices/platform/soc/*.pwm/pwm/pwmchip*\

3. Add the user who runs LinuxCNC to the gpio group with

sudo usermod -aG gpio <username>

6.6.8 Author

Andy Pugh

6.6.9 Known Bugs

None at this time.

6.7 Mesa HostMot2 Driver

6.7.1 Introduction

HostMot2 is an FPGA configuration developed by Mesa Electronics for theirline of Anything I/O motion
control cards. The firmware is open source, portable and flexible. It can be configured (at compile-
time) with zero or more instances (an object created at runtime) of each of several Modules: encoders
(quadrature counters), PWM generators, and step/dir generators. The firmware can be configured
(at run-time) to connect each of these instances to pins on the I/O headers. I/O pins not driven by a
Module instance revert to general-purpose bi-directional digital I/O.

6.7.2 Firmware Binaries

50 Pin Header FPGA cards Several pre-compiled HostMot2 firmware binaries are available for the
different Anything I/O boards. This list is incomplete, check the hostmot2-firmware distribution for
up-to-date firmware lists.

— 3x20 (144 1/O pins): using hm2 pci module

— 24-channel servo
— 16-channel servo plus 24 step/dir generators

— 5122 (96 I/O pins): using hm2 pci module

— 16-channel servo

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 342 /1261

— 8-channel servo plus 24 step/dir generators

— 5120, 5123, 4165, 4168 (72 I/O pins): using hm2 pci module

— 12-channel servo
— 8-channel servo plus 4 step/dir generators
— 4-channel servo plus 8 step/dir generators

— 7143 (48 I/O pins): using hm2 7i43 module

— 8-channel servo (8 PWM generators & 8 encoders)
— 4-channel servo plus 4 step/dir generators

DB25 FPGA cards The 5125 Superport FPGA card is preprogrammed when purchased and does not
need a firmware binary.

6.7.3 Installing Firmware

Depending on how you installed LinuxCNC you may have to open the Synaptic Package Manager from
the System menu and install the package for your Mesa card. The quickest way to find them is to do a
search for hostmot2 in the Synaptic Package Manager. Mark the firmware for installation, then apply.

6.7.4 Loading HostMot2

The LinuxCNC support for the HostMot2 firmware is split into a generic driver called hostmot2 and
two low-level I/O drivers for the Anything I/O boards. The low-level I/O drivers are hm2 7i43 and
hm2 pci (for all the PCI- and PC-104/Plus-based Anything I/O boards). The hostmot2 driver must be
loaded first, using a HAL command like this:

loadrt hostmot2

See the hostmot2(9) man page for details.

The hostmot2 driver by itself does nothing, it needs access to actual boards running the HostMot2
firmware. The low-level I/O drivers provide this access. The low-level I/O drivers are loaded with
commands like this:

loadrt hm2 pci config="firmware=hm2/5i20/SVST8 4.BIT
num_encoders=3 num_pwmgens=3 num_stepgens=1"

The config parameters are described in the hostmot2 man page.

6.7.5 Watchdog

The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it.

The watchdog must be petted by LinuxCNC periodically or it will bite. The hm?2 write function (see
below) pets the watchdog.

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and
become high-impedance inputs (pulled high). The state of the HostMot2 firmware modules is not
disturbed (except for the configuration of the I/O Pins). Encoder instances keep counting quadrature
pulses, and pwm- and step-generators keep generating signals (which are not relayed to the motors,
because the I/O Pins have become inputs).

Resetting the watchdog resets the I/O pins to the configuration chosen at load-time.

If the firmware includes a watchdog, the following HAL objects will be exported:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 343 /1261

6.7.5.1 Pins

— has _bit - (bit i/o) True if the watchdog has bit, False if the watchdog has not bit. If the watchdog
has bit and the has bit bit is True, the user can reset it to False to resume operation.

6.7.5.2 Parameters

— timeout ns - (u32 read/write) Watchdog timeout, in nanoseconds. This is initialized to 5,000,000
(5 milliseconds) at module load time. If more than this amount of time passes between calls to the
hm2 write function, the watchdog will bite.

6.7.6 HostMot2 Functions

— hm2_<BoardType>.<BoardNum>.read - Read all inputs, update input HAL pins.

— hm2 <BoardType>.<BoardNum>.write - Write all outputs.

— hm2 <BoardType>.<BoardNum>.read gpio - Read the GPIO input pins only. (This function is not
available on the 7143 due to limitations of the EPP bus.)

— hm2_<BoardType>.<BoardNum>.write_gpio - Write the GPIO control registers and output pins
only. (This function is not available on the 7143 due to limitations of the EPP bus.)

Note

The above read _gpio and write_gpio functions should not normally be needed, since the GPIO bits are
read and written along with everything else in the standard read and write functions above, which
are normally run in the servo thread.

The read gpio and write_gpio functions were provided in case some very fast (frequently updated)
I/0 is needed. These functions should be run in the base thread. If you have need for this, please
send an email and tell us about it, and what your application is.

6.7.7 Pinouts

The hostmot2 driver does not have a particular pinout. The pinout comes from the firmware that the
hostmot?2 driver sends to the Anything I/O board. Each firmware has different pinout, and the pinout
depends on how many of the available encoders, pwmgens, and stepgens are used. To get a pinout
list for your configuration after loading LinuxCNC in the terminal window type:

dmesg > hm2.txt

The resulting text file will contain lots of information as well as the pinout for the HostMot2 and any
error and warning messages.

To reduce the clutter by clearing the message buffer before loading LinuxCNC type the following in
the terminal window:

sudo dmesg -c

Now when you run LinuxCNC and then do a dmesg > hmZ2.txt in the terminal only the info from the
time you loaded LinuxCNC will be in your file along with your pinout. The file will be in the current
directory of the terminal window. Each line will contain the card name, the card number, the I/O
Pin number, the connector and pin, and the usage. From this printout you will know the physical
connections to your card based on your configuration.

An example of a 5120 configuration:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 344 /1261

[HOSTMOT2]

DRIVER=hm2 pci

BOARD=5120

CONFIG="firmware=hm2/5i20/SVST8 4.BIT num encoders=1 num pwmgens=1 num stepgens=3"

The above configuration produced this printout.

1141.053386] hm2/hm2 5i20.0: 72 I/0 Pins used:
1141.053394] hm2/hm2_5i20. I0 Pin 000 (P2-01):
1141.053397] hm2/hm2_5i20. I0 Pin 001 (P2-03):
1141.053401] hm2/hm2_5i20. I0 Pin 002 (P2-05):
1141.053405] hm2/hm2_5i20. IO Pin 003 (P2-07): Encoder #0, pin A (Input)
1141.053408] hm2/hm2_5i20. I0 Pin 004 (P2-09): IOPort

): IOPort

)
)
)
)

1141.053411] hm2/hm2_5i20. I0 Pin 005 (P2-11): Encoder #0, pin Index (Input)

)
)
)
)

IOPort
Encoder #0, pin B (Input)

1141.053415] hm2/hm2_5i20. I0 Pin 006 (P2-13): IOPort

1141.053418] hm2/hm2_5i20. I0 Pin 007 (P2-15): PWMGen #0, pin Out® (PWM or Up) (Output)

1141.053422] hm2/hm2_5i20. I0 Pin 008 (P2-17): IOPort

1141.053425] hm2/hm2_5i20. IO Pin 009 (P2-19): PWMGen #0, pin Outl (Dir or Down) (<«
Output)

[1141.053429] hm2/hm2_5i20.

[1141.053432] hm2/hm2_5i20.

<snip>...

[1141.053589] hm2/hm2_5i20.

[1141.053593] hm2/hm2_5i20.

[1141.053597] hm2/hm2_5i20.

[1141.053601] hm2/hm2_5i20.

[1141.053605] hm2/hm2_5i20.

[1141.053609] hm2/hm2_5i20.

[1141.053613] hm2/hm2_5i20.

[1141.053616] hm2/hm2_ 5i20.

[

[

[

[

[

[

[cNcoNoNoNoNoNoNoNoNoNo)

I0 Pin 010 (P2-21): IOPort
IO Pin 011 (P2-23): PWMGen #0, pin Not-Enable (Output)

[oN o]

: I0 Pin 060 (P4-25):
: I0 Pin 061 (P4-27):
: I0 Pin 062 (P4-29):

): StepGen #2, pin Step (Output)
): StepGen #2, pin Direction (Output)
): StepGen #2, pin (unused) (Output)
: I0 Pin 063 (P4-31): StepGen #2, pin (unused) (Output)
: I0 Pin 064 (P4-33): StepGen #2, pin (unused) (Output)
: I0 Pin 065 (P4-35): StepGen #2, pin (unused) (Output)
: I0 Pin 066 (P4-37): IOPort
: I0 Pin 067 (P4-39): IOPort
: I0 Pin 068 (P4-41): IOPort
: I0 Pin 069 (P4-43): IOPort
: I0 Pin 070 (P4-45): IOPort
: I0 Pin 071 (P4-47): IO0Port
: registered
itialized AnyIO board at 0000:02:02.0

1141.053619] hm2/hm2_5i20.
1141.053621] hm2/hm2_51i20.
1141.053624] hm2/hm2_5i20.
1141.053627] hm2/hm2_5i20.
1141.053811] hm2/hm2_5i20.
1141.053815] hm2 5i20.0: i

=NoNoNoNoNoNoNoNoNoNoNoNoNol

Note

That the 1/O Pin nnn will correspond to the pin number shown on the HAL Configuration screen for
GPIOs. Some of the StepGen, Encoder and PWMGen will also show up as GPIOs in the HAL Configu-
ration screen.

6.7.8 PIN Files

The default pinout is described in a .PIN file (human-readable text). When you install a firmware
package the .PIN files are installed in

/usr/share/doc/hostmot2-firmware-<board>/

6.7.9 Firmware

The selected firmware (.BIT file) and configuration is uploaded from the PC motherboard to the Mesa
mothercard on LinuxCNC startup. If you are using Run In Place, you must still install a hostmot2-
firmware-<board> package. There is more information about firmware and configuration in the Confi-
gurations section.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 345/1261

6.7.10 HAL Pins

The HAL pins for each configuration can be seen by opening up Show HAL Configuration from the
Machine menu. All the HAL pins and parameters can be found there. The following figure is of the
5120 configuration used above.

HAL Configuration =) =) [:3
Tree View
Itwnenls SHOW | WATCH
mﬂs Component Pins:
axisul wner & Dir Value Name
hm2_5i20 T Egg oUT 0 bm2 5120 0. encoder. 00. count
0 T bit I/f0 PALSE hm2 5120 0 encoder. 00 index-enable
T float OUT 0 hm2 5i20.0. encoder. O0. position
encoder T =32 OOUT 0 hm2 5i20 0. encoder. D0, rawcounts
gpio T bit 1IN FALSE hm2 5120 0. encoder. 00 reset
Prmigen T float OUT 0 hm2 5120.0. encoder. 00, velocity
slepgen
wralchdog
incontrol
mothon

Test HAL comimamid :

Paramelers
axis
hmz_5iz0

0
encoder
gpio
in_error
pet_walchdog
pwmgen
read
read_gpio
stepgen
walchdog
write
write_gpio

H— motion-command-handl
f— motion-controller i

Commands may be tested here but they will WOT he sawed

Figure 6.9 - 5i20 HAL Pins

6.7.11 Configurations

The Hostmot2 firmware is available in several versions, depending on what you are trying to accom-
plish. You can get a reminder of what a particular firmware is for by looking at the name. Let’s look
at a couple of examples.

In the 7143 (two ports), SV8 (Servo 8) would be for having 8 servos or fewer, using the classic 7133
4-axis (per port) servo board. So 8 servos would use up all 48 signals in the two ports. But if you only
needed 3 servos, you could say num encoders=3 and num_pwmgens=3 and recover 5 servos at 6
signals each, thus gaining 30 bits of GPIO.

Or, in the 5122 (four ports), SVST8 24 (Servo 8, Stepper 24) would be for having 8 servos or fewer
(7133 x2 again), and 24 steppers or fewer (7147 x2). This would use up all four ports. If you only needed
4 servos you could say num_encoders=4 and num_pwmgens=4 and recover 1 port (and save a 7133).
And if you only needed 12 steppers you could say num_stepgens=12 and free up one port (and save a
7147). So in this way we can save two ports (48 bits) for GPIO.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 346 /1261

Here are tables of the firmwares available in the official packages. There may be additional firmwares
available at the Mesanet.com website that have not yet made it into the LinuxCNC official firmware
packages, so check there too.

3x20 (6-port various) Default Configurations (The 3x20 comes in 1M, 1.5M, and 2M gate versions. So
far, all firmware is available in all gate sizes.)

Firmware Encoder PWMGen StepGen GPIO
SvV24 24 24 0 0
SVST16 24 16 16 24 0

5122 (4-port PCI) Default Configurations (The 5122 comes in 1M and 1.5M gate versions. So far, all
firmware is available in all gate sizes.)

Firmware Encoder PWM StepGen GPIO
SV1e6 16 16 0 0
SVST2 4 7147 |4 2 4 72
SVST8 8 8 8 8 0
SVSTS8 24 8 8 24 0
5123 (3-port PCI) Default Configurations (The 5123 has 400k gates.)
Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2 8 2 2 8 (tblb) 12
SVST2 4 7147 |4 2 4 48
SV12 2X7148 72 12 12 0 24
SV12IM 2X7148| 712 (+IM) 12 0 12
SVST4 8 4 4 8 (tblb) 0
SVSTS8 4 8 8 4 (tbl5) 0
SVST8 4IM?2 8 (+IM) 8 4 8
SVST8 8IM2 8 (+IM) 8 8 0
SVTP6 7139 6 0 (6 BLDC) 0 0
5120 (3-port PCI) Default Configurations (The 5120 has 200k gates.)
Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2 8 2 2 8 (tbl5) 12
SVST2 4 7147 | 4 2 4 48
SV12 2X7148 72 12 12 0 24
SV12IM 2X7148| 12 (+IM) 12 0 12
SVSTS8 4 8 8 4 (tbl5) 0
SVST8 4IM2 8 (+IM) 8 4 8
4168 (3-port PC/104) Default Configurations (The 4168 has 400k gates.)
Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2 4 7147 | 4 2 4 48
SVST4 8 4 4 8 0
SVSTS8 4 8 8 4 0
SVST8 4IM2 8 (+IM) 8 4 8
SVST8 8IM2 8 (+IM) 8 8 0

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 347 /1261

4165 (3-port PC/104) Default Configurations (The 4165 has 200k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVSTS8 4 8 8 4 0
SVST8 4IM?2 8 (+IM) 8 4 8
7143 (2-port parallel) 400k gate versions, Default Configurations
Firmware Encoder PWM StepGen GPIO
SV8 8 8 0 0
SVST4 4 4 4 4 (tbl5) 0
SVST4 6 4 4 6 (tbl3) 0
SVST4 12 4 4 12 0
SVST2 4 7147 | 4 2 4 24
7143 (2-port parallel) 200k gate versions, Default Configurations
Firmware Encoder PWM StepGen GPIO
SV8 8 8 0 0
SVST4 4 4 4 4 (tblb) 0
SVST4 6 4 4 6 (tbl3) 0
SVST2 4 7147 | 4 2 4 24

Even though several cards may have the same named .BIT file you cannot use a .BIT file that is not for
that card. Different cards have different clock frequencies so make sure you load the proper .BIT file
for your card. Custom hm?2 firmwares can be created for special applications and you may see some
custom hm?2 firmwares in the directories with the default ones.

When you load the board-driver (hm2 pci or hm?2 7i43), you can tell it to disable instances of the three
primary modules (pwmgen, stepgen, and encoder) by setting the count lower. Any I/O pins belonging
to disabled module instances become GPIOs.

6.7.12 GPIO

General Purpose I/O pins on the board which are not used by a module instance are exported to HAL as
full GPIO pins. Full GPIO pins can be configured at run-time to be inputs, outputs, or open drains, and
have a HAL interface that exposes this flexibility. I/O pins that are owned by an active module instance
are constrained by the requirements of the owning module, and have a restricted HAL interface.

GPIOs have names like hm2 <BoardType>.<BoardNum>.gpio.<IONum>. IONum is a three-digit
number. The mapping from IONum to connector and pin-on-that-connector is written to the syslog
when the driver loads, and it’s documented in Mesa’s manual for the Anything I/O boards.

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the
Canonical Device Interface (part of the HAL General Reference document).

GPIO pins default to input.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 348 /1261

6.7.12.1 Pins

— in - (Bit, Out) Normal state of the hardware input pin. Both full GPIO pins and I/O pins used as
inputs by active module instances have this pin.

— in_not - (Bit, Out) Inverted state of the hardware input pin. Both full GPIO pins and I/O pins used
as inputs by active module instances have this pin.

— out - (Bit, In) Value to be written (possibly inverted) to the hardware output pin. Only full GPIO
pins have this pin.

6.7.12.2 Parameters

— invert _output - (Bit, RW) This parameter only has an effect if the is output parameter is true. If this
parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL pin.
Only full GPIO pins and I/O pins used as outputs by active module instances have this parameter.
To invert an active module pin you have to invert the GPIO pin not the module pin.

— is_opendrain - (Bit, RW) This parameter only has an effect if the is output parameter is true. If this
parameter is false, the GPIO behaves as a normal output pin: the I/O pin on the connector is driven
to the value specified by the out HAL pin (possibly inverted), and the value of the in and in_not HAL
pins is undefined. If this parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the
out HAL pin drives the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance
state. In this high-impedance state the I/O pin floats (weakly pulled high), and other devices can
drive the value; the resulting value on the I/O pin is available on the in and in_not pins. Only full
GPIO pins and I/O pins used as outputs by active module instances have this parameter.

— is_output - (Bit, RW) If set to 0, the GPIO is an input. The I/O pin is put in a high-impedance state
(weakly pulled high), to be driven by other devices. The logic value on the I/O pin is available in the
in and in_not HAL pins. Writes to the out HAL pin have no effect. If this parameter is set to 1, the
GPIO is an output; its behavior then depends on the is opendrain parameter. Only full GPIO pins
have this parameter.

6.7.13 StepGen

StepGens have names like hm2 <BoardType>.<BoardNum>.stepgen.<Instance>. Instance is a two-
digit number that corresponds to the HostMot2 stepgen instance number. There are num_stepgens
instances, starting with 00.

Each stepgen allocates 2-6 I/O pins (selected at firmware compile time), but currently only uses two:
Step and Direction outputs. 3

The StepGen representation is modeled on the stepgen software component. StepGen default is active
high step output (high during step time low during step space). To invert a StepGen output pin you
invert the corresponding GPIO pin that is being used by StepGen. To find the GPIO pin being used for
the StepGen output run dmesg as shown above.

Each StepGen instance has the following pins and parameters:

6.7.13.1 Pins

— control-type - (Bit, In) Switches between position control mode (0) and velocity control mode (1).
Defaults to position control (0).

— counts - (s32, Out) Feedback position in counts (number of steps).
— enable - (Bit, In) Enables output steps. When false, no steps are generated.
— position-cmd - (Float, In) Target position of stepper motion, in user-defined position units.

3. At present, the firmware supports multi-phase stepper outputs, but the driver doesn’t. Interested volunteers are solicited.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 349/1261

— position-fb - (Float, Out) Feedback position in user-defined position units (counts / position_scale).

— velocity-cmd - (Float, In) Target velocity of stepper motion, in user-defined position units per se-
cond. This pin is only used when the stepgen is in velocity control mode (control-type=1).

— velocity-fb - (Float, Out) Feedback velocity in user-defined position units per second.

6.7.13.2 Parameters

— dirhold - (u32, RW) Minimum duration of stable Direction signal after a step ends, in nanoseconds.

— dirsetup - (u32, RW) Minimum duration of stable Direction signal before a step begins, in nanose-
conds.

— maxaccel - (Float, RW) Maximum acceleration, in position units per second per second. If set to 0,
the driver will not limit its acceleration.

— maxvel - (Float, RW) Maximum speed, in position units per second. If set to 0, the driver will choose
the maximum velocity based on the values of steplen and stepspace (at the time that maxvel was
set to 0).

— position-scale - (Float, RW) Converts from counts to position units. position = counts/ position_scale

— step_type - (u32, RW) Output format, like the step type modparam to the software stegen(9) com-
ponent. 0 = Step/Dir, 1 = Up/Down, 2 = Quadrature. In Quadrature mode (step type=2), the step-
gen outputs one complete Gray cycle (00 -> 01 -> 11 -> 10 -> 00) for each step it takes.

— steplen - (u32, RW) Duration of the step signal, in nanoseconds.

— stepspace - (u32, RW) Minimum interval between step signals, in nanoseconds.

6.7.13.3 Output Parameters

The Step and Direction pins of each StepGen have two additional parameters. To find which I/O pin
belongs to which step and direction output run dmesg as described above.

— invert output - (Bit, RW) This parameter only has an effect if the is output parameter is true. If this
parameter is true, the output value of the GPIO will be the inverse of the value on the out HAL pin.

— is_opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: the
I/O pin on the connector is driven to the value specified by the out HAL pin (possibly inverted). If
this parameter is true, the GPIO behaves as an open-drain pin. Writing O to the out HAL pin drives
the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance state. In this
high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and I/O
pins used as outputs by active module instances have this parameter.

6.7.14 PWMGen

PWMgens have names like hm2 <BoardType>.<BoardNum>.pwmgen.<Instance>. Instance is a two-
digit number that corresponds to the HostMot2 pwmgen instance number. There are num_pwmgens
instances, starting with 00.

In HM2, each pwmgen uses three output I/O pins: Not-Enable, Out0, and Outl. To invert a PWMGen
output pin you invert the corresponding GPIO pin that is being used by PWMGen. To find the GPIO
pin being used for the PWMGen output run dmesg as shown above.

The function of the OutO and Outl I/O pins varies with output-type parameter (see below).

The hm2 pwmgen representation is similar to the software pwmgen component. Each pwmgen ins-
tance has the following pins and parameters:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 350/1261

6.7.14.1 Pins

— enable - (Bit, In) If true, the pwmgen will set its Not-Enable pin false and output its pulses. If enable
is false, pwmgen will set its Not-Enable pin true and not output any signals.

— value - (Float, In) The current pwmgen command value, in arbitrary units.

6.7.14.2 Parameters

— output-type - (s32, RW) This emulates the output type load-time argument to the software pwmgen
component. This parameter may be changed at runtime, but most of the time you probably want
to set it at startup and then leave it alone. Accepted values are 1 (PWM on OutO and Direction on
Outl), 2 (Up on Out0 and Down on Outl), 3 (PDM mode, PDM on OutO and Dir on Outl), and 4
(Direction on OutO0 and PWM on Outl, for locked antiphase).

— scale - (Float, RW) Scaling factor to convert value from arbitrary units to duty cycle: dc = value /
scale. Duty cycle has an effective range of -1.0 to +1.0 inclusive, anything outside that range gets
clipped.

— pdm_frequency - (u32, RW) This specifies the PDM frequency, in Hz, of all the pwmgen instances
running in PDM mode (mode 3). This is the pulse slot frequency; the frequency at which the pdm
generator in the Anything I/O board chooses whether to emit a pulse or a space. Each pulse (and
space) in the PDM pulse train has a duration of 1/pdm _frequency seconds. For example, setting
the pdm_frequency to 2*106 Hz (2 MHz) and the duty cycle to 50% results in a 1 MHz square wave,
identical to a 1 MHz PWM signal with 50% duty cycle. The effective range of this parameter is
from about 1525 Hz up to just under 100 MHz. Note that the max frequency is determined by the
ClockHigh frequency of the Anything I/O board; the 5120 and 7143 both have a 100 MHz clock,
resulting in a 100 MHz max PDM frequency. Other boards may have different clocks, resulting in
different max PDM frequencies. If the user attempts to set the frequency too high, then it will be
clipped to the max supported frequency of the board.

— pwm_frequency - (u32, RW) This specifies the PWM frequency, in Hz, of all the pwmgen instances
running in the PWM modes (modes 1 and 2). This is the frequency of the variable-duty-cycle wave.
Its effective range is from 1 Hz up to 193 kHz. Note that the max frequency is determined by the
ClockHigh frequency of the Anything I/O board; the 5i20 and 7i43 both have a 100 MHz clock,
resulting in a 193 kHz max PWM frequency. Other boards may have different clocks, resulting in
different max PWM frequencies. If the user attempts to set the frequency too high, then it will be
clipped to the max supported frequency of the board. Frequencies below about 5 Hz are not terribly
accurate, but above 5 Hz they are pretty close.

6.7.14.3 Output Parameters

The output pins of each PWMGen have two additional parameters. To find which I/O pin belongs to
which output run dmesg as described above.

— invert output - (Bit, RW) This parameter only has an effect if the is output parameter is true.
If this parameter is true, the output value of the GPIO will be the inverse of the value on the out
HAL pin.

— 1is opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: The
I/O pin on the connector is driven to the value specified by the out HAL pin (possibly inverted). If
this parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the out HAL pin drives
the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance state. In this
high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in not pins. Only full GPIO pins and
I/O pins used as outputs by active module instances have this parameter.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 351/1261

6.7.15 Encoder

Encoders have names like hm2_ <BoardType>.<BoardNum>.encoder.<Instance>.. Instance is a two-
digit number that corresponds to the HostMot2 encoder instance number. There are num_encoders
instances, starting with 00.

Each encoder uses three or four input I/O pins, depending on how the firmware was compiled. Three-
pin encoders use A, B, and Index (sometimes also known as Z). Four-pin encoders use A, B, Index, and
Index-mask.

The hm?2 encoder representation is similar to the one described by the Canonical Device Interface
(in the HAL General Reference document), and to the software encoder component. Each encoder
instance has the following pins and parameters:

6.7.15.1 Pins

— count - (s32, Out) Number of encoder counts since the previous reset.

— index-enable - (Bit, I/O) When this pin is set to True, the count (and therefore also position) are
reset to zero on the next Index (Phase-Z) pulse. At the same time, index-enable is reset to zero to
indicate that the pulse has occurred.

— position - (Float, Out) Encoder position in position units (count / scale).

— rawcounts - (s32, Out) Total number of encoder counts since the start, not adjusted for index or
reset.

— reset - (Bit, In) When this pin is TRUE, the count and position pins are set to 0. The value of the
velocity pin is not affected by this. The driver does not reset this pin to FALSE after resetting the
count to 0, that is the user’s job.

— velocity - (Float, Out) Estimated encoder velocity in position units per second.

6.7.15.2 Parameters

— counter-mode - (Bit, RW) Set to False (the default) for Quadrature. Set to True for Up/Down or for
single input on Phase A. Can be used for a frequency to velocity converter with a single input on
Phase A when set to true.

— filter - (Bit, RW) If set to True (the default), the quadrature counter needs 15 clocks to register
a change on any of the three input lines (any pulse shorter than this is rejected as noise). If set to
False, the quadrature counter needs only 3 clocks to register a change. The encoder sample clock
runs at 33 MHz on the PCI Anything I/O cards and 50 MHz on the 7143.

— 1index-invert - (Bit, RW) If set to True, the rising edge of the Index input pin triggers the Index
event (if index-enable is True). If set to False, the falling edge triggers.

— index-mask - (Bit, RW) If set to True, the Index input pin only has an effect if the Index-Mask input
pin is True (or False, depending on the index-mask-invert pin below).

— index-mask-invert - (Bit, RW) If set to True, Index-Mask must be False for Index to have an effect.
If set to False, the Index-Mask pin must be True.

— scale - (Float, RW) Converts from count units to position units. A quadrature encoder will nor-
mally have 4 counts per pulse so a 100 PPR encoder would be 400 counts per revolution. In
.counter-mode a 100 PPR encoder would have 100 counts per revolution as it only uses the ri-
sing edge of A and direction is B.

— vel-timeout - (Float, RW) When the encoder is moving slower than one pulse for each time that
the driver reads the count from the FPGA (in the hm?2 read() function), the velocity is harder to
estimate. The driver can wait several iterations for the next pulse to arrive, all the while reporting
the upper bound of the encoder velocity, which can be accurately guessed. This parameter specifies
how long to wait for the next pulse, before reporting the encoder stopped. This parameter is in
seconds.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 352 /1261

6.7.16 5125 Configuration
6.7.16.1 Firmware

The 5125 firmware comes preloaded for the daughter card it is purchased with. So the firmware=xxx.BIT
is not part of the hm2 pci configuration string when using a 5125.

6.7.16.2 Configuration

Example configurations of the 5125/7176 and 5125/7177 cards are included in the Configuration Selec-
tor.

If you like to roll your own configuration the following examples show how to load the drivers in the
HAL file.

5125 + 7176 Card

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2 pci config="num encoders=1 num_stepgens=5 sserial port 0=0XXX"

5125 + 7177 Card

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2 pci config="num_encoders=6 num pwmgens=6 sserial port 0=0XXX"

6.7.16.3 SSERIAL Configuration

The sserial port 0=0XXX configuration string sets some options for the smart serial daughter card.
These options are specific for each daughter card. See the Mesa manual for more information on the
exact usage (typically in the section called SOFTWARE PROCESS DATA MODES) or see the manual
page of SSERIAL(9).

6.7.16.4 7177 Limits

The minlimit and maxlimit are bounds on the pin value (in this case the analog out value) fullscalemax
is the scale factor.

These are by default set to the analog in or analog range (most likely in Volts).
So for example on the 7177 +-10V analog outputs, the default values are:

minlimit: -10
maxlimit: +10
maxfullscale: 10

If you wanted to say scale the analog out of a channel to IPS for a velocity mode servo (say 24 IPS
max) you could set the limits like this:

minlimit: -24

maxlimit: +24

../man/man9/sserial.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 353/1261

maxfullscale: 24

If you wanted to scale the analog out of a channel to RPM for a 0 to 6000 RPM spindle with 0-10V
control you could set the limits like this:

minlimit: 0

maxlimit: 6000

maxfullscale: 6000

(this would prevent unwanted negative output voltages from being set)

6.7.17 Example Configurations

Several example configurations for Mesa hardware are included with LinuxCNC. The configurations
are located in the hm2-servo and hm2-stepper sections of the Configuration Selector. Typically you
will need the board installed for the configuration you pick to load. The examples are a good place to
start and will save you time. Just pick the proper example from the LinuxCNC Configuration Selector
and save a copy to your computer so you can edit it. To see the exact pins and parameters that your
configuration gave you, open the Show HAL Configuration window from the Machine menu, or do
dmesg as outlined above.

6.8 MB2HAL

6.8.1 Introduction

MB2HAL is a generic non-realtime HAL component to communicate with one or more Modbus devices.
So far, there are two options to communicate with a Modbus device:

1. One option is to create a HAL component as a driver see VFD Modbus.

2. Another option is to use Classic Ladder which has Modbus built in, see ClassicLadder.

3. Now there is a third option that consists of a “generic” driver configured by text file, this is called
MB2HAL.

Why MB2HAL? Consider using MB2HAL if:
— You have to write a new driver and you don’t know anything about programming.
— You need to use Classic Ladder “only” to manage the Modbus connections.

— You have to discover and configure first time the Modbus transactions. MB2HAL have debug levels
to facilitate the low level protocol debug.

— You have more than one device to connect. MB2HAL is very efficiently managing multiple devices,
transactions and links. Currently I am monitoring two axis drivers using a Rs232 port, a VFD driver
using another Rs232 port, and a remote 1/O using TCP/IP.

— You want a protocol to connect your Arduino to HAL. Look the included sample configuration file,
sketch and library for Arduino Modbus.

6.8.2 Utilisation

a. Create a config file from the example below

1. Set component name (optional)

Set HAL_MODULE NAME=mymodule (default HAL MODULE NAME=mb2hal)
2. Load the modbus HAL non-realtime component

b. Default component name: loadusr -W mb2hal config=config file.ini
c. Custom component name: loadusr -Wn mymodule mb2hal config=config file.ini

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?VFD_Modbus

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 354 /1261

6.8.3 Options

6.8.3.1 Init Section

[MB2HAL INIT]

Value Type Required | Description
INIT DEBUG | Integer| No Debug level of init and INI file parsing.
0 = silent

1 = error messages (default)

2 = OK confirmation messages

3 = debugging messages

4 = maximum debugging messages (only in transactions)

VERSION String | No Version number in the format N.N[NN]. Defaults to 1.0.
HAL MODULE_NAMYEing | No HAL module (component) name. Defaults to “mb2hal”.
SLOWDOWN Float | No Insert a delay of "FLOAT seconds” between transactions in

order to not to have a lot of logging and facilitate the
debugging. Useful when using DEBUG=3 (NOT

INIT DEBUG=3). It affects ALL transactions. Use ”0.0” for
normal activity.

TOTAL TRANSAGIHONS | Yes The number of total Modbus transactions. There is no
maximum.

6.8.3.2 Transaction Sections

One transaction section is required per transaction, starting at [TRANSACTION 00] and counting up
sequentially. If there is a new link (not transaction), you must provide the REQUIRED parameters 1st
time. Warning: Any OPTIONAL parameter not specified are copied from the previous transaction.

Value Type Required | Description
LINK TYPE String | Yes You must specify either a ”"serial” or “tcp” link for the first
transaction. Later transactions will use the previous
transaction link if not specified.
TCP_IP IPad- | If The Modbus slave device IP address. Ignored if
dress | LINK TYPE=t¢INK TYPE=serial.
TCP_PORT Integer| No The Modbus slave device TCP port. Defaults to 502.
Ignored if LINK TYPE=serial.
SERIAL PORT| String | If The serial port. For example ”/dev/ttyS0”. Ignored if
LINK TYPE=s&dNKL TYPE=tcCp.
SERIAL BAUD| Integer| If The baud rate. Ignored if LINK _TYPE=tcp.
LINK TYPE=serial
SERIAL BITS| Integer| If Data bits. One of 5, 6, 7, 8. Ignored if LINK TYPE=tcp.
LINK TYPE=serial
SERIAL PARITS$tring | If Data parity. One of: even, odd, none. Ignored if
LINK TYPE=s&dNKL TYPE=tcCp.
SERIAL STOP| Integer| If Stop bits. One of 1, 2. Ignored if LINK TYPE=tcp.
LINK TYPE=serial
SERIAL DELAYIMteger| If Serial port delay between transactions of this section only.
LINK TYPE=sdnimk. Defaults to 0. Ignored if LINK TYPE=tcp.
MB SLAVE ID| Integer| Yes Modbus slave number.
FIRST ELEMENTnteger| Yes The first element address.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 355/1261

Value Type Required | Description

NELEMENTS Integer| Unless The number of elements. It is an error to specify both
PIN NAMES | NELEMENTS and PIN NAMES. The pin names will be
is sequential numbers, e.g. mb2hal.plcin. Q1.
specified

PIN NAMES | List Unless A list of element names. These names will be used for the
NELEMENTS | pin names, e.g. mb2hal.plcin.cycle start.
is NOTE: There must be no white space characters in the list.
specified Example: PIN NAMES=cycle start,stop,feed hold

MB TX CODE | String | Yes Modbus transaction function code (see specifications):

e fnct 01 read coils

* fnct 02 read discrete inputs

» fnct 03 read holding registers
» fnct 04 read input registers

e fnct 05 write single coil

* fnct 06 write single register

» fnct 15 write multiple coils

* fnct 16 _write multiple registers

MB_RESPONSE| TAMESRIT N6 Response timeout for this transaction. In ms. Defaults to
500 ms. This is how much to wait for 1st byte before raise
an error.

MB_BYTE TIMEObAedts| No Byte timeout for this transaction. In ms. Defaults to 500
ms. This is how much to wait from byte to byte before raise
an error.

HAL TX NAME| String | No Instead of giving the transaction number, use a name.
Example: mb2hal.00.01 could become mb2hal.plcin.01.
The name must not exceed 28 characters. NOTE: when
using names be careful that you don’t end up with two
transactions using the same name.

MAX UPDATE RAT&at | No Maximum update rate in Hz. Defaults to 0.0 (0.0 = as soon
as available = infinite). NOTE: This is a maximum rate and
the actual rate may be lower. If you want to calculate it in
ms use (1000 / required ms). Example: 100 ms =

MAX UPDATE RATE=10.0, because 1000.0 ms / 100.0 ms =
10.0 Hz.

DEBUG String | No Debug level for this transaction only. See INIT DEBUG
parameter above.

6.

8.3.3 Error codes

While debugging transactions, note the returned “ret[]” value correspond to:

Modbus protocol exceptions:

0x01 - ILLEGAL FUNCTION - the FUNCTION code received in the query is not allowed or invalid.

0x02 - ILLEGAL DATA ADDRESS - the DATA ADDRESS received in the query is not an allowable
address for the slave or is invalid.

0x03 - ILLEGAL DATA VALUE - a VALUE contained in the data query field is not an allowable value
or is invalid.

0x04 - SLAVE DEVICE FAILURE - SLAVE (or MASTER) device unrecoverable FAILURE while at-
tempting to perform the requested action.

0x04 - SERVER FAILURE - (see above).

0x05 - ACKNOWLEDGE - This response is returned to PREVENT A TIMEOUT in the master. A long
duration of time is required to process the request in the slave.

0x06 - SLAVE DEVICE BUSY - The slave (or server) is BUSY. Retransmit the request later.

https://modbus.org/specs.php

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 356 /1261

— 0x06 - SERVER BUSY - (see above).

— 0x07 - NEGATIVE ACKNOWLEDGE - Unsuccessful programming request using function code 13
or 14.

— 0x08 - MEMORY PARITY ERROR - SLAVE parity error in MEMORY.

— O0x0A (-10) - GATEWAY PROBLEM PATH - Gateway path(s) not available.

— 0x0B (-11) - GATEWAY PROBLEM TARGET - The target device failed to respond (generated by
master, not slave).

Program or connection:

— 0x0C (-12) - COMM_TIME_OUT

— 0x0D (-13) - PORT SOCKET FAILURE

— O0xOE (-14) - SELECT FAILURE

— OxOF (-15) - TOO_ MANY DATAS

— 0x10 (-16) - INVALID CRC

— 0x11 (-17) - INVALID EXCEPTION CODE

6.8.4 Example config file

Click here to download.
#This .INI file is also the HELP, MANUAL and HOW-TO file for mb2hal.

#Load the Modbus HAL userspace module as the examples below,

#change to match your own HAL MODULE NAME and INI file name

#Using HAL MODULE NAME=mb2hal or nothing (default): loadusr -W mb2hal config=config file. <«
ini

#Using HAL MODULE NAME=mymodule: loadusr -Wn mymodule mb2hal config=config file.ini

++++++HH

Common section

B
[MB2HAL INIT]

#OPTIONAL: Debug level of init and INI file parsing.

0 = silent.

1 = error messages (default).

2 = OK confirmation messages.

3 = debugging messages.

4 = maximum debugging messages (only in transactions).
INIT DEBUG=3

#OPTIONAL: Set to 1.1 to enable the new functions:

- fnct 01 read coils

- fnct 05 write single coil

- changed pin names (see https://linuxcnc.org/docs/2.9/html/drivers/mb2hal.html# pins).
VERSION=1.1

#OPTIONAL: HAL module (component) name. Defaults to "mb2hal”.
HAL MODULE NAME=mb2hal

#OPTIONAL: Insert a delay of "FLOAT seconds” between transactions in order
#to not to have a lot of logging and facilitate the debugging.

#Useful when using DEBUG=3 (NOT INIT DEBUG=3)

#It affects ALL transactions.

#Use "0.0"” for normal activity.

SLOWDOWN=0.0

#REQUIRED: The number of total Modbus transactions. There is no maximum.

mb2hal_HOWTO.ini

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 357 /1261

TOTAL_TRANSACTIONS=9

++++++HH

Transactions

+++++++++

#0ne transaction section is required per transaction, starting at 00 and counting up <+
sequentially.

#If there is a new link (not transaction), you must provide the REQUIRED parameters 1lst <
time.

#Warning: Any OPTIONAL parameter not specified are copied from the previous transaction.

[TRANSACTION 00]

#REQUIRED: You must specify either a "serial” or "tcp” link for the first transaction.
#Later transaction will use the previous transaction link if not specified.
LINK TYPE=tcp

#if LINK TYPE=tcp then REQUIRED (only 1lst time): The Modbus slave device ip address.
#if LINK TYPE=serial then IGNORED
TCP_IP=192.168.2.10

#if LINK TYPE=tcp then OPTIONAL.

#if LINK TYPE=serial then IGNORED

#The Modbus slave device tcp port. Defaults to 502.
TCP_PORT=502

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#The serial port.

SERIAL_PORT=/dev/ttyS0

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#The baud rate.

SERIAL BAUD=115200

#1if LINK TYPE=serial then REQUIRED (only 1st time).
#1f LINK TYPE=tcp then IGNORED

#Data bits. One of 5,6,7,8.

SERIAL BITS=8

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#Data parity. One of: even, odd, none.
SERIAL_PARITY=none

#if LINK TYPE=serial then REQUIRED (only 1st time).
#if LINK TYPE=tcp then IGNORED

#Stop bits. One of 1, 2.

SERIAL STOP=2

#1if LINK TYPE=serial then OPTIONAL:

#if LINK TYPE=tcp then IGNORED

#Serial port delay between for this transaction only.
#In ms. Defaults to 0.

SERIAL DELAY MS=10

#REQUIRED (only 1st time).
#Modbus slave number.
MB_SLAVE ID=1

#REQUIRED: The first element address (decimal integer).
FIRST ELEMENT=0

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 358/1261

#REQUIRED unless PIN NAMES is specified: The number of elements.
#It is an error to specify both NELEMENTS and PIN_ NAMES

#The pin names will be sequential numbers e.g mb2hal.plcin.01
#NELEMENTS=4

#REQUIRED unless NELEMENTS is specified: A list of element names.

#these names will be used for the pin names, e.g mb2hal.plcin.cycle start
#NOTE: there must be no white space characters in the list

PIN NAMES=cycle start,stop,feed hold

#REQUIRED: Modbus transaction function code (see www.modbus.org specifications).

fnct 01 read coils (01 = 0x01) (new in 1.1)
fnct 02 read discrete inputs (02 = 0x02)
fnct 03 read holding registers (03 = 0x03)
fnct 04 read input registers (04 = 0x04)
fnct 05 write single coil (065 = 0x05) (new in 1.1)
fnct 06 write single register (06 = 0x06)
fnct 15 write multiple coils (15 = OxO0F)
fnct 16 write multiple registers (16 = 0x10)

Created pins:

fnct 01 read coils:

fnct 02 read discrete inputs:
mb2hal.m.n.bit (output)
mb2hal.m.n.bit-inv (output)

fnct 03 read holding registers:

fnct 04 read input registers:
mb2hal.m.n.float (output)

mb2hal.m.n.int (output)
fnct 05 write single coil:
mb2hal.m.n.bit (input)

NELEMENTS needs to be 1 or PIN NAMES must contain just one name.
fnct 06 write single register:
mb2hal.m.n.float (input)
mb2hal.m.n.int (input)
NELEMENTS needs to be 1 or PIN NAMES must contain just one name.
Both pin values are added and limited to 65535 (UINT16 MAX). Normally use one and let <+
the other open (read as 0).
fnct 15 write multiple coils:
mb2hal.m.n.bit (input)
fnct 16 write multiple registers:
mb2hal.m.n.float (input)
mb2hal.m.n.int (input)
Both pin values are added and limited to 65535 (UINT16 MAX). Normally use one and let <«
the other open (read as 0).

HHHFHHHHFHHFHHFHBFEHRHHH KRR

HOoH oW R R R

H H

m = HAL TX NAME or transaction number if not set, n = element number (NELEMENTS) or name <«
from PIN NAMES
Example: mb2hal.00.01.<type> (transaction=00, second register=01 (00 is the first one))
mb2hal.TxName.01l.<type> (HAL TX NAME=TxName, second register=01 (00 is the first <«
one))
MB TX CODE=fnct 03 read holding registers

#0OPTIONAL: Response timeout for this transaction. In INTEGER ms. Defaults to 500 ms.
#This is how much to wait for 1lst byte before raise an error.
MB_RESPONSE TIMEOUT MS=500

#OPTIONAL: Byte timeout for this transaction. In INTEGER ms. Defaults to 500 ms.
#This is how much to wait from byte to byte before raise an error.
MB_BYTE TIMEOUT MS=500

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 359/1261

#OPTIONAL: Instead of giving the transaction number, use a name.

#Example: mb2hal.00.01 could become mb2hal.plcin.01l

#The name must not exceed 28 characters.

#NOTE: when using names be careful that you dont end up with two transactions
#using the same name.

HAL TX NAME=remoteIOcfg

#OPTIONAL: Maximum update rate in HZ. Defaults to 0.0 (0.0 = as soon as available = <+
infinite).

#NOTE: This is a maximum rate and the actual rate may be lower.

#If you want to calculate it in ms use (1000 / required ms).

#Example: 100 ms = MAX UPDATE RATE=10.0, because 1000.0 ms / 100.0 ms = 10.0 Hz

MAX_UPDATE RATE=0.0

#0OPTIONAL: Debug level for this transaction only.
#See INIT DEBUG parameter above.
DEBUG=2

#While DEBUGGING transactions note the returned "ret[]” value correspond to:
#/* Modbus protocol exceptions */

#ILLEGAL FUNCTION -0x01 the FUNCTION code received in the query is not allowed or <«
invalid.

#ILLEGAL DATA ADDRESS -0x02 the DATA ADDRESS received in the query is not an allowable <+
address for the slave or is invalid.

#ILLEGAL DATA VALUE -0x03 a VALUE contained in the data query field is not an <+
allowable value or is invalid.

#SLAVE DEVICE FAILURE -0x04 SLAVE (or MASTER) device unrecoverable FAILURE while +«
attempting to perform the requested action.

#SERVER FAILURE -0x04 (see above).

#ACKNOWLEDGE -0x05 This response is returned to PREVENT A TIMEOUT in the master <«

A long duration of time is required to process the request <«
in the slave.

#SLAVE DEVICE BUSY -0x06 The slave (or server) is BUSY. Retrasmit the request later.

#SERVER_BUSY -0x06 (see above).

#NEGATIVE ACKNOWLEDGE -0x07 Unsuccessful programming request using function code 13 or <+
14,

#MEMORY_PARITY_ ERROR -0x08 SLAVE parity error in MEMORY.

#GATEWAY PROBLEM PATH -0x0A (-10) Gateway path(s) not available.

#GATEWAY_ PROBLEM TARGET -0x0B (-11) The target device failed to respond (generated by <«
master, not slave).
#/* Program or connection */

#COMM_TIME OUT -0x0C (-12)
#PORT _SOCKET FAILURE -0x0D (-13)
#SELECT_FAILURE -Ox0E (-14)
#T00_MANY_DATAS -0x0F (-15)
#INVALID CRC -0x10 (-16)
#INVALID EXCEPTION CODE -0x11 (-17)

[TRANSACTION 01]

MB_TX CODE=fnct 01 read coils
FIRST ELEMENT=1024
NELEMENTS=24

HAL TX NAME=remoteIOin

MAX UPDATE RATE=0.0

DEBUG=1

[TRANSACTION 02]

MB TX CODE=fnct 02 read discrete inputs
FIRST ELEMENT=1280

NELEMENTS=8

HAL TX NAME=readStatus

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

360 /1261

MAX_UPDATE_RATE=0.0

[TRANSACTION 03]

MB_TX CODE=fnct 05 write single coil
FIRST ELEMENT=100

NELEMENTS=1

HAL TX NAME=setEnableout

MAX UPDATE RATE=0.0

[TRANSACTION 04]

MB TX CODE=fnct 15 write multiple coils
FIRST ELEMENT=150

NELEMENTS=10

HAL TX NAME=remoteIOout
MAX_UPDATE_RATE=0.0

[TRANSACTION 05]

LINK TYPE=serial
SERIAL PORT=/dev/ttySO
SERIAL BAUD=115200
SERIAL BITS=8

SERIAL PARITY=none
SERIAL STOP=2

SERIAL DELAY MS=50

MB SLAVE ID=1

MB TX CODE=fnct 03 read holding registers
FIRST ELEMENT=1
NELEMENTS=2

HAL TX NAME=XDrive01l
MAX_UPDATE_RATE=0.0
DEBUG=1

[TRANSACTION 06]

MB TX CODE=fnct 04 read input registers
FIRST ELEMENT=12

NELEMENTS=3

HAL TX NAME=XDrive02

MAX UPDATE RATE=10.0

DEBUG=1

[TRANSACTION 07]

MB TX CODE=fnct 06 write single register
FIRST ELEMENT=20

NELEMENTS=1

HAL TX NAME=XDrive03

MAX UPDATE RATE=0.0

DEBUG=1

[TRANSACTION 08]

MB TX CODE=fnct 16 write multiple registers

FIRST ELEMENT=55
NELEMENTS=8
HAL_TX_NAME=XDrive04
MAX_UPDATE_RATE=10.0
DEBUG=1

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 361/1261

6.8.5 Pins

Note

Yellow = New in MB2HAL 1.1 (LinuxCNC 2.9) To use these new features you have to set VERSION =
1.1.

m = Value of HAL TX NAME if set or transaction number

n = Element number (NELEMENTS) or name from PIN NAMES

Example:

— mb2hal.00.01.int (TRANSACTION_00, second register)
— mb2hal.readStatus.01.bit (HAL_TX_NAME=readStatus, first bit)

6.8.5.1 fnct_01_read_coils

— mb2hal.m.n.bit bit out
— mb2hal.m.n.bit-inv bit out

6.8.5.2 fnct_02_read_discrete_inputs

— mb2hal.m.n.bit bit out
— mb2hal.m.n.bit-inv bit out

6.8.5.3 fnct_03 read_holding_registers

— mb2hal.m.n.float float out
— mb2hal.m.n.int s32 out

6.8.5.4 fnct_04_read_input_registers
— mb2hal.m.n.float float out

— mb2hal.m.n.int s32 out

6.8.5.5 fnct_05_write_single_coil

— mb2hal.m.n.bit bit in

NELEMENTS needs to be 1 or PIN NAMES must contain just one name.

6.8.5.6 fnct_06_write_single_register

— mb2hal.m.n.float float in
— mb2hal.m.n.int s32 in

NELEMENTS needs to be 1 or PIN _NAMES must contain just one name. Both pin values are added and
limited to 65535 (UINT16 _MAX). Use one and let the other open (read as 0).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 362 /1261

6.8.5.7 fnct_15_write_multiple_coils

— mb2hal.m.n.bit bit in

6.8.5.8 fnct_16_write_multiple_registers

— mb2hal.m.n.float float in
— mb2hal.m.n.int s32 in

Both pin values are added and limited to 65535 (UINT16 MAX). Use one and let the other open (read
as 0).

6.9 Mitsub VFD Driver

This is a non-realtime HAL program, written in Python, to control VFDs from Mitsubishi.
Specifically the A500 F500 E500 A500 D700 E700 F700 series - others may work.
mitsub vfd supports serial control using the RS485 protocol.

Conversion from USB or serial port to RS485 requires special hardware.

Note

Since this is a non-realtime program it can be affected by computer loading and latency. It is possible
to lose control of the VFDs. It is optional to set the VFD to stop if it loses communication if that
is desirable. One should always have an Estop circuit that kills the power to the unit in case of
emergency.

This component is loaded using the halcmd ”loadusr” command:

loadusr -Wn coolant mitsub vfd spindle=02 coolant=01

The above command says:
loadusr, wait for coolant pins to be ready, component mitsub vfd, with 2 slaves named spindle (slave
#2) and coolant (slave #1)

6.9.1 Command Line Options

The command line options are:

— -b or --baud <rate> : set the baud rate - all networked VFDs must be the same
— -p or --port <device path> : sets the port to use such as /dev/ttyUSBO
— <name>=<slave#> : sets the HAL component/pin name and slave number.

Debugging can be toggled by setting the debug pin true.

Note
Turning on debugging will result in a flood of text in the terminal.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

363 /1261

6.9.2 Pins

Where <n> is mitsub vfd or the name given during loading.

— <n>.fwd (bit, in) True sets motion forward, False sets reverse.

— <n>.run (bit, in) True sets the VFD in motion based on the .fwd pin.

— <n>.debug (bit, in) Prints debug info to the terminal.

— <n>.alarm (bit, out) signals an alarm state of VFD.

— <n>.up-to-speed (bit, out) when drive is at commanded speed (speed-tolerance is set on vfd)

— <n>.monitor (bit, in) some models (eg E500) cannot monitor status - set the monitor pin to false
in this case pins such as up-to-speed, amps, alarm and status bits are not updated.

— <n>.motor-cmd (float, in) commanded speed to the VFD (scaled to hertz by default).

— <n>.motor-fb (float, out) feedback speed from the VFD (scaled to hertz by default).

— <n>.motor-amps (float, out) Current amperage output of motor.

— <n>.motor-power (float, out) Current power output of motor.

— <n>.scale-cmd (float, in) Scales the motor-cmd pin to arbitrary units. default 1 = Hertz.
— <n>.scale-fb (float, in) Scales the motor-fb pin to arbitrary units. default 1 = Hertz.

— <n>.scale-amps (float, in) Scales the motor-amps pin to arbitrary units. default 1 = amps.
— <n>.scale-power (float, in) Scales the motor-power pin to arbitrary units. default 1 =.

— <n>.estop (bit, in) puts the VFD into emergency-stopped status.

— <n>.status-bit-N (bit, out) N = 0 to 7, status bits are user configurable on the VFD. Bit 3 should
be set to at speed and bit 7 should be set to alarm. Others are free to be set as required.

6.9.3 HAL example

#

example usage of the Mitsubishi VFD driver

#

loadusr -Wn coolant mitsub vfd spindle=02 coolant=01

FORERRRORRokRokkok ROk kok ok Spindle VFD Setup SlaVe 2 RsRokskokskokokokokokokok Kok kokok ok ok ok

net spindle-vel-cmd spindle.motor-cmd
net spindle-cw spindle. fwd

net spindle-on spindle.run

net spindle-at-speed spindle.up-to-speed
net estop-out spindle.estop

cmd scaled to RPM

setp spindle.scale-cmd .135

feedback is in rpm

setp spindle.scale-fb 7.411

allows us to see status

setp spindle.monitor 1

net spindle-speed-indicator spindle.motor-fb gladevcp.spindle-speed

3k 3k ok 3k Sk Sk ok >k kok kok ko ko k COOlant Vfd Setup SlaVe 3 3k 3k 3k 3k 3k 3k >k 3k >k 3k K 3K K 3K 3K 5k 5Kk 5k 5k 5k 5k ok >k
coolant.run

coolant.up-to-speed gladevcp.coolant-on-led
coolant.estop

net coolant-flood

net coolant-is-on

net estop-out

cmd and feedback scaled
setp coolant.scale-cmd 1

setp coolant.scale-fb 1

command full speed
setp coolant.motor-cmd 60
allows us to see status

setp coolant.monitor 1

to hertz

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 364 /1261

6.9.4 Configuring the Mitsubishi VFD for serial usage

6.9.4.1 Connecting the Serial Port

The Mitsubishi VFDs have an RJ-45 jack for serial communication.
Since they use RS485 protocol, they can be networked together point to point.
This driver was tested using the Opto22 AC7A to convert from RS232 to RS485.

6.9.4.2 Modbus setup

Referenced manuals:

communication option reference manual and A500 technical manual for 500 series.
Fr-A700 F700 E700 D700 technical manual for the 700 series

The VFD must have PR settings adjusted manually for serial communication.
One must power cycle the VFD for some of these to register eg PR 79

— PR 77 set to 1 -to unlock other PR modification.

— PR 79 set to 1 or O -for communication thru serial.

— PR 117 set to 0-31 -slave number, driver must reference same number.

— PR 118 tested with 96 -baud rate (can be set to 48,96,192) if driver is also set.
— PR 119 set to 0 -stop bit/data length (8 bits, two stop)

— PR 120 set to 0 -no parity

— PR 121 set to 1-10 -if 10 (maximum) COM errors then VFD faults.

— PR 122 tested with 9999 -if communication is lost VFD will not error.

— PR 123 set to 9999 -no wait time is added to the serial data frame.

— PR 124 set to 0 -no carriage return at end of line.

6.10 Motenc Driver

Vital Systems Motenc-100 and Motenc-LITE

The Vital Systems Motenc-100 and Motenc-LITE are 8- and 4-channel servo control boards. The
Motenc-100 provides 8 quadrature encoder counters, 8 analog inputs, 8 analog outputs, 64 (687?)
digital inputs, and 32 digital outputs. The Motenc-LITE has only 4 encoder counters, 32 digital inputs
and 16 digital outputs, but it still has 8 analog inputs and 8 analog outputs. The driver automatically
identifies the installed board and exports the appropriate HAL objects.

Installing:

loadrt hal motenc

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel
log, which can be viewed with dmesg.

Up to 4 boards may be used in one system.

6.10.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the board, so it may be non-zero even if there is only one board.

— (s32) motenc.<board>.enc-<channel>-count - Encoder position, in counts.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 365/1261

— (float) motenc.<board>.enc-<channel>-position - Encoder position, in user units.
— (bit) motenc.<board>.enc-<channel>-index - Current status of index pulse input.

— (bit) motenc.<board>.enc-<channel>-idx-latch - Driver sets this pin true when it latches an index
pulse (enabled by latch-index). Cleared by clearing latch-index.

— (bit) motenc.<board>.enc-<channel>-latch-index - If this pin is true, the driver will reset the coun-
ter on the next index pulse.

— (bit) motenc.<board>.enc-<channel>-reset-count - If this pin is true, the counter will immediately
be reset to zero, and the pin will be cleared.

— (float) motenc.<board>.dac-<channel>-value - Analog output value for DAC (in user units, see
-gain and -offset)

— (float) motenc.<board>.adc-<channel>-value - Analog input value read by ADC (in user units, see
-gain and -offset)

— (bit) motenc.<board>.in-<channel> - State of digital input pin, see canonical digital input.

— (bit) motenc.<board>.in-<channel>-not - Inverted state of digital input pin, see canonical digital
input.

— (bit) motenc.<board>.out-<channel> - Value to be written to digital output, seen canonical digital
output.

— (bit) motenc.<board>.estop-in - Dedicated estop input, more details needed.

— (bit) motenc.<board>.estop-in-not - Inverted state of dedicated estop input.

— (bit) motenc.<board>.watchdog-reset - Bidirectional, - Set TRUE to reset watchdog once, is auto-
matically cleared.

6.10.2 Parameters

— (float) motenc.<board>.enc-<channel>-scale - The number of counts / user unit (to convert from
counts to units).

— (float) motenc.<board>.dac-<channel>-offset - Sets the DAC offset.

— (float) motenc.<board>.dac-<channel>-gain - Sets the DAC gain (scaling).

— (float) motenc.<board>.adc-<channel>-offset - Sets the ADC offset.

— (float) motenc.<board>.adc-<channel>-gain - Sets the ADC gain (scaling).

— (bit) motenc.<board>.out-<channel>-invert - Inverts a digital output, see canonical digital output.

— (u32) motenc.<board>.watchdog-control - Configures the watchdog.
The value may be a bitwise OR of the following values:

Bit # Value Meaning
0 1 Timeout is 16ms if set, 8ms if unset
1 2
2 4 Watchdog is enabled
3 8
4 16 Watchdog is automatically reset by DAC writes (the HAL
dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 20 (8ms watchdog enabled, cleared by dac-
write).

— (u32) motenc.<board>.led-view - Maps some of the I/O to onboard LEDs.

6.10.3 Fonctions

— (funct) motenc.<board>.encoder-read - Reads all encoder counters.
— (funct) motenc.<board>.adc-read - Reads the analog-to-digital converters.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 366/1261

— (funct) motenc.<board>.digital-in-read - Reads digital inputs.

— (funct) motenc.<board>.dac-write - Writes the voltages to the DACs.
— (funct) motenc.<board>.digital-out-write - Writes digital outputs.

— (funct) motenc.<board>.misc-update - Updates misc stuff.

6.11 Opto22 Driver

PCI AC5 ADAPTER CARD / HAL DRIVER

6.11.1 The Adapter Card

This is a card made by Opto22 for adapting the PCI port to solid state relay racks such as their standard
or G4 series. It has 2 ports that can control up to 24 points each and has 4 on board LEDs. The ports use
50 pin connectors the same as Mesa boards. Any relay racks/breakout boards that work with Mesa
Cards should work with this card with the understanding any encoder counters, PWM, etc., would
have to be done in software. The AC5 does not have any smart logic on board, it is just an adapter.

See the manufacturer’s website for more info:
https://www.opto22.com/site/pr details.aspx?cid=4&item=PCI-AC5
I would like to thank Opto22 for releasing info in their manual, easing the writing of this driver!

6.11.2 The Driver

This driver is for the PCI AC5 card and will not work with the ISA AC5 card. The HAL driver is a
realtime module. It will support 4 cards as is (more cards are possible with a change in the source
code). Load the basic driver like so:

loadrt opto_ach

This will load the driver which will search for max 4 boards. It will set I/O of each board’s 2 ports to
a default setting. The default configuration is for 12 inputs then 12 outputs. The pin name numbers
correspond to the position on the relay rack. For example the pin names for the default I/O setting of
port 0 would be:

— opto_ac5.0.port0.in-00 - They would be numbered from 00 to 11

— opto_ac5.0.port0.out-12 - They would be numbered 12 to 23 port 1 would be the same.

6.11.3 Pins

— opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER] OUT bit -

— opto_ac5.[BOARDNUMBER].portfPORTNUMBER].in-[PINNUMBER]-not OUT bit - Connect a HAL
bit signal to this pin to read an I/O point from the card. The PINNUMBER represents the position in
the relay rack. Eg. PINNUMBER 0 is position 0 in a Opto22 relay rack and would be pin 47 on the
50 pin header connector. The -not pin is inverted so that LOW gives TRUE and HIGH gives FALSE.

— opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER] IN bit - Connect a HAL bit
signal to this pin to write to an I/O point of the card. The PINNUMBER represents the position in
the relay rack.Eg. PINNUMBER 23 is position 23 in a Opto22 relay rack and would be pin 1 on the
50 pin header connector.

— opto_ac5.[BOARDNUMBER].led[NUMBER] OUT bit - Turns one of the 4 onboard LEDs on/off. LEDs
are numbered O to 3.

BOARDNUMBER can be 0-3 PORTNUMBER can be 0 or 1. Port 0O is closest to the card bracket.

https://www.opto22.com/site/pr_details.aspx?cid=4&item=PCI-AC5

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 367 /1261

6.11.4 Parameters

— opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER]-invert W bit - When TRUE,
invert the meaning of the corresponding -out pin so that TRUE gives LOW and FALSE gives HIGH.

6.11.5 FUNCTIONS

— opto_ac5.0.digital-read - Add this to a thread to read all the input points.
— opto_ach.0.digital-write - Add this to a thread to write all the output points and LEDs.

For example the pin names for the default I/O setting of port 0 would be:

opto_ac5.0.port0.in-00

They would be numbered from 00 to 11
opto_ac5.0.port0.out-12

They would be numbered 12 to 23 port 1 would be the same.

6.11.6 Configuring 1/O Ports

To change the default setting load the driver something like so:

loadrt opto_ac5 portconfig0=0xffff portconfigl=0xff0000

Of course changing the numbers to match the I/O you would like. Each port can be set up different.

Here’s how to figure out the number: The configuration number represents a 32 bit long code to tell
the card which I/O points are output vrs input. The lower 24 bits are the I/O points of one port. The 2
highest bits are for 2 of the on board LEDs. A one in any bit position makes the I/O point an output.
The two highest bits must be output for the LEDs to work. The driver will automatically set the two
highest bits for you, we won'’t talk about them.

The easiest way to do this is to fire up the calculator under APPLICATIONS/ACCESSORIES. Set it to
scientific (click view). Set it BINARY (radio button Bin). Press 1 for every output you want and/or zero
for every input. Remember that HAL pin 00 corresponds to the rightmost bit. 24 numbers represent
the 24 I/0O points of one port. So for the default setting (12 inputs then 12 outputs) you would push 1
twelve times (that’s the outputs) then 0 twelve times (that’s the inputs). Notice the first I/O point is
the lowest (rightmost) bit. (that bit corresponds to HAL pin 00 .looks backwards) You should have 24
digits on the screen. Now push the Hex radio button. The displayed number (fff000) is the configport
number (put a Ox in front of it designating it as a HEX number).

Another example: To set the port for 8 outputs and 16 inputs (the same as a Mesa card). Here is the
24 bits represented in a BINARY number. Bit 1 is the rightmost number:

16 zeros for the 16 inputs and 8 ones for the 8 outputs

000000000000000011111111

This converts to FF on the calculator, so 0xff is the number to use for portconfig0 and/or portconfigl
when loading the driver.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 368 /1261

6.11.7 Pin Numbering

HAL pin 00 corresponds to bit 1 (the rightmost) which represents position 0 on an Opto22 relay rack.
HAL pin 01 corresponds to bit 2 (one spot to the left of the rightmost) which represents position 1 on
an Opto22 relay rack. HAL pin 23 corresponds to bit 24 (the leftmost) which represents position 23
on an Opto22 relay rack.

HAL pin 00 connects to pin 47 on the 50 pin connector of each port. HAL pin 01 connects to pin 45 on
the 50 pin connector of each port. HAL pin 23 connects to pin 1 on the 50 pin connector of each port.

Note that Opto22 and Mesa use opposite numbering systems: Opto22 position 23 = connector pin
1, and the position goes down as the connector pin number goes up. Mesa Hostmot2 position 1 =
connector pin 1, and the position number goes up as the connector pin number goes up.

6.12 Pico Drivers

Pico Systems has a family of boards for doing analog servo, stepper, and PWM (digital) servo control.
The boards connect to the PC through a parallel port working in EPP mode. Although most users
connect one board to a parallel port, in theory any mix of up to 8 or 16 boards can be used on a
single parport. One driver serves all types of boards. The final mix of I/O depends on the connected
board(s). The driver doesn’t distinguish between boards, it simply numbers I/O channels (encoders,
etc) starting from 0 on the first board. The driver is named hal ppmc.ko The analog servo interface is
also called the PPMC for Parallel Port Motion Control. There is also the Universal Stepper Controller,
abbreviated the USC. And the Universal PWM Controller, or UPC.

Installing:

loadrt hal ppmc port addr=<addrl>[,<addr2>[,<addr3>...]]

The port_addr parameter tells the driver what parallel port(s) to check. By default, <addrl > is 0x0378,
and <addr2> and following are not used. The driver searches the entire address space of the enhanced
parallel port(s) at port addr, looking for any board(s) in the PPMC family. It then exports HAL pins
for whatever it finds. During loading (or attempted loading) the driver prints some useful debugging
messages to the kernel log, which can be viewed with dmesg.

Up to 3 parport buses may be used, and each bus may have up to 8 (or possibly 16 PPMC) devices on
it.

6.12.1 Command Line Options

There are several options that can be specified on the loadrt command line. First, the USC and UPC
can have an 8-bit DAC added for spindle speed control and similar functions. This can be specified
with the extradac=0xnn[,0xmm] parameter. The part enclosed in [] allows you to specify this option
on more than one board of the system. The first hex digit tells which EPP bus is being referred to, it
corresponds to the order of the port addresses in the port addr parameter, where <addrl> would be
zero here. So, for the first EPP bus, the first USC or UPC board would be described as 0x00, the second
USC or UPC on the same bus would be 0x02. (Note that each USC or UPC takes up two addresses, so
if one is at 00, the next would have to be 02.)

Alternatively, the 8 digital output pins can be used as additional digital outputs, it works the same
way as above with the syntax : extradout=0xnn’. The extradac and extradout options are mutually
exclusive on each board, you can only specify one.

The UPC and PPMC encoder boards can timestamp the arrival of encoder counts to refine the deriva-
tion of axis velocity. This derived velocity can be fed to the PID hal component to produce smoother D
term response. The syntax is : timestamp=0xnn[,0xmm], this works the same way as above to select
which board is being configured. Default is to not enable the timestamp option. If you put this option

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 369/1261

on the command line, it enables the option. The first n selects the EPP bus, the second one matches
the address of the board having the option enabled. The driver checks the revision level of the board
to make sure it has firmware supporting the feature, and produces an error message if the board does
not support it.

The PPMC encoder board has an option to select the encoder digital filter frequeency. (The UPC has
the same ability via DIP switches on the board.) Since the PPMC encoder board doesn’t have these
extra DIP switches, it needs to be selected via a command-line option. By default, the filter runs at
1 MHz, allowing encoders to be counted up to about 900 kHz (depending on noise and quadrature
accuracy of the encoder.) The options are 1, 2.5, 5 and 10 MHz. These are set with a parameter of
1,2,5 and 10 (decimal) which is specified as the hex digit “A”. These are specified in a manner similar
to the above options, but with the frequency setting to the left of the bus/address digits. So, to set 5
MHz on the encoder board at address 3 on the first EPP bus, you would write: enc_clock="0x503".

It was recently discovered that some parallel port chips would not work with the ppmc driver. Espe-
cially, the Oxford OXPCIe952 chip on the SIIG PCIle parallel port cards had this trouble. The ppmc
driver in all LinuxCNC versions starting from 2.7.8 have been corrected for this problem by default.
However, this possibly could cause problems with really old EPP parallel port hardware, so there is
a command line option to go back to the previous behavior. The new behavior is set by default, or
by adding the parameter epp dir=0 on the command line. To get the old behavior, add epp dir=1 to
the command line. All parallel ports I have here work with the new default behavior. As on the other
parameters, it is possible to give a list, like epp dir=1,0,1 to set different settings for each of up to 3
parallel ports.

6.12.2 Pins

In the following pins, parameters, and functions, <port> is the parallel port ID. According to the na-
ming conventions the first port should always have an ID of zero. All the boards have some method of
setting the address on the EPP bus. USC and UPC have simple provisions for only two addresses, but
jumper foil cuts allow up to 4 boards to be addressed. The PPMC boards have 16 possible addresses.
In all cases, the driver enumerates the boards by type and exports the appropriate HAL pins. For
instance, the encoders will be enumerated from zero up, in the same order as the address switches on
the board specify. So, the first board will have encoders 0 — 3, the second board would have encoders
4 — 7. The first column after the bullet tells which boards will have this HAL pin or parameter associa-
ted with it. All means that this pin is available on all three board types. Option means that this pin will
only be exported when that option is enabled by an optional parameter in the loadrt HAL command.
These options require the board to have a sufficient revision level to support the feature.

— (All s32 output) ppmc.<port>.encoder.<channel>.count - Encoder position, in counts.

— (All s32 output) ppmc.<port>.encoder.<channel>.delta - Change in counts since last read, in raw
encoder count units.

— (All float output) ‘ppmc.<port>.encoder.<channel>.velocity - Velocity scaled in user units per se-
cond. On PPMC and USC this is derived from raw encoder counts per servo period, and hence
is affected by encoder granularity. On UPC boards with the 8/21/09 and later firmware, velocity
estimation by timestamping encoder counts can be used to improve the smoothness of this velo-
city output. This can be fed to the PID HAL component to produce a more stable servo response.
This function has to be enabled in the HAL command line that starts the PPMC driver, with the
timestamp=0x00 option.

— (All float output) ppmc.<port>.encoder.<channel>.position - Encoder position, in user units.

— (All bit bidir) ppmc.<port>.encoder.<channel>.index-enable - Connect to joint.#.index-enable for
home-to-index. This is a bidirectional HAL signal. Setting it to true causes the encoder hardware
to reset the count to zero on the next encoder index pulse. The driver will detect this and set the
signal back to false.

— (PPMC float output) ppmc.<port>.DAC.<channel>.value - sends a signed value to the 16-bit Digital
to Analog Converter on the PPMC DAC16 board commanding the analog output voltage of that DAC
channel.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 370/1261

— (UPC bit input) ppmc.<port>.pwm.<channel>.enable - Enables a PWM generator.

— (UPC float input) ppmc.<port>.pwm.<channel>.value - Value which determines the duty cycle of
the PWM waveforms. The value is divided by pwm.<channel>.scale, and if the result is 0.6 the duty
cycle will be 60%, and so on. Negative values result in the duty cycle being based on the absolute
value, and the direction pin is set to indicate negative.

— (USC bit input) ppmc.<port>.stepgen.<channel>.enable - Enables a step pulse generator.

— (USC float input) ppmc.<port>.stepgen.<channel>.velocity - Value which determines the step fre-
quency. The value is multiplied by stepgen.<channel>.scale , and the result is the frequency in
steps per second. Negative values result in the frequency being based on the absolute value, and
the direction pin is set to indicate negative.

— (All bit output) ppmc.<port>.din.<channel>.in - State of digital input pin, see canonical digital
input.

— (All bit output) ppmc.<port>.din.<channel>.in-not - Inverted state of digital input pin, see canoni-
cal digital input.

— (All bit input) ppmc.<port>.dout.<channel>.out - Value to be written to digital output, see canoni-
cal digital output.

— (Option float input) ppmc.<port>.DAC8-<channel>.value - Value to be written to analog output,
range from 0 to 255. This sends 8 output bits to J8, which should have a Spindle DAC board connec-
ted to it. O corresponds to zero Volts, 255 corresponds to 10 Volts. The polarity of the output can
be set for always minus, always plus, or can be controlled by the state of SSR1 (plus when on) and
SSR2 (minus when on). You must specify extradac = 0x00 on the HAL command line that loads the
PPMC driver to enable this function on the first USC ur UPC board.

— (Option bit input) ppmc.<port>.dout.<channel>.out - Value to be written to one of the 8 extra
digital output pins on J8. You must specify extradout = 0x00 on the HAL command line that loads
the ppmc driver to enable this function on the first USC or UPC board. extradac and extradout are
mutually exclusive features as they use the same signal lines for different purposes. These output
pins will be enumerated after the standard digital outputs of the board.

6.12.3 Parameters

— (All float) ppmc.<port>.encoder.<channel>.scale - The number of counts / user unit (to convert
from counts to units).

— (UPC float) ppmc.<port>.pwm.<channel-range>.freq - The PWM carrier frequency, in Hz. Applies
to a group of four consecutive PWM generators, as indicated by <channel-range>. Minimum is 610
Hz, maximum is 500 kHz.

— (PPMC float) ppmc.<port>.DAC.<channel>.scale - Sets scale of DAC16 output channel such that
an output value equal to the 1/scale value will produce an output of + or - value Volts. So, if the
scale parameter is 0.1 and you send a value of 0.5, the output will be 5.0 Volts.

— (UPC float) ppmc.<port>.pwm.<channel>.scale - Scaling for PWM generator. If scale is X, then
the duty cycle will be 100% when the value pin is X (or -X).

— (UPC float) ppmc.<port>.pwm.<channel>.max-dc - Maximum duty cycle, from 0.0 to 1.0.

— (UPC float) ppmc.<port>.pwm.<channel>.min-dc - Minimum duty cycle, from 0.0 to 1.0.

— (UPC float) ppmc.<port>.pwm.<channel>.duty-cycle - Actual duty cycle (used mostly for trouble-
shooting.)

— (UPC bit) ppmc.<port>.pwm.<channel>.bootstrap - If true, the PWM generator will generate a
short sequence of pulses of both polarities when E-stop goes false, to reset the shutdown latches
on some PWM servo drives.

— (USC u32) ppmc.<port>.stepgen.<channel-range>.setup-time - Sets minimum time between di-
rection change and step pulse, in units of 100 ns. Applies to a group of four consecutive step
generators, as indicated by <channel-range>. Values between 200 ns and 25.5 ps can be specified.

— (USC u32) ppmc.<port>.stepgen.<channel-range>.pulse-width - Sets width of step pulses, in units
of 100 ns. Applies to a group of four consecutive step generators, as indicated by <channel-range>.
Values between 200 ns and 25.5 ps may be specified.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 371 /1261

— (USC u32) ppmc.<port>.stepgen.<channel-range>.pulse-space-min - Sets minimum time between
pulses, in units of 100 ns. Applies to a group of four consecutive step generators, as indicated by
<channel-range>. Values between 200 ns and 25.5 ps can be specified. The maximum step rate is:

100ns *(pulsewidth+ pulsespacemin)
— (USC float) ppmc.<port>.stepgen.<channel>.scale - Scaling for step pulse generator. The step
frequency in Hz is the absolute value of velocity * scale.

— (USC float) ppmc.<port>.stepgen.<channel>.max-vel - The maximum value for velocity. Com-
mands greater than max-vel will be clamped. Also applies to negative values. (The absolute value
is clamped.)

— (USC float) ppmc.<port>.stepgen.<channel>.frequency - Actual step pulse frequency in Hz (used
mostly for troubleshooting.)

— (Option float) ppmc.<port>.DAC8.<channel>.scale - Sets scale of extra DAC output such that an
output value equal to scale gives a magnitude of 10.0 V output. (The sign of the output is set by
jumpers and/or other digital outputs.)

— (Option bit) ppmc.<port>.dout.<channel>.invert - Inverts a digital output, see canonical digital
output.

— (Option bit) ppmc.<port>.dout.<channel>.invert - Inverts a digital output pin of J8, see canonical
digital output.

6.12.4 Fonctions

— (All funct) ppmc.<port>.read - Reads all inputs (digital inputs and encoder counters) on one port.
These reads are organized into blocks of contiguous registers to be read in a block to minimize
CPU overhead.

— (All funct) ppmc.<port>.write - Writes all outputs (digital outputs, stepgens, PWMs) on one port.
These writes are organized into blocks of contiguous registers to be written in a block to minimize
CPU overhead.

6.13 Pluto P Driver

6.13.1 Informations générales

The Pluto-P is a FPGA board featuring the ACEX1K chip from Altera.

6.13.1.1 Exigences

1. A Pluto-P board

2. An EPP-compatible parallel port, configured for EPP mode in the system BIOS or a PCI EPP
compatible parallel port card.

Note

The Pluto P board requires EPP mode. Netmos98xx chips do not work in EPP mode. The Pluto P board
will work on some computers and not on others. There is no known pattern to which computers work
and which don’t work.

For more information on PCI EPP compatible parallel port cards see the LinuxCNC Supported Hard-
ware page on the wiki.

https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware
https://wiki.linuxcnc.org/cgi-bin/wiki.pl?LinuxCNC_Supported_Hardware

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 372 /1261

6.13.1.2 Connectors

— The Pluto-P board is shipped with the left connector presoldered, with the key in the indicated
position. The other connectors are unpopulated. There does not seem to be a standard 12-pin IDC
connector, but some of the pins of a 16P connector can hang off the board next to QA3/QZ3.

— The bottom and right connectors are on the same .1” grid, but the left connector is not. If OUT2...0UT9
are not required, a single IDC connector can span the bottom connector and the bottom two rows
of the right connector.

6.13.1.3 Physical Pins

— Read the ACEX1K datasheet for information about input and output voltage thresholds. The pins
are all configured in LVITL/LVCMOS mode and are generally compatible with 5V TTL logic.

— Before configuration and after properly exiting LinuxCNC, all Pluto-P pins are tristated with weak
pull-ups (20 kQ min, 50 kQ max). If the watchdog timer is enabled (the default), these pins are also
tristated after an interruption of communication between LinuxCNC and the board. The watchdog
timer takes approximately 6.5 ms to activate. However, software bugs in the pluto servo firmware
or LinuxCNC can leave the Pluto-P pins in an undefined state.

— In pwm+dir mode, by default dir is HIGH for negative values and LOW for positive values. To
select HIGH for positive values and LOW for negative values, set the corresponding dout-NN-invert
parameter TRUE to invert the signal.

— The index input is triggered on the rising edge. Initial testing has shown that the QZx inputs are
particularly noise sensitive, due to being polled every 25 ns. Digital filtering has been added to filter
pulses shorter than 175 ns (seven polling times). Additional external filtering on all input pins, such
as a Schmitt buffer or inverter, RC filter, or differential receiver (if applicable) is recommended.

— The IN1...IN7 pins have 22 Q series resistors to their associated FPGA pins. No other pins have any
sort of protection for out-of-spec voltages or currents. It is up to the integrator to add appropriate
isolation and protection. Traditional parallel port optoisolator boards do not work with pluto servo
due to the bidirectional nature of the EPP protocol.

6.13.1.4 LED

— When the device is unprogrammed, the LED glows faintly. When the device is programmed, the
LED glows according to the duty cycle of PWMO (LED = UPO xor DOWNQO) or STEPGENO (LED =
STEPO xor DIRO).

6.13.1.5 Power

— A small amount of current may be drawn from VCC. The available current depends on the un-
regulated DC input to the board. Alternately, regulated +3.3VDC may be supplied to the FPGA
through these VCC pins. The required current is not yet known, but is probably around 50mA plus
I/O current.

— The regulator on the Pluto-P board is a low-dropout type. Supplying 5V at the power jack will allow
the regulator to work properly.

6.13.1.6 PC interface

— Only a single pluto_servo or pluto_step board is supported.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 373/1261

6.13.1.7 Rebuilding the FPGA firmware

The src/hal/drivers/pluto servo_firmware/ and src/hal/drivers/pluto _step firmware/ subdirectories contain
the Verilog source code plus additional files used by Quartus for the FPGA firmwares. Altera’s Quartus

IT software is required to rebuild the FPGA firmware. To rebuild the firmware from the .hdl and other
source files, open the .gpf file and press CTRL-L. Then, recompile LinuxCNC.

Like the HAL hardware driver, the FPGA firmware is licensed under the terms of the GNU General
Public License.

The gratis version of Quartus II runs only on Microsoft Windows, although there is apparently a paid
version that runs on Linux.

6.13.1.8 For more information

Some additional information about it is available from KNJC LLC and from the developer’s blog.

6.13.2 Pluto Servo

The pluto_servo system is suitable for control of a 4-axis CNC mill with servo motors, a 3-axis mill
with PWM spindle control, a lathe with spindle encoder, etc. The large number of inputs allows a full
set of limit switches.

This driver features:

— 4 quadrature channels with 40 MHz sample rate. The counters operate in 4x mode. The maximum
useful quadrature rate is 8191 counts per LinuxCNC servo cycle, or about 8 MHz for LinuxCNC'’s
default 1 ms servo rate.

— 4 PWM channels, up/down or pwm+dir style. 4095 duty cycles from -100% to +100%, including
0%. The PWM period is approximately 19.5 kHz (40 MHz / 2047). A PDM-like mode is also available.

— 18 digital outputs: 10 dedicated, 8 shared with PWM functions. (Example: A lathe with unidirec-
tional PWM spindle control may use 13 total digital outputs)

— 20 digital inputs: 8 dedicated, 12 shared with Quadrature functions. (Example: A lathe with index
pulse only on the spindle may use 13 total digital inputs.)

— EPP communication with the PC. The EPP communication typically takes around 100 ps on ma-
chines tested so far, enabling servo rates above 1 kHz.

6.13.2.1 Pinout

— UPx - The up (up/down mode) or pwm (pwm+direction mode) signal from PWM generator X. May
be used as a digital output if the corresponding PWM channel is unused, or the output on the
channel is always negative. The corresponding digital output invert may be set to TRUE to make
UPx active low rather than active high.

— DNx - The down (up/down mode) or direction (pwm+direction mode) signal from PWM generator
X. May be used as a digital output if the corresponding PWM channel is unused, or the output on
the channel is never negative. The corresponding digital output invert may be set to TRUE to make
DNx active low rather than active high.

— QAX, QBx - The A and B signals for Quadrature counter X. May be used as a digital input if the
corresponding quadrature channel is unused.

— QZx - The Z (index) signal for quadrature counter X. May be used as a digital input if the index
feature of the corresponding quadrature channel is unused.

— INx - Dedicated digital input #x

— OUTx - Dedicated digital output #x

— GND - Ground

https://www.knjn.com/FPGA-Parallel.html
http://emergent.unpy.net/01165081407

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 374 /1261

— VCC - +3.3V regulated DC

PR AT - -t AN AN
N1 G Parallel Port Connector o
—ower
NZ VL[| e —mmmm e Jack >
N3 ING
NS ING ACEX FPGA
MT
MO LED 070 QBT DAZ QB2 B3
QAD QA1 Q41 Q77 QA3 Q73
Figure 6.10 - Pluto-Servo Pinout
Table 6.41: Pluto-Servo Alternate Pin Functions
Primary function Alternate Function Behavior if both
functions used
UPO PWMO When pwm-0-pwmdir is
TRUE, this pin is the PWM
output
OuUT10 XOR’d with UP0O or PWMO
UP1 PWM1 When pwm-1-pwmdir is
TRUE, this pin is the PWM
output
OUT12 XOR’d with UP1 or PWM1
UP2 PWM?2 When pwm-2-pwmdir is
TRUE, this pin is the PWM
output
OuUT14 XOR’d with UP2 or PWM?2
UP3 PWM3 When pwm-3-pwmdir is
TRUE, this pin is the PWM
output
OUT16 XOR’d with UP3 or PWM3
DNO DIRO When pwm-0-pwmdir is
TRUE, this pin is the DIR
output
OUT11 XOR’d with DNO or DIRO
DN1 DIR1 When pwm-1-pwmdir is
TRUE, this pin is the DIR
output
OUT13 XOR’d with DN1 or DIR1

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 375/1261

Table 6.41: (continued)

Primary function Alternate Function Behavior if both
functions used

DN2 DIR2 When pwm-2-pwmdir is
TRUE, this pin is the DIR
output

OUT15 XOR’d with DN2 or DIR2

DN3 DIR3 When pwm-3-pwmdir is
TRUE, this pin is the DIR
output

ouT17 XOR’d with DN3 or DIR3

QZ0 INS Read same value

Qz1 IN9 Read same value

QZ2 IN10 Read same value

QZ3 IN11 Read same value

QA0 IN12 Read same value

QA1 IN13 Read same value

QA2 IN14 Read same value

QA3 IN15 Read same value

QBO IN16 Read same value

QB1 IN17 Read same value

QB2 IN18 Read same value

QB3 IN19 Read same value

6.13.2.2 Input latching and output updating

— PWM duty cycles for each channel are updated at different times.

— Digital outputs OUTO through OUT9 are all updated at the same time. Digital outputs OUT10
through OUT17 are updated at the same time as the pwm function they are shared with.

— Digital inputs INO through IN19 are all latched at the same time.
— Quadrature positions for each channel are latched at different times.

6.13.2.3 HAL Functions, Pins and Parameters

A list of all loadrt arguments, HAL function names, pin names and parameter names is in the manual
page, pluto servo.9.

6.13.2.4 Compatible driver hardware

A schematic for a 2A, 2-axis PWM servo amplifier board is available from the (the software developer).
The L298 H-Bridge can be used for motors up to 4A (one motor per L298) or up to 2A (two motors per
L298) with the supply voltage up to 46V. However, the L298 does not have built-in current limiting,
a problem for motors with high stall currents. For higher currents and voltages, some users have
reported success with International Rectifier’s integrated high-side/low-side drivers.

6.13.3 Pluto Step

Pluto-step is suitable for control of a 3- or 4-axis CNC mill with stepper motors. The large number of
inputs allows for a full set of limit switches.

The board features:

http://emergent.unpy.net/projects/01148303608

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 376 /1261

— 4 step+direction channels with 312.5 kHz maximum step rate, programmable step length, space,
and direction change times

— 14 dedicated digital outputs
— 16 dedicated digital inputs
— EPP communication with the PC

6.13.3.1 Pinout

— STEPx - The step (clock) output of stepgen channel x
— DIRx - The direction output of stepgen channel x

— INx - Dedicated digital input #x

— OUTx - Dedicated digital output #x

— GND - Ground

— VCC - +3.3V regulated DC

While the extended main connector has a superset of signals usually found on a Step & Direction DB25
connector—4 step generators, 9 inputs, and 6 general-purpose outputs—the layout on this header is
different than the layout of a standard 26-pin ribbon cable to DB25 connector.
s ™M =~ . i AT AT
N1 G a _-I-::raull:l IJDI“T L_'::'jjt"_ 0

‘-
L Fal Bl
we

NZ VOE| e , Jatk >

|

N3 ING |
|

—_ |

NS N6 ACEX FPGA |
N7 |
|

|

MO . IN9 IN10 INT2 INTL INTS

INE W11 IN13

Figure 6.11 - Pluto-Step Pinout

6.13.3.2 Input latching and output updating

— Step frequencies for each channel are updated at different times.
— Digital outputs are all updated at the same time.

— Digital inputs are all latched at the same time.

— Feedback positions for each channel are latched at different times.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 377 /1261

6.13.3.3 Step Waveform Timings

The firmware and driver enforce step length, space, and direction change times. Timings are rounded
up to the next multiple of 1.6us, with a maximum of 49.6us. The timings are the same as for the soft-
ware stepgen component, except that dirhold and dirsetup have been merged into a single parameter
dirtime which should be the maximum of the two, and that the same step timings are always applied
to all channels.

dirtime dirbime

stepspace sheplen | stepspace

STEP

DIRECTION

Figure 6.12 - Pluto-Step Timings

6.13.3.4 HAL Functions, Pins and Parameters

A list of all loadrt arguments, HAL function names, pin names and parameter names is in the manual
page, pluto step.9.

6.14 Powermax Modbus Driver

This is a non-realtime HAL program, written in python, to control Hypetherm Powermax plasma cut-
ters using the Modbus ASCII protocol over RS485.

Note

Since this is a non-realtime program it can be affected by computer loading and latency. It is possible
to lose communications which will be indicated by a change in the status output. One should always
have an Estop circuit that kills the power to the unit in case of emergency.

This component is loaded using the halcmd “loadusr” command:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 378 /1261

loadusr -Wn pmx485 pmx485 /dev/ttyUSBO

This will load the pmx485 component using the /dev/ttyUSBO port and wait for it to become ready.

It is necessary to name the port to use for communications.

6.14.1 Pins

— pmx485.mode-set (bit, in) # set cutting mode

— pmx485.current-set (bit, in) # set cutting current

— pmx485.pressure-set (bit, in) # set gas pressure

— pmx485.enable (bit, in) # enable the component

— pmx485.mode (bit, out) # cut mode feedback

— pmx485.current (bit, out) # cutting current feedback

— pmx485.pressure (bit, out) # gas pressure feedback

— pmx485.fault (bit, out) # powermax fault code

— pmx485.status (bit, out) # connection status

— pmx485.current-min (bit, out) # minimum allowed current

— pmx485.current-max (bit, out) # maximum allowed current

— pmx485.pressure-min (bit, out) # minimum allowed gas pressure
— pmx485.pressure-max (bit, out) # maximum allowed gas pressure

6.14.2 Description

To communicate with a Powermax, the component must first be enabled via the enable pin and it may
then initiate a request to the Powermax by writing a valid string to the following pins:

— mode-set

— current-set

— pressure-set

Note
A pressure-set value of zero is valid, the Powermax will then calculate the required pressure inter-
nally.

Communications may be validated from the Powermax display or the status pin. While in remote
mode, the mode, current and pressure may be changed as needed.

To terminate the communications, do one of the following:

— Set all set pins to zero: mode-set, current-set, and pressure-set.

— Disconnect the Powermax power supply from its power source for approximately 30 seconds. When
you power the system back ON, it will no longer be in remote mode.

6.14.3 Reference:

— Hypertherm Application Note #807220
"Powermax45 XP/65/85/105/125® Serial Communication Protocol”

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 379/1261

6.15 Servo To Go Driver

The Servo-To-Go (STG) is one of the first PC motion control cards supported by LinuxCNC. It is an
ISA card and it exists in different flavors (all supported by this driver). The board includes up to 8
channels of quadrature encoder input, 8 channels of analog input and output, 32 bits digital I/O, an
interval timer with interrupt and a watchdog.

Note

We have had reports that the opamps on the Servo To Go card do not work with newer ATX power
supplies that use modern switch mode DC-DC converters. The failure mode is that STG card outputs
a constant voltage regardless of what the driver is commanding it to do. Older ATX power supplies
with linear voltage regulators do not have this problem, and work fine with the STG cards.

6.15.1 Installing

loadrt hal stg [base=<address>] [num chan=<nr>] [dio="<dio-string>"] \
[model=<model>]

The base address field is optional; if it’s not provided the driver attempts to autodetect the board.
The num chan field is used to specify the number of channels available on the card, if not used the
8 axis version is assumed. The digital inputs/outputs configuration is determined by a config string
passed to insmod when loading the module. The format consists of a four character string that sets
the direction of each group of pins. Each character of the direction string is either ”I” or “O”. The first
character sets the direction of port A (Port A - DIO.0-7), the next sets port B (Port B - DIO.8-15), the
next sets port C (Port C - DIO.16-23), and the fourth sets port D (Port D - DIO.24-31). The model field
can be used in case the driver doesn’t autodetect the right card version.

HINT: after starting up the driver, dmesg can be consulted for messages relevant to the driver (e.g.
autodetected version number and base address). For example:

loadrt hal stg base=0x300 num chan=4 dio="I0I0"

This example installs the STG driver for a card found at the base address of 0x300, 4 channels of
encoder feedback, DACs and ADCs, along with 32 bits of I/O configured like this: the first 8 (Port A)
configured as Input, the next 8 (Port B) configured as Output, the next 8 (Port C) configured as Input,
and the last 8 (Port D) configured as Output

loadrt hal stg

This example installs the driver and attempts to autodetect the board address and board model, it
installs 8 axes by default along with a standard I/O setup: Port A & B configured as Input, Port C & D
configured as Output.

6.15.2 Pins

— stg.<channel>.counts - (s32) Tracks the counted encoder ticks.

— stg.<channel>.position - (float) Outputs a converted position.

— stg.<channel>.dac-value - (float) Drives the voltage for the corresponding DAC.

— stg.<channel>.adc-value - (float) Tracks the measured voltage from the corresponding ADC.
— stg.in-<pinnum> - (bit) Tracks a physical input pin.

— stg.in-<pinnum>-not - (bit) Tracks a physical input pin, but inverted.

— stg.out-<pinnum> - (bit) Drives a physical output pin

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 380/1261

For each pin, <channel> is the axis number, and <pinnum> is the logic pin number of the STG if
II00 is defined, there are 16 input pins (in-00 .. in-15) and 16 output pins (out-00 .. out-15), and they
correspond to PORTs ABCD (in-00 is PORTA.O, out-15 is PORTD.7).

The in-<pinnum> HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low.
The in-<pinnum>-not HAL pin is inverted —it is FALSE if the physical pin is high. By connecting a
signal to one or the other, the user can determine the state of the input.

6.15.3 Parameters

— stg.<channel>.position-scale - (float) The number of counts / user unit (to convert from counts to
units).

— stg.<channel>.dac-offset - (float) Sets the offset for the corresponding DAC.

— stg.<channel>.dac-gain - (float) Sets the gain of the corresponding DAC.

— stg.<channel>.adc-offset - (float) Sets the offset of the corresponding ADC.

— stg.<channel>.adc-gain - (float) Sets the gain of the corresponding ADC.

— stg.out-<pinnum>-invert - (bit) Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is
FALSE, setting the HAL out- pin TRUE drives the physical pin high, and FALSE drives it low. If -invert
is TRUE, then setting the HAL out- pin TRUE will drive the physical pin low.

6.15.4 Fonctions

— stg.capture-position - Reads the encoder counters from the axis <channel>.

— stg.write-dacs - Writes the voltages to the DACs.

— stg.read-adcs - Reads the voltages from the ADCs.

— stg.di-read - Reads physical in- pins of all ports and updates all HAL in-<pinnum> and in-<pinnum>-
not pins.

— stg.do-write - Reads all HAL out-<pinnum> pins and updates all physical output pins.

6.16 Shuttle

6.16.1 Description

Shuttle is a non-realtime HAL component that interfaces Contour Design’s ShuttleXpress, ShuttlePRO,
and ShuttlePRO2 devices with LinuxCNC’s HAL.

If the driver is started without command-line arguments, it will probe all /dev/hidraw* device files for
Shuttle devices, and use all devices found. If it is started with command-line arguments, it will only
probe the devices specified.

The ShuttleXpress has five momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

The ShuttlePRO has 13 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

The ShuttlePRO2 has 15 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 381/1261

AVERTISSEMENT

The Shuttle devices have an internal 8-bit counter for the current jog-wheel position. The shut-

tle driver can not know this value until the Shuttles device sends its first event. When the first
@ event comes into the driver, the driver uses the device’s reported jog-wheel position to initia-

lize counts to 0.

This means that if the first event is generated by a jog-wheel move, that first move will be lost.

Any user interaction with the Shuttle device will generate an event, informing the driver of the

jog-wheel position. So if you (for example) push one of the buttons at startup, the jog-wheel

will work fine and notice the first click.

6.16.2 Setup

The shuttle driver needs read permission to the /dev/hidraw* device files. This can be accomplished
by adding a file /etc/udev/rules.d/99-shuttle.rules, with the following contents:

SUBSYSTEM=="hidraw”, ATTRS{idVendor}=="0b33", ATTRS{idProduct}=="0020", MODE="0444"
SUBSYSTEM=="hidraw”, ATTRS{idVendor}=="05f3", ATTRS{idProduct}=="0240", MODE="0444"
SUBSYSTEM=="hidraw”, ATTRS{idVendor}=="0b33", ATTRS{idProduct}=="0030", MODE="0444"

The LinuxCNC Debian package installs an appropriate udev file automatically, but if you are building
LinuxCNC from source and are not using the Debian packaging you’ll need to install this file by hand. If
you install the file by hand you’ll need to tell udev to reload its rules files by running udevadm control
--reload-rules.

6.16.3 Pins

All HAL pin names are prefixed with shuttle followed by the index of the device (the order in which
the driver found them), for example shuttle.0 or shuttle.?2.

<Prefix> .button-<ButtonNumber> (bit out)
These pins are True (1) when the button is pressed.
<Prefix>.button-<ButtonNumber>-not (bit out)
These pins have the inverse of the button state, so they’re True (1) when the button is not pressed.
<Prefix>.counts (s32 out)
Accumulated counts from the jog wheel (the inner wheel).
<Prefix>.spring-wheel-s32 (s32 out)
The current deflection of the spring-wheel (the outer wheel). It’s 0 at rest, and ranges from -7 at
the counter-clockwise extreme to +7 at the clockwise extreme.
<Prefix>.spring-wheel-f (float out)
The current deflection of the spring-wheel (the outer wheel). It’s 0.0 at rest, -1.0 at the counter-
clockwise extreme, and +1.0 at the clockwise extreme. The Shuttle devices report the spring-
wheel position as an integer from -7 to +7, so this pin reports only 15 discrete values in it’s
range.

6.17 VFS11 VFD Driver

This is a non-realtime HAL program to control the S11 series of VFDs from Toshiba.

vis11 vfd supports serial and TCP connections. Serial connections may be RS232 or RS485. RS485 is
supported in full- and half-duplex mode. TCP connections may be passive (wait for incoming connec-
tion), or active outgoing connections, which may be useful to connect to TCP-based devices or through
a terminal server.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 382 /1261

Regardless of the connection type, vfsl1l vfd operates as a Modbus master.

This component is loaded using the halcmd ”loadusr” command:

loadusr -Wn spindle-vfd vfsll vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component vfsl1 vfd, named spindle-vfd

6.17.1 Command Line Options

vfs11 vfd is mostly configured through INI file options. The command line options are:

-n or --name <halname> : set the HAL component name

-I or —-ini <inifilename> : take configuration from this INI file. Defaults to environment variable
INI FILE NAME.

-S or --section <section name> : take configuration from this section in the INI file. Defaults to
VFSI11.

-d or --debug enable debug messages on console output.
-m or --modbus-debug enable modbus messages on console output
-r or --report-device report device properties on console at startup

Debugging can be toggled by sending a USR1 signal to the vfs11 vfd process. Modbus debugging can
be toggled by sending a USR2 signal to vfs11 _vfd process (example: kill -USR1 pidof vfsll vfd).

Note
That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

6.17.2 Pins

Where <n> is vfsll vfd or the name given during loading with the -n option.

<n>.acceleration-pattern (bit, in) when true, set acceleration and deceleration times as defined
in registers F500 and F501 respectively. Used in PID loops to choose shorter ramp times to avoid
oscillation.

<n>.alarm-code (s32, out) non-zero if drive is in alarmed state. Bitmap describing alarm informa-
tion (see register FC91 description). Use err-reset (see below) to clear the alarm.

<n>.at-speed (bit, out) when drive is at commanded speed (see speed-tolerance below)
<n>.current-load-percentage (float, out) reported from the VFD
<n>.dc-brake (bit, in) engage the DC brake. Also turns off spindle-on.

<n>.enable (bit, in) enable the VFD. If false, all operating parameters are still read but control is
released and panel control is enabled (subject to VFD setup).

<n>.err-reset (bit, in) reset errors (alarms a.k.a Trip and e-stop status). Resetting the VFD may
cause a 2-second delay until it’s rebooted and Modbus is up again.

<n>.estop (bit, in) put the VFD into emergency-stopped status. No operation possible until cleared
with err-reset or powercycling.

<n>.frequency-command (float, out) current target frequency in Hz as set through speed-command
(which is in RPM), from the VFD

<n>.frequency-out (float, out) current output frequency of the VFD
<n>.inverter-load-percentage (float, out) current load report from VFD

<n>.is-e-stopped (bit, out) the VFD is in emergency stop status (blinking "E” on panel). Use err-
reset to reboot the VFD and clear the e- stop status.

<n>.is-stopped (bit, out) true when the VFD reports 0 Hz output

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 383/1261

<n>.max-rpm (float, R) actual RPM limit based on maximum frequency the VFD may generate,
and the motors nameplate values. For instance, if nameplate-HZ is 50, and nameplate-RPM _is
1410, but the VFD may generate up to 80 Hz, then max-rpm would read as 2256 (80*1410/50). The
frequency limit is read from the VFD at startup. To increase the upper frequency limit, the UL and
FH parameters must be changed on the panel. See the VF-S11 manual for instructions how to set
the maximum frequency.

<n>.modbus-ok (bit, out) true when the Modbus session is successfully established and the last 10
transactions returned without error.

<n>.motor-RPM (float, out) estimated current RPM value, from the VFD
<n>.output-current-percentage (float, out) from the VFD
<n>.output-voltage-percentage (float, out) from the VFD
<n>.output-voltage (float, out) from the VFD

<n>.speed-command (float, in) speed sent to VFD in RPM. It is an error to send a speed faster than
the Motor Max RPM as set in the VFD

<n>.spindle-fwd (bit, in) 1 for FWD and 0 for REV, sent to VFD
<n>.spindle-on (bit, in) 1 for ON and 0 for OFF sent to VFD, only on when running
<n>.spindle-rev (bit, in) 1 for ON and 0 for OFF, only on when running

<n>.jog-mode (bit, in) 1 for ON and O for OFF, enables the VF-S11 jog mode. Speed control is
disabled, and the output frequency is determined by register F262 (preset to 5 Hz). This might be
useful for spindle orientation. In normal mode, the VFD shuts off if the frequency drops below 12
Hz.

<n>.status (s32, out) Drive Status of the VFD (see the TOSVERT VF-S11 Communications Function
Instruction Manual, register FD01). A bitmap.

<n>.trip-code (s32, out) trip code if VF-S11 is in tripped state.
<n>.error-count (s32, out) number of Modbus transactions which returned an error

<n>.max-speed (bit, in) ignore the loop-time parameter and run Modbus at maximum speed, at the
expense of higher CPU usage. Suggested use during spindle positioning.

6.17.3 Parameters

Where <n> is vfsll vfd or the name given during loading with the -n option.

<n>.frequency-limit (float, RO) upper limit read from VFD setup.
<n>.loop-time (float, RW) how often the Modbus is polled (default interval 0.1 seconds)

<n>.nameplate-HZ (float, RW) Nameplate Hz of motor (default 50). Used to calculate target fre-
quency (together with nameplate-RPM) for a target RPM value as given by speed-command.

<n>.nameplate-RPM (float, RW) Nameplate RPM of motor (default 1410)
<n>.rpm-limit (float, RW) do-not-exceed soft limit for motor RPM (defaults to nameplate-RPM).

<n>.tolerance (float, RW) speed tolerance (default 0.01) for determining whether spindle is at
speed (0.01 meaning: Output frequency is within 1% of target frequency)

6.17.4 INI file configuration

This lists all options understood by vfs11 vfd. Typical setups for RS-232, RS-485 and TCP can be found
in src/hal/user comps/vfs11 vfd/*.ini.

[VFS11]
serial connection
TYPE=rtu

serial port
DEVICE=/dev/ttyS0O

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

384 /1261

TCP server - wait for incoming connection
TYPE=tcpserver

tcp portnumber for TYPE=tcpserver or tcpclient
PORT=1502

TCP client - active outgoing connection
TYPE=tcpclient

destination to connect to if TYPE=tcpclient
TCPDEST=192.168.1.1

#o-oeao- - meaningful only if TYPE=rtu -------
serial device detail

#5678

BITS= 5

even odd none
PARITY=none

110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

BAUD=19200

#12
STOPBITS=1

#rs232 rs485
SERIAL MODE=rs485

up down none

this feature might not work with a stock Ubuntu

libmodbus5/1ibmodbus-dev package, and generate a warning
execution will continue as if RTS_MODE=up were given.
RTS_MODE=up

modbus timers in seconds
inter-character timer
BYTE TIMEOUT=0.5

packet timer
RESPONSE_TIMEOUT=0.5

target modbus ID
TARGET=1

on I/0 failure, try to reconnect after sleeping
for RECONNECT DELAY seconds
RECONNECT DELAY=1

misc. parameters
DEBUG=10

MODBUS_DEBUG=0
POLLCYCLES=10

6.17.5 HAL example

example usage of the VF-S11 VFD driver

H oH oW R

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 385/1261

loadusr -Wn spindle-vfd vfsll vfd -n spindle-vfd

connect the spindle direction pins to the VFD
net vfsll-fwd spindle-vfd.spindle-fwd <= spindle.0.forward
net vfsll-rev spindle-vfd.spindle-rev <= spindle.0.reverse

connect the spindle on pin to the VF-S11
net vfsll-run spindle-vfd.spindle-on <= spindle.0.on

connect the VF-S11 at speed to the motion at speed
net vfsll-at-speed spindle.0.at-speed <= spindle-vfd.at-speed

connect the spindle RPM to the VF-S11
net vfsll-RPM spindle-vfd.speed-command <= spindle.0.speed-out

connect the VF-S11 DC brake

since this draws power during spindle off, the dc-brake pin would

better be driven by a monoflop which triggers on spindle-on falling edge
#net vfsll-spindle-brake spindle.N.brake => spindle-vfd.dc-brake

to use the VFS11l jog mode for spindle orient
see orient.9 and motion.9
net spindle-orient spindle.0.orient spindle-vfd.max-speed spindle-vfd.jog-mode

take precedence over control panel
setp spindle-vfd.enable 1

6.17.6 Panel operation

The vfs11 vfd driver takes precedence over panel control while it is enabled (see enable pin), effecti-
vely disabling the panel. Clearing the enable pin re-enables the panel. Pins and parameters can still
be set, but will not be written to the VFD untile the enable pin is set. Operating parameters are still
read while bus control is disabled. Exiting the vfs11 vfd driver in a controlled way will release the
VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the
Toshiba VFDs, see the "TOSVERT VF-S11 Communications Function Instruction Manual” (Toshiba
document number E6581222) and the "TOSVERT VF-S11 Instruction manual” (Toshiba document
number E6581158).

6.17.7 Error Recovery

vfsll vfd recovers from I/O errors as follows: First, all HAL pins are set to default values, and the

driver will sleep for RECONNECT DELAY seconds (default 1 second).

— Serial (TYPE=rtu) mode: on error, close and reopen the serial port.

— TCP server (TYPE=tcpserver) mode: on losing the TCP connection, the driver will go back to listen
for incoming connections.

— TCP client (TYPE=tcpclient) mode: on losing the TCP connection, the driver will reconnect to
TCPDEST:PORTNO.

6.17.8 Configuring the VFS11 VFD for Modbus usage

6.17.8.1 Connecting the Serial Port

The VF-S11 has an RJ-45 jack for serial communication. Unfortunately, it does not have a standard
RS-232 plug and logic levels. The Toshiba-recommended way is: connect the USB001Z USB-to-serial

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 386/1261

conversion unit to the drive, and plug the USB port into the PC. A cheaper alternative is a homebrew
interface (hints from Toshiba support, circuit diagram).

Note: the 24V output from the VFD has no short-circuit protection.

Serial port factory defaults are 9600/8/1/even, the protocol defaults to the proprietary "Toshiba In-
verter Protocol”.

6.17.8.2 Modbus setup

Several parameters need setting before the VF-S11 will talk to this module. This can either be done
manually with the control panel, or over the serial link - Toshiba supplies a Windows application called
PCMO001Z which can read/set parameters in the VFD. Note - PCM001Z only talks the Toshiba inverter
protocol. So the last parameter which you’d want to change is the protocol - set from Toshiba Inverter
Protocol to Modbus; thereafter, the Windows app is useless.

To increase the upper frequency limit, the UL and FH parameters must be changed on the panel. I
increased them from 50 to 80.

See dump-params.mio for a description of non-standard VF-S11 parameters of my setup. This file is
for the modio Modbus interactive utility.

6.17.9 Programming Note

The vfsl1 vfd driver uses the libmodbus version 3 library which is more recent than the version 2
code used in gs2_ vfd.

The Ubuntu libmodbus5 and libmodbus-dev packages are only available starting from Ubuntu 12
(Precise Pengolin). Moreover, these packages lack support for the MODBUS RTS MODE * flags. The-
refore, building vfs11 vfd using this library might generate a warning if RTS MODE= is specified in
the INI file.

To use the full functionality on lucid and precise:

— remove the libmodbus packages: sudo apt-get remove libmodbus5 libmodbus-dev

— build and install libmodbus version 3 from source as outlined here.

Libmodbus does not build on Ubuntu Hardy, hence vfs11 vfd is not available on Hardy.

https://git.mah.priv.at/gitweb/vfs11-vfd.git/blob_plain/refs/heads/f12-prod:/VFS11-RJ45_e.pdf
https://git.mah.priv.at/gitweb/vfs11-vfd.git/blob_plain/refs/heads/f12-prod:/vfs11-rs232.pdf
https://git.mah.priv.at/gitweb/modio.git
https://www.libmodbus.org
https://github.com/stephane/libmodbus/blob/master/README.rst

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 387 /1261

Chapitre 7

Exemples de matériels

7.1 PCI Parallel Port

When you add a second parallel port to your PCI bus you have to find out the address before you can
use it with LinuxCNC.

To find the address of your parallel port card open a terminal window and type

lspci -v

You will see something similar to this as well as info on everything else on the PCI bus:

0000:00:10.0 Communication controller: \
NetMos Technology PCI 1 port parallel adapter (rev 01)
Subsystem: LSI Logic / Symbios Logic: Unknown device 0010
Flags: medium devsel, IRQ 11
I/0 ports at a800 [size=8]
I/0 ports at ac00 [size=8]
I/0 ports at bOOO [size=8]
I/0 ports at b400 [size=8]
I/0 ports at b800 [size=8]
I/0 ports at bc0OO [size=16]

In my case the address was the first one so I changed my .hal file from

loadrt hal parport cfg=0x378

to
loadrt hal parport cfg="0x378 0xa800 in”

(Note the double quotes surrounding the addresses.)
and then added the following lines so the parport will be read and written:

addf parport.l.read base-thread
addf parport.l.write base-thread

After doing the above then run your config and verify that the parallel port got loaded in Machine/Show
HAL Configuration window.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 388/1261

7.2 Spindle Control

LinuxCNC can control up to 8 spindles. The number is set in the INI file. The examples below all refer
to a single-spindle config with spindle control pins with names like spindle.0... In the case of a multiple
spindle machine all that changes is that additional pins exist with names such as spindle.6...

7.2.1 0-10 Volt Spindle Speed

If your spindle speed is controlled by an analog signal, (for example, by a VFD with a 0 Vto 10 V
signal) and you’re using a DAC card like the m5i20 to output the control signal:

First you need to figure the scale of spindle speed to control signal, i.e. the voltage. For this example
the spindle top speed of 5000 RPM is equal to 10 Volts.

10Volts _ 0.002 Volts
5000 RPM 1RPM

We have to add a scale component to the HAL file to scale the spindle.N.speed-out to the 0 to 10
needed by the VFD if your DAC card does not do scaling.

loadrt scale count=1

addf scale.0 servo-thread

setp scale.0.gain 0.002

net spindle-speed-scale spindle.0.speed-out => scale.0.in
net spindle-speed-DAC scale.0.out => <your DAC pin name>

7.2.2 PWM Spindle Speed

Si votre vitesse de broche peut étre contrélée par un signal de PWM, utilisez le composant pwmgen
pour créer ce signal :

loadrt pwmgen output type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd spindle.0.speed-out => pwmgen.0.value
net spindle-on spindle.0.on => pwmgen.0.enable

net spindle-pwm pwmgen.0Q.pwm => parport.0.pin-09-out

Set the spindle’s top speed in RPM

setp pwmgen.0.scale 1800

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

7.2.3 Spindle Enable

If you need a spindle enable signal, link your output pin to spindle.0.on. To link these pins to a parallel
port pin put something like the following in your .hal file, making sure you pick the pin that is connected
to your control device.

net spindle-enable spindle.0.on => parport.0.pin-14-out

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 389/1261

7.2.4 Spindle Direction

If you have direction control of your spindle, then the HAL pins spindle.N.forward and spindle.N.reverse
are controlled by the G-codes M3 and M4. Spindle speed Sn must be set to a positive non-zero value
for M3/M4 to turn on spindle motion.

To link these pins to a parallel port pin, put something like the following in your .hal file making sure
you pick the pin that is connected to your control device.

net spindle-fwd spindle.@.forward => parport.0.pin-16-out
net spindle-rev spindle.0.reverse => parport.0.pin-17-out

7.2.5 Spindle Soft Start

If you need to ramp your spindle speed command and your control does not have that feature it can
be done in HAL. Basically you need to hijack the output of spindle.N.speed-out and run it through a
limit2 component with the scale set so it will ramp the rpm from spindle.N.speed-out to your device
that receives the rpm. The second part is to let LinuxCNC know when the spindle is at speed so motion
can begin.

In the 0-10 Volt example the line

net spindle-speed-scale spindle.0.speed-out => scale.0.in

is changed as shown in the following example:

Intro to HAL components limit2 and near In case you have not run across them before, here’s a
quick introduction to the two HAL components used in the following example.

— A limit2 is a HAL component (floating point) that accepts an input value and provides an output
that has been limited to a max/min range, and also limited to not exceed a specified rate of change.

— A near is a HAL component (floating point) with a binary output that says whether two inputs are
approximately equal.

More info is available in the documentation for HAL components, or from the man pages, just say man
limit2 or man near in a terminal.

load the real time modules limit2 and near with names so it is easier to follow their <+
connections

loadrt limit2 names=spindle-ramp

loadrt near names=spindle-at-speed

add the functions to a thread
addf spindle-ramp servo-thread
addf spindle-at-speed servo-thread

set the parameter for max rate-of-change
(max spindle accel/decel in units per second)
setp spindle-ramp.maxv 60

hijack the spindle speed out and send it to spindle ramp in
net spindle-cmd <= spindle.0.speed-out => spindle-ramp.in

the output of spindle ramp is sent to the scale in
net spindle-ramped <= spindle-ramp.out => scale.0.in

to know when to start the motion we send the near component
(named spindle-at-speed) to the spindle commanded speed from
the signal spindle-cmd and the actual spindle speed

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 390/1261

provided your spindle can accelerate at the maxv setting.
net spindle-cmd => spindle-at-speed.inl
net spindle-ramped => spindle-at-speed.in2

the output from spindle-at-speed is sent to spindle.0.at-speed
and when this is true motion will start
net spindle-ready <= spindle-at-speed.out => spindle.0.at-speed

7.2.6 Spindle Feedback

7.2.6.1 Spindle Synchronized Motion

Spindle feedback is needed by LinuxCNC to perform any spindle coordinated motions like threading
and constant surface speed. LinuxCNC can perform synchronized motion and CSS with any of up to
8 spindles. Which spindles are used is controlled from G-code. CSS is possible with several spindles
simultaneously.

The StepConf Wizard can perform the connections for a single-spindle configuration for you if you
select Encoder Phase A and Encoder Index as inputs.

Hardware assumptions for this example:

— An encoder is connected to the spindle and puts out 100 pulses per revolution on phase A.
— The encoder A phase is connected to the parallel port pin 10.

— The encoder index pulse is connected to the parallel port pin 11.

Basic Steps to add the components and configure them: ! 23

Add the encoder to HAL and attach it to threads.
loadrt encoder num_chan=4

addf encoder.update-counters base-thread

addf encoder.capture-position servo-thread

Set the HAL encoder to 100 pulses per revolution.
setp encoder.3.position-scale 100

Set the HAL encoder to non-quadrature simple counting using A only.
setp encoder.3.counter-mode true

Connect the HAL encoder outputs to LinuxCNC.

net spindle-position encoder.3.position => spindle.0.revs

net spindle-velocity encoder.3.velocity => spindle.0.speed-in

net spindle-index-enable encoder.3.index-enable <=> spindle.0.index-enable

Connect the HAL encoder inputs to the real encoder.

net spindle-phase-a encoder.3.phase-A <= parport.0.pin-10-in
net spindle-phase-b encoder.3.phase-B

net spindle-index encoder.3.phase-Z <= parport.0.pin-11-in

7.2.6.2 Spindle At Speed

To enable LinuxCNC to wait for the spindle to be at speed before executing a series of moves, the
spindle.N.at-speed needs to turn true at the moment the spindle is at the commanded speed. To

1. In this example, we will assume that some encoders have already been issued to axes/joints 0, 1, and 2. So the next encoder
available for us to attach to the spindle would be number 3. Your situation may differ.

2. The HAL encoder index-enable is an exception to the rule in that it behaves as both an input and an output, see the
Encoder Section for details

3. Itis because we selected non-quadrature simple counting... above that we can get away with quadrature counting without
having any B quadrature input.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 391/1261

achieve this you need spindle feedback from an encoder. Since the feedback and the commanded
speed are not usually exactly the same you should to use the near component to determine that the
two numbers are close enough.

The connections needed are from the spindle velocity command signal to near.n.inl and from the
spindle velocity from the encoder to near.n.in2. Then the near.n.out is connected to spindle.N.at-
speed. The near.n.scale needs to be set to say how close the two numbers must be before turning on
the output. Depending on your setup you may need to adjust the scale to work with your hardware.

The following is typical of the additions needed to your HAL file to enable Spindle At Speed. If you
already have near in your HAL file then increase the count and adjust code to suit. Check to make
sure the signal names are the same in your HAL file.

load a near component and attach it to a thread
loadrt near
addf near.0 servo-thread

connect one input to the commanded spindle speed
net spindle-cmd => near.0.inl

connect one input to the encoder-measured spindle speed
net spindle-velocity => near.0.in2

connect the output to the spindle-at-speed input
net spindle-at-speed spindle.0.at-speed <= near.0.out

set the spindle speed inputs to agree if within 1%
setp near.0.scale 1.01

7.3 MPG Pendant

This example is to explain how to hook up the common MPG pendants found on the market today.
This example uses an MPG3 pendant and a C22 pendant interface card from CNC4PC connected to a
second parallel port plugged into the PCI slot. This example gives you 3 axes with 3 step increments
of 0.1, 0.01, 0.001

In your custom.hal file or jog.hal file add the following, making sure you don’t have mux4 or an encoder
already in use. If you do just increase the counts and change the reference numbers. More information
about mux4 and encoder can be found in the HAL manual or the man page.

See the INI HAL Section of the documentation for more information on adding a HAL file. Jog manage-
ment pins are provided for each joint and all coordinate letters. This example uses the axis jog pins for
jogging in world mode. Machines with non-identity kinematics may need use additional connections
for jogging in joint mode.

jog.hal

Jog Pendant

loadrt encoder num chan=1

loadrt mux4 count=1

addf encoder.capture-position servo-thread
addf encoder.update-counters base-thread
addf mux4.0 servo-thread

If your MPG outputs a quadrature signal per click set x4 to 1
If your MPG puts out 1 pulse per click set x4 to 0
setp encoder.0.x4-mode 0

For velocity mode, set to 1
In velocity mode the axis stops when the dial is stopped

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 392 /1261

even if that means the commanded motion is not completed,

For position mode (the default), set to 0

In position mode the axis will move exactly jog-scale

units for each count, regardless of how long that might take,
setp axis.x.jog-vel-mode 0

setp axis.y.jog-vel-mode 0

setp axis.z.jog-vel-mode 0

This sets the scale that will be used based on the input to the mux4
setp mux4.0.in0 0.1

setp mux4.0.inl 0.01

setp mux4.0.in2 0.001

The inputs to the mux4 component
net scalel mux4.0.sel@ <= parport.l.pin-09-in
net scale2 mux4.0.sell <= parport.l.pin-10-in

The output from the mux4 is sent to each axis jog scale
net mpg-scale <= mux4.0.out

net mpg-scale => axis.x.jog-scale

net mpg-scale => axis.y.jog-scale

net mpg-scale => axis.z.jog-scale

The MPG inputs
net mpg-a encoder.0.phase-A <= parport.l.pin-02-in
net mpg-b encoder.0.phase-B <= parport.l.pin-03-in

The Axis select inputs

net mpg-x axis.x.jog-enable <= parport.l.pin-04-in
net mpg-y axis.y.jog-enable <= parport.l.pin-05-in
net mpg-z axis.z.jog-enable <= parport.l.pin-06-in

The encoder output counts to the axis. Only the selected axis will move.
net encoder-counts <= encoder.0.counts
net encoder-counts => axis.x.jog-counts
net encoder-counts => axis.y.jog-counts
net encoder-counts => axis.z.jog-counts

If the machine is capable of high acceleration to smooth out the moves for each click of the MPG use
the ilowpass component to limit the acceleration.

jog.hal with ilowpass

loadrt encoder num chan=1

loadrt mux4 count=1

addf encoder.capture-position servo-thread
addf encoder.update-counters base-thread
addf mux4.0 servo-thread

loadrt ilowpass
addf ilowpass.0 servo-thread

setp ilowpass.0.scale 1000
setp ilowpass.0.gain 0.01

If your MPG outputs a quadrature signal per click set x4 to 1
If your MPG puts out 1 pulse per click set x4 to 0
setp encoder.0.x4-mode 0

For velocity mode, set to 1
In velocity mode the axis stops when the dial is stopped
even if that means the commanded motion is not completed,

../man/man9/ilowpass.9.html

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 393/1261

For position mode (the default), set to 0

In position mode the axis will move exactly jog-scale

units for each count, regardless of how long that might take,
setp axis.x.jog-vel-mode 0

setp axis.y.jog-vel-mode 0

setp axis.z.jog-vel-mode 0

This sets the scale that will be used based on the input to the mux4
The scale used here has to be multiplied by the ilowpass scale

setp mux4.0.in0 0.0001

setp mux4.0.inl 0.00001

setp mux4.0.in2 0.000001

The inputs to the mux4 component
net scalel mux4.0.sel@ <= parport.l.pin-09-in
net scale2 mux4.0.sell <= parport.l.pin-10-in

The output from encoder counts is sent to ilowpass
net mpg-out ilowpass.0.in <= encoder.0.counts

The output from the mux4 is sent to each axis jog scale
net mpg-scale <= mux4.0.out

net mpg-scale => axis.x.jog-scale

net mpg-scale => axis.y.jog-scale

net mpg-scale => axis.z.jog-scale

The MPG inputs

net mpg-a encoder.0.phase-A <= parport.l.pin-02-in
net mpg-b encoder.0.phase-B <= parport.l.pin-03-in

The Axis select inputs

net mpg-x axis.x.jog-enable <= parport.l.pin-04-in
net mpg-y axis.y.jog-enable <= parport.l.pin-05-in
net mpg-z axis.z.jog-enable <= parport.l.pin-06-in

The output from the ilowpass is sent to each axis jog count
Only the selected axis will move.

net encoder-counts
net encoder-counts
net encoder-counts
net encoder-counts

<= ilowpass.0.out

=> axis.x.jog-counts
=> axis.y.jog-counts
=> axis.z.jog-counts

7.4 GS2 Spindle

7.4.1 Exemple

This example shows the connections needed to use an Automation Direct GS2 VFD to drive a spindle.
The spindle speed and direction is controlled by LinuxCNC.

Using the GS2 component involves very little to set up. We start with a StepConf Wizard generated
config. Make sure the pins with “Spindle CW” and ”"Spindle PWM"” are set to unused in the parallel

port setup screen.

In the custom.hal file we place the following to connect LinuxCNC to the GS2 and have LinuxCNC

control the drive.
GS2 Example

load the non-realtime component for the Automation Direct GS2 VFDs

Li

nuxCNC V2.10.0-pre0-4994-g913129ce3c 394 /1261

loadusr -Wn spindle-vfd gs2 vfd -r 9600 -p none -s 2 -n spindle-vfd

#

connect the spindle direction pin to the GS2

net gs2-fwd spindle-vfd.spindle-fwd <= spindle.N.forward

#

connect the spindle on pin to the GS2

net gs2-run spindle-vfd.spindle-on <= spindle.N.on

#

connect the GS2 at speed to the motion at speed

net gs2-at-speed spindle.N.at-speed <= spindle-vfd.at-speed

#

connect the spindle RPM to the GS2

net gs2-RPM spindle-vfd.speed-command <= spindle.N.speed-out

Note

The transmission speed might be able to be faster depending on the exact environment. Both the
drive and the command line options must match. To check for transmission errors add the -v com-
mand line option and run from a terminal.

On the GS2 drive itself you need to set a couple of things before the modbus communications will work.
Other parameters might need to be set based on your physical requirements but these are beyond the
scope of this manual. Refer to the GS2 manual that came with the drive for more information on the
drive parameters.

A

The communications switches must be set to RS-232C.
The motor parameters must be set to match the motor.

P3.00 (Source of Operation Command) must be set to Operation determined by RS-485 interface,
03 or 04.

P4.00 (Source of Frequency Command) must be set to Frequency determined by RS232C/RS485
communication interface, 05.

P9.01 (Transmission Speed) must be set to 9600 baud, 01.
P9.02 (Communication Protocol) must be set to "Modbus RTU mode, 8 data bits, no parity, 2 stop
bits”, 03.

PyVCP panel based on this example is here.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 395/1261

Chapitre 8

ClassicLadder

8.1 ClassicLadder Introduction

8.1.1 History

ClassicLadderis a free implementation of a ladder interpreter, released under the LGPL. It was written
by Marc Le Douarain.

He describes the beginning of the project on his website:

I decided to program a ladder language only for test purposes at the start, in February 2001.
It was planned, that I would have to participate to a new product after leaving the enterprise
in which I was working at that time. And I was thinking that to have a ladder language in
those products could be a nice option to considerate. And so I started to code the first lines
for calculating a rung with minimal elements and displaying dynamically it under Gtk, to
see if my first idea to realize all this works.

And as quickly I've found that it advanced quite well, I've continued with more complex
elements: timer, multiples rungs, etc...

Voila, here is this work... and more: I've continued to add features since then.

— Marc Le Douarain, from “Genesis” at the ClassicLadder website

ClassicLadder has been adapted to work with LinuxCNC’s HAL, and is currently being distributed
along with LinuxCNC. If there are issues/problems/bugs please report them to the LinuxCNC project.

8.1.2 Introduction

Ladder logic or the Ladder programming language is a method of drawing electrical logic schematics.
It is now a graphical language very popular for programming Programmable Logic Controllers (PLCs).
It was originally invented to describe logic made from relays. The name is based on the observation
that programs in this language resemble ladders, with two vertical rails and a series of horizontal
rungs between them. In Germany and elsewhere in Europe, the style is to draw the rails horizontally
along the top and bottom of the page while the rungs are drawn vertically from left to right.

A program in ladder logic, also called a ladder diagram, is similar to a schematic for a set of relay
circuits. Ladder logic is useful because a wide variety of engineers and technicians can understand
and use it without much additional training because of the resemblance.

Ladder logic is widely used to program PLCs, where sequential control of a process or manufacturing
operation is required. Ladder logic is useful for simple but critical control systems, or for reworking

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 396 /1261

old hardwired relay circuits. As programmable logic controllers became more sophisticated it has also
been used in very complex automation systems.

Ladder logic can be thought of as a rule-based language, rather than a procedural language. A rung in
the ladder represents a rule. When implemented with relays and other electromechanical devices, the
various rules execute simultaneously and immediately. When implemented in a programmable logic
controller, the rules are typically executed sequentially by software, in a loop. By executing the loop
fast enough, typically many times per second, the effect of simultaneous and immediate execution is
obtained.

Ladder logic follows these general steps for operation.

— Read Inputs
— Solve Logic
— Update Outputs

8.1.3 Exemple

The most common components of ladder are contacts (inputs), these usually are either NC (normally
closed) or NO (normally open), and coils (outputs).

— the NO contact
— the NC contact

— the coil (output)

Of course there are many more components to a full ladder language, but understanding these will
help you grasp the overall concept.

The ladder consists of one or more rungs. These rungs are horizontal traces (representing wires), with
components on them (inputs, outputs and other), which get evaluated left to right.

This example is the simplest rung:

B0

a1
= | (o

The input on the left, BO, a normally open contact, is connected to the coil (output) on the right, QO.
Now imagine a voltage gets applied to the leftmost end, because the input BO turns true (e.g. the
input is activated, or the user pushed the NO contact). The voltage has a direct path to reach the coil
(output) on the right, Q0. As a consequence, the QO coil (output) will turn from 0/off/false to 1/on/true.
If the user releases B0, the QO output quickly returns to O/off/false.

8.1.4 Basic Latching On-Off Circuit

Building on the above example, suppose we add a switch that closes whenever the coil QO is active.
This would be the case in a relay, where the coil can activate the switch contacts; or in a contactor,
where there are often several small auxiliary contacts in addition to the large 3-phase contacts that
are the primary feature of the contactor.

Since this auxiliary switch is driven from coil QO in our earlier example, we will give it the same
number as the coil that drives it. This is the standard practice followed in all ladder programming,

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 397 /1261

although it may seem strange at first to see a switch labeled the same as a coil. So let’s call this
auxiliary contact QO and connect it across the BO pushbutton contact from our earlier example.

Let’s take a look at it:

B0

0
= | (o
i
_|

As before, when the user presses pushbutton B0, coil Q0 comes on. And when coil Q0 comes on, switch
QO comes on. Now the interesting part happens. When the user releases pushbutton B0, coil QO does
not stop as it did before. This is because switch QO of this circuit is effectively holding the user’s
pushbutton pressed. So we see that switch QO is still holding coil QO on after the start pushbutton has
been released.

This type of contact on a coil or relay, used in this way, is often called a holding contact, because it
holds on the coil that it is associated with. It is also occasionally called a seal contact, and when it is
active it is said that the circuit is sealed.

Unfortunately, our circuit so far has little practical use, because, although we have an on or start
button in the form of pushbutton B0, we have no way to shut this circuit off once it is started. But
that’s easy to fix. All we need is a way to interrupt the power to coil Q0. So let’s add a normally-closed
(NC) pushbutton just ahead of coil QO.

Here’s how that would look:

El @0

B0
= | N
i
_|

Now we have added off or stop pushbutton B1. If the user pushes it, contact from the rung to the coil is
broken. When coil QO loses power, it drops to O/off/false. When coil Q0 goes off, so does switch QO, so
the holding contact is broken, or the circuit is unsealed. When the user releases the stop pushbutton,
contact is restored from the rung to coil QO, but the rung has gone dead, so the coil doesn’t come
back on.

This circuit has been used for decades on virtually every machine that has a three-phase motor control-
led by a contactor, so it was inevitable that it would be adopted by ladder/PLC programmers. It is also
a very safe circuit, in that if start and stop are both pressed at the same time, the stop function always
wins.

This is the basic building block of much of ladder programming, so if you are new to it, you would do
well to make sure that you understand how this circuit operates.

8.2 ClassicLadder Programming

8.2.1 Ladder Concepts

ClassicLadder is a type of programming language originally implemented on industrial PLCs (it’s
called Ladder Programming). It is based on the concept of relay contacts and coils, and can be used to

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 398 /1261

construct logic checks and functions in a manner that is familiar to many systems integrators. Ladder
consists of rungs that may have branches and resembles an electrical circuit. It is important to know
how ladder programs are evaluated when running.

It seems natural that each line would be evaluated left to right, then the next line down, etc., but it
doesn’t work this way in ladder logic. Ladder logic scans the ladder rungs 3 times to change the state
of the outputs.

— the inputs are read and updated

— the logic is figured out

— the outputs are set

This can be confusing at first if the output of one line is read by the input of a another rung. There
will be one scan before the second input becomes true after the output is set.

Another gotcha with ladder programming is the “Last One Wins” rule. If you have the same output in
different locations of your ladder the state of the last one will be what the output is set to.

8.2.2 Languages

The most common language used when working with ClassicLadder is ladder. ClassicLadder also
supports Sequential Function Chart (Grafcet).

8.2.3 Components

There are two components to ClassicLadder.
— The realtime module classicladder rt
— The non-realtime module (including a GUI) classicladder

8.2.3.1 Files

Typically ClassicLadder components are placed in the custom.hal file if your working from a StepConf
generated configuration. These must not be placed in the custom_ postgui.hal file or the Ladder Editor
menu will be grayed out.

Note
Ladder files (.clp) must not contain any blank spaces in the name.

8.2.3.2 Realtime Module

Loading the ClassicLadder real time module (classicladder rt) is possible from a HAL file, or directly
using a halcmd instruction. The first line loads real time the ClassicLadder module. The second line
adds the function classicladder.0.refresh to the servo thread. This line makes ClassicLadder update
at the servo thread rate.

loadrt classicladder rt
addf classicladder.0.refresh servo-thread

The speed of the thread that ClassicLadder is running in directly affects the responsiveness to inputs
and outputs. If you can turn a switch on and off faster than ClassicLadder can notice it then you may
need to speed up the thread. The fastest that ClassicLadder can update the rungs is one millisecond.
You can put it in a faster thread but it will not update any faster. If you put it in a slower than one
millisecond thread then ClassicLadder will update the rungs slower. The current scan time will be
displayed on the section display, it is rounded to microseconds. If the scan time is longer than one
millisecond you may want to shorten the ladder or put it in a slower thread.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 399/1261

8.2.3.3 Variables

It is possible to configure the number of each type of ladder object while loading the ClassicLadder
real time module. If you do not configure the number of ladder objects ClassicLadder will use the
default values.

Table 8.1: Default Variable Count

Object Name Variable Name Default
Value
Number of rungs (numRungs) 100
Number of bits (numBits) 20
Number of word variables (numWords) 20
Number of timers (numTimers) 10
Number of timers IEC (numTimerslec) 10
Number of monostables (numMonostables) 10
Number of counters (numCounters) 10
Number of HAL inputs bit pins (numPhysInputs) 15
Number of HAL output bit pins (numPhysOutputs) 15
Number of arithmetic expressions (numArithmExpr) 50
Number of Sections (numSections) 10
Number of Symbols (numSymbols) Auto
Number of S32 inputs (numS32in) 10
Number of S32 outputs (numS32o0ut) 10
Number of Float inputs (numFloatIn) 10
Number of Float outputs (numFloatOut) 10

Objects of most interest are numPhysInputs, numPhysOutputs, numS32in, and numS32out.

Changing these numbers will change the number of HAL bit pins available. numPhysInputs and num-
PhysOutputs control how many HAL bit (on/off) pins are available. numS32in and numS32out control
how many HAL signed integers (+- integer range) pins are available.

For example (you don’t need all of these to change just a few):

loadrt classicladder rt numRungs=12 numBits=100 numWords=10
numTimers=10 numMonostables=10 numCounters=10 numPhysInputs=10
numPhysOutputs=10 numArithmExpr=100 numSections=4 numSymbols=200
numS32in=5 numS32out=5

To load the default number of objects:

loadrt classicladder rt

8.2.4 Loading the ClassicLadder non-realtime module

ClassicLadder HAL commands must executed before the GUI loads or the menu item Ladder Editor
will not function. If you used the Stepper Config Wizard place any ClassicLadder HAL commands in
the custom.hal file.

To load the non-realtime module:

loadusr classicladder

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 400/1261

Note
Only one .clp file can be loaded. If you need to divide your ladder then use sections.

To load a ladder file:

loadusr classicladder myladder.clp

ClassicLadder Loading Options

— --nogui - (loads without the ladder editor) normally used after debugging is finished.
— --modbus_port=port - (loads the modbus port number)

— --modmaster - (initializes MODBUS master) should load the ladder program at the same time or
the TCP is default port.

— --modslave - (initializes MODBUS slave) only TCP
To use ClassicLadder with HAL without EMC:

loadusr -w classicladder

The -w tells HAL not to close down the HAL environment until ClassicLadder is finished.

If you first load ladder program with the --nogui option then load ClassicLadder again with no options
the GUI will display the last loaded ladder program.

In AXIS you can load the GUI from File/Ladder Editor...

8.2.5 ClassicLadder GUI

If you load ClassicLadder with the GUI it will display two windows: Section display, and section ma-
nager.

8.2.5.1 Sections Manager

When you first start up ClassicLadder you get an empty Sections Manager window.

m Sections Manager =@ &)
Section Name Language Type debug

Add section ” Delete section || Mowve Up || Move Duwn|

Figure 8.1 - Sections Manager Default Window

This window allows you to name, create or delete sections and choose what language that section
uses. This is also how you name a subroutine for call coils.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 401/1261

8.2.5.2 Section Display

When you first start up ClassicLadder you get an empty Section Display window. Displayed is one
empty rung.

r

”—| | Display S}fmbn|5|

[<]

GUI reloaded with existing ladder program

| Mew || Load ” Save || Save As || Reset || Stop ” Yars

| Editor || Symbols || Config || Preview || Print || About || Quit

Figure 8.2 - Section Display Default Window

Most of the buttons are self explanatory:

The Vars button is for looking at variables, toggle it to display one, the other, both, then none of the
windows.

The Config button is used for modbus and shows the max number of ladder elements that was loaded
with the real time module.

The Symbols button will display an editable list of symbols for the variables (hint you can name the
inputs, outputs, coils etc).

The Quit button will shut down the non-realtime program, i.e. Modbus and the display. The realtime
ladder program will still run in the background.

The check box at the top right allows you to select whether variable names or symbol names are
displayed

You might notice that there is a line under the ladder program display that reads “Project failed to
load...”. That is the status bar that gives you info about elements of the ladder program that you click
on in the display window. This status line will now display HAL signal names for variables %I, %Q and

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 402 /1261

the first %W (in an equation). You might see some funny labels, such as (103) in the rungs. This is
displayed (on purpose) because of an old bug- when erasing elements older versions sometimes didn’t
erase the object with the right code. You might have noticed that the long horizontal connection button
sometimes did not work in the older versions. This was because it looked for the free code but found
something else. The number in the brackets is the unrecognized code. The ladder program will still
work properly, to fix it erase the codes with the editor and save the program.

8.2.5.3 The Variable Windows

This are two variable windows: the Bit Status Window (boolean) and the Watch Window (signed in-
teger). The Vars button is in the Section Display Window, toggle the Vars button to display one, the
other, both, then none of the variable windows.

"' Bit status Wil (22 (]

5 lo o |
[%B5 [%I0 [] %QO0
%B6 [%Il [] %Ql
(] %B7 [%I2 [] %Q2
[%B8 [%I3 [] %Q3
[%B9 [%I4 [] %Q4
[] %B10 [] %I5 [] %Q5
[%B11 [] %I6 [] %Q6
[%B12 [%I7 [] %Q7
[] %B13 [] %I8 [] %Q8
[%B14 [] %I9 [] %Q9
[%B15 [%I10 [] %Q10
[] %B16 [] %I11] %Q1ll
[%B17 [%I12 [] %Q12
[] %B18 [%I13 [] %Q13
[] %B19 [] %I14] %Ql4

Figure 8.3 - Bit Status Window

The Bit Status Window displays some of the boolean (on/off) variable data. Notice all variables start
with the % sign. The %I variables represent HAL input bit pins. The %Q represents the relay coil
and HAL output bit pins. The %B represents an internal relay coil or internal contact. The three edit
areas at the top allow you to select what 15 variables will be displayed in each column. For instance,
if the %B Variable column were 15 entries high, and you entered 5 at the top of the column, variables
%B5 to %B19 would be displayed. The check boxes allow you to set and unset %B variables manually

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 403 /1261

as long as the ladder program isn’t setting them as outputs. Any Bits that are set as outputs by the
program when ClassicLadder is running can not be changed and will be displayed as checked if on
and unchecked if off.

Memory W0 0 Dec | w
Bit In Pin %ll 0 Dec | w

Bit Out Pin (%02 0 Dec | v
532in Pin %o lW3 0 Dec | w
S32out Pin |%0QW4 0 Dec |
Bit Memory |%EBS 0 Dec | w
IEC Timer YTMO.Q 0 Dec |
IEC Timer YTMO W 0 Dec | w
IEC Timer % TMO.P 10 Dec | w
Counter % C0.D 0 Dec | v
Counter Y% CO0.E o Dec | w
Counter Y CO.F 0 Dec | v
Counter Y CON o Dec | w
Counter YCO.P 0 Dec | v
YeED o Dec | w

Figure 8.4 - Watch Window

The Watch Window displays variable status. The edit box beside it is the number stored in the variable
and the drop-down box beside that allow you to choose whether the number to be displayed in hex,
decimal or binary. If there are symbol names defined in the symbols window for the word variables
showing and the display symbols checkbox is checked in the section display window, symbol names
will be displayed. To change the variable displayed, type the variable number, e.g. %W2 (if the dis-
play symbols check box is not checked) or type the symbol name (if the display symbols checkbox is
checked) over an existing variable number/name and press the Enter Key.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 404 /1261

8.2.5.4 Symbol Window

‘= names EEE)
variable Symbol name HAL signal/Comment
%al0 %al0 no signal connected
%all %all no signal connected
%l2 %l2 no signal connected
%13 %13 no signal connected
%4 %4 no signal connected
%15 %15 no signal connected
%al6 %al6 no signal connected
%l7 %l7 no signal connected
%18 %18 no signal connected
%419 %419 no signal connected [+

Figure 8.5 - Symbol Names window

This is a list of symbol names to use instead of variable names to be displayed in the section window
when the display symbols check box is checked. You add the variable name (remember the % symbol
and capital letters), symbol name. If the variable can have a HAL signal connected to it (%I, %Q, and
%W-if you have loaded s32 pin with the real time module) then the comment section will show the
current HAL signal name or lack thereof. Symbol names should be kept short to display better. Keep
in mind that you can display the longer HAL signal names of %I, %Q and %W variable by clicking on
them in the section window. Between the two, one should be able to keep track of what the ladder
program is connected to!

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

405/1261

8.2.5.5 The Editor window

‘m " Editor =)

Add

Insert

Delete

Maodify

O O O ®
¢ - E

Figure 8.6 - Editor Window

— Add - adds a rung after the selected rung

— Insert - inserts a rung before the selected rung
— Delete - deletes the selected rung

— Modify - opens the selected rung for editing

Starting from the top left image:

— Object Selector, Eraser

— N.O. Input, N.C. Input, Rising Edge Input, Falling Edge Input

— Horizontal Connection, Vertical Connection, Long Horizontal Connection
— Timer IEC Block, Counter Block, Compare Variable

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 406 /1261

Old Timer Block, Old Monostable Block (These have been replaced by the IEC Timer)
COILS - N.O. Output, N.C. Output, Set Output, Reset Output

— Jump Coil, Call Coil, Variable Assignment

A short description of each of the buttons:

Selector - allows you to select existing objects and modify the information.
Eraser - erases an object.

N.O. Contact - creates a normally open contact. It can be an external HAL-pin (%]I) input contact, an
internal-bit coil (%B) contact or a external coil (%Q) contact. The HAL-pin input contact is closed
when the HAL-pin is true. The coil contacts are closed when the corresponding coil is active (%Q2
contact closes when %Q2 coil is active).

N.C. Contact - creates a normally closed contact. It is the same as the N.O. contact except that the
contact is open when the HAL-pin is true or the coil is active.

Rising Edge Contact - creates a contact that is closed when the HAL-pin goes from False to true,
or the coil from not-active to active.

Falling Edge Contact - creates a contact that is closed when the HAL-pin goes from true to false or
the coil from active to not.

Horizontal Connection - creates a horizontal connection to objects.
Vertical Connection - creates a vertical connection to horizontal lines.

Horizontal Running Connection - creates a horizontal connection between two objects and is a
quick way to connect objects that are more than one block apart.

IEC Timer - creates a timer and replaces the Timer.

Timer - creates a Timer Module (depreciated use IEC Timer instead).

Monostable - creates a one-shot monostable module

Counter - creates a counter module.

Compare - creates a compare block to compare variable to values or other variables, e.g. %W1<=5
or %sW1=%W2. Compare cannot be placed in the right most side of the section display.

Variable Assignment - creates an assignment block so you to assign values to variables, e.g. %sW2=7
or %sW1=%W2. ASSIGNMENT functions can only be placed at the right most side of the section display.

8.2.5.6 Config Window

The config window shows the current project status and has the Modbus setup tabs.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

407 /1261

Periodfobject info | Modbus communication setup Modbus /O register setup

Mumber of rungs (1% used
Mumber of Bits
Mumber of Error Bits
Mumber of Words
Mumber of Counters

Mumber of Timers IEC

Mumber of Symbaols
Mumber of Timers

Mumber of Monostahles

Mumber of 532in HAL pins
Mumber of S32out HAL pins
Mumber of floatin HAL pins

Mumber of floatout HAL pins

Current pathffilename

Fung Refresh Rate (milliseconds)

Mumber of Arithmetic Expresions

Mumber of Sections (10% used)

Mumber of BIT Inputs HAL pins
Mumber of BIT Qutputs HAL pins

10

custom.clp

Figure 8.7 - Config Window

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 408 /1261

8.2.6 Ladder objects

8.2.6.1 CONTACTS

Represent switches or relay contacts. They are controlled by the variable letter and number assigned
to them.

The variable letter can be B, I, or Q and the number can be up to a three digit number, e.g. %I2,
%Q3, or %B123. Variable I is controlled by a HAL input pin with a corresponding number. Variable B
is for internal contacts, controlled by a B coil with a corresponding number. Variable Q is control-
led by a Q coil with a corresponding number (like a relay with multiple contacts). E.g., if HAL pin
classicladder.0.in-00 is true then %I0 N.O. contact would be on (closed, true, whatever you like
to call it). If %B7 coil is energized (on, true, etc) then %B7 N.O. contact would be on. If %Q1 coil
is energized then %Q1 N.O. contact would be on (and HAL pin classicladder.0.out-01 would be
true).

— N.O. Contact - (Normally Open) When the variable is false the switch is off.

— N.C. Contact - (Normally Closed) When the variable is false the switch is on.
— Rising Edge Contact - When the variable changes from false to true, the switch is PULSED on.
— Falling Edge Contact - When the variable changes from true to false, the switch is PULSED on.

8.2.6.2 IEC TIMERS

Represent new count down timers. IEC Timers replace Timers and Monostables.

IEC Timers have 2 contacts.

— I - input contact

— Q - output contact

There are three modes - TON, TOF, TP.

— TON - When timer input is true countdown begins and continues as long as input remains true.
After countdown is done and as long as timer input is still true the output will be true.

— TOF - When timer input is true, sets output true. When the input is false the timer counts down
then sets output false.

— TP - When timer input is pulsed true or held true timer sets output true till timer counts down.
(one-shot)

The time intervals can be set in multiples of 100&8239;ms, seconds, or minutes.

There are also Variables for IEC timers that can be read and/or written to in compare or operate
blocks.

— %TMxxx.Q - timer done (Boolean, read write)
— %TMxxx.P - timer preset (read write)
— %TMxxx.V - timer value (read write)

8.2.6.3 TIMERS

Represent count down timers. This is deprecated and replaced by IEC Timers.

Timers have 4 contacts.

— E - enable (input) starts timer when true, resets when goes false
— C - control (input) must be on for the timer to run (usually connect to E)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 409/1261

— D - done (output) true when timer times out and as long as E remains true
— R - running (output) true when timer is running

The timer base can be multiples of milliseconds, seconds, or minutes.

There are also Variables for timers that can be read and/or written to in compare or operate blocks.
— %Txx.R - Timer xx running (Boolean, read only)

— %Txx.D - Timer xx done (Boolean, read only)

— %Txx.V - Timer xx current value (integer, read only)

— %Txx.P - Timer xx preset (integer, read or write)

8.2.6.4 MONOSTABLES

Represent the original one-shot timers. This is now deprecated and replaced by IEC Timers.

Monostables have 2 contacts, I and R.

— I - input (input) will start the mono timer running.

— R - running (output) will be true while timer is running.

The I contact is rising edge sensitive meaning it starts the timer only when changing from false to true
(or off to on). While the timer is running the I contact can change with no effect to the running timer.

R will be true and stay true till the timer finishes counting to zero. The timer base can be multiples of
milliseconds, seconds, or minutes.

There are also Variables for monostables that can be read and/or written to in compare or operate
blocks.

— %Mxx.R - Monostable xx running (Boolean, read only)

— %Mxx.V - Monostable xx current value (integer, read only)

— %Mxx.P - Monostable xx preset (integer, read or write)

8.2.6.5 COUNTERS

Represent up/down counters.

There are 7 contacts:

— R - reset (input) will reset the count to 0.

— P - preset (input) will set the count to the preset number assigned from the edit menu.
— U - up count (input) will add one to the count.

— D - down count (input) will subtract one from the count.

— E - under flow (output) will be true when the count rolls over from 0 to 9999.

— D - done (output) will be true when the count equals the preset.

— F - overflow (output) will be true when the count rolls over from 9999 to 0.

The up and down count contacts are edge sensitive meaning they only count when the contact changes
from false to true (or off to on if you prefer).

The range is 0 to 9999.

There are also Variables for counters that can be read and/or written to in compare or operate blocks.

— "%C’xx.D - Counter xx done (Boolean, read only)

— "%C’xx.E - Counter xx empty overflow (Boolean, read only)
— "%C’xx.F - Counter xx full overflow (Boolean, read only)

— "%C’xx.V - Counter xx current value (integer, read or write)
— "%C’xx.P - Counter xx preset (integer, read or write)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 410/ 1261

8.2.6.6 COMPARE

For arithmetic comparison. Is variable %XXX = to this number (or evaluated number)

The compare block will be true when comparison is true. You can use most math symbols:

— +, -, %, /, = (standard math symbols)
— < (less than), > (greater than), <= (less or equal), >= (greater or equal), <> (not equal)

— (,) separate into groups example %$IF1=2,&%IF2<5 in pseudo code translates to if %IF1 is equal to
2 and %IF2 is less than 5 then the comparison is true. Note the comma separating the two groups
of comparisons.

— ” (exponent), % (modulus), & (and), | (or),. -
— ABS (absolute), MOY (French for average), AVG (average)
For example ABS(%W2)=1, MOY(%W1,%W2)<3.

No spaces are allowed in the comparison equation. For example %C0.V>%C0.P is a valid comparison
expression while %C0.V > %C0.P is not a valid expression.

There is a list of Variables down the page that can be used for reading from and writing to ladder
objects. When a new compare block is opened be sure and delete the # symbol when you enter a
compare.

To find out if word variable #1 is less than 2 times the current value of counter #0 the syntax would
be:

SW1<2*%C0O.V

To find out if S32in bit 2 is equal to 10 the syntax would be:
%IW2=10

Note: Compare uses the arithmetic equals not the double equals that programmers are used to.

8.2.6.7 VARIABLE ASSIGNMENT

For variable assignment, e.g. assign this number (or evaluated number) to this variable %xxx, there are
two math functions MINI and MAXI that check a variable for maximum (0x80000000) and minimum
values (0x07FFFFFFF) (think signed values) and keeps them from going beyond.

When a new variable assignment block is opened be sure to delete the # symbol when you enter an
assignment.

To assign a value of 10 to the timer preset of IEC Timer 0 the syntax would be:
%TMO.P=10

To assign the value of 12 to s32out bit 3 the syntax would be:
%QW3=12

Note

When you assign a value to a variable with the variable assignment block the value is retained until
you assign a new value using the variable assignment block. The last value assigned will be restored
when LinuxCNC is started.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 411/1261

The following figure shows an Assignment and a Comparison Example. %QWO0 is a S32out bit and
%IWO is a S32in bit. In this case the HAL pin classicladder.0.s32out-00 will be set to a value of
5 and when the HAL pin classicladder.0.s32in-00 is 0 the HAL pin classicladder.0.out-00 will
be set to True.

Section Display of custom.clp

” |. Display symbals | = 1=
ASSIGMNMEMNT
Y OQWO0==5 |—
COMPARISOM Y% Q0
—|E-"E|IWD=D : {r
b
| Mew || Load ” Save || Save As || Reset || Stop ” \ars |
| Editor || Symbols || Config || Preview || Print || About || Quit |

Figure 8.8 - Assign/Compare Ladder Example

Figure 8.9 - Assignment Expression Example

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 412 /1261

‘m W properties =)&)

Expression

 Apply |

Figure 8.10 - Comparison Expression Example

8.2.6.8 COILS

Coils represent relay coils. They are controlled by the variable letter and number assigned to them.

The variable letter can be B or Q and the number can be up to a three digit number, e.g., %Q3, or
%B123. Q coils control HAL out pins, e.g. if %Q15 is energized then HAL pin classicladder.0.out-15
will be true. B coils are internal coils used to control program flow.

— N.O. COIL - A relay coil: When coil is energized, then its contact that is normally open (short: N.O.)
will be closed (turned on, true, etc.) and the current may pass.

— N.C. COIL - A relay coil that inverses its contacts: When coil is energized, then its contact that is
normally closed (short: N.C.) will be opened (turned off, false, etc) and the current flow is interrup-
ted.

— SET COIL - A relay coil with latching contacts: When coil is energized then its N.O. contact will be
latched closed.

— RESET COIL - A relay coil with latching contacts: When coil is energized then its N.O. contact will
be latched open.

— JUMP COIL - A goto coil: When coil is energized then the ladder program jumps to a rung (in the
CURRENT section) - jump points are designated by a rung label. (Add rung labels in the section
display, top left label box.)

— CALL COIL - A gosub coil: When coil is energized then the program jumps to a subroutine section
designated by a subroutine number - subroutines are designated SRO to SR9 (designate them in
the section manager).

® AVERTISSEMENT
If you use a N.C. contact with a N.C. coil the logic will work (when the coil is energized the
contact will be closed) but that is really hard to follow!

A JUMP COIL is used to JUMP to another section, like a goto in BASIC programming language.

If you look at the top left of the sections display window you will see a small label box and a longer
comment box beside it. Now go to Editor-Modify then go back to the little box, type in a name.

Go ahead and add a comment in the comment section. This label name is the name of this rung only
and is used by the JUMP COIL to identify where to go.

When placing a JUMP COIL, add it in the rightmost position and change the label to the rung you want
to JUMP to.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 413 /1261

A CALL COIL is used to go to a subroutine section then return, like a gosub in BASIC programming
language.

If you go to the sections manager window hit the add section button. You can name this section, select
what language it will use (ladder or sequential), and select what type (main or subroutine).

Select a subroutine number (SRO for example). An empty section will be displayed and you can build
your subroutine.

When you’ve done that, go back to the section manager and click on the your main section (default
name progl).

Now you can add a CALL COIL to your program. CALL COILs are to be placed at the rightmost position
in the rung.

Remember to change the label to the subroutine number you chose before.

8.2.7 ClassicLadder Variables

These Variables are used in COMPARE or OPERATE to get information about, or change specs of,
ladder objects such as changing a counter preset, or seeing if a timer is done running.

List of variables :

— %Bxxx - Bit memory xxx (Boolean)

— %Wxxx - Word memory xxx (32 bits signed integer)

— %IWxxx - Word memory xxx (S32 in pin)

— %QWxxx - Word memory xxx (S32 out pin)

— %IFxx - Word memory xx (Float in pin) (converted to S32 in ClassicLadder)
— %QFxx - Word memory xx (Float out pin) (converted to S32 in ClassicLadder)
° xx__.R - Timer xx running (Boolean, user read only)

" xx__.D' - Timer xx done (Boolean, user read only)

° xx_ .V -Timer xx current value (integer, user read only)

~ xx__.P' - Timer xx preset (integer)

TM = xxx__.Q - Timer xxx done (Boolean, read write)

TM = xxx__.P' - Timer xxx preset (integer, read write)

TM = xxx_ .V - Timer xxx value (integer, read write)

° xx__.R - Monostable xx running (Boolean)

" xx__.V - Monostable xx current value (integer, user read only)

° xx_ .P' - Monostable xx preset (integer)

" xx__.D' - Counter xx done (Boolean, user read only)

* xx__.E - Counter xx empty overflow (Boolean, user read only)

~ xx__.F - Counter xx full overflow (Boolean, user read only)

" xx__.V - Counter xx current value (integer)

C ° xx__.P - Counter xx preset (integer)

— %Ixxx - Physical input xxx (Boolean) (HAL input bit)

— %Qxxx - Physical output xxx (Boolean) (HAL output bit)

— %Xxxx - Activity of step xxx (sequential language)

— %X ° xxx__ .V -Time of activity in seconds of step xxx (sequential language)
— %Exx - Errors (Boolean, read write(will be overwritten))

— Indexed or vectored variables - These are variables indexed by another variable. Some might call
this vectored variables. Example: SW0O [%W4] => if %W4 equals 23 it corresponds to %W23

N Y O A B B
0® o° 0° o° O O P I O ° ° ° o°
OO nNn0=2x=2==2 —4 4 4 4

|
o
(@)

|
o°

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 414 /1261

8.2.8 GRAFCET (State Machine) Programming

AVERTISSEMENT

® This is probably the least used and most poorly understood feature of ClassicLadder. Sequential
programming is used to make sure a series of ladder events always happen in a prescribed
order. Sequential programs do not work alone. There is always a ladder program as well that
controls the variables. Here are the basic rules governing sequential programs:

— Rule 1 : Initial situation - The initial situation is characterized by the initial steps which are by
definition in the active state at the beginning of the operation. There shall be at least one initial
step.

— Rule 2 : R2, Clearing of a transition - A transition is either enabled or disabled. It is said to be
enabled when all immediately preceding steps linked to its corresponding transition symbol are
active, otherwise it is disabled. A transition cannot be cleared unless it is enabled, and its associated
transition condition is true.

— Rule 3 : R3, Evolution of active steps - The clearing of a transition simultaneously leads to the active
state of the immediately following step(s) and to the inactive state of the immediately preceding
step(s).

— Rule 4 : R4, Simultaneous clearing of transitions - All simultaneous cleared transitions are simul-
taneously cleared.

— Rule 5 : R5, Simultaneous activation and deactivation of a step - If during operation, a step is
simultaneously activated and deactivated, priority is given to the activation.

This is the SEQUENTIAL editor window. (Starting from the top left):
Selector arrow, Eraser

Ordinary step, Initial (Starting) step

Transition, Step and Transition

Transition Link-Downside, Transition Link-Upside

Pass-through Link-Downside, Pass-through Link-Upside Jump

Link, Comment Box

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 415/1261

Ok

Cancel

1T 1T 00 C

B . [T + O ~

Figure 8.11 - Sequence Editor Window

— ORDINARY STEP - has a unique number for each one

— STARTING STEP - a sequential program must have one. This is where the program will start.

— TRANSITION - shows the variable that must be true for control to pass through to the next step.
— STEP AND TRANSITION - combined for convenience

— TRANSITION LINK-DOWNSIDE - splits the logic flow to one of two possible lines based on which
of the next steps is true first (Think OR logic)

— TRANSITION LINK=UPSIDE - combines two (OR) logic lines back in to one

— PASS-THROUGH LINK-DOWNSIDE - splits the logic flow to two lines that BOTH must be true to
continue (Think AND logic)

— PASS-THROUGH LINK-UPSIDE - combines two concurrent (AND logic) logic lines back together

— JUMP LINK - connects steps that are not underneath each other such as connecting the last step
to the first

— COMMENT BOX - used to add comments

To use links, you must have steps already placed. Select the type of link, then select the two steps or
transactions one at a time. It takes practice!

With sequential programming: The variable X ~ xxx_ (e.g., %X5)isused to see if astep is active.
The variable X =~ xxx_ .V (e.g., %X5.V) is used to see how long the step has been active. The %X and
%X.v variables are use in LADDER logic. The variables assigned to the transitions (e.g., %B) control

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 416 /1261

whether the logic will pass to the next step. After a step has become active the transition variable that
caused it to become active has no control of it anymore. The last step has to JUMP LINK back only to
the beginning step.

8.2.9 Modbus

Things to consider:

— Modbus is a non-realtime program so it might have latency issues on a heavily laden computer.

— Modbus is not really suited to hard real time events such as position control of motors or to control
E-stop.

— The ClassicLadder GUI must be running for Modbus to be running.

— Modbus is not fully finished so it does not do all modbus functions.

To get MODBUS to initialize you must specify that when loading the ClassicLadder non-realtime pro-
gram.

Loading Modbus

loadusr -w classicladder --modmaster myprogram.clp

The -w makes HAL wait until you close ClassicLadder before closing realtime session. ClassicLadder
also loads a TCP modbus slave if you add - -modserver on command line.

Modbus Functions

— 1 - read coils

— 2 -read inputs

— 3 - read holding registers

— 4 - read input registers

— 5 - write single coils

— 6 - write single register

— 8 - echo test

— 15 - write multiple coils

— 16 - write multiple registers

If you do not specify a --modmaster when loading the ClassicLadder non-realtime program this page
will not be displayed.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c

417 /1261

Periodfobject info l Modbus communication setup

Modbus IjO register setup 1

Modbus IJO register setup 2 ‘

Slave Address TypeAccess 1st Modbus Ele. Mbr of Ele Logic
12 |[Read_INPUTS frct-2_ja B O inverted
[12 l “1]I:l Inverted
[12 l‘u‘u’rite_COlL{S} fnct-5/15 [n “1]IZl mverted

Read REGS fnct- 4
[l‘u‘u’rite_REGl{S}l frct-6/16 [1 “1]D Inverted
[]Read_HOLD fnct- 3 [l “1]IZl Inverted
[]SIave_echu frct- 8 | J[l "1]D Inverted

Read_INPUTS fnct- 2 w1 1 L] Inverted
[| v] | |

Read INPUTS fnct-2 |+ ||1 1 Ol Inverted
[| read_ v] | |

Read INPUTS fnct-2 |+ |1 1 O Inverted
[| Read_ v] | |
[|Read_npUTS fct-2 | v (1 2 |00 inverted
[[Read_npUTS fct-2 | v 1 2 |00 inverted
[|Read_nPUTS fct-2 | v 1 2 |00 inverted
[|Read_nPUTS fct-2 | v 1 [[2 |00 Inverted
[|Read_nPUTS fnct-2 | v 1 2 |00 inverted
[|Read_npUTS fct-2 | v 1 2 |00 inverted

1st JQMW Mapped

Figure 8.12 - Modbus I/O Config

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 418 /1261

iF |
-

Config S[EE

Periodfobject info I Modbus communication setup l Modbus /O register setup

Serial port (blank = IP mode) [fdev{ttySD | v |

After transmit pause - milliseconds [D]

Request Timeout length - milliseconds [500 l

Read registerfholding map to O %W @ %QwW

Serial baud rate [QGDD | v |

After receive pause - milliseconds [200]

lUse RTS to send @ NO O YES

0@ 1

Modbus element offset

Debug level ® QUIET O LEVEL 1 O LEVEL 2 O LEVEL 3

Read Coilsfinputs mapto @ %BE O %Q

Write Coils map from @ %E O %Q O %l

Write registers map from O %W ® %QW O %W

Figure 8.13 - Modbus Communication Config

SERIAL PORT - For IP blank. For serial the location/name of serial driver, e.g., /dev/ttySO (or
/dev/ttyUSBO for a USB-to-serial converter).

SERIAL SPEED - Should be set to speed the slave is set for - 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200 are supported.

PAUSE AFTER TRANSMIT - Pause (milliseconds) after transmit and before receiving answer, some
devices need more time (e.g., USB-to-serial converters).

PAUSE INTER-FRAME - Pause (milliseconds) after receiving answer from slave. This sets the duty
cycle of requests (it’s a pause for EACH request).

REQUESTTIMEOUT LENGTH - Length (milliseconds) of time before we decide that the slave didn’t
answer.

MODBUS ELEMENT OFFSET - used to offset the element numbers by 1 (for manufacturers num-
bering differences).

DEBUG LEVEL - Set this to 0-3 (0 to stop printing debug info besides no-response errors).

READ COILS/INPUTS MAP TO - Select what variables that read coils/inputs will update. (B or Q).
WRITE COILS MAP TO - Select what variables that write coils will updated from (B,Q,or I).

READ REGISTERS/HOLDING - Select what variables that read registers will update (W or QW).
WRITE REGISTERS MAP TO - Select what variables that read registers will updated from (W, QW,
or IW).

SLAVE ADDRESS - For serial the slaves ID number usually settable on the slave device (usually
1-256). For IP the slave IP address plus optionally the port number.

TYPE ACCESS - This selects the MODBUS function code to send to the slave (eg what type of
request).

COILS /INPUTS - Inputs and Coils (bits) are read from/written to I, B, or Q variables (user selects).

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 419 /1261

— REGISTERS (WORDS) - Registers (Words/Numbers) map to IW, W, or QW variables (user selects).

— 1st MODBUS ELEMENT - The address (or register number) of the first element in a group (remem-
ber to set MODBUS ELEMENT OFFSET properly).

— NUMBER OF ELEMENTS - The number of elements in this group.
— LOGIC - You can invert the logic here.

— 1st%I%Q IQ WQ MAPPED - This is the starting number of %B, %I, %Q, %W, %IW, or %QW variables
that are mapped onto/from the modbus element group (starting at the first modbus element num-
ber).

In the example above: Port number - for my computer /dev/ttySO was my serial port.
The serial speed is set to 9600 baud.

Slave address is set to 12 (on my VFD I can set this from 1-31, meaning I can talk to 31 VFDs maximum
on one system).

The first line is set up for 8 input bits starting at the first register number (register 1). So register
numbers 1-8 are mapped onto ClassicLadder’s %B variables starting at %B1 and ending at %B8.

The second line is set for 2 output bits starting at the ninth register number (register 9) so register
numbers 9-10 are mapped onto ClassicLadder’s %Q variables starting at %Q9 ending at %Q10.

The third line is set to write 2 registers (16 bits each) starting at the 0 register number (register 0),
so register numbers 0-1 are mapped onto ClassicLadder’s %W variables starting at %WO0 ending at
%W1.

It’s easy to make an off-by-one error as sometimes the modbus elements are referenced starting at one
rather then 0 (actually by the standard that is the way it’s supposed to be!). You can use the modbus
element offset radio button to help with this.

The documents for your modbus slave device will tell you how the registers are set up- there is no
standard way.

The SERIAL PORT, PORT SPEED, PAUSE, and DEBUG level are editable for changes (when you close
the config window values are applied, though Radio buttons apply immediately).

To use the echo function select the echo function and add the slave number you wish to test. You don’t
need to specify any variables.

The number 257 will be sent to the slave number you specified and the slave should send it back. You
will need to have ClassicLadder running in a terminal to see the message.

8.2.10 MODBUS Settings

Serial:

— ClassicLadder uses RTU protocol (not ASCII).
— 8 data bits, No parity is used, and 1 stop bit is also known as 8-N-1.

— Baud rate must be the same for slave and master. ClassicLadder can only have one baud rate so
all the slaves must be set to the same rate.

— Pause inter frame is the time to pause after receiving an answer.

— MODBUS TIME AFTER TRANSMIT is the length of pause after sending a request and before re-
ceiving an answer (this apparently helps with USB converters which are slow).

8.2.10.1 MODBUS Info

— ClassicLadder can use distributed inputs/outputs on modules using the Modbus protocol ("master”:
polling slaves).

— The slaves and theirs I/O can be configured in the config window.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 420 /1261

— 2 exclusive modes are available : ethernet using Modbus/TCP and serial using Modbus/RTU.
— No parity is used.

— If no port name for serial is set, TCP/IP mode will be used...

— The slave address is the slave address (Modbus/RTU) or the IP address.

— The IP address can be followed per the port number to use (xx.xx.xx.xx:pppp) else the port 9502
will be used per default.

— 2 products have been used for tests: a Modbus/TCP one (Adam-6051, https://www.advantech.com)
and a serial Modbus/RTU one (https://'www.ipac.ws).

— See examples: adam-6051 and modbus_rtu_serial.
— Web links: https://www.modbus.org and this interesting one: https://www.iatips.com/modbus.html
— MODBUS TCP SERVER INCLUDED

— ClassicLadder has a Modbus/TCP server integrated. Default port is 9502. (the previous standard
502 requires that the application must be launched with root privileges).

— List of Modbus functions code supported are: 1, 2, 3, 4, 5, 6, 15 and 16.
— Modbus bits and words correspondence table is actually not parametric and correspond directly

to the %B and %W variables.
More information on modbus protocol is available on the internet.

https://www.modbus.org/

8.2.10.2 Communication Errors

If there is a communication error, a warning window will pop up (if the GUI is running) and %EO0 will
be true. Modbus will continue to try to communicate. The %EO could be used to make a decision based
on the error. A timer could be used to stop the machine if timed out, etc.

8.2.11 Debugging modbus problems

A good reference for the protocol: https://www.modbus.org/docs/Modbus Application Protocol V1 1b.pdf.
If you run linuxcnc/classicladder from a terminal, it will print the Modbus commands and slave res-
ponses.

Here we set ClassicLadder to request slave 1, to read holding registers (function code 3) starting
at address 8448 (0x2100). We ask for 1 (2 byte wide) data element to be returned. We map it to a
ClassicLadder variable starting at 2.

https://www.advantech.com
https://www.ipac.ws
https://www.modbus.org
https://www.iatips.com/modbus.html
https://www.modbus.org/
https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 421/1261

[Period/object info H Modbus communication setup H Modbus 1/O register setup |

Slave Address Request Type 1stModbus Ele. # of Ele Logic IstVariable mapped

[|read HoLD REG fnctn-3 E][sm [| mverted |2]
[”Read_discrete_INPUTS fnctn- 2 EH][1 ll:l Inverted [{} l
[][Read_discrete_INPUTs fctn- 2 EH1][1]D Inverted [o]
[][Read_discrete_INPUTs fctn- 2 E][1][1]|:| Inverted [0]
[”Read_discrete_INPUTS fnctn- 2 EH]][1 ll:l Inverted [{} l
[”Read_discrete_INPUTS fnctn-2 EH1][1 ll:l Inverted [{} l
[HRead_discrete_INPUTS fctn- 2 E][1][1]D Inverted [0]
[][Read_discrete_INPUTs fctn- 2 E][1][1]|:| Inverted [0]
[”Read_discrete_INPUTS fnctn- 2 EH]][1 ll:l Inverted [{} l
[][Read_discrete_INPUTS fnctn-2 EH1][1 ll:l Inverted [{} l
[HRead_discrete_INPUTS fctn- 2 E][1][1]D Inverted [o]
[][Read_discrete_INPUTs fctn- 2 E][1][1]|:| Inverted [0]
[”Read_discrete_INPUTS fnctn- 2 EH1][1 ll:l Inverted [{} l
[][Read_discrete_INPUTs fctn- 2 EH1][1]D Inverted [o]
[][Read_discrete_INPUTs fctn- 2 E][1][1]|:| Inverted [o]
[][Read_discrete_INPUTs fctn- 2 EH1][1]D Inverted [o]

Figure 8.14 - Modbus I/O Register Setup

Note in this image we have set the debug level to 1 so modbus messages are printed to the terminal. We
have mapped our read and written holding registers to ClassicLadder’s %W variables so our returned
data will be in %W2 as in the other image we mapped the data starting at the 2nd element.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 422 /1261

Period/object info || Modbus communication setup || Medbus 1/O register setup

Serial port (blank = IP mode) |_Pr:|ew‘tt_~.r5[] L™

Serial baud rate |1 15200 L™
After transmit pause - milliseconds |[J]
After receive pause - milliseconds [20[]]

Request Timeout length - milliseconds |5[J[J]

Use RTS to send © NO () YES
Modbus element offset o1
Debug level QUIET @ LEVEL1 LEVEL 2 LEVEL 3

Read Coils/inputs map to © %B () %Q
Write Coils map from © %B) %Q () %I

Read register/holdingmapto @ %W () %QW

Write registers map from © ww) QW () wIW

Figure 8.15 - Modbus Communication Setup

8.2.11.1 Request

Lets look at an example of reading one hold register at 8448 Decimal (0x2100 Hex).

Looking in the Modbus protocol reference:

Table 8.2: Read holding register request

Name numberValue (hex)
of
bytes

Function code (1 3 (0x03)
Byte)

Starting Address | (2 0 - 65535
Bytes) | (0x0000 to

0xFFFF)

Number of 2 1 to 125 (0x7D)

Registers Bytes)

Checksum 2 Calculated
bytes) | automatically

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 423 /1261

Here is an example sent command as printed in the terminal (all Hex):

INFO CLASSICLADDER- Modbus I/0 module to send: Lgt=8 <- Slave address-1 Function code-3 «
Data-21 0 0 1 8E 36

Meaning (Hex):

— Lgt = 8 = message is 8 bytes long including slave number and checksum number

— Slave number = 1 (0x1) = Slave address 1

— Function code = 3 (0x3) = read holding register

— Start at address = highbyte 33 (0x21) lowbyte 0 (0x00) = combined address = 8448 (0x2100)

— Number of Registers = 1 (0x1) = return 1 2-byte register (holding and reading registers are always
2 bytes wide)

— Checksum = high byte 0x8E lowbyte 0x36 = (0x8E36)

8.2.11.2 Error response

If there is an error response, it sends the function code plus 0x80, an error code, and a checksum.
Getting an error response means the slave is seeing the request command but can not give valid data.
Looking in the Modbus protocol reference:

Table 8.3: Error returned for function code 3 (read hol-
ding register)

Name Numbealue (hex)
of
bytes

Error code 1 131 (0x83)
Byte

Exception code 1 1-4 (0x01 to
Byte 0x04)

Checksum 2 Calculated
bytes) | automatically

Exception code meaning:

— 1 - illegal Function

— 2 -illegal data address

— 3 -illegal data value

— 4 - slave device failure

Here is an example received command as printed in the terminal (all Hex):

INFO CLASSICLADDER- Modbus I/0 module received: Lgt=5 -> (Slave address-1 Function +«
code-83) 2 CO F1

Meaning (Hex):

— Slave number = 1 (0x1) = Slave address 1

— Function code = 131 (0x83) = error while reading holding register
— Error code = 2 (0x2) = illegal data address requested

— Checksum = (0x8E36)

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 424 /1261

8.2.11.3 Data response

Looking in the Modbus protocol reference for Response:

Table 8.4: Data response for function code 3 (read holding

register)

Name numberValue (hex)
of
bytes

Function code 1 3 (0x03)
Byte

Byte count 1 2 x N*
Byte

Register value N*x | returned value of
2 requested
Bytes | address

Checksum 2 calculated
bytes) | automatically

*N = Number of registers
Here is an example received command as printed in the terminal (all Hex):

INFO CLASSICLADDER- Modbus I/0 module received: Lgt=7 -> (Slave address-1 Function +
code-3 2 0 0 B8 44)

meaning (Hex):

— Slave number = 1 (0x1) = Slave address 1

— Requested function code = 3 (0x3) = read holding register requested

— count of byte registers = 2 (0x1) = return 2 bytes (each register value is 2 bytes wide)

— value of highbyte = 0 (0x0) = high byte value of address 8448 (0x2100)

— value of lowbyte = 0 (0x0) = high byte value of address 8448 (0x2100)

— Checksum = (0xB844)

(high and low bytes are combined to create a 16 bit value and then transferred to ClassicLadder’s
variable.) Read Registers can be mapped to %W or %QW (internal memory or HAL out pins). Write
registers can be mapped from %W, %QW or %IW (internal memory, HAL out pins or HAL in pins). The
variable number will start at the number entered in the modbus I/O registry setup page’s column:

First variable mapped. If multiple registers are requested in one read/write then the variable number
are sequential after the first one.

8.2.11.4 MODBUS Bugs

— In compare blocks the function %W=ABS(%W1-%W2) is accepted but does not compute properly.
only %W0=ABS(%W1) is currently legal.

— When loading a ladder program it will load Modbus info but will not tell ClassicLadder to initialize
Modbus. You must initialize Modbus when you first load the GUI by adding --modmaster.

— Ifthe section manager is placed on top of the section display, across the scroll bar and exit is clicked
the non-realtime program crashes.

— When using --modmaster you must load the ladder program at the same time or else only TCP will
work.

— reading/writing multiple registers in Modbus has checksum errors.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 425 /1261

8.2.12 Setting up ClassicLadder

In this section we will cover the steps needed to add ClassicLadder to a StepConf Wizard generated
config. On the advanced Configuration Options page of StepConf Wizard check off “Include Classi-
cLadder PLC".

EME2 Stepper Mill Configuratian (=)

Ll

[include Halui user interface companent
[0 mclude custom PyWCP GLA panel
Py Exarnple Options

¥ include Classicladder PLE

FLC Optioms
Murnber of digital in pins: .15 ®
Murnber of digital out pins: 15 |5
Mumber of analog (532) in pins: 10 =
Mumnber of analeg (532) out pins: 10 =
Murnber of analog (Aoat] in pins: w0 |=
Murmber of analeg (loat) out pins: 10 =

[Include modbus master support

HBlank ladder program
Estop ladder program
1. Edit ladder

Seral modbus pragram fli:}prcgram

&1 Include conmections to HAL

g;ancel 4 Back W Forward

Figure 8.16 - StepConf ClassicLadder

8.2.12.1 Add the Modules

If you used the StepConf Wizard to add ClassicLadder you can skip this step.

To manually add ClassicLadder you must first add the modules. This is done by adding a couple of
lines to the custom.hal file.

This line loads the real time module:

loadrt classicladder rt

This line adds the ClassicLadder function to the servo thread:

addf classicladder.0.refresh servo-thread

8.2.12.2 Adding Ladder Logic

Now start up your config and select "File/Ladder Editor” to open up the ClassicLadder GUI. You should
see a blank Section Display and Sections Manager window as shown above. In the Section Display
window open the Editor. In the Editor window select Modify. Now a Properties window pops up and
the Section Display shows a grid. The grid is one rung of ladder. The rung can contain branches. A

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 426 /1261

simple rung has one input, a connector line and one output. A rung can have up to six horizontal
branches. While it is possible to have more than one circuit in a run the results are not predictable.

Section Risplay of custom. -:Ip

Current rung in edit mode...

| Mew || Load ” Sawve || Save As || Reset || Stop ” \ars |

| Editor || Symbols || Config || Preview || Print || About || Quit |

Figure 8.17 - Section Display with Grid

Now click on the N.O. input in the Editor Window.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 427 /1261

N4

HH AR W
— | —
[™™] [C |

LT | [M]

O D & B
¢ © El

Figure 8.18 - Editor Window

Now click in the upper left grid to place the N.O. Input into the ladder.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 428 /1261

Section RDisplay of custom. -:Ip

Current rung in edit mode...

| Mew || Load ” Save || Save As || Reset || Stop ” Vars |

| Editor || Symbols ” Config ” Preview || Print ” About || Quit |

Figure 8.19 - Section Display with Input

Repeat the above steps to add a N.O. output to the upper right grid and use the Horizontal Connection
to connect the two. It should look like the following. If not, use the Eraser to remove unwanted sections.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 429 /1261

Section RDisplay of custom. -:Ip

YalO % Q0

— | C

Current rung in edit mode...

| Mew || Load ” Save || Save As || Reset || Stop ” Vars |

| Editor || Symbols ” Config ” Preview || Print ” About || Quit |

Figure 8.20 - Section Display with Rung

Now click on the OK button in the Editor window. Now your Section Display should look like this:

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 430/1261

Section RDisplay of custom.-clp

| Mew || Load ” Save || Save As || Reset || Stop ” Vars |

| Editor || Symbols ” Config ” Preview || Print ” About || Quit |

Figure 8.21 - Section Display Finished

To save the new file select Save As and give it a name. The .clp extension will be added automatically.
It should default to the running config directory as the place to save it.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 431 /1261
Mame: |MyMNewLa dder |
— Browse for other folders

¢ |E3jet | emcz | configs CL | Create Folder
Places Mame ~ mModified -
@ Search custom.clp Today at 10:3%
& Recently Used
£ jet
Ed Daesktop

] File System
2 Docurnents
B Music

3 pictures

B videos

Figure 8.22 - Save As Dialog

ClassicLadder projects 2

a Cancel

Again if you used the StepConf Wizard to add ClassicLadder you can skip this step.

ik '
A Sawve |

To manually add a ladder you need to add add a line to your custom.hal file that will load your ladder

file. Close your LinuxCNC session and add this line to your custom.hal file.

loadusr -w classicladder --nogui MylLadder.clp

Now if you start up your LinuxCNC config your ladder program will be running as well. If you select
"File/Ladder Editor”, the program you created will show up in the Section Display window.

8.3 ClassicLadder Examples

8.3.1 Wrapping Counter

To have a counter that wraps around you have to use the preset pin and the reset pin. When you create
the counter set the preset at the number you wish to reach before wrapping around to 0. The logic is
if the counter value is over the preset then reset the counter and if the underflow is on then set the

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 432 /1261

counter value to the preset value. As you can see in the example when the counter value is greater
than the counter preset the counter reset is triggered and the value is now 0. The underflow output
%Q2 will set the counter value at the preset when counting backwards.

.

Y2 0 Y01
| P D

COMPARISON R %C0 ¢ %QO0
[BeC0N=%C0.P — ——
| I — >—
4

ECHNY

H

ECTPE

e

custom.clp

| Mew || Load ” Save || Save As || Reset || Stop ” Wars

| Editor || Symbols || Config || Preview || Print || About || Quit |

Figure 8.23 - Wrapping Counter

8.3.2 Reject Extra Pulses

This example shows you how to reject extra pulses from an input. Suppose the input pulse %I0 has
an annoying habit of giving an extra pulse that spoils our logic. The TOF (Timer Off Delay) prevents
the extra pulse from reaching our cleaned up output %Q0. How this works is when the timer gets an
input the output of the timer is on for the duration of the time setting. Using a normally closed contact
%TMO0.Q the output of the timer blocks any further inputs from reaching our output until it times out.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 433/1261

%%
%10 T™MO.Q % Q0
] o

| 4 C

Y TMO Q
TOF |

Figure 8.24 - Reject Extra Pulse

8.3.3 External E-Stop

The External E-Stop example is in the /config/classicladder/cl-estop folder. It uses a PyVCP panel to
simulate the external components.

To interface an external E-Stop to LinuxCNC and have the external E-Stop work together with the
internal E-Stop requires a couple of connections through ClassicLadder.

First we have to open the E-Stop loop in the main HAL file by commenting out by adding the pound
sign as shown or removing the following lines.

net estop-out <= iocontrol.0.user-enable-out
net estop-out => iocontrol.0.emc-enable-in

Next we add ClassicLadder to our custom.hal file by adding these two lines:

loadrt classicladder rt
addf classicladder.0.refresh servo-thread

Next we run our config and build the ladder as shown here.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 434 /1261

- ection Display e B
- | |ODisplay symbols
-, - e e -
— | | | C
%01
Yal3
H -
%50
Current rung in edit mode...
| Mew || Load || Save || Save As || Reset || Stop ” \ars |
| Editor || Symbols || Config || Preview || Print || About || Quit |

Figure 8.25 - E-Stop Section Display

After building the ladder select Save As and save the ladder as estop.clp
Now add the following line to your custom.hal file.

Load the ladder
loadusr classicladder --nogui estop.clp

I/O assignments

— %I0 = Input from the PyVCP panel simulated E-Stop (the checkbox)

— %I1 = Input from LinuxCNC’s E-Stop

— %I2 = Input from LinuxCNC’s E-Stop Reset Pulse

— %I3 = Input from the PyVCP panel reset button

— %Q0 = Output to LinuxCNC to enable

— %Q1 = Output to external driver board enable pin (use a N/C output if your board had a disable
pin)

Next we add the following lines to the custom postgui.hal file

E-Stop example using PyVCP buttons to simulate external components

The PyVCP checkbutton simulates a normally closed external E-Stop
net ext-estop classicladder.0.in-00 <= pyvcp.py-estop

Request E-Stop Enable from LinuxCNC

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 435/1261

net estop-all-ok iocontrol.0.emc-enable-in <= classicladder.0.out-00

Request E-Stop Enable from PyVCP or external source
net ext-estop-reset classicladder.0.in-03 <= pyvcp.py-reset

This line resets the E-Stop from LinuxCNC
net emc-reset-estop iocontrol.0.user-request-enable => classicladder.0.in-02

This line enables LinuxCNC to unlatch the E-Stop in ClassiclLadder
net emc-estop iocontrol.0.user-enable-out => classicladder.0.in-01

This line turns on the green indicator when out of E-Stop
net estop-all-ok => pyvcp.py-es-status

Next we add the following lines to the panel.xml file. Note you have to open it with the text editor not
the default html viewer.

<pyvcp>

<vbox>

<label><text>"E-Stop Demo”</text></label>
<led>
<halpin>"py-es-status”</halpin>
<size>50</size>
<on_color>"green”</on_color>
<off color>"red”</off color>
</led>

<checkbutton>
<halpin>"py-estop”</halpin>
<text>"E-Stop”</text>
</checkbutton>

</vbox>

<button>
<halpin>"py-reset”</halpin>
<text>"Reset”</text>

</button>

</pyvcp>

Now start up your config and it should look like this.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 436 /1261

[axis. ngc = AXIS pre=2, 31CVS HEAD on cl=estop’ \El@

File tachine Wiew Help

= Q{? Q ext iglaa | I£ IE I.E. II. JB) nzr %.} E-Stop Demo

Manual Contral [F3] | MDI [F5)]
B ¥ [[

[T E-Stop

Reseat

[T Cwerride Limits

Fead Override: 100 %
Jog Speed: 2.8 infmin

[AXIS "splash g-code")

[Mot intended for actual milling J
#1=,1 (SH)

#2=,01 (CUTY

#3=,0003 (SCALE)

#4=E0 (FEED)

G20

{Character: 'E')

GO Z #1

ESTOP Mo tool Position: Relative Actual

Figure 8.26 - AXIS E-Stop

Note that in this example like in real life you must clear the remote E-Stop (simulated by the checkbox)
before the AXIS E-Stop or the external Reset will put you in OFF mode. If the E-Stop in the AXIS screen
was pressed, you must press it again to clear it. You cannot reset from the external after you do an
E-Stop in AXIS.

8.3.4 Timer/Operate Example

In this example we are using the Operate block to assign a value to the timer preset based on if an
input is on or off.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 437 /1261

section Display

|| |] Display symbaols i_
E',Ir'f:.l’a; Y TMO Q yﬁ’QID
1 TOM x?’_
o
%al0 OPERATE -
| | [%TMO0.P=10 —
YalO OPERATE
L1 [TMO.P=5 —
| Mew || Load || Save || Save As || Reset || Stop ” \ars
| Editor || Symbols || config | Preview | Print | About | qui

Figure 8.27 - Timer/Operate Example

In this case %I0 is true so the timer preset value is 10. If %10 was false the timer preset would be 5.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 438 /1261

Chapitre 9

Sujets avancés

9.1 Kinematics

9.1.1 Introduction

When we talk about CNC machines, we usually think about machines that are commanded to move to
certain locations and perform various tasks. In order to have an unified view of the machine space, and
to make it fit the human point of view over 3D space, most of the machines (if not all) use a common
coordinate system called the Cartesian Coordinate System.

The Cartesian Coordinate system is composed of three axes (X, Y, Z) each perpendicular to the other
twol.

When we talk about a G-code program (RS274/NGC) we talk about a number of commands (GO, G1,
etc.) which have positions as parameters (X- Y- Z-). These positions refer exactly to Cartesian positions.
Part of the LinuxCNC motion controller is responsible for translating those positions into positions
which correspond to the machine kinematics 2.

9.1.1.1)Joints vs Axes

A joint of a CNC machine is a one of the physical degrees of freedom of the machine. This might be
linear (leadscrews) or rotary (rotary tables, robot arm joints). There can be any number of joints on a
given machine. For example, one popular robot has 6 joints, and a typical simple milling machine has
only 3.

There are certain machines where the joints are laid out to match kinematics axes (joint 0 along axis
X, joint 1 along axis Y, joint 2 along axis Z), and these machines are called Cartesian machines (or
machines with Trivial Kinematics). These are the most common machines used in milling, but are not
very common in other domains of machine control (e.g. welding: puma-typed robots).

LinuxCNC supports axes with names: XYZ A B C UV W. The X Y Z axes typically refer to the usual
Cartesian coordinates. The A B C axes refer to rotational coordinates about the XY Z axes respectively.
The U V W axes refer to additional coordinates that are commonly made colinear to the X Y Z axes
respectively.

1. The word "axes” is also commonly (and wrongly) used when talking about CNC machines, and referring to the moving
directions of the machine.
2. Kinematics: a two way function to transform from Cartesian space to joint space.

LinuxCNC V2.10.0-pre0-4994-g913129ce3c 439/1261

9.1.2 Trivial Kinematics

The simplest machines are those in which which each joint is placed along one of the Cartesian axes.
On these machines the mapping from Cartesian space (the G-code program) to the joint space (the
actual actuators of the machine) is trivial. It is a simple 1:1 mapping:

pos->tran.x = joints[0];
pos->tran.y = joints[1];
pos->tran.z = joints[2];

In the above code snippet one can see how the mapping is done: the X position is identical with the
joint 0, the Y position with joint 1, etc. The above refers to the direct kinematics (one direction of the
transformation). The next code snippet refers to the inverse kinematics (or the inverse direction of
the transformation):

joints[0] = pos->tran.x;
joints[1l] = pos->tran.y;
joints[2] = pos->tran.z;

In LinuxCNC, the identity kinematics are implemented with the trivkins kinematics module and ex-
t